
 

SECOND ORDER TRAINING ALGORITHMS FOR RADIAL BASIS FUNCTION NEURAL 

NETWORK 

By 

 

KANISHKA TYAGI 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

DECEMBER 2011 



 

Copyright © by Kanishka Tyagi 2011 
All Rights Reserved 

  



 

To my Grandmother 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

士不可不弘毅，任重而道远---孔夫子 
('shibukeyibuhongyi, renzhongerdaoyuan’) 

(An educated gentleman cannot but be resolute and broad-minded, for he has taken up a heavy 
responsibility and a long course—Confucius) 

  



 

iv 
 

ACKNOWLEDGEMENTS 
 

I would like to express my sincere gratitude to my supervising professor Dr Michael T. 

Manry, who gave me this interesting and challenging problem and helped me through my 

struggles with it. I thank him for giving me his constant guidance, consistent encouragement 

and financial support throughout my Master’s program. I am grateful to him for the countless 

hours he spend discussing various aspects of the research and revising drafts of my papers and 

the thesis. His method of research and level of perfection in every aspect was a learning 

experience for me.  

Thanks to my lab-mates, especially Dr.Xun Cai for her constant support. I thank her for 

spending valuable time on debugging the codes in all the wee hours and providing me 

motivation whenever I needed. It is my pleasure to offer my love and respect to my friends 

Sandy, Xueyang, Himanshu, Rahul, Sayan and Rajinikant for their generous help. Special 

thanks to my friends Abhinav and Astha for being extremely supportive during the writing stage 

of my thesis.  

I express my sincere gratitude to my grandparents and parents back at home for their 

sacrifice, encouragement and patience. Special thanks to my uncle, Pankaj Tyagi for his 

endless love and support during all this years of studies. Thanks to my cousin sisters Anubhuti, 

Anshika, Aditi, my brother Harshvardhan and my cousin brothers, Anubhav, Aman, Priyansh for 

always being cheerful and supportive. 

        November 18, 2011 



 

v 
 

ABSTRACT 
 

SECOND ORDER TRAINING ALGORITHMS FOR RADIAL BASIS FUNCTION NEURAL 

NETWORKS 

 

 Kanishka Tyagi, M.S. 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Michael T Manry   

 A systematic two step batch approach for constructing and training of Radial basis 

function (RBF) neural networks is presented. Unlike other RBF learning algorithms, the 

proposed paradigm uses optimal learning factors (OLF’s) to train the network parameters, i.e. 

spread parameters, mean vector parameters and weighted distance measure (DM) coefficients. 

Newton’s algorithm is proposed for obtaining multiple optimal learning factors (MOLF) for the 

network parameters. The weights connected to the output layer are trained by a supervised-

learning algorithm based on orthogonal least squares (OLS). The error obtained is then back-

propagated to tune the RBF parameters. The proposed hybrid training algorithm has been 

compared with the Levenberg Marquardt and recursive least square based RLS-RBF training 

algorithms. Simulation results show that regardless of the input data dimension, the proposed 

algorithms are a significant improvement in terms of convergence speed, network size and 

generalization over conventional RBF training algorithms which use a single optimal learning 

factor (SOLF). Analyses of the proposed training algorithms on noisy input data have also been 

carried out. The ability of the proposed algorithm is further substantiated by using k-fold cross 

validation. Initialization of network parameters using Self Organizing Map (SOM), efficient 
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calculation of Hessian matrix for network parameters, Newton’s method for optimization, optimal 

learning factors and orthogonal least squares are the subject matter of present work.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Radial basis function neural network 

The Radial basis function (RBF) network is a three layer supervised feed-forward 

network [1] used in interpolation, probability density function estimation and approximation of 

smooth multivariate functions [2]-[7]. The RBF was first introduced as a solution to the real 

multivariate interpolation problem. The RBF training algorithm can approximate any multivariate 

continuous function arbitrarily well on a compact domain if a sufficient number of radial basis 

functions are given [4].  

The most important feature that distinguishes the RBF network from earlier radial basis 

function based training algorithms is its adaptive nature which generally allows it to utilize a 

relatively small number of locally tuned units (RBF’s). RBF networks were independently 

proposed by [8]-[11]. The RBF networks covered in the literature mostly differ in their training 

algorithm. Broadly they can be classified into three paradigms:  

(1) No training: in this case, all parameters are calculated and fixed and no training is 

required. The network in this case is too large, slow and do not have much practical 

application.  

(2) Half training: in this case, the hidden later parameters are calculated either heuristically 

or by some clustering algorithm and fixed in advance. Only the output weights are 

trained using the least squares algorithm. 
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(3) Full training: in this case all parameters and weights are trained using a training 

algorithm. 

Most of the RBF networks studied in the literature are trained using batch learning 

algorithms, though some sequential learning algorithms, such as the generalized growing and 

pruning RBF (GGAP-RBF) algorithm have been proposed [12]. However the convergence and 

generalization performance of the network is an “open problem”. It has been proposed to 

optimize hidden units in the network to obtain a more compact network as compared to large 

conventional RBF networks [13]-[15]. However to select a subset network, the algorithm uses a 

subset selection method based on orthogonal least squares (OLS) or regularized OLS  where a 

full network is designed after all the training observations are presented.  Based on this subset 

selection technique, investigators have proposed a regularized forward selection (RFS) 

algorithm that combines forward subset selection and zero-order regularization to achieve better 

generalization [16].  

In order to train the RBF network, mostly first order methods are used. Gradient descent 

learning [17], [18] offers a balance between performance and training speed. These networks 

are compared with sigmoid hidden unit based feed forward neural networks in [18]-[20]. The 

combination of steepest descent and Newton’s method would seem to be more promising for 

unconstrained optimization problems [21]. This method is convergent and has a high 

convergence rate. Since Newton’s method for the RBF often has non-positive definite or even 

singular Hessian, Levenberg-Marquardt (LM) or other methods are used instead. However 

second order methods do not scale well and suffer from heavy computational cost.  Although 

first order methods scale better, they are sensitive to input means and gain factors [22]. A 

hybrid learning procedure is proposed in [11] which employs clustering algorithms like K-means  

or determining the center for radial basis function and supervised learning for updating output 

weights connecting the radial basis function unit (hidden unit) to the output unit. In [23] a 
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gradient training algorithm for updating the network parameters (mean vector parameters, 

spread parameters) and output weights is presented. A novel space filling curves with 

genetically evolving parameters is proposed in [24]. 

 

1.2 Research objectives 

Formulation of RBF network via interpolation theory is rather neat. However the use of 

interpolation based on noisy data could lead to misleading results. The calculation of the 

pseudo inverse weight matrix increases the cost of calculations when the number of data and 

hidden units increases. In order to handle this, it is suggested to use orthogonal least squares 

algorithm to obtain weight matrix [26]. The choice of network parameters is also a bottleneck in 

designing the RBF neural network. The performance of RBF training can be greatly improved by 

choosing an efficient output layer training strategy. A hybrid approach is proposed in [25] where 

parameters are determined, fixed and the output weights are updated using recursive least 

squares algorithm. However, even the hybrid learning approach [25] suggests that there is an 

absence of an overall optimal criterion that combines the training of the hidden and output 

layers and assumes that the whole system is optimality in a statistical sense. Hence a different 

approach to the design of an RBF network is needed. Our investigation’s focus is on the 

efficient second order optimization of network parameters and the effects of optimal learning 

factors on the RBF training. 

 

1.3 Organization of thesis 

Chapter 2 reviews the construction, notation and training of conventional RBF 

networks. It introduces the proposed training algorithm and explains the basic topology and 

notation used in describing the family of proposed RBF training algorithms. We also introduce a 

new parameter vector of distance measure coefficients. Non heuristic initializations for all the 
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parameters in the proposed training algorithm are discussed. Then we review existing training 

algorithms that are later used for comparisons with our family of RBF training algorithms. The 

chapter concludes with problems prevalent in existing RBF training algorithms while initializing 

the parameters as well when using Newton’s method 

Chapter 3 presents the theoretical background and motivation for using distance measure 

parameter coefficients. Next is the mathematical formulation for updating this novel parameter 

vector with a learning factor using Newton’s method. We then study the effect of linearly 

dependent inputs on gradient and Hessian calculations. Next we investigate the effects of noise 

on the RBF training algorithms. We compare the performance of these training algorithms with 

recursive least square based RBF training algorithm. 

In a similar manner, chapters 4 and 5 present detailed analyses of the spread parameters 

vector and the mean vector parameters respectively. In addition, chapter 5 describes the use of 

single and multiple optimal learning factors for updating the mean vector parameters. 

Chapter 6 investigates the various combinations possible within the family of proposed 

training algorithms leading to a set of final training algorithms that are subsequently used for 

further analyses. We study the effect of using Newton’s method repeatedly on different 

parameters, the effect of using the proposed weighted DM coefficient on various training 

algorithms. In the end we study the effect of applying Newton’s method on all the three 

parameters which paves way for concluding a final set of training algorithms. 

