

SECOND ORDER TRAINING ALGORITHMS FOR RADIAL BASIS FUNCTION NEURAL

NETWORK

By

KANISHKA TYAGI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2011

Copyright © by Kanishka Tyagi 2011
All Rights Reserved

To my Grandmother

士不可不弘毅，任重而道远---孔夫子
('shibukeyibuhongyi, renzhongerdaoyuan’)

(An educated gentleman cannot but be resolute and broad-minded, for he has taken up a heavy
responsibility and a long course—Confucius)

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervising professor Dr Michael T.

Manry, who gave me this interesting and challenging problem and helped me through my

struggles with it. I thank him for giving me his constant guidance, consistent encouragement

and financial support throughout my Master’s program. I am grateful to him for the countless

hours he spend discussing various aspects of the research and revising drafts of my papers and

the thesis. His method of research and level of perfection in every aspect was a learning

experience for me.

Thanks to my lab-mates, especially Dr.Xun Cai for her constant support. I thank her for

spending valuable time on debugging the codes in all the wee hours and providing me

motivation whenever I needed. It is my pleasure to offer my love and respect to my friends

Sandy, Xueyang, Himanshu, Rahul, Sayan and Rajinikant for their generous help. Special

thanks to my friends Abhinav and Astha for being extremely supportive during the writing stage

of my thesis.

I express my sincere gratitude to my grandparents and parents back at home for their

sacrifice, encouragement and patience. Special thanks to my uncle, Pankaj Tyagi for his

endless love and support during all this years of studies. Thanks to my cousin sisters Anubhuti,

Anshika, Aditi, my brother Harshvardhan and my cousin brothers, Anubhav, Aman, Priyansh for

always being cheerful and supportive.

 November 18, 2011

v

ABSTRACT

SECOND ORDER TRAINING ALGORITHMS FOR RADIAL BASIS FUNCTION NEURAL

NETWORKS

 Kanishka Tyagi, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Michael T Manry

 A systematic two step batch approach for constructing and training of Radial basis

function (RBF) neural networks is presented. Unlike other RBF learning algorithms, the

proposed paradigm uses optimal learning factors (OLF’s) to train the network parameters, i.e.

spread parameters, mean vector parameters and weighted distance measure (DM) coefficients.

Newton’s algorithm is proposed for obtaining multiple optimal learning factors (MOLF) for the

network parameters. The weights connected to the output layer are trained by a supervised-

learning algorithm based on orthogonal least squares (OLS). The error obtained is then back-

propagated to tune the RBF parameters. The proposed hybrid training algorithm has been

compared with the Levenberg Marquardt and recursive least square based RLS-RBF training

algorithms. Simulation results show that regardless of the input data dimension, the proposed

algorithms are a significant improvement in terms of convergence speed, network size and

generalization over conventional RBF training algorithms which use a single optimal learning

factor (SOLF). Analyses of the proposed training algorithms on noisy input data have also been

carried out. The ability of the proposed algorithm is further substantiated by using k-fold cross

validation. Initialization of network parameters using Self Organizing Map (SOM), efficient

vi

calculation of Hessian matrix for network parameters, Newton’s method for optimization, optimal

learning factors and orthogonal least squares are the subject matter of present work.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

LIST OF ILLUSTRATIONS... x

LIST OF TABLES ..xii

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

1.1 Radial basis function neural network ... 1

1.2 Research objectives ... 3

1.3 Organization of thesis .. 3

2. CONSTRUCTION AND TRAINING OF RBF NEURAL NETWORK 5

 2.1 Conventional RBF topology and notation .. 5

 2.2 RBF networks initialization ... 9

2.2.1 Initializing the weighted distance measure 9

2.2.2 Initializing spread parameters and mean vector parameters 10

 2.3 Existing training algorithms .. 11

 2.3.1 K-means RLS algorithm ... 11

 2.3.2 Training algorithm based on output weight optimization 14

 2.3.3 Levenberg- Marquardt algorithm.. 15

 2.4 Problems with existing RBF training algorithms ... 17

 3. OPTIMIZATION OF WEIGHTED DISTANCE MEASURE ... 18

3.1 Theoretical background .. 18

viii

3.2 Mathematical treatment .. 19

3.3 Algorithm for optimizing weighted DM coefficients .. 20

3.4 Effect of linear dependence in the input layer .. 21

3.5 Experimental analyses and verification ... 22

 4. OPTIMIZATION OF SPREAD PARAMETERS ALONG WITH WEIGHTED DM 27

4.1 Theoretical background .. 27

4.2 Mathematical treatment .. 27

4.3 Algorithm for optimizing spread parameters .. 28

4.4 Effect of linear dependence in the input layer ... 29

4.5 Experimental analyses and verification ... 30

5. OPTIMIZATION OF MEAN VECTOR PARAMETERS ALONG WITH
 WEIGHTED DM AND SPREAD PARAMETERS .. 35

5.1 Theoretical background .. 35

5.2 Mathematical treatment .. 35

 5.3 Learning factor ... 36

5.3.1 Single OLF for optimizing mean vector parameters 36

5.3.2 Multiple optimal learning factor .. 37

5.4 Algorithm for optimizing mean vector parameters ... 39

5.5 Effect of linear dependence in the input layer .. 39

5.6 Experimental analyses and verification ... 41

 6. ANALYSES OF VARIOUS RBF TRAINING ALGORITHMS 50

6.1 Effect of using weighted DM on different RBF training algorithms 50

6.2 Effect of applying Newton’s method on different RBF parameters 52

6.3 Effect of applying Newton’s method on weighted DM on different RBF
 training algorithms .. 53

6.4 Effect of applying Newton’s method repeatedly ... 54

 7. FINAL RBF TRAINING ALGORITHMS ANALYSES .. 56

ix

7.1 Computational burden .. 58

7.2 Experimental analyses ... 59

 7.2.1 twod dataset ... 60

7.2.2 oh7 dataset .. 62

7.2.3 mattrn dataset .. 64

7.2.4 concrete dataset ... 66

7.3 k-fold cross validation ... 68

8. CONCLUSION AND FUTURE WORK .. 70

APPENDIX

A. CLUSTERING ALGORITHMS .. 72

B. DESCRIPTION OF TRAINING DATASET .. 74

REFERENCES ... 77

BIOGRAPHICAL INFORMATION .. 82

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Topology of fully connected RBF Neural Network………………………………….......……...6

3.1 Performance of OWDM-RBF training algorithm with OWO-RBF and
 RLS-RBF training algorithms for twod dataset (a) normal condition
 (b) noisy input condition..……………………......……23

3.2 Performance of OWDM-RBF training algorithm with OWO-RBF and
 RLS-RBF training algorithms for concrete dataset (a) normal condition
 (b) noisy input condition…………..…..…..……..24

3.3 Performance of OWDM-RBF training algorithm with OWO-RBF and
 RLS-RBF training algorithms for mattrn dataset (a) normal condition
 (b) noisy input condition……………….....…………..25

4.1 Performance of OSP-RBF and OSPWDM-RBF training algorithms
 with RLS-RBF training algorithm on twod dataset (a) normal condition
 (b) noisy input condition..….31

4.2 Performance of OSP-RBF and OSPWDM-RBF training algorithms
 with RLS-RBF training algorithm on concrete dataset (a) normal condition
 (b) noisy input condition...........…..32

4.3 Performance of OSP-RBF and OSPWDM-RBF training algorithms
 with RLS-RBF training algorithm on mattrn dataset (a) normal condition
 (b) noisy input condition.....…..33

5.1 Performance of single OLF training algorithm with other multiple
 OLF based training algorithms on twod data set (a) normal condition
 (b) noisy input condition…...42

5.2 Performance of single OLF training algorithm with other multiple
 OLF based training algorithms on concrete data set (a) normal condition
 (b) noisy input condition..……..43

5.3 Performance of single OLF training algorithm with other multiple
 OLF based training algorithms on mattrn data set (a) normal condition
 (b) noisy input condition……………..….44

xi

5.4 Performance of single and multiple OLF based training algorithms
 with RLS-RBF training algorithm on twod dataset (a) normal condition
 (b) noisy input condition……….......……..46

5.5 Performance of single and multiple OLF based training algorithms
 with RLS-RBF training algorithm on concrete dataset (a) normal condition
 (b) noisy input condition…….............…..……..47

5.6 Performance of single and multiple OLF based training algorithms
 with RLS-RBF training algorithm on mattrn dataset (a) normal condition
 (b) noisy input condition………………..48

6.1 Effect of weighted DM on RBF training algorithms for twod dataset……….….................…50

6.2 Effect of using Newton’s method on different parameters for twod dataset…….……..........52

6.3 Effect of Newton’s method on weighted DM on various RBF training algorithms
 for twod dataset..…...53

6.4 Effect of repetitive Newton’s method on spread parameters on twod dataset ……….....….55

7.1 Flowchart for optimizing all three parameters ……………………………………………...…..57

7.2 Performance of final training algorithms with LM and RLS-RBF on twod
 (a) Number of Iterations vs Average Training Error (b) Number of Multiplication vs
 Average Training Error…………..….......61

7.3 Performance of final training algorithms with LM and RLS-RBF on oh7
 (a) Number of Iterations vs Average Training Error (b) Number of Multiplication vs
 Average Training Error……………………...………..…….63

7.4 Performance of final training algorithms with LM and RLS-RBF on mattrn
 (a) Number of Iterations vs Average Training Error (b) Number of Multiplication vs
 Average Training Error………………………………………...………65

7.5 Performance of final training algorithms with LM and RLS-RBF on concrete
 (a) Number of Iterations vs Average Training Error (b) Number of Multiplication vs
 Average Training Error……………...………….....67

xii

LIST OF TABLES

Table Page

7.1 Comparison of k-fold cross validation on different datasets .. 69

1

CHAPTER 1

INTRODUCTION

1.1 Radial basis function neural network

The Radial basis function (RBF) network is a three layer supervised feed-forward

network [1] used in interpolation, probability density function estimation and approximation of

smooth multivariate functions [2]-[7]. The RBF was first introduced as a solution to the real

multivariate interpolation problem. The RBF training algorithm can approximate any multivariate

continuous function arbitrarily well on a compact domain if a sufficient number of radial basis

functions are given [4].

The most important feature that distinguishes the RBF network from earlier radial basis

function based training algorithms is its adaptive nature which generally allows it to utilize a

relatively small number of locally tuned units (RBF’s). RBF networks were independently

proposed by [8]-[11]. The RBF networks covered in the literature mostly differ in their training

algorithm. Broadly they can be classified into three paradigms:

(1) No training: in this case, all parameters are calculated and fixed and no training is

required. The network in this case is too large, slow and do not have much practical

application.

