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ABSTRACT

STATIC AND DYNAMIC CALIBRATION OF A MULTI-COMPONENT

SIDEWALL FORCE BALANCE FOR A TRANSONIC

LUDWIEG TUBE WIND TUNNEL

MICHAEL GERARD WERLING JR, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Dr. Frank Lu

Experimentation involving transonic flow requires replicating not only the Mach

number but also the Reynolds number. Improper matching of the Reynolds number

affects the interaction between the shocks and boundary layer on the surface of an

airfoil, moving the position of the shock and altering the downstream flow field. Both

Mach and Reynolds numbers have a large influence on the lift and drag characteristics

of airfoils, amongst other aerodynamic effects, within the transonic regime of flight.

A strain-based, multi-component, sidewall force balance was purchased in 1989

specifically for the transonic Ludwieg tunnel at the University of Texas–Arlington, but

proper calibration has not been applied since 1990. Dynamic loads are experienced

by the balance, so to ensure that the force balance measures forces and moments

properly, static and dynamic calibrations are necessary to eliminate the interference

from the tunnel on the balance and the model. The procedures for static and dy-

namic calibration of the force balance are the main topics of discussion, including

calculations, results, and uncertainty analysis.
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After calibration, a parametric study was completed on a NACA 0012 wingtip

showing the changes in the coefficients of lift and drag with the angle of attack. A

comparison was also made with data from a two-dimensional NACA 0012 wing from

NASA.
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NOMENCLATURE

CL lift coefficient

CD drag coefficient

CM moment coefficient

CN normal coefficient

CA axial/chord coefficient

ρ density, kg/m3 [lbm/ft3]
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l characteristic length, m [ft]

F force, N [lbf]

t time, s

T temperature, K [◦R]

q dynamic pressure, kPa [psi]

Re =ρV L/µ, Reynolds number

P static pressure, kPa [psi]

M balance matrix

µ viscosity, kg/m·s [lbm/ft·s]

c chord length, m [in.]

S planform area, m2 [in2]

L lifting force, N [lbf]

D drag force, N [lbf]

NF normal force component, N [lbf]
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MX moment about X-axis, N· m [lbf·in.]

MZ moment about Z-axis, N· m [lbf·in.]

PM pitching moment, N· m [lbf·in.]

R1 reading from strain bridge 1 corresponding to NF and MX, V
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R3 reading from strain bridge 3 corresponding to CF , V
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M freestream Mach number
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γ specific heat ratio
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α angle of attack, deg [◦]

S sensitivity constant, lbf/mV or lbf·in./mV

x Cartesian coordinate along streamwise length, m [in.]

y Cartesian coordinate along spanwise width, m [in.]
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CHAPTER 1

INTRODUCTION

1.1 Background

Wind tunnels are still necessary for the development of aerospace vehicles de-

spite the substantial use of computational fluid dynamics. While much cutting-edge

research has focused on the hypersonic regime, large transonic transports continue

to evolve and is a mainstay of the aerospace industry in the US. This evolution

places demands on understanding the aerodynamics of advanced designs. The high

Reynolds number1 in the transonic flight regime of large transports requires duplica-

tion of both Mach and Reynolds numbers in aerodynamic testing for accurate results

due to shock-boundary layer interaction affecting the position of the shock on the

wing. Since wind tunnels test at subscales, high Reynolds number can be achieved

by raising the pressure to over 1000 kPa. A class of facility that is capable of doing

precisely this is the Ludwieg tube wind tunnel.

For transonic testing of large transports, modern industrial practice is to use

large cryogenic wind tunnels to approach if not match the fullscale Reynolds number,

leaving the Ludwieg tube out of favor. Now, the Reynolds number is given by

Re =
ρV l

µ
(1.1)

indicating that to achieve a large value, the temperature T can be decreased which

raises the density ρ and lowers the viscosity µ. This principle is used in cryogenic

tunnels. Alternatively, the pressure can be increased, thereby affecting the density

directly. This is the principle used in Ludwieg tube wind tunnels. In passing, some

1Greater than 40 million/m.
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other ways of increasing the Reynolds number includes the use of a heavy gas or to

increase the length scale l by using larger models and test sections.

Matching the Reynolds number between a subscale test model and an actual

flight vehicle is crucial in the transonic range due to the extreme sensitivity of the

flow to the Reynolds number, see §1.1.2. A mismatch in Reynolds number will yield

erroneous aerodynamic data rendering them useless for design purposes. There have

been numerous instances where poor prediction of transonic flight characteristics has

led to catastrophic failures. Proper duplication is important when trying to reproduce

the same flight conditions that are pertinent to conventional military and commercial

aircraft within the transonic range. Other than fixed-wing aircraft, transonic aerody-

namics is also important in rotorcraft aerodynamics, particularly with regards to the

flow past rotor tips [2].

1.1.1 History of the Ludwieg Tube

In 1957, Hubert Ludwieg proposed a wind tunnel concept that subsequently

carries his name in an effort to increase the test times of conventional shock tubes [7].

It was subsequently determined in the 1960s that this concept could nearly match the

Reynolds numbers of transonic aircraft at that time. This capability should be put

in the context of poor matches between predicted performance that was discovered

during flight testing that required redesign of many different aircraft such as the

C-141, F-111 and the YF-12, the last being the precursor of the SR-71 Blackbird

(Fig. 1.1) [8]. The poor predictions could be attributed strongly to wind tunnels

of that time which were not capable of replicating the high Reynolds numbers of

transonic flight of those cited aircraft [2]. The Ludwieg tube appeared to be the

least costly approach for duplicating the proper transonic conditions for developing

accurate performance predictions.
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Figure 1.1. From left to right, the C-141 Starlifter, the F-111 Aardvark, and the
YF-12 Blackbird, precursor to the SR-71 [1].

The Ludwieg tube concept was approved by NASA in 1971 to be a contender

for the “National Transonic Facility.” Even though the Ludwieg tube was able to

produce low turbulent flow, in addition to matching the Mach and Reynolds number

of large transonic aircraft, unfortunately, short test times of less than half a second,

high dynamic pressures, and high stresses encountered by the models caused some

concern and prompted alternatives. The stresses were considerable enough to distort

and ruin the scaled models under extreme pressure loading [2].

The idea of using cryogenics to increase the Reynolds number was introduced

in 1971, with a pilot version developed, operated, and proven at Langley Research

Center in 1973. An in-depth study determined that the two separate facilities, a

Ludwieg tube and a cryogenic facility, would be the optimum way to achieve the

high Reynolds numbers for development, and the longer test runs and lower dynamic

pressures for research, respectively. However, construction costs increased in 1974

when the proposal was sent to Congress, doubling the cost of the Ludwieg tube and

bringing cause for its removal from the proposition [8].

1.1.2 Difficulties of Transonic Testing

The unusual flow behavior at transonic speeds creates difficulties both in testing

and design since the flow characteristics are mixed, where supersonic and subsonic
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fields intermingle. For example, the difficulties in analyzing and learning about the

flow around an airfoil at transonic speeds can be seen in Fig. 1.2. Shock waves begin

to form over the surfaces, the boundary layer separates, and crucial parameters, such

as forces and moments, become difficult to predict. For transonic flow testing, the

physical laws may not be directly apparent since the measurements are dependent

on the dimensions of both the model and the test section. For this reason, slots,

perforations, and porous walls have large roles in producing the necessary conditions

for accurate flow within the test section [9].

Figure 1.2. Schlieren photograph showing shock waves present on the surfaces of an
airfoil and the boundary layer separation [2].

Of particular concern is the high subsonic regime. For example, the flow over

rectangular and unswept airfoils creates a large drag force, reduces lift, and creates

4



strong shock waves. Even though sweeping the wings is not necessary, it does provide

a reduction in drag and mitigates the effect of any shocks that form, postponing the

severity of the shocks to higher Mach numbers.

The high subsonic flow is sensitive to the surface contour, affecting the location

of the shock wave. The interaction between the shock and the boundary layer over the

surface has a dominant effect in the aerodynamics. In one instance, the interaction

between the shock wave and the boundary layer is less when the boundary layer is

turbulent since the incoming boundary layer velocity profile is fuller. Therefore, a

lower test Reynolds number which can result in substantial laminar flow over the

surface will yield a different flow pattern compared to the higher Reynolds number

of full-scale flight. Another possible mismatch occurs even if the flow over the test

article is turbulent but at lower Reynolds number than full-scale, also referred to

as “Reynolds number effect.” For these reasons, the Reynolds number needs to be

matched as best as possible when subscale models are used for testing since large

differences can change the shock location and the downstream flow field. The Mach

number also has influence on the shock position over the airfoil, as seen by the effect

of compressibility on the section lift coefficient as a function of Mach number in Fig.

1.3. A significant change in lift between Mach 0.8 and 0.9 is illustrated due to the

location of the shock waves and the shock-boundary layer interaction [3].

1.1.3 Objectives of the Research

Based on previous work using the UTA Ludwieg tube by Peeples [10], which

involved modifying the pressure lines to obtain more accurate transducer measure-

ments, a constant Mach number throughout the test section was confirmed based on

the test section data from Rath [11], Kalkhoran [12], and Starr and Schueler [13].

The constant flow conditions are shown and explained in §2.3.1. The force balance
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Figure 1.3. Section lift coefficient as a function of Mach number to show the effect of
compressibility, with illustrations of the flow field [3].

was originally calibrated by the manufacturer, Modern Machine Tools, Inc., in 1989,

recalibrated by Young [14] in 1991, and utilized by Peeples [10] and Elbers [15]. The

repeatability of the tunnel conditions was considered high based on the previous work

and analysis, but the results from the force balance were not. Based on the work com-

pleted by Braun [4], the Ludwieg tube is in operational condition and provides the

constant flow conditions necessary for testing.

The force balance is an integral device for this Ludwieg tube, providing aerody-

namic load values within the transonic regime. The sensitivity of the balance allows

both low and high frequencies to be measured, distorting the output and creating

large uncertainties within the data. The dynamic loads experienced by the balance

also affect the output, mostly due to the starting process and the sliding sleeve valve in

the tunnel, which also causes the tunnel to possibly jolt. The intention is to calibrate

the balance for the static loads, eliminate the dynamic interference and, if necessary,

compensate for the acceleration created by the tunnel. The test results are compared

to other documented data results for lift and drag coefficients, requiring the readings

of the normal force, chord force, and pitching moment on the chosen model, a NACA

0012 airfoil.
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CHAPTER 2

FACILITY EQUIPMENT AND SETUP

2.1 Introduction

Four wind tunnels, in addition to other facilities, are available at the University

of Texas at Arlington’s (UTA) Aerodynamics Research Center for research that cover

each of the four flow regimes: subsonic, transonic, supersonic, and hypersonic. Each

tunnel has its own special qualities, and most of the equipment for each has been

customized specifically for that tunnel. The transonic tunnel, in particular, is one

of only a handful of Ludwieg tube wind tunnels in the world capable of producing

transonic flow.

2.2 Ludwieg Tube Wind Tunnel at UTA

The Ludwieg tube tunnel was acquired as a donation from the Arnold Engi-

neering Development Center (AEDC) in 1978 after it was decommissioned in 1976.

The 1/13th scale tunnel has the capability to produce Reynolds numbers up to 400

million/m for chord lengths of approximately 75 mm (3 in.). It was previously used at

UTA to study rotorcraft blade/vortex interactions [10, 11, 12] and fighter jet wings

[15], since the tunnel is capable of producing Mach numbers between 0.5 and 1.2.

While cryogenic wind tunnels have widespread industrial use, this low-cost facility

can be used for basic research at transonic speeds [4].
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2.2.1 Description

The source of energy for this wind tunnel comes from a charge tube, which is

approximately 34 m (111 ft) long with a diameter of about 353 mm (13.9 in.), as seen

in the schematic in Fig. 2.1 [16]. This tube can be charged to 5150 kPa (750 psia) to

produce a stagnation pressure of 3450 kPa (500 psia). The contraction ratio of the

nozzle is 2.27. Additionally, a transition from the circular section of the charge tube

to the rectangular test section is afforded in this contraction zone. This constant ratio

signifies that a minimum pressure is necessary to obtain the minimum velocity in the

test section for a run, which is approximately 690 kPa (100 psia). The principle of

the steady flow is mentioned in §2.2.2.

Figure 2.1. A schematic of the UTA Ludwieg tube [4].

The test section (Fig. 2.2) has a rectangular section of 186 mm by 232 mm (7.34

in. × 9.15 in.). It has the option of being surrounded by four porous walls, or two

porous top and bottom plates and two solid side walls. A single porous wall consists

of two stacked plates with holes inclined at 60 degrees, evenly spaced, to provide

uniform porosity. The porosity on each wall can be varied continuously from 3.5% to
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10% of the wall area by manually moving one plate relative to the other. A plenum

cavity surrounds the test section and has approximately 1.75 times its volume [4].

