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ABSTRACT

RADAR SENSOR NETWORKS: WAVEFORM DESIGN, MIMO AND

COMPRESSIVE SENSING

Lei Xu, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Qilian Liang

In this dissertation, we have studied totally eight topics which are focused on

but not limited to radar sensor networks (RSN) from a signal processing perspective.

We propose the definitions of ZCZ/LCZ (Zero Correlation Zone/Low Correlation

Zone) sequence-pair sets, provided three methods to construct optimized optimized

punctured LCZ/ZCZ sequence-pair sets and study their properties in chapter 2 and

3. We further investigate the waveform design problem for radar system, radar sensor

network, sonar sensor network and MIMO radar system from chapter 4 to chapter

7. In addition, we study radar sensor network from the view of information theory

in chapter 8. We also study compressive sensing and apply it to RSN to further

investigate the system performance in chapter 9 and chapter 10. In chapter 11, we

briefly conclude our work in this dissertation. The main innovation works of this

dissertation are as following.

We propose the LCZ/ZCZ Sequence-pair Sets that have ideal autocorrelation

sidelobes and cross correlation values during LCZ/ZCZ. We also provide three meth-

ods to construct the Optimized Punctured LCZ/ZCZ Sequence-pair Sets which is a
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specific case of the LCZ/ZCZ Sequence-pair Sets. We not only theoretically prove that

the sequence-pair sets constructed by our methods satisfy the definitions of the Op-

timized Punctured LCZ/ZCZ Sequence-pair sets, but also provide examples for each

method and analyze properties of the Optimized Punctured LCZ/ZCZ Sequence-pair

sets to help further investigating our proposed codes.

The main purpose of pulse compression is to raise the signal to maximum side-

lobe (signal-to-sidelobe) ratio to improve the target detection and range resolution

abilities of the system. We apply the Optimized Punctured Binary Sequence-pair to

the Radar system as the phase coded waveforms which is a kind of pulse compres-

sion codes. Comparing with the Barker and P4 codes of corresponding length, the

Radar system within the Optimized Punctured Binary Sequence-pair could clearly

improve the detection performances. Since multiple radar sensors can be combined

to form a multi radar system to overcome performance degradation of single radar

along with waveform optimization, we theoretically study RSN design using phase

coded waveforms. We apply our newly proposed codes to RSN and analyze the de-

tection performance of the system. We also apply the proposed ternary codes to the

Sonar Sensor Network (SSN) as pulse compression codes for narrowband pulse signals

and simulate the target detection performance of the system.

We provide two MIMO radar systems using our proposed codes as orthogonal

pulse compression codes to study the direction finding performance of the MIMO

radar systems. We theoretically analyze the two MIMO radar system models and

simulate the direction finding performance of the system.

We also studied the RSN from the view of information theory. We investigate

the use of information theory to design waveforms for the measurement of extended

radar targets in RSN. We optimized the estimation waveforms that maximize the
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mutual information between a target ensemble and the received signal within additive

Gaussian noise so that characteristics of the target could be well recognized.

Finally, we provide and analyze a CS-SVD method to simplify the signal re-

covery algorithm and introduce CS to RSN using pulse compression technique. Our

idea is to employ a set of Stepped-Frequency (SF) waveforms as pulse compression

codes for transmit sensors, and to use the same SF waveforms as the sparse matrix

to compress the signal in the receiving sensor. We obtain that the signal samples

along the time domain could be largely compressed so that they could be perfectly

recovered by a small number of measurements. We develop a Maximum Likelihood

(ML) Algorithm for Radar Cross Section (RCS) parameter estimation and provide

the Cramer-Rao lower bound (CRLB) to validate the theoretical result.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

1.1.1 Best Discrete Signals

The best discrete signals could improve the anti-jamming, anti-noise and anti-

fading performances of the communication system, increase the confidentiality of the

system data and fulfill the synchronization and tracking in CDMA communication

system. Based on the signal elements, the best discrete signal could be divided

into two (binary), ternary, quaternary, and multi-signal equivalents; Based on the

periodic property, the best discrete signal could be divided into periodic signal and

aperiodic signal. However, there is no strict mathematical definition for the best

discrete signal in a variety of engineering fields, because of the different practical

engineering applications. In some other words, there are different definitions of the

best signal in different engineering applications. In general, the signals that meet

the need of a particular system are known as the best signals for that engineering

application. As a matter of fact, the best signals of one particular type of engineering

standard might be the worst signals working with another standard. Therefore, it

has been concluded that it is and will be impossible to find a class of best signals

suitable for all the engineering applications.

Since the signal processing ability of the system is improving, the function of

system becomes more and more intense and structure of the system becomes more

and more complex. More strict signals are required in the system. Fortunately, as

computer technology developed rapidly, computer digital signal processing has been

1



widely used and dominated in the electronic system. Consequently, it is possible for

people to use more complex forms of signals other than binary signals to improve the

system performance and to increase flexibility of the system.

1.1.2 Signals of Periodic Correlation

The signal processing in communication engineering often requires the set of

signals to have at least one or both of the following two conditions:

(1) Each signal of the set could be easily distinguished from the signal with delay of

itself;

(2) Each signal could be easily distinguished from the other signals of the set as well

as the signal with delay of itself;

Conditions (1) is very important for the systems, such as telemetry systems,

radar systems and spread spectrum communication system; and for multiple targets

and the system of multiple terminals, the conditions (2) is even more important.

LMS (least-mean-square) error is one of the most commonly used and most effective

measures to distinguish signals, that is, when the MSE (mean square error) between

the two signals is great, the two signals are easily distinguished from each other.

It has been theoretically proved: When the signals have good periodic correlation

properties, signal A could be distinguished from signal B, as well as the signal B

with time delay. Thus, correlated receiver or matched filter could be used to extract

the required signal or signal with time delay for navigation and radar systems. This

is the reason why periodic correlation is profoundly investigated and periodic signal

is required by engineering applications. Therefore, the challenging requirements of

perfect discrete signals are the high autocorrelation peak, the low autocorrelation

sidelobes and the low cross correlation properties which could meet the above two
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conditions. It is necessary and significant for us to study the set of discrete signal of

perfect periodic correlation.

1.1.3 Innovation Work Overview

Much time and effort was put in designing the perfect periodic correlation sig-

nals. These signals have abroad been applied in modern communication, radar, sonar,

navigation, space ranging and controlling, and electronic antagonism systems. There-

fore, it is one of the objects researching perfect periodic discrete signals which have

ideal autocorrelation and cross correlation properties for engineering application, such

as in modern communication, radar, sonar, navigation, space ranging and controlling,

and electronic antagonism systems.

Since the length and number of perfect correlation signals are severely restricted,

many methods have been accepted to extend the length of sequence and enlarge the

number existent sequences. Considering the periodic codes, the m-sequences or Leg-

endre sequences could achieve the lowest periodic autocorrelation function (ACF) of

|Ri(τ 6= 0) = 1|. For non-binary sequences, the Golomb codes [1] are a kind of two-

valued (biphase) perfect codes which obtain zero periodic ACF but result in large

mismatch power loss. The Ipatov code [2] shows a way of designing code pairs with

perfect periodic autocorrelation (the cross correlation of the code pair) and minimal

mismatch loss, but its reference code and construction method are complicated. Zero

periodic autocorrelation function for all nonzero shifts could be obtained by polyphase

codes, such as Frank and Zadoff codes, but the more complicated constructing meth-

ods and implementation cost are required. In addition to these well-known codes, by

suffering a small S/N loss, the authors [3] present several binary pulse compression

codes to greatly reduce sidelobes. In [4], pulse compression using a digital-analog

hybrid technique is studied to achieve very low range sidelobes for potential appli-
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cation to spaceborne rain radar. Tanner et al.[5] uses time-domain weighting of the

transmitted pulse to achieve a range sidelobe level of -55 dB or better in flight tests.

Nevertheless, all the above work have their own disadvantages, such as the large mis-

match power loss for Golomb codes, the high energy of reference code and complicated

construction method for Ipatov codes and so on. It is also known that for both binary

and non-binary sequences in the periodic sequence field, the sequences can not ob-

tain ideal impulsive autocorrelation function (ACF) and ideal zero cross-correlation

functions (CCF) simultaneously although ideal CCFs could be achieved alone. Since

the ACF and CCF have to be limited by certain bounds, such as Welch bound [6],

Sidelnikov bound [7], Sarwate bound [8], Levenshtein bound [9], etc. As a reulst,

the concept of Zero Correlation Zone (ZCZ) [10][11][12] during which ideal impulsive

autocorrelation function and ideal zero cross-correlation functions could be achieved

simultaneously is proposed to overcome the above problems. Here, the sequence-pair

and ZCZ/LCZ (Zero Correlation Zone/ Low Correlation Zone) are introduced to help

constructing the set of perfect correlation signals. Three constructing methods are

provided and their properties are investigated.

In addition, waveform design is of great importance in the engineering field.

Hence, it is necessary to study not only the theoretical analysis of the proposed

codes’ properties, but also the engineering application to the industrial world, such

as pulse compression technique in radar system, radar sensor network, sonar sensor

network and MIMO Radar.

1.2 Preliminaries to the Proposed Triphase Codes

The most popular biphase code widely used in radar system is the Barker code,

which is only found at the maximum length of 13. It is also known that for most good

binary sequences of length N(N > 13), the attainable autocorrelation sidelobe levels
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are approximately
√
N [13] [14], and the mutual cross correlation peaks of sequences of

the same length are larger and usually in the order of 2
√

(N) to 3
√

(N). Set of binary

sequences of length N with autocorrelation sidelobes and cross-correlation peak values

both of approximately
√

(N) are only achieved in paper [15]. In addition to the binary

sequences, the Polyphase code is another kind of code provided [16] [17] [18] to make

up for the restriction of binary sequences and could have better Doppler tolerance and

lower range sidelobes (such as the Frank and P1 codes, the Butler-matrix derived P2

code and the linear-frequency derived P3 and P4 codes). Nevertheless, the sidelobe’s

range of the polyphase codes can not be as low as zero either. The structure of

polyphase codes is more complicated and is not easy to generate comparing with

binary codes.

In this dissertation, we introduce the definitions of Optimized Punctured Bi-

nary Sequence-pair and ZCZ/LCZ (Zero Correlation Zone/Low Correlation Zone),

based on which, we propose and construct a set of new kind of triphase codes–the

Optimized Punctured ZCZ/LCZ Sequence-Pair Set which have the largely reduced

autocorrelation sidelobes and cross correlation values. We also provide three methods

to construct the above codes. Examples are given to study the codes’ auto correlation

and cross correlation properties.

1.3 Preliminaries to Pulse Compression Technique in Radar System

Pulse compression allows a radar to simultaneously achieve the energy of a long

pulse and the resolution of a short pulse without the high peak power which is required

by a high energy short duration pulse [19]. One of the waveform designs suitable for

pulse compression is phase-coded waveform design, which is a long pulse of duration

T divided into N subpulses each of width Ts. Each subpulse has a particular phase,
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which is selected in accordance with a given code sequence. The pulse compression

ratio equals the number of subpulses N = T/Ts. In general, a phase-coded waveform

with longer code word, in other words, higher pulse compression ratio, can have lower

sidelobe of autocorrelation, relative to the mainlobe peak, allowing its main peak to

be better distinguished.

The lately proposed Optimized Punctured Binary Sequence-pair could achieve

an ideal autocorrelation sidelobe as low as zero. Therefore, we apply the Optimized

Punctured Binary Sequence-pair to the Radar system as the pulse compression codes

and study the simulation results show that detection performance of the system using

Optimized Punctured Binary Sequence-pair is superior to the one using traditional

phase codes waveforms such as the Barker and P4 codes.

1.4 Preliminaries to Radar Sensor Network

With recent rapid development in information fusion technology, much time

and effort have been put in radar waveform design for a single active radar [20][21].

However, multiple radar sensors can be combined to form a multi radar system to

overcome performance degradation of single radar along with waveform optimization.

In [22], Liang studied constant frequency (CF) pulse waveform design and proposed

maximum-likelihood (ML) automatic target recognition (ATR) approach for both

nonfluctuaing and fluctuating targets in a network of multiple radar sensors. In [23],

RSN design based on linear frequency modulation (LFM) waveform was studied and

LFM waveform design was applied to RSN with application to ATR with delay-

Doppler uncertainty by Liang as well. J.Liang [24] provided an orthogonal waveform

model for RSN, which eliminates interference when there is no Doppler shift.

Nevertheless, the radar sensor network using phase coded waveforms has not

been well studied so far. As has been known, phase coded waveform design is one of
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the widely used waveform design methods for pulse compression which could raise the

signal to maximum sidelobe (signal-to-sidelobe) ratio to improve the target detection

and range resolution abilities of the system.

In this dissertation, we would theoretically study RSN design based on phase

coded waveforms: the conditions for waveforms co-existence. Then we apply our

newly proposed triphase codes called optimized punctured ZCZ sequence-pair set

(optimized punctured ZCZPS) to RSN. The detection performance of the system is

improved because of the good orthogonal property of the proposed codes.

1.5 Preliminaries to Sonar Sensor Network

Much time and effort have been put in radar waveform design for radar sen-

sor networks [22][23] [24], since multiple radar sensors could be combined to form

a multiradar system to overcome performance degradation of sigle radar. Though

underwater sonar system is more complicated than the radar system because of many

unique channel characteristics such as fading, extended multipath and refractive prop-

erties of the sound, multiple sonar sensors could construct a underwater sonar sensor

network so that the detection performance could be improved.

The long-range bistatic sound transmission through the ocean sound channel

such as in ocean acoustic tomography [25] [26], in acoustic thermometry of ocean

climate (ATOC) [27] used the signal that allows sufficient sound energy delivery into

the ocean so that the signal received at long range, perhaps several megameters, has a

sufficiently high signal-to-noise energy ratio but low signal-to-noise power ratio. Con-

sequently, precision measurements of sound travel time could be made and good time

resolution should be allowed after signal processing. m sequences, successfully used

in previous experiments [25] [28] [29], satisfy the long-range transmission requirement

and the same time resolution as a monopulse or periodic pulse system whose pulse
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width is one digit duration achievable at high power. In other words, high signal en-

ergy is provided by transmitting over a long time (large T ) and good time resolution

is achieved by using a sequence of short pulse (large W ), therefore having a large TW

product [30]. It is called the phase coded waveform which is a widely used technique

in radar system.

Therefore, family of m sequences could be applied to the SSN to achieve better

targets detection performance than single sonar sensor. Nevertheless, the autocorrela-

tion and cross correlation properties of family of m sequences or even Gold sequences

are not optimized. As a result, the concept of ZCZ (Zero Correlation Zone) [31] is

introduced.

In this dissertation, based on the definitions of optimized punctured ZCZPS

and the method to construct optimized punctured ZCZPS proposed previously, we

analyze the properties and ambiguity function of optimized punctured ZCZPS. We

investigate the target detection performance of using the proposed codes as pulse

compression codes in the sonar sensor network and draw some final conclusions on

the proposed codes.

1.6 Preliminaries to MIMO Radar System

The previous work [32] [33] [34] showed that processing data from a radar

network with spatially distributed nodes could offer significant performance improve-

ment, as a result, there has been considerable interest in MIMO radars which employ

multiple antennas both at the transmitter and at the receiver. The present im-

portant research of MIMO radar includes all kinds of techniques, such as waveform

design [35] [36] [37], ambiguity function [38], patternform syntheses [39][40], detection

and localization performance analysis [35]-[40], space-time adaptive signal processing,

direction finding, etc. In [36], the authors design covariance matrix of the probing sig-
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nal vector transmitted by the radar to achieve the desirable features of a MIMO radar

system. The desirable features could be to choose freely the probing signals trans-

mitted via its antennas to maximize the power around the locations of the targets of

interest, more generally to approximate a given transmit beampattern, and also to

minimize the cross-correlation of the signals reflected back to the radar by the targets

of interest. In [37], they also propose a cyclic optimization algorithm for the synthesis

of a given optimal covariance matrix R under various practical constraints to con-

struct signals which also have good auto- and cross- correlation properties in time. In

addition, based on investigating target detection and parameter estimation techniques

for a multiple-input multiple-output (MIMO) radar system, the authors [41] propose

an alternative estimation procedure, referred to as the combined Capon and approx-

imate maximum likelihood (CAML) method which can provide excellent estimation

accuracy of both target locations and target amplitudes.