(2) Half training: in this case, the hidden later parameters are calculated either heuristically

or by some clustering algorithm and fixed in advance. Only the output weights are

trained using the least squares algorithm.

2

(3) Full training: in this case all parameters and weights are trained using a training

algorithm.

Most of the RBF networks studied in the literature are trained using batch learning

algorithms, though some sequential learning algorithms, such as the generalized growing and

pruning RBF (GGAP-RBF) algorithm have been proposed [12]. However the convergence and

generalization performance of the network is an “open problem”. It has been proposed to

optimize hidden units in the network to obtain a more compact network as compared to large

conventional RBF networks [13]-[15]. However to select a subset network, the algorithm uses a

subset selection method based on orthogonal least squares (OLS) or regularized OLS where a

full network is designed after all the training observations are presented. Based on this subset

selection technique, investigators have proposed a regularized forward selection (RFS)

algorithm that combines forward subset selection and zero-order regularization to achieve better

generalization [16].

In order to train the RBF network, mostly first order methods are used. Gradient descent

learning [17], [18] offers a balance between performance and training speed. These networks

are compared with sigmoid hidden unit based feed forward neural networks in [18]-[20]. The

combination of steepest descent and Newton’s method would seem to be more promising for

unconstrained optimization problems [21]. This method is convergent and has a high

convergence rate. Since Newton’s method for the RBF often has non-positive definite or even

singular Hessian, Levenberg-Marquardt (LM) or other methods are used instead. However

second order methods do not scale well and suffer from heavy computational cost. Although

first order methods scale better, they are sensitive to input means and gain factors [22]. A

hybrid learning procedure is proposed in [11] which employs clustering algorithms like K-means

or determining the center for radial basis function and supervised learning for updating output

weights connecting the radial basis function unit (hidden unit) to the output unit. In [23] a

3

gradient training algorithm for updating the network parameters (mean vector parameters,

spread parameters) and output weights is presented. A novel space filling curves with

genetically evolving parameters is proposed in [24].

1.2 Research objectives

Formulation of RBF network via interpolation theory is rather neat. However the use of

interpolation based on noisy data could lead to misleading results. The calculation of the

pseudo inverse weight matrix increases the cost of calculations when the number of data and

hidden units increases. In order to handle this, it is suggested to use orthogonal least squares

algorithm to obtain weight matrix [26]. The choice of network parameters is also a bottleneck in

designing the RBF neural network. The performance of RBF training can be greatly improved by

choosing an efficient output layer training strategy. A hybrid approach is proposed in [25] where

parameters are determined, fixed and the output weights are updated using recursive least

squares algorithm. However, even the hybrid learning approach [25] suggests that there is an

absence of an overall optimal criterion that combines the training of the hidden and output

layers and assumes that the whole system is optimality in a statistical sense. Hence a different

approach to the design of an RBF network is needed. Our investigation’s focus is on the

efficient second order optimization of network parameters and the effects of optimal learning

factors on the RBF training.

1.3 Organization of thesis

Chapter 2 reviews the construction, notation and training of conventional RBF

networks. It introduces the proposed training algorithm and explains the basic topology and

notation used in describing the family of proposed RBF training algorithms. We also introduce a

new parameter vector of distance measure coefficients. Non heuristic initializations for all the

4

parameters in the proposed training algorithm are discussed. Then we review existing training

algorithms that are later used for comparisons with our family of RBF training algorithms. The

chapter concludes with problems prevalent in existing RBF training algorithms while initializing

the parameters as well when using Newton’s method

Chapter 3 presents the theoretical background and motivation for using distance measure

parameter coefficients. Next is the mathematical formulation for updating this novel parameter

vector with a learning factor using Newton’s method. We then study the effect of linearly

dependent inputs on gradient and Hessian calculations. Next we investigate the effects of noise

on the RBF training algorithms. We compare the performance of these training algorithms with

recursive least square based RBF training algorithm.

In a similar manner, chapters 4 and 5 present detailed analyses of the spread parameters

vector and the mean vector parameters respectively. In addition, chapter 5 describes the use of

single and multiple optimal learning factors for updating the mean vector parameters.

Chapter 6 investigates the various combinations possible within the family of proposed

training algorithms leading to a set of final training algorithms that are subsequently used for

further analyses. We study the effect of using Newton’s method repeatedly on different

parameters, the effect of using the proposed weighted DM coefficient on various training

algorithms. In the end we study the effect of applying Newton’s method on all the three

parameters which paves way for concluding a final set of training algorithms.

Chapter 7 focus on the experimental analyses on the final two training algorithms that performs

best in our family of training algorithms and there comparisons with an advance second order

method called Levenberg Marquardt (LM) algorithm and RLS-RBF algorithm. Since LM is

computationally expensive, we analyze the computational burden of our set of RBF training

algorithms and compare it its performance with LM and RLS-RBF. The generalization capability

is finally shown using k-fold validation. Chapter 8 presents the conclusion and future work.

5

CHAPTER 2

CONSTRUCTION AND TRAINING OF RBF NEURAL NETWORK

In this chapter, the conventional RBF network notation and architecture are introduced.

We then present an improved RBF network which includes a distance measure (DM) parameter

vector and discuss the initialization of RBF network parameters. Three training algorithms are

described next. The chapter concludes with a list of problems in existing RBF training

algorithms.

2.1 Conventional RBF topology and notation

Without the loss of generality, we restrict ourselves to a three-layer fully connected RBF

with non-linear activation functions. The structure of the RBF is shown in Figure 1. The training

dataset consists of �� training patterns ���, ��� where the pth input vector �� , and its

corresponding pth desired output vector �� have dimensions N and M respectively. Let the input

vectors be augmented by an extra element x
�N 1�=1, so that �� � �x
�1�, x
�2� … , x
�N
1�T.

The input units are directly connected to the single hidden layer with �� hidden nodes.

It should be noted here that �� is the key factor not only for the performance but also the

computational complexity of the network. For the kth hidden unit, ��(k=1, 2…��) denotes the

mean vector of kth cluster. �� is also known as the kernel vector or center vector.

6

Figure 2.1 Topology of a fully connected RBF Neural Network

7

In this case, for the pth training pattern, the kth hidden unit Euclidean net function is:

������� � ������� !�����"#
$%& (2. 1)

where !���� is the nth element of �� corresponding to the nth input unit.

In Figure1, the dotted lines between input and hidden units signify that instead of weighted

sum/Gaussian activation, each hidden unit output '(��� is obtained by calculating the

‘closeness’ of the input �� to �) associated with the kth hidden unit. In this case, the kth hidden

unit output '���� is calculated as a Gaussian basis function, for the pth pattern:

'���� � �*+���$,-.���
(2. 2)

Here /��� is the spread parameter defined as the inverse of the width of the kth hidden

unit Gaussian function with mean vector �) . The mean vector parameter �) and spread

parameter /��� are conventional parameters of RBF neural networks. The hidden layer is fully

connected to the output layer via output weights. If 01��2, �� denotes the weight connecting the

kth hidden unit’s activation '���� to the ith output 3��2� then the output 3��2� for the pth training

pattern is:

3��2� � � 01��2, �� · '���� � 015�2, ��#6&
$%& · �����#7

�%& (2. 3)

We also include the bypass weights 015�2, �� connecting the nth input unit to the ith

output unit. The linear output response vector 8(in (2.3) can be re-written as:

8(� 9:; · <(9:= · >((2. 4)

8

For convenience, we can augment the input vector as:

�?���� � @ ����� � � 1,2, … , � 1 � � � 1 '��� � 1� � � � 2, … . , �B
C

(2. 5)

where �B denotes � 1 �� . In vector notation, (2.5) can be rewritten as where <D(�
�<(E: G: >(EH. Similarly the weights can be denoted as:

01�2, �� � @ 01��2, �� 1 I � I � 015�2, � 1� � � � 1 015�2, � � 1� � 2 I � I �B
C

(2. 6)

 In vector notation (2.6) can be re-written as 9: � J9:;: 9:=K where 9:denotes all the

output weights. Using the augmented input vector in (2.5) and output weights in (2.6), (2.4) can

be re-written as:

3��2� � � 01�#L
�%& 2, ���?����

 (2.7)

In vector notation (2.7) can be rewritten as:

8(� 91 · <D((2.8)

The training error for each pattern is

M(� �����2� 3��2�H"N
5%& (2.9)

Here ���2� denotes the ith desired outputs for the pth input pattern. In batch mode

training, the error function of a RBF is measured using the Mean Square Error (MSE) as:

M � 1�� � O�
#P

%& � 1�� � �����2� 3��2�H"N
5%&

#Q
�%& � 1�� �RS(8(TERS(8(T#P

%&

 (2.10)

9

where S(and 8(are column vectors. The general purpose of minimizing the MSE is weight

optimization [27]-[29].

2.2 RBF networks initialization

In this sub-section we introduce and initialize the weighted distance measure (DM)

coefficients vector. We then initialize conventional network parameters including the spread

parameters and mean vector parameters.

2.2.1 Initializing the weighted distance measure

Let the � -dimensional vector U store coefficients for the weighted DM vector. Let V���

represent the standard deviation of input ����.Then W��� is defined as:

W��� � 1 X � 1V"�!�
#

Y%& Z V"���[((2.11)

For the pth training pattern, the kth hidden unit net function is now modified as:

���\ ���� � � W��� · ������ !�����"#6&
$%& ((2.12)

where ���\ ���� is the weighted DM. The Gaussian basis function is:

']���� � �*+���$,-̂.��� (2.13)

Following (2.3), the ith output for the pth training pattern when the weighted DM is used is,

3_��2� � � 01��2, �� · ']���� � 015�2, ��#6&
$%& · �����#7

�%& ((2.14)

10

2.2.2 Initializing spread parameters and mean vector parameters

We use self-organizing feature map (SOM) clustering in order to initialize the spread

parameter vector ` and mean vector parameter a). SOM is a variation of adaptive K-means

clustering where we cluster the data set based upon the relative distance.