Figure 2.2. Photo of the test section with an airfoil in position for a test run, showing
the porous plates on the top and bottom walls.

Referring to Fig. 2.3, the ejector flaps located immediately downstream of the

test section allow the flow to become supersonic if they are open. The diffuser section

follows, transitioning the cross-section from rectangular back to circular. The plenum

exhaust system allows the flow in the plenum cavity to be released to the atmosphere

(Fig. 2.4). Eight flex hoses connect the plenum shell to the manifold. Within the

manifold is the diaphragm holder, made of two plates that pinch the mylar diaphragms

together and allows the pressure to build when filling for a run [16]. When the tunnel

is ready to fire, a pneumatic cutter is actuated and punctures the mylar, allowing

the pressure to exhaust to the atmosphere at a rate that depends on the position of

the variable 6-inch ball valve, controlling the mass flow rate and therefore the Mach

number.
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Figure 2.3. A schematic of the main components surrounding the test section [5].

The 16-inch sliding sleeve valve (SSV) is the starting device, operated by a series

of pneumatic actuators. The valve contains a total of 45 port caps, but a maximum

of 14 ports at any one time can be removed. This is because the choke point of the

main flow is in the SSV. If more ports are removed, the choke point moves towards

the test section and the Mach number cannot be controlled. When the SSV and the

diaphragm are synchronized, expansion waves are able to reach the test section at

about the same time, maximizing the test time [16]. There is an optional 12-inch

SSV that can be attached, but it is currently not in use.

2.2.2 Principle, Settings & Operation

The general features of a Ludwieg tube are similar to a supersonic blowdown

tunnel, with the nozzle and diffuser, but the pressure is built up in the tube, not in

a tank. Once the desired charge tube pressure is reached, a valve, downstream of the

test section, is actuated and a diaphragm is ruptured, creating an expansion wave

that moves from the diffuser through the test section, the nozzle and into the tube

[17]. The starting process eventually settles down and the test flow is established
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Figure 2.4. Layout of the plenum exhaust system.

with constant properties such as the Mach number, Reynolds number, pressure, and

temperature to become constant [7]. The wave automatically reflects off the closed

downstream end of the tube, and steady flow is maintained in the test section until the

reflected wave returns to the test section. Figure 2.5 [5], shows a schematic of the ideal

wave process to establish the test time. The length of the tube directly corresponds

to the duration of the test time; the longer the tube, the longer a steady-state run.

Once the reflected wave reaches the nozzle again, the test period is completed. It is

possible for the reflected wave to travel upstream through the test section a second

time, creating a much shorter second test period at approximately the same Mach

number but at a Reynolds number about half of the value for the first test period.

For this particular Ludwieg tube, the run time ranges between 80 and 120 ms for the

first test time, depending on the starting process and length of delay for the SSV and

diaphragm [16].
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Figure 2.5. A diagram of how the expansion waves operate within the Ludwieg Tube
[5].

The number of SSV ports that are opened and the setting of the ball valve,

located within the exhaust sphere, control the Mach number and the mass flow rate.

The ball valve has 26 positions, where 1 is fully opened and allows more mass flow,

therefore increasing the Mach number within the test section. Conversely, position

26 is fully closed, decreasing mass flow and the Mach number in the test section [16].

The ball valve position is currently at 11. The ejector flap opening height increases

the test section airspeed, in conjunction with the SSV and the ball valve. When the

flaps are opened, and the other settings allow it, the flow in the test section can exceed

Mach 1; however, the flaps are currently closed. The wall porosity is also an important

setting for the test section Mach number. Decreasing the porosity percentage allows

the test section Mach number to increase. Currently the wall porosity is set at 4.5%

of the wall area. Table 2.1 lists all of the current Ludwieg tube settings used for this

data collection and analysis. For operating instructions of the tunnel, please refer to

the manual [16].

The Mach number is controlled by opening ports in the SSV, moving the ball

setting, or opening the ejector flaps. The current settings for the wind tunnel allow for

a test section Mach number of 0.75. The Reynolds number is directly related to the
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Table 2.1. Current Ludwieg tube settings.

Variation Setting Used
Mach Number 0.75

Reynolds Number 5.0 million/inch
SSV Ports Open 11 out of 45

Ball Valve Position 11
Wall Porosity 4.5%
Ejector Flaps 0.0 in.

SSV Delay 0 ms
Plenum Cutter Delay 33 ms

charge pressure, as discussed in §1.1. A graph of how the Reynolds number is related

to the charge pressure can be found in Fig. 2.6 [5]. The timing of when the SSV is

opened and when the plenum cutter ruptures the diaphragm are the most important

aspects of achieving steady run time at the designated Mach number. Currently, the

SSV is set with no time delay and the plenum cutter is set at a delay of 33 ms. These

settings are due to the fact that the plenum cutter is closer to the test section than

the SSV, and the waves need to coalesce in order to create the steady state.

To do a run, a large head pressure is necessary to fill the tube in a reasonable

amount of time. For a charge tube pressure of 1200 kPa (175 psia), a storage pressure

of more than 6900 kPa (1000 psia) is suggested. The facility uses a 930 kW (1250 hp)

5-stage Clark reciprocating compressor, currently rated at 13.8 MPa (2000 psi). For

auxiliary pneumatic controls, a 1200 kPa (175 psig) Kellogg-American compressor is

used.

The force balance can only be attached on either side of the test section when

the solid walls are in place; porous walls can only be used on the top and bottom of

the test section. The angle of attack α of a test article can be set by rotating the

bar applied to the base of the balance using a smart angle device; see §2.4 for details.
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Figure 2.6. Approximate Reynolds number based on the charge pressure and the
desired Mach number [5].

The balance is then firmly attached to the tunnel, the angle of attack is confirmed,

and the data acquisition system is turned on.

2.3 Data Acquisition

National Instruments (NI) equipment is utilized to read the pressures, tempera-

ture, and force balance readings with simultaneous sample-and-hold data acquisition

systems (DAQs). The raw data are subsequently reduced to obtain the Mach and

Reynolds number and aerodynamic parameters such as forces and moments, as nec-

essary. Currently, pressure readings are taken from a wall tap at the test section,

directly across from the model, and the front of the charge tube, which is the en-

trance to the nozzle. These measure the stagnation and static pressures respectively.

The temperature is measured at the front of the charge tube as well. The pressure

transducers used to measure the total pressure and the test section pressure are PCB

Model 111A24, while for the static pressure an Omega PX313500G5V transducer is

used. The thermocouple used is an Omega, Series No. TRP, type K.
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The pressure transducers are read by a NI PXI-6133 DAQ card with 14-bit

resolution and a maximum sampling rate of 3 MS/s. The SSV is controlled by a PXI-

6722 high voltage output card with a 13-bit output resolution. These cards are in a

PXI-1036 chassis (Fig. 2.7), which utilizes a PXI-8336 PC control that is connected by

fiber-optic cables to the host computer using a PCI-to-PCI bridge that is transparent

to both PC hardware and software while still providing high performance [18].

Figure 2.7. Photo of the DAQ setup used.

The force balance and the thermocouple readings are acquired by a PCI-6023E

DAQ card with a 12-bit resolution and a maximum sampling rate of 200 kS/s con-

nected directly to the computer. The DAQ card takes the strain gage output from a

SCC-2345 Carrier connector block, which houses three SCC-SG04 strain gage mod-

ules and one SCC-TC02 thermocouple module (Fig. 2.8). The SCC-SG04 modules

are full bridge configurations that have two channels, a signal range from ±100 mV,

and a 1.6 kHz low-pass filter. Information on the strain gages within the force balance

can be found in §2.4. The SCC-TC02 module also has a signal range of ±100 mV,

but has only a 2 Hz low-pass filter [18].
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Figure 2.8. Connector block that houses the amplifier modules for gathering the force
balance and temperature data.

All control and data acquisition functions are through an in-house NI LabVIEW

program, “Transonic.” The program allows the sampling rate and sample time to be

easily altered for more readings and/or longer read times. Typically only a one second

window is needed to gather the data. When the program is run, the SSV is opened

and the diaphragm ruptured according the delays specified within the program while

simultaneously reading and recording the data. The data are then dumped into an

Excel file for analysis.

2.3.1 Data Reduction

The pressure transducers have a factory calibration factor that is accounted for

in the analysis. An Excel file is used to convert the voltage signals to pressure units,

enabling the calculation of the Mach number, Reynolds number, and the dynamic
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pressure of the run. There is a small discrepancy between the transducer signals in

the test section, so the pressure values are averaged to obtain the testing conditions.

An offset for the pressure and temperature data is accounted for in the reduction.

Information on how the force balance data are analyzed can be found in §2.4.

Isentropic conditions and compressible flow theory is used to analyze the data

from each run, which utilizes the Mach number as the main parameter. This is

possible because air is assumed to behave as a thermally perfect gas, namely,

P = ρRT (2.1)

where the specific heats at constant pressure and volume, cp and cv, are constant so

that the specific heat ratio γ = 1.4 for air is also a constant. The flow undergoes

an isentropic expansion except in viscous regions such as the boundary layer of the

tunnel [3]; thus,

P

ργ
= const. (2.2a)

T (γ/γ−1)

P
= const. (2.2b)

The speed of sound is

a =
√
γRT (2.3)

Since the flow is assumed a perfect gas, the isentropic relations yield the test section

Mach number in terms of the total and static pressures, namely,

M =

√√√√ 2

γ − 1

[(
Po
P

)(γ−1)/γ

− 1

]
(2.4)

By similar manipulation, the static temperature in the test section is given by

T = To

(
1 +

γ − 1

2
M2

)−1
(2.5)
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The viscosity can be found using Sutherland’s Law

µ(T ) =
1.462× 10−6T 3/2

T + 112
(2.6)

The freestream velocity can be expressed in terms of the freestream Mach number

and sonic speed as

V = Ma (2.7)

The unit Reynolds number is

Re =
PV

µRT
(2.8)

from the perfect gas assumption. The dynamic pressure is

q =
1

2
γM2P (2.9)

which is used to obtain the aerodynamic coefficients of lift and drag.

Some example data of the pressure and temperature during a test run can be

seen in Fig. 2.9. The total pressure and local temperature display the steady flow

conditions between 0.18 s and 0.26 s. After 0.26 s, the unstart process begins, marking

the end of the steady flow conditions in the test section.

Figure 2.9. Example data of the total pressure and local temperature during a test
run.
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The test section pressure is displayed in Fig. 2.10, along with the Mach number

and Reynolds number during the steady flow conditions. Before 0.15 s, the observation

of the starting process can be seen. The Mach and Reynolds numbers increase to a

steady value while the pressure and temperature remain constant during the same

time period.

Figure 2.10. Example data of the test section pressure, and the calculated Mach and
Reynolds numbers during a test run.

2.4 The Force Balance and the Model

Many types of force balances are available for use in wind tunnels, including

pyramidal, sting, and sidewall. A pyramidal force balance is an example of an exter-

nal balance, using struts that protrude from the wall of the wind tunnel since they are

outside of the test section. However, sting and sidewall force balances are mounted

within the wind tunnel and are examples of internal force balances. Tedious mea-

surements and calculations are necessary to find the resolving center for pyramidal

balances as well as drag and flow interferences with the support. Drag interferences

also need to be considered for the sting mount due to the large support behind the

model. Sting and sidewall balances require different calibration procedures since it is

attached to the tunnel and interferes with measurement data.
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These procedures and calculations are needed to get the true values of the

aerodynamic forces. The values obtained from the strain gages need correction due

the interaction forces created within the balance when in use. Therefore interaction

matrices are necessary to single out the values of each force and moment. For the

calibration and experimentation presented, an internal, sidewall force balance is used

[19]. The use of sidewall balances is rare for Ludwieg tube tunnels, but the need to

measure forces from a wall mounted model and the potential for testing a variety of

models were appealing.

Table 2.2. Maximum loads for the force balance.

Component Max Load
Normal Force (NF ) 500 lbf

Rolling Moment (MX ) 1000 lbf·in.
Chord Force (CF ) 75 lbf

Yawing Moment (MZ ) 150 lbf·in.
Pitching Moment (PM ) 140 lbf·in.

The sidewall force balance for the UTA Ludwieg tube is a five-component bal-

ance, measuring the normal force (NF ), the chord force (CF ), the rolling moment

(MX ), the yawing moment (MZ ), and the pitching moment (PM ) using internal

strain gages. The maximum loading values for each component can be seen in Table

2.2. Figures 2.11 and 2.12 shows the force balance and its configuration of the strain

gages. It was purchased in 1989 from Modern Machine & Tool Company, Inc. in New-

port News, Virginia, and custom-made for the UTA Ludwieg tube transonic tunnel.

