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ABSTRACT

GENERALIZED INVERSE SCATTERING TRANSFORM FOR THE NONLINEAR

SCHRÖDINGER EQUATION

Theresa Nicole Busse, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Tuncay Aktosun

The nonlinear Schrödinger (NLS) equation describes wave propagation in optical

fibers, and it is one of the most well-known nonlinear partial differential equations. In

1972 Zakharov and Shabat introduced a powerful method (known as the inverse scattering

transform) to solve the initial-value problem for the NLS equation. Due to mathematical

and technical difficulties, this method has been available mainly in the case where the

multiplicity of each bound state is one. In our research we remove that restriction and

generalize the inverse scattering transform for the NLS equation to the case where the

multiplicity of each bound state is arbitrarily chosen.
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CHAPTER 1

INTRODUCTION

In this paper we consider the focusing nonlinear Schrödinger equation (NLS)

iut + uxx + 2|u|2u = 0, x, t ∈ R

where the subscripts denote the partial derivatives with respect to appropriate indepen-

dent variables. We generalize the corresponding inverse scattering transformation in the

presence of bound states which may have multiplicities greater than one. The NLS equa-

tion has a number of physical applications such as waves in optical fibers [19] and surface

waves in deep waters [18]. We consider the initial value problem associated with the

NLS equation, namely given u(x, 0) finding u(x, t). To do this we consider the inverse

scattering transform [20], the steps of which are outlined in the following diagram:

u(x, 0)
direct scattering−−−−−−−−−→ {R(λ, 0), {λj}, {cjs(0)}}

solution to NLS

y ytime evolution

u(x, t) ←−−−−−−−−−
inverse scattering

{R(λ, t), {λj}, {cjs(t)}}

Here, R(λ, t) is the reflection coefficient, {λj} is the set of bound state poles and {cjs(t)}

is the set of bound state norming constants. These three sets of data are collectively

called the scattering data. These terms will be considered in greater detail in Chapters 2

and 3. The inverse scattering transform helps to solve for solutions to the NLS equation

by associating the initial condition u(x, 0) with the initial scattering data. We then

consider the time evolution of the scattering data from t = 0 to any positive time t.

Once this is accomplished we are able to use the scattering data for all t to recover for

the desired function u(x, t). We accomplish the generalization of the inverse scattering
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transform by deriving an explicit compact formula for the norming constants cjs along

with their respective time evolution in the presence of nonsimple bound states, namely

when each bound state λj has a set of bound state norming constants associated with it.

In 1972 Zakharov and Shabat introduced [20] the inverse scattering transform for

the NLS equation and provided explicit formulas for the time evolution of the reflection

coefficient as well as the norming constants when the bound states are all simple. The

bound states correspond to the poles of the transmission coefficient in the upper half

complex plane C+ and the algebraic multiplicity of each bound state is the same as

the multiplicity of the corresponding pole. The number of norming constants for each

bound state is equal to the algebraic multiplicity of that bound state. In the literature the

analysis of the inverse scattering transform with bound states of multiplicity greater than

one has mainly been avoided due to technical complications [7, 9, 10, 11, 12, 14, 15]. For

example, Zakharov and Shabat tried to deal with nonsimple bound states by coalescing

two distinct simple bound states into one and they illustrated this by a concrete example

[20]. However, as pointed out by Olmedilla in [17], Zakharov and Shabat’s “limiting

process gives the appropriate value . . . but their final result for the potential is mistaken.”

Namely, the construction of the kernel of the integral equation was correct; however, the

final result for the solution to the NLS equation was incorrect. It seems as if [17] is

the only reference in which a systematic method has been sought to determine the time

evolution of the norming constants corresponding to nonsimple bound states. Olmedilla

was able to find some formulas for the time evolution of the norming constants for a

bound state with multiplicity two or three, but he added [17], “in an actual calculation it

is very complex to exceed four or five.” Using the symbolic computer software REDUCE

he was able to reach a multiplicity of nine, but his formulas were too complicated to

generalize to a bound state of any multiplicity.
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We begin in Chapter 1 with the discussion of direct scattering and the definitions of

the scattering coefficients and their relevant properties. In Chapter 2 we consider the case

when the transmission coefficient has a set of bound state poles each having order one, and

we derive the kernel of the associated Marchenko integral equation. Although the analysis

in that chapter is outlined in [20], it is helpful to review the problem in this case and all of

its details and then extend it to the case with poles of higher multiplicity. In Chapter 3 we

extend the analysis of the Marchenko integral equation to the case of a set of bound state

poles, each with arbitrary order. In that chapter we also discuss the dependency constants

as well as the bound state norming constants in the presence of poles of multiple order.

In Chapter 4 we consider the second step of inverse scattering transform method, namely

the time evolution of the scattering data in the presence of bound state poles of multiple

order. By determining the time evolution of the dependency constants and exploiting

the linear relationship between the norming and dependency constants we determine the

time evolution of the norming constants. We then formulate the Marchenko integral

equation in the case of bound states of multiple order. In Chapter 5 we show the time

evolution of the scattering data in the presence of bound states of multiple order. In

Chapter 6 we briefly review the scalar Marchenko integral equation associated with the

Zakhaov-Shabat system when the bound states may have multiplicities greater than one.



CHAPTER 2

DIRECT SCATTERING FOR SIMPLE BOUND STATE POLES

In this chapter we review the inverse scattering transform for the focusing NLS

equation. Even though everything in this section is known, we nevertheless provide

some details to establish our notation and to help the reader. To solve the initial value

problem for the NLS equation using the inverse scattering transform we first consider the

Zakharov-Shabat system [20]. The inverse scattering transform associates [20] the NLS

equation with the Zakharov-Shabat system ξ′ = −iλξ + u(x, t)η,

η′ = iλη − u∗(x, t)ξ,

where the prime denotes the x-derivative, the asterisk denotes the complex conjugate, λ

is the complex-valued spectral parameter, u is a complex-valued integrable function of

x for each t, and ξ and η are functions of x and t. Although we are interested in the

generalization of the inverse scattering transform for the NLS equation, in this paper we

will review the more general case [1, 2, 16] ξ′ = −iλξ + q(x, t)η,

η′ = iλη + r(x, t)ξ,
(2.1)

where q and r are complex-valued integrable potentials. In this case, given a particular

relationship between q(x, t) and r(x, t) this method can be used for other integrable non-

linear partial differential equations. There exist two linearly independent vector solutions

to (2.1), ϕ(λ, x, t) and ψ(λ, x, t), known as the Jost solutions [20], which are uniquely

determined by imposing the asymptotic conditions

4
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ϕ(λ, x, t) =

 1

0

 e−iλx + o(1), ϕ(λ, x, t) =

 0

1

 eiλx + o(1), (2.2)

as x→ −∞, and

ψ(λ, x, t) =

 0

1

 eiλx + o(1), ψ(λ, x, t) =

 1

0

 e−iλx + o(1), (2.3)

as x→ +∞, where an overbar indicates quantities that can be extended analytically to

the lower half complex λ-plane in C−. For simplicity, we may drop the arguments and

write ϕ for ϕ(λ, x, t), ψ for ψ(λ, x, t), ϕ for ϕ(λ, x, t), and ψ for ψ(λ, x, t).

2.1 Scattering Coefficients

The asymptotic behavior of the Jost solutions at the opposite ends of the x-axis

will help us define the scattering coefficients. Since the potentials q and r appearing in

(2.1) decay in some sense as x→ ±∞, it follows that for certain constants α, α, β, β, γ,

γ, ε, and ε we have

ψ =

 αe−iλx

βeiλx

+ o(1), ψ =

 αe−iλx

βeiλx

+ o(1), (2.4)

as x→ −∞, and

ϕ =

 γe−iλx

εeiλx

+ o(1), ϕ =

 γe−iλx

εeiλx

+ o(1), (2.5)

as x→ +∞. We will relate the coefficients appearing in (2.4) and (2.5) to the scattering

coefficients, namely, the right reflection coefficient R(λ, t), the left reflection coefficient

L(λ, t), the transmission coefficient from the right Tr(λ, t), the transmission coefficient
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from the left Tl(λ, t), the right reflection coefficient R(λ, t), the left reflection coefficient

L(λ, t), the transmission coefficient from the right T r(λ, t) and the transmission coefficient

from the left T l(λ, t). Again, for simplicity we drop the arguments of such functions.

The coefficients in (2.4) and (2.5) are related to the reflection coefficients and

transmission coefficients as follows:

α = L
T
, α = 1

T
, β = 1

T
, β = L

T
,

γ = 1
T
, γ = R

T
, ε = R

T
, ε = 1

T
.

The multiplication of the transmission coefficient from the right, Tr, with the Jost solution

ϕ in (2.5) gives us the asymptotics

Trϕ =



 Trγe
−iλx

Trεe
iλx

+ o(1) , x→ +∞,

 Tre
−iλx

0

+ o(1) , x→ −∞.

(2.6)

We consider the analogy from quantum mechanics and wave propagation to help us

with the physical interpretation of (2.6). We can interpret eiλx as a wave traveling in the

positive x-direction and e−iλx as a wave traveling in the negative x-direction by imagining

a time factor e−iωt. Choosing Trγ = 1, we can interpret (2.6) as a unit amplitude wave

is being sent from x = +∞. Then Tr, the coefficient of e−iλx as x = −∞, becomes

a transmission coefficient from the right and Trε becomes a reflection coefficient from

the right, i.e. Trε = R. Therefore, using this analogy we want Trγ from (2.6) to equal
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1, which implies ε = R
Tr

. Similarly, if we multiply the Jost solution ψ in (2.4) by the

transmission coefficient from the left, Tl, we find

Tlψ =



 Tlαe
−iλx

Tlβe
iλx

+ o(1) , x→ −∞,

 0

Tle
iλx

+ o(1) , x→ +∞.

Again from the analogy of wave propagation we want Tlβ = 1, which in turn implies

α = L
Tl

.

Let [f, g] :=

∣∣∣∣∣∣∣
f1 g1

f2 g2

∣∣∣∣∣∣∣ denote the Wronskian for the vector valued functions f :=

 f1

f2

 and g :=

 g1

g2

. It can be shown that if the vectors f and g are solutions to

(2.1), then their Wronskian is independent of x. Using [ϕ, ψ]x=+∞ = [ϕ, ψ]x=−∞, from

(2.4) and (2.5) we obtain Tr = Tl because

[ϕ, ψ]x=+∞ =

∣∣∣∣∣∣∣
γe−iλx 0

εeiλx eiλx

∣∣∣∣∣∣∣ = γ =
1

Tr
,

[ϕ, ψ]x=−∞ =

∣∣∣∣∣∣∣
e−iλx αe−iλx

0 βeiλx

∣∣∣∣∣∣∣ = β =
1

Tl
. (2.7)

Similarly, consider the multiplication of the transmission coefficient from the right, T r,

with the Jost solution ϕ in (2.5):

T rϕ =



 T rγe
−iλx

T rεe
iλx

+ o(1) , x→ +∞,

 0

T re
iλx

+ o(1) , x→ −∞.
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Similarly we want εT r = 1, which in turn implies that γ = R
T r

. We can then consider the

multiplication of the transmission coefficient from the left, T l, with the Jost solution ψ

in (2.4):

T lψ =



 T lαe
−iλx

T lβe
iλx

+ o(1) , x→ −∞,

 T le
−iλx

0

+ o(1) , x→ +∞.

Using the analogy from wave propagation we want αT l = 1, which in turn implies that

α = R
T l

. Again we know [ϕ, ψ]x=+∞ = [ϕ, ψ]x=−∞, and hence

[ϕ, ψ]x=+∞ =

∣∣∣∣∣∣∣
γe−iλx e−iλx

εeiλx 0

∣∣∣∣∣∣∣ = −ε = − 1

T r
,

[ϕ, ψ]x=−∞ =

∣∣∣∣∣∣∣
0 αe−iλx

eiλx βeiλx

∣∣∣∣∣∣∣ = −α = − 1

T l
. (2.8)

Notice that in the above argument we have seen that Tr = Tl and T r = T l. We will simply

call them the transmission coefficients T and T , respectively. We can then rewrite the

asymptotic behaviors of the Jost solutions in terms of the scattering coefficients as

ϕ =



 1
T
e−iλx

R
T
eiλx

+ o(1) , x→ +∞,

 e−iλx

0

+ o(1) , x→ −∞,
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ϕ =



 R
T
e−iλx

1
T
eiλx

+ o(1) , x→ +∞,

 0

eiλx

+ o(1) , x→ −∞,

ψ =



 L
T
e−iλx

1
T
eiλx

+ o(1) , x→ −∞,

 0

eiλx

+ o(1) , x→ +∞,

ψ =



 1
T
e−iλx

L
T
eiλx

+ o(1) , x→ −∞,

 e−iλx

0

+ o(1) , x→ +∞.

We can exploit certain Wronskians of the Jost solutions to derive various properties of

the scattering coefficients. Consider

[ϕ, ψ]x=+∞ =

∣∣∣∣∣∣∣
1
T
e−iλx e−iλx

R
T
eiλx 0

∣∣∣∣∣∣∣ = −R
T
,

[ϕ, ψ]x=−∞ =

∣∣∣∣∣∣∣
e−iλx 1

T
e−iλx

0 L
T
eiλx

∣∣∣∣∣∣∣ =
L

T
.

We then have for λ ∈ R

−R
T

=
L

T
.

From the x-independence of the Wronskian we have

[ϕ, ϕ]x=+∞ =

∣∣∣∣∣∣∣
1
T
e−iλx R

T
e−iλx

R
T
eiλx 1

T
eiλx

∣∣∣∣∣∣∣ =
1

TT
− RR

TT
,
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[ϕ, ϕ]x=−∞ =

∣∣∣∣∣∣∣
e−iλx 0

0 eiλx

∣∣∣∣∣∣∣ = 1.

Therefore, we have for λ ∈ R

TT +RR = 1.

Again from the x-independence of the Wronskian we set

[ψ, ψ]x=+∞ =

∣∣∣∣∣∣∣
0 e−iλx

eiλx 0

∣∣∣∣∣∣∣ = 1,

[ψ, ψ]x=−∞ =

∣∣∣∣∣∣∣
L
T
e−iλx 1

T
e−iλx

1
T
eiλx L

T
eiλx

∣∣∣∣∣∣∣ =
LL

TT
− 1

TT
.

Then for any λ ∈ R

TT + LL = 1.

Finally, from the x-independence of the Wronskian we obtain

[ψ, ϕ]x=+∞ =

∣∣∣∣∣∣∣
0 R

T
e−iλx

eiλx 1
T
eiλx

∣∣∣∣∣∣∣ = −R
T
,

[ψ, ϕ]x=−∞ =

∣∣∣∣∣∣∣
L
T
e−iλx 0

1
T
eiλx eiλx

∣∣∣∣∣∣∣ =
L

T
.

Therefore, for any λ ∈ R

−R
T

=
L

T
.

We would now like to find scalar coefficients A, B, C, and, D such that

ϕ = Aψ +Bψ,

ϕ = Cψ +Dψ,
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or equivalently  ϕ

ϕ

 =

 A B

C D


 ψ

ψ

 . (2.9)

The relationship in (2.9) follows from the fact that any two linearly independent vector

valued solutions to (2.1) form a basis to express any other vector solution to (2.1).

Proposition 2.1.1 The coefficients in (2.9) are related to the scattering coefficients as

A =
1

T
, B = −L

T
, C =

R

T
, D =

1

T
.

Proof Exploiting Wronskian relations in (2.9) we get

[ϕ, ψ] = A[ψ, ψ] +B[ψ, ψ],

1

T
= A.

Therefore, we have A = 1
T
. Similarly using

[ϕ, ψ] = [Aψ +Bψ,ψ],

and evaluating the Wronskians as x → +∞ and as x → −∞, we obtain B = R
T

= −L
T
.