Chapter 7 focus on the experimental analyses on the final two training algorithms that performs 

best in our family of training algorithms and there comparisons with an advance second order 

method called Levenberg Marquardt (LM) algorithm and RLS-RBF algorithm. Since LM is 

computationally expensive, we analyze the computational burden of our set of RBF training 

algorithms and compare it its performance with LM and RLS-RBF. The generalization capability 

is finally shown using k-fold validation. Chapter 8 presents the conclusion and future work.
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CHAPTER 2 

CONSTRUCTION AND TRAINING OF RBF NEURAL NETWORK 

 

In this chapter, the conventional RBF network notation and architecture are introduced. 

We then present an improved RBF network which includes a distance measure (DM) parameter 

vector and discuss the initialization of RBF network parameters. Three training algorithms are 

described next. The chapter concludes with a list of problems in existing RBF training 

algorithms. 

2.1 Conventional RBF topology and notation 

Without the loss of generality, we restrict ourselves to a three-layer fully connected RBF 

with non-linear activation functions. The structure of the RBF is shown in Figure 1. The training 

dataset consists of ��  training patterns ���, ���  where the pth input vector �� , and its 

corresponding pth desired output vector �� have dimensions N and M respectively. Let the input 

vectors be augmented by an extra element x
�N  1�=1, so that �� � �x
�1�, x
�2� … , x
�N 
1�T. 

The input units are directly connected to the single hidden layer with �� hidden nodes. 

It should be noted here that ��  is the key factor not only for the performance but also the 

computational complexity of the network. For the kth hidden unit, ��(k=1, 2…��) denotes the 

mean vector of kth cluster. �� is also known as the kernel vector or center vector. 
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Figure 2.1 Topology of a fully connected RBF Neural Network 
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In this case, for the pth training pattern, the kth hidden unit Euclidean net function is: 

������� �  �������  !�����"#
$%&  (2. 1) 

where !���� is the nth element of �� corresponding to the nth input unit.  

In Figure1, the dotted lines between input and hidden units signify that instead of weighted 

sum/Gaussian activation, each hidden unit output '(���  is obtained by calculating the 

‘closeness’ of the input �� to �) associated with the kth hidden unit. In this case, the kth hidden 

unit output '���� is calculated as a Gaussian basis function, for the pth pattern: 

'���� � �*+���$,-.��� 
(2. 2) 

Here /��� is the spread parameter defined as the inverse of the width of the kth hidden 

unit Gaussian function with mean vector �) . The mean vector parameter �)  and spread 

parameter /��� are conventional parameters of RBF neural networks. The hidden layer is fully 

connected to the output layer via output weights. If 01��2, �� denotes the weight connecting the 

kth hidden unit’s activation '���� to the ith output 3��2� then the output 3��2� for the pth training 

pattern is: 

3��2� � � 01��2, �� · '����  � 015�2, ��#6&
$%& · �����#7

�%&  (2. 3) 

We also include the bypass weights 015�2, �� connecting the nth input unit to the ith 

output unit. The linear output response vector 8(in (2.3) can be re-written as: 

8( � 9:; · <(  9:= · >( (2. 4) 
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For convenience, we can augment the input vector as: 

�?���� � @ �����                                                        � � 1,2, … , �             1                                                           � � �  1           '���  �  1�                                       � � �  2, … . , �B
C  

(2. 5) 

where �B  denotes �  1  �� . In vector notation, (2.5) can be rewritten as where <D( �
�<(E: G: >(EH. Similarly the weights can be denoted as: 

01�2, �� � @ 01��2, ��                                                 1 I � I �            015�2, �  1�                                          � � �  1           015�2, �  �  1�                                    �  2 I � I �B
C  

(2. 6) 

          In vector notation (2.6) can be re-written as 9: � J9:;: 9:=K where 9:denotes all the 

output weights. Using the augmented input vector in (2.5) and output weights in (2.6), (2.4) can 

be re-written as: 

3��2� � � 01�#L
�%& 2, ���?����     

   (2.7) 

In vector notation (2.7) can be rewritten as: 

8( � 91 · <D(    (2.8) 

The training error for each pattern is 

M( � �����2�  3��2�H"N
5%&     (2.9) 

Here ���2�  denotes the ith desired outputs for the pth input pattern. In batch mode 

training, the error function of a RBF is measured using the Mean Square Error (MSE) as: 

M � 1�� � O�
#P


%& � 1�� � �����2�  3��2�H"N
5%&

#Q
�%& � 1�� �RS(  8(TERS(  8(T#P


%&  
 

    (2.10) 
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where S(  and 8(are column vectors. The general purpose of minimizing the MSE is weight 

optimization [27]-[29]. 

 

2.2 RBF networks initialization 

In this sub-section we introduce and initialize the weighted distance measure  (DM) 

coefficients vector. We then initialize conventional network parameters including the spread 

parameters and mean vector parameters. 

 

2.2.1 Initializing the weighted distance measure  

Let the � -dimensional vector U  store coefficients for the weighted DM vector. Let V��� 

represent the standard deviation of input ����.Then W��� is defined as: 

W��� � 1 X � 1V"�!�
#

Y%& Z V"���[  ((2.11) 

For the pth training pattern, the kth hidden unit net function is now modified as: 

���\ ���� �  � W��� · ������  !�����"#6&
$%&  ((2.12) 

where ���\ ���� is the weighted DM. The Gaussian basis function is: 

']���� � �*+���$,-̂.��� (2.13) 

Following (2.3), the ith output for the pth training pattern when the weighted DM is used is, 

3_��2� � � 01��2, �� · ']����  � 015�2, ��#6&
$%& · �����#7

�%&  ((2.14) 
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2.2.2 Initializing spread parameters and mean vector parameters 

We use self-organizing feature map (SOM) clustering in order to initialize the spread 

parameter vector ` and mean vector parameter a). SOM is a variation of adaptive K-means 

clustering where we cluster the data set based upon the relative distance. 

For initializing  ` , let b be an ��- by-��matrix comprising of elements d�a), ad� which 

are the distances between the mean vector parameters, 

d�a), ad� � �J!����   !B��� K"e
f%&  ((2.15) 

We reorder each row in b so that the smallest elements come first while ignoring the zero 

valued distances. For the kth hidden unit, if g is the user-chosen number of mean vectors a) 

that we want to activate in '����such that: 

'���� h �*& (2.16) 

then we choose the gth smallest distance for each row of b to form the vector i. For the kth 

hidden unit,  j���, the elements of vector i should satisfy the relation: 

�*+���k��� � �*& (2.17) 

Hence, 

/��� � 1j��� (2.18) 

for 1 I � I ��. This method of initialization ensures that the /��� coefficients are neither too big 

nor too small. Geometrically, this condition makes sure that individual Gaussian functions are 

not too peaked nor too flat; both conditions should be avoided in practice. For a
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 global network g can be equal to �� . In our experiments we use local RBF networks and 

therefore choose the value of g to be  
#7l .   

 

2.3 Existing training algorithms 

Current RBF training algorithms can be classified as the first order and the second 

order methods [30], [31]. Gradient descent methods are first order and Newton related methods 

are second order [32]-[34]. In [30] Battiti reviewed first and second order algorithms for learning 

in neural networks. First order methods are fast and effective for large scale problems [35] while 

second order techniques have higher precision for small scale. We present three algorithms 

based on different learning paradigms in order to distinguish them from our family of proposed 

RBF training algorithms. 

 

2.3.1  K-means RLS algorithm 

A hybrid learning procedure for training RBF networks is described in [25]. The K-

means algorithm (see Appendix A for details) for training the hidden layer is applied first. It is 

then followed by the recursive least squares algorithm (RLS) [53] for training the output layer.  

The input layer has the dimensionality � as before. Given the desired value of �� and 

training data, the mean vector parameter a) are computed from the K-means algorithm. To 

determine the spread parameters, a heuristic presented in [25], [36] states that spread 

parameter is initialized so as to cover the input space with receptive fields as uniformly as 

possible. Based on this heuristic the present hybrid algorithm assigns the same width vector V 

to all the Gaussian functions given by V � jYmn o2��⁄ , where jYmn is the maximum distance 

between the chosen centers [8]. 