For initializing ` , let b be an ��- by-��matrix comprising of elements d�a), ad� which

are the distances between the mean vector parameters,

d�a), ad� � �J!���� !B��� K"e
f%& ((2.15)

We reorder each row in b so that the smallest elements come first while ignoring the zero

valued distances. For the kth hidden unit, if g is the user-chosen number of mean vectors a)

that we want to activate in '����such that:

'���� h �*& (2.16)

then we choose the gth smallest distance for each row of b to form the vector i. For the kth

hidden unit, j���, the elements of vector i should satisfy the relation:

�*+���k��� � �*& (2.17)

Hence,

/��� � 1j��� (2.18)

for 1 I � I ��. This method of initialization ensures that the /��� coefficients are neither too big

nor too small. Geometrically, this condition makes sure that individual Gaussian functions are

not too peaked nor too flat; both conditions should be avoided in practice. For a

11

 global network g can be equal to �� . In our experiments we use local RBF networks and

therefore choose the value of g to be
#7l .

2.3 Existing training algorithms

Current RBF training algorithms can be classified as the first order and the second

order methods [30], [31]. Gradient descent methods are first order and Newton related methods

are second order [32]-[34]. In [30] Battiti reviewed first and second order algorithms for learning

in neural networks. First order methods are fast and effective for large scale problems [35] while

second order techniques have higher precision for small scale. We present three algorithms

based on different learning paradigms in order to distinguish them from our family of proposed

RBF training algorithms.

2.3.1 K-means RLS algorithm

A hybrid learning procedure for training RBF networks is described in [25]. The K-

means algorithm (see Appendix A for details) for training the hidden layer is applied first. It is

then followed by the recursive least squares algorithm (RLS) [53] for training the output layer.

The input layer has the dimensionality � as before. Given the desired value of �� and

training data, the mean vector parameter a) are computed from the K-means algorithm. To

determine the spread parameters, a heuristic presented in [25], [36] states that spread

parameter is initialized so as to cover the input space with receptive fields as uniformly as

possible. Based on this heuristic the present hybrid algorithm assigns the same width vector V

to all the Gaussian functions given by V � jYmn o2��⁄ , where jYmn is the maximum distance

between the chosen centers [8].

Once the training of the hidden layer is complete, the output weights are optimized. For

discrete time instant t, the ��-by-1 hidden output vector is:

12

>(- � �'�-�1�, '�-�1�, . . . '�-����HE
 (2.19)

where,

����- ��� � q<(- a)q" (2.20)

The output response 8(is then given by

8(� 9:=. >(- (2.21)

The supervised training for the output layer is carried out using the recursive least square (RLS)

algorithm. Being a recursive algorithm, ‘n’ represents the value at current instant of time ‘t’ and

‘n-1’ is in the previous instant. We start by calculating the autocorrelation matrix rs$ defined as:

rs$ � � >(- · �>(- �E$
-%& ((2.22)

Similarly the cross correlation matrix ts$ is defined as:

ts$ � � >(- · �S(- �E$
-%& ((2.23)

If 9:u is the output weight matrix, then we have the following linear equation:

rs$ · �9:$�E � ts$ (2.24)

In order to solve (2.24) we could first invert the autocorrelation matrix rsu and then

multiply the resulting inverse matrix �rs$�*&by the cross-correlation matrix ts$ which is what we

do in least squares. However when the size of the hidden layer �� is large, which is often the

case, computation of the inverse matrix �rs$�*G is computationally expensive. The RLS

algorithm takes care of this computational difficulty. Reformulating (2.23), we have:

ts$ � � >(- · �S(- �E$*&
-%& >($ · �S($�E

� ts$*& >($ · �S($�E

 � rs$*& · �9:$*&�E >($ · �S($�E

((2.25)

13

where, we first isolate the term corresponding to discrete time instant t=n from the summation in

(2.23) and in the last line we use (2.24) replacing n with n-1. Next, we add and subtract

>($R>($TE�9:$*&�E leaving the equation unchanged. We factor out the common terms:

ts$ � vrs$*& >($ · R>($TEw �9:$*&�E >($ v�S(��x R>($TE · �9:$*&�Ew ((2.26)

The first set of brackets on the right side is recognized as the auto correlation function:

rs$ � rs$*& >($ · R>($TE
 (2.27)

Using the second set of brackets on the right side, we introduce a new term called the prior

estimation error y$,

z$ � �S(��x R>($TE · �9:$*&�E

� �S(��x �9:$*&�E · R>($TE

((2.28)

y$ is based on the old estimate 9:$*& of the weight vector that we had before the weight

estimate was updated.

Hence we can rewrite (2.26) as:

ts$ � rs$ · R9:$ 1TE >(y (2.29)

Applying this equation in (2.25) yields:

rs$ · �9:$�E � rs$ · R9:$ 1TE >(y (2.30)

which may be expressed in the desired from for updating the weight vector after multiplying by

the inverse matrix �rsu�*&,

9:$ � 9:$*& �rs$�*& · >(y (2.31)

Using matrix inversion and the symmetry property, we use a recursive formulation to compute

�rsu�*&by introducing two new definitions

1) Let �rsu�*& � {u , where the {u matrix is defined as:

14

{$ � {$*& {$>($R>($T|{$*&
G R>($T|{$*&>($ ((2.32)

2) Let the gain vector }u be defined as:

}u � �rs$�*&>($

� {$>($
((2.33)

We update the old estimate 9:$*& to its new value 9:$ as follows:

9:$*& ~ 9:$*& }y (2.34)

To initialize the algorithm we set 9:� � � and {� � �*&�, where � is a small positive constant

2.3.2 Training algorithm based on output weight optimization

Introducing the weighted DM coefficients, we develop a hybrid algorithm consisting of 2

steps:

(1) Initialize the RBF network parameters based on the method of section 2.2.

(2) Fix these parameters and use output weight optimization (OWO) for solving the

output weights linear equation.

OWO is a technique to solve for weights connected to the outputs of the network [37],

[38]. Since the outputs have linear activations, finding the weights connected to the outputs is

equivalent to solving a system of linear equations.

 Including the weighted DM coefficients based Gaussian basis function of (2.13), we

find the gradient of E with respect to the output weights for kth hidden unit and mth output unit as:

�_1�!, �� � �O�01�!, �� � 2�� � ����!� � 01�!, 2��?��2�#L
5%& � · �?����#Q

�%&
� 2 �W�!, �� � 01�!, 2� · ��2, ��#L

5%& �

((2.35)

15

where the elements of autocorrelation matrix r has the following form :

���, 2� � 1�� � �?���� · �?��2�#Q
�%& (2.36)

and the elements of cross correlation matrix t has the following form:

W��, !� � 1�� � �?�#Q
�%& ��� · ���!� (2.37)

Setting �_1�!, �� � 0, the kth equation in the mth set of equation is:

W��, !� � � ���, 2� · 01�!, 2�#L
5%& (2.38)

(2.38) can be written in vector form as:

t � r · 9:E (2.39)

We often have (2.39) ill-conditioned [39], [40], meaning that the determinant of r is

close to 0, it is therefore often unsafe to use Gauss-Jordan elimination. Therefore the singular

value decomposition (SVD) [41], LU decomposition [42] and conjugate gradient algorithm (CG)

are better. However Equation (2.38) is most easily solved using orthogonal least squares (OLS)

which is equivalent to using the QR decomposition [41].

2.3.3 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm is a compromise between Newton’s method

which converges rapidly near local or global minima but may diverge and gradient descent

which has assured convergence through a proper selection of step size parameter but converge

slowly [43], [44]. In Newton’s method, we minimize the quadratic approximation of the error

function O��� around the current weights �:

O�� ∆�� � O��� ∆�E} 12 ∆�E�∆� (2.40)

16

Here � is the weight vector of dimension �� in which all training weights are stored, } is the

negative gradient vector (negative Jacobian) for training error O��� as:

��!� � �O�0�!� (2.41)

For Hessian matrix �, which is the second order partial derivative of O��� with respect to �, the

mth row and nth column element is:

��!, �� � �"O�0�!��0��� (2.42)

 (2.40) is minimized when,

} �∆� � � (2.43)

This leads to the weight updating strategy of Newton’s method:

� ~ � �*& · } (2.44)

The LM algorithm [42]-[44] is a sub-optimal method which updates all weights as:

� ~ � J� � · j2�����K*& · } (2.45)

where � is a controlling factor which tunes LM either towards the first order or the second order

methods. � is the identity matrix.

For training the network using LM we take the following steps:

(1) Present all patterns to the network and compute the Mean Square Error (MSE).

(2) Compute the Hessian and gradient matrices for all the weights.

(3) Calculate the updated weights using (2.40)

(4) Re-compute the MSE by using the updated weights, if the new error is smallest than

that computed in (1) then reduce � and go back to (1); if the error is not reduced

increase � .

(5) The algorithm converges when the norm of the gradient is less than some pre-

determined value, so the MSE has been reduced to a fixed error.

17

LM converges faster [45] than many other training algorithms. However, it requires '�����

storage and calculations. Further, owing to the effort required to compute � and � , LM is

practical only for small networks.

2.4 Problems with existing RBF training algorithms

Existing RBF training algorithms suffer from five major problems:

1. The network parameters are not trained well.

2. Noise input contaminates the network parameters.

3. Newton’s method cannot find all weights when Hessian is singular.

4. The clustering process used to obtain the mean vector parameters is not

optimized for the network.

5. The algorithm used to obtain the output weight matrix is usually either steepest

descent based or recursive.

Most of the RBF training algorithms have two stages per iteration or a total of two stages,

resulting in poor performance, since output errors are not fed back to modify input weights.

Investigators compensate for this by adding a lot of hidden units such as in support vector

machines (SVM). An example of this is the extreme learning machine (ELM) [45] which is a

large MLP trained only with OWO.

18

CHAPTER 3

OPTIMIZATION OF WEIGHTED DISTANCE MEASURE

After the network parameters have been initialized as in section 2.2, the basic

framework for the proposed family of RBF training algorithms is set. We now turn our focus on

the second stage where Newton’s method is used to optimize the weighted distance measure

(DM).

Most real world data sets are contaminated with noises either in the context of pattern

classification or nonlinear regression hence it is logical to see the effect of noise on the

proposed RBF training algorithms.

3.1 Theoretical background

Euclidean distance measure is the criterion for clustering of the training data in

conventional training algorithms. In [46] it has been proposed that the conventional Euclidean

DM function does not include the perceptual quality in its definition. Many other literatures,

particularly in the field of speech processing [47] suggest that using a weighted DM gives better

quality results and less spectral distortion than its conventional Euclidean counterpart.

Therefore including a weighted DM in the proposed training algorithm seems a logical

extension. The SOM that we use in our proposed training algorithms and the initial spread

19

parameters and mean vector parameters employs the use the weighted Euclidean distance

measure.

