Show simple item record

dc.contributor.authorMcWilliams, Trevor Deanen_US
dc.date.accessioned2014-09-17T17:29:57Z
dc.date.available2014-09-17T17:29:57Z
dc.date.issued2014-09-17
dc.date.submittedJanuary 2014en_US
dc.identifier.otherDISS-12802en_US
dc.identifier.urihttp://hdl.handle.net/10106/24744
dc.description.abstractAs operating power within server systems continues to increase in support of increased data usage across networks worldwide, it is necessary to explore options outside of traditional air-cooled systems. In this study, a specific server will be immersed and cooled using circulated mineral oil. The challenges associated with an emerging cooling technology are numerous. Trying to adapt existing air-cooled systems into oil-cooled systems has its difficulties. The viscous properties of oil make it resistive to traveling through the narrow fins of a conventional heat sink, and thermal mixing is not easy to achieve as it is in air due to more established laminar boundary layers that are prevalent in oil. Also, the simple fact that oil must come from a reservoir and air is readily available from the environment makes it difficult to justify its use. Despite all these facts, oil's relatively high heat capacity may make these changes justifiable. This experiment varied the flow rate, inlet temperature, server power level, and height of the heat sink in a specific server in an effort to find out how efficient oil cooling can be. The results of these test iterations showed that immersion cooling is effective to the extent that the heat sink profiles within these servers can be substantially reduced allowing greater power densities and space savings. In certain circumstances, the heat sinks themselves may not be necessary at all in immersion-cooled systems.en_US
dc.description.sponsorshipAgonafer, Derejeen_US
dc.language.isoenen_US
dc.publisherMechanical Engineeringen_US
dc.titleEvaluating Heat Sink Performance In An Immersion-cooled Server Systemen_US
dc.typeM.Engr.en_US
dc.contributor.committeeChairAgonafer, Derejeen_US
dc.degree.departmentMechanical Engineeringen_US
dc.degree.disciplineMechanical Engineeringen_US
dc.degree.grantorUniversity of Texas at Arlingtonen_US
dc.degree.levelmastersen_US
dc.degree.nameM.Engr.en_US


Files in this item

Thumbnail


This item appears in the following Collection(s)

Show simple item record