Once the training of the hidden layer is complete, the output weights are optimized. For 

discrete time instant t, the ��-by-1 hidden output vector is: 
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>(- � �'�-�1�, '�-�1�, . . .  '�-����HE
 (2.19) 

where, 

����- ��� � q<(-  a)q" (2.20) 

The output response 8(  is then given by 

8( � 9:=. >(-  (2.21) 

The supervised training for the output layer is carried out using the recursive least square (RLS) 

algorithm. Being a recursive algorithm, ‘n’ represents the value at current instant of time ‘t’ and 

‘n-1’ is in the previous instant. We start by calculating the autocorrelation matrix rs$ defined as: 

rs$ � � >(- · �>(- �E$
-%&  ((2.22) 

Similarly the cross correlation matrix ts$ is defined as: 

ts$ � � >(- · �S(- �E$
-%&  ((2.23) 

If 9:u is the output weight matrix, then we have the following linear equation: 

rs$ · �9:$�E � ts$ (2.24) 

In order to solve (2.24) we could first invert the autocorrelation matrix rsu  and then 

multiply the resulting inverse matrix �rs$�*&by the cross-correlation matrix ts$ which is what we 

do in least squares. However when the size of the hidden layer �� is large, which is often the 

case, computation of the inverse matrix �rs$�*G  is computationally expensive. The RLS 

algorithm takes care of this computational difficulty. Reformulating (2.23), we have: 

ts$ � � >(- · �S(- �E$*&
-%&  >($ · �S($�E 

� ts$*&  >($ · �S($�E 

               � rs$*& · �9:$*&�E  >($ · �S($�E 

((2.25) 



 

13 
 

where, we first isolate the term corresponding to discrete time instant t=n from the summation in 

(2.23) and in the last line we use (2.24) replacing n with n-1. Next, we add and subtract 

>($R>($TE�9:$*&�E leaving the equation unchanged. We factor out the common terms: 

ts$ � vrs$*&  >($ · R>($TEw �9:$*&�E  >($ v�S(��x  R>($TE · �9:$*&�Ew ((2.26) 

The first set of brackets on the right side is recognized as the auto correlation function: 

rs$ � rs$*&  >($ · R>($TE
 (2.27) 

Using the second set of brackets on the right side, we introduce a new term called the prior 

estimation error y$,  

z$ � �S(��x  R>($TE · �9:$*&�E 

� �S(��x  �9:$*&�E · R>($TE
 

((2.28) 

y$ is based on the old estimate 9:$*&  of the weight vector that we had before the weight 

estimate was updated.  

Hence we can rewrite (2.26) as: 

ts$ � rs$ · R9:$ 1TE  >($y$ (2.29) 

 

Applying this equation in (2.25) yields: 

rs$ · �9:$�E � rs$ · R9:$ 1TE  >($y$ (2.30) 

which may be expressed in the desired from for updating the weight vector after multiplying by 

the inverse matrix �rsu�*&,  

9:$ � 9:$*&  �rs$�*& · >($y$ (2.31) 

Using matrix inversion and the symmetry property, we use a recursive formulation to compute 

�rsu�*&by introducing two new definitions  

1) Let  �rsu�*& � {u , where the {u matrix is defined as: 
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{$ � {$*&  {$>($R>($T|{$*&
G  R>($T|{$*&>($ ((2.32) 

2) Let the gain vector }u be defined as: 

}u � �rs$�*&>($ 

� {$>($ 
((2.33) 

We update the old estimate 9:$*& to its new value 9:$ as follows: 

9:$*& ~ 9:$*&  }$y$ (2.34) 

To initialize the algorithm we set 9:� � � and {� � �*&�,  where � is a small positive constant  

 

2.3.2 Training algorithm based on output weight optimization 

Introducing the weighted DM coefficients, we develop a hybrid algorithm consisting of 2 

steps: 

(1) Initialize the RBF network parameters based on the method of section 2.2.  

(2) Fix these parameters and use output weight optimization (OWO) for solving the 

output weights linear equation. 

OWO is a technique to solve for weights connected to the outputs of the network [37], 

[38]. Since the outputs have linear activations, finding the weights connected to the outputs is 

equivalent to solving a system of linear equations. 

 Including the weighted DM coefficients based Gaussian basis function of (2.13), we 

find the gradient of E with respect to the output weights for kth hidden unit and mth output unit as: 

�_1�!, �� � �O�01�!, �� �  2�� � ����!�  � 01�!, 2��?��2�#L
5%& � · �?����#Q

�%&  
�   2 �W�!, ��  � 01�!, 2� · ��2, ��#L

5%& � 

((2.35) 
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where the elements of autocorrelation matrix r has the following form :  

���, 2� � 1�� � �?���� · �?��2�#Q
�%&  (2.36) 

and the elements of cross correlation matrix t has the following form: 

W��, !� � 1�� � �?�#Q
�%& ��� · ���!� (2.37) 

Setting �_1�!, �� � 0, the kth equation in the mth set of equation is: 

W��, !� � � ���, 2� · 01�!, 2�#L
5%&  (2.38) 

(2.38) can be written in vector form as:  

t � r · 9:E (2.39) 

We often have (2.39) ill-conditioned [39], [40], meaning that the determinant of r is 

close to 0, it is therefore often unsafe to use Gauss-Jordan elimination. Therefore the singular 

value decomposition (SVD) [41], LU decomposition [42] and conjugate gradient algorithm (CG) 

are better. However Equation (2.38) is most easily solved using orthogonal least squares (OLS) 

which is equivalent to using the QR decomposition [41].   

 
2.3.3 Levenberg-Marquardt algorithm  

The Levenberg-Marquardt (LM) algorithm is a compromise between Newton’s method 

which converges rapidly near local or global minima but may diverge and gradient descent 

which has assured convergence through a proper selection of step size parameter but converge 

slowly [43], [44]. In Newton’s method, we minimize the quadratic approximation of the error 

function O��� around the current weights �:  

O��  ∆�� � O���  ∆�E}  12 ∆�E�∆� (2.40) 
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Here � is the weight vector of dimension �� in which all training weights are stored, } is the 

negative gradient vector (negative Jacobian) for training error O��� as: 

��!� �  �O�0�!� (2.41) 

For Hessian matrix �, which is the second order partial derivative of O��� with respect to �, the 

mth row and nth column element is: 

��!, �� � �"O�0�!��0��� (2.42) 

 (2.40) is minimized when,  

}  �∆� � � (2.43) 

This leads to the weight updating strategy of Newton’s method: 

� ~ �  �*& · } (2.44) 

The LM algorithm [42]-[44] is a sub-optimal method which updates all weights as: 

� ~ �  J�  � · j2�����K*& · } (2.45) 

where � is a controlling factor which tunes LM either towards the first order or the second order 

methods. � is the identity matrix.  

For training the network using LM we take the following steps:  

(1) Present all patterns to the network and compute the Mean Square Error (MSE). 

(2) Compute the Hessian and gradient matrices for all the weights.  

(3) Calculate the updated weights using (2.40) 

(4) Re-compute the MSE by using the updated weights, if the new error is smallest than 

that computed in (1) then reduce  �  and go back to (1); if the error is not reduced 

increase  � . 

(5) The algorithm converges when the norm of the gradient is less than some pre-

determined value, so the MSE has been reduced to a fixed error.  
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LM converges faster [45] than many other training algorithms. However, it requires '����� 

storage and calculations. Further, owing to the effort required to compute �  and � , LM is 

practical only for small networks. 

 

2.4 Problems with existing RBF training algorithms 

Existing RBF training algorithms suffer from five major problems: 

1. The network parameters are not trained well. 

2. Noise input contaminates the network parameters.  

3. Newton’s method cannot find all weights when Hessian is singular. 

4. The clustering process used to obtain the mean vector parameters is not 

optimized for the network. 

5. The algorithm used to obtain the output weight matrix is usually either steepest 

descent based or recursive.  

 

Most of the RBF training algorithms have two stages per iteration or a total of two stages, 

resulting in poor performance, since output errors are not fed back to modify input weights. 

Investigators compensate for this by adding a lot of hidden units such as in support vector 

machines (SVM).  An example of this is the extreme learning machine (ELM) [45] which is a 

large MLP trained only with OWO. 
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CHAPTER 3 

OPTIMIZATION OF WEIGHTED DISTANCE MEASURE  

 

After the network parameters have been initialized as in section 2.2, the basic 

framework for the proposed family of RBF training algorithms is set. We now turn our focus on 

the second stage where Newton’s method is used to optimize the weighted distance measure 

(DM).  

Most real world data sets are contaminated with noises either in the context of pattern 

classification or nonlinear regression hence it is logical to see the effect of noise on the 

proposed RBF training algorithms.  

 

3.1 Theoretical background 

Euclidean distance measure is the criterion for clustering of the training data in 

conventional training algorithms. In [46] it has been proposed that the conventional Euclidean 

DM function does not include the perceptual quality in its definition. Many other literatures, 

particularly in the field of speech processing [47] suggest that using a weighted DM gives better 

quality results and less spectral distortion than its conventional Euclidean counterpart. 

Therefore including a weighted DM in the proposed training algorithm seems a logical 

extension. The SOM that we use in our proposed training algorithms and the initial spread 
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parameters and mean vector parameters employs the use the weighted Euclidean distance 

measure.  

