THE DIFFERENCE IN AEROBIC CAPACITY AND ANAEROBIC POWER BETWEEN YOUNG MALE RECREATIONAL BASKETBALL AND SOCCER PLAYERS

AUTHORS: LESLEY NGO, FACULTY SPONSORS: Dr. Judy Wilson, Brad Heddins, M.S., Cardiovascular Research Laboratory, The University of Texas at Arlington, Arlington, TX;

Introduction And Purpose

Basketball and Soccer are two different popular sports often used for recreational exercise . They both exploit anaerobic potential in activities like dribbling, sprinting and shooting. They also require aerobic energy use in activities like running, walking and ball bouncing.The purpose of this study was to investigate the difference in aerobic capacity and anaerobic power between young, male recreational soccer and basketball players.

Methods

Subjects: 6 out of 8 subjects who volunteered for the study completed the study. 3 basketball players (BB) and 3 soccer players (SC) completed the study. Below is a table of the mean demographic data:

	Age(yrs)	BMI $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	\% Body Fat	Hrs/week of play
Basketball	22 ± 1	23.5 ± 1.8	7.7 ± 1.7	5.8 ± 2.8
Soccer	20 ± 1	22.2 ± 3.4	8.7 ± 7.8	4.7 ± 1.5

Methods (cont'd)

Instrumentation: Lange skinfold caliper, Sensormedics VMAX metabolic cart, lode bike with wingate software, polar heart rate monitor, manual sphygmomanometer
Protocol: Each subject came in on two different days. On the first day the subject's weight and height and \%body fat was measured and recorded and then the subject was connected to a sensormedics cart and took a Bruce protocol, maximal oxygen consumption test while blood pressure and heart rate were monitored and recorded. On day 2 the subjects came in and did 2 minutes of stretching and then after sitting on a lode bike adjusted to their height preference, they warmed up for 2 minutes at 80rpms, no resistance and transitioned into test mode at maximal power output for 30s. Mean and peak power outputs were measured and recorded. The subjects cycled in recovery for 2 minutes.
Statistical Analysis: A student's t-test was used to evaluate the difference in test values between both groups with alpha level set at $\mathrm{p} \leq 0.05$.

Results

	AEROBIC DATA			ANAEROBIC DATA				
	$\begin{aligned} & \mathrm{VO}_{2 \text { max }} \\ & (\mathrm{L} / \text { min }) \end{aligned}$	$\begin{gathered} \mathrm{VO}_{2 \max } \\ (\mathrm{ml} / \mathrm{kg} / \\ \mathrm{min}) \end{gathered}$	$\mathrm{VO}_{2_{\text {max }}}$ FFW ($\mathrm{ml} / \mathrm{kg} / \mathrm{min}$)	Peak Power (W)		Mean Power (W)	Mean Power (W/kg)	Fatigue Index (W/Sec)
BB	3.3 ± 0.3	43.4 ± 4.3	46.9 ± 4.7	$\begin{array}{r} 1018 \\ \pm 131 \end{array}$	$\begin{aligned} & 13.2 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & 672 \\ & \pm 83 \end{aligned}$	$\begin{gathered} 8.7 \\ \pm 0.8 \end{gathered}$	$\begin{aligned} & 21.7 \\ & \pm 2.3 \end{aligned}$
SC	3.1 ± 0.6	41.9 ± 2.2	45.4 ± 2.1	$\begin{array}{r} 1082 \\ \pm 190 \\ \hline \end{array}$	$\begin{array}{r} 14.7 \\ \pm 0.7 \\ \hline \end{array}$	$\begin{gathered} 569 \\ \pm 126 \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.6 \\ \pm 0.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 31.4 \\ \pm 11.0 \\ \hline \end{gathered}$
value	0.6	0.6	0.6	0.65	0.19	0.3	0.19	0.21

Results (cont'd)

Conclusions

Based on the results of this study, there are no significant differences in aerobic capacity and anaerobic power between young male recreational soccer and basketball players.
Both of these sports recreational would serve indiscriminately to increase activity level with enjoyment based on preference and can serve as combined aerobic and anaerobic exercise.