Apart from the work mentioned above, direction finding [42] [43] is such a

technology that a well known waveform is transmitted by an omnidirectional antenna,

and a target reflects some of the transmitted energy toward an array of sensors that

is used to estimate some unknown parameters, e.g. bearing, range, or speed. Also,

beamforming [44] is another important process generally used in direction finding

process that an array of receivers can steer a beam toward any direction in space.

The advantages of using an array of closely spaced sensors at the receiver are the

lack of any mechanical elements in the system, the ability to use advanced signal

processing techniques for improving performance, and the ability to steer multiple

beams at once.

In the dissertation, we would theoretically investigate the MIMO radar system

using our proposed triphase orthogonal waveforms as pulse compression codes and

study the direction finding performance of the MIMO radar system. To the best
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of our knowledge, it is the first time to introduce pulse compression technique to

MIMO radar system to improve the direction finding performance. We also study

the ambiguity function of the MIMO radar system. The simulation results show

that the MIMO radar systems using our models could obtain good direction finding

performance.

1.6.1 Preliminaries to Radar Sensor Network From the View of Information Theory

Information theory has been applied to investigating radar system by Woodwar

and Davies[45]-[46]. For these works, the information theory is particulary used in the

area of radar detection. Considering the application of information theory in radar

detection problem, it is summarized to gain information from a mixture of signal and

unwanted noise by obtaining as large a signal-to-noise ratio as possible on the grounds

in[47].

Meanwhile, much time and efforts has also been put into waveform design prob-

lem in the radar system. Wilcox[48] studied the problem of designing waveforms

from the radar ambiguity function for narrowband signals. Naparst[49] considered

the problem of wideband waveform design and processing to resolve targets in dense

target environments. It is not until 1993 when Bell[50] first used mutual information

in the design of single radar waveforms and processing to conclude that distributing

energy is a good choice to better detect targets.

Recently, radar sensor network (RSN) is a newly studied topic that multiple

radar sensors can be combined to form a multiradar system to overcome performance

degradation of single radar along with waveform optimization. In [22] and [23], Liang

has studied constant frequency (CF) pulse waveform design and LFM waveform de-

sign in a network of multiple radar sensors. Nevertheless, none of the works have

considered the use of information theory in radar waveform design for RSN.
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In this dissertation, we studied the problems of how to design a set of radar

waveforms for optimal target information extraction in RSN. Here, the radar targets

are modeled as extended radar targets of significant physical extent but not the simple

point targets for the purpose of extracting information about a target. The problem

is modeled to design of radar waveforms which maximize the mutual information

between the extended target and the receiver output. Closed form expression has

been derived for the waveform and an example has been illustrated to further study

it.

1.7 Preliminaries to Compressive Sensing

Recent results in compressive sensing have shown that the information from a

signal may be captured with a small set of nonadaptive, linear measurements as long

as the signal is sparse in some basis or frame [51]-[52]. If the signal is properly chosen,

the number of measurements to recover the signal can be much smaller than the num-

ber of Nyquist-rate samples. The application of compressive sensing to radar imaging

has been investigated in [53], [54]. A CS-based data acquisition and imaging method

was proposed to study a number of point-like targets for stepped-frequency continuous

wave ground penetrating radars (SFCW-GPRs) in [55]. In [56], the authors proposed

the step-frequency with compressive sampling (SFR-CS), that achieves high target

range and speed resolution using significantly smaller bandwidth than transitional

step-frequency radar. The application of CS to Multiple Input and Multiple Output

(MIMO) radar has also attracted a lot of attention in recent research. The work

of [57] studied angle-Dopper estimation of multiple targets for MIMO radar system.

In addition, the authors in [58] also considered the range estimation performance of

their proposed method for MIMO radar systems that employ CS. Based on adaptive

radar design, the authors in [59] studied MIMO radar with widely separated anten-
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nas in the context of sparse modeling for estimating the positions and velocities of

multiple targets.

1.7.1 Preliminaries to Using Singular Value Decomposition in Compressive Sensing

Compressive sensing (CS) [60][61] is an emerging framework that a signal vec-

tor which is K-sparse in a specific domain can be completely characterized by M

measurements (M > K) with M << N , where N is the traditional Nyquist based

number of samples required.

The major algorithmic challenge in compressive sensing is to approximate a

signal given a vector of noisy samples. There are three rough categories of signal re-

covery algorithms: convex relaxation, combinatorial algorithms and greedy pursuits.

The convex relaxation algorithms leading to l1-minimization–also called basis pursuit

[62] succeed with a very small number of measurements, however, it tends to be com-

putationally burdensome. Many of the combinatorial algorithms are extremely fast,

but they require a large number of somewhat unusual samples that may not be easy to

acquire. Greedy pursuits, such as various matching pursuits [63][64], are intermediate

in their running time and sampling efficiency but has its own disadvantages.

In Chapter 8, we provide a new algorithm-the CS-SVD algorithm for signal

recovery in compressive sensing by introducing the concept of SVD (Singular Value

Decomposition). We use SVD to study the compressive sensing framework and de-

velop two simple and straightforward methods to implement the CS-SVD algorithm

in the presence of additive noise.

1.7.2 Preliminaries to Application of Compressive Sensing to Radar Sensor Network

Current requirements in warfighting functionality result in obtaining accurate

and timely information about battlespace objects and events so that the warfighters
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can make decision about reliable location, tracking, combat identification and target-

ing information. While massive amounts of data will be generated by a penetrating

sensor, it is important for the warfighters to find technologies that not only integrate

information from diverse sources but also provide indications of information signif-

icance in ways that help them to make tactical decision. The Radar Cross Section

(RCS) is the property of a scattering object, or target, which represents the magni-

tude of the echo signal returned to the radar by the target. Hence, we could have

different classes with different RCS values representing corresponding targets, such

as bird, conventional unmanned winged missile, small single-engine aircraft and large

flight aircraft. In this paper, we will study the target RCS in a Radar Sensor Network

(RSN) by using compressive sensing techniques.

It is well known that Wireless Sensor Networks (WSN) are a fast growing class

of systems. In [65], the authors presented a new method that makes use of the

properties of data of multiple sensors to enable reliable data collection. In [66], the

authors adopted a mutual-information-based sensor selection (MISS) algorithm to

help sensing devices collaborate among themselves to improve the target localization

and tracking accuracies. Alike WSN, RSN has been recently considered to overcome

the performance degradation of a single radar. In [67], the authors design a net-

work of distributed radar sensors that work in an ad hoc fashion and the simulation

results showed that proposed RSN can provide much better detection performance

than that of single radar sensor. However, RSN is quite different from WSN. The

waveform of each radar sensor has to be properly designed, otherwise, these radar

sensors are likely to badly interfere with each other in the RSN. As a result, the

design of radar waveforms has been under the study with the goal of optimizing the

performance of the RSN. In [68], binary coded pulses using simulated annealing in

RSN are proposed. Liang [22] studied Constant Frequency (CF) pulse waveform de-
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sign and proposed Maximum-Likelihood (ML) Automatic Target Recognition (ATR)

approach for both nonfluctuating and fluctuating targets in a radar sensor network.

Furthermore, Liang [23] studied the RSN design based on Linear Frequency Modula-

tion (LFM) waveforms and also applied the LFM waveforms to RSN in the context

of ATR with delay-Doppler uncertainty. In addition, it is known that the pulse com-

pression technique allows a radar to achieve both the energy of a long pulse and the

resolution of a short pulse, without the high peak power which is required by a high

energy short duration pulse [69]. Pulse compression waveforms are obtained by adding

frequency or phase modulation to a simple pulse. A Stepped-Frequency waveform is

a frequency modulation waveform for obtaining a large bandwidth, and thus a fine

range resolution without requiring intrapulse frequency modulation. The most com-

mon Stepped-Frequency waveform employs a linear frequency stepping pattern, where

the RF frequency of each pulse is increased by ∆F . This representation motivates

the applicability of the recently proposed Compressive Sensing (CS) theory [70], [53]

that refers to such signals as ‘sparse’ or ‘compressible’.

Due to the expansion of data introduced to RSN, the compression and recon-

struction of the received data is a design challenge of future RSN. Unlike the above

research, the work in this dissertation explores how to exploit compressive sensing in

RSN composed of a number of transmit sensors but only one receiving sensor. It is

known that the signal must be ‘compressible’ for compressive sensing to have benefit.

Recognizing that the Stepped-Frequency train could act as the sparsity basis for the

signal, we apply it as a pulse compression code to construct the ‘compressible signal’

for a transmit sensor. We choose the Gaussian matrix as the measurement matrix

that satisfies the Restricted Isometry Property (RIP) with this basis. However, there

are still a number of challenges in most CS theory applied to radar which specifically

mentions that it eliminates the need for matched filter in the radar receiving sensor.
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In [53], only the range parameter of the target was studied and the target reflectivity

being probed must be compressible in some basis before their CS-based radar system

could work. In [71], the transmitted signal must be sufficiently ‘incoherent’ and the

targets have to be radially aligned with the transmitter and receiver. In this paper,

we propose and investigate a totally different model of CS-based radar sensor network

system. Hence, the matched filters are still used in the receiving sensor.

In addition to the proposed RSN model above, we investigate the application

of compressive sensing to RSN to perform target RCS value estimation. We propose

an Maximum Likelihood (ML) algorithm to estimate the target RCS parameter and

use the Cramer-Rao lower bound (CRLB) to validate our theoretical result. In the

simulation parts, the performance of signal recovery and the performance of target

detection are studied as well as the performance of target RCS value estimation. The

simulation results show that the the signal could be precisely recovered if the number

of measurements is no less than the number of sensors in RSN. The target could be

perfectly detected even if the signal could not be precisely recovered. As a result,

much smaller measurement matrix could be used on the receive part for the purpose

of target detection. Finally, the actual variance of the RCS parameter estimation θ̂

satisfies the CRLB.

1.8 Organization of Dissertation

The remainder of this dissertation is organized as follows.

• Chapter 2 presents and studies the Optimized Punctured Binary Sequence-

pairs, the LCZ/ZCZ Sequence-pair Sets and the Optimized Punctured LCZ/ZCZ

Sequence-pair Sets. These sequence-pair sets, which possess both the good cross

correlation between different sequence-pairs of the set and the ideal autocorre-
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lation property of each sequence-pair, could be potent candidates for set of best

signals.

• Chapter 3 provides three methods to construct the Optimized Punctured

LCZ/ZCZ Sequence-pair sets and prove that the sequence-pair sets constructed

by our methods satisfy the definitions of the Optimized Punctured LCZ/ZCZ

Sequence-pair sets. Examples are illustrated for each method and properties

of the Optimized Punctured LCZ/ZCZ Sequence-pair sets are also analyzed to

help studying our proposed codes.

• Chapter 4 applies Optimized Punctured Binary Sequence-pair to the radar

system as the pulse compression code and simulate the detection performance

of the system. The simulation results show that the new code can provide better

performances than the Barker and P4 codes of corresponding length and be a

good alternative for the current used pulse compression codes in radar system.

Chapter 5 studied the RSN using the Optimized Punctured ZCZ Sequence-

pair set as the phase coded waveforms and simulated the detection performance

of the system. The simulation results show that RSN based on a set of optimized

punctured ZCZ sequence-pairs provides promising detection performance much

better than that of single radar.

• Chapter 6 applies our optimized punctured ZCZPS as a bank of phase coded

waveforms to the SSN can effectively satisfy higher demands criterion for de-

tection accuracy in modern military and security affairs.

• Chapter 7 introduces our proposed codes as the orthogonal pulse compres-

sion codes to the MIMO radar system to improve the radar direction finding

performance. antennas.

• Chapter 8 studied the waveforms design for the measurement of extended

radar targets in radar sensor networks (RSN) in the view of information theory.
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• Chapter 9 provides a new CS technique-the CS-SVD algorithm which requires

less measurements than the standard state-of-art compressive sensing techniques

and provide a simpler and more efficient recovery scheme.

• Chapter 10 introduces CS to the Radar Sensor Network (RSN) exploiting

the pulse compression technique to obtain better data compressing ratio. In

addition, a ML algorithm is proposed to estimate the target RCS parameter

and the CRLB is to successfully verify our theoretical result.

• Chapter 11 provides the conclusion. It summarizes the main achievements of

this dissertation and outlines future research directions.
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CHAPTER 2

OPTIMIZED PUNCTURED SEQUENCE-PAIR SETS

2.1 Introduction

Based on the previous study, the perfect binary sequence is known to be the

ideal signal in the industry field. However, only the perfect binary sequences of length

4 exist among the sequences of which length is less than 12100 [72]. As a result, people

optimized binary sequences to construct the sequences of which the autocorrelation

sidelobe is less than 1, such as m sequence, GOLD sequence, kasami sequence and

M sequence.

In addition, the sequence-pair concept is another concept that is provided to

enlarge the number of required sequences. It means that the transmitter and the

receiver are using different sequences which have good correlation properties. The

original best signal mentioned above is just a specific case of the best sequence-pair,

where the transmitter and the receiver share the same sequence.

The definition and property of sequence-pair are as following.

Definition 2-1-1[73]: X = (x1, x2, ..., xN ) and Y = (y1, y2, ..., yN) are two

different sequences of length N , (X, Y ) is called sequence-pair. If xi, yi ∈ ±1, the

sequence-pair (X, Y ) is N -length binary sequence pair.

Definition 2-1-2[73]: A sequence-pair (x,y) is made up of two N-length se-

quences x = (x0, x1, · · · , xN−1) and y = (y0, y1, · · · , yN−1),

Rxy(τ) = Rxy(rTs) =

N−1∑

j=0

xjy
∗
(j+τ)modN , (2.1)

0 ≤ r ≤ N − 1, 0 ≤ τ ≤ (N − 1)Ts
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is called the periodic autocorrelation function of the sequence pair. Rxy(0) is the

autocorrelation peak of the sequence-pair, and Rxy(τ), τ 6= 0 is the autocorrelation

sidelobe of the sequence-pair. While x = y, the sequence-pair (x,y) turns to be a

one-sequence code.

Definition 2-1-3[73]: The cross correlations of two sequence-pairs (X, Y ) and

(U, V ) could be expressed as

R(X,Y )(U,V )(τ) =

N−1∑

i=0

xiv
∗
(i+τ)modN , (2.2)

R(U,V )(X,Y )(τ) =

N−1∑

i=0

uiy
∗
(i+τ)modN

Definition 2-1-4[73]: When the autocorrelation of the sequence-pair (X, Y )

satisfies that

τ = 0, R(X,Y )(τ) = F 6= 0, (2.3)

τ 6= 0, R(X,Y )(τ) = 0

, the sequence-pair (X, Y ) is the Best Binary Sequence-pair.

Optimized Binary Sequence-pair is a kind of sequence which, to some extent,

satisfies the requirement for the Best Signal that it has the high autocorrelation peak

and zero autocorrelation sidelobe property. Based on the ideal autocorrelation prop-

erty the Optimized Binary Sequence-pair, we would like to study whether there are

a set of sequence-pairs which have good cross correlation between different sequence-

pairs of the set while keeping the ideal autocorrelation property of the Optimized

Binary Sequence-pair. Therefore, in this chapter, we will provide and investigate the

Optimized Punctured Binary Sequence-pairs, the Zero/Low Cross Correlation Zone

Sequence-pair Sets and the Optimized Punctured LCZ/ZCZ Sequence-pair Sets.
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2.2 Optimized Punctured Binary Sequence-pairs

A CW sequence is made up of N bits of duration Ts. The complex envelope

during one period is given by

x(t) =

N∑

i=1

xi[t− (i− 1)Ts], 0 ≤ t ≤ NTs (2.4)

Definition 2-2-1: The periodic autocorrelation values of such a signal, at

delays which are multiple of Ts, are given by

Rx(τ) = Rx(rTs) =
1

N

N−1∑

j=0

xjy
∗
(j+r)modN , (2.5)

0 ≤ r ≤ N− 1, 0 ≤ τ ≤ (N − 1)Ts.