 

3.2 Mathematical treatment 

 A typical error function used in the training of RBF is described in (2.9). The hidden unit 

output ']���� is given by (2.13) and ���\ ���� is as defined in (2.12). Including the weighted DM 

learning factor vector iU for updating U we have: 

���\ ���� � ��W���  j����� · J�����  !����K"#
$%&  (3.1) 

where U is the weighted DM coefficients vector that will be optimized. The output vector 3_��2� is 

same as described in (2.14). By calculating the first order gradient of U we obtain:  

����� �  �O�j���� � 2�� � �J���2�  3_��2�K · �3_��2��j����
N

5%&
#Q

�%&  ((3. 2) 

where 

�3_��2��j���� �  � 01�2, �� · ']���� · � /���� · ������  !����H"#7
�%&  ((3. 3) 

The Hessian matrix element is: 

����, �� � �"O�j�����j���� � 2�� � X� �3_��2��j���� · �3_��2��j����
N

5%& Z#Q
�%&  ((3. 4) 

This results in the following linear equation: 

�U · iU � }U (3. 5) 

Equation (3.5) looks similar to the linear equations in (2.39). The linear equation in (3.5) 

can be solved using linear equation solver such as steepest descent, conjugate gradient 

algorithm and OLS. Owing to single step minimization, and ability to overcome the 
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computational complexity of second order Newton’s method without compromising the 

convergence issue, OLS is the preferred choice. For the nth input unit, W��� is then updated as: 

W��� ~ W���  j���� (3. 6) 

  

3.3 Algorithm for optimizing weighted DM coefficients 

We follow a nomenclature for all the algorithm and figures discussed here and 

subsequent chapters. In {N(param1) + param2}, ‘N’ denotes Newton’s method applied on  

parameter ‘param1’, while ‘param2’ are the parameters which have been fixed during the 

initialization part and have not been modified or “tuned” during the training process. For 

example {N(c)+B+m} means Newton’s method has been applied only on the weighted DM 

keeping spread parameters vector and mean vector parameters fixed during the training 

process.  

The formal algorithm for optimized weighted DM RBF (OWDM-RBF) training algorithm 

is described as follows: 

(1) Read the data file and normalizing the inputs to zero mean and unit variance.  

(2) Initialize the weighted DM coefficients, spread parameters vector and mean vector 

parameters. In each iteration of the training algorithm, the steps are as follows 

(3) Calculate gradient of U from (3.2) and Hessian matrix elements from (3.4). 

(4) Solve the linear equation in (3.5) via OLS. 

(5) Update weighted DM coefficients using (3.6). 

(6) Solve linear equations for all the output weights using OWO.  

Contrary to [25] the updated weighted DM are fed back to calculate U for next iteration in 

our proposed training algorithm. 
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3.4 Effect of linear dependence in the input layer 

As discussed in section 2.4, the singularity of the Hessian matrix is a major drawback of 

Newton’s method. We now investigate as to how the Hessian matrix is modified if a linearly 

dependent input is used in the training algorithm. A linearly dependent input can be modeled as: 

����  1� � � ���������#
$%&  ((3. 7) 

During the weighted DM adaption, the expression for gradient given by (3.2) can be rewritten 

as: 

����� �  �O�j���� � 2�� � �J���2�  3_��2�  015�2, �  1� � ���������#
$%& K · �3_��2��j����

N
5%&

#Q
�%&  

          

(3. 8) 

The hidden unit output ']���� in  
��_.�5��k��$� gets additional terms as: 

'�� ��� � ']���� · �*+���·J��#6&��n.�#6&�*Y��#6&�H�K (3. 9) 

and the expression for Hessian matrix can be re-written as: 

��′ ��, �� � ����, ��
 � 01�2, ��'�� ���R/���T �X� ���������#

$%& Z"#7
�%&

 2������  !����H X� ���������#
$%& Z  X� ���������#

$%& Z"

 2������  !����H X� ���������#
$%& Z� 

((3. 10) 

 

Comparing (3.4) and (3.10) we see that some additional terms appear as sum of 

products within the square brackets in the expressions for gradient and Hessian in the presence 

of linearly  
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dependent input. Clearly, these cross terms will cause the training of RBF training algorithm 

different for the case if linear dependent inputs are added thereby not forcing �U′  to be singular. 

Thereby from (3.12) we see that the Hessian �U′  simply gains first and second degree terms 

unlike traditional Newton’s method, where a linearly dependent input cause the Hessian matrix 

to be singular. 

 

3.5 Experimental analyses and verification 

We take twod, concrete and mattrn datasets (see Appendix B for details) to study the 

performance of OWDM-RBF (denoted by {N(c)+B+m}) and compare its performance with the 

OWO-RBF training algorithm (denoted by {c+B+m}) where no parameter (weighted DM, spread 

parameters and mean vector parameters) have been optimized and RLS-RBF training algorithm 

discussed in [25]. We analyzed various training algorithms on two bases, firstly the rate of 

convergence of error and secondly, its response to the Gaussian random noise which is added 

into the input data set.  
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      (a) 

 
      (b) 
 

Figure 3.1 Performance of OWDM-RBF training algorithm with OWO-RBF and RLS-RBF 
training algorithms for twod dataset (a) normal condition (b) noisy input condition 
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(a) 

 

(b) 

Figure 3.2 Performance of OWDM-RBF training algorithm with OWO-RBF and RLS-RBF 
training algorithms for concrete dataset (a) normal condition (b) noisy input condition 
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     (a) 

 

     (b) 

Figure 3.3 Performance of OWDM-RBF training algorithm with OWO-RBF and RLS-RBF 
training algorithms for mattrn dataset (a) normal condition (b) noisy input condition 
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We make the following observations from the figures: 
 

1) The OWDM-RBF training algorithm and OWO-RBF training algorithm starts at the same 

error value due to same OWO step. The rate of decrease of error is prominent for the 

OWDM-RBF training algorithm indicating its efficiency. The RLS-RBF training algorithm 

not only starts at the lower error value but also decrease at much faster rate.  

2) The difference in the error values between the training algorithm and its equivalent 

noise training algorithm indicates the efficiency and sensitivity of the algorithm towards 

Gaussian random noise.  

3) The error curve for OWDM-RBF training algorithm and the OWO-RBF training algorithm 

in the noisy data indicates there poor performance for the noisy data. Even the rate of 

decrement of error is severely affected by the noisy data. 

We therefore conclude that the RLS-RBF training algorithm has the lowest error rate and 

least susceptibility to noise. The OWDM-RBF training algorithm is a primitive training algorithm 

paving way for further improved training algorithms based on similar optimization scheme which 

will be discussed in subsequent chapters. 
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CHAPTER 4 
 

OPTIMIZATION OF SPREAD PARAMETERS ALONG WITH WEIGHTED DM  
 

After the optimization of the weighted DM, we now describe the optimization of the spread 

parameters vector and investigate its effect on the training of RBF neural network. Mathematical 

background for optimizing the spread parameters, effect of linearly dependent input units and 

experiment verification is the discussion area of this chapter. 

 
 

4.1 Theoretical background 

In Chapter 2 we have initialized the spread parameters and defined it as the inverse of the 

standard deviations of input units. In a typical Gaussian function, the standard deviation controls 

the width of the Gaussian “Mexican hat shaped” curve. Geometrically, in a 3-D space it can be 

visualized as the parameter which defines the area of the “Mexican hat” to be included in the 

input space.  

 

4.2 Mathematical treatment 

 In changing the “width” (spread parameters) and keeping mean vector parameters 

(kernel vector) fixed, we use the same error function as in (2.9). For the pth pattern, the kth 

hidden unit output is: 

']���� � ��*�+���6k�����·$,-̂.��� (4. 1) 
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where ���\ ���� is defined as in (2.11) and  j+��� is the learning factor for ` in each kth hidden 

unit. The output vector 3_��2� is same as described in (2.14).  

We calculate the gradient for ` as: 

�+��� �  �O�j+��� � 2�� � �J���2�  3_��2�K · �3_��2��j+���
N

5%&
#Q

�%&  (4. 2) 

 

Following a similar procedure to that for the weighted DM, we get, 

�3_��2��j+��� �  01�2, �� · ']���� � W��� · ������  !����H"#6&
$%&  (4. 3) 

 

Combining (4.3) and (4.4) we obtain }`. Calculating the Hessian matrix element we get, 

�+��, ��  � �"O�j+����j+��� � 2�� � X� �3_��2��j+��� · �3_��2��j+���
N

5%& Z#Q
�%&  (4. 4) 

 

We now use the realization of the following linear equation: 

�` · i` � }` (4. 5) 

This looks similar to the linear equations as in (3.7). Solving (4.5) via OLS, we get the optimal 

i`. For the kth hidden unit, ` is updated according to: 

/��� ~ /���  j+��� (4. 6) 

 

4.3 Algorithm for optimizing spread parameters 

We now describe the formal algorithm for optimized spread parameter RBF (OSP-RBF) 

training algorithm. After normalizing the input patterns to zero mean and unit variance and 

initializing different parameters, for each iteration of the training algorithm, the steps are as 

follows:  

(1) Calculate gradient for ` from (4.2) and Hessian matrix elements from (4.4). 