The balance is mounted to the tunnel test section using a side access port. It was last

calibrated in 1991 using an obsolete PSP data acquisition system, so new technology

and recalibration are necessary to achieve accurate measurements [14, 20]. With the
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assistance of new programs and faster computer processors, the effect of dynamic

loading can be understood and eliminated from the measurements.

Figure 2.11. Photo of the force balance.

In [20], which is the original calibration report, information on all the strain

gage bridges, raw data collected, and the process for obtaining the component mea-

surements can be found. The NF and MX components are found from combining

bridges R1 and R2, whereas CF, MZ, and PM components are directly found from

bridges R3, R4, and R5, respectively, see Table 2.3. The bridge resistance is 350 Ω

for all except R5, which is 700 Ω. An excitation voltage of 5 V is used for the old

calibration, so for comparison purposes 5 V is also used for the current recalibration

process. The offset of the load measurements is taken as the average of the data points

for the first 0.05 s for each strain bridge. A schematic of the components discussed

can be seen in Fig. 2.13.

Based on the configuration of the balance, the moments are taken at a specific

position that depends on the orientation of a model to the balance. For airfoils, the

most widely used positions for taking moments are the leading edge and the quarter-

chord. If the model is not aligned with the pitching axis of the balance, the parallel
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Figure 2.12. Strain gage configuration of the force balance.

axis theorem1 should be used, knowing the distance r between the moment arms.

Fortunately, the pitching axis of the balance is in line with the airfoil chosen2 at the

quarter-chord position. For a symmetric airfoil such as the one selected, the quarter-

chord position is also the aerodynamic center. Therefore, it is not necessary to use

the parallel-axis theorem for the moments in this case.

Using the force measurements from a run, the aerodynamic coefficients can be

found at different angles of attack (α). The coefficient of lift (CL), the coefficient of

1Ix1 = Ix2 +Ar2

2NACA 0012 airfoil.
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Table 2.3. Components found from the labeled bridges.

Component Related Bridge
Normal Force (NF) R2–R1

Rolling Moment (MX) R2+R1
Chord Force (CF) R3

Yawing Moment (MZ) R4
Pitching Moment (PM) R5

Figure 2.13. Schematic of the measured loads on a model by the force balance.

drag (CD), the normal force coefficient (CN), and the axial force coefficient (CA) are

found from the normal force and chord force by3

CL =
NF

qS
cos(α)− CF

qS
sin(α) (2.10a)

CD =
NF

qS
sin(α) +

CF

qS
cos(α) (2.10b)

CN =
NF

qS
(2.10c)

CA =
CF

qS
(2.10d)

where

• NF = normal force (lbf)

3[3].
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• CF = chord force (lbf)

• q = dynamic pressure (psia)

• S = planform area (in2)

• α = angle of attack (deg, [◦])

The lift-to-drag ratio L/D is defined as

L/D ≡ CL
CD

(2.11)

The moment coefficient CM is found in a similar way:

CM =
PM

qSc
(2.12)

where c is the chord length (in.).

The process for static calibration is discussed in detail in Chap. 3, going over

how the null of each test was determined, finding the sensitivity constants for each

component, and separating the interactions between all of the components. This

involves 13 nonlinear equations that are arranged in a 5 × 13 matrix that is used to

find the true value of the components [20].

The model used for the calibration is a NACA 0012 airfoil (Fig. 2.14), which

is symmetric, and has a chord length of 51 mm (2.0 in.) and a span of 109.2 mm

(4.3 in.). The leading edge radius is 0.805 mm (0.0317 in.), and the curved tip has

an area of 45.1 mm2 (0.0699 in2). Information on the thickness of the airfoil can be

found in Table 2.4. From this information, the planform area was calculated to be

5570.96 mm2 (8.635 in2). This airfoil was chosen because of the historic data that are

available for comparison.

24



Figure 2.14. NACA 0012 airfoil model used for calibration process.

Table 2.4. Thickness variation of the NACA 0012 model.

Chordwise Position [in.] Thickness at Chord Point [in.]
0.000 —–
0.010 —–
0.025 0.0758
0.050 0.1046
0.100 0.1422
0.150 0.1680
0.200 0.1873
0.300 0.2138
0.400 0.2295
0.500 0.2376
0.600 0.2401
0.800 0.2321
1.000 0.2118
1.200 0.1825
1.400 0.1466
1.600 0.1049
1.800 0.0579
1.900 0.0323
2.000 0.0050
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CHAPTER 3

STATIC CALIBRATION

3.1 Introduction

The outdated calibration, as well as the disuse of the tunnel for research, ne-

cessitated that the force balance be recalibrated. Since the voltage readings are not

directly related to the forces and moments acting on the balance, certain procedures

and calculations are necessary to remove the interactions between the components

and single out each component’s true measurement (see §3.2). After multiple test

runs and data analysis using the previous balance matrix, the measurement results

found did not appear to be valid. This unsatisfactory situation led to the decision

to recalibrate the force balance as well as to determine if a dynamic calibration is

necessary.

3.2 Determining Force Measurements

In order to determine the force and moment measurements, the raw data need

to be analyzed to remove the interaction forces that each of the strain gages create on

one another. Referring to Table 2.3, the values for each voltage measurement θ are
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multiplied by a sensitivity constant S to obtain force and moment units. The forces

and moments can be written as elements of a vector ~F [0], namely,

~F [0] =

[
θNF θMX θCF θMZ θPM

]


SNF

SMX

SCF

SMZ

SPM


(3.1)

The 5 × 13 balance matrix M that contains the interaction values found from

the calibration process relating the five force and moment components to the 13

interaction functions. The balance matrix is constant for any loading subjected to

the force balance. The nonlinear interaction functions are related to the position of

the static loadings used during calibration. The interaction equations and results can

be found in App. A.2, while the balance matrix is found in App. A.3.

To obtain the corrected force measurements, the balance matrix is multiplied

by the interaction vector ~X [i], which contains the 13 interaction coefficients that are

independent to each reading obtained by the force balance. Subtracting this from

~F [0] provides a new force vector array ~F [i+1]. The new force vector values are then

used in ~X [i] to obtain another force vector ~F [i+2]:

~F [i+1] = ~F [0] −MT · ~X [i] (3.2)

This process is iterated until the values of each measurement converge to their re-

spective values, which occurs in approximately 15 iterations.
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So how are the interactions, sensitivity constants, and the balance matrix de-

termined? In order to find these values, known loads need to be applied to the force

balance in precise locations. The strain gages are very sensitive, so any changes to

the apparatus used will alter the measurements. For this reason, a nulling procedure

was used, where zero load runs were conducted to remove the offset created by the

setup. This was accomplished by attaching the necessary components for applying a

load while reading zero load on the digital scale, namely an American Weigh TL-440

with a resolution of 0.5 lbf and a maximum capacity of 440 lbf.

3.3 Calibration Setup and Procedures

The balance was purchased with a calibration set that included a basket and a

set of weights. The only things left behind from that set were the two attachments

for the force balance. The weight set and basket are no longer available. The attach-

ment for loading (Fig. 3.1) is precisely manufactured in order to focus on one or two

components at a time.

Figure 3.1. The calibration attachment necessary for static calibration with loading
points labeled.
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The pin in the center of the calibration piece (A) was used to measure the

normal force or the chord force, depending on the axis, to give measurements without

creating moments. The holes on the centerline are one (B) and two (C) inches from

the center which allow for known applied moments. The arms on the sides create the

pitching moment (D and E).

As seen in Fig. 3.2, the back end of the force balance is attached to an aluminum

block. The block is held in place by the setup on the table which allows the balance

to be extended over the edge of the table. The calibration apparatus is attached to

the front, which allows the loads to be applied.

Figure 3.2. The calibration attachments on the force balance for static loading.

Since the weights were missing, a plate with eyebolts arranged in the same

locations as the calibration attachment was designed and manufactured. The plate

(Fig. 3.3) was installed on the floor directly beneath the calibration setup. Using

another eyebolt, going through the attachment for stability, as well as a turnbuckle,

a digital scale with a half-pound resolution, and a chain, connected the plate to the

force balance calibration setup.
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Figure 3.3. The plate that was manufactured for applying the static loads to the force
balance.

After the setup was ready, the program recorded the readings as the zero load, so

as to properly determine the measurements associated with the strain gage readings.

The turnbuckle increased the applied load on the balance, which was read on the

digital scale. The loads were applied in approximately equal increments up to the

maximum value allowed by the strain gage or the instrumentation.

The locations of the loads applied were labeled according to the old calibration

data, as seen in Fig. 3.1, and are explained in Table 3.1. The NF plane measures

the normal force, moment about the X -axis, and the pitching moment. The CF

plane measures the chord force and the moment about the Z -axis. The loading was

applied to the positive and negative planes of each, where a (1) after a label indicates

negative plane loading; e.g., point A1 is the negative plane loading at the center for

the specified plane.
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Table 3.1. Labels of the positions of loading points on calibration attachment.

Load Point Position Remarks
A Center of Plane No moment created
B 1 inch ahead of center moment equals force
C 2 inches ahead of center moment equals twice the force
D Left pitching moment NF plane only
E Right pitching moment NF plane only

3.4 Data Processing & Analysis

3.4.1 Determining the Sensitivity Constants

Static calibration data were obtained at a sampling frequency of 1600 Hz for

one second since a large sample rate was not necessary for a steady, known load.

After acquiring the data for each offset and load applied, the average and standard

deviation for every 100 samples of each bridge were determined. The averages were

examined to ensure that the applied force was constant. The voltages were then

converted to mV for comparison with the previous calibration and recorded. The R1

and R2 bridges were combined to obtain the appropriate NF and MX measurements,

while the CF, MZ, and PM measurements were directly related to their associated

bridges. The data from load point A and A1 on the NF plane at 100 lbf can be seen

below.

Table 3.2. Raw data processing from load point A of the NF plane at 100 lbf.

R1 (V) R2 (V) R3 (V) R4 (V) R5 (V)
AVG 6.0434E–04 7.6521E–04 –1.4527E–05 2.3497E–05 –2.8320E–04

Std Dev 3.9065E–05 3.8840E–05 3.9648E–05 4.1681E–05 7.9479E–05

NF (mV) MX (mV) CF (mV) MZ (mV) PM (mV)
0.16086 1.36955 –0.01453 0.02350 –0.28320
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Figure 3.4. Graph of the bridge measurements for loading 100 lbf on load point A of
the NF plane.

This was done for each applied load on each loading point. Table 3.3 shows the

resulting voltages for the measurements of each applied load on point A of the NF

plane. Afterwards, the data for the bridge of interest for each load point was plotted

in order to find the sensitivity constant, as seen for load point A (NF component) of

the NF plane in Fig. 3.5. The sensitivity data for the other force measurements can

be found in App. A.1. The constants found from the positive and negative planes

were averaged together for the best results in testing.

Table 3.3. Raw data at load point A of NF plane for static calibration.

Load (lbf) NF (mV) MX (mV) CF (mV) MZ (mV) PM (mV)
0 0.00940 0.16277 0.00613 0.03924 –0.12666

100 0.16086 1.36955 –0.01453 0.02349 –0.28320
200 0.31897 2.58371 –0.03601 0.01132 –0.40682
298 0.47985 3.76556 –0.04819 –0.00003 –0.49988
398 0.61601 4.98012 –0.05886 –0.01105 –0.55158

32



Figure 3.5. From the trendline equation, y = 648.27x − −6.3143, R2 = 0.999, the
sensitivity constant can be found from the load data for point A of the NF plane.

The sensitivity constants that were found are shown in Table 3.4, along with

the previous sensitivity constants. Notice that the constants for NF, CF,and PM are

relatively close to their previous values. However, the constants for MX and MZ are

further from their previous value. The applied forces were similar to those of the

previous calibration, so the decision was made to continue with this data since the

important components were NF, CF, and PM.

Table 3.4. Current and previous sensitivity constants of the components of the force
balance.

Component Current S Constant Previous S Constant
NF 642.46222 630.51702 (lbf/mV)

MX 131.94153 147.95088 (lbf·in./mV)

CF 11.385700 11.79616 (lbf/mV)

MZ 119.27487 137.74105 (lbf·in./mV)

PM 26.039825 24.88447 (lbf·in./mV)
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The sensitivity constants appear to match closely with the previous values. The

departure in the manufacturer’s constant was less than 5% for the three components

of interest: NF, CF, and PM. The departure in MX is about 11%, while for MZ the

departure is 13.4%.