Definition 2-2-2 [74]: Sequence y = (y0, y1, · · · , yN−1) is the punctured se-

quence for x = (x0, x1, · · · , xN−1),

yj =






0 if yj is punctured

xj if yj is Non-punctured
(2.6)

Where p is the number of punctured bits in sequence x, suppose xj ∈ [−1, 1],

y is p-punctured binary sequence, yj ∈ [−1, 0, 1], (x,y) is called a punctured binary

sequence-pair. It is easy to see that there are only three possible choices for the phase

state, corresponding to the [−1, 0, 1] for the punctured binary sequence-pair. The

punctured binary sequence-pair can be referred to as a new kind of triphase code.

Definition 2-2-3: The periodic autocorrelation of punctured sequence-pair

(x,y) is defined

Rxy(τ) = Rxy(rTs) =

N−1∑

j=0

xjy
∗
(j+r)modN , 0 ≤ r ≤ N− 1 (2.7)

When punctured sequence-pair has the following autocorrelation property

Rxy(τ) =





E τ ≡ 0 mod N

0 otherwise
(2.8)

20



(x,y) is called optimized punctured sequence-pair [74]. Here, E =
∑N−1

j=0 xiyi =

N − p, is the energy of punctured sequence-pair. Then binary sequence-pair (x,y)

is called a p-punctured sequence-pair. The energy efficiency of the sequence-pair is

defined as

η =
E

N
=

N-p

N
(2.9)

Definition 2-2-4: The balance of the sequence x is defined as I =
∑N−1

j=0 xj =

np − nn, while np, nn are the number of ′ + 1′ and ′ − 1′ in x separately.

We have also deduced several Theorems listed as below. Based on these Theo-

rems, more optimized punctured sequence-pairs could be constructed easily.

Theorem 2-2-1: Mapping property, if x1(i) = x(−i), y1(i) = y(−i),then sequence-

pair (x1,y1) is optimized punctured binary sequence-pair.

Theorem 2-2-2: Opposite to element symbol property, if x1(i) = −x(i), y1(i) =

−y(i),then sequence-pair (x1,y1) is optimized punctured binary sequence-pair.

Theorem 2-2-3: Cyclic shift property, if x1(i) = −x(i + u), y1(i) = −y(i +

u),then sequence-pair (x1,y1) is optimized punctured binary sequence-pair.

Theorem 2-2-4: Periodically sampling property, if x1(i) = −x(ki), y1(i) =

−y(ki), k and N are relatively prime, then sequence-pair (x1,y1) is optimized punc-

tured binary sequence-pair.

In [74], the properties, existing necessary conditions and some constructing

methods have been well studied. The optimized punctured binary sequence-pairs of

length from 3 to 31 are presented in the Table 1.
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2.3 Zero/Low Cross Correlation Zone Sequence-pair Sets

In this section, we introduce several concepts of LCZ (Low Correlation Zone)

and ZCZ (Zero Correlation Zone), and provide the the definition of LCZ/ZCZ sequence-

pair sets.

Definition 2-3-1[75]: There is a set of spread spectrum codes a
(r)
n , where

r = 1, 2, ...M, n = 1, 2, ..N − 1, M is the number of the codes and N is the length of

the code. When it is satisfied that

Rrs(τ) =
N−1∑

n=0

a(r)
n a

(s)
n+τ (2.10)

=





N τ = 0, r = s

0 τ = 0, r 6= s

0 0 < |τ | ≤ Z0

The set of codes is called Generalized Orthogonal Codes(GO)[76], or ZCZ

codes[12]. ZCZ(N,M,Z0) is the abbreviation.

Definition 2-3-2[75]: There is a set of spread spectrum codes a
(r)
n , where

r = 1, 2, ...M, n = 1, 2, ..N − 1, M is the number of the codes and N is the length of

the code. When it is satisfied that

Rrs(τ) =
N−1∑

n=0

a(r)
n a

(s)
n+τ (2.11)

=





N τ = 0, r = s

≤ ǫ τ = 0, r 6= s

≤ ǫ 0 < |τ | ≤ L0

The set of codes is called Generalized Quasi-Orthogonal Codes(GO)[77], or LCZ

codes[76]. LCZ(N,M,L0) is the abbreviation.

Based on the definitions mentioned above, the definition of LCZ/ZCZ sequence-

pair sets is proposed.
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Definition 2-3-3: There is a set of sequence-pairs (c
(r)
n , d

(r)
n ), where r =

1, 2, ...M, n = 1, 2, ..N − 1, M is the number of the sequence-pair and N is the length

of the sequence. When it is satisfied that

Rrs(τ) =

N−1∑

n=0

c(r)n d
(s)
n+τ =

N−1∑

n=0

d(r)
n c

(s)
n+τ (2.12)

=





λN τ = 0, r = s

0 τ = 0, r 6= s

0 0 < |τ | ≤ Z0

Where 0 < λ ≤ 1. The set of sequence-pairs is the ZCZ sequence-pair set.

ZCZP (N,M,L0) is the abbreviation.

Definition 2-3-4: There is a set of sequence-pairs (c
(r)
n , d

(r)
n ), where r =

1, 2, ...M, n = 1, 2, ..N − 1, M is the number of the sequence-pair and N is the length

of the sequence. When it is satisfied that

Rrs(τ) =

N−1∑

n=0

c(r)n d
(s)
n+τ =

N−1∑

n=0

d(r)
n c

(s)
n+τ (2.13)

=






λN τ = 0, r = s

≤ ǫ τ = 0, r 6= s

≤ ǫ 0 < |τ | ≤ L0

Where 0 < λ ≤ 1. The set of sequence-pairs is the LCZ sequence-pair set.

LCZP (N,M,L0) is the abbreviation.

2.4 Optimized Punctured LCZ/ZCZ Sequence-pair Sets

We apply the Optimized Punctured Binary Sequence-pair to ZCZ/LCZ to con-

struct the Optimized Punctured LCZ/ZCZ Sequence-pair sets.

Definition 2-4-1: If we use a pair of Optimized Punctured Binary Sequence-

pair and a matrix, such as a Hadamard matrix or an orthogonal matrix, to construct
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the sequence-pair sets (c
(r)
n , d

(r)
n ) in Definition 2-3-3. The sequence-pairs set is called

Optimized Punctured ZCZ Sequence-Pair Set.

Definition 2-4-2: If we use a pair of Optimized Punctured Binary Sequence-

pair and a matrix, such as a Hadamard matrix or an orthogonal matrix, to construct

the sequence-pair sets (c
(r)
n , d

(r)
n ) in Definition 2-3-4. The sequence-pairs set is called

Optimized Punctured LCZ Sequence-Pair Set.

2.5 Conclusions

We introduced the Optimized Binary Sequence-pair which has high autocor-

relation peak and zero autocorrelation sidelobe. Based on the ideal autocorrelation

property of the Optimized Binary Sequence-pair, we present and study the Opti-

mized Punctured Binary Sequence-pairs, the LCZ/ZCZ Sequence-pair Sets and the

Optimized Punctured LCZ/ZCZ Sequence-pair Sets. To sum up, these sequence-pair

sets, which possess both the good cross correlation between different sequence-pairs of

the set and the ideal autocorrelation property of each sequence-pair, could be potent

candidates for set of best signals.
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Table 2.1. Optimized Punctured Binary Sequence-pair

Length Sequence Punctured positions Energy
(octet) Efficiency(%)

3 6 3 66.67
5 32 3 4 5 40.00
5 34 2 4 5 40.00
7 162 4 5 7 57.14
7 164 4 6 7 57014
9 652 1 2 3 4 5 6 7 22.22
9 760 1 2 3 4 6 7 8 22.22
11 3426 4 5 6 8 11 54.54
11 3550 4 7 9 10 11 54.54
12 7426 1 6 7 12 66.67
12 7550 4 5 10 11 66.67
12 7624 3 6 9 12 66.67
13 16606 2 4 7 8 9 10 13 46.15
13 17124 5 6 8 9 10 12 13 46.15
15 74232 5 6 7 9 10 13 15 53.33
15 75310 6 7 10 11 13 14 15 53.33
17 351134 4 6 7 8 9 10 12 16 17 47.06
17 372142 3 6 8 9 10 13 14 15 17 47.06
19 1715412 5 6 9 12 13 14 15 17 19 52.63
19 1724154 5 7 9 10 11 12 15 18 19 52.63
20 3433330 2 5 6 7 8 9 12 15 16 17 18 19 40.00
20 3610556 1 6 7 8 9 10 11 16 17 18 19 20 40.00
21 7405316 2 5 6 7 8 9 11 13 14 16 17 20 21 38.10
21 7563240 3 5 6 9 10 12 13 15 17 18 19 20 21 38.10
23 37024632 6 7 8 9 11 13 14 17 18 21 23 52.17
23 37263120 6 8 11 12 15 16 18 20 21 22 23 52.17
28 1702164566 4 5 6 7 10 11 18 19 20 21 24 25 57.14
28 1734164226 4 5 8 9 10 11 18 19 22 23 24 25 57.14
28 1740465534 4 6 7 9 10 13 18 20 21 23 24 27 57.14
29 3556415302 4 7 11 13 14 15 16 19 20 21 24 25 26 27 29 48.28
29 3642213634 5 7 8 9 11 12 14 15 16 18 23 24 26 28 29 48.28
31 17053411166 5 6 7 9 11 15 16 17 18 20 21 23 24 28 31 51.61
31 17464412730 6 7 10 12 13 15 16 17 18 20 22 26 29 30 31 51.61

Note: The sequences in the table are presented by octets, ’1’ for ’+1’, ’0’ for ’-1’ and
punctured positions begins from left to right.
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CHAPTER 3

THREE METHODS TO CONSTRUCT THE OPTIMIZED PUNCTURED

LCZ/ZCZ SEQUENCE-PAIR SETS

3.1 Introduction

We have provided the Optimized Punctured LCZ/ZCZ Sequence-pair sets in

the last chapter. In this chapter, we would present three methods to construct the

Optimized Punctured LCZ/ZCZ Sequence-pair sets and prove that the sequence-pair

sets constructed by our methods satisfy the definitions of the Optimized Punctured

LCZ/ZCZ Sequence-pair sets. In addition, examples are illustrated for each method

and properties of the Optimized Punctured LCZ/ZCZ Sequence-pair sets are also

analyzed to help studying our proposed codes.

Firstly, we apply the odd length Optimized Punctured Sequence-pair to ZCZ

to construct an Optimized Punctured ZCZPS (ZCZ Sequence-pair Set). Then, we

provide the method using even length Optimized Punctured Sequence-pair in LCZ to

construct an approximately Optimized Punctured LCZPS (LCZ Sequence-pair Set).

Since both of the above two construction methods are restricted by the specific length

of the Optimized Punctured Sequence-pair, we present a method using any length

Optimized Punctured Sequence-pair in ZCZ to construct an Optimized Punctured

ZCZPS (ZCZ Sequence-pair Set).
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3.2 Odd Length Optimized Punctured Sequence-pair in ZCZ

3.2.1 Constructing Method

Based on odd length optimized punctured binary sequence pairs and a Hadamard

matrix, an optimized punctured ZCZPS (ZCZ Sequence-pair Set) can be constructed

from the following steps:

Step 1: Considering an odd length optimized punctured binary sequence-pair

(u, v), the length of each sequence is N1

u = u0, u1, ..., uN1−1, ui ∈ (−1, 1),

v = v0, v1, ..., vN1−1, vi ∈ (−1, 0, 1),

Step 2: Considering Hadamard matrix B, the length of the sequence is N2

which is equal to the number of the sequences. In other words, a Hadamard matrix

of order N2 is considered.

B = (b0, b1, ..., bN2−1),

bi = (bi0, b
i
1, ..., b

i
N2−1),

Step 3: Processing bit-multiplication on the optimized punctured binary sequence-

pair and each row of Hadamard matrix B, then the sequence-pair set (X, Y ) is ob-

tained,

bi = (bi0, b
i
1, ..., b

i
N2−1), i = 0, 1, ..., N2 − 1,

xi
j = ujmodN1

bijmodN2
, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

X = (x0, x1, ..., xN2−1),

yi
j = vjmodN1

bijmodN2
, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

Y = (y0, y1, ..., yN2−1)
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Where GCD(N1, N2) = 1, the common divisor of N1 and N2 is 1, N = N1 ∗N2.

These three steps make the sequence-pair set (X, Y ) an optimized punctured ZCZPS,

where N1−1 is the zero correlation zone Z0. The length of each sequence in optimized

punctured ZCZPS is N = N1∗N2 which depends on the product of length of optimized

punctured sequence-pair and the length of each row in the Hadamard matrix. The

number of sequence-pair in optimized punctured ZCZPS rests on the order of the

Hadamard matrix. The sequence xi in sequence set X and the corresponding sequence

yi in sequence set Y construct a sequence-pair (xi, yi) that can be used as a pulse

compression code.

The correlation property of the sequence-pair in optimized punctured ZCZPS

is:

Rxiyj (τ) = Rxjyi(τ) = Ruv(τmodN1)Rbibj (τmodN2)

= Ruv(τmodN1)Rbjbi(τmodN2)

=






EN2, if τ = 0, i = j

0, if 0 < |τ | ≤ N1 − 1, i = j

0, if i 6= j

(3.1)

where N1 − 1 is the zero correlation zone Z0.

Proof:

1) When i = j,

τ = 0, Ruv(0) = E,Rbibj (0) = N2,

Rxiyj (0) = Ruv(0)Rbibj (0) = EN2;

0 < |τ | ≤ N1 − 1, Ruv(τ) = 0,

Rxiyj (τ) = Ruv(τmodN1)Rbibj (τmodN2) = 0;
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2) When i 6= j,

τ = 0, Rbibj (0) = 0,

Rxiyj (0) = Rxjyi(0) = Ruv(τmodN1)Rbibj (τmodN2) = 0;

0 < |τ | ≤ N1 − 1, Ruv(τ) = 0,

Rxiyj (τ) = Rxjyi(τ) = Ruv(τmodN1)Rbibj (τmodN2) = 0.

According to Definition 2-3-1, the sequence-pair set constructed by the above

method is a ZCZPS.

3.2.2 Example and Property Analysis

Considering the optimized punctured ZCZPS that is constructed by the method

mentioned in the last part, the autocorrelation and cross correlation properties can

be simulated and analyzed with Matlab. For example, the optimized punctured

ZCZPS (X, Y ) is constructed by 31-length optimized punctured binary sequence-pair

(u, v), u = [+ + + +−−−+−+−+ + +−−−−+−−+−−+ + +−+ +−], v =

[+ + + + 000 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0] (using ′+′ and ′−′ symbols

for ′1′ and ′ − 1′) and Hadamard matrix H of order 4. We follow the three steps

presented in Section B to construct the 124-length optimized punctured ZCZPS. The

number of sequence-pairs here is 4, and the length of each sequence is 31 ∗ 4 = 124.

The first row of each matrix X = [x1; x2; x3; x4] and Y = [y1; y2; y3; y4] constitute a

certain optimized punctured ZCZP (x1, y1). Similarly, the second row of each matrix
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X and Y constitute another optimized punctured ZCZ sequence-pair (x2, y2) and so

on.

x1 = [+ + + +−−−+−+−+ + +−−−−+−−

+−−+ + +−+ +−+ + + +−−−+−+−

+ + +−−−−+−−+−−+ + +−+ +−+

+ + +−−−+−+−+ + +−−−−+−−+

−−+ + +−+ +−+ + + +−−−+−+−+

+ +−−−−+−−+−−+ + +−+ +−],

y1 = [+ + + + 000 + 0 + 0 + + + 0000 + 00

+00 + + + 0 + +0 + + + +000 + 0 + 0 + + + 00

00 + 00 + 00 + + + 0 + +0 + + + +000 + 0 + 0

+ + +0000 + 00 + 00 + + + 0 + +0 + + + +00

0 + 0 + 0 + + + 0000 + 00 + 00 + + + 0 + +0];

x2 = [+−+−−+−−−−−−+−−+−+ + +−

−−+ +−+ + +−−−+−+ +−+ + + + +

+−+ +−+−−−+ + +−−+−−−+ + +

−+−−+−−−−−−+−−+−+ + +−−

−+ +−+ + +−−−+−+ +−+ + + + + +

−+ +−+−−−+ + +−−+−−−+ +],
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y2 = [+−+− 000− 0− 0−+− 0000 + 00

−00 +−+ 0 +−0−+−+000 + 0 + 0 +−+ 00

00− 00 + 00−+− 0−+0 +−+−000− 0− 0

−+−0000 + 00− 00 +−+ 0 +−0−+−+00

0 + 0 + 0 +−+ 0000− 00 + 00−+− 0−+0].