(2) Solve the linear equation in (4.5) via OLS. 
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(3) Update spread parameters vector using (4.6). 

(4) Solve linear equations for all the output weights using OWO.  

The updated spread parameters vector are fed back to calculate ` for next iteration in 

our proposed training algorithm contrary to [25]. This completes our description for the OSP-

RBF training algorithm. It should be noted here that in case of combined optimization of spread 

parameter and weighted DM (OSPWDM-RBF) training algorithm, each parameter’s optimization 

is followed by an OWO step. 

 

4.4 Effect of linear dependence in the input layer 

A linearly dependent input can be modeled as in (3.9). During the spread parameter adaption, 

the expression for gradient given by (4.2) can be rewritten as: 

�+��� �  �O�j+��� � 2�� � �J���2�  3_��2�  015�2, �  1� � ���������#
$%& K · �3_��2��j+���

N
5%&

#Q
�%&  (4. 7) 

 

where 

�3_��2��j+��� �  01�2, �� · '�′ ��� � W��� · ������  !����H"#
$%&  W��  1�

· X� ���������#
$%&  !���  1�Z"

 

 (4. 8) 

 

The hidden unit output ']���� in  
��_.�5��k���� gets additional terms as in (3.11). Hessian matrix 

element will be: 
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�+′ ��, �� � 2�� � �� � 01�2, ��'�′ ��� � W���������  !B���H"#
$%&  W��N

5%&
#Q

�%&
 1� X� ���������#6&

$%&
 !B��  1�Z"� � 01�2, ��'�′ ��� � W���������  !����H"#

$%&  W��
 1� X� ���������#6&

$%&  !���  1�Z"�� 

(4. 9) 

 

Similar to (3.12), comparing (4.4) with (4.9), we see that some additional terms appear as 

sum of products within the square brackets in the expressions for gradient and Hessian in the 

presence of linearly dependent inputs. Clearly, these cross terms will cause the training of the 

RBF training algorithm to be different for the case, if linear dependent inputs are added thereby 

not forcing �U′ to be singular. Thereby from (4.9) we see that the Hessian �U′  simply gains the 

first and the second degree terms unlike traditional Newton’s method, where a linearly 

dependent input cause the Hessian matrix to be singular. 

 

4.5 Experimental analyses and verification 

We take twod, concrete and mattrn datasets (see Appendix B for details) to study the 

performance of OSP-RBF training algorithm (denoted by {N(B)+c+m}) and compare its 

performance with the OSPWDM-RBF training algorithm (denoted by {N(c,B)+m}) and RLS-RBF 

training algorithm discussed in [25]. The performance of these training algorithms has also been 

seen with random Gaussian noise data added to the input units. 
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(a) 

 

(b) 

Figure 4.1 Performance of OSP-RBF and OSPWDM-RBF training algorithms with RLS-RBF 
training algorithm on twod dataset (a) normal condition (b) noisy input condition 
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(a) 

 

(b) 

Figure 4.2 Performance of OSP-RBF and OSPWDM-RBF training algorithms with RLS-RBF 
training algorithm on concrete dataset (a) normal condition (b) noisy input condition 
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(a) 

 
(b) 

Figure 4.3 Performance of OSP-RBF and OSPWDM-RBF training algorithms with RLS-RBF 
training algorithm on mattrn dataset (a) normal condition (b) noisy input condition 



 

 34

Referring to the figures, we observe that although OSP-RBF training algorithm has high 

error curve for Gaussian noise data, including the OSPWDM-RBF training algorithm improves 

the performance significantly when compared to the algorithm where only weighted DM is 

optimized as shown in the plots. We have not included the OWO-RBF training algorithm owing 

to its poor performance. Following observation are made from the error plots for three datasets: 

(1) The error curve for the OSP-RBF training algorithm is comparable to the RLS-RBF 

error curve. Hence there is an improvement over the earlier OWDM-RBF training 

algorithm discussed in Chapter 3. One point to be noted here is that the OSPWDM-

RBF training algorithm also gives a similar error curve as the other training 

algorithm but its sensitivity to the Gaussian noise data signifies its usefulness over 

the algorithm where only the spread parameter (OSP-RBF, denoted by 

{N(B)+c+m}) has been optimized. 

(2) The error decrement rate for all training algorithms is now comparable to the RLS-

RBF training algorithm. Although the error rate decrement is significantly high for 

the OSP-RBF training algorithm on Gaussian noise data but it settles at a much 

higher value after 50 iterations. 

        We conclude that optimizing spread parameter is indeed an improvement over the 

previous training algorithm discussed in Chapter 3. The combined optimization of spread 

parameter and weighted DM training algorithm does offer a significantly low error rate and less 

sensitive to noise with a comparable performance with RLS-RBF training algorithm.  It will be 

logical extension to extend the idea of optimization on the mean vector parameters and 

experiment with its various combinations with other two parameters which will be the subject 

matter of the next chapter. 
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CHAPTER 5 
 

OPTIMZATION OF MEAN VECTOR PARAMETERS ALONG WITH WEIGHTED DM AND 
SPREAD PARAMETERS 

 
 

In this chapter, we describe the optimization of the mean vector parameters and investigate 

its effect on the training of RBF neural network. Mathematical background for optimizing mean 

vector parameters, single and multiple optimal learning factors, effect of linearly depended input 

units and experiment verification is the discussion area of this chapter. 

 
5.1 Theoretical background 

From a regression point of view, mean vector defines the position of the Gaussian 

“Mexican hat” shape in the input space. It is therefore important to optimize the position to 

obtain better reconstruction of the input surface. It will be a matter of experimentation as to how 

the optimization or “tuning” of the mean vector parameters alone performs and in comparison to 

the other two parameter vectors 

 

5.2 Mathematical treatment 

Following the same approach as in previous sections, we obtain a “tuning “procedure for 

changing mean vector parameters. For pth input pattern and kth hidden unit, including mean 

vector learning factor  , ���\ ���� is: 

���\ ���� � � W��� · J�����  �!����  ¡� · �Y,m$��, ���K"�#
$%&  

  (5. 

1) 
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The output vector 3_��2� is as described in (2.14). We solve for a vectors of learning factors, one 

per hidden unit.  

Unlike the previous gradients, we have a gradient matrix as: 

 

�Y,m$��, �� �  �O�!���� � 2�� � �J���2�  3_��2�K · �3_��2��!����
N

5%&
#Q

�%&   (5. 2) 

 

Applying the chain rule we get: 

�3_��2��!���� � 2 · 01�2, �� · ']���� · /��� · W��� · ������  !����H  (5. 3) 

 

Combining (5.2) with (5.3) we get the gradient matrix elements�Y,m$��, ��. We now provide the 

mathematical framework necessary for the derivation of single and multiple optimal learning 

factors.  

 

5.3 Learning factor 

During our investigation we compared our algorithms with RBF training algorithms using a 

single OLF which is a one variable form of Newton’s method. Here we discuss the single OLF 

case for updating mean vector parameters. In the single OLF case, the calculation of partial 

derivatives requires one pass through the data. 

 

5.3.1 Single OLF for optimizing mean vector parameters  

Given the error function as defined in (2.9) we have: 

3_��2� � � 01�2, �� · �*+���$,-̂.���#7
�%&  � 015�2, �� · �����#6&

$%&  (5. 4) 

 

where ���\ ���� is now modified with single OLF as: 
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���\ ���� � � W��� · J�����  �!����  ¡ · �Y,m$��, ���K"�#
$%&  (5. 5) 

 

Notice the difference in (5.5) and (5.1). Instead of using a multiple OLF vector,  , we optimize 

each hidden unit by using a single OLF ¡. The first partial derivative of E with respect to ¡ is: 

�¢ �  �O�¡ �  2�� � �J���2�  3_��2�K · �3_��2��¡
N

5%&
#Q

�%&  (5. 6) 

where, 

�3_��2��¡ � 2 � 01�2, �� · ']���� · /��� � W���������  !����H#
$%&

#£
�%& · �Y,m$��, �� (5. 7) 

 

The Gauss-Newton approximation of the second partial is: 

�"O�¡" � 2�� � � ¤�3_��2��¡ ¥"N
5%&

#Q
�%&  (5. 8) 

 

Now from 2nd order Taylor series we get: 

O�¡� � O�0�  ¡ · �O�¡  12 · �"O�¡" · ¡" (5. 9) 

 

Hence substituting �O�¡�/�¡ � 0 we get: 

¡ �  �O �¡⁄�"O �¡"⁄  (5.10) 

 

In [48], better performance of multiple optimal learning factor (MOLF) on OWO based 

backpropagation network is reported. We therefore update the mean vector parameters based 

on MOLF which is optimal for individual hidden unit. 