3.2 Mathematical treatment

 A typical error function used in the training of RBF is described in (2.9). The hidden unit

output ']���� is given by (2.13) and ���\ ���� is as defined in (2.12). Including the weighted DM

learning factor vector iU for updating U we have:

���\ ���� � ��W��� j����� · J����� !����K"#
$%& (3.1)

where U is the weighted DM coefficients vector that will be optimized. The output vector 3_��2� is

same as described in (2.14). By calculating the first order gradient of U we obtain:

����� � �O�j���� � 2�� � �J���2� 3_��2�K · �3_��2��j����
N

5%&
#Q

�%& ((3. 2)

where

�3_��2��j���� � � 01�2, �� · ']���� · � /���� · ������ !����H"#7
�%& ((3. 3)

The Hessian matrix element is:

����, �� � �"O�j�����j���� � 2�� � X� �3_��2��j���� · �3_��2��j����
N

5%& Z#Q
�%& ((3. 4)

This results in the following linear equation:

�U · iU � }U (3. 5)

Equation (3.5) looks similar to the linear equations in (2.39). The linear equation in (3.5)

can be solved using linear equation solver such as steepest descent, conjugate gradient

algorithm and OLS. Owing to single step minimization, and ability to overcome the

20

computational complexity of second order Newton’s method without compromising the

convergence issue, OLS is the preferred choice. For the nth input unit, W��� is then updated as:

W��� ~ W��� j���� (3. 6)

3.3 Algorithm for optimizing weighted DM coefficients

We follow a nomenclature for all the algorithm and figures discussed here and

subsequent chapters. In {N(param1) + param2}, ‘N’ denotes Newton’s method applied on

parameter ‘param1’, while ‘param2’ are the parameters which have been fixed during the

initialization part and have not been modified or “tuned” during the training process. For

example {N(c)+B+m} means Newton’s method has been applied only on the weighted DM

keeping spread parameters vector and mean vector parameters fixed during the training

process.

The formal algorithm for optimized weighted DM RBF (OWDM-RBF) training algorithm

is described as follows:

(1) Read the data file and normalizing the inputs to zero mean and unit variance.

(2) Initialize the weighted DM coefficients, spread parameters vector and mean vector

parameters. In each iteration of the training algorithm, the steps are as follows

(3) Calculate gradient of U from (3.2) and Hessian matrix elements from (3.4).

(4) Solve the linear equation in (3.5) via OLS.

(5) Update weighted DM coefficients using (3.6).

(6) Solve linear equations for all the output weights using OWO.

Contrary to [25] the updated weighted DM are fed back to calculate U for next iteration in

our proposed training algorithm.

21

3.4 Effect of linear dependence in the input layer

As discussed in section 2.4, the singularity of the Hessian matrix is a major drawback of

Newton’s method. We now investigate as to how the Hessian matrix is modified if a linearly

dependent input is used in the training algorithm. A linearly dependent input can be modeled as:

���� 1� � � ���������#
$%& ((3. 7)

During the weighted DM adaption, the expression for gradient given by (3.2) can be rewritten

as:

����� � �O�j���� � 2�� � �J���2� 3_��2� 015�2, � 1� � ���������#
$%& K · �3_��2��j����

N
5%&

#Q
�%&

(3. 8)

The hidden unit output ']���� in
��_.�5��k��$� gets additional terms as:

'�� ��� � ']���� · �*+���·J��#6&��n.�#6&�*Y��#6&�H�K (3. 9)

and the expression for Hessian matrix can be re-written as:

��′ ��, �� � ����, ��
 � 01�2, ��'�� ���R/���T �X� ���������#

$%& Z"#7
�%&

 2������ !����H X� ���������#
$%& Z X� ���������#

$%& Z"

 2������ !����H X� ���������#
$%& Z�

((3. 10)

Comparing (3.4) and (3.10) we see that some additional terms appear as sum of

products within the square brackets in the expressions for gradient and Hessian in the presence

of linearly

22

dependent input. Clearly, these cross terms will cause the training of RBF training algorithm

different for the case if linear dependent inputs are added thereby not forcing �U′ to be singular.

Thereby from (3.12) we see that the Hessian �U′ simply gains first and second degree terms

unlike traditional Newton’s method, where a linearly dependent input cause the Hessian matrix

to be singular.

3.5 Experimental analyses and verification

We take twod, concrete and mattrn datasets (see Appendix B for details) to study the

performance of OWDM-RBF (denoted by {N(c)+B+m}) and compare its performance with the

OWO-RBF training algorithm (denoted by {c+B+m}) where no parameter (weighted DM, spread

parameters and mean vector parameters) have been optimized and RLS-RBF training algorithm

discussed in [25]. We analyzed various training algorithms on two bases, firstly the rate of

convergence of error and secondly, its response to the Gaussian random noise which is added

into the input data set.

23

 (a)

 (b)

Figure 3.1 Performance of OWDM-RBF training algorithm with OWO-RBF and RLS-RBF
training algorithms for twod dataset (a) normal condition (b) noisy input condition

24

(a)

(b)

Figure 3.2 Performance of OWDM-RBF training algorithm with OWO-RBF and RLS-RBF
training algorithms for concrete dataset (a) normal condition (b) noisy input condition

25

 (a)

 (b)

Figure 3.3 Performance of OWDM-RBF training algorithm with OWO-RBF and RLS-RBF
training algorithms for mattrn dataset (a) normal condition (b) noisy input condition

26

We make the following observations from the figures:

1) The OWDM-RBF training algorithm and OWO-RBF training algorithm starts at the same

error value due to same OWO step. The rate of decrease of error is prominent for the

OWDM-RBF training algorithm indicating its efficiency. The RLS-RBF training algorithm

not only starts at the lower error value but also decrease at much faster rate.

2) The difference in the error values between the training algorithm and its equivalent

noise training algorithm indicates the efficiency and sensitivity of the algorithm towards

Gaussian random noise.

3) The error curve for OWDM-RBF training algorithm and the OWO-RBF training algorithm

in the noisy data indicates there poor performance for the noisy data. Even the rate of

decrement of error is severely affected by the noisy data.

We therefore conclude that the RLS-RBF training algorithm has the lowest error rate and

least susceptibility to noise. The OWDM-RBF training algorithm is a primitive training algorithm

paving way for further improved training algorithms based on similar optimization scheme which

will be discussed in subsequent chapters.

 27

CHAPTER 4

OPTIMIZATION OF SPREAD PARAMETERS ALONG WITH WEIGHTED DM

After the optimization of the weighted DM, we now describe the optimization of the spread

parameters vector and investigate its effect on the training of RBF neural network. Mathematical

background for optimizing the spread parameters, effect of linearly dependent input units and

experiment verification is the discussion area of this chapter.

4.1 Theoretical background

In Chapter 2 we have initialized the spread parameters and defined it as the inverse of the

standard deviations of input units. In a typical Gaussian function, the standard deviation controls

the width of the Gaussian “Mexican hat shaped” curve. Geometrically, in a 3-D space it can be

visualized as the parameter which defines the area of the “Mexican hat” to be included in the

input space.

4.2 Mathematical treatment

 In changing the “width” (spread parameters) and keeping mean vector parameters

(kernel vector) fixed, we use the same error function as in (2.9). For the pth pattern, the kth

hidden unit output is:

']���� � ��*�+���6k�����·$,-̂.��� (4. 1)

 28

where ���\ ���� is defined as in (2.11) and j+��� is the learning factor for ` in each kth hidden

unit. The output vector 3_��2� is same as described in (2.14).

We calculate the gradient for ` as:

�+��� � �O�j+��� � 2�� � �J���2� 3_��2�K · �3_��2��j+���
N

5%&
#Q

�%& (4. 2)

Following a similar procedure to that for the weighted DM, we get,

�3_��2��j+��� � 01�2, �� · ']���� � W��� · ������ !����H"#6&
$%& (4. 3)

Combining (4.3) and (4.4) we obtain }`. Calculating the Hessian matrix element we get,

�+��, �� � �"O�j+����j+��� � 2�� � X� �3_��2��j+��� · �3_��2��j+���
N

5%& Z#Q
�%& (4. 4)

We now use the realization of the following linear equation:

�` · i` � }` (4. 5)

This looks similar to the linear equations as in (3.7). Solving (4.5) via OLS, we get the optimal

i`. For the kth hidden unit, ` is updated according to:

/��� ~ /��� j+��� (4. 6)

4.3 Algorithm for optimizing spread parameters

We now describe the formal algorithm for optimized spread parameter RBF (OSP-RBF)

training algorithm. After normalizing the input patterns to zero mean and unit variance and

initializing different parameters, for each iteration of the training algorithm, the steps are as

follows:

(1) Calculate gradient for ` from (4.2) and Hessian matrix elements from (4.4).

(2) Solve the linear equation in (4.5) via OLS.

 29

(3) Update spread parameters vector using (4.6).

(4) Solve linear equations for all the output weights using OWO.

The updated spread parameters vector are fed back to calculate ` for next iteration in

our proposed training algorithm contrary to [25]. This completes our description for the OSP-

RBF training algorithm. It should be noted here that in case of combined optimization of spread

parameter and weighted DM (OSPWDM-RBF) training algorithm, each parameter’s optimization

is followed by an OWO step.

4.4 Effect of linear dependence in the input layer

A linearly dependent input can be modeled as in (3.9). During the spread parameter adaption,

the expression for gradient given by (4.2) can be rewritten as:

�+��� � �O�j+��� � 2�� � �J���2� 3_��2� 015�2, � 1� � ���������#
$%& K · �3_��2��j+���

N
5%&

#Q
�%& (4. 7)

where

�3_��2��j+��� � 01�2, �� · '�′ ��� � W��� · ������ !����H"#
$%& W�� 1�

· X� ���������#
$%& !��� 1�Z"

 (4. 8)

The hidden unit output ']���� in
��_.�5��k���� gets additional terms as in (3.11). Hessian matrix

element will be:

 30

�+′ ��, �� � 2�� � �� � 01�2, ��'�′ ��� � W��������� !B���H"#
$%& W��N

5%&
#Q

�%&
 1� X� ���������#6&

$%&
 !B�� 1�Z"� � 01�2, ��'�′ ��� � W��������� !����H"#

$%& W��
 1� X� ���������#6&

$%& !��� 1�Z"��

(4. 9)

Similar to (3.12), comparing (4.4) with (4.9), we see that some additional terms appear as

sum of products within the square brackets in the expressions for gradient and Hessian in the

presence of linearly dependent inputs. Clearly, these cross terms will cause the training of the

RBF training algorithm to be different for the case, if linear dependent inputs are added thereby

not forcing �U′ to be singular. Thereby from (4.9) we see that the Hessian �U′ simply gains the

first and the second degree terms unlike traditional Newton’s method, where a linearly

dependent input cause the Hessian matrix to be singular.