3.2.2.1 Autocorrelation and Cross Correlation Properties

The autocorrelation propertyR(x1, y1) and cross correlation propertyR(x1, y2) =

R(y1, x2) of 124-length optimized punctured ZCZPS (X, Y ), are shown in Fig. 3.1.
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Figure 3.1. Periodic autocorrelation property of optimized punctured ZCZPS.

From the Fig. 3.1, the sidelobe of autocorrelation of ZCZPS can be as low as 0

when the time delay is kept within Z0 = N1 = 31 and the cross correlation value is 0

during the whole time domain.
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It is known that a suitable criterion for evaluating code of length N is the ratio

of the peak signal divided by the peak signal sidelobe (PSR) of their autocorrelation

function, which can be bounded by [69]

[PSR]dB ≤ 20logN = [PSRmax]dB (3.2)

The only uniform phase codes that can reach the PSRmax are the Barker codes whose

length is equal or less than 13. The sidelobe of the new code shown in Fig. 3.1 can be

as low as 0, and the peak signal divided by the peak signal sidelobe can be as large

as infinite. Besides, the length of the new code is various and much longer than the

length of the Barker code.

3.2.2.2 Ambiguity function

When the transmitted impulse is reflected by a moving target, the reflected

echo signal includes a linear phase shift, which comes from the Doppler shift fd [69].

As a result of the Doppler shift fd, the main peak of the autocorrelation function is

reduced. At the same time, SNR degradation occurs as well.

The ambiguity function, which is commonly used to analyze the radar perfor-

mance within Doppler shift can be found in [69] shown as following:

y(t, FD) =

∫ ∞

−∞

x(s)ej2πFDsx∗(s− t)ds ≡ Â(t, FD) (3.3)

where t is the time delay and FD is the Doppler shift.

An equivalent definition can be given in terms of the signal spectrum by applying

the basic Fourier transform properties

Â(t, FD) =

∫ ∞

−∞

X∗(F )X(F − FD)ej2πF tdF (3.4)
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The ambiguity function is defined as the magnitude of Â(t, FD) [69] with the

following:

A(t, FD) ≡ |Â(t, FD)| (3.5)

However, we are focusing on the optimized punctured ZCZPS in the paper, so

the transmitting code and the receiving code can be different. Assuming the ZCZPS

are (X, Y ), x(p) ∈ X, (x(p) =
∑N−1

n=0 x
(p)
n (t−nTs), y

(p) ∈ Y , y(q) =
∑N−1

n=0 y
(p)
n (t−nTs)),

the periodic correlation is used instead of aperiodic correlation here. The Âpair(t, FD)

in one period of length NTs can be expressed as:

Apair(t, FD) ≡ |Âpair(t, FD)| (3.6)

= |
∫ t

0

x(p)(s)y(q)∗(s+ (NTs − t))e(j2πFDs)ds

+

∫ (N−1)Ts

t

x(p)(s)y(q)∗(s− t)e(j2πFDs)ds|p, q = 0, 1, 2..., K − 1

At the same time, when p = q, equation (3.7) can be used to analyze the autocorre-

lation performance within the Doppler shift, and when q 6= p, equation (3.7) can be

used to analyze the cross correlation performance within the Doppler shift. Equation

(3.7) is plotted in Fig. 3.2 in a three-dimensional surface plot to analyze the radar

performance of optimized punctured ZCZPS within the Doppler shift. Here, maxi-

mal time delay is 1 unit (normalized to length of the code, in units of NTs) and the

maximal doppler shift is 5 units for cross correlation and 3 units for autocorrelation

(normalized to the inverse of the length of the code, in units of 1/NTs).

In Fig. 3.2(a), there is a relative uniform plateau suggesting low and uninform

sidelobes. This low and uniform sidelobes minimizes target masking effect in ZCZ of

time domain, where Z0 = 31, −31 < τ < 31. From Fig. 3.2(b), we can consider a

cross correlation property between any two optimized punctured ZCZ sequence-pairs

in the ZCZ sequence-pair set such as R(x1, y2) or R(y1, x2) where (x1, y1) and (x2, y2)
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Figure 3.2. Ambiguity function of 124-length ZCZPS: (a) autocorrelation (b) cross
correlation.

34



are two pairs of optimized punctured ZCZP. A 124-length optimized punctured ZCZP

is tolerant of Doppler shift when the Doppler shift is not large. When the Doppler

shift is zero, the range sidelobe of cross correlation of our proposed code is zero in

the whole time domain.

As synchronization technology develops exponentially in the industrial world,

time delay can, to some extent, be well controlled. Therefore, it is necessary to

investigate the performance of our proposed code without time delay. When t = 0,

the ambiguity function can be expressed as:

Âpair(0, FD) =

∫ (N−1)Ts

0

x(p)(s)y(q)∗(s)e(j2πFDs)ds (3.7)

And this kind of Doppler shift performance with no time delay is presented in the

Fig. 3.3.

Fig. 3.3(a) illustrates that without a time delay and having the Doppler shift

less than 1 unit, the autocorrelation value of optimized punctured ZCZPS falls sharply

during one unit, and the trend of the amplitude over the whole frequency domain

decreases as well. Fig. 3.3(b) shows that there are some convex surfaces in the cross

correlation performance. One should observe Fig. 3.3(a) and Fig. 3.3(b), when

Doppler frequencies equal to multiples of the pulse repetition frequency (PRF =

1/PRI = 1/Ts), all the ambiguity value turns to zero except when Doppler frequency

is equal to 2 PRF for cross correlation. That is the same as many widely used pulse

compression binary code such as the Barker code. Overall, the ambiguity function

performances of optimized punctured ZCZP can be as efficient as conventional pulse

compression binary code.
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Figure 3.3. Doppler shift of 124-length ZCZPS(time delay=0): (a) autocorrelation
(b) cross correlation.
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3.3 Even Length Optimized Punctured Sequence-pair in LCZ

3.3.1 Constructing Method

The length of Optimized Punctured Sequence-pair is restricted to odd. As

a result, we propose a method that depends on even length Optimized Punctured

Sequence-pair and modified Hadamard matrix to construct the Approximately Opti-

mized LCZ Sequence-pair Sets. The constructing steps are as following:

Step 1: Considering an even length optimized punctured binary sequence-pair

(u, v), the length of each sequence is N1

u = u0, u1, ..., uN1−1, ui ∈ (−1, 1),

v = v0, v1, ..., vN1−1, vi ∈ (−1, 0, 1),

where

Rxy(τ) = Rxy(rTs) =

N−1∑

j=0

xjy
∗
(j+r)modN , 0 ≤ r ≤ N− 1

E =
∑N1−1

j=0 xjyj = N − p, p is the number of punctured bits in the Optimized

Punctured Sequence-pair.

Step 2: We modify the Hadamard matrix to construct a sequences set B.

Any sequences b(i) 6= b(j) ∈ B satisfy that Rbb′(0) = ±1. We delete a column in a

Hadamard matrix of length 2m to construct the sequences set B. The sequence length

is N2 = 2m− 1, and the number of sequences is M = 2m. The sequences set could be

called modified Hadamard matrix.
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Step 3: Processing bit-multiplication on the optimized punctured binary sequence-

pair and each row of modified Hadamard matrix B, then the sequence-pair set (X, Y )

is obtained,

bi = (bi0, b
i
1, ..., b

i
N2−1), i = 0, 1, ..., N2 − 1,

xi
j = ujmodN1

bijmodN2
, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

X = (x0, x1, ..., xN2−1),

yi
j = vjmodN1

bijmodN2
, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

Y = (y0, y1, ..., yN2−1)

Where GCD(N1, N2) = 1, the common divisor of N1 and N2 is 1, the length of

the sequence is N = N1 ∗N2. The correlation functions of the sequence-pairs in the

set (X, Y ) satisfy that

Rxiyj (τ) = Rxjyi(τ) = Ruv(τmodN1)Rbibj (τmodN2)

= Ruv(τmodN1)Rbjbi(τmodN2)

=





EN2, if τ = 0, i = j

±E, if 0 < |τ | ≤ N1 − 1, i = j

0, if i 6= j

(3.8)

.

These three steps make the sequence-pair set (X, Y ) an optimized punctured

LCZPS, where N1− 1 is the zero correlation zone L0. The length of each sequence in

optimized punctured LCZPS is N = N1 ∗N2 which depends on the product of length

of optimized punctured sequence-pair and the length of each row in the modified

Hadamard matrix. The number of sequence-pair in optimized punctured LCZPS

rests on the order N2 of the Hadamard matrix.
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Proof:

It is known that b(i) 6= b(j) ∈ B,Rbb′(0) = ±1.

1) When i = j,

τ = 0, Ruv(0) = E,Rbibj (0) = N2, Rxiyj (0) = Ruv(0)Rbibj (0) = EN2;

0 < |τ | ≤ N1 − 1, Ruv(τ) = 0, Rxiyj (τ) = Ruv(τmodN1)Rbibj (τmodN2) = 0;

2) When i 6= j,

τ = 0, Rbibj (0) = ±1, Rxiyj (0) = Rxjyi(0) = Ruv(τmodN1)Rbibj (τmodN2) = ±E;

0 < |τ | ≤ N1 − 1, Ruv(τ) = 0, Rxiyj(τ) = Rxjyi(τ)

= Ruv(τmodN1)Rbibj (τmodN2) = 0.

According to Definition 2-4-2, the sequence-pair set constructed by the above

method is a LCZPS.

3.3.2 Example and Property Analysis

In this section, we follow the method mentioned in the above section to an

optimized punctured LCZPS. The autocorrelation and cross correlation properties

can be simulated and analyzed with Matlab. For example, the optimized punctured

LCZPS (X, Y ) is constructed by 12-length optimized punctured binary sequence-pair

(u, v), u = [+ + + + − − − + − + +−], v = [0 + + + −00 + − + +0] (using ′+′

and ′−′ symbols for ′1′ and ′ − 1′) and modified Hadamard matrix B which is a 8x7

matrix. We follow the three steps presented in last section to construct the 84-length

optimized punctured LCZPS. The number of sequence-pairs here is 8, and the length

of each sequence is 12 ∗ 7 = 84. The first row of each matrix X = [x1; x2; ...; x8] and

Y = [y1; y2; ...; y8] constitute a certain optimized punctured ZCZP (x1, y1). Similarly,
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the second row of each matrix X and Y constitute another optimized punctured ZCZ

sequence-pair (x2, y2) and so on.

x1 = [+ + + +−−−+−+ +−+ + + +−−−+−+ +−+ + + +−−−

+−+ +−+ + + +−−−+−+ +−+ + + +−−−+−+ +−+ +

+ +−−−+−+ +−+ + + +−−−+−+ +−],

y1 = [0 + + +−00 +−+ +00 + + +−00 +−+ +00 + + +−00 +−+ +00 +

+ +−00 +−+ +00 + + +−00 +−+ +00 + + +−00 +−+ +00 + + +

−00 +−+ +0];

x2 = [+−+−−+−+ + +−−−+ +−−+−−−+−−−+−+−+−

−−−+−−+−+ +−−−−−+ + + +−+ +−+ +−−+ + +−

+ + +−+ + + + + + +−+−−−+ + + +−−],

y2 = [0−+−−00 + + +−00 + +−−00−−+−00 +−+−00−−−+00 +

−+ +00−−−+00 +−+ +00 +−−+00−+ + +00 + + + +00−+−

−00 + + +−0].

3.3.2.1 Autocorrelation and Cross Correlation Properties

The autocorrelation propertyR(x1, y1) and cross correlation propertyR(x1, y2) =

R(y1, x2) of 84-length optimized punctured ZCZPS (X, Y ), are shown in Fig. 3.4.

From the Fig. 3.4, the sidelobe of autocorrelation of LCZPS can be as low as 0

when the time delay is kept within Z0 = N1 − 1 = 11 and the cross correlation value

is E = during the whole time domain.

According to the simulation results, the auto correlation sidelobe of the new

sequence-pair could be as low as 0, which is still better than the property of Barker

codes. The cross correlation values of the two sequence-pairs do not reach zero nor
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Figure 3.4. Periodic correlation property of optimized punctured LCZPS: (a) auto-
correlation (b) cross correlation.
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be equal. As a result, the correlation properties of LCZPS are not as good as the

ZCZPS studied before. Nevertheless, LCZPS is proposed to effectively compensates

for deficiency of ZCZPS that the length of optimized punctured binary sequence-pair.

3.3.2.2 Ambiguity function

Based on the deduction in Section 3.2.3, we use the equation (3.7) to analyze

the autocorrelation performance of LCZPS within the Doppler shift when p = q.

The equation (3.7) could be also used to analyze the cross correlation performance

of LCZPS within the Doppler shift. A three-dimensional surface plot is illustrated in

Fig. 3.5 to analyze the radar performance of optimized punctured ZCZPS within the

Doppler shift. Here, maximal time delay is 1 unit (normalized to length of the code,

in units of NTs) and the maximal doppler shift is 5 units for cross correlation and 3

units for autocorrelation (normalized to the inverse of the length of the code, in units

of 1/NTs).

In Fig. 3.5, there is a relative uniform plateau suggesting low and uninform

sidelobes. This low and uniform sidelobes minimizes target masking effect in LCZ

of time domain, where L0 = 11, −11 ≤ τ ≤ 11. Generally speaking, a 84-length

optimized punctured LCZP is tolerant of Doppler shift when the Doppler shift is not

large.

In addition, we study the Doppler shift performance of LCZP with no time

delay.

Fig. 3.6 illustrates that without a time delay and having the Doppler shift

less than 1 unit, the autocorrelation value of an optimized punctured LCZP falls

sharply during one unit, and the trend of the amplitude over the whole frequency

domain decreases as well. When Doppler frequencies equal to multiples of the pulse

repetition frequency (PRF = 1/PRI = 1/Ts), all the ambiguity value turns to zero.
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Figure 3.5. Ambiguity function of 84-length ZCZPS: autocorrelation.
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relation.

43



It is easy to draw the conclusion that the property of the LCZP could be comparable

to many widely used pulse compression binary code such as the Barker code.

3.4 Any Length Optimized Punctured Sequence-pair in ZCZ

3.4.1 Constructing Method

An optimized punctured ZCZ sequence-pair set can be constructed from the

following steps:

Step 1: Given an optimized punctured binary sequence-pair (u, v), the length

of each sequence is N1

u = u0, u1, ..., uN1−1, ui ∈ (−1, 1),

v = v0, v1, ..., vN1−1, vi ∈ (−1, 0, 1),

Step 2: Given orthogonal matrix B, the length of the sequence is N2 which is

equal to the number of the sequences.

B = (b0; b1; ..., bN2−1), bi =
1√
N2

(bi0, b
i
1, ..., b

i
N2−1)

Step 3: Process the optimized punctured binary sequence-pair with each row

of the orthogonal matrix B,

xi
j = u(((N1/d) ∗ j + ⌊j/d⌋)modN1)b

i
jmodN2

,

X = (x0; x1; ...; xN2−1), xi = (xi
0, x

i
1, ..., x

i
N−1, )

0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

yi
j = v(((N1/d) ∗ j + ⌊j/d⌋)modN1)b

i
jmodN2

,

0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ N − 1,

Y = (y0; y1; ...; yN2−1), yi = (yi
0, y

i
1, ..., y

i
N−1, )
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Where d = GCD(N1, N2), N = N1 ∗N2 and ⌊j/d⌋ means to get the integer of

⌊j/d⌋. The three steps make the sequence-pair set (X, Y ) an optimized punctured

ZCZPS, where ZCZ Z0 = N1−1. The length of each sequence in optimized punctured

ZCZPS is N = N1 ∗N2 that depends on the product of length of optimized punctured

sequence-pair and the length of a row in Hadamard matrix. The number of sequence-

pairs in optimized punctured ZCZPS rests on the order of the Hadamard matrix.