 

5.3.2 Multiple optimal learning factors 

After the output weights in the RBF training algorithm are trained using OWO, instead of 

using a single OLF for updating all the parameters, we use Newton’s method to estimate a 
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vector of optimal learning factors as MOLF. The basic idea for MOLF is that while updating the 

mean vector parameters for each iteration, instead of using a single OLF z we use a vector z of 

dimension�� called MOLF. One of our investigation aims is to show this novel method to update 

the parameters to be better than the single optimal learning case.   

We now derive the expression for the MOLF as used in updating mean vector parameters. 

Considering the error function as in (2.9), we have: 

�¢��� �  �O�¡��� � 2�� � �J���2�  3_��2�K · �3_��2��¡���
N

5%&
#Q

�%&  (5.11) 

 

where: 

�3_��2��¡��� �  2 · 01�2, �� · ']���� · /��� X� W��� · ������  !����H · �Y,m$��, ��#6&
$%& Z (5.12) 

 

Combining (5.11) and (5.12) we get the optimum value of learning vector �¢���.Using Gauss-

Newton’s updates, the second partial derivative element of the Hessian �  are: 

�¢��, �� � �"O�¡����¡��� � 2�� � X� �3_��2��¡��� · �3_��2��¡���
N

5%& Z#Q
�%&  (5.13) 

where, 

�3_��2��¡��� � 01�2, �� · �']�����¡���  (5.14) 

  �3_��2��¡��� � 01�2, �� · �']�����¡���  (5.15) 

 

The Gauss-Newton’s update guarantees that �  is non-negative definite. Given the negative 

gradient vector }  � § �¨�¢© ,  �¨�¢� … ,  �¨�¢ª7«E
and the Hessian � , we minimize E with respect to 

the vector MOLF z using following linear equations:  

�  ·   � }  (5.16) 
Thus we get: 
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  � � *G · }  (5.17) 
 

During each iteration, for kth hidden unit and nth input, mean vector parameter is updated as: 

!���� ~ !����  ¡� · �Y,m$��, �� (5.18) 
 

5.4 Algorithm for optimizing mean vector parameters 

After normalizing the input patterns to zero mean and unit variance and initializing different 

parameters, we describe a formal algorithm for various RBF training algorithms. For each 

iteration of the training algorithm, the steps are as follows:  

(1) For optimized mean vector parameter RBF training algorithm with SOLF 

(SOMV-RBF), calculate the gradient from (5.6). For optimized mean vector 

parameters RBF (OMV-RBF) training algorithm with MOLF, calculate gradient 

from (5.11) and Hessian matrix elements from (5.13).  

(2) For SOMV-RBF, update mean vector parameters using (5.18) but instead of 

using vector  ), we use the SOLF ¡ from (5.10). For OMV-RBF, solve the linear 

equation in (5.16) via OLS and update mean vector parameters using (5.18). 

(3) Solve linear equations for all the output weights using OWO.  

It should be noted here that each parameter’s optimization is followed by an OWO step 

in case of combined optimization of spread parameter and mean vector parameters (OSPMV-

RBF) training algorithm, combined optimization of mean vector parameters and weighted DM 

coefficients (OMVWDM-RBF) training algorithm and training algorithm which includes the 

combined optimization of all parameters (OAP-RBF). 

Contrary to [25], the updated mean vector parameters are fed back to calculate a) for 

next iteration. This completes our description for the SOLF and MOLF based RBF training 

algorithms. It should be pointed out here that in case the multiple OLF being unable to train the 

RBF training algorithm we collapse it into a single OLF. 
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5.5 Effect of linear dependence in the input layer 

A linearly dependent input can be modeled as in (3.9). During the mean vector parameters 

optimization, the expression for gradient for MOLF can be rewritten as: 

�¢��� �  �O�¡��� � 2�� � �J���2�  3_��2�  015�2, �  2� � ���������#
$%& K · �3_��2��¡���

N
5%&

#Q
�%&  (5.20) 

where, 

�3_��2��¡��� �  201�2, ��'�� ���/��� X� W���������  !����H�Y,m$��, ��  W�#
$%& �

 1� X� ���������#6&
$%&  !���  1�Z �Y,m$��, �  1�Z (5.21) 

 

The hidden unit output ']���� in  
��_.�5��k���� gets additional terms as '�� ��� given in (3.11). The 

expression for Hessian matrix element can be re-written as: 

��� ��, �� � 2�� � �� �201�2, ��'�� ���/��� X� W���������  !B���H�Y,m$��, ��  W�#
$%& �N

5%&
#Q

�%&
 1� X� ���������#

$%&  !B��  1�Z �Y,m$��, �
 1�Z� �201�2, ��'�� ���/��� X� W���������  !����H�Y,m$��, ��  W�#

$%& �
 1� X� ���������#

$%&  !���  1�Z �Y,m$��, �  1�Z�� 

(5.22) 

 

Comparing (5.14) and (5.21) we see that some additional terms appear as sum of products 

within the square brackets in the expressions for gradient and hessian matrices thereby not 

forcing � � to be singular. Therefore from (5.21) we see that the Hessian � �  simply gains first 

and second degree terms unlike traditional Newton’s method, where a linearly dependent input 

cause the Hessian matrix to be singular. 

 



 

 41

5.6 Experimental analyses and verification 

We take twod, concrete and mattrn datasets to study the performance of SOMV-RBF 

(denoted by SOLF(m)+c+B), OMV-RBF (denoted by N(m)+B+m), OSPMV-RBF (denoted by 

N(B,m)+c and OMVWDM-RBF (denoted by N(c,m)+B). The performances of these training 

algorithms have also been shown with Gaussian noise data added to the input units 
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(a) 

 

(b) 

Figure 5.1 Performance of single OLF training algorithm with other multiple OLF based training 
algorithms on twod data set (a) normal condition (b) noisy input condition 
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(a) 

 

(b) 

Figure 5.2 Performance of single OLF training algorithm with other multiple OLF based training 
algorithms on concrete data set (a) normal condition (b) noisy input condition 
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(a) 

 

(b) 

Figure 5.3 Performance of single OLF training algorithm with other multiple OLF based training 
algorithms on mattrn data set (a) normal condition (b) noisy input condition 
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We observe that OSPMV-RBF and SOMV-RBF training algorithms perform best hence we 

now compare its performance with RLS-RBF training algorithm [25] and OAP-RBF training 

algorithm. The performance of these training algorithms will also be seen with Gaussian noise 

data. 
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(a) 

 

(b) 

Figure 5.4 Performance of single and multiple OLF based training algorithms with RLS-RBF 
training algorithm on twod dataset normal condition (b) noisy input condition 
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(a) 

 

(b) 

Figure 5.5 Performance of single and multiple OLF based training algorithms with RLS-RBF 
training algorithm on concrete dataset (a) normal condition (b) noisy input condition 
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(a) 

 

(b) 

Figure 5.6 Performance of single and multiple OLF based training algorithms with RLS-RBF 
training algorithm on mattrn dataset (a) normal condition (b) noisy input condition 
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We observe that the SOMV-RBF training algorithm is comparable to the RLS-RBF training 

algorithm and the noise sensitivity is low for both. However since the training algorithm we 

discuss optimizes mean vector parameters with a single OLF, we see a clear improvement 

when mean vector parameters optimization is performed with MOLF. For un-correlated datasets, 

optimizing mean vector parameters through single OLF has no effects. Above figures help us to 

identify few interesting observations which are as follows:  

1) Compared to SOLF, the training algorithms using MOLF perform better. 

2) Compared to all other training algorithm discussed, the OSPMV-RBF and OAP-RBF 

training algorithm not only outperforms the RLS-RBF training algorithm but also shows 

extremely good performance in presence of Gaussian noise. 

This section concludes an important point that mean vector parameters optimization training 

algorithms perform better than optimizing other two parameters. A striking difference can be 

observed from figures in previous chapter where we started using the optimization technique on 

weighted DM training algorithms and spread parameters vector. Not only the training algorithms 

improved at every step of including all parameters in the optimization process but their 

responses to the noisy data suggest that they become less sensitive for it. This will be the 

subject matter of the next chapter. 
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CHAPER 6 

ANALYSES OF VARIOUS RBF TRAINING ALGORITHMS 

  

We investigate the performance of the training algorithms discussed up-till now based 

on situations described in following subsections. We will analyze their performance using twod 

dataset. 