Again, using

[ψ, ϕ] = C[ψ, ψ] +D[ψ, ψ],

and evaluating the Wronskians as x → +∞ and as x → −∞ we get C = R
T

= −L
T
.

Finally, using

[ψ, ϕ] = C[ψ, ψ] +D[ψ, ψ],

we get D = 1
T
. We can now put all of these together and write (2.9) as ϕ

ϕ

 =

 1
T
−L
T

R
T

1
T


 ψ

ψ

 ,
 ϕ

ϕ

 =

 1
T

R
T

−L
T

1
T


 ψ

ψ

 , (2.10)

which completes the proof.



12

2.2 Bound States

Let us now introduce the dependency constant γj and relate it to the residue of T

at the bound state λj. From (2.7) we know

[ϕ, ψ] =
1

T
.

Therefore, if T has a pole at some λj ∈ C+, the Jost solutions ϕ and ψ are linearly

dependent at that λj value. Thus there exists γj such that

ϕ(λj, x, t) = γjψ(λj, x, t).

For simplicity we will drop the arguments x and t and use ϕ(λj) for ϕ(λj, x, t), ψ(λj) for

ψ(λj, x, t), ϕ(λj) for ϕ(λj, x, t), and ψ(λj) for ψ(λj, x, t). From (2.8) we know that

[ϕ, ψ] =
1

T
.

Therefore, if T has a pole at λj in the upper half complex λ-plane, the Jost solutions ϕ

and ψ become linearly dependent at that λj value. Thus there exists a value γj such that

ϕ(λj) = γjψ(λj).

We call γj and γj the dependency constants. Similarly we call the poles of T and T , λj

and λj, respectively, bound states poles or simply bound states.

Theorem 2.2.1 The dependency constant γj and the residues of T at λj are related as

iγjRes(T, λj) =
−1

2
∫∞
−∞ ψ1(λj, s)ψ2(λj, s)ds

,

where ψ1 and ψ2 denote the first and second components of the Jost solution ψ.

Proof When T has a simple pole at λj, consider the expansion of T about λj as

T (λ) =
1

tj

1

(λ− λj)
+O(1) , λ→ λj.
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Then tj =
1

Res(T, λj)
. Since λj is a simple pole we have

Res(T, λj) =
1

∂

∂λ

(
1

T (λ)

)∣∣∣∣
λ=λj

,

which can be expressed as

1

Res(T, λj)
=

∂

∂λ

(
1

T (λ)

)∣∣∣∣
λ=λj

=
∂

∂λ
[ϕ, ψ]

∣∣∣∣
λ=λj

=

∣∣∣∣∣∣∣
ϕ̇1 ψ1

ϕ̇2 ψ2

∣∣∣∣∣∣∣
λ=λj

+

∣∣∣∣∣∣∣
ϕ1 ψ̇1

ϕ2 ψ̇2

∣∣∣∣∣∣∣
λ=λj

.

Note that an overdot indicates the λ-derivative. Let us define

Q1(λ, x, t) :=
d

dx

∣∣∣∣∣∣∣
ϕ̇1 ψ1

ϕ̇2 ψ2

∣∣∣∣∣∣∣ , Q2(λ, x, t) :=
d

dx

∣∣∣∣∣∣∣
ϕ1 ψ̇1

ϕ2 ψ̇2

∣∣∣∣∣∣∣ .
Now consider

Q1(λ, x, t) =
d

dx

∣∣∣∣∣∣∣
ϕ̇1 ψ1

ϕ̇2 ψ2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ϕ̇
′
1 ψ1

ϕ̇
′
2 ψ2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
ϕ̇1 ψ

′
1

ϕ̇2 ψ
′
2

∣∣∣∣∣∣∣ ,
where we recall that a prime denotes the x-derivative. From the λ-derivative of (2.1) we

get  ξ̇′ = −iξ − iλξ̇ + qη̇,

η̇′ = iη + iλη̇ + rξ̇.
(2.11)

Using (2.11) we can rewrite Q1(λ, x, t) with only the λ-derivative as

Q1(λ, x, t) =

∣∣∣∣∣∣∣
−iϕ1 − iλϕ̇1 + qϕ̇2 ψ1

iϕ2 + iλϕ̇2 + rϕ̇1 ψ2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
ϕ̇1 −iλψ1 + qψ2

ϕ̇2 iλψ2 + rψ1

∣∣∣∣∣∣∣
= −i(ϕ1ψ2 + ϕ2ψ1). (2.12)
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Similarly,

Q2 =
d

dx

∣∣∣∣∣∣∣
ϕ1 ψ̇1

ϕ2 ψ̇1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
ϕ
′
1 ψ̇1

ϕ
′
2 ψ̇2

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
ϕ1 ψ̇

′
1

ϕ2 ψ̇
′
2

∣∣∣∣∣∣∣
= i(ϕ1ψ2 + ϕ2ψ1). (2.13)

Now, consider Q1(λ, x, t) and Q2(λ, x, t) evaluated at λj by letting x→ ±∞:

Q1(λj, x, t) = −Q2(λj, x, t) = −i[ϕ1(λj)ψ2(λj) + ϕ2(λj)ψ1(λj)]

= −i[γjψ1(λj)ψ2(λj) + γjψ2(λj)ψ1(λj)]

= 2iγjψ1(λj)ψ2(λj),

where we have used the fact that 1
T (λj)

= 0. Also, notice that Q1(λj, x, t) and Q2(λj, x, t)

vanish as x→ −∞, since ψ2(λj)→ 0 as x→ −∞. Now consider∣∣∣∣∣∣∣
ϕ̇1(λj) ψ1(λj)

ϕ̇2(λj) ψ2(λj)

∣∣∣∣∣∣∣ =

∫ x

+∞
Q1(λj, s, t)ds = −2iγj

∫ x

+∞
ψ1(λj, s, t)ψ2(λj, s, t)ds,

∣∣∣∣∣∣∣
ϕ1(λj) ψ̇1(λj)

ϕ2(λj) ψ̇2(λj)

∣∣∣∣∣∣∣ =

∫ x

−∞
Q2(λj, s, t)ds = 2iγj

∫ x

−∞
ψ1(λj, s, t)ψ2(λj, s, t)ds.

We then have the following expression
∣∣∣∣∣∣∣
ϕ̇1(λj) ψ1(λj)

ϕ̇2(λj) ψ2(λj)

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
ϕ1(λj) ψ̇1(λj)

ϕ2(λj) ψ̇2(λj)

∣∣∣∣∣∣∣
 = −2iγj

∫ ∞

−∞
ψ1(λj, s, t)ψ2(λj, s, t)ds.

Therefore, if λj is a simple pole then

1

Res(T, λj)
= −2iγj

∫ ∞

−∞
ψ1(λj, s, t)ψ2(λj, s, t)ds,

which completes the proof.
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Through a similar procedure, if λj is a simple pole of T , we obtain

1

Res(T , λj)
= 2iγj

∫ ∞

−∞
ψ1(λj, s, t)ψ2(λj, s, t)ds.

We define the bound state norming constants cj and cj in terms of the dependency

constants γj and γj, respectively, as

cj := iγjRes(T, λj) =
−1

2
∫∞
−∞ ψ1(λj, s)ψ2(λj, s)ds

, (2.14)

cj := iγjRes(T , λj) =
1

2
∫∞
−∞ ψ1(λj, s)ψ2(λj, s)ds

. (2.15)

We now have a representation of the norming constants in terms of the dependency

constants and the residues of the transmission coefficients in the presence of simple poles.

One of our goals in this thesis is to analyze the relationship among the dependency

constants, norming constants, and residues when the bound states are no longer simple.



CHAPTER 3

MARCHENKO INTEGRAL EQUATION FOR SIMPLE BOUND

STATE POLES

In this chapter we review the steps involved in deriving the Marchenko integral

equation when T has simple poles at values λj in C+ and T has simple poles at λj in C−.

We then review how the solution to the Marchenko integral equation yields the solution

u(x, t) to the NLS equation.

3.1 Marchenko Integral Equation Associated with C+

We first consider the case where the transmission coefficient, T , has the set of

simple bound state poles {λj}Nj=1 in C+.

Theorem 3.1.1 The Marchenko integral equation related to (2.1) is given by

0 = K(x, y, t) + Ω(x+ y, t)

 0

1

+

∫ ∞

−∞
Ω(s+ y, t)K(x, s, t)ds, y > x,

where Ω(z, t) := R̂(z, t) +
N∑
j=1

cj(t)e
iλjz.

Proof From (2.10)

Tϕ = ψ +Rψ. (3.1)

Let us use C+ := C+
⋃

R and C− := C−⋃R. It is known [1, 2, 8, 16, 20] that as λ→∞

ψ =

 e−iλx

0

+O

(
1

λ

)
, λ→∞ in C−,

ψ =

 0

eiλx

+O

(
1

λ

)
, λ→∞ in C+.

16
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Rewriting (3.1) as

ϕ+ (T − 1)ϕ = ψ −

 e−iλx

0

+

 e−iλx

0

+R

 0

eiλx

+R

ψ −
 0

eiλx


 ,

we get

ϕ−

 e−iλx

0

+ (T − 1)ϕ =

ψ −
 e−iλx

0


+R

 0

eiλx

+R

ψ −
 0

eiλx


 .

If we apply the integral operator

∫ ∞

−∞
eiλy

dλ

2π
for y > x in the above equation, we obtain

∫ ∞

−∞

ϕ−
 e−iλx

0


 eiλy

dλ

2π
+

∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
=

∫ ∞

−∞
R

 0

eiλx

 eiλy dλ
2π

+

∫ ∞

−∞

ψ −
 e−iλx

0


 eiλy

dλ

2π
+

∫ ∞

−∞
R

ψ −
 0

eiλx


 eiλy

dλ

2π
.

(3.2)

We now consider each term in (3.2) individually. It is known [1, 2, 8, 16, 20] thatϕ−
 e−iλx

0


 is analytic in C+ with respect to λ, is continuous in C+ with respect

to λ, and behaves like O( 1
λ
) as λ→∞ in C+ . Therefore,

∫ ∞

−∞

ϕ−
 e−iλx

0


 eiλy

dλ

2π
= 0, y > x.

For the next term we consider the residues of T at each pole λj for j = 1, 2, . . . , N . Since

these poles are in C+ the integral term can be written as∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
= i

N∑
j=1

Res(T, λj)ϕ(λj)e
iλjy.

Recall that ϕ(λj) = γjψ(λj), where γj is the dependency constant for λj. Then, the

corresponding integral term can be written as∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
= i

N∑
j=1

Res(T, λj)γjψ(λj)e
iλjy. (3.3)
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We now define

K(x, y, t) :=

∫ ∞

−∞

ψ −
 0

eiλx


 e−iλy

dλ

2π
. (3.4)

Then ∫ ∞

−∞
K(x, y, t)eiλydy +

 0

eiλx

 = ψ(λ, x, t). (3.5)

By substituting (3.5) into (3.3) we find

∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
= i

N∑
j=1

γjRes(T, λj)

 0

eiλj(x+y)


+i

N∑
j=1

γjRes(T, λj)

∫ ∞

−∞
K(x, s, t)eiλj(s+y)ds.

We can replace the second term on the right hand side of (3.2) by K(x, y, t), where we

have defined

K(x, y, t) :=

∫ ∞

−∞

ψ −
 e−iλx

0


 eiλy

dλ

2π
. (3.6)

Similarly we can replace the third term of (3.2) by R̂(x + y, t)

 0

1

, where we have

defined

R̂(y, t) :=

∫ ∞

−∞
R(λ, t)eiλy

dλ

2π
. (3.7)

For the fifth term of (3.2), we can consider a rearrangement of (3.7) along with (3.6) to

obtain ∫ ∞

−∞
R

ψ −
 0

eiλx


 eiλy

dλ

2π
=

∫ ∞

−∞
R̂(s+ y, t)K(x, s, t)ds.

Hence the Fourier transform of (3.1) for y > x yields

0 =
N∑
j=1

γjRes(T, λj)

 0

eiλj(x+y)

+ i

N∑
j=1

γjRes(T, λj)

∫ ∞

−∞
K(x, s, t)eiλj(s+y)ds
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−K(x, y, t)− R̂(x+ y, t)

 0

1

− ∫ ∞

−∞
R̂(s+ y, t)K(x, s, t)ds,

or equivalently

0 = K(x, y, t) +

(
R̂(x+ y, t)− i

N∑
j=1

γjRes(T, λj)e
iλj(x+y)

) 0

1


+

∫ ∞

−∞
K(x, s, t)

(
R̂(s+ y, t)− i

N∑
j=1

γjRes(T, λj)e
iλj(s+y)

)
ds.

Now define

Ω(z, t) := R̂(z, t)− i
N∑
j=1

γjRes(T, λj)e
iλjz.

Thus, using(2.14) we see that the kernel of the Marchenko integral equation can also be

expressed as

Ω(z, t) := R̂(z, t) +
N∑
j=1

cje
iλjz,

with the understanding that cj depends on t. Therefore, the Marchenko integral equation

can be written as

0 = K(x, y, t) + Ω(x+ y, t)

 0

1

+

∫ ∞

−∞
Ω(s+ y, t)K(x, s, t)ds, y > x,

completing the proof.

3.2 Marchenko Integral Equation Associated with C−

Similarly, we consider the case where the transmission coefficient T has the set of

simple bound state poles
{
λj
}N
j=1

in C−.

Theorem 3.2.1 The Marchenko integral equation associated with C− and corresponding

to the system of ordinary differential equations in (2.1) is given by

0 = K(x, y, t) + Ω(x+ y, t)

 1

0

+

∫ ∞

−∞
Ω(s+ y, t)K(x, s, t)ds, x > y,
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where Ω(z, t) := R̂(z, t) +
N∑
j=1

cj(t)e
−iλjz.

Proof Recall again from (2.10)

Tϕ = ψ +Rψ. (3.8)

It is known [1, 2, 8, 16, 20] that

ψ =

 e−iλx

0

+O

(
1

λ

)
, λ→∞ in C−,

ψ =

 0

eiλx

+O

(
1

λ

)
, λ→∞ in C+.

From (3.9) we get

ϕ+ (T − 1)ϕ = ψ −

 0

eiλx

+

 0

eiλx

+R

 e−iλx

0

+R

ψ −
 e−iλx

0


 , (3.9)

or equivalently by rearranging terms we obtain

ϕ−

 0

eiλx

+ (T − 1)ϕ =

ψ −
 0

eiλx


+R

 eiλx

0

+R

ψ −
 e−iλx

0


 .

If we apply the integral operator

∫ ∞

−∞

dλ

2π
e−iλy for x > y on the above equation, we get

∫ ∞

−∞

ϕ−
 0

e−λx


 e−iλy

dλ

2π
+

∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
=

∫ ∞

−∞

ψ −
 0

eiλx


 e−iλy

dλ

2π
+

∫ ∞

−∞
R

 e−iλx

0

 e−iλy dλ
2π

(3.10)

+

∫ ∞

−∞
R

ψ −
 e−iλx

0


 e−iλy

dλ

2π
.
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We now consider each term in the above equation individually. It is known [1, 2, 8, 16, 20]

that ϕ −

 0

eiλx

 is analytic in C− with respect to λ and continuous in the C− with

respect to λ and behaves like O( 1
λ
) as λ→∞ in C−. Therefore,

∫ ∞

−∞

ϕ−
 0

eiλx


 e−iλy

dλ

2π
= 0, x > y.

For the next term we have to consider the residues of T at each of its simple poles λj for

j = 1, 2, . . . , N . Since these poles are located in C− the integral term is evaluated as∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
= i

N∑
j=1

Res(T , λj)ϕ(λj)e
−iλjy.