3.4.2 Determining the Interaction Coefficients

After finding the sensitivity constants, the largest applied load for each com-

ponent was used to determine the balance matrix. Using the strain gage voltages

obtained for both the positive and negative planes and accounting for the calibration

setup, voltages of each component were acquired. For the load points A (positive

plane) and A1 (negative plane) of the NF plane, the maximum load amounts and

their corresponding strain gage readings for each component are seen in Table 3.5.

For the maximum loads used for each load point during the static calibration along

with the measurements from each component, see App. A.2.

Table 3.5. Loading and raw strain gage measurements for load points A and A1 of
the NF plane.

Load Pt NF MX CF MZ PM

Load (lbf) (+) plane 398.0 0.0 0.0 0.0 0.0

Measurement (mV) A 0.606615 4.817348 –0.064993 –0.050290 –0.424923

Load (lbf) (–) plane –399.5 0.0 0.0 0.0 0.0

Measurement (mV) A1 –0.630346 –4.995186 0.027586 0.108115 –0.045612

Notice that the measurements do not go to zero. Thus it is necessary to reduce

the influence that one component reading has on the rest, which is accomplished with

the interaction equations. Using the measurements, a vector of 13 values based on the
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nonlinear equations provided by the calibration report [20] determines the interaction

coefficients. The equations based on the NF plane are

NF =
A− A1

2
(3.3a)

NF 2 =
A+ A1

2
(3.3b)

MX = (C − C1)− (B −B1) (3.3c)

MX2 = (C + C1)− 2 (B +B1) + (A+ A1) (3.3d)

NF ×MX = 2 (B +B1)− 0.5 (C + C1)− 1.5 (A+ A1) (3.3e)

PM =
(D −D1)− (E − E1)

4
(3.3f)

PM2 =
(D +D1) + (E + E1)

4
(3.3g)

NF × PM = 6.25 [(D − E) + (D1− E1)] (3.3h)

while those based on the CF plane are

CF =
A− A1

2
(3.4a)

CF 2 =
A+ A1

2
(3.4b)

MZ = (C − C1)− (B −B1) (3.4c)

MZ2 = (C + C1)− 2 (B +B1) + (A+ A1) (3.4d)

CF ×MZ = 2 (B +B1)− 0.5 (C + C1)− 1.5 (A+ A1) (3.4e)

For the NF component, the interaction vector of coefficients is shown in Table

3.6. This vector utilizes the strain gage measurements from each load point for both

positive and negative NF and CF planes in Eqns. (3.3) and (3.4). The complete table

of all interaction coefficients for each component can be found in App. A.2.
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Table 3.6. Interaction vector of coefficients for the NF component to calculate the
balance matrix.

Component NF interaction (mV)
NF 0.618480
NF 2 –0.011866
MX –0.110106
MX2 0.022231

NF×MX –0.017393
PM –0.021534
PM2 0.00631

NF×PM 0.003661
CF –0.027622
CF 2 0.005976
MZ 0.000705
MZ2 0.058386

CF×MZ –0.081259

3.4.3 Determining the Balance Matrix

The balance matrix can be determined using the interaction coefficients and

strain gage measurements with their respective sensitivity constants. The balance

matrix column for the NF component using its interaction vector (Table 3.6) is
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BNF =
(VNFSNF )

(Inf−nfSNF )
(3.5a)

BNF 2 =
(VNF 2SNF )

(Inf−nfSNF ) (Inf−nfSNF )
(3.5b)

BMX =
(VMXSNF )

(Imx−mxSMX)
(3.5c)

BMX2 =
(VMX2SNF )

(Imx−mxSMX) (Imx−mxSMX)
(3.5d)

BNF×MX =
(VNF∗MXSNF )

(Inf−nfSNF ) (Imx−mxSMX)
(3.5e)

BPM =
(VPMSNF )

(Ipm−pmSPM)
(3.5f)

BPM2 =
(VPM2SNF )

(Ipm−pmSPM) (Ipm−pmSPM)
(3.5g)

BNF×PM =
(VNF∗PMSNF )

(Inf−nfSNF ) (Ipm−pmSPM)
(3.5h)

BCF =
(VCFSNF )

(Icf−cfSCF )
(3.5i)

BCF 2 =
(VCF 2SNF )

(Icf−cfSCF ) (Icf−cfSCF )
(3.5j)

BMZ =
(VMZSNF )

(Imz−mzSMZ)
(3.5k)

BMZ2 =
(VMZ2SNF )

(Imz−mzSMZ) (Imz−mzSMZ)
(3.5l)

BCF×MZ =
(VCF∗MZSNF )

(Icf−cfSCF ) (Imz−mzSMZ)
(3.5m)

(3.5n)

where

• VXX = corresponding value in Table 3.6

• SXX = component sensitivity constant (Table 3.4)

• Ixx−xx = interaction coefficient of the component with itself; e.g., row 1 of Table

3.6 where Inf−nf = 0.618480

37



• BXX = value in the balance matrix corresponding to that interaction with the

NF component

The corresponding values from Eqn. (3.5) for the NF component are in Table 3.7.

Table 3.7. NF component column of the balance matrix.

NF
NF 0.00000E+00
NF 2 –4.82826E-05
MX –1.01484E-01
MX2 2.93950E-05

NF×MX –4.03456E-05
PM –9.81294E-02
PM2 2.03841E-04

NF×PM 4.19863E-05
CF –2.37241E-01
CF 2 6.86131E-04
MZ 4.53346E-03
MZ2 3.76040E-03

CF×MZ –6.98772E-03

The entire balance matrix M and the interaction vector ~X [i] can be seen in

App. A.3. For the cells that signify the component interacting with itself in the

balance matrix (e.g., row 1 of Table 3.7), the value should go to zero even though

the arithmetic says a value of unity (1.00). This is necessary in order to use the

vector-matrix dot product. A more detailed version of Eqn. (3.2) can be seen in App.

A.4.

3.5 Accuracy Analysis

After calculating M, an accuracy check was completed to ensure the matrix

and Eqn. (3.2) produced accurate results. Since using the equation is an iterative
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process, a Matlab program (App. C) was created to decrease processing time. Using

the raw data gathered from each test, the corrected measurements were obtained and

compared to the known forces and moments. Since 1600 samples were taken, each

raw data line was used in the equation and finally averaged.

Table 3.8. Accuracy check of the NF component on loading point A for the NF plane.

A NF MX CF MZ PM

Reading(mV) 0.607 4.817 –0.065 –0.050 –0.425
App. Load (lbf) 398.0 0.0 0.0 0.0 0.0

Uncorr. Load 389.727 635.608 –0.740 –4.224 –11.029
Avg from Matlab 397.3024 0.0762 8.04E–04 0.0198 –0.0151

Difference 0.69760 –0.07620 –0.00080 –0.01980 –0.01510
%Error (Full Load) 0.14% 0.0076% 0.0011% 0.013% 0.011%

The “Uncorrected Load” was found from multiplying the raw averaged data

measurement to the component’s sensitivity constant. The “Difference” pertains to

the measurement difference between the applied load and the value from the Matlab

code. The “Percent Error” was determined by taking the “Difference” and dividing

by the full load capability of the component. The accuracy check for the other load

points can be found in App. A.5.

3.6 Test Results

After using the averaged values of the components to find the balance matrix,

it was determined that a low-pass filter would assist in reducing some of the high

frequency noise associated with test runs. Using a sampling frequency of 5000 Hz,

two runs were conducted at approximately the same test conditions, with an α of
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±3◦. The filter was set at 300 Hz, shown in red on the graphs, and applied after the

iterative equation, Eqn. (3.2).

Figure 3.6. NF and CF readings from the balance at a α = 3◦.

Figure 3.7. NF and CF readings from the balance at a α = −3◦.

Notice in Figs. 3.6 and 3.7 that the chord force does not become steady. It is

known that there is a small gap between the wall of the tunnel and the base of the

airfoil which allows the model to flex under the loads created by the tunnel. This

creates the gradual increase in the chord force measurement. Also, the orientation

of the balance creates the appearance of a negative force value. This is due to the

coordinate system selected by the manufacturer. The signs are consistent with actual
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measurements, concluding that the original orientation given by the manufacturer is

opposite of the true orientation (see Fig. 2.13).

The two tests were conducted at Mach 0.76 with a Reynolds number of 5.3

million and a dynamic pressure of 218.5 kPa (31.1 psia). From the results of these

two test runs, the steady flow time was found to be between 0.2 s and 0.25 s due to

the noticeable change in the force measurements during the steady flow time frame.

Table 3.9 shows the data from each run. The main cause for the difference in the tests

is possibly due to a slight difference in the test conditions, specifically Mach number

and Reynolds number, and the uncertainty in α.

Table 3.9. Test data after static calibration for α of 3◦ and −3◦ using the time frame
0.2 s – 0.25 s and the orientation.

α = 3◦ α = −3◦

NF (lbf) –56.4843 61.2089
CF (lbf) –4.1520 –3.3691

PM (lbf-in) 6.2600 –8.0856
cl 0.20977 –0.22715
cd 0.02651 0.02447
cm –0.01168 0.01506
L/D 7.91123 –9.27972

According to the data from Mineck and Hartwich [6], at approximately α = 3◦,

M∞ = 0.76, Re = 236 million/m (6.0 million/inch) and the value of cl = 0.4194, cd

= 0.0220, and cm = 0.001 for a NACA 0012 airfoil. The value of the present drag

coefficient appears relatively close, however the lift and the moment coefficients do

not appear to correlate well. There are multiple possibilities for this, including, but

not limited to,

• comparing infinite and finite wing data
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• test condition variation within the steady flow test time

• a low sampling frequency for data acquisition

• noise and interference of the signal due to vibrations and the acceleration of the

wind tunnel during experiments

• incorrect timing of the plenum cutter with the sliding sleeve valve

The majority of these issues can be resolved by making adjustments to the

experiments and using dynamic calibration on the force balance. By altering the

time delay of the plenum cutter, a steadier flow regime can be achieved, allowing

for a more constant Mach number, Reynolds number, and possibly force balance

measurements. By accounting for dynamic calibration of the model and force balance,

vibrations and interference within the measurements can be removed to provide truer

force measurements.
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CHAPTER 4

DYNAMIC CALIBRATION

4.1 Introduction

Dynamic calibration is necessary due to the interference created by stress waves

within the model from suddenly applied loads. Since only a short period of quasi-

steady flow conditions exist during any one test run, the balance will be subjected to

extraneous inertia forces. Knowing the dynamics of the balance and model allows the

history of the forces that are applied to be determined from the raw measurements

[21]. The model and the balance can be considered to be a linear system based on the

relationship between the voltage and the load (sensitivity constants) [21]. However, if

a different model is used on the force balance, another dynamic calibration would need

to be performed. If the output of the system is y(t), which includes the developed

interference within the model, and the applied load is u(t), the relationship between

them is the convolution integral

y(t) =

∫ t

0

g(t− τ)u(τ) dτ (4.1)

where g(t) is the impulse response function [22].

Different methods can be used to determine g(t). For this calibration, a known

impulse input u(t) is applied to the balance and model while measuring the corre-

sponding output y(t). By taking the Laplace transform of Eqn. (4.1), the transfer

function G(s) can be found by

G(s) =
Y (s)

U(s)
(4.2)
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where Y (s) and U(s) are the transforms of y(t) and u(t), respectively [23]. Note that

G(s) never changes for a particular bridge circuit, so it is independent of the input.

The inverse Laplace transform is then applied to U(s) to yield the true input on the

model and balance u(t).

Figure 4.1. The measured output Y (s) is found from an input U(s).

According to Robinson [23], there are some constraints involved in order to

deconvolve a signal properly. The most important is when a non-periodic signal is

transformed into the frequency domain, generating errors within the signal due to

Gibbs phenomenon “in the vicinity of a jump discontinuity” [24]. This phenomenon

can be reduced by using low-pass filters. In this case, an impulse is used which has

a low step value and reduces the possibility of this phenomenon further. Another

constraint is that “the inverse FFT requires the entire time history to produce an ac-

curate result” [23]. In other words, if the number of samples and sampling frequency

during a test run were different from those used during the dynamic calibration pro-

cess, this method would not suffice. The number of samples and sampling frequency

must be the same between the calibration and the testing.

One common issue associated with deconvolution is numerical instability due to

the presence of high frequencies. If the initial value of the physical response is close

to zero, and since dividing by low values is in fact a large multiplier, noise and error

can be greatly magnified. Due to this, instability occurs since each input sample is

dependent on the previous value [23]. Stability of the process can be accomplished

by reducing the noise, removing outliers, and filtering.