4.5 Experimental analyses and verification

We take twod, concrete and mattrn datasets (see Appendix B for details) to study the

performance of OSP-RBF training algorithm (denoted by {N(B)+c+m}) and compare its

performance with the OSPWDM-RBF training algorithm (denoted by {N(c,B)+m}) and RLS-RBF

training algorithm discussed in [25]. The performance of these training algorithms has also been

seen with random Gaussian noise data added to the input units.

 31

(a)

(b)

Figure 4.1 Performance of OSP-RBF and OSPWDM-RBF training algorithms with RLS-RBF
training algorithm on twod dataset (a) normal condition (b) noisy input condition

 32

(a)

(b)

Figure 4.2 Performance of OSP-RBF and OSPWDM-RBF training algorithms with RLS-RBF
training algorithm on concrete dataset (a) normal condition (b) noisy input condition

 33

(a)

(b)

Figure 4.3 Performance of OSP-RBF and OSPWDM-RBF training algorithms with RLS-RBF
training algorithm on mattrn dataset (a) normal condition (b) noisy input condition

 34

Referring to the figures, we observe that although OSP-RBF training algorithm has high

error curve for Gaussian noise data, including the OSPWDM-RBF training algorithm improves

the performance significantly when compared to the algorithm where only weighted DM is

optimized as shown in the plots. We have not included the OWO-RBF training algorithm owing

to its poor performance. Following observation are made from the error plots for three datasets:

(1) The error curve for the OSP-RBF training algorithm is comparable to the RLS-RBF

error curve. Hence there is an improvement over the earlier OWDM-RBF training

algorithm discussed in Chapter 3. One point to be noted here is that the OSPWDM-

RBF training algorithm also gives a similar error curve as the other training

algorithm but its sensitivity to the Gaussian noise data signifies its usefulness over

the algorithm where only the spread parameter (OSP-RBF, denoted by

{N(B)+c+m}) has been optimized.

(2) The error decrement rate for all training algorithms is now comparable to the RLS-

RBF training algorithm. Although the error rate decrement is significantly high for

the OSP-RBF training algorithm on Gaussian noise data but it settles at a much

higher value after 50 iterations.

 We conclude that optimizing spread parameter is indeed an improvement over the

previous training algorithm discussed in Chapter 3. The combined optimization of spread

parameter and weighted DM training algorithm does offer a significantly low error rate and less

sensitive to noise with a comparable performance with RLS-RBF training algorithm. It will be

logical extension to extend the idea of optimization on the mean vector parameters and

experiment with its various combinations with other two parameters which will be the subject

matter of the next chapter.

 35

CHAPTER 5

OPTIMZATION OF MEAN VECTOR PARAMETERS ALONG WITH WEIGHTED DM AND
SPREAD PARAMETERS

In this chapter, we describe the optimization of the mean vector parameters and investigate

its effect on the training of RBF neural network. Mathematical background for optimizing mean

vector parameters, single and multiple optimal learning factors, effect of linearly depended input

units and experiment verification is the discussion area of this chapter.

5.1 Theoretical background

From a regression point of view, mean vector defines the position of the Gaussian

“Mexican hat” shape in the input space. It is therefore important to optimize the position to

obtain better reconstruction of the input surface. It will be a matter of experimentation as to how

the optimization or “tuning” of the mean vector parameters alone performs and in comparison to

the other two parameter vectors

5.2 Mathematical treatment

Following the same approach as in previous sections, we obtain a “tuning “procedure for

changing mean vector parameters. For pth input pattern and kth hidden unit, including mean

vector learning factor , ���\ ���� is:

���\ ���� � � W��� · J����� �!���� ¡� · �Y,m$��, ���K"�#
$%&

 (5.

1)

 36

The output vector 3_��2� is as described in (2.14). We solve for a vectors of learning factors, one

per hidden unit.

Unlike the previous gradients, we have a gradient matrix as:

�Y,m$��, �� � �O�!���� � 2�� � �J���2� 3_��2�K · �3_��2��!����
N

5%&
#Q

�%& (5. 2)

Applying the chain rule we get:

�3_��2��!���� � 2 · 01�2, �� · ']���� · /��� · W��� · ������ !����H (5. 3)

Combining (5.2) with (5.3) we get the gradient matrix elements�Y,m$��, ��. We now provide the

mathematical framework necessary for the derivation of single and multiple optimal learning

factors.

5.3 Learning factor

During our investigation we compared our algorithms with RBF training algorithms using a

single OLF which is a one variable form of Newton’s method. Here we discuss the single OLF

case for updating mean vector parameters. In the single OLF case, the calculation of partial

derivatives requires one pass through the data.

5.3.1 Single OLF for optimizing mean vector parameters

Given the error function as defined in (2.9) we have:

3_��2� � � 01�2, �� · �*+���$,-̂.���#7
�%& � 015�2, �� · �����#6&

$%& (5. 4)

where ���\ ���� is now modified with single OLF as:

 37

���\ ���� � � W��� · J����� �!���� ¡ · �Y,m$��, ���K"�#
$%& (5. 5)

Notice the difference in (5.5) and (5.1). Instead of using a multiple OLF vector, , we optimize

each hidden unit by using a single OLF ¡. The first partial derivative of E with respect to ¡ is:

�¢ � �O�¡ � 2�� � �J���2� 3_��2�K · �3_��2��¡
N

5%&
#Q

�%& (5. 6)

where,

�3_��2��¡ � 2 � 01�2, �� · ']���� · /��� � W��������� !����H#
$%&

#£
�%& · �Y,m$��, �� (5. 7)

The Gauss-Newton approximation of the second partial is:

�"O�¡" � 2�� � � ¤�3_��2��¡ ¥"N
5%&

#Q
�%& (5. 8)

Now from 2nd order Taylor series we get:

O�¡� � O�0� ¡ · �O�¡ 12 · �"O�¡" · ¡" (5. 9)

Hence substituting �O�¡�/�¡ � 0 we get:

¡ � �O �¡⁄�"O �¡"⁄ (5.10)

In [48], better performance of multiple optimal learning factor (MOLF) on OWO based

backpropagation network is reported. We therefore update the mean vector parameters based

on MOLF which is optimal for individual hidden unit.

5.3.2 Multiple optimal learning factors

After the output weights in the RBF training algorithm are trained using OWO, instead of

using a single OLF for updating all the parameters, we use Newton’s method to estimate a

 38

vector of optimal learning factors as MOLF. The basic idea for MOLF is that while updating the

mean vector parameters for each iteration, instead of using a single OLF z we use a vector z of

dimension�� called MOLF. One of our investigation aims is to show this novel method to update

the parameters to be better than the single optimal learning case.

We now derive the expression for the MOLF as used in updating mean vector parameters.

Considering the error function as in (2.9), we have:

�¢��� � �O�¡��� � 2�� � �J���2� 3_��2�K · �3_��2��¡���
N

5%&
#Q

�%& (5.11)

where:

�3_��2��¡��� � 2 · 01�2, �� · ']���� · /��� X� W��� · ������ !����H · �Y,m$��, ��#6&
$%& Z (5.12)

Combining (5.11) and (5.12) we get the optimum value of learning vector �¢���.Using Gauss-

Newton’s updates, the second partial derivative element of the Hessian � are:

�¢��, �� � �"O�¡����¡��� � 2�� � X� �3_��2��¡��� · �3_��2��¡���
N

5%& Z#Q
�%& (5.13)

where,

�3_��2��¡��� � 01�2, �� · �']�����¡��� (5.14)

 �3_��2��¡��� � 01�2, �� · �']�����¡��� (5.15)

The Gauss-Newton’s update guarantees that � is non-negative definite. Given the negative

gradient vector } � § �¨�¢© , �¨�¢� … , �¨�¢ª7«E
and the Hessian � , we minimize E with respect to

the vector MOLF z using following linear equations:

� · � } (5.16)
Thus we get:

 39

 � � *G · } (5.17)

During each iteration, for kth hidden unit and nth input, mean vector parameter is updated as:

!���� ~ !���� ¡� · �Y,m$��, �� (5.18)

5.4 Algorithm for optimizing mean vector parameters

After normalizing the input patterns to zero mean and unit variance and initializing different

parameters, we describe a formal algorithm for various RBF training algorithms. For each

iteration of the training algorithm, the steps are as follows:

(1) For optimized mean vector parameter RBF training algorithm with SOLF

(SOMV-RBF), calculate the gradient from (5.6). For optimized mean vector

parameters RBF (OMV-RBF) training algorithm with MOLF, calculate gradient

from (5.11) and Hessian matrix elements from (5.13).

(2) For SOMV-RBF, update mean vector parameters using (5.18) but instead of

using vector), we use the SOLF ¡ from (5.10). For OMV-RBF, solve the linear

equation in (5.16) via OLS and update mean vector parameters using (5.18).

(3) Solve linear equations for all the output weights using OWO.

It should be noted here that each parameter’s optimization is followed by an OWO step

in case of combined optimization of spread parameter and mean vector parameters (OSPMV-

RBF) training algorithm, combined optimization of mean vector parameters and weighted DM

coefficients (OMVWDM-RBF) training algorithm and training algorithm which includes the

combined optimization of all parameters (OAP-RBF).

Contrary to [25], the updated mean vector parameters are fed back to calculate a) for

next iteration. This completes our description for the SOLF and MOLF based RBF training

algorithms. It should be pointed out here that in case the multiple OLF being unable to train the

RBF training algorithm we collapse it into a single OLF.

 40

5.5 Effect of linear dependence in the input layer

A linearly dependent input can be modeled as in (3.9). During the mean vector parameters

optimization, the expression for gradient for MOLF can be rewritten as:

�¢��� � �O�¡��� � 2�� � �J���2� 3_��2� 015�2, � 2� � ���������#
$%& K · �3_��2��¡���

N
5%&

#Q
�%& (5.20)

where,

�3_��2��¡��� � 201�2, ��'�� ���/��� X� W��������� !����H�Y,m$��, �� W�#
$%& �

 1� X� ���������#6&
$%& !��� 1�Z �Y,m$��, � 1�Z (5.21)

The hidden unit output ']���� in
��_.�5��k���� gets additional terms as '�� ��� given in (3.11). The

expression for Hessian matrix element can be re-written as:

��� ��, �� � 2�� � �� �201�2, ��'�� ���/��� X� W��������� !B���H�Y,m$��, �� W�#
$%& �N

5%&
#Q

�%&
 1� X� ���������#

$%& !B�� 1�Z �Y,m$��, �
 1�Z� �201�2, ��'�� ���/��� X� W��������� !����H�Y,m$��, �� W�#

$%& �
 1� X� ���������#

$%& !��� 1�Z �Y,m$��, � 1�Z��

(5.22)

Comparing (5.14) and (5.21) we see that some additional terms appear as sum of products

within the square brackets in the expressions for gradient and hessian matrices thereby not

forcing � � to be singular. Therefore from (5.21) we see that the Hessian � � simply gains first

and second degree terms unlike traditional Newton’s method, where a linearly dependent input

cause the Hessian matrix to be singular.