From Chapter 2 we know that ϕ(λj) = γjψ(λj), where γj is the dependency constant for

λj. Thus ∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
= i

N∑
j=1

Res(T , λj)γjψ(λj)e
−iλjy. (3.11)

From (3.4) we see that∫ ∞

−∞
K(x, y, t)e−iλydy +

 e−iλx

0

 = ψ(λ, x, t). (3.12)

Then by substituting (3.12) into (3.11) we find∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
= i

N∑
j=1

γjRes(T , λj)e
−iλj(x+y)

 1

0


+i

N∑
j=1

γjRes(T , λj)

∫ ∞

−∞
K(x, s, t)e−iλj(s+y)ds.

We can replace the third term of (3.10) by K(x, y, t) because of (3.4). Similarly we can

replace the fourth term of (3.10) by R̂(x+ y, t)

 1

0

, where we have defined

R̂(y, t) :=

∫ ∞

−∞
R(λ, t)e−iλy

dλ

2π
. (3.13)
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For the fifth term of (3.10) we can consider a rearrangement of (3.13) along with (3.4)

to obtain

∫ ∞

−∞
R

ψ −
 e−iλx

0


 e−iλy

dλ

2π
=

∫ ∞

−∞
R̂(s+ y, t)K(x, s, t)ds.

Hence, (3.8) can be rewritten as

0 = −
N∑
j=1

γjRes(T , λj)e
−iλj(x+y)

 1

0

− i N∑
j=1

γjRes(T , λj)

∫ ∞

−∞
K(x, s, t)e−iλj(s+y)ds

+K(x, y, t)− R̂(x+ y, t)

 1

0

+

∫ ∞

−∞
R̂(s+ y, t)K(x, s, t)ds,

or equivalently

0 = K(x, y, t) +

R̂(x+ y, t)− i
N∑
j=1

γjRes(T , λj)e
−iλj(x+y)


 1

0



+

∫ ∞

−∞
K(x, s, t)

R̂(s+ y, t)− i
N∑
j=1

γjRes(T , λj)e
−iλj(s+y)

 .

Now define

Ω(z, t) := R̂(z, t)− i
N∑
j=1

γjRes(T , λj)e
−iλjz.

Then, the Marchenko integral equation can be written as

0 = K(x, y, t) + Ω(x+ y, t)

 1

0

+

∫ ∞

−∞
Ω(s+ y, t)K(x, s, t)ds, x > y.

From (2.15) we see that the kernel Γ(z, t) can also be written as

Ω(z, t) = R̂(z, t) +
N∑
j=1

c(t)je
−iλjz.
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Thus the Marchenko integral equation can be written as

0 = K(x, y, t) + Ω(x+ y)

 1

0

+

∫ ∞

−∞
Ω(s+ y)K(x, s, t)ds, for x > y,

and hence the proof is complete.

It is known [1, 2, 8, 16, 20] that

ψ −
 e−iλx

0


 is analytic in C− and continuous in

C− and behaves as O( 1
λ
) as λ→∞ in C−. Therefore, K(x, y, t) = 0 if x > y. Similarly,

K(x, y, t) = 0 if y > x. Therefore, we can write the two vector-valued Marchenko integral

equations as

0 = K(x, y, t) + Ω(x+ y, t)

 0

1

+

∫ ∞

x

Ω(s+ y, t)K(x, s, t)ds, y > x,

0 = K(x, y, t) + Ω(x+ y, t)

 1

0

+

∫ x

−∞
Ω(s+ y, t)K(x, s, t)ds, x > y.



CHAPTER 4

EXTENSION OF DIRECT SCATTERING FOR BOUND STATE

POLES WITH HIGHER MULTIPLICITY

The theory of the inverse scattering transform in the presence of simple bound

states has been thoroughly studied. However, a complete satisfactory theory does not

exist for a bound state pole with higher multiplicity. To remedy this we revisit the

derivation of the Marchenko integral equations. We derive the relationship between the

norming constants and the dependency constants in the presence of bound states of

multiple order. The motivation behind our method came from the analysis in [5].

4.1 Marchenko Integral Equation Associated with C+

We consider the case where the function T has N poles, λj, in C+ each with order nj.

The Marchenko integral equation will only differ from the previous case for simple poles

in the term ∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
(4.1)

since we can no longer simply use the residue of T in evaluating this term.

Theorem 4.1.1 The Marchenko integral equation associated with the system in (2.1) is

given by

0 = K(x, y, t) + Ω(x+ y, t)

 0

1

+

∫ ∞

−∞
K(x, z, t)Ω(z + y, t)dz, y > x,

in the presence of a set of bound states {λj}Nj=1 each of multiple order nj with kernel

Ω(z, t) := R̂(z, t) +
N∑
j=1

nj−1∑
m=0

cjm(t)

m!
zmeiλjz.

24
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Proof Consider the expansions about λj of the three functions in the integrand of (4.1):

T (λ)− 1 =
tjnj

(λ− λj)nj
+

tj(nj−1)

(λ− λj)nj−1
+ . . .+

tj1
(λ− λj)

+ . . . ,

eiλy = eiλjy

[
1 + iy(λ− λj) +

(iy)2

2!
(λ− λj)2 + . . .+

(iy)nj−1

(nj − 1)!
(λ− λj)nj−1 + . . .

]
,

ϕ(λ) = ϕ(λj)+ ϕ̇(λj)(λ−λj)+
ϕ̈(λj)

2!
(λ−λj)+ . . .+

ϕ(nj−1)(λj)

(nj − 1)!
(λ−λj)nj−1 + . . . . (4.2)

Notice that the coefficients tjs in the above expansion can be obtained as

tjs =
1

(nj − s)!
dnj−s

dλnj−s
(λ− λj)nj T (λ)

∣∣∣∣
λ=λj

,

where j = 1, 2, . . . , N and s = 1, 2, . . . , nj. Recall also that we drop the arguments of x

and t for simplicity. When the integrand in (4.1) is expanded about λj, the only term

that contributes to the integral is the coefficients of the term 1
(λ−λj)

, and the contributions

from the remaining terms are nil. Since there are N poles of order nj each, respectively,

we get ∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
=

N∑
j=1

ieiλjy [tj1ϕ(λj) + tj2(ϕ(λj)(iy) + ϕ̇(λj))

+tj3

(
ϕ(λj)

(iy)2

2!
+ ϕ̇(λj)(iy) +

ϕ̈(λj)

2!

)
+tj4

(
ϕ(λj)

(iy)3

3!
+ ϕ̇(λj)

(iy)2

2!
+
ϕ̈(λj)

2!
(iy) +

ϕ(3)(λj)

3!

)
+ . . .

+ tjnj

(
ϕ(λj)

(iy)nj−1

(nj − 1)!
+ ϕ̇(λj)

(iy)nj−2

(nj − 2)!
+ . . .+

ϕ(nj−1)(λj)

(nj − 1)!

)]
,

which can be rewritten as∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
=

N∑
j=1

ieiλjy

[
ϕ(λj)

(
tj1 + tj2(iy) + tj3

(iy)2

2!
+ . . .+ tnj

(iy)nj−1

(nj − 1)!

)
+ϕ̇(λj)

(
tj2 + tj3(iy) + tj4

(iy)2

2!
+ . . .+ tnj

(iy)nj−2

(nj − 2)!

)
+
ϕ̈(λj)

2!

(
tj3 + tj4(iy) + tj5

(iy)2

2!
+ . . .+ tnj

(iy)nj−3

(nj − 3)!

)
+ . . .+

ϕnj−1(λj)

(nj − 1)!
(tjnj

)

]
.

(4.3)
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We can rewrite the right hand sides of (4.3) as a matrix product as∫ ∞

−∞
(T − 1)ϕ(λ, x, t)eiλy

dλ

2π
=

N∑
j=1

ieiλjyΦjFjTjYj,

where the matrices Φj, Fj, Tj, and Yj are defined as

Φj :=

[
ϕ(λj) ϕ̇(λj) . . . ϕ(nj−1)(λj)

]
, Fj :=



1
0!

0 0 . . . 0

0 1
1!

0 . . . 0

0 0 1
2!

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
(nj−1)!


,

Tj :=



tj1
0!

tj2
1!

. . .
tj(nj−1)

(nj−2)!

tjnj

(nj−1)!

tj2
0!

tj3
1!

. . .
tjnj

(nj−2)!
0

...
...

. . .
...

...

tjnj

0!
0 . . . 0 0


, Yj :=



1

(iy)1

...

(iy)nj−1


.

As in the case of simple poles we would like to express the functions

ϕ(λj, x, t), ϕ̇(λj, x, t), . . ., ϕ
nj−1(λj, x, t) in terms of the functions

ψ(λj, x, t), ψ̇(λj, x, t), . . ., ψ
nj−1(λj, x, t). To find such representations we consider the

expansion of 1
T

about λj. Let a := 1
T
. Then

a(λ) = a(λj) + ȧ(λj)(λ− λj) +
ä(λj)

2!
(λ− λj)2 + . . .+

a(nj)(λj)

(nj)!
(λ− λj)nj + . . . . (4.4)

Since λj is a pole of order nj for T , it is a zero of order nj for a(λ). Therefore, we have

a(λj) = ȧ(λj) = . . . = a(nj−1)(λj) = 0. (4.5)

We know from Chapter 2 that a = [ϕ, ψ]. Expanding the Jost solutions ϕ and ψ about

λj we obtain

ϕ = ϕ(λj) + ϕ̇(λj)(λ− λj) +
ϕ̈(λj)

2!
(λ− λj)2 + . . . ,
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ψ = ψ(λj) + ψ̇(λj)(λ− λj) +
ψ̈(λj)

2!
(λ− λj)2 + . . . .

Thus,

a(λ) = [ϕ, ψ] =

∣∣∣∣∣∣∣
ϕ1(λj) + ϕ̇1(λj)(λ− λj) + . . . ψ1(λj) + ψ̇1(λj)(λ− λj) + . . .

ϕ2(λj) + ϕ̇2(λj)(λ− λj) + . . . ψ2(λj) + ψ̇2(λj)(λ− λj) + . . .

∣∣∣∣∣∣∣
= [ϕ1(λj)ψ2(λj)− ϕ2(λj)ψ1(λj)] + (λ− λj)[ϕ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)

−ϕ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇(λj)] + (λ− λj)2[ϕ1(λj)
ψ̈(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)

2!

+ϕ̇1(λj)ψ̇2(λj)− ψ1(λj)
ϕ̈(λj)

2!
− ϕ2(λj)

ψ̈1(λj)

2!
− ψ̇1(λj)ϕ̇(λj)] + . . . .

Comparing the above expansion with (4.4) and using (4.5) we get the following relations:

0 = a(λj) = ϕ1(λj)ψ2(λj)− ϕ2(λj)ψ1(λj),

0 = ȧ(λj) = ϕ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)− ϕ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇(λj),

0 = ä(λj) = ϕ1(λj)
ψ̈(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)

2!
+ ϕ̇1(λj)ψ̇2(λj)− ψ1(λj)

ϕ̈(λj)

2!
,

−ϕ2(λj)
ψ̈1(λj)

2!
− ψ̇1(λj)ϕ̇(λj),

...

0 = a(nj−1)(λj) =

nj−1∑
l=0

(
nj − 1

l

)
[ϕ(nj−1−l)(λj), ψ

(l)(λj)].

(4.6)

The first relation involving a(λj) in (4.6) implies∣∣∣∣∣∣∣
ϕ1(λj) ψ2(λj)

ϕ2(λj) ψ2(λj)

∣∣∣∣∣∣∣ = 0,

where we use the subscripts 1 and 2 to indicate the first and second components of the

Jost solutions. Thus ϕ(λj) and ψ(λj) are linearly dependent. This means that there

exists γj0 that may only depend on t, but not on x such that

ϕ(λj) = γj0ψ(λj). (4.7)
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By substituting (4.7) into the second relation in (4.6) involving ȧ(λj), we obtain

γj0ψ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)− γj0ψ2(λj)ψ̇1(λj)ψ1(λj)ϕ̇1(λj) = 0,

which can be written as ∣∣∣∣∣∣∣
ϕ̇1(λj)− γj0ψ̇1(λj) ψ1(λj)

ϕ̇2(λj)− γj0ψ̇2(λj) ψ2(λj)

∣∣∣∣∣∣∣ = 0. (4.8)

From (4.8) we see that ϕ̇(λj) − γj0ψ̇(λj) and ψ(λj) are linearly dependent. Therefore,

there exists γj1 that may depend on t, but not on x, such that

ϕ̇(λj)− γj0ψ(λj) = γj1ψ(λj),

or equivalently

ϕ̇(λj) = γj0ψ(λj) + γj1ψ(λj). (4.9)

Again substituting (4.7) and (4.9) into the third expression in (4.6) we have

0 = γj0ψ1(λj)
ψ̈2(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)

2!
+ γj0ψ1(λj)ψ̇2(λj) + γj2ψ1(λj)ψ̇2(λj)

−ψ2
ϕ̈2(λj)

2!
− γj0ψ2(λj)

ψ̈1(λj)

2!
− ψ̇(λj)γj0ψ̇2(λj)− ψ̇1(λj)γj1ψ2(λj),

which can be written as∣∣∣∣∣∣∣
ϕ̈1(λj)− 2γj1ψ̇1(λj)− γj0ψ̈1(λj) ψ1(λj)

ϕ̈2(λj)− 2γj1ψ̇2(λj)− γj0ψ̈2(λj) ψ2(λj)

∣∣∣∣∣∣∣ = 0. (4.10)

From (4.10) we see that ϕ̈(λj)− 2γj1ψ̇(λj)− γj0ψ̈(λj) and ψ(λj) are linearly dependent.

Therefore, there exists γj2 that may be dependent on t but not on x such that

ϕ̈(λj)− 2γj1ψ̇(λj)− γj0ψ̈(λj) = γj2ψ(λj), (4.11)

or equivalently

ϕ̈(λj) = γj0ψ̈(λj) + 2γj1ψ̇(λj) + γj2ψ(λj).
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Now we want prove that there is a similar representation for ϕ(nj−1)(λj) in terms of ψ(λj),

ψ̇(λj), . . ., ψ
nj−1(λj). Recall we know for any n = 0, 1, . . . nj − 1 that

0 = a(n)(λj) =
n∑
l=0

(
n

l

)
[ϕ(n−l)(λj), ψ

(l)(λj)], (4.12)

which can be written as

[ϕ(n)(λj), ψ
(0)(λj)] +

(
n
1

)
γj(n−1)[ψ

(0)(λj), ψ
(1)(λj)] + . . .+

(
n
n

)
γj0[ψ

(0)(λj), ψ
(n)(λj)]

+
(
n
1

)(
n−1
n−2

)
γj(nj−2)[ψ

(1)(λj), ψ
(1)(λj)] + . . .+

(
n
n−1

)
γj0[ψ

(1)(λj), ψ
(n−1)(λj)]

+
(
n
1

)(
n−1
n−3

)
γj(nj−3)[ψ

(2)(λj), ψ
(1)(λj)] +

(
n
2

)(
n−2
n−4

)
γj(nj−4)[ψ

(2)(λj), ψ
(2)(λj)] + . . .

+
(
n
1

)(
n−1
n−4

)
γj(nj−4)[ψ

(3)(λj), ψ
(1)(λj)] +

(
n
2

)(
n−2
n−5

)
γj(nj−5)[ψ

(3)(λj), ψ
(2)(λj)] + . . .

+
(
n
1

)(
n−1
n−5

)
γj(nj−5)[ψ

(4)(λj), ψ
(1)(λj)] +

(
n
2

)(
n−2
n−6

)
γj(nj−6)[ψ

(4)(λj), ψ
(2)(λj)] + . . .

...

+
(
n
1

)(
n−1

0

)
γj0[ψ

(n−1)(λj), ψ
(1)(λj)].

.