44



4.2 Calibration Method and Testing

For the dynamic calibration of this model and balance, a PCB 086C01 impulse

force hammer is used to provide and measure the input. The input and output

are measured by the “Transonic” LabView program. The hammer has a rubber tip

attached to prevent damage to the model and balance during the testing. When using

an impulse hammer to measure a pulse, consideration must be taken to ensure that

low frequency noise does not interfere with the measured signals, including small DC

offsets. In addition, better pulse calibration can be obtained if the hammer signal

is zero when it is not in contact with the model since a non-zero signal over time

can be integrated to seemingly significant values compared to a short contact period

[25]. It should also be noted that the deconvolution process can yield poor results if

multiple hammer pulses are measured during a single calibration test. An example of

a good input impulse can be seen in Fig. 4.2. The impulse force generates a response

from the component of interest at the time of impact, which is used to calculate the

transfer function to eliminate the interference within the data.

Figure 4.2. A measured input signal from the impulse force hammer.

The test setup is similar to that of the static calibration setup in that the force

balance is mounted to a rigid table via an aluminum block attached to the back.
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The NACA 0012 airfoil model is attached to the force balance instead of the static

calibration apparatus, and the impulse hammer is used to excite the strain bridges

within the balance. The applied impulse should have the same sign as the force that

is measured by the bridges. For example, the hammer should strike the leading edge

or trailing edge of the airfoil for the chord force and the top or bottom surface of the

airfoil for the normal force.

Since this process requires equal samples and sampling rates between the ex-

periments and the calibration testing, different sample rates were chosen in the event

a different frequency was necessary for other measurements. The frequencies chosen

were 5 kHz, 25 kHz, 50 kHz, and 80 kHz. The time frame chosen is one second, which

is the same as a test run. Originally it was thought that 5 kHz would be sufficient for

the calibration and test runs, but the stress wave speed in the stainless steel model is

approximately 5190 m/s (17,027 ft/s) [26] and could possibly alias the true values due

to the low sampling frequency. Therefore, the 50 kHz rate was used to acquire the

dynamic calibration and test data for the remainder of the experiments. Comparisons

were made to determine if significant changes occur in the data due to the sampling

frequency.

4.3 Data Processing and Analysis

Assessments were conducted in order to record a pure impulse and the resulting

influence on the force measurements. The calibration was conducted for the NF and

CF components only. Calibration for the moments were not necessary for MX and

MZ since they are not significantly important components when dealing with the

present aerodynamic loads. The PM component could not be calibrated due to the

uncertainty of the applied input moment.
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A Matlab code was developed to analyze the dynamic calibration data, taking

the data for the input and the output from an Excel file and Fourier transforming

them from the time domain to the frequency domain. The input and the output were

processed in mV to keep the transfer function G(s) dimensionless. Two different

cases were used: one to calculate G(s) and one to confirm that the G(s) is calculated

correctly to eliminate the influence of vibrations and noise on the model. The best

possible transform function is one that matches a second case, with known input and

output, as close as possible.

For the CF component, the bridge signal is directly related to the force mea-

surement so the relationship is linear. However, the input force was recorded as a

positive number, while the output was negative. Therefore the inputs for calibration

tests of the CF component were converted to negative values by multiplying the mea-

surement by –1. At 50 kHz, the comparison of the transformed data of case 2 to the

actual data of case 2 is seen in Fig. 4.3. Notice that the transformed data shown by

the blue line almost matches the actual data shown by the red line, indicating that

the transformation is good.

Figure 4.3. Transformed data versus actual data for CF component at 50 kHz.
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The results of the other sampling rates are shown in App. B.2. At 5 kHz,

the sampling frequency is too low to provide an accurate comparison of the transfer

function and the actual output of the CF component. At 25 kHz and 80 kHz, the

transfer function appears to be of good quality with only a couple of peaks that do

not match properly.

The Matlab code that was developed for the dynamic calibration of the CF

component can be found in App. B.1. It can be easily modified for the different

sample frequencies by changing the files used and the row numbers in the Excel files.

The NF component was slightly different for the dynamic calibration since the

measurement is the difference between two bridge signals, but the relationship is

still linear. A larger input force was necessary to calculate an appropriate transfer

function for the NF component since it is more sensitive to the strain measurements

than the CF component. Figure 4.4 shows the comparison of the transformed data

of case 2 (blue) and the actual data of case 2 (red) for a sampling frequency of 50

kHz. Appendix B.3 lists the Matlab code developed for the dynamic calibration of

the NF component.

Figure 4.4. Transformed data versus actual data for NF component at 50 kHz.
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The other sampling frequencies for the NF component can be seen in App.

B.4. At 5 kHz the sampling frequency matches the first few peaks, but the transfer

function begins to undervalue the actual value too quickly, in addition to some off-

timing. At 25 kHz, the transfer function is leading the actual signal immediately after

the input, so the transfer function is still not completely correct. At 80 kHz, the R1

bridge strain measurement immediately increases without an input, indicating that

the sampling rate is possibly too high for the signal conditioner. Since the value of

the NF component is dependent on the difference between R2 and R1, the transfer

function is affected by this issue. Therefore, the transfer function for NF cannot be

calculated at sampling rates that exceed the limits of the signal conditioners.

4.4 Results

After the transfer functions were determined for the NF and CF components,

experiments at α = 0.1◦ and 2.9◦ were conducted to determine the viability of the

calibration. These tests had a sample frequency of 50 kHz with test conditions at

approximately Mach 0.75, Re∞ = 5.1 million, and q∞ = 204.1 kPa (29.6 psia). The

low-pass filter in the Matlab code was set at 300 Hz, showing the raw filtered data in

blue on the graphs, while the filtered transformed data are shown in red for the two

force components, NF and CF, as seen in Figs. 4.5 and 4.6.

For the experiment at α = 0.1◦, the numeric results are shown in Table 4.1.

Figures 4.5 and 4.6 show the comparison of force measurement data, where the NF

component increases by 3.6 lbf, or 57%, and the CF component decreases by 1.263

lbf, or 29%.

The numeric results for the experiment at α = 2.9◦ are shown in Table 4.2.

Figures 4.8 and 4.9 show the difference in the force measurement data between the

static calibration and dynamic calibration, while Fig. 4.10 shows the measured pitch-
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Table 4.1. Test data comparing static to dynamic calibration for α = 0.1◦ using the
time frame 0.18 – 0.25 s.

Only Static Calib. With Dynamic Calib.
NF (lbf) –6.284 –9.884
CF (lbf) –4.381 –3.117

PM (lbf·in.) –0.092 –0.092
MX (lbf·in.) –15.54 –15.54
MZ (lbf·in.) –4.597 –4.597

CL 0.0238 0.0375
CD 0.0167 0.0119
CM 0.00017 0.00017
L/D 1.43 3.15

Figure 4.5. NF component at α = 0.1◦ showing raw data and calibrated data.

ing moment. For the chosen time frame, the NF component increases by 26.36 lbf or

50% while the CF component decreases by 1.173 lbf or 30%, significantly changing

the CL and CD values.

The data from these two experiments are compared to those Mineck and Hart-

wich [6], seen in Table 4.3, taken at Mach 0.76 and Re∞ = 4.0 million/inch for an

infinite wing at α = 0.0◦ and 3.0◦. Since these data are for an infinite wing, there are

some differences that are to be expected between the data sets.

The comparison for α = 2.9◦ shows that CL is closer to Mineck and Hartwich’s

data with the dynamic calibration while CD is further. This is due to the influence

on CD from the value of CL, seen in Eqn. (2.10). It is expected that the values of
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Figure 4.6. CF component at α = 0.1◦ showing raw data and calibrated data.

Figure 4.7. PM component at α = 0.1◦ showing the raw data.

the coefficients would act accordingly because of the finite wing geometry and the

larger pressure loads exerted on the model during a test run. Another comparison

is the L/D ratio, which appears to be within reason considering the slightly lower

α, the differences in Mach and Reynolds numbers, and the change in data between

infinite and finite wings due to the aerodynamics. For CM , the experimental data are

a magnitude higher likely because of the vortices created at the tip of a finite wing,

considering the data from [6] is for an infinite wing.

At α = 0.1◦, the comparison to Mineck and Hartwich’s data is reversed. The

CL from the experiment is higher with the dynamic calibration when compared to

[6], but CD goes lower, giving a better comparison for drag. The L/D ratio is slightly

larger with the change in CL, but this is expected with the slight difference in α as

well as the test conditions. The CM is now one order of magnitude lower due to the

vortices on finite wings that are not found on infinite wings.
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Table 4.2. Test data comparing static to dynamic calibration for α = 2.9◦ using the
time frame 0.18 – 0.25 s.

Only Static Calib. With Dynamic Calib.
NF (lbf) –51.843 –78.209
CF (lbf) –3.9369 –2.7632

PM (lbf·in.) 6.1147 6.1147
MX (lbf·in.) –147.82 –147.82
MZ (lbf·in.) –5.573 –5.573

CL 0.2016 0.3048
CD 0.0256 0.0262
CM –0.0119 –0.0119
L/D 7.8687 11.6086

Figure 4.8. NF component at α = 2.9◦ showing raw data and calibrated data.

Figure 4.9. CF component at α = 2.9◦ showing raw data and calibrated data.
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Figure 4.10. PM component at α = 2.9◦ showing the raw data.

Table 4.3. Data from Mineck and Hartwich [6] for α = 0.0◦ and α = 3.0◦ at Mach
0.76.

α = 0.0◦ α = 3.0◦

CL 0.0200 0.4194
CD 0.0090 0.0230
L/D 2.2222 18.235
CM 0.0010 0.0010
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CHAPTER 5

DATA VALIDATION AND ERROR ANALYSIS

5.1 Introduction

After the calibration procedures were completed, a parametric study was per-

formed to confirm that the force balance provides correct and accurate results. The

comparison for the NACA 0012 wingtip is an infinite wing case performed by Mineck

and Hartwich of NASA [6]. Differences between the experimental data and the pub-

lished data are expected since the aerodynamic effects are different for a finite and an

infinite wing. An error analysis was performed using a 95% confidence interval and

the propogation of error equation to determine the uncertainty in the measured and

calculated data.

5.2 Procedures and Calculations

The parametric study was performed at test conditions of Mach 0.75, a Reynolds

number of 3 million, and the angle of attack α was varied in one degree increments

from −4◦ to 7◦. The sampling rate for the data acquisition was 50 kHz. The test

conditions for [6] were Mach 0.76, Reynolds number at 4 million, and an α varying

from 0◦ to 5◦. Numeric values were not provided by Mineck and Hartwich, but

inferred from the charts provided in the report. The information used from Mineck

and Hartwich is provided in App. D.1. A direct comparison is not possible between

these data sets but the overall trends should correspond. The aerodynamic coefficients

were calculated in the same manner provided in §2.4.
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5.3 Results and Comparison

Using a low-pass filter set at 100 Hz, the change in the NF component can be

seen clearly in Fig. 5.1. Due to the orientation of the force balance, a negative α

produce positive values and vice versa. The blue line denotes the raw data, meaning

static calibration only, with the corresponding α in gray, while the red line indicates

the dynamically calibrated data with α in black. As α departs from 0◦, the difference

between the static and dynamic calibration increases significantly.

Figure 5.1. Change in NF component with change in α.

The closer values of the NF component at the lower α’s create minimal ad-

justments to CL, allowing the CF component to be the more dominant term in the

calculation of the coefficients. This explains why CD has a more significant change

at the lower α’s of less than 2◦. However, as α increases to higher values over 5◦, the

dominant term in the drag becomes the NF component again, increasing CD. The

measured NF, CF, and PM components for a specified time frame are shown in Table

5.1 (see Fig. 2.13 for orientation).

55



Table 5.1. Numeric averages of the NF, CF, and PM components for each run of the
parametric study in the time frame 0.18 – 0.25 s.

α NF CF PM

−4.0◦ 71.759 –2.355 –1.377
−3.1◦ 60.608 –2.038 –1.949
−2.0◦ 37.648 –1.735 –3.749
−1.0◦ 17.627 –1.843 –2.211
0.1◦ 7.700 –2.200 2.2723
1.0◦ –12.299 –2.109 4.479
2.0◦ –26.097 –2.061 4.283
3.0◦ –45.060 –2.097 5.792
4.0◦ –55.640 –2.016 5.847
5.0◦ –680861 –2.197 5.375
6.0◦ –75.485 –1.486 8.564
7.0◦ –94.082 –1.984 6.246

The numeric values and test conditions of the experimental data are shown in

Table 5.2 for each run with the steady flow time chosen between 0.18 s and 0.25 s. The

minimal variations in the test conditions can result in changes to the aerodynamic

coefficient values, creating outliers within the data but not significantly enough to

completely offset the data from the trend lines with 95% confidence. The test con-

ditions for the study with variation were Mach 0.75 ± 0.015, Re = 3 million/inch ±

3000/inch, and α = −4◦ to 7◦ within ± 0.1◦.