The sequence xi in X and the corresponding sequence yi in Y construct an optimized

punctured ZCZP (xi, yi) that can be used as a phase coded waveform, such as xi for

radar transmitter and yi for radar receiver. The phase states for any sequence-pair

among (xi, yi) are only of three options, so our newly provided optimized punctured

ZCZPS is a new set of triphase codes.

Then we try to prove that the sequence-pair set constructed following the above

steps are optimized punctured ZCZPS. Proof:

Rxiyj (τ) =

N1N2−1∑

k=0

ui
kv

j
(k+τ)modN1N2

(3.9)

=

N1N2−1∑

k=0

u((N1/d)k + ⌊k/d⌋)modN1bi,kmodN2
·

v∗((N1/d)(k + τ) + ⌊(k + τ)/d⌋)modN1b
∗
j,(k+τ)modN2

=

N1−1∑

m=0

N2−1∑

r=0

bi,(mN2+r)modN2
b∗j,(mN2+r+τ0d+τ1)modN2

u((N1/d)(mN2 + r) + ⌊(mN2 + r)/d)⌋)modN1

v∗((N1/d)(mN2 + r + τ0d+ τ1)

+ ⌊(mN2 + r + τ0d+ τ1/d)⌋)modN1

=

N2−1∑

r=0

bi,rb
∗
j,(r+τ0d+τ1)modN2

N1−1∑

m=0

u((N1/d/d)r +mN2/d+ ⌊r/d⌋)modN1

v∗((N1/d)(r + τ1) +mN2/d+ τ0 + ⌊(r + τ1/d)⌋)modN1
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Here, k = mN2 + r, τ = τ0d + τ1, 0 ≤ m ≤ N1 − 1, 0 ≤ r ≤ N2 − 1, 0 ≤ τ1 ≤ d − 1.

If Tm,r = ((N1/d)r+mN2/d+ ⌊r/d⌋)modN1), Tm,r+τ − Tm,r is unrelated to m. Then

we can have that

tt,τ = Tm,r+τ − Tm,r (3.10)

= ((N1/d) · τ1 + τ0 + ⌊(r + τ1)/d⌋)− ⌊r/d⌋)modN1

So Rxiyj could be abbreviated to

Rxiyj =
N2−1∑

r=0

bi,rb
∗
j,(r+τ0+τ1)modN2

Ruv(tr,τ ) (3.11)

(1) If d = 1, τ = τ0d+ τ1, 0 ≤ τ1 ≤ d − 1, τ1 = 0, tr,τ = τ . According to (3.11),

we have Rxiyj (τ) =
∑N2−1

r=0 bi,rb
∗
j,(r+τ0d+τ1)modN2

Ruv(τ). Also (u, v) is the optimized

punctured binary sequence-pair.

When i = j,

τ = 0,

Rxiyj (0) = Rxjyi(0) =
N2−1∑

r=0

bi,rb
∗
i,rmodN2

Ruv(0) = N2E;

0 < |τ | ≤ N1 − 1, Ruv(τ) = 0,

Rxiyj (τ) =

N2−1∑

r=0

bi,rb
∗
i,rmodN2

Ruv(τ) = 0;

When i 6= j,

τ = 0,

Rxiyj (0) = Rxy(0)

N2−1∑

r=0

bi,rb
∗
i,rmodN2

,

since

N2−1∑

r=0

bi,rb
∗
i,rmodN2

= 0, Rxiyj (0) = 0;

0 < |τ | ≤ N1 − 1, Ruv(τ) = 0,

Rxiyj (τ) =

N2−1∑

r=0

bi,rb
∗
i,(r+τ)modN2

Rxy(τ) = 0;
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Similarly, Rxjyi could be proved.

(2) If d > 1,

When τ0 ≤ N1/d− 2 and 0 ≤ τ1 ≤ d− 1,

tr,τ = ((N1/d) · τ1 + τ0 + ⌊(r + τ1)/d⌋)modN1

≤ ((N1/d)(d− 1) +N1/d− 2 + 1)modN1

= N1 − 1

When τ0 ≤ N1/d− 1, τ1 ≤ d− 2,

tr,τ = (N1/d)τ1 + τ0 + ⌊(r + τ1)/d⌋+ ⌊r/d⌋)modN1

≤ ((N1/d)(d− 2) +N1/d− 1 + 1)modN1

= N1 −N1/d ≤ N1 − 1

As a result, when 0 < τ ≤ N1−2, then 1 ≤ tr,τ ≤ N1−1. (u, v) is the optimized

punctured binary sequence-pair, so we could get Ruv(τ) = 0 and Rxiyj (τ) = 0. Simi-

larly, when i 6= j, Rxiyj (0) = Ruv(0)
∑N2−1

r=0 bi,rb
∗
j,rmodN2

. Since
∑N2−1

r=0 bi,rb
∗
j,rmodN2

= 0,

Rxiyj (−τ) = Rcidj (τ). It is also easy to prove that when −(N1 − 2) ≤ τ < 0,

Rxiyj (τ) = 0. Similarly, Rxjyi = 0.

Theorem 3-4-1 The optimized punctured binary sequence-pair (u, v) and the

N2 order orthogonal matrix B constructed an optimized punctured ZCZPS (X, Y ),

d = GCD(N1, N2), in some other words, N1/d is relatively prime to N2, then

(1) d = 1, the ZCZPS could be expressed as ZCZPS(N1N2, N2, N1 − 1), and

Rxiyj (τ) =






EN2, if τ = 0, i = j

0, if 0 < |τ | ≤ N1 − 1, i = j

0, if 0 < |τ | ≤ N1 − 1, i 6= j
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(2) d > 1, the ZCZPS could be expressed as ZCZPS(N1N2, N2, N1 − 2), and

Rxiyj (τ) =





ǫN1N2, if τ = 0, i = j

0, if 0 < |τ | ≤ N1 − 2, i = j

0, if 0 < |τ | ≤ N1 − 2, i 6= j

If the punctured sequence-pair has the following autocorrelation property:

Ruv(τ) =





E, if τ ≡ 0modN

0, others
(3.12)

the punctured sequence-pair is called optimized punctured sequence-pair [74]. Where,

E =
∑N−1

i=0 uiv(i+τ)modN = N − p, is the energy of punctured sequence-pair.

The properties, existing necessary conditions and some construction methods of

punctured binary sequence-pair have been well studied by Jiang [74]. Many optimized

punctured sequence-pairs have been found of length from 7 to 31 so far.

3.4.2 Example and Property Analysis

An example is given to analyze the autocorrelation and cross correlation proper-

ties of the optimized punctured ZCZPS constructed by the method mentioned above.

The 144-length optimized punctured ZCZPS (X, Y ) is constructed by 12-length op-

timized punctured binary sequence-pair (u, v), u = [+ + + +− − −+ −+ +−], v =

[0 + + +−00 +−+ +0] (using ′+′ and ′−′ symbols for ′1′ and ′ − 1′) and orthogonal

matrix B of order 12. Each row of matrix X = [x1; x2; ...; x12] and Y = [y1; y2; ...; y12]

constitute a certain optimized punctured ZCZP (xi, yi).
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3.4.2.1 Autocorrelation and Cross Correlation Properties

The autocorrelation property R(x1, y1) and cross correlation property

R(x1, y2) = R(y1, x2) of 144-length optimized punctured ZCZPS (X, Y ), are shown

in Fig. 3.7.

According to Fig. 3.7(a), the sidelobe of autocorrelation of ZCZPS can be as

low as 0 when the time delay is kept within Z0 = N1 = 12 and the cross correlation

value is 0 during the whole time domain. The only uniform phase codes that can

reach the maximum peak signal sidelobe ratio (PSR) [69] are the Barker codes whose

length is equal or less than 13. The sidelobe of the new code shown in Fig. 3.7 can

be as low as 0, and the PSR can be as large as infinite. Besides, the length of the

new code is various and much longer than the length of the Barker code.

3.4.2.2 Ambiguity function

Because of the Doppler shift fd [69], the main peak of the autocorrelation func-

tion is reduced and so as to the SNR degradation. Focusing on the sequence-pair

(x, y) here, the receiving sequence in ambiguity function is different from the echo

signal and the periodic correlation is used instead of aperiodic correlation here. The

ambiguity function can be rewritten as

A(τ, FD) = |
∫ −T

2
+τ

−T
2

x(t)exp(j2πFDt)y
∗(t+ T − τ))dt

+

∫ T
2

−T
2

+τ

x(t)exp(j2πFDt)y
∗(t− τ)dt| (3.13)

In order to analyze the autocorrelation performance of an optimized punctured

ZCZP with delay-Doppler shift, Equation (3.13) is plotted in Fig. 3.8 in a three-

dimensional surface plot. In Fig. 3.8, there is relative uniform plateau suggesting
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Figure 3.7. (a)Periodic autocorrelation property of 144-length optimized punctured
ZCZ sequence-pair (x1, y1) (b)Periodic cross correlation property of 144-length opti-
mized punctured ZCZ sequence-pair (x1, y2).
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Figure 3.8. Ambiguity function of a 144-length ZCZ sequence-pair (xi, yi).

low and uninform sidelobes. This low and uniform sidelobes minimize target masking

effect in ZCZ of time domain, where Z0 = 12, −12 < τ < 12, τ 6= 0.

3.5 Conclusions

In this Chapter, we have presented three methods to construct the Optimized

Punctured LCZ/ZCZ Sequence-pair sets: using the odd length Optimized Punctured

Binary Sequence-pair together with Hadamard matrix to construct an Optimized

Punctured ZCZ Sequence-pair set; using the even length Optimized Punctured Bi-

nary Sequence-pair together with modified Hadamard matrix to construct an approxi-

mately Optimized Punctured LCZ Sequence-pair set and using any length Optimized

Punctured Binary Sequence-pair together with Orthogonal matrix to construct an

Optimized Punctured ZCZ Sequence-pair set. According to the property analysis

of sample sequence-pair sets constructed by each method, the Optimized Punctured
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ZCZ Sequence-pair set constructed by the first method have zero autocorrelation side-

lobes during the ZCZ but zero cross correlation values during the whole time domain,

the approximately Optimized Punctured LCZ Sequence-pair set using the second

method have zero autocorrelation sidelobes during the LCZ, a low cross correlation

peak value and zero cross correlation sidelobe during the LCZ, and the Optimized

Punctured ZCZ Sequence-pair set constructed by the last method have zero autocor-

relation sidelobes and zero cross correlation values during the ZCZ. The ambiguity

function is also used to study the sequence-pairs under the condition of time delay

and Doppler shift.
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CHAPTER 4

USING THE OPTIMIZED PUNCTURED SEQUENCE-PAIR AS PULSE

COMPRESSION CODES

4.1 Introduction

Pulse compression, which allows a radar to simultaneously achieve the energy of

a long pulse and the resolution of a short pulse without the high peak power required

by a high energy short duration pulse [19], is generally used in modern radar system.

The main purpose of this technique is to raise the signal to maximum sidelobe (signal-

to-sidelobe) ratio to improve the target detection and range resolution abilities of the

radar system. The lower the sidelobes, relative to the mainlobe peak, the better the

main peak can be distinguished.

There are two kinds of basic waveform designs suitable for pulse compression:

frequency-codes, such as linear frequency modulation (LFM) codes [78] [79] and non-

linear frequency modulation codes (NLFM) [79] [80] [81]; phase-coded waveforms,

such as binary phase codes and polyphase codes. For a phase-coded waveform, a long

pulse of duration T is divided into N subpulses each of width Ts. Each subpulse has

a particular phase, which is selected in accordance with a given code sequence. The

pulse compression ratio equals to the number of subpulses N = T/Ts.

The criterion for selecting the subpulse phases is that all the time-sidelobe of the

compressed pulse should be equal and as low as possible. One family of binary phase

code widely used as a form of phase coding nowadays that can produce compressed

waveforms with constant sidelobe levels equal to unity is the Barker code. It has

special features with which its sidelobe structure contains the minimum energy which
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is theoretically possible for binary codes, and the energy is uniformly distributed

among the sidelobes (the sidelobe level of the Barker codes is 1/N2 that of the peak

signal) [82]. Unfortunately, the length N of known binary and complex Barker codes

is limited to 13 and 25, respectively [83], which may not be sufficient for the desired

radar applications. In [16] [17] [18], polyphase codes, with better Doppler tolerance

and lower range sidelobes such as the Frank and P1 codes, the Butler-matrix derived

P2 code and the linear-frequency derived P3 and P4 codes were intensively analyzed.

However, the low range sidelobe of the polyphase codes can not reach the level zero

either, what is more, the structure of polyphase codes is more complicated and is not

easy to generate comparing with binary codes.

A new triphase code–Punctured Binary Sequence-pair has been introduced in

the Chapter 2. The sidelobe level of the sequence-pair is as low as zero and the

longest length of them is found 31 so far, we would apply them to radar system as

pulse compression waveform and simulate the detection performances in this chapter.

4.2 Properties of Optimized Punctured Sequence-pair

4.2.1 Autocorrelation Properties

The autocorrelation function is one of the most important properties that rep-

resents the compressed pulse in an ideal pulse compression system, since it is pro-

portional to the matched filter response in the noise-free condition. The periodic

autocorrelation function of the punctured binary sequence-pair is

Rxy(τ) =

N−1∑

j=0

xjy
∗
(j+τ)modN =





E τ ≡ 0 mod N

0 otherwise

EXAMPLE 1

The autocorrelation property of 31-length punctured binary sequence-pair(x31,y31),
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(x31 = [+ + + +−−−+−+−+ + +−−−−+−−+−−+ + +−+ +−] and

y31 = [++++000+0+0+++0000+00+00+++0++0]) (′+′for′1′and′−′for′−1′)is

shown in the Fig. 4.1.
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Figure 4.1. Periodic autocorrelation property of 31-length punctured binary sequence-
pair.

As it is known that a suitable criterion for evaluating code of length N is the

peak signal to peak signal sidelobe ratio (PSR) of their autocorrelation function,

which can be bounded by [84]

[PSR]dB ≤ 20logN = [PSRmax]dB (4.1)

The only uniform phase codes that can reach the PSRmax are the Barker codes whose

length is equal or less than 13. However, the sidelobe of the new code shown in Fig.

4.1 could be as low as 0. In some other words, the peak signal to peak signal sidelobe

can be as large as infinite. In addition, it is also obvious that the length of the new

code can expend to 31 that is much longer than the length of the Barker code.
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4.2.2 Ambiguity Function

When the transmitted impulse is reflected by a moving target, the reflected

echo signal includes a linear phase shift which corresponds to a Doppler shift FD [69].

As a result of the Doppler shift FD, the main peak of the autocorrelation function is

reduced:

[d]dB = 10log

∫ T

0
x(t)x∗(t)dt

∫ T

0
x(t)ej2πfdTcx∗(t)dt

(4.2)

The SNR degraded and the sidelobe structure is also changed thanks to the Doppler

shift.

We focus on the sequence-pair in this paper, so the transmitting code and the

receiving code are not the same. The ambiguity function of sequence-pair can be

defined as:

AT−pair(τ, FD) ∼= | 1
T

∫ T

0

x(t+
τ

2
)ej2πFDty∗(t− τ

2
)dt| (4.3)

When the signal is of duration MT , the response of the correlation receiver

is the PAF (periodic ambiguity function) for M periods. After normalization, it is

defined as:

AMT−pair(τ, FD) ∼= | 1

MT

∫ MT

0

x(t+
τ

2
)ej2πFDsy∗(t− τ

2
)dt|

Splitting it into M sections

AMT−pair(τ, FD) (4.4)

∼= | 1

MT

M∑

n=1

∫ nT

(n−1)T

x(t+
τ

2
)ej2πFDsy∗(t− τ

2
)dt|

= AT−pair(τ, FD)|sin(πFDMT )

Msin(πFDT )
|

EXAMPLE 2
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Ambiguity functions of our triphase code within length of 13 used in the last

section is simulated, where maximal time delay is 1 unit (normalized to length of the

code, in units of NTs) and maximal Doppler shift is 5 units (normalized to the inverse

of the length of the code, in units of 1/NTs). The ambiguity functions of 13-length

long Barker code is also presented in Fig. 4.2 in order to compare with our triphase

code of the same length.