(4.13)

The expansion in (4.13) implies the presence of a matrix structure. We know that

[ψ(k), ψ(k)] = 0 for any k and [ψ(k), ψ(j)] = −[ψ(j), ψ(k)]; therefore, if we can show the

constants of similar terms are the same, then all of the values excluding the first row of

(4.13) will be zero. Consider the constants associated with γj(n−3); for these to cancel

out we must have (
n

1

)(
n− 1

n− 3

)
=

(
n

2

)(
n− 2

n− 3

)
,

which is certainly true and equivalent to

n!

1!(n− 1)!

(n− 1)!

(n− 3)!2!
=

n!

2!(n− 2)!

(n− 2)!

(n− 3)!1!
. (4.14)

We can see that the equality in (4.14) in fact holds, and hence the terms containing

γj(nj−3) will cancel out. Consider the terms associated with γj(nj−4); for these to cancel

out we must have (
n

1

)(
n− 1

n− 4

)
=

(
n

3

)(
n− 3

n− 4

)
,
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which is equivalent to

n!

1!(n− 1)!

(n− 1)!

(n− 4)!3!
=

n!

3!(n− 3)!

(n− 3)!

(n− 4)!1!
. (4.15)

We can see that (4.15) holds, and hence the terms containing γj(nj−4) will cancel out.

Consider the constants associated with γj(nj−5), for these to cancel out we must have(
n

2

)(
n− 2

n− 5

)
=

(
n

3

)(
n− 3

n− 5

)
and

(
n

1

)(
n− 1

n− 5

)
=

(
n

4

)(
n− 4

n− 5

)
,

which are equivalent to

n!

2!(n− 2)!

(n− 2)!

(n− 5)!3!
=

n!

3!(n− 3)!

(n− 3)!

(n− 5)!2!
,

n!

1!(n− 1)!

(n− 1)!

(n− 5)!4!
=

n!

4!(n− 4)!

(n− 4)!

(n− 5)!1!
.

(4.16)

We can see again that (4.16) holds, and hence the terms containing γj(nj−5) in (4.13)

cancel out. Therefore, for all but the first row of (4.13) to cancel out we need in general(
n

k

)(
n− k
n− p

)
=

(
n

p− k

)(
n− p+ k

n− p

)
,

which is equivalent to

n!

k!(n− k)!
(n− k)!

(n− p)!(p− k)!
=

n!

(p− k)!(n− p+ k)!

(n− p+ k)!

(n− p)!k!
. (4.17)

We can see (4.17) in fact holds, and hence the corresponding terms in (4.13) cancel out.

Thus, we have

0 = [ϕ(n)(λj), ψ
(0)(λj)]+

(
n

1

)
γj(nj−1)[ψ

(0)(λj), ψ
(1)(λj)]+ . . .+

(
n

n

)
γj0[ψ

(0)(λj), ψ
(n)(λj)],

or equivalently

0 =

[
ϕ(n)(λj)−

(
n

1

)
γj(nj−1)ψ

(1)(λj)−
(
n

2

)
γj(nj−2)ψ

(2)(λj)− . . .−
(
n

n

)
γj0ψ

(n)(λj), ψ
(0)(λj)

]
.

Therefore, the zero value of the Wronskian above implies that there exists γj(n+1) such

that

ϕ(n)(λj)−
(
n

1

)
γj(nj−1)ψ

(1)(λj)−
(
n

2

)
γj(nj−2)ψ

(2)(λj)−. . .−
(
n

n

)
γj0ψ

(n)(λj) = γj(nj+1)ψ
(0)(λj),
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or equivalently

ϕ(n)(λj) =

(
n

1

)
γj(nj−1)ψ

(1)(λj)−
(
n

2

)
γj(nj−2)ψ

(2)(λj)+. . .+

(
n

n

)
γj0ψ

(n)(λj)+γj(nj+1)ψ
(0)(λj).

Therefore, we can say for l = 0, . . . , nj − 1 we have

ϕ(l)(λj) =
l∑

k=0

(
l

k

)
γj(l−k)ψ

(k)(λj), (4.18)

which can be expressed in matrix form as

Φ̂j = ΨjΓj, (4.19)

where the matrices Φ̂j, Γj, and Ψj are defined as

Φ̂j :=

[
ϕ(λj) ϕ̇(λj) . . . ϕ(nj−1)(λj)

]
,

Ψj :=

[
ψ(λj) ψ̇(λj) . . . ψ(nj−1)(λj)

]
,

Γj :=



γj0 γj1 γj2 . . . γj(nj−1)

0
(
1
1

)
γj0

(
2
1

)
γj1 . . .

(
nj−1

1

)
γj(nj−2)

0 0
(
2
2

)
γj0 . . .

(
nj−1

2

)
γj(nj−2)

...
...

...
. . .

...

0 0 0 . . .
(
nj−1
nj−1

)
γj0


.

(4.20)

Using (4.19) in (4.4) we obtain∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
=

N∑
j=1

ieiλjyΨjΓjFjTjYj, (4.21)
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where we have defined

Fj :=



1
0!

0 0 . . . 0

0 1
1!

0 . . . 0

0 0 1
2!

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
(nj−1)!


, Yj :=



1

(iy)1

...

(iy)nj−1


,

Tj :=



tj1
0!

tj2
1!

. . .
tj(nj−1)

(nj−2)!

tjnj

(nj−1)!

tj2
0!

tj3
1!

. . .
tjnj

(nj−2)!
0

...
...

. . .
...

...

tjnj

0!
0 . . . 0 0


. (4.22)

From (3.4) we have

ψ(λ) =

 0

eiλx

+

∫ ∞

−∞
K(x, z, t)eiλzdz. (4.23)

If we take the λ-derivative of (4.23) we find that for any n

ψ(n)(λj) =

 0

(ix)neiλjx

+

∫ ∞

−∞
K(x, z, t)eiλjz(iz)ndz.

Now we can express Ψj given in (4.20) as

Ψj =

 0

eiλjx

Xj +

∫ ∞

−∞
K(x, z, t)eiλjzZjdz,

where the matrices Xj and Zj are defined as

Xj :=

[
1 ix . . . (ix)nj−1

]
,

Zj :=

[
1 iz . . . (iz)nj−1

]
.

(4.24)
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Using (4.24) we write (4.23) as

∫ ∞

−∞
(T − 1)ϕeiλy

dλ

2π
=

N∑
j=1

ieiλj(x+y)XjΓjFjTjYj

 0

1


+

N∑
j=1

i

∫ ∞

−∞
dzK(x, z, t)eiλj(x+z)ZjΓjFjTjYj.

Thus, as in the case of simple poles we form the Marchenko integral equation

0 = K(x, y, t) +

R̂(x+ y, t)−
N∑
j=1

ieiλj(x+y)XjΓjFjTjYj

 0

1


+

∫ ∞

−∞
dzK(x, z, t)

(
R̂(z + y, t)−

N∑
j=1

ieiλj(x+z)ZjΓjFjTjYj

)
.

(4.25)

Let us use ΓjFjTj =: Cj, where the matrix Cj is defined as

Cj :=



nj−1∑
k=0

γjk
k!

tj(k+1)

0!

nj−2∑
k=0

γjk
k!

tj(k+2)

1!
. . .

0∑
k=0

γjk
k!

tj(k+nj)

(nj − 1)!
nj−2∑
k=0

(
k+1
1

)
γjk

(k + 1)!

tj(k+2)

0!

nj−3∑
k=0

(
k+1
1

)
γjk

(k + 1)!

tj(k+3)

1!
. . . 0

...
...

. . .
...

0∑
k=0

(
k+nj−1
nj−1

)
γjk

(k + nj − 1)!

tj(k+nj)

0!
0 . . . 0


,
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which simplifies to

Cj =



nj−1∑
k=0

γjk
k!
tj(k+1)

nj−2∑
k=0

γjk
k!
tj(k+2)

nj−3∑
k=0

γjk
k!
tj(k+3) . . .

0∑
k=0

γjk
k!
tj(k+nj)

nj−2∑
k=0

γjk
k!
tj(k+2)

(
2
1

) nj−3∑
k=0

γjk
k!
tj(k+3)

(
3
1

) nj−4∑
k=0

γjk
k!
tj(k+4) . . . 0

nj−3∑
k=0

γjk
k!
tj(k+3)

(
3
2

) nj−4∑
k=0

γjk
k!
tj(k+4)

(
4
2

) nj−5∑
k=0

γjk
k!
tj(k+5) . . . 0

nj−4∑
k=0

γjk
k!
tj(k+4)

(
4
3

) nj−5∑
k=0

γjk
k!
tj(k+5)

(
5
3

) nj−6∑
k=0

γjk
k!
tj(k+6) . . . 0

...
...

...
. . .

...
0∑

k=0

γjk
k!
tj(k+nj) 0 0 . . . 0



.

(4.26)

The Marchenko integral equation in (4.25) can then be written as

0 = K(x, y, t) +

R̂(x+ y)−
N∑
j=1

ieiλj(x+y)XjCjYj

 0

1




+

∫ ∞

−∞
dzK(x, z, t)

(
R̂(z + y)−

N∑
j=1

ieiλj(x+z)ZjCjYj

)
.

Now consider the expansions of the matrices XjCjYj and ZjCjYj:

XjCjYj = [cj0(ix)
0 + cj1(ix)

1 + . . .+ cj(nj−1)(ix)
nj−1+](iy)0

+[cj1(ix)
0 + cj2(ix)

1
(
2
1

)
+ . . .+ cj(nj−1)(ix)

nj−2
(
nj−1
nj−2

)
](iy)1

+[cj2(ix)
0 + cj3(ix)

1
(
3
1

)
+ . . .+ cj(nj−1)(ix)

nj−3
(
nj−1
nj−3

)
](iy)2

+ . . .+ [cj(nj−1)(ix)
0
(
nj−1
nj−1

)
](iy)nj−1,

(4.27)

ZjCjYj = [cj0(iz)
0 + cj1(iz)

1 + . . .+ cj(nj−1)(iz)
nj−1+](iy)0

+[cj1(iz)
0 + cj2(iz)

1
(
2
1

)
+ . . .+ cj(nj−1)(iz)

nj−2
(
nj−1
nj−2

)
](iy)1

+[cj2(iz)
0 + cj3(iz)

1
(
3
1

)
+ . . .+ cj(nj−1)(iz)

nj−3
(
nj−1
nj−3

)
](iy)2

+ . . .+ [cj(nj−1)(iz)
0
(
nj−1
nj−1

)
](iy)nj−1.

(4.28)
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We would like to write the kernel of the Marchenko integral equation in (4.25) in a form

similar to that of simple poles. We can reorder the terms of (4.27) and (4.28) to obtain

XjCjYj = cj0[(ix)
0(iy)0] + cj1[(ix)

1(iy)0 + (ix)0(iy)1]

+cj2[(ix)
2(iy)0 +

(
2
1

)
(ix)1(iy)1 + (ix)0(iy)2]

+cj3[(ix)
3(iy)0 +

(
3
2

)
(ix)2(iy)1 +

(
3
1

)
(ix)1(iy)2 + (ix)0(iy)3] + . . .

+cj(nj−1)[(ix)
nj−1(iy)0 +

(
nj−1
nj−2

)
(ix)nj−2(iy)1 +

(
nj−1
nj−3

)
(ix)nj−3(iy)2 + . . .+ (ix)0(iy)nj−1],

ZjCjYj = cj0[(iz)
0(iy)0] + cj1[(iz)

1(iy)0 + (iz)0(iy)1]

+cj2[(iz)
2(iy)0 +

(
2
1

)
(iz)1(iy)1 + (iz)0(iy)2]

+cj3[(iz)
3(iy)0 +

(
3
2

)
(iz)2(iy)1 +

(
3
1

)
(iz)1(iy)2 + (iz)0(iy)3] + . . .

+cj(nj−1)[(iz)
nj−1(iy)0 +

(
nj−1
nj−2

)
(iz)nj−2(iy)1 +

(
nj−1
nj−3

)
(iz)nj−3(iy)2 + . . .+ (iz)0(iy)nj−1],

which can be written as

XjCjYj = −i
nj−1∑
m=0

cjm
m!

(x+ y)m,

ZjCjYj = −i
nj−1∑
m=0

cjm
m!

(z + y)m,

where we have defined

cjm :=

nj−m−1∑
k=0

γjk
k!
im+1tj(m+k+1). (4.29)

Note that cjm is a function of t because γjk depends on t. Now we can rewrite our

Marchenko integral equation in (4.25) as

0 = K(x, y, t) +

R̂(x+ y)− i
N∑
j=1

ieiλj(x+y)

nj−1∑
m=0

cjm
m!

(x+ y)m

 0

1




+

∫ ∞

−∞
dzK(x, z, t)

(
R̂(z + y)− i

N∑
j=1

ieiλj(x+z)

nj−1∑
m=0

cjm
m!

(z + y)m

)
.

Finally, letting

Ω(y, t) := R̂(y, t) +
N∑
j=1

nj−1∑
m=0

cjm(t)

m!
ymeiλjy,
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we see that the Marchenko integral equation can be written as

0 = K(x, y, t) + Ω(x+ y, t)

 0

1

+

∫ ∞

−∞
K(x, z, t)Ω(z + y, t)dz, y > x,

which has the same form as in the case of the simple poles.

4.2 Marchenko Integral Equation Associated with C−

We now consider when the function T has N poles located at λ = λj in C− each

having order nj. The Marchenko integral equation will again differ from the previous

case of simple poles in the term

∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
. This is because of the evaluation

of this integral requires more than a simple residue evaluation, since we cannot simply

use the residue of T alone.

Theorem 4.2.1 The Marchenko integral equation for the system in (2.1) associated with

C− is

0 = K(x, y, t) + Ω(x+ y)

 1

0

+

∫ ∞

−∞
K(x, z, t)Ω(z + y)dz, x > y,

in the presence of a set of bound states {λj}Nj=1 each of order nj with kernel

Ω(s, t) := R̂(s, t) +
N∑
j=1

nj−1∑
m=0

cjm
m!

sme−iλjs.

Proof Consider the expansions about λj:

T − 1 =
tjnj

(λ− λj)nj
+

tj(nj−1)

(λ− λj)nj−1
+ . . .+

tj1

(λ− λj)
+ . . . ,

e−iλy = e−iλjy

[
1− iy(λ− λj) +

(−iy)2

2!
(λ− λj)2 + . . .+

(−iy)nj−1

(nj − 1)!
(λ− λj)nj−1 + . . .

]
,

ϕ = ϕ(λj) + ϕ̇(λj)(λ− λj) +
ϕ̈(λj)

2!
(λ− λj) + . . .+

ϕ(nj−1)(λj)

(nj − 1)!
(λ− λj)nj−1 + . . . . (4.30)
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Notice that we have

tjs =
1

(nj − s)!
dnj−s

dλnj−s
T
(
λ− λj

)
|λ=λj

.

When we multiply the terms of (4.30) and integrate, the only term contributing to the

integral will be the term containing 1
(λ−λj)

, and all others will contribute zero to the

integral. Since there are N poles with respective orders nj, we obtain

∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
=

N∑
j=1

ie−iλjy
[
tj1ϕ(λj) + tj2(ϕ(λj)(−iy) + ϕ̇(λj))

+tj3

(
ϕ(λj)

(−iy)2

2!
+ ϕ̇(λj)(−iy) +

ϕ̈(λj)

2!

)
+tj4

(
ϕ(λj)

(−iy)3

3!
+ ϕ̇(λj)

(−iy)2

2!
+
ϕ̈(λj)

2!
(−iy) +

ϕ(3)(λj)

3!

)
+ . . .

+ tjnj

(
ϕ(λj)

(−iy)nj−1

(nj − 1)!
+ ϕ̇(λj)

(−iy)nj−2

(nj − 2)!
+ . . .+

ϕ(nj−1)(λj)

(nj − 1)!