6.1 Effect of using weighted DM on different RBF training algorithms 

 

Figure 6.1 Effect of weighted DM on RBF training algorithms for twod dataset 
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Figure 6.1 helps us to identify the effectiveness of the weighted distance measure on the 

family of propose algorithms. The observations are given below:  

1) The training algorithms where we have not applied weighted distance measure (DM), 

we observe that the training algorithm in which only the mean vector parameters has 

been changed keeping the spread parameter constant during the training process 

performs the best. This seems to be logical since once the width has been fixed to a 

value, then during the training process we optimize position of the mean vector 

parameters on the local induced region of high activation. By optimizing a) , we 

essentially place these "caps" of fixed width Gaussian function covering the entire 

weight space. This leads to better generalization. 

2)  We notice that although the starting point of the starting training error is higher after 

including weighted DM but the convergence rate is faster than the non-weighted DM 

curves 

3) There is improvement for those training algorithms where weighted DM has been 

introduced as compared to those discussed in (1). This supports our theoretical 

explanation of the advantage of using a weighted DM. Except from the plots with only 

spread parameters optimization, we see that introducing weighted DM significantly 

improves all the other training algorithms. We also observe that there is a vast 

improvement in the combined optimization of mean vector parameters and spread 

parameters training algorithm if we introduce weighted DM. This establishes the fact 

that using weighted DM is a better choice than normal Euclidean distance. 

4) The gradient of the plots tells the convergence rate of the training. We observe that for 

all the training algorithms, there is a significant error convergence. This suggests that 

changing only ` is not a good approach for better training performance. 
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6.2 Effect of applying Newton’s method on different RBF parameters 

 

Figure 6.2 Effect of using Newton’s method on different parameters for twod dataset 

 

Figure 6.2 discusses the Newton’s method approach. Following observations are made:  

1) Applying Newton’s method on the DM alone is not very beneficial. It can be 

visualized that since we are trying to encompass the entire input space with uneven and un-

tuned Gaussian functions whose width (controlled by spread parameter) and position of peak  

(mean vector) are not fully optimized, it will not be completely covered thus leading to poor 

generalization. 

2) The faster convergence is observed when we apply Newton’s method to either mean 

or spread parameters or to all of them.  

3) Not much improvement is seen if we leave kernel vector to optimize via Newton’s 

method. Therefore based on this figure we can say that for a better generalized RBF network, 
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tuning mean vector parameters is of much greater importance than the spread parameters. This 

is an important conclusion made.  

 

6.3 Effect of applying Newton’s method on weighted DM on different RBF training algorithms 

 

Figure 6.3 Effect of Newton’s method on weighted DM on various RBF training algorithms for 
twod dataset 

 

Figure 6.3 discusses the effect of Newton’s method on weighted DM in various RBF 

training algorithms. After we propose a weighted DM in the conventional RBF training 

algorithms, one approach we try is to see the effect of combining it with the conventional 

network parameters and other is to apply Newton’s method to optimize it. 

Figure 6.3 reveals several important facts about the effect of applying Newton’s method 

to distance measure.  

1) By combining the optimization of spread parameter and weighted DM, we see a 

significant improvement. 
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2) Although optimizing mean vector parameters still governs the overall performance of 

the networks, we observe from plot 4 that applying Newton’s method on weighted DM gives 

smooth convergence behavior  

3) Once the Newton’s method has been applied to spread parameters, not much 

difference is observed in the error curve.  

We conclude that optimizing weighted DM coefficients has more effect on the performance 

of the network than the spread parameters but less than the mean vector parameters. 

 

6.4 Effect of applying Newton’s method repeatedly 

In Figure 6.4, we try to see the effect of applying repetitive Newton’s method on various 

parameters. The main constraint seen here is on computational time which increases 

considerably. We observe that while we apply Newton’s method 40 times to the spread 

parameters, the performance is not much improved. Similar studies have been done on other 

parameters leading to the conclusion that after a certain threshold, the training reaches 

saturation. 
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Figure 6.4 Effect of repetitive Newton’s method on spread parameter on twod dataset 

 

An important conclusion coming from this chapter is that a change in mean vector 

parameters either by optimizing it via Newton’s method or adding weighted DM to it has more 

profound effect than optimizing the spread parameters. The experimental results further bolster 

this conclusion. A theoretical explanation can be given on this based on sensitive analyses 

where we observe that error function is more prone to change in mean vector parameters than 

to the spread parameters. Visualizing this, once the spread parameter is set, mean vector 

parameters is deciding the position of the Gaussian function to cover the entire input space. 

Hence the effect of the position of the Gaussian function is more important than the width of 

each of them. 
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CHAPTER 7 

FINAL RBF TRAINING ALGORITHMS ANALYSES 

Based on the conclusion made in Chapter 6, we take two training algorithms for further 

investigation. Firstly, the training algorithm where does not have weighted DM and conventional 

parameters (spread parameters and mean vector parameters) are optimized and Secondly, the 

training algorithm in which we optimize all three parameters. These two training algorithms will 

be compared with LM and RLS-RBF training algorithms. 

Figure 7.1 shows the flowchart for the two-step hybrid learning procedure to train the 

proposed RBF network by optimizing all the three parameters. Deleting the DM optimization 

step from the flowchart will result in the algorithm for optimizing only conventional parameters. 
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Figure 7.1 Flowchart for optimizing all three parameters 
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7.1 Computational burden 

In this section, we describe the computational burden for the proposed training 

algorithms that we finally take up for comparison with RLS-RBF and LM training algorithms. The 

total number of weights in the network is denoted as: 

�� � ¬��  ��  1�  ����  1� (7.1) 
 

Let net control denote the step involving the initialization of the parameters as discussed in sub-

section 2.2. The number of multiplications required per training iteration for this is denoted by 

¬$� which is given by: 

¬$� � 2��� (7.2) 
 

The number of multiplications required per training iteration to solve for output weights by using 

orthogonal least squares [49] is ¬1®, which is given by: 

¬1® � �B��B  1� §¬  16 �B�2�B  1�  32« 
(7.3) 

 

The number of multiplication required per training iteration in optimizing the spread parameters 

is given by:
 

¬+ � ¬$�  ¬1®  ��J��R�  ��  ¬���  1�T  ¬�BK (7.4) 

 

and the number of multiplication required per training iteration in optimizing the mean vector 

parameters is given by: 

¬Y � ¬$�  ¬1®  ��J���2�  3¬  1�  ��"�¬  1�  ¬�B  �"K (7.5) 

 

Therefore the training algorithm in which we jointly optimize the spread parameters and mean 

vector parameters, the number of multiplication is given by: 
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¬+Y � ¬+  ¬Y (7.6) 
 

Let ¬�  denotes the number of multiplication required per training iteration for calculating the 

weighted DM coefficients which is given by: 

¬� � ��� (7.7) 
 

The number of multiplication in the training algorithm where we jointly optimize all the three 

parameters is denoted by ¬�+Y  and is given as : 

¬�+Y � ¬�  ¬+Y  (7.8) 
 

For RLS-RBF training algorithm, the number of multiplication required per training iteration is 

denoted by ¬±²³and is given by: 

¬±²³ � ���  ¬1®  (7.9) 
 

For LM training algorithm, the number of multiplications required per training iteration during the 

backpropagation step is given by: 

¬´� � ��J¬�B  2����  1�  ¬��  6��  4�K  �� (7.10) 
 

Thus the total multiplications per training iteration in LM training algorithm are: 

¬Y � ¬´�  ���¬�BR�B  3����  1�T  4��"��  1�"H  ���  ��"  (7.11) 
 

7.2 Experimental analyses 

We now compare the performance of our two training algorithms with LM and RLS-RBF 

training algorithms. For a given network, we obtain the training error and the number of 

multiplications required for each training iteration. We also obtain the validation error for a fully 

trained network. This information is used to subsequently generate the plots and compare 

performances. We use k-fold cross validation procedure to compare the generalization 

performance of the training algorithms. During our investigation we take two highly correlated 
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(ρ · 0.8) datasets and other two as least correlated (ρ ¹ 0.2� datasets. Here ρ is the correlation 

coefficient. 

7.2.1 twod dataset  

‘twod.tra’ is a highly correlated input data set. We trained all the training algorithms with 

hidden unit as 20. In Fig. 5, the Average mean square error (MSE) for training versus the 

number of iterations ��5-� is plotted for each algorithm in figure 7.1. 
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(a) 

 
(b) 

Figure 7.2 Performance of final training algorithms with LM and RLS-RBF on twod (a) Number 
of Iterations vs Average Training Error (b) Number of Multiplications vs Average Training Error 
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From the plot we deduce that the network including weighted DM improves the performance of 

the training algorithm as compared to one in which no weighted DM is used. However LM 

performs well from both the training algorithms. Figure 7.2 plots the Number of Multiplications vs 

the Average Training Error for training which reveals the downside of using LM. Although LM 

performs better than both the two training algorithms but it also takes a large computation time 

owing to the large number of numerical calculation involved. Hence its practical application on 

large data set is extremely limited. This is where our training algorithms are highly efficient since 

they are small and powerful and performs well on large dataset. 