Fig. 4.2 shows that the sidelobe improvement of our triphase code is obvious

comparing with those of Barker code when there is no Doppler shift. The sidelobe

of our triphase code can reach as low as zero. Nevertheless, when there are Doppler

shift and time delay, the ambiguity functions of punctured binary sequence-pair is

not as flat as those of Barker code. In some other words, our triphase code is less

tolerant of Doppler shifts than Barker code. One of the reasons why the proposed

code is not tolerant of large Doppler shift is that periodic correlation property is used

for our triphase code instead of the aperiodic correlation property which is used for

the Barker code.

EXAMPLE 3

In order to improve the tolerance of Doppler shift, we repeat the sequence-pair

M times to construct the signal of duration of MT . We study the performance of the

sequence-pair of M periods in this section. Detailed results of the example are given

in this part for the signals corresponding to the sequence-pairs of 7.

x7 = [+ + +−−+−], y7 = [+ + +00 + 0];

Figs. 4.3 presents contour plots of the absolute amplitudes of the ambiguity

function, for the three cases M = 1, 4, 10. The scales are normalized with respect

to the bit duration of Ts. Namely, the delay axis is of τ/Ts, and the Doppler shift

axis is of FDTs. Since the single period is T = NTs, the ambiguity function repeats

57



−10

−5

0

5

10
0

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1

 dopper shift ν*Mt
b

 delay τ/t
b

 |χ
(τ

,ν
)|

 

(a)

−10

−5

0

5

10
0

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1

 doppler shiftν*Mt
b

 dealy τ/t
b

 |χ
(τ

,ν
)|

 

(b)

Figure 4.2. Ambiguity function of 13-length codes: (a) Punctured binary sequence-
pair (b) Barker code.
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itself every N normalization delay units. The cuts at τ/Ts = n/N repeat every N

normalized delay units. The pronounced strips, parallel to the Doppler shift axis,

appear at normalized delay.

The corresponding 3-D plots are given in Figs. 4.4. The prominent feature of

the ambiguity function, when M > 1, the strips get narrower as M increases. The

cuts of periodic ambiguity function at τ/Ts = nN are independent of the number of

periods M .

4.2.3 Doppler Shift Performance Without Time Delay

According to the previous work [69], the cut along Doppler axis is obtained as,

namely, when the time delay is zero,

AT (0, FD) = |sin(πFDT )

πFDT
| (4.5)

It is easy to see that FD = n/T for all but n = 0, (n = ±1,±2, ...), the amplitudes

must get a zero. Namely, if FDT = ±1,±2, ..., then AT (0, FD) becomes zero. It it

known that Doppler frequency FD is given by

FD = 2
vfc

c
(4.6)

where v is the speed of moving target, fc is the carrier frequency of radar and c is

the speed of light. PRI (pulse repetition interval) is frequently used in time domain,

while PRF (pulse repetition frequency) is commonly used in frequency domain, which

is defined as PRF = 1/PRI = 1/T . This states that Doppler shifts which equal to

multiples of the PRF will render the radar blind to the velocities of the targets.

However, the optimized punctured sequence-pairs used here are in a quite different

case which would be studied in this section.
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Figure 4.3. Contour plot of sequence-pair: (a) M=1 (b) M=4 (c) M=10 .
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Figure 4.4. 3-D view of ambiguity function of sequence-pair: (a) M=1 (b) M=4 (c)
M=10.
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The ambiguity function of single period can be simplified when there is no time

delay:

AT−pair(0, FD) = | 1
T

∫ T

0

x(t)y∗(t)e(j2πFDt)dt| (4.7)

According to the equation (4.5), the ambiguity function of duration of M periods

could be expressed as:

AMT−pair(0, FD) = AT−pair(0, FD)|sin(πFDMT )

Msin(πFDT )
| (4.8)

Where M is the number of the periods.

The Doppler shift performance without time delay is presented in Fig. 4.5.

Without time delay, while the Doppler shift is less than 1 unit (normalized to length

of the code, in units ofNTs), the amplitude of our triphase code has a sharp downward

trend and decreases more quickly than P4 code. However, when the Doppler shift is

larger than 1 unit, the performances of these codes are distinguished. On one hand,

the trend presented by our triphase code is not as regular as the other two codes

when the Doppler shift is larger than 1. On the other hand, for P4 code, its multiples

of the pulse repetition frequency will render the radar blind[19] to the velocities.

Nevertheless, referring to punctured binary sequence-pair, ambiguity values do not

go to zero when Doppler frequencies are equal to multiples of the PRF. According

to Fig. 4.5(c), 7x5-length punctured binary sequence-pair generally resembles the

31-length P4 code. 7x5-length punctured binary sequence-pair is more tolerant of

Doppler shift than single period of punctured binary sequence-pair, but it has more

ambiguity values go to zero when Doppler shift equals to some multiples of the PRF.

Therefore, using the our triphase code as the compression code could, to some extent,

improve the blind speed problem in moving target detection system. Using several

periods of punctured binary sequence-pair could improve the tolerance of Doppler

shift when Doppler shift is larger than 1 unit.
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Figure 4.5. Doppler shift of codes(time delay=0): (a) 31-length Punctured binary
sequence-pair (b) P4 code (c) 7x5-length Punctured binary sequence-pair.
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4.3 Radar System Simulation Results

According to [69], PD (Probability of Detection), PFA (Probability of False

Alarm) and PM (Probability of Miss) suffice to specify all of the probabilities of

interest in radar system.Therefore, the above three probabilities of our newly provided

triphase code in radar system are simulated, as shown in Fig. 4.6 and Fig. 4.7. In

addition, the performance of the our 13-length Barker code and 31-length P4 code

are provided in order to compare with the performance of our triphase codes of

corresponding lengths. In the simulation model, we ran Monte-Carlo simulation for

105 times at each SNR value, the Doppler shift frequency which is kept less than

1 unit (normalized to the inverse of the length of the code, in units of 1/NTs) is

randomly given by Matlab, and the time delay is assumed to be zero. Threshold

detection i used in coherent system and the threshold is adaptively determined in the

simulation.

In Fig. 4.6(a), we plotted the miss detection probabilities PM of 13-length

punctured binary sequence-pair and the same length Baker code. Observe Fig. 4.6(a),

the miss detection probability PM of the system using 13-length punctured binary

sequence-pair is lower than 13-length Barker code especially when the SNR is not

large. It is in accordance with the result shown in Fig. 4.5 that when Doppler shift

is kept less than 1 and the time delay is zero, the amplitude of punctured binary

sequence-pair falls more sharply than Barker code.

In Fig. 4.6(b), we plotted the probabilities of miss targets detection of our 31-

length triphase code and those of the same length P4 code. The probability of miss

targets detection of the system using our 31-length triphase code is less than 31-length

P4 code especially when the SNR is not large. When SNR is larger than 17 dB, both

probabilities of miss targets detection of the system approach zero. However, the

probability of miss targets of P4 code is a little lower than our triphase code.
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Figure 4.6. Probability of miss targets detection for 31-length Punctured binary
sequence-pair VS. 31-length P4 code: (a) No time delay, Doppler shift is less than 1;
(b) Time delay, Doppler shift is less than 1..
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In addition, we also plotted the probability of detection versus probability of

false alarm of the coherent receiver in Fig. 4.7.

Fig. 4.7(a) illustrates performance of 13-length punctured binary sequence-pair

and the same length Baker code when the SNR is 10dB and 14dB. Having the same

SNR value such as 10dB or 14dB in the figure, the PD of 13-length punctured binary

sequence-pair is larger than PD of 13-length Barker code while the PFA of the first

code is also smaller than PFA of the latter code. In some other words, 13-length

punctured binary sequence-pair has much higher target detection probability while

keeping a lower false alarm probability. Furthermore, observe Fig. 4.7(a), 13-length

punctured binary sequence-pair even has much better performance at 10dB SNR value

than 13-length Barker code at 14dB SNR value. Fig. 4.7(b) illustrates performance

of our 31-length triphase codes and the same length P4 code when the SNR is 10dB

and 14dB. Having the same SNR value such as 10dB or 14dB in the figure, the PD of

our 31-length triphase code is larger than PD of our 31-length P4 code while the PFA

of the first code is also smaller than PFA of the latter code. In some other words, our

31-length triphase code has much higher target detection probability while keeping

a lower false alarm probability. Furthermore, observe Fig. 4.7(b), our 31-length

triphase code even has much better performance at 10dB SNR than 31-length P4

code at 14dB SNR.

4.4 Conclusions

Optimized Punctured Binary Sequence-pair is a kind of triphase-code waveform

known for its zero autocorrelation sidelobe. In this chapter, we successfully apply

it to the radar system as the pulse compression code and simulate the detection

performance of the system. According to the simulation results, the new code can

provide better performances than the Barker and P4 codes of corresponding length
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Figure 4.7. Probability of detection versus probability of false alarm of the coherent
receiver for 31-length Punctured binary sequence-pair VS. 31-length P4 code: (a) No
time delay, Doppler shift is less than 1; (b) Time delay, Doppler shift is less than 1..
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and be a good alternative for the current used pulse compression codes in radar

system.
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CHAPTER 5

RADAR SENSOR NETWORK USING THE NEW TRIPHASE CODED

WAVEFORMS

5.1 Introduction

A network of multiple radar sensors can be introduced to overcome performance

degradation of single radar along with waveform optimization. This network of radar

sensors should operate with multiple goals managed by an intelligent platform network

that can combine waveform diversity to meet common goals of platform, rather than

each radar to operate independently.

Much time and effort have been put in waveform design. Bell [20] who in-

troduced information theory to radar waveform design, concluded that distributing

energy is a good choice to better detect targets. Sowelam and Tewfik [21] applied a

sequential experiment design procedure to select signal for radar target classification.

In their work, each waveform selected maximizes the KullbackLeibler information

number that measures the dissimilarity between the observed target and the alterna-

tive targets in order to minimize the decision time. However, all the above researches

only focused on a single active radar. In [22], Liang studied constant frequency

(CF) pulse waveform design and proposed maximum-likelihood (ML) automatic tar-

get recognition (ATR) approach for both nonfluctuaing and fluctuating targets in a

network of multiple radar sensors. In [23], RSN design based on linear frequency

modulation (LFM) waveform was studied and LFM waveform design was applied

to RSN with application to ATR with delay-doppler uncertainty by Liang as well.

J.Liang [24] provided an orthogonal waveform model for RSN, which eliminates inter-
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ference when there is no doppler shift. They designed both coherent and noncoherent

RSN detection systems which can apply equal gain combination technique performed

by clusterhead to take the advantage of spatial diversity. In [68], binary coded pulses

using simulated annealing in RSN are highlighted.

Nevertheless, the radar sensor network using phase coded waveforms has not

been well studied. In this chapter, we firstly theoretically study RSN design based

on phase coded waveforms: the conditions for waveforms co-existence. Then we ap-

ply our newly proposed triphase code–optimized punctured ZCZ sequence-pair set to

RSN. We perform studies on the codes’ properties, especially the cross correlation

property and analyze the performance of optimized punctured ZCZ sequence-pairs in

RSN system under the environment of doppler shift and time delay for each transmit-

ting radar sensor. According to the Monte Carlo simulation results, RSN based on

optimized punctured ZCZ sequence-pairs provides promising detection performance

much better than that of single radar, in terms of probability of miss and false alarm

detection.

5.2 Co-existence of Phase Coded Waveforms in RSN

We assume there are N radars networking together in a self-organizing fashion

in our RSN. The radar i transmits a waveform as

xi(t) =

N−1∑

n=0

x
(n)
i (t− nτc) =

N−1∑

n=0

exp(j2πβ
(n)
i (t− nτc)) (5.1)

Here, 0 < t <= τc.
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When the phase coded waveforms are orthogonal to each other, the interference

from one waveform to the another can be minimized or even removed. The cross

correlation between xi(t) and xj(t) could be

∫ T/2

−T/2

xi(t)x
∗
j (t)dt = τc

N−1∑

n=0

exp[j2π(−N
2

+
1

2
)τc(β

(n)
i − β

(n)
j )]sinc[τc(β

(n)
i − β

(n)
j )](5.2)

The optimized cross correlation is that of orthogonal waveforms

∫ T/2

−T/2

xi(t)x
∗
j (t)dt =





Nτc i = j

0 i 6= j
(5.3)

It is easy to see that when πτc(β
(n)
i − β(n)

j ) = kπ, k = 1, 2, 3..., it satisfies the

equation (5.3). In this way can phase coded waveforms be orthogonal to each other

and work well simultaneously in Radar Sensor Network.

Nevertheless, there are time delay and Doppler shift ambiguity that will in-

troduce interference to waveforms in RSN. Ambiguity function (AF) [69] is usually

used to succinctly characterize the behavior of a waveform paired with its matched

filter. In the RSN of M radars, the radar i not only receives its own back-scattered

waveform, but also scattered signals generated by other M − 1 radars which caused

interference to radar i.

Assuming each radar transmits signal synchronously, t1 = t2 = tM = 0. Con-

sidering time delay τ = mτc for receiving radar i and interferences from all the other

M − 1 radars, the ambiguity function of radar i could be

Ai(τ, FD1
, ..., FDM

) (5.4)

= |τc
M∑

j=1

N−1∑

n=m

exp[j2π[β
(n−m)
i (

N

2
+m− 1)τc

+β
(n)
j (−N

2
+ 1)τc + FDj

(−N
2

+ n+ 1)τc]]

sinc[τc(β
(n)
j − β

(n−m)
i + FDj

)]|
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Here, 0 < i <= M . (5.5) consists of two parts: useful signal j = i part in the

(5.5); and interferences from other M − 1 radar waveforms, j 6= i parts in (5.5).

Since πτc(β
(n) − β(n−m) + FD) = kπ, k = 1, 2..., it satisfies that A(τ, FD) = 0, when

FD = k
τc
, k = 0, 1, ....

5.3 System Simulation in Radar Sensor Network

In RSN of M radars, the combined received signal for the radar i is

ri(u, t) =
M∑

j=1

xj(t− tj)exp(j2πFDj
t) + n(u, t) (5.5)

FDj
and tj are Doppler shift of target and time delay relative to waveform j, and

n(u, t) is additive white Gaussian noise (AWGN). The structure can be constructed

as Fig. 5.1.
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Figure 5.1. Waveform diversity combining in RSN.

According to this structure, the combined received signal ri(u, t) is processed

by its corresponding matched filter i and the output of branch i is Zi(u, t). Each

Zi(u, t) can be equal gain combined to construct the final output Z(u, t).
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The output |Zi(u)| of branch i is

|
∫ T

2

−T
2

[
M∑

j=1

xj(t− tj)exp(j2πFDj
t) + n(u, t)]y∗i (t− ti)dt| (5.6)

Where n(u) =
∫ −T

2

−T
2

n(u, t)y∗i (t− ti)dt can be easily proved to be still an AWGN.

We can also have two special cases for |Zi(u)|:

1) If there is Doppler shift but no time delay, all the radar sensors transmit

signals synchronously, |Zi(u)| turns to be:

|
∫ T

2

−T
2

[
M∑

j 6=i

xj(t)exp(j2πFDj
) + n(u, t)]y∗i (t)dt| (5.7)

Assuming that the Doppler shift can be well estimated in the receiving radar

sensor, so the Doppler shift compensation factor exp∗(j2πFDj
) is introduced here.

|Zi(u)| ≤ |E|+ |
∫ T

2

−T
2

[

M∑

j=1

xj(t)exp(j2π(FDj
− FDi

))y∗i (t)|

+|
∫ T

2

−T
2

n(u, t)y∗i (t)exp
∗(j2πFDi

t)dt| (5.8)

If FD1
= FD2

= ... = FDj
= FD, further simplified as

|Zi(u)| ≤ |E|+ 0 + |
∫ T

2

−T
2

n(u, t)y∗i (t)exp
∗(j2πFDi

t)dt| (5.9)

2) If both time delay and Doppler shift exist in the RSN, assuming FD1
= FD2

=

... = FDj
= FD, considering the Doppler shift compensation factor in the receiving

sensor,

|Zi(u)| ≤ |E|+ |
∫ T

2

−T
2

[

M∑

j 6=i

xj(t− tj)]y∗i (t− ti)dt|

+|
∫ T

2

−T
2

n(u, t)y∗i (t− tj)exp∗(j2πFDi
t)dt| (5.10)

Because of the good properties of our proposed codes, we modify the frame of

receiving data before the matched filter on the receiver to improve the RSN perfor-

mance. The data from N+1 to max(tj)+N are added to data from 1 to max(tj), bit
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by bit, where N is the original data length and tj is the time delay for jth transmitting

radar sensor. In this way can we get the output of the matched filter

|Zi(u)| ≤ |E|+ 0 + |
∫ T

2

−T
2

n(u, t)y∗i (t)exp
∗(j2πFDi

t)dt| (5.11)

According to (5.9) and (5.11), it is easy to see that using our provided codes and

frame modification the RSN under the condition of time delay for each radar sensor

can, to some extent, work as well as the RSN where all the radar sensors transmit

signals synchronously.