)]
,

which can be rewritten as

=
N∑
j=1

ie−iλjy

[
ϕ(λj)

(
tj1 + tj2(−iy) + tj3

(−iy)2

2!
+ . . .+ tjnj

(−iy)nj−1

(nj − 1)!

)
+ϕ̇(λj)

(
tj2 + tj3(−iy) + tj4

(−iy)2

2!
+ . . .+ tjnj

(−iy)nj−2

(nj − 2)!

)
+
ϕ̈(λj)

2!

(
tj3 + tj4(−iy) + tj5

(−iy)2

2!
+ . . .+ tjnj

(−iy)nj−3

(nj − 3)!

)
+ . . .+

ϕnj−1(λj)

(nj − 1)!
(tjnj

)

]
.

The integral term can now be written in matrix form as

∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
=

N∑
j=1

ie−iλjyΦjF jT jY j, (4.31)
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where the matrices Φj, F j, T j, and Y j are defined as

Φj :=

[
ϕ ϕ̇ . . . ϕ(nj−1)

]
, F j :=



1
0!

0 0 . . . 0

0 1
1!

0 . . . 0

0 0 1
2!

. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
(nj−1)!


,

T j :=



tj1
0!

tj2
1!

. . .
tjnj−1

(nj−2)!

tjnj

(nj−1)!

tj2
0!

tj3
1!

. . .
tjnj

(nj−2)!
0

...
...

...
...

...

tjnj

0!
0 . . . . . . 0


, Y j :=



1

(iy)1

...

(iy)nj−1


.

(4.32)

As in the case of simple poles we would like to have approximate representations for ϕ(λj)

and its derivatives in terms of ψ(λj). To find such representations we must consider the

expansion of 1
T

about λj. Define a := 1
T

and observe that

a(λ) = a(λj) + ȧ(λj)(λ− λj) +
ä(λj)

2!
(λ− λj)2 + . . .+

a(nj)(λj)

(nj)!
(λ− λj)nj + . . . . (4.33)

Since λj is a pole of order nj of T it is a zero of order nj of a(λ). Therefore,

a(λj) = ȧ(λj) = . . . = a(nj−1)(λj) = 0. (4.34)

We know from page 8 that a = [ϕ, ψ]. Consider the expansions of ϕ and ψ about λj:

ϕ(λj) = ϕ(λj) + ϕ̇(λj)(λ− λj) +
ϕ̈(λj)

2!
(λ− λj)2 + . . . ,

ψ(λj) = ψ(λj) + ψ̇(λj)(λ− λj) +
ψ̈(λj)

2!
(λ− λj)2 + . . . .

Thus,

a(λ) = [ϕ, ψ] =

∣∣∣∣∣∣∣
ϕ1(λj) + ϕ̇1(λj)(λ− λj) + . . . ψ1(λj) + ψ̇1(λj)(λ− λj) + . . .

ϕ2(λj) + ϕ̇2(λj)(λ− λj) + . . . ψ2(λj) + ψ̇2(λj)(λ− λj) + . . .

∣∣∣∣∣∣∣
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= [ϕ1(λj)ψ2(λj)− ϕ2(λj)ψ1(λj)] + (λ− λj)[ϕ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)

−ϕ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇2(λj)] + (λ− λj)2[ϕ1(λj)
ψ̈2(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)

2!

+ϕ̇1(λj)ψ̇2(λj)− ψ1(λj)
ϕ̈2(λj)

2!
− ϕ2(λj)

ψ̈1(λj)

2!
− ψ̇1(λj)ϕ̇2(λj)] + . . . ,

where we recall that the subscripts 1 and 2 indicate the first and second components of

the Jost solutions. Now if we compare this expansion of a(λ) to (4.33) and use (4.34) we

have the following equalities:

0 = a(λj) = ϕ1(λj)ψ2(λj)− ϕ2(λj)ψ1(λj),

0 = ȧ(λj) = ϕ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)− ϕ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇2(λj),

0 = ä(λj) = ϕ1(λj)
ψ̈2(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)

2!
+ ϕ̇1(λj)ψ̇2(λj)− ψ1(λj)

ϕ̈2(λj)

2!

−ϕ2(λj)
ψ̈1(λj)

2!
− ψ̇1(λj)ϕ̇2(λj),

...

0 = a(nj−1)(λj) =

nj−1∑
l=0

(
nj − 1

l

)
[ϕ(nj−1−l)(λj), ψ

(l)
(λj)].

(4.35)

The first equality in (4.35) implies∣∣∣∣∣∣∣
ϕ1(λj) ψ1(λj)

ϕ2(λj) ψ2(λj)

∣∣∣∣∣∣∣ = 0,

which indicates that ϕ(λj) and ψ(λj) are linearly dependent. Then there exists γj0 such

that

ϕ(λj) = γj0ψ(λj). (4.36)

By substituting (4.36) into the second equation in (4.35) we obtain

γj0ψ1(λj)ψ̇2(λj) + ϕ̇1(λj)ψ2(λj)− γj0ψ2(λj)ψ̇1(λj)− ψ1(λj)ϕ̇2(λj) = 0,

which can be written as ∣∣∣∣∣∣∣
ϕ̇1(λj)− γj0ψ̇1(λj) ψ1(λj)

ϕ̇2(λj)− γj0ψ̇2(λj) ψ2(λj)

∣∣∣∣∣∣∣ = 0. (4.37)
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Now (4.37) implies that ϕ̇(λj) − γj0ψ̇(λj) and ψ(λj) are linearly dependent. Therefore,

there exists γj1 such that

ϕ̇(λj) = γj0ψ(λj) + γj1ψ(λj). (4.38)

Again substituting (4.36) and (4.38) into the third equation in (4.35) we get

0 = γj0ψ1(λj)
ψ̈2(λj)

2!
+ ψ2(λj)

ϕ̈1(λj)

2!
+ γj0ψ̇1(λj)ψ̇2(λj) + γj1ψ1(λj)ψ̇2(λj)

−ψ1
ϕ̈2(λj)

2!
− γj0ψ2(λj)

ψ̈1(λj)

2!
− γj0ψ̇(λj)ψ̇2(λj)− γj1ψ̇1(λj)ψ2(λj),

which can be written as∣∣∣∣∣∣∣
ϕ̈1(λj)− 2γj1ψ̇1(λj)− γj0ψ̈1(λj) ψ1(λj)

ϕ̈2(λj)− 2γj1ψ̇2(λj)− γj0ψ̈2(λj) ψ2(λj)

∣∣∣∣∣∣∣ = 0. (4.39)

From (4.39) we see that, ϕ̈(λj)− 2γj1ψ̇(λj)− γj0ψ̈(λj) and ψ(λj) are linearly dependent.

Therefore, there exists γj2 such that

ϕ̈(λj) = γj0ψ̈(λj) + 2γj1ψ̇(λj) + γj2ψ(λj). (4.40)

Now we wish to prove that there is a similar representation for ϕ(nj−1)(λj). Recall that

for any n = 0, 1, . . . , nj − 1 we have

0 = a(n)(λj) =
n∑
l=0

(
n

l

)
[ϕ(n−l)(λj), ψ

(l)
(λj)]. (4.41)

As in the previous section, (4.41) can be written as

0 = [ϕ(n)(λj), ψ
(0)

(λj)]+

(
n

1

)
γj(n−1)[ψ

(0)
(λj), ψ

(1)
(λj)]+ . . .+

(
n

n

)
γj0[ψ

(0)
(λj), ψ

(n)
(λj)],

or equivalently

0 =

[
ϕ(n)(λj)−

(
n

1

)
γj(n−1)ψ

(1)
(λj)−

(
n

2

)
γj(n−2)ψ

(2)
(λj)− . . .−

(
n

n

)
γj0ψ

(n)
(λj), ψ

(0)
(λj)

]
.

Therefore, there exists γj(n+1) such that

ϕ(n)(λj)−
(
n

1

)
γj(n−1)ψ

(1)
(λj)−

(
n

2

)
γj(n−2)ψ

(2)
(λj)−. . .−

(
n

n

)
γj0ψ

(n)
(λj) = γj(n+1)ψ

(0)
(λj),
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or equivalently

ϕ(n)(λj) =

(
n

1

)
γj(n−1)ψ

(1)
(λj)−

(
n

2

)
γj(n−2)ψ

(2)
(λj)+. . .+

(
n

n

)
γj0ψ

(n)
(λj)+γj(n+1)ψ

(0)
(λj).

Therefore, we see that for l = 0, . . . , nj − 1 we have

ϕ(l)(λj) =
l∑

k=0

(
l

k

)
γj(l−k)ψ

(k)
(λj). (4.42)

The above expression can be written in matrix form as

Φj = ΨjΓj, (4.43)

where the matrices Φj, Ψj, and Γj are defined as

Φj :=

[
ϕ(λj) ϕ̇(λj) . . . ϕ(nj−1)(λj)

]
,

Ψj :=

[
ψ(λj) ψ̇(λj) . . . ψ

(nj−1)
(λj)

]
, (4.44)

Γj :=



γj0 γji . . . γj(nj−1)

0
(
1
1

)
γj0 . . .

(
nj−1

1

)
γj(nj−2)

...
...

. . .
...

0 0 . . .
(
nj−1
nj−1

)
γj0


.

Substituting (4.43) into (4.31) we get∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
=

N∑
j=1

ie−iλjyΨjΓjF jT jY j. (4.45)

From (3.4) we get

ψ(λj) =

 e−iλjx

0

+

∫ ∞

−∞
K(x, z, t)e−iλjzdz.

From the λ-derivative of (3.4) we obtain for n = 0, 1, 2, . . .

ψ
(n)

(λj) =

 (−ix)ne−iλjx

0

+

∫ ∞

−∞
K(x, z, t)e−iλjz(−iz)ndz.
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We can express Ψj as

Ψj =

 e−iλjx

0

Xj +

∫ ∞

−∞
K(x, z, t)e−iλjzZjdz,

where Xj and Zj are defined as

Xj :=

[
1 (−ix) . . . (−ix)nj−1

]
,

Zj :=

[
1 (−iz) . . . (−iz)nj−1

]
.

We can then write the integral in (4.45) as∫ ∞

−∞
(T − 1)ϕe−iλy

dλ

2π
=

N∑
j=1

ie−iλj(x+y)XjΓjT jY j

 1

0


+

N∑
j=1

i

∫ ∞

−∞
K(x, z, t)e−iλj(x+z)ZjΓjF jT jY jdz,

where F j, T j, and Y j are defined in (4.32) and Γj is defined in (4.44). As in the case of

simple poles we can now form the Marchenko integral equation

0 = K(x, y, t) +

R̂(x+ y, t)−
N∑
j=1

ie−iλj(x+y)XjΓjF jT jY j

 1

0




+

∫ ∞

−∞
K(x, z, t)

R̂(z + y, t)−
N∑
j=1

ie−iλj(x+z)ZjΓjF jT jY j

 dz.

We now let ΓjF jT j =: Cj, where we have

Cj :=



nj−1∑
k=0

γk
k!

tk+1

0!

nj−2∑
k=0

γjk
k!

tj(k+2)

1!
. . .

0∑
k=0

γjk
k!

tj(k+nj)

(nj − 1)!

nj−2∑
k=0

(
k+1
1

)
γjk

(k + 1)!

tj(k+2)

0!

nj−3∑
k=0

(
k+1
1

)
γjk

(k + 1)!

tj(k+3)

1!
. . . 0

...
...

. . .
...

0∑
k=0

(
k+nj−1
nj−1

)
γjk

(k + nj − 1)!

tj(k+nj)

0!
0 . . . 0


,
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which can also be written as

Cj =



nj−1∑
k=0

γjk
k!
tj(k+1)

nj−2∑
k=0

γjk
k!
tj(k+2)

nj−3∑
k=0

γjk
k!
tj(k+3) . . .

0∑
k=0

γjk
k!
tj(k+nj)

nj−2∑
k=0

γjk
k!
tj(k+2)

(
2
1

) nj−3∑
k=0

γjk
k!
tj(k+3)

(
3
1

) nj−4∑
k=0

γjk
k!
tj(k+4) . . . 0

nj−3∑
k=0

γjk
k!
tj(k+3)

(
3
2

) nj−4∑
k=0

γjk
k!
tj(k+4)

(
4
2

) nj−5∑
k=0

γjk
k!
tj(k+5) . . . 0

nj−4∑
k=0

γjk
k!
tj(k+4)

(
4
3

) nj−5∑
k=0

γjk
k!
tj(k+5)

(
5
3

) nj−6∑
k=0

γjk
k!
tj(k+6) . . . 0

...
...

...
. . .

...

0∑
k=0

γjk
k!
tj(k+nj) 0 0 . . . 0



.

Thus, we can write the Marchenko integral equation as

0 = K(x, y, t) +

R̂(x+ y)−
N∑
j=1

ie−iλj(x+y)XjCjY j

 1

0




+

∫ ∞

−∞
dzK(x, z, t)

R̂(z + y)−
N∑
j=1

ie−iλj(x+z)ZjCjY j

 .

Consider the expansions of the matrices XjCjY j and ZjCjY j:

XjCjY j = [cj0(ix)
0 + cj1(ix)

1 + . . .+ cj,nj−1(ix)
nj−1+](iy)0

+ [cj1(ix)
0 + cj2(ix)

1

(
2

1

)
+ . . .+ cj,nj−1(ix)

nj−2

(
nj − 1

nj − 2

)
](iy)1

+ [cj2(ix)
0 + cj3(ix)

1

(
3

1

)
+ . . .+ cj,nj−1(ix)

nj−3

(
nj − 1

nj − 3

)
](iy)2

+ . . .+ [cj,nj−1(ix)
0

(
nj − 1

nj − 1

)
](iy)nj−1, (4.46)
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ZjCjY j = [cj0(iz)
0 + cj1(iz)

1 + . . .+ cj,nj−1(iz)
nj−1+](iy)0 (4.47)

+ [cj1(iz)
0 + cj2(iz)

1

(
2

1

)
+ . . .+ cj,nj−1(iz)

nj−2

(
nj − 1

nj − 2

)
](iy)1

+ [cj2(iz)
0 + cj3(iz)

1

(
3

1

)
+ . . .+ cj,nj−1(iz)

nj−3

(
nj − 1

nj − 3

)
](iy)2

+ . . .+ [cj,nj−1(iz)
0

(
nj − 1

nj − 1

)
](iy)nj−1. (4.48)

We would like to write the kernel of the Marchenko integral equation in a form similar

to the case of simple poles. We can reorder the terms in (4.48) to obtain

XjCjY j = cj0[(ix)
0(iy)0] + cj1[(ix)

1(iy)0 + (ix)0(iy)1]

+cj2[(ix)
2(iy)0 +

(
2
1

)
(ix)1(iy)1 + (ix)0(iy)2]

+cj3[(ix)
3(iy)0 +

(
3
2

)
(ix)2(iy)1 +

(
3
1

)
(ix)1(iy)2 + (ix)0(iy)3] + . . .

+cj(nj−1)[(ix)
nj−1(iy)0 +

(
nj−1
nj−2

)
(ix)nj−2(iy)1 +

(
nj−1
nj−3

)
(ix)nj−3(iy)2 + . . .+ (ix)0(iy)nj−1],

ZjCjY j = cj0[(iz)
0(iy)0] + cj1[(iz)

1(iy)0 + (iz)0(iy)1]

+cj2[(iz)
2(iy)0 +

(
2
1

)
(iz)1(iy)1 + (iz)0(iy)2]

+cj3[(iz)
3(iy)0 +

(
3
2

)
(iz)2(iy)1 +

(
3
1

)
(iz)1(iy)2 + (iz)0(iy)3] + . . .