 41

5.6 Experimental analyses and verification

We take twod, concrete and mattrn datasets to study the performance of SOMV-RBF

(denoted by SOLF(m)+c+B), OMV-RBF (denoted by N(m)+B+m), OSPMV-RBF (denoted by

N(B,m)+c and OMVWDM-RBF (denoted by N(c,m)+B). The performances of these training

algorithms have also been shown with Gaussian noise data added to the input units

 42

(a)

(b)

Figure 5.1 Performance of single OLF training algorithm with other multiple OLF based training
algorithms on twod data set (a) normal condition (b) noisy input condition

 43

(a)

(b)

Figure 5.2 Performance of single OLF training algorithm with other multiple OLF based training
algorithms on concrete data set (a) normal condition (b) noisy input condition

 44

(a)

(b)

Figure 5.3 Performance of single OLF training algorithm with other multiple OLF based training
algorithms on mattrn data set (a) normal condition (b) noisy input condition

 45

We observe that OSPMV-RBF and SOMV-RBF training algorithms perform best hence we

now compare its performance with RLS-RBF training algorithm [25] and OAP-RBF training

algorithm. The performance of these training algorithms will also be seen with Gaussian noise

data.

 46

(a)

(b)

Figure 5.4 Performance of single and multiple OLF based training algorithms with RLS-RBF
training algorithm on twod dataset normal condition (b) noisy input condition

 47

(a)

(b)

Figure 5.5 Performance of single and multiple OLF based training algorithms with RLS-RBF
training algorithm on concrete dataset (a) normal condition (b) noisy input condition

 48

(a)

(b)

Figure 5.6 Performance of single and multiple OLF based training algorithms with RLS-RBF
training algorithm on mattrn dataset (a) normal condition (b) noisy input condition

 49

We observe that the SOMV-RBF training algorithm is comparable to the RLS-RBF training

algorithm and the noise sensitivity is low for both. However since the training algorithm we

discuss optimizes mean vector parameters with a single OLF, we see a clear improvement

when mean vector parameters optimization is performed with MOLF. For un-correlated datasets,

optimizing mean vector parameters through single OLF has no effects. Above figures help us to

identify few interesting observations which are as follows:

1) Compared to SOLF, the training algorithms using MOLF perform better.

2) Compared to all other training algorithm discussed, the OSPMV-RBF and OAP-RBF

training algorithm not only outperforms the RLS-RBF training algorithm but also shows

extremely good performance in presence of Gaussian noise.

This section concludes an important point that mean vector parameters optimization training

algorithms perform better than optimizing other two parameters. A striking difference can be

observed from figures in previous chapter where we started using the optimization technique on

weighted DM training algorithms and spread parameters vector. Not only the training algorithms

improved at every step of including all parameters in the optimization process but their

responses to the noisy data suggest that they become less sensitive for it. This will be the

subject matter of the next chapter.

 50

CHAPER 6

ANALYSES OF VARIOUS RBF TRAINING ALGORITHMS

We investigate the performance of the training algorithms discussed up-till now based

on situations described in following subsections. We will analyze their performance using twod

dataset.

6.1 Effect of using weighted DM on different RBF training algorithms

Figure 6.1 Effect of weighted DM on RBF training algorithms for twod dataset

 51

Figure 6.1 helps us to identify the effectiveness of the weighted distance measure on the

family of propose algorithms. The observations are given below:

1) The training algorithms where we have not applied weighted distance measure (DM),

we observe that the training algorithm in which only the mean vector parameters has

been changed keeping the spread parameter constant during the training process

performs the best. This seems to be logical since once the width has been fixed to a

value, then during the training process we optimize position of the mean vector

parameters on the local induced region of high activation. By optimizing a) , we

essentially place these "caps" of fixed width Gaussian function covering the entire

weight space. This leads to better generalization.

2) We notice that although the starting point of the starting training error is higher after

including weighted DM but the convergence rate is faster than the non-weighted DM

curves

3) There is improvement for those training algorithms where weighted DM has been

introduced as compared to those discussed in (1). This supports our theoretical

explanation of the advantage of using a weighted DM. Except from the plots with only

spread parameters optimization, we see that introducing weighted DM significantly

improves all the other training algorithms. We also observe that there is a vast

improvement in the combined optimization of mean vector parameters and spread

parameters training algorithm if we introduce weighted DM. This establishes the fact

that using weighted DM is a better choice than normal Euclidean distance.

4) The gradient of the plots tells the convergence rate of the training. We observe that for

all the training algorithms, there is a significant error convergence. This suggests that

changing only ` is not a good approach for better training performance.

 52

6.2 Effect of applying Newton’s method on different RBF parameters

Figure 6.2 Effect of using Newton’s method on different parameters for twod dataset

Figure 6.2 discusses the Newton’s method approach. Following observations are made:

1) Applying Newton’s method on the DM alone is not very beneficial. It can be

visualized that since we are trying to encompass the entire input space with uneven and un-

tuned Gaussian functions whose width (controlled by spread parameter) and position of peak

(mean vector) are not fully optimized, it will not be completely covered thus leading to poor

generalization.

2) The faster convergence is observed when we apply Newton’s method to either mean

or spread parameters or to all of them.

3) Not much improvement is seen if we leave kernel vector to optimize via Newton’s

method. Therefore based on this figure we can say that for a better generalized RBF network,

 53

tuning mean vector parameters is of much greater importance than the spread parameters. This

is an important conclusion made.

6.3 Effect of applying Newton’s method on weighted DM on different RBF training algorithms

Figure 6.3 Effect of Newton’s method on weighted DM on various RBF training algorithms for
twod dataset

Figure 6.3 discusses the effect of Newton’s method on weighted DM in various RBF

training algorithms. After we propose a weighted DM in the conventional RBF training

algorithms, one approach we try is to see the effect of combining it with the conventional

network parameters and other is to apply Newton’s method to optimize it.

Figure 6.3 reveals several important facts about the effect of applying Newton’s method

to distance measure.

1) By combining the optimization of spread parameter and weighted DM, we see a

significant improvement.

 54

2) Although optimizing mean vector parameters still governs the overall performance of

the networks, we observe from plot 4 that applying Newton’s method on weighted DM gives

smooth convergence behavior

3) Once the Newton’s method has been applied to spread parameters, not much

difference is observed in the error curve.

We conclude that optimizing weighted DM coefficients has more effect on the performance

of the network than the spread parameters but less than the mean vector parameters.

6.4 Effect of applying Newton’s method repeatedly

In Figure 6.4, we try to see the effect of applying repetitive Newton’s method on various

parameters. The main constraint seen here is on computational time which increases

considerably. We observe that while we apply Newton’s method 40 times to the spread

parameters, the performance is not much improved. Similar studies have been done on other

parameters leading to the conclusion that after a certain threshold, the training reaches

saturation.

 55

Figure 6.4 Effect of repetitive Newton’s method on spread parameter on twod dataset

An important conclusion coming from this chapter is that a change in mean vector

parameters either by optimizing it via Newton’s method or adding weighted DM to it has more

profound effect than optimizing the spread parameters. The experimental results further bolster

this conclusion. A theoretical explanation can be given on this based on sensitive analyses

where we observe that error function is more prone to change in mean vector parameters than

to the spread parameters. Visualizing this, once the spread parameter is set, mean vector

parameters is deciding the position of the Gaussian function to cover the entire input space.

Hence the effect of the position of the Gaussian function is more important than the width of

each of them.

 56

CHAPTER 7

FINAL RBF TRAINING ALGORITHMS ANALYSES

Based on the conclusion made in Chapter 6, we take two training algorithms for further

investigation. Firstly, the training algorithm where does not have weighted DM and conventional

parameters (spread parameters and mean vector parameters) are optimized and Secondly, the

training algorithm in which we optimize all three parameters. These two training algorithms will

be compared with LM and RLS-RBF training algorithms.

Figure 7.1 shows the flowchart for the two-step hybrid learning procedure to train the

proposed RBF network by optimizing all the three parameters. Deleting the DM optimization

step from the flowchart will result in the algorithm for optimizing only conventional parameters.

 57

Figure 7.1 Flowchart for optimizing all three parameters

 58

7.1 Computational burden

In this section, we describe the computational burden for the proposed training

algorithms that we finally take up for comparison with RLS-RBF and LM training algorithms. The

total number of weights in the network is denoted as:

�� � ¬�� �� 1� ���� 1� (7.1)

Let net control denote the step involving the initialization of the parameters as discussed in sub-

section 2.2. The number of multiplications required per training iteration for this is denoted by

¬$� which is given by:

¬$� � 2��� (7.2)

The number of multiplications required per training iteration to solve for output weights by using

orthogonal least squares [49] is ¬1®, which is given by:

¬1® � �B��B 1� §¬ 16 �B�2�B 1� 32«
(7.3)

The number of multiplication required per training iteration in optimizing the spread parameters

is given by:

¬+ � ¬$� ¬1® ��J��R� �� ¬��� 1�T ¬�BK (7.4)

and the number of multiplication required per training iteration in optimizing the mean vector

parameters is given by:

¬Y � ¬$� ¬1® ��J���2� 3¬ 1� ��"�¬ 1� ¬�B �"K (7.5)

Therefore the training algorithm in which we jointly optimize the spread parameters and mean

vector parameters, the number of multiplication is given by:

 59

¬+Y � ¬+ ¬Y (7.6)

Let ¬� denotes the number of multiplication required per training iteration for calculating the

weighted DM coefficients which is given by:

¬� � ��� (7.7)

The number of multiplication in the training algorithm where we jointly optimize all the three

parameters is denoted by ¬�+Y and is given as :

¬�+Y � ¬� ¬+Y (7.8)

For RLS-RBF training algorithm, the number of multiplication required per training iteration is

denoted by ¬±²³and is given by:

¬±²³ � ��� ¬1® (7.9)

For LM training algorithm, the number of multiplications required per training iteration during the

backpropagation step is given by:

¬´� � ��J¬�B 2���� 1� ¬�� 6�� 4�K �� (7.10)

Thus the total multiplications per training iteration in LM training algorithm are:

¬Y � ¬´� ���¬�BR�B 3���� 1�T 4��"�� 1�"H ��� ��" (7.11)

7.2 Experimental analyses

We now compare the performance of our two training algorithms with LM and RLS-RBF

training algorithms. For a given network, we obtain the training error and the number of

multiplications required for each training iteration. We also obtain the validation error for a fully

trained network. This information is used to subsequently generate the plots and compare

performances. We use k-fold cross validation procedure to compare the generalization

performance of the training algorithms. During our investigation we take two highly correlated

 60

(ρ · 0.8) datasets and other two as least correlated (ρ ¹ 0.2� datasets. Here ρ is the correlation

coefficient.