We apply optimized punctured ZCZPS as a bank of phase coded waveforms

together with equal gain combination technique in the simulation in order to study

the performance versus different number of radars in RSN with Doppler shift. We

respectively simulated PM (Probability of Miss Detection) and PFA (Probability of

False Alarm) of different number of radars using different number of optimized punc-

tured ZCZ sequence-pairs. Two special cases of performances have been simulated.

They are performances under the condition of no time delay but Doppler shift, and

under the condition of time delay for each radar sensor and having Doppler shift.

Fig. 5.2 illustrates that when PM = 10−3, SNR of 8-radars are 2.2dB smaller

than that of single radar system using Barker code with Doppler shift. Considering

time delay for each radar in Fig. 5.2, SNR of 8-radar RSN can gain 1.7dB smaller

than 4-radar SNR to achieve the same PM = 10−3.

According to Fig. 5.3, the SNR of 8-radars can be nearly 3.8dB smaller than that

of single radar system using Barker code in order to achieve the same PFA = 10−2.

In addition, 4-radar system requires 1.7dB more than that of 8-radar RSN under the

condition of both time delay and Doppler shift.

The above figures distinctly illustrate that performances of detection of multi-

radars are superior to that of single radar. The performances of 4-radar and 8-radar
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Figure 5.2. Probability of miss detection in RSN under the condition of no time delay
but Doppler shift or time delay and Doppler shift.
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Figure 5.3. Probability of false alarm in RSN under the condition of no time delay
but Doppler shift or time delay and Doppler shift .
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RSN considering time delay for each radar transmitting sensor can be comparable to

those under the condition of no time delay, when large amount of radars are used in

the RSN.

5.4 Conclusions

The Optimized Punctured ZCZ Sequence-pair set (optimized punctured ZCZPS)

is a set of sequence-pairs which have zero autocorrelation sidelobes during the ZCZ

but zero cross correlation values during the whole time domain. Therefore, we studied

the RSN using the Optimized Punctured ZCZ Sequence-pair set as the phase coded

waveforms and simulated the detection performance of the system. The simulation

results show that RSN based on a set of optimized punctured ZCZ sequence-pairs

provides promising detection performance much better than that of single radar.
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CHAPTER 6

SONAR SENSOR NETWORK USING THE NEW TRIPHASE CODED

WAVEFORMS

6.1 Introduction

The narrowband pulse is most commonly used in underwater acoustics, in most

sounders, sonars and positioning systems. The narrowband pulses are usually good

enough for many applications because of the simplicity of transmission and processing,

along with performances of the pulses. However, the major defect is the poor range

resolution, which decreases interest in their use for advanced processing. The pulse

compression is such a technique that high signal energy is provided by transmitting

over a long time (large T ) and good time resolution is achieved by using a sequence

of short pulse (large W ), therefore having a large TW product [30]. A phase coded

waveform is one of the pulse compression waveforms that has a constant RF frequency,

but an absolute phase that is switched between one of N fixed values at regular

intervals within the pulse length. For an example, m sequences, successfully used in

previous experiments [25][28], satisfy the long-range transmission through the ocean

sound channel requirement and the same time resolution as a monopulse or periodic

pulse system whose pulse width is one digit duration achievable at high power.

Family of m sequences could be applied to the SSN to achieve better targets

detection performance than single sonar sensor. Nevertheless, the autocorrelation and

cross correlation properties of family of m sequences or even Gold sequences are not

optimized. As a result, the concept of ZCZ (Zero Correlation Zone) [31] is introduced.
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A sequence set having the property whereby the autocorrelation sidelobes and

cross-correlation functions are all equal to zero in a specified zone of phase shift is

referred to as a Zero Correlation Zone sequence set (ZCZ sequence set) [85]. There are

several constructions of a ZCZ sequence set using a perfect sequence [86][87][88][89].

However, existing ZCZ sequences sets are restricted by the length of the perfect

sequences [10]. The width of the Zero Correlation Zone of an existing ZCZ sequence,

which is generated from a perfect sequence, is shorter than the length of the perfect

sequence.

In this chapter, we further analyze the properties and ambiguity function of

optimized punctured ZCZPS, since the definitions optimized punctured ZCZPS and

methods to construct optimized punctured ZCZPS are proposed previously. We in-

vestigate the target detection performance of using the proposed codes as pulse com-

pression codes in the sonar sensor network. Some final conclusions on the proposed

codes are drawn in the end of the chapter.

6.2 Properties of Optimized Punctured ZCZ Sequence-pair Set

The 144-length optimized punctured ZCZPS (X, Y ) is constructed by 12-length

optimized punctured binary sequence-pair (u, v), u = [++++−−−+−++−], v = [0+

++−00+−++0] (using ′+′ and ′−′ symbols for ′1′ and ′−1′) and orthogonal matrix

B of order 12. Each row of matrix X = [x(1); x(2); ...; x(12)] and Y = [y(1); y(2); ...; y(12)]

constitute a certain optimized punctured ZCZP (x(p), y(p)), p = 0, 1, ..., 11.

6.2.1 Autocorrelation and Cross Correlation Properties

The autocorrelation propertyR(x(1), y(1)) and cross correlation propertyR(x(1), y(2)) =

R(y(1), x(2)) are shown in Fig. 6.1. According to Fig. 6.1, the sidelobe of autocorrela-

tion and the cross correlation of ZCZPS can be as low as 0 when the time delay is kept
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within Z0 = N1 − 2 = 10, here d > 1. The only uniform phase code that can reach

the theoretical maximum peak signal sidelobe ratio (PSR) for autocorrelation [69] is

the Barker code whose length is equal or less than 13. The PSR of the new code can

be as large as infinite because of the zero sidelobe during ZCZ. The length of the new

code is various and much longer than the length of the Barker code. Besides, a Gold

code which is used in telecommunication (CDMA) and satellite navigation could also

be compared with here. Though Gold codes have bounded small cross-correlations

within a set, they could not obtain zero cross-correlation function and zero sidelobe

of the autocorrelation function.

6.2.2 Ambiguity Function

When the transmitted signal is reflected by a moving target, the reflected echo

signal includes a linear phase shift, which comes from the Doppler shift. Because of

the Doppler shift FD [69], the main peak of the autocorrelation function is reduced

and so as to the SNR degradation. Focusing on the sequence-pair (x(p), y(p)) here, we

use the single-periodic ambiguity function expressed as:

A(τ, FD) =
1

T

∫ T

0

x(p)(s+
τ

2
)ej2πFDsy∗(q)(s− τ

2
)ds (6.1)

Equation (6.1) is plotted in Fig. 6.2 in a three-dimensional surface plot.

There is relative uniform plateau suggesting low and uninform sidelobes. This

low and uniform sidelobes minimize target masking effect in ZCZ of time domain,

where Z0 = 10, −10 ≤ τ ≤ 10, τ 6= 0. When Doppler shift is not serious, there are

small peaks on period of 12 but sharp peaks on period of 144 in time domain which

could be used to detect the targets.
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6.2.3 ZCZ Optimized Punctured Sequence-pair Waveform Coding in Sonar System

In this simulation part, we assume that it is the point target in the sys-

tem. There are M sonar sensors using essentially different ZCZ optimized punctured

sequence-pairs in the system. The receiver is pictured as M cross correlators; and

each calculates the cross correlation function of the received signal r(t) and the cor-

responding matched filter (y∗i (t), i = 1, 2, ...,M). In the sonar sensor network of M

sensors, the combined received signal for the sensor i is

r(u, t) =

M∑

j=1

xj(t− tj)exp(j2πFDj
t) + n(u, t) (6.2)

FDj
and tj are Doppler shift and time delay relative to waveform j, and n(u, t)

is additive white Gaussian noise (AWGN). The combined received signal r(u, t) is

processed by the matched filter y∗i (t) and the output of branch i is |Zi(u)|. Each

|Zi(u)| can be equal gain combined to construct the final output Z(u)

Z(u) =
M∑

i=1

|Zi(u)| (6.3)

=

M∑

i=1

|
∫ T

2

−T
2

[

M∑

j=1

xj(t− tj)exp(j2πFDj
t) + n(u, t)]y∗i (t)dt|

Where n(u) =
∫ T

2

−T
2

n(u, t)y∗i (t− ti)dt can be easily proved to be still an AWGN.

We respectively simulated PM(Probability of Miss) and PFA (Probability of

False Alarm) of sonar sensor network using our optimized punctured ZCZ sequence-

pairs comparing with Gold codes of comparative length. Two special cases of per-

formances have been simulated. One is under the condition of no time delay (all the

transmitting sensors transmit simultaneously) but Doppler shift, and the another is

of time delay (limited within the ZCZ) for each radar sensor and having Doppler

shift. Fig. 6.3(a) illustrates that when PM = 10−3, SNR of 4-sensor SSN using Gold

codes are 1dB greater than that of 4-sensor system using our proposed codes under
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the condition of Doppler shift but no time delay. Observing the performance in Fig.

6.3(a), under the condition that all the sensors don’t transmit simultaneously, SNR of

4-sensor SSN using our codes can gain 1.5dB less than 4-sensor system within Gold

codes to achieve the same PM = 10−1.9.

According to Fig. 6.3(b), the SNR of 4-sensor sonar sensor network using our

proposed codes can be nearly 0.8dB smaller than that using Gold codes in order to

achieve the same PFA = 10−3. In addition, 4-sensor system requires 1.5dB more than

that of 4-sensor system using Gold codes under the condition of both time delay and

Doppler shift when PFA = 10−1.8 .

The above figures distinctly illustrate that detection performances of SSN using

our propose codes are superior to that using Gold codes. It is easy to conclude that

the performance could be improved by increasing the number of sensors. In addition,

considering time delay for each transmitting sensor, the performances of SSN are

worse than those under the condition of no time delay because of the interference

introduced by time shift of the transmitting signals, but still could be acceptable.

6.3 Conclusions

In this chapter, we investigate the definition and properties of optimized punc-

tured ZCZPS constructed by a specific method proposed before. The significant

advantage of the optimized punctured ZCZ sequence-pair set is a considerably re-

duced autocorrelation sidelobe as low as zero and zero mutual cross correlation value

within ZCZ. The results show that applying our optimized punctured ZCZPS as a

bank of phase coded waveforms to the SSN can effectively satisfy higher demands

criterion for detection accuracy in modern military and security affairs.
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Figure 6.1. (a)Periodic autocorrelation property of 144-length optimized punctured
ZCZ sequence-pair (x1, y1) (b)Periodic cross correlation property of 144-length opti-
mized punctured ZCZ sequence-pair (x1, y2).
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Figure 6.2. Ambiguity function of a 144-length ZCZ sequence-pair.
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Figure 6.3. Detection performance: (a) Pm, (b) Pfa.
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CHAPTER 7

ORTHOGONAL PULSE COMPRESSION CODES FOR MIMO RADAR SYSTEM

7.1 Introduction

MIMO radars, unlike phased array radars, transmit different waveforms on the

different antennas of the transmitter, which makes it necessary to do the waveform

design for the system. Some researchers have already done some work on the MIMO

radar using orthogonal waveforms [90], partial correlation waveforms [40] or the more

general non-orthogonal set of waveforms [91][92][93].

In this Chapter, we will focus on the direction finding performance of the MIMO

radar systems. We would apply our proposed triphase orthogonal waveforms to the

MIMO radar system as pulse compression codes. In addition, a generalized MIMO

radar signal model using our triphase orthogonal pulse compression codes is analyzed

and then simulated.

7.2 MIMO Radar Signal Model

There has been considerable interest in the use of multiple transmit and receive

antennas to offer significant performance improvement in wireless communication.

In particular, MIMO radar uses diversity techniques to improve the capacity and

performance of the radar systems. In addition, pulse compression, which allows a

radar to simultaneously achieve the energy of a long pulse and the resolution of a

short pulse without the high peak power required by a high energy short duration

pulse [19], is generally used in modern radar systems. In this section, we describe a

signal model for the MIMO radar system using orthogonal pulse compression codes.
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Shown in Fig. 7.1, we describe a signal model for the MIMO radar system using

orthogonal pulse compression codes to improve the direction finding performance.

Figure 7.1. MIMO Radar Model.

Assume a radar system that utilizes an array with M antennas at the trans-

mitter, and I antennas at the receiver. For simplicity, we assume that it is a point

target, and the arrays at the transmitter and receiver are parallel. A transmitting

linear array made up of M elements equally spaced a distance dt apart. The ele-

ments are assumed to be isotropic radiators in that they have uniform response for

signals from all directions. The first antenna will be taken as the reference with zero

phase. The signal radiated by the transmit antenna impinges at angle θ which is the

angle of arrival (AOA). From simple geometry, the difference in path length between
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adjacent elements for signals transmitting at an angle θ with respect to the normal

to the antenna, is dtsinθ. This gives a phase difference between adjacent elements

of φ = 2π(dt/λ)sinθ, where λ is wavelength of the transmit signal. And the phase

difference for m-th transmit antenna is φm = 2π((m− 1)dt/λ)sinθ. For convenience,

we take the amplitude of the signal at each element to be unity. A pulse compres-

sion code Um of length N is applied to m-th transmit antenna, and the signal vector

induced by the m-th transmit antenna is given by g
m

. Here,

Um = [u(0)
m , u(1)

m , u(2)
m , ..., u(N−1)

m ]; (7.1)

g
m

= e−jφm[u(0)
m , u(1)

m , u(2)
m , ..., u(N−1)

m ], 1 ≤ m ≤M ;

The signal vectors are organized in the M × N transmit matrix G = [g
1
; g

2
; ...; g

M
].

The transmitted waveforms are listed as a M × 1 vector S = [s1, s2, ..., sM ]T .

Similar to the transmitter, the model for the array at the receiver could be

developed, resulting in an I × N channel matrix K. Similarly, the first antenna on

the receive part will be taken as the reference with zero phase. The signal radiated

by the n-th receive antenna impinges at angle θ0. The phase difference for i-th

receiver antenna is ϕi = 2π((i−1)dr/λ)sinθ0. For phase-modulated pulse compression

waveforms, the corresponding pulse compression code Vi has to be applied to each

receive antenna to implement the matched filter. The matched filter for the i-th

receive antenna could be given by

Vi = [v
(0)
i , v

(1)
i , v

(2)
i , ..., v

(N−1)
i ]; (7.2)

ki = e−jϕi[v
(0)
i , v

(1)
i , v

(2)
i , ..., v

(N−1)
i ];

K = [k1; k2; ...; kI ]
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Assume there is a near field point target and it is known that small changes

in the aspect angle of the target can cause major changes in the radar cross section

(RCS). Here, RCS for each transmit antenna is assumed to have isotropic reflectivity

modeled by zero-mean, unit-variance, independent and identically distributed (i.i.d.)

Gaussian random variable λm. The target RCS is then modeled by the diagonal

matrix

Σ =




λ1 0 · · · 0

0 λ2
. . .

...

...
. . .

. . . 0

0 ... 0 λM




(7.3)

The nonfluctuating target modeled using non-zero constants for λm = λ is identified

as ”Swerling0” or ”Swerling5” model [94]. For the fluctuating target, if |λm| is

drawn from the Rayleigh pdf and vary independently from path to path, the target

model represents a classical ”Swerling2” model [94].