+cj(nj−1)[(iz)
nj−1(iy)0 +

(
nj−1
nj−2

)
(iz)nj−2(iy)1 +

(
nj−1
nj−3

)
(iz)nj−3(iy)2 + . . .+ (iz)0(iy)nj−1],

which can be written as

XjCjY j = −i
nj−1∑
m=0

cjm
m!

(x+ y)m,

ZjCjY j = −i
nj−1∑
m=0

cjm
m!

(z + y)m,

where cjm is defined as

cjm :=

nj−m−1∑
k=0

γjk
k!
im+1tj(m+k+1). (4.49)
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We can rewrite our integral equation as

0 = K(x, y, t) +

R̂(x+ y, t) +
N∑
j=1

e−iλj(x+y)

nj−1∑
m=0

cjm
m!

(x+ y)m

 0

1




+

∫ ∞

−∞
dzK(x, z, t)

R̂(z + y, t) +
N∑
j=1

e−iλj(x+z)

nj−1∑
m=0

cjm
m!

(z + y)m

 .

Thus, it is appropriate to write the kernel of the Marchenko integral equation as

Ω(y, t) := R̂(y, t) +
N∑
j=1

nj−1∑
m=0

cjm(t)

m!
yme−iλjy.

Now for x > y, the Marchenko integral equation associated with C− can be written as

0 = K(x, y, t) + Ω(x+ y, t)

 1

0

+

∫ ∞

−∞
K(x, z, t)Ω(z + y, t)dz

resembling the case of simple poles.

Thus, we have accomplished our goal for writing the two Marchenko integral equations

in a simple form. Summarizing, we can write the system of Marchenko integral equations

as 

0 = K(x, y, t) + Ω(x+ y, t)

 0

1

+

∫ ∞

x

K(x, s, t)Ω(s+ y, t)ds, y > x,

0 = K(x, y, t) + Ω(x+ y, t)

 1

0

+

∫ x

−∞
K(x, s, t)Ω(s+ y, t)ds, x > y.

(4.50)



CHAPTER 5

TIME EVOLUTION OF THE SCATTERING DATA ASSOCIATED WITH

BOUND STATE POLES WITH HIGHER MULTIPLICITY

We now consider the time evolution of the scattering data in the presence of bound

states of multiple orders. Since the reflection coefficients are not dependent on the bound

states, the time evolution for them is the same as in the case of simple bound state poles.

Even though the time evolution of the reflection coefficients is known [20], we include

a derivation of their time evolution for the convince of the reader. In this chapter we

first derive the time evolution of the dependency constants. We then exploit the linear

relationship between the norming constants and the dependency constants and hence

obtain the time evolution of the bound state norming constants in the presence of bound

state poles of any multiplicity.

5.1 Lax Pair

We begin by reviewing the Lax pair associated with the NLS equation. Rewrite

the system in (2.1) as

d

dx
Φ = −iλJΦ +QΦ, (5.1)

where Φ, J , and Q are defined as

Φ :=

 ξ

η

 , J :=

 1 0

0 −1

 , Q :=

 0 q

r 0

 .
Notice that J2 = I, where I denotes the 2× 2 identity matrix. We can rewrite (5.1) as

iJ∂xΦ = λΦ + iJQΦ,

46
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or equivalently as

(iJ∂x − iJQ) Φ = λΦ.

It is known [20] that the Lax pair operators L and A defined as

L := iJ∂x − iJQ,

A := 2iJ
∂2

∂x2
+

 0 −2iq

2ir 0

+

 −iqr −iqx
irx iqr

 ,
form the Lax pair associated with (2.1). In other words

0 = Lt + LA−AL, (5.2)

yields the coupled system of nonlinear equations

 iqt + qxx − 2q2r = 0

irt − rxx + 2r2q = 0.
(5.3)

If we let r = −q∗, then the two equations in (5.3) both reduce to the NLS equation

iqt + qxx + 2|q|2q = 0.

5.2 Time Evolution of Scattering Data Associated with C+

With the help of the Lax pair we will consider the time evolution of the scattering

data. It is known [1, 2, 3, 4, 8, 16, 20] that ψt −Aψ is a solution to Lψ = λψ, i.e.

L (ψt −Aψ) = λ (ψt −Aψ) .

This is equivalent to saying that ψt −Aψ can be written as a linear combination of the

Jost solutions ψ and ϕ as

ψt −Aψ = c1ψ + c2ϕ. (5.4)



48

Using the asymptotics of the Jost solutions appearing on pages 8 and 9, let us determine

c1 and c2. As x → ±∞, we know that q, r, qx, rx → 0 at each fixed t. Therefore,

A → 2iJ∂2
x as x→ ±∞. As x→ +∞, from (5.4) we get

∂t

 0

eiλx

+ 2i

 1 0

0 −1

 ∂2
x

 0

eiλx

 = c1

 0

eiλx

+ c2

 1
T
e−iλx

R
T
eiλx

 ,
which yields  0

−2iλ2eiλx

 = c1

 0

eiλx

+ c2

 1
T
e−iλx

R
T
eiλx

 .
Hence, we have c1 = −2iλ2 and c2 = 0. Thus, we see that the Jost solution ψ evolves

according to

ψt −Aψ = −2iλ2ψ. (5.5)

Similarly we know [1, 2, 3, 4, 8, 13, 16, 20] that ϕt − Aϕ is also a solution to

Lϕ = λϕ, and hence

L (ϕt −Aϕ) = λ (ϕt −Aϕ) .

Consequently, ϕt − Aϕ can be written as a linear combination of the Jost solutions ψ

and ϕ as

ϕt −Aϕ = c3ψ + c4ϕ. (5.6)

With the help of the asymptotics on pages 8 and 9, as x→ −∞ from (5.6) we obtain

∂t

 e−iλx

0

− 2i

 1 0

0 −1

 ∂2
x

 e−iλx

0

 = c3

 L
T
e−iλx

R
T
eiλx

+ c4

 e−iλx

0

 ,
which simplifies to  2iλ2e−iλx

0

 = c3

 L
T
e−iλx

R
T
eiλx

+ c4

 e−iλx

0

 .
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Therefore, we have c3 = 0 and c4 = 2iλ2. We then have the following time evolution for

the Jost solution ϕ:

ϕt −Aϕ = 2iλ2ϕ. (5.7)

The time evolution of the scattering coefficients L(λ, t), R(λ, t), and T (λ, t) are

already known:

L(λ, t) = L(λ, 0)e−4iλ2t, R(λ, t) = R(λ, 0)e4iλ
2t, T (λ, t) = T (λ, 0). (5.8)

Note that the evolutions in (5.8) can be obtained from the asymptotics of (5.5) and (5.7)

as x→ ±∞ as follows. As x→ −∞ from (5.5) we obtain

∂t

 L
T
e−iλx

1
T
eiλx

− 2i

 1 0

0 −1

 ∂2
x

 L
T
e−iλx

1
T
eiλx

 = −2iλ2

 L
T
e−iλx

1
T
eiλx

 . (5.9)

We know that λt = 0, and hence (5.9) reduces to (LT )t e−iλx(
1
T

)
t
eiλx

+

 2iλ2 L
T
e−iλx

−2iλ2 1
T
eiλx

 =

 −2iλ2 L
T
e−iλx

−2iλ2 1
T
eiλx

 ,
which yields (

L

T

)
t

e−iλx + 2iλ2L

T
e−iλx = −2iλ2L

T
e−iλx, (5.10)(

1

T

)
t

eiλx − 21λ2 1

T
eiλx = −2iλ2 1

T
eiλx. (5.11)

From (5.11) we have (
1

T

)
t

= 0,

which implies

Tt = 0.

From (5.10) we get (
L

T

)
t

= −4iλ2L

T
,



50

which implies

Lt = −4iλ2L.

Therefore, due to the fact that Tt = 0 we have

L(λ, t) = L(λ, 0)e−4iλ2t.

Similarly, as x→ +∞ from (5.7) we get

∂t

 1
T
e−iλx

R
T
eiλx

− 2i

 1 0

0 −1

 ∂2
x

 1
T
e−iλx

R
T
eiλx

 = 2iλ2

 1
T
e−iλx

R
T
eiλx

 . (5.12)

Again we know that λt = 0, and hence (5.12) reduces to ( 1
T

)
t
e−iλx(

R
T

)
t
eiλx

+

 2iλ2 1
T
e−iλx

−2iλ2R
T
eiλx

 =

 2iλ2 1
T
e−iλx

2iλ2R
T
eiλx

 .
Thus, we get (

1

T

)
t

= 0, (5.13)(
R

T

)
t

= 4iλ2R

T
. (5.14)

Notice that (5.13) again shows that Tt = 0. We then consider (5.14), which reduces to

Rt = 4iλ2R.

Therefore, we obtain the time evolution of R(λ, t) as

R(λ, t) = R(λ, 0)e4iλ
2t.

Notice that since T (λ, t) is independent of time, this implies that the coefficients tjm and

the matrix Tj appearing in (4.22) are also independent of time.

Let us now consider the time evolution of the dependency constants γjm.
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Theorem 5.2.1 The dependency constants γjk satisfy the ordinary differential equations

dγjm
dt

= 4iλ2γjm + 8imλγj(m−1) + 4im(m− 1)γj(m−2).

Proof The proof proceeds by induction. We first consider the base case, ϕ(λj) =

γj0ψ(λj). Its time derivative gives us

ϕt(λj) = γj0ψt(λj) + (γj0)tψ(λj). (5.15)

Using (5.5) we can write (5.15) as

2iλ2
jϕ(λj) +Aϕ(λj) = γj0ψt(λj) + (γj0)tψ(λj). (5.16)

With the help of (5.7) we can write (5.16) as

2iλ2
jγj0ψ(λj) +Aγj0ψ(λj) = γj0Aψ(λj)− 2iλ2

jγj0ψ(λj) + (γj0)tψ(λj). (5.17)

Note that (5.17) implies

dγj0
dt

= 4iλ2
jγj0. (5.18)

From the time derivative of (4.9) we find

ϕ̇t(λj) = γj0ψ̇t(λj) + (γj0)tψ̇(λj) + γj1ψt(λj) + (γj1)tψ(λj). (5.19)

Consider the λ-derivatives of (5.5) and (5.7):

ϕ̇t −Aϕ̇ = 2iλ2ϕ̇+ 4iλϕ,

ψ̇t −Aψ̇ = −2iλ2ψ̇ − 4iλψ.
(5.20)

Using (5.5), (5.7), (5.18), and (5.20) we find that (5.19) can be written as

(γj1)tψ(λj) = −2iλ2
jγj0ψ̇(λj) + 2iλ2

jγj1ψ(λj) + 4iλjγj0 −Aγj1ψ(λj)− 4iλ2
jγj0ψ(λj)

+Aγj0ψ(λj) + 2iλ2
jγj0ψ(λj) + 4iλjγj0ψ(λj) + 2iλ2

jγj1ψ(λj) +Aγj0ψ(λj) +Aγj1ψ(λj),

which simplifies to

(γj1)t = 8iλjγj0 + 4iλ2
jγj1,
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or equivalently

dγj1
dt

= 4iλ2
jγj1 + 8iλjγj0. (5.21)

From the λ-derivative of (5.20) we get

ϕ̈t −Aϕ̈ = 2iλ2ϕ̈+ 8iλϕ̇+ 4iϕ,

ψ̈t −Aψ̈ = −2iλ2ψ̈ − 8iλψ̇ − 4iψ.
(5.22)

From the time derivative of (4.11), with the help of (5.5), (5.7), and (5.18) – (5.22) we

get

(γj2)tψ(λj) = 2iλ2
jγj0ψ̈(λj) + 4iλ2

jγj1ψ̇(λj) + 2iλ2
jγj2ψ(λj) + 8iλjγj0ψ̇(λj) + 8iλjγj1ψ(λj)

+4iγj0ψ(λj) + 2iλ2
jγj0ψ̈(λj) + 8iλjγj0ψ̇(λj) + 4iγj0ψ(λj)− 4iλjγj0ψ̈(λj) + 4iλ2

jγj1ψ̇(λj)

+8iλjγj1ψ(λj)− 16iλjγj0ψ̇(λj)− 8iλ2
jγj1ψ̇(λj) + 2iλ2

jγj2ψ(λj),

which yields

(γj2)t = 4iλ2
jγj2 + 16iλjγj1 + 8iγj0.

For the inductive argument we will write (γj2)t in the following way

dγj2
dt

= 4iλ2
jγj2 + (2)8iλjγj1 + (2 · 1)4iγj0, (5.23)

which suggests the recursive formula

dγjm
dt

= 4iλ2
jγjm + 8imλjγj(m−1) + 4im(m+ 1)γj(m−2). (5.24)

Let us assume that the above recursive formula is true for m = k. To show that the

recursive formula is true for m = k + 1 we must first obtain an equivalent expression for
l∑

m=0

(
l

m

)
dγj(l−m)

dt
ψ(m)(λj). The λ-derivatives of (5.7) for m = 0, 1, . . . , nj − 1 are given

by

ϕ
(m)
t −Aϕ(m) = 2iλ2ϕ(m) +

(
m

1

)
4iλϕ(m−1) +

(
m

2

)
4iϕ(m−2). (5.25)

Similarly, the higher order λ-derivatives of (5.5) for m = 0, 1, . . . , nj − 1 are given by

ψ
(m)
t −Aψ(m) = −2iλ2ψ(m) −

(
m

1

)
4iλψ(m−1) −

(
m

2

)
4iψ(m−2). (5.26)
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If we take the time derivative of (4.18) we obtain

∂ϕ(l)

∂t
(λj) =

l∑
k=0

(
l

k

)
γj(l−k)

∂ψ(k)

∂t
(λj) +

l∑
k=0

(
l

k

)
dγj(l−k)
dt

ψ(k)(λj). (5.27)

From (4.18) and (5.27) we get

∂ϕ(l)

∂t
(λj)−Aϕ(l)(λj, x) =

l∑
k=0

(
l

k

)
γj(l−k)

∂ψ(k)

∂t
(λj)

+
l∑

k=0

(
l

k

)
dγj(l−k)
dt

ψ(k)(λj)−A
l∑

k=0

(
l

k

)
γj(l−k)ψ

(k)(λj).

(5.28)

Using (4.18), (5.25), (5.26), and (5.28) we obtain

l∑
k=0

(
l

k

)
dγj(l−k)
dt

ψ(k)(λj) = 4iλ2
j

l∑
k=0

(
l

k

)
γj(l−k)ψ

(k)(λj)

+4iλj

l−1∑
k=0

[
l

(
l − 1

k

)
+ (l − k)

(
l

k

)]
γj(l−k)ψ

(k−1)(λj)

+2i
l−2∑
k=0

[(
l − 2

k

)
l(l − 1) + (l − k)(l − k − 1)

(
l

k

)]
γj(l−k)ψ

(k−2)(λj).

(5.29)

Note that we have

l

(
l − 1

k

)
+ (l − k)

(
l

k

)
=

2 l!

k!(l − k − 1)!
,(

l − 2

k

)
l(l − 1) + (l − k)(l − k − 1)

(
l

k

)
=

2 l!

k!(l − k − 2)!
.

(5.30)

Using (5.30) we can rewrite (5.29) as

l∑
k=0

(
l

k

)
dγj(l−k)
dt

ψ(k)(λj) = 4iλ2
j

l∑
k=0

(
l

k

)
γj(l−k)ψ

(k)(λj)

+4iλj

l−1∑
k=0

2 l!

k!(l − k − 1)!
γj(l−k)ψ

(k−1)(λj)

+2i
l−2∑
k=0

2 l!

k!(l − k − 2)!
γj(l−k)ψ

(k−2)(λj).