The experimental results found follow the expected trend for the coefficients of

lift and drag. A linear trend is seen in CL, while CD is a parabolic trend, as seen in

Fig. 5.2. The variations in the results are due to the fluctuation in test conditions for

each run because of the analog pressure gauge on the wind tunnel. The vertical error

bars are found based on the propagation of error equation, explained in §5.4, while

the horizontal error bars are based on the known error in α, which is ± 0.1◦.
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Table 5.2. Numeric values and test conditions for each run of the parametric study
using the time frame 0.18 – 0.25 s.

α Mach No. Re No. CL CD CM L/D

−4.0◦ 0.764 3.06E6 –0.4564 0.0470 0.0044 –9.71
−3.1◦ 0.749 3.03E6 –0.3969 0.0349 0.0064 –11.38
−2.0◦ 0.754 3.13E6 –0.2384 0.0193 0.0119 –12.33
−1.0◦ 0.759 3.10E6 –0.1118 0.0137 0.0071 –8.16
0.1◦ 0.751 3.12E6 –0.0488 0.0139 –0.0088 –3.51
1.0◦ 0.751 3.15E6 0.0777 0.0146 –0.0141 5.30
2.0◦ 0.746 3.09E6 0.1679 0.0192 –0.0139 8.75
3.0◦ 0.751 3.10E6 0.2876 0.0285 –0.0185 10.08
4.0◦ 0.750 3.08E6 0.3564 0.0381 –0.0189 9.39
5.0◦ 0.754 3.04E6 0.4469 0.0535 –0.0175 8.36
6.0◦ 0.734 2.99E6 0.5073 0.0634 –0.0290 7.99
7.0◦ 0.743 3.01E6 0.6202 0.0895 –0.0208 6.93

From the experimental data, the drag polar can also be found, as seen in Fig.

5.3. The parabolic relationship of CD to CL is described by

CD = CDo +K1 · CL +K2 · CL2 (5.1)

where K1 is usually zero for low values of CLmin in subsonic conditions [3]. In addition,

CDo is the parasitic drag coefficient, found when the lift is zero. With this information,

the relationship between the experimental CL and CD was found to be

CD(CL) = 0.0121 + 0.01CL + 0.1825CL
2 (5.2)

with an R2 = 0.997. A large similarity between the subsonic theory and the results

from the transonic data can be seen since the value of K1 = 0.01, which is close to

zero. By knowing the K coefficients and the minimum lift coefficient CLmin, the total

drag coefficient CD can be separated by the causing source.

The error bars for the drag polar and the CL–CD plot indicate that the data

are within the 95% confidence interval found by the trendline shown. The larger
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Figure 5.2. Parametric study of CL and CD for a NACA 0012 airfoil wingtip after
dynamic calibration.

uncertainty bars at α = 6◦ and 7◦ for CL and CD signify that there is more variation in

the results, due to a combination between the test conditions and the measurements.

It is possible that some flow interaction is occurring on the airfoil surface, including

shocks, buffeting, and wall interaction.

As seen in Fig. 5.4, CM appears to have little variation as well, except for the

aforementioned α’s. The value of CM is expected to have a value near zero and remains

constant for each α. As can be seen, CM remains relatively constant throughout for

the positive and negative α’s excluding α = 6◦ and 7◦. This departure at high α

is possibly due to buffeting and shocks interacting with the airfoil, or the slightly

different test conditions.
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Figure 5.3. Parametric study of the drag polar for a NACA 0012 airfoil wingtip.

Figure 5.4. Parametric study of CM for a NACA 0012 airfoil wingtip.
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Figure 5.5. Comparison of the lift and drag coefficients of the published data [6],
uncalibrated data, and calibrated data.

The comparison of the experimental data, both calibrated and uncalibrated, to

the published data of [6] for CL and CD is presented in Fig. 5.5. As expected the

values are not exact when comparing two-dimensional data with the experimental

three-dimensional data. However, the trend for CD of the calibrated experimental

data is the same as that for the published data but shifted up on the ordinate of

the plot. This is due to the increment caused by the induced drag found in finite

wings. The uncalibrated data for CD do not resemble the published data with its

trend, crossing both curves of the drag coefficient.

The trend for CL of the published data has a much higher slope due to the

infinite wing characteristics, resulting in higher values of CL than the experimental

data. The finite wing produces a lower lift slope curve because of the downwash
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reducing the effective angle of attack, but is considerably closer than the uncalibrated

data. The uncalibrated CL has an even lower slope value since vibrations have not

been excluded.

5.4 Uncertainty Analysis

The uncertainty in each of the measured quantities was calculated using the

95% confidence interval, defined in Eqn. (5.3) [27]. The x̄ represents the calculated

average of the number of points N and xi is the exact value of point i from 1 to

N , where x is the measured quantity of interest. This was used for the Mach and

Reynolds numbers, the dynamic pressure, and the measured forces and moments:

u95% = ±2

√∑
(x̄− xi)2

N
(5.3)

Using these calculated uncertainties for the measured quantities, the uncertainty

of the aerodynamic coefficients can be found using the propagation of error equation

[27]. Shown in Eqn. (5.4) is the calculation for uncertainty in CL using the averaged

values within the partial derivative of the equation for CL (see §2.4). The uncertainty

uα = ±0.1◦ based on the digital angle finder tool used. As seen in Eqns. (5.5)

and (5.6), the uncertainty for CD has the same four terms while CM has the PM

component and the dynamic pressure q.

uCL
= ±

√(
∂CL
∂NF

uNF

)2

+

(
∂CL
∂CF

uCF

)2

+

(
∂CL
∂q

uq

)2

+

(
∂CL
∂α

uα

)2

(5.4)

uCD
= ±

√(
∂CD
∂NF

uNF

)2

+

(
∂CD
∂CF

uCF

)2

+

(
∂CD
∂q

uq

)2

+

(
∂CD
∂α

uα

)2

(5.5)
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uCM
= ±

√(
∂CM
∂PM

uPM

)2

+

(
∂CM
∂q

uq

)2

(5.6)

These calculated uncertainties are shown as vertical error bars in Figs. 5.2 and 5.4,

with the values shown in Table 5.3. The uncertainties remain low, except for the

higher α’s. The test conditions can be mostly blamed since the exact same pres-

sure was most likely not reached as with the other cases, reducing the forces on the

airfoil. Other interactions on the airfoil at the high α’s include buffeting, side wall

interference, and shocks on the surface.

Table 5.3. Calculated uncertainties of the aerodynamic coefficients for each run in
the parametric study for the time frame 0.18 – 0.25 s.

α uCL
uCD

uCM

−4.0◦ 0.0197 0.00343 0.00218
−3.1◦ 0.0313 0.00233 0.00181
−2.0◦ 0.0227 0.00279 0.00173
−1.0◦ 0.0226 0.00295 0.00176
0.1◦ 0.0197 0.00154 0.00073
1.0◦ 0.0177 0.00219 0.00116
2.0◦ 0.0237 0.00163 0.00079
3.0◦ 0.0235 0.00222 0.00119
4.0◦ 0.0191 0.00298 0.00172
5.0◦ 0.0285 0.00307 0.00180
6.0◦ 0.0332 0.00480 0.00225
7.0◦ 0.0432 0.00679 0.00709
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of Work and Results

The calibration of the force balance with the NACA 0012 wingtip produces

aerodynamic force data within a 95% confidence interval. The force balance is now

supporting equipment that is capable of data acquisition for basic research and vali-

dation tests at high Reynolds numbers within the transonic regime. The static cali-

bration performed provides results of the NF, CF, and PM components within 0.5%

accuracy for loads up to their maximum value, while the MX and MZ components

have results within 10%. However, the sudden loading applied to the model dur-

ing experiments produces some error in the measurements. The dynamic calibration

increases the accuracy of applied aerodynamic loads by removing unwanted signals

within the measurements, including vibrations and signal interference. The paramet-

ric study performed validates the calibration process with the comparison to the data

from Mineck and Hartwich [6], knowing that the differences in the data are expected

for comparing two-dimensional with three-dimensional data. Since data are limited

for this airfoil in the transonic regime and transonic effects of the Reynold’s number

affects force data, the comparison of [6] to the experimental data found is most useful

at this time. By calibrating the force balance and confirming the results found at the

chosen conditions, further testing can be done to calculate the aerodynamic effects

of transonic speeds on a NACA 0012 wingtip. The dynamic calibration performed

specifically applies to the mounted model1 on the force balance.

1NACA 0012 wingtip.
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6.1.1 Matlab Program for Analyzing Data

The code developed for analyzing the force measurements and the test condi-

tions can be found in App. C. The angle of attack, steady flow time frame, and

unit selection are required inputs after running the program, while the sample rate,

offset of the thermocouple, and file location are edited before running the program.

The planform area is set for the current model, a NACA 0012 wingtip. The vectors

created from the input Excel file are based on the current output by the LabVIEW

program.

The unit selection was added to the code for versatility in order to provide

both metric and English unit systems to the user. However, the error analysis is only

valid when the English unit system is chosen due to the complexity of the uncertainty

calculations. The offset of the thermocouple is set at zero for a sample rate of 50 kHz

or less, but would need to be changed if a higher sample rate is required.

After correcting the measurements with the vector-matrix dot product iter-

ations, a low-pass filter is applied to remove some of the noise within the signal.

However, the application of the transfer function is done to the raw, non-filtered data

where the transfer functions are taken from custom function files in Matlab created

from the dynamic calibration analysis. The first five figures generated by the pro-

gram are the force and moment measurements for the test time, where the NF and

CF components’ plots show the change in readings with and without the dynamic

calibration. The unit system chosen is also shown on the ordinate of the plots.

The pressure and temperature data are also analyzed within the program, cal-

culating the test conditions during the sampling time of the data to provide the Mach

and Reynolds numbers, as well as the dynamic pressure, within the steady flow test

time. The next three figures show the test conditions and the steady flow time frame

with the option to plot the temperature in another.
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The numeric values are then vectorized and averaged based on the stead flow

time frame chosen for the force measurements and the test conditions. The aero-

dynamic coefficients are then calculated using Eqns. (2.10) based on the averages of

the measurements. The variation of the coefficients in time can also be plotted if

necessary. Lastly, the errors of the measured quantities and the uncertainty in the

calculated coefficients are found from Eqns. (5.3) through (5.6) in §5.4.

6.1.2 Transonic Tunnel Operator’s Manual

The operator’s manual for the transonic facility at the Aerodynamics Research

Center at UTA was outdated, so new information was added for running the tunnel,

acquiring data, and maintaining the facility. This includes the current procedures

for conducting an experiment, the current equipment and instrumentation in use for

data acquisition, and the theory behind the operation of the tunnel and how to alter

the test conditions. References about the facility, its history, and previous theses and

dissertations utilizing the facility were also included. More pictures of supporting

equipment and plots of test capabilities were also added to provide increased detail

about the tunnel.

6.1.3 Surface Flow Visualization

Although surface flow visualization (SFV) was not a fully investigated topic

towards the research, the application can be applied with the force measurements.

The SFV with fluorescent paint provides information about the flow over the top

surface of the model, showing the transition point, shock position, and flow separation,

as seen in Fig. 6.1. In correlation with the force measurements, the position of the

shock on the surface of the airfoil can be used in conjunction with the test conditions

65



and the aerodynamic coefficients to determine how the position of the shock affects

the lift and drag.

Figure 6.1. An example of surface flow visualization with labels of the assumed surface
flow effects.

6.2 Future Work

A large array of research and validation tests can now be conducted with the

force balance and NACA 0012 wingtip properly calibrated. This includes, but is

not limited to, Mach number sweeps, Reynolds number sweeps, and angle of at-

tack sweeps, which can be verified with previous data as well as computational fluid

dynamics (CFD) analysis. In addition, the SFV can be investigated and analyzed

concurrently with these sweeps and related to the force measurements found.

Since solid walls are required on the sides of the test section when using the

force balance, wall interference should also be investigated to determine the effects

on the measurements and how it can be compensated.
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If force measurements are required for other airfoil models, the dynamic cali-

bration process needs to be repeated. The procedures outlined in Chap. 4 should be

followed to obtain true aerodynamic forces.
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APPENDIX A

STATIC CALIBRATION DATA
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A.1 Sensitivity Constants

Graphs of sensitivity constants.

Figure A.1. Sensitivity constant of NF component from A and A1.

Figure A.2. Sensitivity constant of MX component from B and B1.

Figure A.3. Sensitivity constant of MX component from C and C1.
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Figure A.4. Sensitivity constant of PM component from D and D1.

Figure A.5. Sensitivity constant of PM component from E and E1.