7.2.1 twod dataset

‘twod.tra’ is a highly correlated input data set. We trained all the training algorithms with

hidden unit as 20. In Fig. 5, the Average mean square error (MSE) for training versus the

number of iterations ��5-� is plotted for each algorithm in figure 7.1.

 61

(a)

(b)

Figure 7.2 Performance of final training algorithms with LM and RLS-RBF on twod (a) Number
of Iterations vs Average Training Error (b) Number of Multiplications vs Average Training Error

 62

From the plot we deduce that the network including weighted DM improves the performance of

the training algorithm as compared to one in which no weighted DM is used. However LM

performs well from both the training algorithms. Figure 7.2 plots the Number of Multiplications vs

the Average Training Error for training which reveals the downside of using LM. Although LM

performs better than both the two training algorithms but it also takes a large computation time

owing to the large number of numerical calculation involved. Hence its practical application on

large data set is extremely limited. This is where our training algorithms are highly efficient since

they are small and powerful and performs well on large dataset.

7.2.2 oh7 dataset

In oh7 dataset, not only the input values but also one of the output values is highly

correlated with the input values unlike twod. We train all the RBF training algorithms with hidden

unit as 20. Figure.7.3, plots the MSE for training versus the number of iterations for all

algorithms. The observations are similar to that of previous dataset but we observe that due to

high input-output correlation the algorithms which include weighted DM optimization as well as

those which optimizes only ` and a, both, comes close towards the optimal performance.

 63

(a)

(b)

Figure 7.3 Performance of final training algorithms with LM and RLS-RBF on oh7 (a) Number of
Iterations vs Average Training Error (b) Number of Multiplications vs Average Training Error

 64

From figure 7.3 we see that LM performs marginally well than our proposed training

algorithm but in figure 7.4 it is revealed that LM takes fairly large amount of multiples making it a

slow training algorithm for large data set. It will be interesting to see the performance of the

above three training algorithms on uncorrelated data set which will be discussed in next section.

7.2.3 mattrn dataset

In mattrn dataset, each pattern consists of 4 input features and 4 output features. For

this data set, all the RBF training algorithms are trained with hidden unit as 15. mattrn data set

is un-correlated.

 65

(a)

(b)

Figure 7.4 Performance of final training algorithms with LM and RLS-RBF on mattrn (a) Number
of Iterations vs Average Training Error (b) Number of Multiplications vs Average Training
Error

 66

From figure 7.4 we make an important observation. The training algorithm with

weighted DM optimization performs closely with the training algorithm based on ` and m

optimization. This concludes that including weighted DM has not much effect on the

uncorrelated dataset and since they have slightly more number of multiples, it will be

computationally economical to use the training algorithm based on ` and m optimization alone.

LM performs almost similar to our training algorithms here but again owing to the large number

of multiples as shown in figure 7.6 it is practically not a viable training algorithm to train the

network.

7.2.4 concrete dataset

concrete is an un-correlated dataset used to approximate the nonlinear function of age

and ingredients of concrete compressive strength. With a total number of patterns as 1030, this

dataset consists of 8 inputs and 1 output and hidden units are takes as 20.This dataset is also

least correlated and we see the same trend as we see in mattrn.

 67

(a)

(b)

Figure 7.5 Performance of final training algorithms with LM and RLS-RBF on concrete (a)
Number of Iterations vs Average Training Error (b) Number of Multiplications vs Average

Training Error

 68

Again the performance of the training algorithm with ` and m optimization is close to the

training algorithm having weighted DM optimization.

7.3 k-fold cross validation

We now use the k-fold cross validation procedure to show the generalization abilities of

all the three training algorithms. For each dataset, we split it randomly into 10 non-overlapping

parts of equal size, and use 9 parts of total data for training and leave the remaining one part for

testing. This procedure was repeated till we have exhausted all 10 combinations. Then, by

training all these combinational datasets, we got the average of training errors. Also, the

validation error of each dataset was obtained by averaging all corresponding testing errors on

every testing dataset. The training MSEs and test MSEs of k-fold crossing validation on these

four datasets are listed as Table 1 respectively.

 69

Table 7.1 Comparison of k-fold cross validation on different datasets

Data Set N(B,m) N(c,B,m) LM

Twod

trnE 0.2503 0.2417 0.2005

valE 0.3589 0.3270 0.2344

oh7

trnE 1.5069 1.4643 1.2687

valE 1.7056 2.3987 2.1407

Mattrn

trnE 0.0084 0.0076 0.0048

valE 0.0199 0.0180 0.0235

Concrete

trnE 39.647 40.2735 23.3564

valE 40.2950 40.8721 31.9576

70

CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, the optimization of RBF neural network parameters with Newton’s method

is analyzed. Optimizing the RBF neural network parameters with Newton’s method is an

improvement over the existing training algorithms in the literature. The proposed training

algorithms are simple to train and yet powerful with minimum number of hidden units. We are

successfully able to train small but powerful network with better generalization and training

capability. Apart from the conventional parameters we also introduced weighted DM. Training of

the DM weights significantly improves the RBF network. From our experimental results we

conclude that the performance of the various training algorithms is affected by the data set

correlation. The effect of Newton’s method is more pronounced in correlated datasets. For un-

correlated dataset the effect of distance measure (DM) is not much and its performance is same

with training algorithms where only conventional parameters have been optimized. Therefore

DM is significantly helpful when the dataset is correlated. The generalization ability is further

substantiated by the k-fold validation. Newton’s method on all three parameters helps

significantly in improving the performance of RBF networks.

We also experimented with single and multiple OLF and combined it with spread

parameters and mean vector parameters. We concluded that the multiple OLF training of the

mean vector parameters is more effective than the training of `.The experimental results further

bolster this conclusion. It came out from our analyses that optimizing mean vector parameters

has more effect on the training result than any other parameter. We also mathematically

71

observed the reason of non-singularity of Hessian matrix in case of linear dependency of inputs

Incorporating a method to optimally select the number of hidden units based on different dataset

is definitely necessary. Experimenting with L-2 error norm, VC dimension for the proposed

training algorithms are some of the future areas that needs to be explored

72

APPENDIX A

CLUSTERING ALGORITHMS

73

1. K-means clustering

K-means clustering algorithm is used to locate a set of k RBF center between the training

set vector �� and the nearest of the k receptive mean vectors a) [51]. K-means algorithm

allocated each data point to one of the c cluster to minimize the within cluster sum of square:

� � º�� !5º"�»¼½
�
5%& (1.1)

where¾5 is the data points in the ith cluster and !5 is the mean for that points over the

cluster i. (1.1) denotes a distance norm which is minimized in the mean square sense.

2. Self-Organizing Map (SOM)

In our work we use Self-Organizing feature Map (SOM) for1 dimensional cluster in order to

set up initial mean vector parameters and spread parameters value. SOM is a variation to the

adaptive K-means where we cluster the data set based upon the relative distance. The

advantage of using SOM over K-means is that the former take care of the re-ordering of the

cluster. While in SOM, the cluster generated do not form an optimal quantize, but may serve as

an initial cluster generator for other clustering techniques.

74

APPENDIX B

 DESCRIPTION OF TRAINING DATA SETS

75

In this appendix, we give some description about the training data sets which are used

through the thesis.

Training data set twod is available on the Image Processing and Neural Networks Lab

repository [50]. It contains simulated data based on training algorithms from back-scattering

measurements [50]. This training file is used in the task of inverting the surface scattering

parameters from an inhomogeneous layer above a homogeneous half space, where both

interfaces are randomly rough. The parameters to be inverted are the effective permittivity of the

surface, the normalized rms height, the normalized surface correlation length, the optical depth,

and single scattering albedo of an inhomogeneous irregular layer above a homogeneous half

space from back scattering measurements. The training data set has 8 inputs, 7 outputs, and

1768 patterns. The inputs consist of eight theoretical values of back scattering coefficient

parameters V1 at ¿ and À polarizations and four incident angles (101 , 301, 501, 701� . The

outputs were the corresponding values of permittivity, upper surface height, lower surface

height, normalized upper surface correlation length, normalized lower surface correlation length,

optical depth and single scattering albedo of an in-homogenous irregular layer above a

homogenous half space.

Training data set mattrn is available on the Image Processing and Neural Networks Lab

repository [50]. It contains the data for inversion of random two by two matrices [50]. Each of the

2000 patterns consist of 4 input features and 4 output features. The input features, which are

uniformly distributed between 0 and 1, represent matrix elements and the four output features

are elements of the corresponding inverse matrix. The determinants of the input matrices are

considered to be between 0.3 and 2.

oh7 is available on the Image Processing and Neural Networks Lab repository [50].

Inputs for the training data set oh7 are VV and HH polarizations at L30, 40 deg, C 10, 30,40,50,

60 deg, and X 30,40,50 deg [50]. The corresponding desired outputs are Θ � ÄÅ, Æ, !�ÇE, where

76

Åthe rms surface height is, Æ is the surface correlation length; !� is the volumetric soil moisture

content in �/W!�. There are 20 inputs, 3 outputs, 10453 training patterns.

concrete data file is available on the UCI Machine Learning Repository [51]. It contains

the actual concrete compressive strength (MPa) for a given mixture under a specific age (days)

determined from laboratory. The concrete compressive strength is a highly nonlinear function of

age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, super

plasticizer, coarse aggregate, and fine aggregate. The data set consists of 8 inputs and 1 output

per pattern, with a total of 1030 patterns.

77

REFERENCES

[1] Kumar,S., Neural Network: a classroom approach, International ed. McGraw Hill Press,

2005, pp 304-314.

[2] Medgassy, P. 1961. Decomposition of superposition of distributed functions, Hungarian

academy of Sciences, Budapest.