(5.31)
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We will use (5.31) to prove our recursive formula (5.24) for m = k+ 1. Multiplying both

sides of (5.24) with m = k by
(
k+1
s

)
ψ(k+1−s)(λj, x), we obtain(

k + 1

s

)
dγjk
dt

ψ(k+1−s) =

(
k + 1

s

)
4iλ2

jγjkψ
(k+1−s)(λj)

+

(
k + 1

s

)
8ikλjγj(k−1)ψ

(k+1−s)(λj) +

(
k + 1

s

)
4ik(k − 1)γj(k−2)ψ

(k+1−s)(λj).

(5.32)

Applying
k∑
s=0

to both sides of (5.32), we get

k∑
s=0

(
k + 1

s

)
dγjk
dt

ψ(k+1−s)(λj) =
k∑
s=0

(
k + 1

s

)
4iλ2

jγjkψ
(k+1−s)(λj)

+
k∑
s=0

(
k + 1

s

)
8ikλjγj(k−1)ψ

(k+1−s)(λj)

+
k∑
s=0

(
k + 1

s

)
4ik(k − 1)γj(k−2)ψ

(k+1−s)(λj).

(5.33)

Let us rewrite (5.31) as

k+1∑
s=0

(
k + 1

s

)
dγjs
dt

ψ(k+1−s)(λj) = 4iλ2
j

k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)(λj)

+4iλj

k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)(λj) + 2i
k−1∑
s=0

2(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)(λj),

which can also be written as

dγj(k+1)

dt
ψ(0)(λj) +

k∑
s=0

(
k + 1

s

)
dγjs
dt

ψ(k+1−s)(λj) =

4iλ2
j

k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)(λj) + 4iλj

k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)(λj)

+2i
k−1∑
s=0

2(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)(λj).

(5.34)
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Now substituting (5.33) into the second term of (5.34) and rearranging terms we get

dγj(k+1)

dt
ψ(0)(λj) = 4iλ2

j

k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)(λj) + 4iλj

k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)(λj)

+2i
k−1∑
s=0

2(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)(λj)−
k∑
s=0

(
k + 1

s

)
4iλ2

jγjkψ
(k+1−s)(λj)

−
k∑
s=0

(
k + 1

s

)
8ikλjγj(k−1)ψ

(k+1−s)(λj)−
k∑
s=0

(
k + 1

s

)
4ik(k − 1)γj(k−2)ψ

(k+1−s)(λj),

or equivalently

dγj(k+1)

dt
ψ(0)(λj) = 4iλ2

j

[
k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)(λj)−
k∑
s=0

(
k + 1

s

)
γjkψ

(k+1−s)(λj)

]

+8iλj

[
k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)(λj)−
k∑
s=0

(
k + 1

s

)
kγj(k−1)ψ

(k+1−s)(λj)

]

+4i

[
k−1∑
s=0

(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)(λj)−
k∑
s=0

(
k + 1

s

)
k(k − 1)γj(k−2)ψ

(k+1−s)(λj)

]
.

This last equality can be simplified to

dγj(k+1)

dt
ψ(0)(λj) = 4iλ2

j

[
γj(k+1)ψ

(0)(λj)
]
+ 8iλj

[
(k + 1)γjkψ

(0)(λj)
]

+4i
[
(k + 1)kγj(k−1)ψ

(0)(λj)
]
,

which yields

dγj(k+1)

dt
= 4iλ2

jγj(k+1) + 8iλj(k + 1)γjk + 4ik(k + 1)γj(k−1). (5.35)

Thus, the time evolution of the dependency constants γjs has been established for any

k = 0, 1, . . . , nj − 1.
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Next we establish the time evolution of the norming constants from t = 0 to an

arbitrary time. For this purpose we introduce the nj × nj matrix Aj as

Aj :=



−iλj −1 0 . . . 0 0

0 −iλj −1 . . . 0 0

0 0 −iλj . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −iλj −1

0 0 0 . . . 0 −iλj



. (5.36)

Theorem 5.2.2 The time evolution of the norming constants cjk is governed by[
cj(nj−1)(t) cj(nj−2)(t) . . . cj0(t)

]
=

[
cj(nj−1)(0) cj(nj−2)(0) . . . cj0(0)

]
e−4iA2

j t.

(5.37)

Proof Recall that the norming constants and the dependency constants are related to

each other by (4.29), which can be written in matrix form as

Ĉj = Γ̂jP̂j, (5.38)

where Ĉj, Γ̂j, and P̂j are defined as

Ĉj :=

[
cj(nj−1) . . . cj0

]
, Γ̂j :=

[
γj(nj−1) . . . γj0

]
,

P̂j :=



0 0 . . . 0
tjnj

i−1

(nj−1)!

0 0 . . .
tjnj

i0

(nj−2)!

tj(nj−1)i
−1

(nj−2)!

...
... . .

. ...
...

0
tjnj

inj−3

1!
. . .

tj3i
0

1!

tj2i
−1

1!

tjnj
inj−2

0!

tj(nj−1)i
nj−3

0!
. . .

tj2i
0

0!

tj1i
−1

0!


,

(5.39)
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and the entries of Ĉj and Γ̂j are dependent on t. Since tjk is independent of time, the

time derivative of (5.38) yield

dĈj
dt

=
dΓ̂j
dt

P̂j, (5.40)

which can also be written as[
dcj(nj−1)

dt

dcj(nj−2)

dt
. . .

dcj0
dt

]
=

[
dγj(nj−1)

dt

dγj(nj−2)

dt
. . .

dγj0
dt

]
P̂j. (5.41)

Using (5.35) in (5.41) we obtain[
dγj(nj−1)

dt

dγj(nj−2)

dt
. . .

dγj0
dt

]
=

[
γj(nj−1) γj(nj−2) . . . γj0

]
Lj, (5.42)

where we have defined

Lj :=



4iλ2
j 0 0 . . . 0

(nj − 1)8iλj 4iλ2
j 0 . . . 0

(nj − 2)(nj − 1)4i (nj − 2)8iλj 4iλ2
j . . . 0

...
...

...
. . .

...

0 0 0 . . . 4iλ2
j


. (5.43)

Let us write (5.42) as

dΓ̂j
dt

= Γ̂jLj. (5.44)

Substituting (5.44) into (5.40) we obtain

dĈj
dt

= Γ̂jLjP̂j. (5.45)

Since Pj is congruent to a triangular matrix with nonzero diagonal entries, we know that

it is invertible. Thus we can write (5.45) in the equivalent form

dĈj
dt

= Γ̂j(P̂jP̂
−1
j )LjP̂j. (5.46)

From (5.38) we see this is equivalent to

dĈj
dt

= ĈjP̂
−1
j LjP̂j,
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which has the unique solution

Ĉj(t) = Ĉj(0)e
(P̂−1

j Lj P̂j)t.

With the help of (5.39) and (5.43) we obtain

P̂−1
j LjP̂j = −4iA2

j ,

where Aj is the matrix defined in (5.36). Thus, (5.37) is proved.

5.3 Time Evolution of Scattering Data Associated with C−

Again, since L and A form a Lax pair, we know that ψt − Aψ is also a solution to

Lψ = λψ. Then ψt −Aψ can be written as a linear combination of the Jost solutions ψ

and ϕ as

ψt −Aψ = c1ψ + c2ϕ, (5.47)

where c1 and c2 are some coefficients independent of x, which can be determined from

the asymptotics as x→ ±∞. It is already known [1, 2, 3, 4, 8, 13, 16, 20] that the time

evolution of ψ is given by

ψt −Aψ = 2iλ2ψ,

and this can be established by letting x → ±∞ in (5.47). As x → ±∞, we know that

q, r, qx, rx → 0, and hence A → 2iJ∂2
x as x→ ±∞. Now consider ψt −Aψ = c1ψ + c2ϕ

as x→ +∞ and use the asymptotics on pages 8 and 9 we get

∂t

 e−iλx

0

− 2i

 1 0

0 −1

 ∂2
x

 e−iλx

0

 = c1

 e−iλx

0

+ c2

 R
T
e−iλx

1
T
eiλx

 ,
from which we conclude that 2iλ2e−iλx

0

 = c1

 e−iλx

0

+ c2

 R
T
e−iλx

T
eiλx

 .
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Therefore, we have c1 = 2iλ2 and c2 = 0, and the time evolution of ψ is governed by

ψt −Aψ = 2iλ2ψ. (5.48)

Similarly, we can derive the time evolution of ϕ. Since ϕt − Aϕ is also a solution

to Lϕ = λϕ we have

ϕt −Aϕ = c3ψ + c4ϕ,

for some coefficients c3 and c4 not depending on x. Letting x → −∞ and using the

asymptotics on pages 8 and 9, from the above relationship we obtain

∂t

 0

eiλx

− 2i

 1 0

0 −1

 ∂2
x

 0

eiλx

 = c3

 1
T
e−iλx

L
T
eiλx

+ c4

 0

eiλx

 ,
which yields  2iλ2e−iλx

0

 = c3

 L
T
e−iλx

R
T
eiλx

+ c4

 e−iλx

0

 .
Therefore, we have c3 = 0 and c4 = −2iλ2, and the evolution of ϕ is governed by

ϕt −Aϕ = −2iλ2ϕ. (5.49)

The time evolution of the scattering coefficients R, L, and T is already known

[1, 2, 8, 16] and can easily be obtained from the asymptotics of (5.48) and (5.49) as

follows. Letting x→ −∞ in (5.48) we get

∂t

 1
T
e−iλx

L
T
eiλx

− 2i

 1 0

0 −1

 ∂2
x

 1
T
e−iλx

L
T
eiλx

 = −2iλ2

 1
T
e−iλx

L
T
eiλx

 . (5.50)

Since λt = 0, (5.50) gives us ( 1
T

)
t
e−iλx(

L
T

)
t
eiλx

+

 2iλ2 1
T
e−iλx

−2iλ2 L
T
eiλx

 =

 2iλ2 1
T
e−iλx

2iλ2 L
T
eiλx

 ,
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which yields (
L

T

)
t

eiλx − 2iλ2L

T
eiλx = 2iλ2L

T
eiλx,(

1

T

)
t

e−iλx + 2iλ2 1

T
e−iλx = 2iλ2 1

T
e−iλx.

From (5.51) and (5.51) we obtain(
L

T

)
t

= 4iλ2L

T
,

(
1

T

)
t

= 0,

which are equivalent to

Lt = 4iλ2L, T t = 0.

Therefore, we obtain

L(λ, t) = L(λ, 0)e4iλ
2t, T (λ, t) = T (λ, 0).

Thus T is independent of time. Letting x→ +∞ in (5.49) we get

∂t

 R
T
e−iλx

1
T
eiλx

− 2i

 1 0

0 −1

 ∂2
x

 R
T
e−iλx

1
T
eiλx

 = 2iλ2

 R
T
e−iλx

1
T
eiλx

 . (5.51)

Since λt = 0, from (5.51) we get
(
R
T

)
t
e−iλx(

1
T

)
t
eiλx

+

 2iλ2R
T
e−iλx

−2iλ2R
T
eiλx

 =

 −2iλ2R
T
e−iλx

−2iλ2 1
T
eiλx

 ,
which yields (

1

T

)
t

= 0, (5.52)(
R

T

)
t

= −4iλ2R

T
. (5.53)

Thus, we again gt T t = 0 and

R(λ, t) = R(λ, 0)e−4iλ2t.
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Notice that since T is independent of time, the coefficients tjm appearing in (4.49) are

also independent of time. Let us now consider the time evolution of the dependency

constants γjm.

Theorem 5.3.1 The time evolution of the dependency constants γjm is governed by the

ordinary differential equation

dγjm
dt

= −4iλ2γjm − 8imλγj(m−1) − 4im(m− 1)γj(m−2). (5.54)

Proof We will again use induction to prove our theorem. Taking the time derivative of

(4.36) we obtain

ϕt(λj) = γj0ψt(λj) + (γj0)tψ(λj). (5.55)

Using (5.49), we can write (5.55) as

−2iλ
2

jϕ(λj) +Aϕ(λj) = γj0ψt(λj) + (γj0)tψ(λj). (5.56)

Using (4.36) and (5.48) in (5.56) we get

−2iλ
2

jγj0ψ(λj) +Aγj0ψ(λj) = γj0Aψ(λj)− 2iλ
2

jγj0ψ(λj) + (γj0)tψ(λj). (5.57)

From (5.57) we obtain
dγj0
dt

= −4iλ
2

jγj0. (5.58)

Taking the time derivative of (4.38) we get

ϕ̇t(λj) = γj0ψ̇t(λj) + (γj0)tψ̇(λj) + γj1ψt(λj) + (γj1)tψ(λj). (5.59)

The λ-derivatives of (5.48) and (5.49) give us

ϕ̇t −Aϕ̇ = −2iλ2ϕ̇− 4iλϕ,

ψ̇t −Aψ̇ = 2iλ2ψ̇ + 4iλψ.
(5.60)



62

Using (5.48), (5.49), (5.58), and (5.60) in (5.59) we obtain

(γj1)tψ(λj) = +2iλ
2

jγj0ψ̇(λj)− 2iλ
2

jγj1ψ(λj)− 4iλjγj0ψ(λj)−Aγj1ψ(λj) + 4iλ
2

jγj0ψ(λj)

−Aγj0ψ(λj)− 2iλ
2

jγj0ψ(λj)− 4iλjγj0ψ(λj)− 2iλ
2

jγj1ψ(λj) +Aγj0ψ(λj) +Aγj1ψ(λj),

which simplifies to

(γj1)t = −8iλjγj0 − 4iλ
2

jγj1,

or equivalently
dγj1
dt

= −4iλ
2

jγj1 − 8iλjγj0. (5.61)

From the λ-derivative of (5.60) we get

ϕ̈t −Aϕ̈ = −2iλ2ϕ̈− 8iλϕ̇− 4iϕ,

ψ̈t −Aψ̈ = 2iλ2ψ̈ + 8iλψ̇ + 4iψ.
(5.62)

Using (5.48), (5.49), (5.56), (5.58), (5.61), and (5.62) we find that (4.40) can be written

as

(γj2)tψ(λj) = −2iλ
2

jγj0ψ̈(λj)− 4iλ
2

jγj1ψ̇(λj)− 2iλ
2

jγj2ψ(λj)− 8iλjγj0ψ̇(λj)− 8iλjγj1ψ(λj)

−4iγj0ψ(λj)− 2iλ
2

jγj0ψ̈(λj)− 8iλjγj0ψ̇(λj)− 4iγj0ψ(λj) + 4iλjγj0ψ̈(λj)− 4iλ
2

jγj1ψ̇(λj)

−8iλjγj1ψ(λj) + 16iλjγj0ψ̇(λj) + 8iλ
2

jγj1ψ̇(λj)− 2iλ
2

jγj2ψ(λj),

which reduces to

(γj2)t = −4iλ
2

jγj2 − 16iλjγj1 − 8iγj0,

or equivalently
dγj2
dt

= −4iλ
2

jγj2 − (2)8iλjγj1 − (2 · 1)4iγj0. (5.63)

Therefore, (5.63) satisfies the recursive formula for m = 2. Now assume the recursive

formula is true for m = k, i.e.

dγjk
dt

= −4iλ
2

jγjk − 8ikλjγj(k−1) − 4ik(k + 1)γj(k−2). (5.64)
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To show that the recursive formula is also true for m = k + 1, we must first find an

equivalent expression for
l∑

k=0

(
l

k

)
dγj(l−k)
dt

ψ
(k)

(λj). The λ-derivatives of (5.49) for m =

0, 1, . . . , nj − 1 yield

ϕ
(m)
t −Aϕ(m) = −2iλ2ϕ(m) −

(
m

1

)
4iλϕ(m−1) −

(
m

2

)
4iϕ(m−2). (5.65)

Similarly, the λ-derivatives of (5.48) give us

ψ
(m)

t −Aψ(m)
= +2iλ2ψ

(m)
+

(
m

1

)
4iλψ

(m−1)
+

(
m

2

)
4iψ

(m−2)
. (5.66)

From the time derivative of (4.42) we find

dϕ(l)

dt
(λj) =

l∑
k=0

(
l

k

)
γj(l−k)

dψ
(k)

dt
(λj) +

l∑
k=0

(
l

k

)
dγj(l−k)
dt

ψ
(k)

(λj). (5.67)

With the help of (4.42) and (5.67) we obtain

dϕ(l)

dt
(λj)−Aϕ(l)(λj) =

l∑
k=0

(
l

k

)
γj(l−k)

dψ
(k)

dt
(λj)

+
l∑

k=0

(
l

k

)
dγj(l−k)
dt

ψ
(k)

(λj)−A
l∑

k=0

(
l

k

)
γj(l−k)ψ

(k)
(λj).