Figure A.6. Sensitivity constant of CF component from A and A1.
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Figure A.7. Sensitivity constant of MZ component from B and B1.

Figure A.8. Sensitivity constant of MZ component from C and C1.

Table A.1. Current and previous sensitivity constants of the components of the force
balance.

Component Current S Constant Previous S Constant
NF 642.462225 630.51702 (lbf/mV)
MX 131.941535 147.95088 (lbf-in/mV)
CF 11.38500 11.79616 (lbf/mV)
MZ 119.27487 137.74105 (lbf-in/mV)
PM 26.039825 24.88447 (lbf-in/mV)

.
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A.2 Interaction Coefficients

The interaction equations for the NF plane are

NF =
A− A1

2
(A.1a)

NF 2 =
A+ A1

2
(A.1b)

MX = (C − C1)− (B −B1) (A.1c)

MX2 = (C + C1)− 2 (B +B1) + (A+ A1) (A.1d)

NF ×MX = 2 (B +B1)− 0.5 (C + C1)− 1.5 (A+ A1) (A.1e)

PM =
(D −D1)− (E − E1)

4
(A.1f)

PM2 =
(D +D1) + (E + E1)

4
(A.1g)

NF × PM = 6.25 [(D − E) + (D1− E1)] (A.1h)

while those based on the CF plane are

CF =
A− A1

2
(A.2a)

CF 2 =
A+ A1

2
(A.2b)

MZ = (C − C1)− (B −B1) (A.2c)

MZ2 = (C + C1)− 2 (B +B1) + (A+ A1) (A.2d)

CF ×MZ = 2 (B +B1)− 0.5 (C + C1)− 1.5 (A+ A1) (A.2e)
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Figure A.9. Values of the maximum loads used for each load point (lbf & lbf·in.).

The interaction vector is set up in the following order

X =



NF

NF 2

MX

MX2

NF ×MX

PM

PM2

NF × PM

CF

CF 2

MZ

MZ2

CF ×MZ



(A.3)
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Figure A.10. Component readings (mV) corresponding to the applied loads.

A.3 Balance Matrix

Table A.2. The almighty balance matrix.

NF MX CF MZ PM

NF 0.00000E+00 1.62914E+00 –1.32630E–03 –2.37747E–02 –1.24288E–02

NF 2 –4.82826E–05 –7.43067E–05 –1.34866E–06 2.18416E–05 –3.88019E–05

MX –1.01484E–01 0.00000E+00 –2.09299E–05 –2.76365E–02 1.07950E–02

MX2 2.93950E–05 –1.61264E–05 6.83769E–07 –2.68440E–05 3.27483E–05

NF×MX –4.03456E–05 4.39295E–05 8.73557E–08 5.44168E–05 –8.48497E–05

PM –9.81294E–02 1.17446E–02 3.74196E–03 –1.51792E–02 0.00000E+00

PM2 2.03841E–04 6.36181E–05 2.00105E–06 1.69296E–05 –1.05052E–04

NF×PM 4.19863E–05 4.46147E–04 2.80591E–05 –3.19131E–04 3.02033E–04

CF –2.37241E–01 –1.42972E–01 0.00000E+00 1.64027E+00 2.77195E–02

CF 2 6.86131E–04 9.53400E–04 –3.05192E–05 7.07454E–04 –1.83137E–03

MZ 3.19279E–03 –4.45446E–03 2.23695E–02 0.00000E+00 1.76904E–03

MZ2 1.86516E–03 1.78415E–03 –6.90900E–05 –2.87964E–04 –7.75144E–04

CF×MZ –4.92126E–03 –4.97230E–03 9.68641E–05 3.74891E–04 1.78986E–03
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A.4 Finding the Forces

A detailed version of Eqn. 3.2 can be seen below. M can be seen in the previous

section, A.3.



NF [i+1]

MX [i+1]

CF [i+1]

MZ [i+1]

PM [i+1]


=



NF [0]

MX [0]

CF [0]

MZ [0]

PM [0]


−M ·



NF [i]

[NF 2][i]

MX [i]

MX2[i]

[NF ×MX][i]

PM [i]

[PM2][i]

[NF × PM ][i]

CF [i]

[CF 2][i]

MZ [i]

[MZ2][i]

[CF ×MZ][i]



(A.4)

where

• 0 = uncorrected measurement

• i = iteration number

• M = balance matrix in App. A.3
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A.5 Static Load Accuracy Check

Figure A.11. Accuracy check for the load points on the positive and negative NF
plane.
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Figure A.12. Accuracy check for the load points on the positive and negative CF
plane.
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APPENDIX B

DYNAMIC CALIBRATION DATA
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B.1 Matlab Code for the Dynamic Calibration of CF

TestData = [’FileName’]; SheetName = [’Transonic’]; SampleRate = 50000;

Time = xlsread(TestData,SheetName,’a24:a50023’);

Input = xlsread(TestData,SheetName,’c24:c50023’);

Input=-1*Input;

Output1 = xlsread(TestData,SheetName,’l24:l50023’);

Input2 = xlsread(’FileName2’,’Transonic’,’c24:c50023’);

Input2=-1*Input2;

Output2 = xlsread(’FileName2’,’Transonic’,’l24:l50023’);

Force =Input;

U1=fft(Force);

Force2=Input2;

U2=fft(Force2);

Y1=fft(Output1*103);

G1=Y1./U1;

Y2=fft(Output2*103);

O2 = G1.*U2;

O2prime = ifft(O2);

figure(1)

plot(Time,O2prime,’b’,’linewidth’,2)

hold on

plot(Time,Output2*103,’r’)

hold on

legend(’FFT’,’Actual’,’Filtered Actual’,’Filtered FFT’)

xlabel(’time (sec)’); ylabel(’Output (mV)’)
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B.2 Dynamic Responses at Different Sampling Rates for CF

Figure B.1. Transformed data versus actual data for the CF component at 5 kHz, 25
kHz, and 80 kHz.
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B.3 Matlab Code for the Dynamic Calibration of NF

TestData = [’FileName1’]; SheetName = [’Transonic’]; SampleRate = 50000;

Time = xlsread(TestData,SheetName,’a24:a50023’);

Input = xlsread(TestData,SheetName,’c24:c50023’);

Input=1*Input;

Output1a = xlsread(TestData,SheetName,’j24:j50023’);

Output1b = xlsread(TestData,SheetName,’k24:k50023’);

out1=Output1b-Output1a;

Input2 = xlsread(’FileName2’,’Transonic’,’c24:c50023’);

Input2=1*Input2;

Output2a = xlsread(’FileName2’,’Transonic’,’j24:j50023’);

Output2b = xlsread(’FileName2’,’Transonic’,’k24:k50023’);

out2=Output2b-Output2a;

Force = Input;

U1=fft(Force);

Force2=Input2;

U2=fft(Force2);

Y1=fft(out1*103);

G1=Y1./U1;

Y2=fft(out2*103);

O2 = G1.*U2;

R1prime = ifft(O2);

figure(1)

plot(Time,R1prime,’b’,’linewidth’,2)

hold on

plot(Time,out2*103,’r’)

hold on

legend(’FFT’,’Actual’)

xlabel(’time (sec)’); ylabel(’Output (mV)’)
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B.4 Dynamic Responses at Different Sampling Rates for NF

Figure B.2. Transformed data versus actual data for the NF component at 5 kHz, 25
kHz, and 80 kHz.
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APPENDIX C

MATLAB PROGRAM FOR FORCE CALCULATIONS
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MATLAB program for analyzing force measurements and test conditions

clc; clear all; format(’long’);

%% Input Offset Values

AOA=input(’Angle of Attack [deg]:’);

SSTstart=input(’Start of Steady State [sec]:’);

SSTend=input(’End of Steady State [sec]:’);

SampleRate = 50000; %frequency used for testing

Toff = 0; %offset for thermocouple

units = input(’SI or ENG units [exact only]:’,’s’);

switch (units)

case ’ENG’

SI1 = 1; %lbf

SI2 = 1; %inches

SI3 = 1; %psi

unit1 = ’lbf’;

unit2 = ’in.’;

unit3 = ’psi’;

case ’SI’

SI1 = 4.44822; %lbf to Newtons

SI2 = 0.0254; %inchs to meters

SI3 = 6.894757; %psi to kPa

unit1 = ’N’;

unit2 = ’m’;

unit3 = ’kPa’;

otherwise

error(’invalid option’)

end

A = 8.634956*(SI2^2); %0012 airfoil

RowStart=(SampleRate*SSTstart)+24; RowEnd=(SampleRate*SSTend)+24;

tic;
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%% Reading the Document

%original data must be saved as an Excel file

TestData = [’FileNameLocation.xlsx’]; SheetName = [’Transonic’];

time = xlsread(TestData,SheetName,’a24:a50023’);

forcedata = xlsread(TestData,SheetName,’j24:n50023’);

pressure1 = xlsread(TestData,SheetName,’b24:b50023’);

pressure2 = xlsread(TestData,SheetName,’h24:h50023’);

pressuretot = xlsread(TestData,SheetName,’f24:f50023’);

static = xlsread(TestData,SheetName,’g24’);

temp = xlsread(TestData,SheetName,’i24:i50023’);

R1 = forcedata(:,1);

R2 = forcedata(:,2);

R3 = forcedata(:,3);

R4 = forcedata(:,4);

R5 = forcedata(:,5);

% offset is average of data points up to 0.05 sec

R1off = mean(R1(1:SampleRate*0.05))*10^3;

R2off = mean(R2(1:SampleRate*0.05))*10^3;

R3off = mean(R3(1:SampleRate*0.05))*10^3;

R4off = mean(R4(1:SampleRate*0.05))*10^3;

R5off = mean(R5(1:SampleRate*0.05))*10^3;

G1_NF=DynCalibFFT_NF(); %transfer function for NF

G1_CF=DynCalibFFT_CF(); %transfer function for CF

%% Finding Values of Components

S_nf = 642.46223;

S_mx = 131.94154;
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S_cf = 11.385700;

S_mz = 119.27487;

S_pm = 26.039825;

NF = (((R2*10^3)-R2off)-((R1*10^3)-R1off))*S_nf;

MX = (((R2*10^3)-R2off)+((R1*10^3)-R1off))*S_mx;

CF = ((R3*10^3)-R3off)*S_cf;

MZ = ((R4*10^3)-R4off)*S_mz;

PM = ((R5*10^3)-R5off)*S_pm;

%% BALANCE MATRIX FROM STATIC CALIB.

% NF MX CF MZ PM

M=[ 0.00000E+00 1.62914E+00 -1.32630E-03 -2.37747E-02 -1.24288E-02; %NF

-4.82826E-05 -7.43067E-05 -1.34866E-06 2.18416E-05 -3.88019E-05; %NF^2

-1.01484E-01 0.00000E+00 -2.09299E-05 -2.76365E-02 1.07950E-02; %MX

2.93950E-05 -1.61264E-05 6.83769E-07 -2.68440E-05 3.27483E-05; %MX^2

-4.03456E-05 4.39295E-05 8.73557E-08 5.44168E-05 -8.48497E-05; %NF*MX

-9.81294E-02 1.17446E-02 3.74196E-03 -1.51792E-02 0.00000E+00; %PM

2.03841E-04 6.36181E-05 2.00105E-06 1.69296E-05 -1.05052E-04; %PM^2

4.19863E-05 4.46147E-04 2.80591E-05 -3.19131E-04 3.02033E-04; %NF*PM

-2.37241E-01 -1.42972E-01 0.00000E+00 1.64027E+00 2.77195E-02; %CF

6.86131E-04 9.53400E-04 -3.05192E-05 7.07454E-04 -1.83137E-03; %CF^2

3.19279E-03 -4.45446E-03 2.23695E-02 0.00000E+00 1.76904E-03; %MZ

1.86516E-03 1.78415E-03 -6.90900E-05 -2.87964E-04 -7.75144E-04; %MZ^2

-4.92126E-03 -4.97230E-03 9.68641E-05 3.74891E-04 1.78986E-03]; %CF*MZ

n=length(R1);

tol=10^-3;

jmax=50;
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%% Iteration Process

for i=1:n

Ai=[NF(i); NF(i)^2; MX(i); MX(i)^2; NF(i)*MX(i); PM(i); PM(i)^2; NF(i)*PM(i);

CF(i); CF(i)^2; MZ(i); MZ(i)^2; CF(i)*MZ(i)];

Fun=[NF(i);MX(i);CF(i);MZ(i);PM(i)];

Fnew=Fun-M’*Ai;

for j =1:jmax

Aj=[Fnew(1);Fnew(1)^2;Fnew(2);Fnew(2)^2;Fnew(1)*Fnew(2);Fnew(5);Fnew(5)^2;