[3] Micchelli, C.A.1986. Interpolation of scattered data: Distance and conditionally positive

definite functions, Constructive Approximations, vol.2, pp. 11-22.

[4] Powell, M.J.D 1987. Radial Basis functions for multivariate interpolation: a review, in

algorithms for the approximation of Functions and Data. J.C.Mason and M.G.Cox eds.,

Clarendon Press, Oxford, England.

[5] Duda, R.O., and Hart, P.E.1973. Pattern Classification and Scene Analysis, Wiley, New

York.

[6] Speecht, D.F. 1990. Probabilistic neural networks, Neural Networks, vol 3, pp.109-118.

[7] Poggio, T., and Girosi, F. 1989. A theory of Networks for Approximation and Learning. A.I.

Memo 1140, MIT, Cambridge

[8] Broomhead, D.S. and Lowe, D. (1988), “ Multivariate functional interpolation and adaptive

networks,” Complex Systems,2,321-355

[9] Lee, S. and Kil, R. (1988). “Multilayer feed-forward potential function networks,“ in

Proceedings of the IEEE Second International conference on Neural Networks (San Diego

1988), vol, 161-171, IEEE, New York.

[10] Niranjan,M. and Fallside, F. (1988). “Neural Networks and Radial Basis Functions in

classifying static speech patterns,” Technical Report CUEDIF-INFENGI7R22, Engineering

Department, Cambridge University.

78

[11] J.E. Moddy and C.J.Darken,” Fast learning in networks of locally-tuned processing units,”

Neural Computation. vol.1, pp 281-294,1989.

[12] G.B.Huang, P.Saratchandran and N.Sundararajan, “A Generalized Growing and Pruning

RBF (GGAP-RBF) Neural Network for Function Approximation,” IEEE Trans. Neural

Networks, vol16, no 1, pp.57-67, Jan 2005.

[13] S.Chen, C.F.N. Cowan, and P.M. Grant, “Orthogonal Least Squares learning algorithms for

radial basis functions networks,” IEEE Trans. Neural Network. vol 2, no2,pp.302-309,

Mar.1991.

[14] S.Chen, E.S.Chng, and K.Alkadhimi, “Regularized orthogonal least square algorithm for

construction radial basis function networks,” Int. J. Control, vol.64, no.5, pp.829-837, 1996.

[15] E.S.Ching, S. Chen, and B. Mulgrw,” Gradient radial basis function network for nonlinear

and nonstationary time series prediction,” IEEE Trans. Neural Networks, vol.7, no.1,

pp.190-194, Jan.1996.

[16] M.J.L. Orr, “Regularization on the selection of radial basis function centers,” Neural

Computation. Vol.7, pp.606-623,1995

[17] Karayiannis, N.B., “Gradient descent learning of radial basis neural networks,” in Proc.1997

IEEE Int. conf. Neural Networks, vol.3, Houston, TX, June 9-12, 1997, pp.1815-1820.

[18] Karayiannis, N.B., “Learning algorithms for reformulated radial basis neural networks,” in

Proc.1998 Int. Joint Conf. Neural Networks, Anchorage, AK, 1998, pp.2230-2235.

[19] Karayiannis, N.B., “Reformulated radial basis neural networks trained by gradient descent,”

IEEE Trans. Neural Networks, vol.10, pp.657-671, May 1999.

[20] Karayiannis, N.B., and Behnke,S., 2000 “New radial basis neural networks and their

application in a large-scale handwritten digit recognition problem,” in Recent Advances in

Artificial Neural Networks: Design and Applications, L. C. Jain and A. M. Fanelli, Eds. Boca

Raton, FL: CRC, pp. 39–94.

79

[21] Shi, Y., Globally convergent algorithms for unconstrained optimization, Computational

Optimization and Application vol.16, pp 295-308, 2000.

[22] Malalur, S., Manry, M.,” Feed-Forward Network Training Using Optimal Input Gains,”

International Conference on Neural Networks, Atlanta, pp. 1953-1960, Jun 2009.

[23] Cha, I., and Kassam,S.A., “ Interference cancellation using radial basis function networks,”

Signal Processing, vol.47, pp.247-268, 1995

[24] Whitehead, B.A., and Chaote, T.D., “Evolving space-filling curves to distribute radial basis

functions over an input space,” IEEE Trans. Neural Networks, vol.5, pp. 15-23, Jan. 1994.

[25] Haykin, S., Neural Network: A Comprehensive Foundation, 3rd ed. Englewood Cliffs, NJ:

Prentice Hall, 2009

[26] Chen. S., Cowan. C.F.N., and Grant P.M., “Orthogonal least Square Learning algorithm for

Radial Basis Function Networks”, IEEE Trans. On Neural Networks, Vol2, No 2 (Mar) 1991.

[27] Haykin, S., Adaptive Filter Theory, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall, 1996.

[28] Manry, M., Apollo, S.J. and Yu. Q, “Minimum mean square estimation and neural networks,”

Neurocomputing, vol 13.

[29] Barnard. E., “Optimization for training neural nets,” IEEE Trans. Neural Networks, vol.3,

no.2, pp.232-240, 1992.

[30] Battiti. R., “First and second order methods of learning: between steepest descent and

Newton’s method,” Neural Computation, vol.4, no.2, pp.141-166,1992.

[31] Bishop, C., “Exact calculation of the hessian matrix for the multilayer perceptron,” Neural

Computation, vol 4, no. 4, pp. 494-501,1992

[32] Flethcer, R., Practical Methods of Optimization, 2nd ed., Chichester, NY: John Wiley & Sons,

1987.

[33] Moller, M., Efficient training of feed forward neural Networks, Ph.D. dissertation Aarhus

University, Denmark, 1997.

80

[34] Amapzis, N and Perantonis. S.j, “ Two highly efficient second order algorithms for training

feedforward networks,” IEEE Trans. Neural Networks, vol.13, pp.1064-1074,2002.

[35] Irwin. G., Lightbody., G. and Mcloone., S., “Comparison of gradient based training

algorithms for multilayer perceptrons” in IEEE Colloquium on advances in Neural Networks

for Control and Systems, 1994, May, pp.11/1-11/6.

[36] Wasserman, P.D., Advanced Methods in Neural Computing, Van Nostrand Reinhold, New

York, 1993

[37] Subramanian., C, Manry., M and Naccarino., J., “Reservoir inflow forecasting using neural

networks,” in Proceedings of the American Power Conference, vol 61, 1999, pp. 220-225.

[38] Manry. M et al., “ Fast Training of neural networks for remote sensing,” Remote Sensing

Reviews, vol9, pp.77-96, 1994.

[39] Saarein, S., Bramley, R., and Cybenko, G., “Ill-conditioning in neural network training

problems.” SIAM Journal on Scientific Computing, vol.14, pp 693-714, 1993.

[40] Smagt, P., and Hirzinger, G., Solving the ill-conditioning in neural networks learning, ser.

Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science 1524, G.Orr and

K.R.Muller, Eds, Springer Verlag, 1998.

[41] Golub G., Loan C., “Matrix Computations”, Johns Hopkins university press, 3rded, 1996.

[42] Press. W.H., et al., “ Numerical Recipes in C “., New York: Cambridge University Press,

2005.

[43] Levenberg, K.,”A method for the solution of certain problems in least squares,” Quart. Appl.

Math.,pp. 2, pp.164.pp.168,1944.

[44] Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters. SIAM J.

Appl. Math., pp. 11, pp.431-441, 1963

81

[45] Huang, G.B, Zhou H., Ding., X., and Zhang., R., “ Extreme Learning machine for

regression and multiclass classification,”(in press) IEEE Transaction on systems, Man and

Cybernetics- Part B: Cybernetics, 2011

[46] Doost. R., Sayadian., and Shamsi., H., “A new perceptually weighted distance measure for

vector quantization of STFT amplitudes in the speech application”, IEICE Electron.

Express, vol 6, No. 12, pp. 824-830, (2009).

[47] Wachter., M, Demuynck., K., Wambacq., P, Compernolle., D., “ A locally weighted distance

measure for example based speech recognition”, Proc. of IEEE International conference on

Acoustic, Speech and Signal Processing, vol1., pp 181-4, 2004.

[48] Malalur, S., and Manry,M., ”Multiple optimal learning factors for feed-forward networks,”

Proc. of SPIE: Independent Component Analyses, Wavelets, Neural Networks, Bio-

systems, and Nanoengineering VIII, Orlando Florida, vol. 7703 pp. 77030F-1 – 77030F-12,

April 7-9, 2010.

[49] Maldonado. F.J., Manry., M., Kim. T.H., “Finding optimal neural network basis function

subsets using the Schmidt procedure”, Proc. of the International Joint Conference on

Neural Networks,vol 1, pp. 444-449, 20-24 July 2003.

[50] Source: http://www-ee.uta.edu/eewb/ip/training_data_files.htm

[51] Source: http://archive.ics.uci.edu/ml/

[52] MacQueen, J.B., “Some Method for classification and Analysis of Multivariate

observations”, Proceedings of 5th Berkley Symposium on Mathematical Statistics and

Probability. University of California Press. Pp.281-297. MR0214227.

[53] Rifkin, R.M., “Everything old is new again: a fresh look at historical approaches in machine

learning”, Ph.D. thesis, MIT, 2002.

82

BIOGRAPHICAL INFORMATION

Kanishka Tyagi was born in Meerut, India, in 1984. He received his Bachelor Degree in

Electrical Engineering in 2008 from G.B.Pant University of Agriculture and Technology,

Pantnagar, India. From 2008 to 2009 he was a Research Associate with Dr.P.K.Kalra at the

Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, India.

There he worked on the development of audio classification algorithms, blind source separation

algorithm and virtual foot balloon system. He is currently a Graduate student in Image

Processing and Neural Networks Lab, The University of Texas at Arlington, USA. During spring

2011, he worked as intern at Verizon Wireless, Irving, Texas to develop recommendation

systems for FiOS project module. During summer 2011, he was a visiting research student at

Multimedia Signal Processing Lab with Dr. Nojun Kwak at Ajou University, South Korea.

Currently, he is working as an intern at Siemens Energy, Richland, Mississippi to develop

embedded based communication layer and firmware code for next generation voltage

regulators.

His specific research interests are non-linear neural networks; L-1 based subspace

algorithms, signal processing and image segmentation and face-detection. He is a member of

Tau Beta Pi, Engineering Honor Society and recipient of 2007 IEEE Computational Intelligence

Society outstanding student paper travel grant award and 2011 IEEE FUZZ outstanding student

paper travel grant award.