(5.68)

From (5.65), (5.66), (5.67), and (5.68) we have

l∑
k=0

(
l

k

)
dγj(l−k)
dt

ψ
(k)

(λj) = −4iλ
2

j

l∑
k=0

(
l

k

)
γj(l−k)ψ

(k)
(λj)

−4iλj

l−1∑
k=0

[
l

(
l − 1

k

)
+ (l − k)

(
l

k

)]
γj(l−k)ψ

(k−1)
(λj)

−2i
l−2∑
k=0

[(
l − 2

k

)
l(l − 1) + (l − k)(l − k − 1)

(
l

k

)]
γj(l−k)ψ

(k−2)
(λj).

(5.69)

Using (5.30) we can rewrite (5.69) as

l∑
k=0

(
l

k

)
dγj(l−k)
dt

ψ
(k)

(λj) = −4iλ
2

j

l∑
k=0

(
l

k

)
γj(l−k)ψ

(k)
(λj)

−4iλj

l−1∑
k=0

2 l!

k!(l − k − 1)!
γj(l−k)ψ

(k−1)
(λj)

−2i
l−2∑
k=0

2 l!

k!(l − k − 2)!
γj(l−k)ψ

(k−2)
(λj).

(5.70)
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We will use (5.64) to prove the recursive formula for m = k + 1. Multiplying both sides

of (5.70) by
(
k+1
s

)
ψ

(k+1−s)
(λj), we obtain(

k + 1

s

)
dγjk
dt

ψ
(k+1−s)

(λj) = −
(
k + 1

s

)
4iλ

2

jγjkψ
k+1−s

(λj)

−
(
k + 1

s

)
8ikλjγj(k−1)ψ

(k+1−s)
(λj)−

(
k + 1

s

)
4ik(k − 1)γj(k−2)ψ

(k+1−s)
(λj).

(5.71)

Applying the summation
k∑
s=0

to both sides of (5.71), we get

k∑
s=0

(
k + 1

s

)
dγjk
dt

ψ
(k+1−s)

(λj) = −
k∑
s=0

(
k + 1

s

)
4iλ

2

jγjkψ
(k+1−s)

(λj)

−
k∑
s=0

(
k + 1

s

)
8ikλjγj(k−1)ψ

(k+1−s)
(λj)

−
k∑
s=0

(
k + 1

s

)
4ik(k − 1)γj(k−2)ψ

(k+1−s)
(λj).

(5.72)

From (5.70) we have

k+1∑
s=0

(
k + 1

s

)
dγjs
dt

ψ
(k+1−s)

(λj) = −4iλ
2

j

k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)
(λj)

−4iλj

k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)(λj)− 2i
k−1∑
s=0

2(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)
(λj),

which can be rewritten as

dγj(k+1)

dt
ψ(0)(λj) +

k∑
s=0

(
k + 1

s

)
dγjs
dt

ψ(k+1−s)(λj)

= 4iλ2
j

k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)(λj) + 4iλj

k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)(λj)

+2i
k−1∑
s=0

2(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)(λj).

(5.73)
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By substituting (5.72) into the second term of (5.73) and rearranging terms, we get

dγj(k+1)

dt
ψ

(0)
(λj) = −4iλ

2

j

k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)
(λj)− 4iλj

k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)
(λj)

−2i
k−1∑
s=0

2(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)
(λj) +

k∑
s=0

(
k + 1

s

)
4iλ

2

jγjkψ
(k+1−s)

(λj)

+
k∑
s=0

(
k + 1

s

)
8ikλjγj(k−1)ψ

(k+1−s)
(λj) +

k∑
s=0

(
k + 1

s

)
4ik(k − 1)γj(k−2)ψ

(k+1−s)
(λj),

or equivalently

dγj(k+1)

dt
ψ

(0)
(λj) = −4iλ

2

j

[
k+1∑
s=0

(
k + 1

s

)
γjsψ

(k−s+1)
(λj)−

k∑
s=0

(
k + 1

s

)
γjkψ

(k+1−s)
(λj)

]

−8iλj

[
k∑
s=0

2(k + 1)!

s!(k − s)!
γjsψ

(k−s)
(λj)−

k∑
s=0

(
k + 1

s

)
kγj(k−1)ψ

(k+1−s)
(λj)

]

−4i

[
k−1∑
s=0

(k + 1)!

s!(k − s− 1)!
γjsψ

(k−s−1)
(λj)−

k∑
s=0

(
k + 1

s

)
k(k − 1)γj(k−2)ψ

(k+1−s)
(λj)

]
.

This last expression can be simplified to

dγj(k+1)

dt
ψ

(0)
(λj) = −4iλ

2

j

[
γj(k+1)ψ

(0)
(λj)

]
− 8iλj

[
(k + 1)γjkψ

(0)
(λj)

]
−4i

[
(k + 1)kγj(k−1)ψ

(0)
(λj)

]
,

or equivalently

dγj(k+1)

dt
= −4iλ

2

jγj(k+1) − 8iλj(k + 1)γjk − 4i(k + 1)kγj(k−1).

Thus, we have shown that (5.64) holds for all k = 0, 1, . . . , nj, and hence the proof of our

theorem is complete.
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Next we consider the time evolution of the bound state norming constants from

t = 0 to an arbitrary time. For this purpose let us define the nj × nj matrix Aj as

Aj :=



−iλj −1 0 . . . 0

0 −iλj −1 . . . 0

0 0 −iλj . . . 0

...
...

...
. . .

...

0 0 0 . . . −iλj


. (5.74)

Theorem 5.3.2 The time evolution of the norming constants cjm is governed by[
cj(nj−1)(t) cj(nj−2)(t) . . . cj0(t)

]
=

[
cj(nj−1)(0) cj(nj−2)(0) . . . cj0(0)

]
e4iA

2
j t.

(5.75)

Proof Recall that the norming constants cjm and the dependency constants γjm are

related to each other trough (4.49), which we write in the matrix form as

Ĉj = Γ̂jP̂ j, (5.76)

where the matrices Ĉj, Γ̂j, and P̂ j are defined as

Ĉj :=

[
cj(nj−1) . . . cj0

]
,

Γ̂j :=

[
γj(nj−1) . . . γj0

]
,

P̂ j :=



0 0 . . . 0
tjnj

i−1

(nj−1)!

0 0 . . .
tjnj

i0

(nj−2)!

tj(nj−1)i
−1

(nj−2)!

...
... . .

. ...
...

0
tjnj

inj−3

1!
. . .

tj3i
0

1!

tj2i
−1

1!

tjnj
inj−2

0!

tj(nj−1)i
nj−3

0!
. . .

tj2i
0

0!

tj1i
−1

0!


. (5.77)

Now since tjk is independent of time from (5.76) we get

dĈj

dt
=
dΓ̂j
dt

P̂ j, (5.78)
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or equivalently[
dcj(nj−1)

dt

dcj(nj−2)

dt
. . .

dcj0
dt

]
=

[
dγj(nj−1)

dt

dγj(nj−2)

dt
. . .

dγj0
dt

]
P̂ j.

Define the nj × nj matrix L as

Lj :=



−4iλ
2

j 0 0 . . . 0

−(nj − 1)8iλj −4iλ
2

j 0 . . . 0

−(nj − 2)(nj − 1)4i −(nj − 2)8iλj −4iλ
2

j . . . 0

...
...

...
. . .

...

0 0 0 . . . −4iλ
2

j


. (5.79)

We can write (5.54) as

dΓ̂j
dt

= Γ̂j Lj. (5.80)

Using (5.80) in (5.78) we get

dĈj

dt
= Γ̂j Lj P̂ j. (5.81)

Now since P j is congruent to a triangular matrix with nonzero diagonal entries, it is

invertible. Writing (5.81) in the equivalent form as

dĈj

dt
= Γ̂j(P̂ j P̂

−1

j )Lj P̂ j, (5.82)

with the help of (5.76) we obtain

dĈj

dt
= Ĉj P̂

−1

j Lj P̂ j,

which has the unique solution

Ĉj(t) = Ĉj(0)e
(P̂

−1

j Lj P̂ j)t.

With the help of (5.74), (5.77), and (5.79) we obtain

P̂
−1

j Lj P̂ j = 4iA
2

j .

Therefore, the theorem is proved.
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Moreover, a generalization of the formula in (5.37) for a set of bound states {λj}Nj=1

each of multiplicity nj can be expressed as

C(t) = C(0)e−4iA2t, (5.83)

where C and A are defined as

C(t) :=

[
C1(t) C2(t) . . . CN(t)

]
, (5.84)

A :=



A1 0 . . . 0

0 A2 . . . 0

...
...

. . .
...

0 0 . . . AN


, (5.85)

where the matrix Aj is defined in (5.36) and Cj defined as

Cj :=

[
cj(nj−1)(t) cj(nj−2)(t) . . . cj0(t)

]
.

Similarly, the analog of the formula in (5.37) for a set of bound states {λj}Nj=1 each of

multiplicity nj is given by

C(t) = C(0)e4iA
2
t,

where C and A are defined as

C(t) :=

[
C1(t) C2(t) . . . CN(t)

]
,

A :=



A1 0 . . . 0

0 A2 . . . 0

...
...

. . .
...

0 0 . . . AN


,

where the matrix Aj is defined in (5.74) and Cj defined as

Cj :=

[
cj(nj−1)(t) cj(nj−2)(t) . . . cj0(t)

]
.



CHAPTER 6

INVERSE SCATTERING TRANSFORM FOR THE NLS EQUATION

As mentioned in Chapter 5, the first-order system in (2.1) with r = −q∗ reduces

to the Zakharov-Shabat system, which is associated with the NLS equation. In that

case, the Jost solutions ψ and ϕ, the scattering coefficients T , R, and L, the bound

state dependency constants γjm, and the bound state norming constants cjm can all be

expressed in terms of the corresponding quantities ψ, ϕ, T , R, L, γjm, and cjm. In this

chapter we review such relationships. The connecting relationships for the Jost solutions

and the scattering coefficients are already known [1, 2, 16] in the case of simple bound

states and they remain unchanged also in the case of poles of higher multiplicities.

When r(x, t) = −q∗(x, t) we get

ψ(λ, x, t) =

 0 1

−1 0

ψ∗(λ∗, x, t). (6.1)

Note that (6.1) can be verified by showing that both ψ(λ, x, t) and ψ(λ, x, t) satisfy the

following Zakharov-Shabat system and the corresponding asymptotics:

ψ′ =

 −iλ 0

0 iλ

ψ +

 0 q

−q∗ 0

ψ. (6.2)

Substituting λ∗ for λ in (6.2) we have 0 1

−1 0

ψ′∗(λ∗) =

 0 1

−1 0


 iλ∗ 0

0 iλ∗

ψ∗(λ∗)

+

 0 1

−1 0


 0 q(x)

−q∗(x) 0

ψ∗(λ∗).
69
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However  0 1

−1 0


 0 1

−1 0

 =

 −1 0

0 −1

 ,
and hence 0 1

−1 0

ψ′∗(λ∗) = −

 0 1

−1 0


 iλ∗ 0

0 −iλ∗


 0 1

−1 0


 0 1

−1 0

ψ∗(λ∗)

−

 0 1

−1 0


 0 q(x)

−q∗(x) 0


 0 1

−1 0


 0 1

−1 0

ψ∗(λ∗)

=

 −iλ∗ 0

0 iλ∗


 0 1

−1 0

ψ∗(λ∗) +

 0 q(x)

−q∗(x) 0


 0 1

−1 0

ψ∗(λ∗).
From pages 8 and 9 we know that ψ and ψ satisfy the asymptotic conditions as x→ +∞

ψ →

 0

eiλx

+ o(1), ψ →

 e−iλx

0

+ o(1),

and hence, as x→ +∞, we have 0 1

−1 0

ψ∗(λ∗) =

 0 1

−1 0


 0

(e−iλ
∗x)∗

+ o(1) =

 e−iλx

0

+ o(1).

Thus, (6.1) is established. In a similar way it can be shown that

ϕ(λ, x, t) =

 0 1

−1 0

ϕ∗(λ∗, x, t). (6.3)

By comparing the asymptotics as x → −∞ in (6.1) and as x → +∞ in (6.3), we

obtain when r = −q∗ the relationships among the scattering coefficients as

T (λ, t) = T ∗(λ∗, t), R(λ, t) = −R∗(λ∗, t), L(λ) = −L∗(λ∗, t). (6.4)

With the help of (6.1), (6.3), and (6.4) one can obtain the following result [7]:
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Theorem 6.0.3 When r = −q∗, we have

1. λj = λ∗j

2. algebraic multiplicity of λj = algebraic multiplicity of λ∗j

3. γjm = γ∗jm

4. cjm = −c∗jm

5. Ω(z, t) = −Ω∗(z, t)

6. K(x, y, t) =

 0 1

−1 0

K∗(x, y, t).

As a consequence of Theorem 6.0.3, from the two vector-valued Marchenko equations

given in (4.50), one derives the scalar Marchenko equation

K(x, y, t) = Ω∗(x+ y, t)−
∫ ∞

x

dz

∫ ∞

x

dsK(x, s, t) Ω(s+ z, t) Ω∗(z + y, t),

where the scalar kernel is [7]

Ω(z, t) :=
1

2π

∫ ∞

−∞
R(λ, t)eiλzdλ+

N∑
j=1

nj−1∑
s=0

cjs(t)
zs

s!
eiλjz.

Then, the solution u(x, t) to the NLS equation can be found by solving the scalar

Marchenko integral equation for the scalar function K(x, y, t) and by using

u(x, t) = −2K(x, x, t).
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CONCLUSION

When Zakharov and Shabat introduced the inverse scattering transform for the

NLS equation in 1972 [20], they assumed the bound states were all simple. They tried to

deal with bound states of multiplicity two by coalescing two simple poles into one. Even

though the idea of coalescing two or more poles into one is theoretically feasible, the prac-

tical implementation of coalescing is not that easy, as evident from the concrete example

that Zakharov and Shabat provided with a computational error [17, 20]. As pointed out

by Olmedilla [17], Zakharov and Shabat’s “limiting process gives the appropriate value

. . . but their final result for the potential is mistaken.” The error in [20] certainly does

not diminish the importance of the work by Zakharov and Shabat, but it indicates that

the process of dealing with bound states of higher multiplicity is not easy even when

the multiplicity is two. Olmedilla derived [17] some formulas to deal with bound states

of multiplicities two and three, but he also added that “in actual calculation it is very

complex to exceed four of five.” Using the symbolic computer software REDUCE he was

able to reach a multiplicity of nine, but his formulas were too complicated to generalize

to a bound state of any multiplicity.

In our thesis we have provided a complete generalization of the inverse scattering

transform with bound states of any multiplicities. We have accomplished our goal by

deriving the time evolution for the norming constants cjm when there are N bound states

each having multiplicity nj, respectively. Our elegant formula given in (5.83)

C(t) = C(0)e−4iA2t,
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where C is the 1× (Nnj) matrix given in (5.84) and A is the (Nnj)× (Nnj) matrix given

in (5.85), provides the generalization of the evolution formula

cj(t) = cj(0)e
−4iλjt,

which holds only when there is a simple bound state at λj.
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