Fnew(1)*Fnew(5);Fnew(3);Fnew(3)^2;Fnew(4);Fnew(4)^2;Fnew(3)*Fnew(4)];

Fnew_j=Fun-M’*Aj;

if norm(Fnew_j-Fnew)<tol

break

end

Fnew=Fnew_j;

end

jvect(i)=j;

Forces(i,:)=Fnew;

i=i+1;

end

%% filtering

%Low Bypass Filter

fc=100;% cut off frequency

fn=SampleRate/2; %nyquist frequency = sample frequency/2;

order = 5; %5th order filter, high pass

[b14 a14]=butter(order,(fc/fn),’low’);

xf1=filtfilt(b14,a14,Forces(:,1));

xf2=filtfilt(b14,a14,Forces(:,2));
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xf3=filtfilt(b14,a14,Forces(:,3));

xf4=filtfilt(b14,a14,Forces(:,4));

xf5=filtfilt(b14,a14,Forces(:,5));

%% USING THE TRANSFER FUNCTIONS (DYNAMIC CALIBRATION)

NF_x=Forces(:,1)./S_nf;

Y_nf=fft(NF_x);

U_nf=Y_nf./G1_NF;

NF_x1=ifft(U_nf);

NF_diff=mean(NF_x1(1:SampleRate*0.05)-NF_x(1:SampleRate*0.05));

NF_x1=NF_x1-(NF_diff);

nf1=filtfilt(b14,a14,NF_x1);

NF_new=NF_x1*S_nf;

NF_filt=nf1*S_nf;

CF_x=Forces(:,3)./S_cf;

Y_cf=fft(CF_x);

U_cf=Y_cf./G1_CF;

CF_x1=ifft(U_cf);

CF_diff=mean(CF_x1(1:SampleRate*0.05)-CF_x(1:SampleRate*0.05));

CF_x1=CF_x1-(CF_diff);

cf3=filtfilt(b14,a14,CF_x1);

CF_new=CF_x1*S_cf;

CF_filt=cf3*S_cf;

%% Pressure and Temperature data for Test Section

Ps= (static-0.5)*100+10.16;

P1 = pressure1.*204.58+0.6+Ps;

P2 = pressure2.*198.926+0.5+Ps;

Ptot = pressuretot.*203.335+1.0+Ps;
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deltaP1 = Ptot./P1;

deltaP2 = Ptot./P2;

Mach1 = sqrt((2/0.4)*(deltaP1.^(0.4/1.4)-1));

Mach2 = sqrt((2/0.4)*(deltaP2.^(0.4/1.4)-1));

T1 = (temp-Toff+273.15)./(1+0.2*Mach1.^2);

mu1 = (1.462e-6*T1.^(3/2))./(T1+112);

V1 = Mach1.*sqrt(1.4*289*T1);

Re1 = (V1./mu1).*((P1./T1).*(6895/289))*0.0508;

T2 = (temp-Toff+273.15)./(1+0.2*Mach2.^2);

mu2 = (1.462e-6*T2.^(3/2))./(T2+112);

V2 = Mach2.*sqrt(1.4*289*T2);

Re2 = (V2./mu2).*((P2./T2).*(6895/289))*0.0508;

q2 = 0.5*1.4*P2.*Mach2.^2;

%% Time to Calculate Data

tElapsed = toc;

disp([’Seconds to run program:’,num2str(tElapsed)]);

disp([’Number of iterations used for 10^-3 tolerance:’, num2str(max(jvect))]);

%% PLOTS OF THE DATA

figure(1)

% plot(time,Forces(:,1))

hold on

plot(time,xf1*SI1,’b’,’linewidth’,2)

plot(time,NF_filt*SI1,’r’,’linewidth’,2)

xlabel(’time (sec)’)
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ylabel({’NF’ unit1})

legend(’Raw’,’Filtered’)

saveas(figure(1),’NF.png’)

hold off

figure(2)

% plot(time,Forces(:,2))

hold on

plot(time,xf2*SI1*SI2,’b’,’linewidth’,2)

xlabel(’time (sec)’)

ylabel({’MX’ [unit1 unit2]})

saveas(figure(2),’MX.png’)

hold off

figure(3)

% plot(time,Forces(:,3))

hold on

plot(time,xf3*SI1,’b’,’linewidth’,2)

plot(time,CF_filt*SI1,’r’,’linewidth’,2)

% title(’Chord Force’)

xlabel(’time (sec)’)

ylabel({’CF’ unit1})

legend(’Raw’,’Filtered’)

saveas(figure(3),’CF.png’)

hold off

figure(4)

% plot(time,Forces(:,4))

hold on

plot(time,xf4*SI1*SI2,’b’,’linewidth’,2)

xlabel(’time (sec)’)
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ylabel({’MZ’ [unit1 unit2]})

saveas(figure(4),’MZ.png’)

hold off

figure(5)

% plot(time,Forces(:,5))

hold on

plot(time,xf5*SI1*SI2,’r’,’linewidth’,2)

xlabel(’time (sec)’)

ylabel({’PM’ [unit1 unit2]})

saveas(figure(5),’PM.png’)

hold off

figure(6)

plot(time,P1*SI3,’b’)

hold on

plot(time,P2*SI3,’r’)

legend(’P1’,’P2’)

xlabel(’time (sec)’)

ylabel({’Pressure’ unit3})

axis([0.1 0.4 20 400])

figure(7)

plot(time,Mach1,’b’)

hold on

plot(time,Mach2,’r’)

legend(’M1’,’M2’)

xlabel(’time (sec)’)

ylabel(’Mach Number’)

axis([0.1 0.4 0 1])
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figure(8)

plot(time,Re1,’b’)

hold on

plot(time,Re2,’r’)

legend(’Re1’,’Re2’)

xlabel(’time (sec)’)

ylabel(’Reynolds Number’)

axis([0.1 0.4 0 6e6])

% figure(9)

% plot(time,T1,time,T2)

% title(’Temperature [K]’)

% legend(’T1’,’T2’)

% xlabel(’time (sec)’)

% ylabel(’Temperature [K]’)

% axis([0.1 0.4 250 290])

%% Cl and Cd calculations

% Test Condition Averages

xM1 = mean(Mach1(RowStart:RowEnd))

xM2 = mean(Mach2(RowStart:RowEnd))

xRe1 = mean(Re1(RowStart:RowEnd))

xRe2 = mean(Re2(RowStart:RowEnd))

xq2 = (mean(q2(RowStart:RowEnd)))*SI3;

if SI3 > 1

xq2 = xq2*10^3

else

xq2

end

%test condition vectors
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M1vect=Mach1(RowStart:RowEnd);

M2vect=Mach2(RowStart:RowEnd);

Re1vect=Re1(RowStart:RowEnd);

Re2vect=Re2(RowStart:RowEnd);

q2vect=q2(RowStart:RowEnd);

%filtered force vectors

NFvect=xf1(RowStart:RowEnd,1);

MXvect=xf2(RowStart:RowEnd,1);

CFvect=xf3(RowStart:RowEnd,1);

MZvect=xf4(RowStart:RowEnd,1);

PMvect=xf5(RowStart:RowEnd,1);

%dyn calib force vectors

NFvect1=NF_filt(RowStart:RowEnd,1);

CFvect1=CF_filt(RowStart:RowEnd,1);

%Force Averages

NFavg=(mean(NFvect))*SI1

NF_f_avg=(mean(NFvect1))*SI1

MXavg=(mean(MXvect))*SI1*SI2

CFavg=(mean(CFvect))*SI1

CF_f_avg=(mean(CFvect1))*SI1

MZavg=(mean(MZvect))*SI1*SI2

PMavg=(mean(PMvect))*SI1*SI2

% aerodynamic coefficients (corrected for orientation) (filtered raw)

cn=-NFavg/(xq2*A)

ca=-CFavg/(xq2*A)

cm=-PMavg/(xq2*A*2*SI2)

cl=cn*cos(AOA*pi/180)-ca*sin(AOA*pi/180)

cd=cn*sin(AOA*pi/180)+ca*cos(AOA*pi/180)

LDratio=cl/cd

93



% aerodynamic coefficients (dyn calib)

cn_f=-NF_f_avg/(xq2*A)

ca_f=-CF_f_avg/(xq2*A)

cm_f=cm

% cm_f=PM_f_avg/(xq2*A*2)

cl_f=cn_f*cos(AOA*pi/180)-ca_f*sin(AOA*pi/180)

cd_f=cn_f*sin(AOA*pi/180)+ca_f*cos(AOA*pi/180)

LDratio_f=cl_f/cd_f

%% Variation of coefficients with time

% cn1=xf1./(q2*A);

% ca1=xf3./(q2*A);

% cm1=xf5./(q2*A);

% cl1=cn1.*cos(AOA*pi/180)-ca1.*sin(AOA*pi/180);

% cd1=cn1.*sin(AOA*pi/180)+ca1.*cos(AOA*pi/180);

% LDratio1=cl1./cd1;

%

% figure(10)

% plot(time,cl1,time,cd1,time,cm1)

% title(’Coefficient of Lift’)

% xlabel(’time (sec)’)

% ylabel(’cl’)

% legend(’cl’,’cd’,’cm’)

% axis([0.10 0.30 -1.3 0.2])

%

% figure(11)

% plot(time,LDratio1)

% title(’L/D ratio’)

% xlabel(’time (sec)’)

% ylabel(’L/D’)

% axis([0.10 0.30 0 15])
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%% Error Analysis

for i = 1:length(M1vect)

error_M1(i) = (xM1-M1vect(i))^2;

error_M2(i) = (xM2-M2vect(i))^2;

error_Re1(i) = (xRe1-Re1vect(i))^2;

error_Re2(i) = (xRe2-Re2vect(i))^2;

error_q2(i) = (xq2-q2vect(i))^2;

end

Merr1 = 2*sqrt(sum(error_M1)/length(M1vect));

Merr2 = 2*sqrt(sum(error_M2)/length(M2vect));

Re_err1 = 2*sqrt(sum(error_Re1)/length(Re1vect));

Re_err2 = 2*sqrt(sum(error_Re2)/length(Re2vect));

q_err2 = (2*sqrt(sum(error_q2)/length(q2vect)));

for i = 1:length(NFvect1)

error_NF(i) = (NFavg-NFvect(i))^2;

error_CF(i) = (CFavg-CFvect(i))^2;

error_NF_f(i) = (NF_f_avg-NFvect1(i))^2;

error_CF_f(i) = (CF_f_avg-CFvect1(i))^2;

error_PM(i) = (PMavg-PMvect(i))^2;

end

NF_err = (2*sqrt(sum(error_NF)/length(NFvect)));

CF_err = (2*sqrt(sum(error_CF)/length(CFvect)));

NF_err_f = (2*sqrt(sum(error_NF_f)/length(NFvect1)));

CF_err_f = (2*sqrt(sum(error_CF_f)/length(CFvect1)));

PM_err = (2*sqrt(sum(error_PM)/length(PMvect)));

u_ca = sqrt((1/(xq2*A)*CF_err_f)^2+(-CF_f_avg/(xq2^2*A)*q_err2)^2)

u_cn = sqrt((1/(xq2*A)*NF_err_f)^2+(-NF_f_avg/(xq2^2*A)*q_err2)^2)

u_cl = sqrt((cos(AOA*pi/180)/(xq2*A)*NF_err_f)^2+
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(-sin(AOA*pi/180)/(xq2*A)*CF_err_f)^2

+(-(NF_f_avg*cos(AOA*pi/180)-CF_f_avg*sin(AOA*pi/180))/

(xq2^2*A)*q_err2)^2+((-NF_f_avg*sin(AOA*pi/180)-

CF_f_avg*cos(AOA*pi/180))/(xq2*A)*(0.1*pi/180))^2)

u_cd = sqrt((sin(AOA*pi/180)/(xq2*A)*NF_err_f)^2+

(cos(AOA*pi/180)/(xq2*A)*CF_err_f)^2+

((NF_f_avg*sin(AOA*pi/180)+CF_f_avg*cos(AOA*pi/180))/

(xq2^2*A)*q_err2)^2+((NF_f_avg*cos(AOA*pi/180)-

CF_f_avg*sin(AOA*pi/180))/(xq2*A)*(0.1*pi/180))^2)

u_cm = sqrt((1/(xq2*A*2)*PM_err)^2+(-PMavg/(xq2^2*A*2)*q_err2)^2)

disp(’uncertainty and error calculations (u_c[]) work only when ENG units are used

to analyze the data. Rerun the program with ENG units if uncertainty and

error values are needed.’)
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APPENDIX D

DATA FROM MINECK AND HARTWICH
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D.1 Data from Mineck and Hartwich [6]

Figure D.1. Data for NACA 0012 airfoil at Mach 0.76 from Mineck and Hartwich.
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