 

7.2.2 oh7 dataset 

In oh7 dataset, not only the input values but also one of the output values is highly 

correlated with the input values unlike twod. We train all the RBF training algorithms with hidden 

unit as 20. Figure.7.3, plots the MSE for training versus the number of iterations for all 

algorithms. The observations are similar to that of previous dataset but we observe that due to 

high input-output correlation the algorithms which include weighted DM optimization as well as 

those which optimizes only  ` and a, both, comes close towards the optimal performance. 
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(a) 

 

(b) 

Figure 7.3 Performance of final training algorithms with LM and RLS-RBF on oh7 (a) Number of 
Iterations vs Average Training Error (b) Number of Multiplications vs Average Training Error 
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From  figure 7.3 we see that LM performs marginally well than our proposed training 

algorithm but in figure 7.4 it is revealed that LM takes fairly large amount of multiples making it a 

slow training algorithm for large data set. It will be interesting to see the performance of the 

above three training algorithms on uncorrelated data set which will be discussed in next section. 

 

7.2.3 mattrn dataset 

In mattrn dataset, each pattern consists of 4 input features and 4 output features. For 

this data set, all the RBF training algorithms are trained with hidden unit as 15. mattrn data set 

is un-correlated. 
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(a) 

 

(b) 

Figure 7.4 Performance of final training algorithms with LM and RLS-RBF on mattrn (a) Number  
of Iterations vs Average Training Error (b) Number of Multiplications vs Average Training 
Error 
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From figure 7.4 we make an important observation. The training algorithm with 

weighted DM optimization performs closely with the training algorithm based on `  and m 

optimization. This concludes that including weighted DM has not much effect on the 

uncorrelated dataset and since they have slightly more number of multiples, it will be 

computationally economical to use the training algorithm based on ` and m optimization alone. 

LM performs almost similar to our training algorithms here but again owing to the large number 

of multiples as shown in figure 7.6 it is practically not a viable training algorithm to train the 

network. 

 

7.2.4 concrete dataset  

concrete is an un-correlated dataset used to approximate the nonlinear function of age 

and ingredients of concrete compressive strength. With a total number of patterns as 1030, this 

dataset consists of 8 inputs and 1 output and hidden units are takes as 20.This dataset is also 

least correlated and we see the same trend as we see in mattrn. 
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(a) 

 

(b) 

Figure 7.5 Performance of final training algorithms with LM and RLS-RBF on concrete (a) 
Number of Iterations vs Average Training Error (b) Number of Multiplications vs Average 

Training Error 
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Again the performance of the training algorithm with `  and m optimization is close to the 

training algorithm having weighted DM optimization. 

 

7.3 k-fold cross validation 

We now use the k-fold cross validation procedure to show the generalization abilities of 

all the three training algorithms. For each dataset, we split it randomly into 10 non-overlapping 

parts of equal size, and use 9 parts of total data for training and leave the remaining one part for 

testing. This procedure was repeated till we have exhausted all 10 combinations. Then, by 

training all these combinational datasets, we got the average of training errors. Also, the 

validation error of each dataset was obtained by averaging all corresponding testing errors on 

every testing dataset. The training MSEs and test MSEs of k-fold crossing validation on these 

four datasets are listed as Table 1 respectively. 
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Table 7.1 Comparison of k-fold cross validation on different datasets 

 

Data Set  N(B,m) N(c,B,m) LM 

Twod 

trnE  0.2503 0.2417 0.2005 

valE  0.3589 0.3270 0.2344 

oh7 

trnE  1.5069 1.4643 1.2687 

valE  1.7056 2.3987 2.1407 

Mattrn 

trnE  0.0084 0.0076 0.0048 

valE  0.0199 0.0180 0.0235 

Concrete 

trnE  39.647 40.2735 23.3564 

valE  40.2950 40.8721 31.9576 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

  

In this thesis, the optimization of RBF neural network parameters with Newton’s method 

is analyzed. Optimizing the RBF neural network parameters with Newton’s method is an 

improvement over the existing training algorithms in the literature. The proposed training 

algorithms are simple to train and yet powerful with minimum number of hidden units. We are 

successfully able to train small but powerful network with better generalization and training 

capability. Apart from the conventional parameters we also introduced weighted DM. Training of 

the DM weights significantly improves the RBF network. From our experimental results we 

conclude that the performance of the various training algorithms is affected by the data set 

correlation. The effect of Newton’s method is more pronounced in correlated datasets. For un-

correlated dataset the effect of distance measure (DM) is not much and its performance is same 

with training algorithms where only conventional parameters have been optimized. Therefore 

DM is significantly helpful when the dataset is correlated. The generalization ability is further 

substantiated by the k-fold validation. Newton’s method on all three parameters helps 

significantly in improving the performance of RBF networks. 

We also experimented with single and multiple OLF and combined it with spread 

parameters and mean vector parameters. We concluded that the multiple OLF training of the 

mean vector parameters is more effective than the training of `.The experimental results further 

bolster this conclusion. It came out from our analyses that optimizing mean vector parameters 

has more effect on the training result than any other parameter. We also mathematically 
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observed the reason of non-singularity of Hessian matrix in case of linear dependency of inputs 

Incorporating a method to optimally select the number of hidden units based on different dataset 

is definitely necessary. Experimenting with L-2 error norm, VC dimension for the proposed 

training algorithms are some of the future areas that needs to be explored 
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APPENDIX A 
 
 

CLUSTERING ALGORITHMS 
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1. K-means clustering  

K-means clustering algorithm is used to locate a set of k RBF center between the training 

set vector ��  and the nearest of the k receptive mean vectors a) [51]. K-means algorithm 

allocated each data point to one of the c cluster to minimize the within cluster sum of square: 

� � º��  !5º"�»¼½
�
5%&  (1.1) 

where¾5  is the data points in the ith cluster and !5  is the mean for that points over the 

cluster i. (1.1) denotes a distance norm which is minimized in the mean square sense.  

 

2. Self-Organizing Map (SOM) 

In our work we use Self-Organizing feature Map (SOM) for1 dimensional cluster in order to 

set up initial mean vector parameters and spread parameters value. SOM is a variation to the 

adaptive K-means where we cluster the data set based upon the relative distance. The 

advantage of using SOM over K-means is that the former take care of the re-ordering of the 

cluster. While in SOM, the cluster generated do not form an optimal quantize, but may serve as 

an initial cluster generator for other clustering techniques. 
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APPENDIX B 
 
 

 DESCRIPTION OF TRAINING DATA SETS 
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In this appendix, we give some description about the training data sets which are used 

through the thesis.  

Training data set twod is available on the Image Processing and Neural Networks Lab 

repository [50]. It contains simulated data based on training algorithms from back-scattering 

measurements [50]. This training file is used in the task of inverting the surface scattering 

parameters from an inhomogeneous layer above a homogeneous half space, where both 

interfaces are randomly rough. The parameters to be inverted are the effective permittivity of the 

surface, the normalized rms height, the normalized surface correlation length, the optical depth, 

and single scattering albedo of an inhomogeneous irregular layer above a homogeneous half 

space from back scattering measurements. The training data set has 8 inputs, 7 outputs, and 

1768 patterns. The inputs consist of eight theoretical values of back scattering coefficient 

parameters V1  at ¿  and À  polarizations and four incident angles ( 101 , 301, 501, 701� . The 

outputs were the corresponding values of permittivity, upper surface height, lower surface 

height, normalized upper surface correlation length, normalized lower surface correlation length, 

optical depth and single scattering albedo of an in-homogenous irregular layer above a 

homogenous half space. 

Training data set mattrn is available on the Image Processing and Neural Networks Lab 

repository [50]. It contains the data for inversion of random two by two matrices [50]. Each of the 

2000 patterns consist of 4 input features and 4 output features. The input features, which are 

uniformly distributed between 0 and 1, represent matrix elements and the four output features 

are elements of the corresponding inverse matrix. The determinants of the input matrices are 

considered to be between 0.3 and 2.  

oh7 is available on the Image Processing and Neural Networks Lab repository [50]. 

Inputs for the training data set oh7 are VV and HH polarizations at L30, 40 deg, C 10, 30,40,50, 

60 deg, and X 30,40,50 deg [50]. The corresponding desired outputs are Θ � ÄÅ, Æ, !�ÇE, where 
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Åthe rms surface height is, Æ is the surface correlation length; !� is the volumetric soil moisture 

content in �/W!�. There are 20 inputs, 3 outputs, 10453 training patterns. 

concrete data file is available on the UCI Machine Learning Repository [51]. It contains 

the actual concrete compressive strength (MPa) for a given mixture under a specific age (days) 

determined from laboratory. The concrete compressive strength is a highly nonlinear function of 

age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, super 

plasticizer, coarse aggregate, and fine aggregate. The data set consists of 8 inputs and 1 output 

per pattern, with a total of 1030 patterns. 
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