Processing the transmit RCS matrix, the target matrix and the receive matrix

together, the received signal vector is shown in equation (7.2).

Here, the transmit signals which are organized in the vector S = [s1, s2, ..., sM ]T

and the additive white Gaussian noise vector n consists of i.i.d, zero-mean normal

distributed random variables, n = [n1, n2, ..., nN ]T .

According to (7.2), it is easy to notice that each entry of the matrix could be

expressed as
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R = K
[
[GHΣ]S + n

]
=




k1

k2
...
kI






[
gH

1
, gH

2
, . . . , gH

M

]



λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 ... 0 λM







s1

s2
...
sM


+ n


 (7.4)

=




k1

∑M
m=1 λmsmg

H
m

+ k1n

k2

∑M
m=1 λmsmg

H
m

+ k2n
...

kI

∑M
m=1 λmsmg

H
m

+ kIn


 (7.5)

ki

M∑

m=1

λmsmg
H
m + kin (7.6)

= [e−jϕiVi]
M∑

m=1

[e−jφmUm]Hλmsm + kin = Vi

M∑

m=1

UH
mλmsme

j(φm−ϕi) + kin

The receiver antenna uses a beamformer to steer towards direction θ
′

0, ϕ
′

i =

2π((i− 1)dr/λ)sinθ
′

0. The beamformer is modeled by a vector

β(θ′0) = [e−jϕ
′

1 , e−jϕ
′

2, · · · , e−jϕ
′

I ]T (7.7)

The following expression is evaluated:

y = βH(θ
′

0)R = [ejϕ
′

1 , ejϕ
′

2, · · · , ejϕ
′

I ]




V1

∑M
m=1 U

H
mλmsme

j(φm−ϕ1) + k1n

V2

∑M
m=1 U

H
mλmsme

j(φm−ϕ2) + k2n

...

VI

∑M
m=1 U

H
mλmsme

j(φm−ϕI) + kIn




(7.8)

=
I∑

i=1

ejϕ
′

i(Vi

M∑

m=1

UH
mλmsme

j(φm−ϕi) + kin)
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For the sake of simplicity, but without loss of generality, we assume that λm =

λconst is a constant for non-fluctuating model and each transmit signal has the same

value sm = s. In MIMO radar for direction finding (DF) purpose, the transmit

antennas are separated sufficiently far [95], so the phase shifts at the transmitter are

set to zero. It is easy to see that when θ = 0, φm = 2π(d/λ)sinθ = 0.

Hence

y =

I∑

i=1

ej(ϕ
′

i−ϕi)λconsts(Vi

M∑

m=1

UH
m ) +

I∑

i=1

kine
jϕ

′

i (7.9)

If we select orthogonal pulse compression codes for transmit and receive anten-

nas, it is satisfied that

ViU
H
m =

N∑

n=1

v
(n)
i u(n)∗

m =






Es, i = m

0, i 6= m
(7.10)

We obtained that

y = λconstsEs

L∑

i=1

ej(ϕ
′

i−ϕi) +
I∑

i=1

kine
jϕ

′

i (7.11)

where L = min(I,M).

The angle of arrival is estimated as the θ
′

0 which maximizes |y|2,

|y|2 = |λconstsEs

L∑

i=1

ej(ϕ
′

i−ϕi) +

I∑

i=1

kine
jϕ

′

i|2 (7.12)

∼= |λconstsEs

L∑

i=1

ej(ϕ
′

i−ϕi) +

I∑

i=1

n
′

i|2

where n
′

i = kine
jϕ

′

i.

It is obvious that if the beamformer can well estimate the direction θ0 at the

receiver antenna, θ
′

0
∼= θ0 and ϕ′

l = ϕl,
∑L

l=1 e
j(ϕ′

l
−ϕl) can be maximized as L.

|y′|2 = |λconstsEsL+
I∑

i=1

n
′

i|2 (7.13)
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Since L = min(M, I), we investigate the three cases of different values of M and I.

If M = I, we obtain

|y|2 = |λconstsEsL+

L∑

i=1

n
′

i|2 (7.14)

If M < I, we have

|y|2 = |λconstsEsM +
I∑

i=1

n
′

i|2 = |
M∑

i=1

(λconstsEs + n
′

i) +
I∑

i=M+1

n
′

i|2 (7.15)

It is seen that using more receive antennas than transmit antennas introduces more

noise interference, shown as |
∑I

i=M+1 n
′

i|2 on the second part of the right side of the

equation above, which would ruin the system performance.

If M > I, we obtain

|y|2 = |
I∑

i=1

(λconstsEs + n
′

i)|2 = |λconstsEsI +

I∑

l=1

n
′

i|2 (7.16)

We find that equation (7.16) resembles equation (7.14). However, the performance in

case M > I is quite different from that in case M = I. In case M > I, using more

transmit antennas than receive antennas introduces more paths within noise and the

limit number of receive antennas wastes the signal transmitted by the extra transmit

antennas because of the orthogonality of the system model.

The above conclusions are quite different from the previous results in MIMO

radar system [96], since we used a different orthogonal model in this paper. However,

we could also slightly modify the receive part of the system to construct another

system model which can obtain results similar to the general results of MIMO system.

Slightly modified the equation (7.18), the matched filter for ith receive antenna

could be

Vm = [v(0)
m , v(1)

m , v(2)
m , ..., v(N−1)

m ]; (7.17)

ki = e−jϕi

M∑

m=1

Vm;

K = [k1; k2; ...; kI ]

91



After the receive antenna uses a beamformer to steer towards a direction, we

obtain the result that

y = βH(θ
′

0)R = [ejϕ
′

1, ejϕ
′

2, · · · , ejϕ
′

I ]




∑M ′

m′=1 Vm′

∑M
m=1 U

H
mλmsme

j(φm−ϕ1) + k1n

∑M ′

m′=1 Vm′

∑M
m=1 U

H
mλmsme

j(φm−ϕ2) + k2n

...

∑M ′

m′=1 Vm′

∑M
m=1 U

H
mλmsme

j(φm−ϕI) + kIn




=
I∑

i=1

ejϕ
′

i(
M ′∑

m′=1

Vm′

M∑

m=1

UH
mλmsme

j(φm−ϕi) + kin) (7.18)

Suppose there are the same assumptions as above that when θ = 0, φm = 2π(d/λ)sinθ =

0,

y =
I∑

i=1

ej(ϕ
′

i−ϕi)λconsts(
M ′∑

m′=1

Vm′

M∑

m=1

UH
m ) +

I∑

i=1

kine
jϕ

′

i (7.19)

Similarly, optimized orthogonal pulse compression codes are selected for transmit and

receive antennas, we easily obtain that

y = λconstsMEs

I∑

i=1

ej(ϕ
′

i−ϕi) +
I∑

i=1

kine
jϕ

′

i (7.20)

If the beamformer can well estimate the direction, we could get |y|2 maximized as

|y′|2 = |MλconstsEsI +
I∑

i=1

n
′

i|2 (7.21)

where n
′

i = kine
jϕ

′

i. It is easy to see that direction finding performance could be

improved by increasing either the number of transmit antennas M or the number of

receive antennas I. Better performance could be obtained within this scheme, but

the modified model is more complicated than the previous one. The equation (20)

clearly shows the simple relation between the number of antennas and the system

performance.
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7.3 MIMO Radar Ambiguity Functions

In this section, we derive the MIMO radar ambiguity function for phase coded

waveforms which is used to analyzed the proposed sequence-pair set in Section 5.

Based on the result of the first model in Section 2, we will focus our attention on this

model and assume that the number of transmit antennas is the same as the number

of receive antennas.

We write the phase coded waveforms as following:

u(t) =
1√
Ntb

N∑

n=1

u(n)rect[
t− (n− 1)tb

tb
] (7.22)

where u(n) = exp(jφ(n)) and the set of N phases φ(1), φ(2), ..., φ(n) is the phase code

associated with u(t). Ntb is the duration of waveform u(t).

Similarly, the matched filter for corresponding phase coded waveform is

v(t) =
1√
Ntb

N∑

n=1

v(n)rect[
t− (n− 1)tb

tb
] (7.23)

As the MIMO radar ambiguity function is defined [97]

χ(τ, ν, f, f ′) ∼=
M∑

m=1

M∑

m′=1

χm,m′(τ, ν)ej2π(fm−f ′m′)r (7.24)

where

χm,m′(τ, ν) ∼=
∫ ∞

−∞

um(t)v∗m′(t+ τ)ej2πνtdt (7.25)

Here, the target spatial frequency f and the assumed spatial frequency f ′ represent

the spatial mismatch. τ is the delay corresponding to the target range, and ν is the

Doppler frequency of the target. r ∼= dt/dr where the spacing between the trans-

mitting elements is dt and the spacing between the receiving elements is dr. M is

the number of transmitting antennas and the function χm,m′(τ, ν) is called the cross

ambiguity function. Taking equations (7.22) and (7.23) into (7.25), the cross am-

biguity function of phase coded waveforms could be expressed as
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χm,m′(τ, ν) (7.26)

=

∫ Ntb

0

um(t)v∗m′ [(t+ τ) mod Ntb]e
j2πνtdt

=
1

Ntb

∫ Ntb

0

N∑

n=1

u(n)
m rect[

t− (n− 1)tb
tb

]
N∑

n′=1

v
(n′)∗
m′ rect([

t+ τ − (n′ − 1)tb
tb

] mod N)ej2πνtdt(7.27)

=
1

Ntb

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′

∫ Ntb

0

rect[
t− (n− 1)tb

tb
]rect([

t+ τ − (n′ − 1)tb
tb

] mod N)ej2πνtdt (7.28)

=
1

Ntb

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′

∫ (N+1−n)tb

(1−n)tb

rect(
t

tb
)rect(

t

tb
)ej2πν[t+(n−1)tb]dt

=
1

Ntb

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′ ej2πν(n−1)tb

∫ tb

0

ej2πνtdt

=
1

N

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′ ej2πnνtbe−jπνtbsinc(πνtb)

where τ = ktb is the time delay.

Using the definition of MIMO ambiguity function, we get

χ(τ, ν, f, f ′) =
1

N

M∑

m=1

M∑

m′=1

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′ ej2πnνtbe−jπνtb (7.29)

sinc(πνtb)e
j2π(fm−f ′m′)r (7.30)

where τ = ktb.

The value |χ(0, 0, f, f)| represents the matched filter output without mismatch.

To obtain better system range resolution, the function χ(τ, 0, f, f ′) should be sharp

around the line {(τ, 0, f, f ′)|τ = 0, f = f ′}.

Here,

χ(τ, 0, f, f ′) =
1

N

M∑

m=1

M∑

m′=1

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′ ej2π(fm−f ′m′)r (7.31)
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where the Doppler shift is Zero or could be well estimated.

For M = 1 and f = f ′, the equation (7.31) reduces to

χ0(τ, 0, f, f) =
1

N

N∑

n=1

u(n)v∗(n+k) mod N (7.32)

χ0(0, 0, f, f) =
Es

N

where τ = ktb and Es is the energy of the sequence-pair (u,v).

It is easy to see that equation (7.33) is the correlation function of sequence

u = (u(1), u(2), ..., u(N)) and its corresponding sequence v = (v(1), v(2), ..., v(N)) (if

u = v, (7.33) is the autocorrelation of u = (u(1), u(2), ..., u(N))). For the MIMO radar

case that M > 1, the cross correlation functions among different pulses also have to

be taken into account in addition to the autocorrelation functions in order to have a

sharp χ(τ, 0, f, f ′).

Observing the equation (7.31), if the waveforms are orthogonal, the waveforms

have high peak mainlobe, zero sidelobes of the autocorrelation function and have zero

cross correlation values.

N∑

n=1

u(n)
m v

∗(n+k) mod N
m′ =





Es, for m = m′, k = 0

0, for m = m′, k 6= 0

0, for m 6= m′

(7.33)

The equation (7.31) turns to be

χ(τ, ν, f, f ′) =





Es

N

∑M
m=1 e

j2π(f−f ′)mr, for τ = 0

0, for τ = ktb,k=1,2,...,N−1

(7.34)

where Es =
∑N

n=1 u
(n)
m u

(n)∗
m is the energy of the sequence um.

Assuming there exists no mismatch in range and Doppler domain and f = f ′,

the function becomes

χ(0, 0, f, f) =
M∑

m=1

Es

N
= M

Es

N
(7.35)
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It is obvious that the ambiguity function is a constant along the line (0, 0, f, f)

which is independent of the waveform design of the sequence set {um(t)} and the

matched sequence set {vm(t)}. It implies that when there exists no mismatch in range

and Doppler domain, the output of matched filter is independent of the waveform

design but only relating to the length of waveform. However, if considering the

mismatch, the waveforms design should be taken into account so that the range

resolution could be improved. Besides, comparing equation (34) with (37), a diversity

gain of M could be achieved here.

On the another hand, observing the right part of equation (7.30), Doppler reso-

lution of the MIMO radar ambiguity function is affected by ej2πnνtbe−jπνtbsinc(πνtb).

According to the property of sinc(πνtb), when Doppler frequencies equal to multiples

of the pulse repetition frequency (PRF = 1/PRI = 1/tb), all the ambiguity values

turn to zero. That is the same as the single radar system widely using the pulse

compression technology. Overall, the Doppler resolution of MIMO radar ambiguity

function could keep the characteristics of the single radar system.

7.4 Properties of Optimized Punctured ZCZ Sequence-pair Set

Considering the optimized punctured ZCZPS that is constructed by the method

mentioned in Section 3, the autocorrelation and cross correlation properties can

be simulated and analyzed with MATLAB. For example, the optimized punctured

ZCZPS (U,V) is constructed by 5-bit length optimized punctured binary sequence-

pair (x,y),x = [+ + − + −],y = [+ + 000] (using ′+′ and ′−′ symbols for ′1′ and

′ − 1′) and Hadamard matrix H of order 4. We follow the three steps presented in

Section 3 to construct the 20-bit length optimized punctured ZCZPS. The number

of sequence-pairs here is 4, and the length of each sequence is 5 ∗ 4 = 20. Each row

of the matrix U = [u1;u2;u3;u4] and the corresponding row of V = [v1;v2;v3;v4]
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constitute a certain optimized punctured ZCZP (um,vm), m = 1, 2, 3, 4. Here, um can

be used as the transmitting code at the transmit antenna and vm is used as matched

filter code at the receive antenna.

U =




+ +−+−+ +−+−+ +−+−+ +−+−

+−−−−−+ + + + +−−−−−+ + ++

+ + +−−+−+ +−−−−+ +−+−−+

+−+ +−−−−+ +−+−−+ + + +−−




;

V =




+ + 000 + +000 + +000 + +000

+− 000−+000 +−000−+000

+ + 000 +−000−−000−+000

+− 000−−000−+000 + +000




.

The autocorrelation property and cross correlation property of 20-bit length

optimized punctured ZCZ sequence pair set (U,V) are shown in Figs. 2 and 3.
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Figure 7.2. Periodic autocorrelation property of optimized punctured ZCZPS.

From the Figs. 7.2 and 7.3, the sidelobe of autocorrelation of ZCZPS can be

as low as 0 when the time delay is kept within Z0 = N1 = 5 (zero correlation zone)
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Figure 7.3. Periodic cross correlation property of optimized punctured ZCZPS.

and the cross correlation value is kept as low as 0. Some sequence sets with good

periodic correlations have already been proposed and studied. However, the correla-

tion functions of Gold sequences [98] take on the preferred three values. The Kasami

sequences [99] can also have one of the preferred three values for the correlation func-

tions. In [100], the authors propose a set of prime-phase sequences whose maximum

cross-correlation function is smaller by a factor of
√

2 (3dB), comparing with the

same family size of Gold codes. It is easy to see that the optimized punctured ZCZ

sequence-pair set has better auto- and cross-correlation functions during ZCZ than

most of the sequence sets mentioned above.

Referring to the MIMO ambiguity function of the previous section, the cut of

MIMO ambiguity function parallel to the time axis at Doppler shift ν = 0

χ(τ, 0, f, f ′) =






Es

N

∑M
m=1 e

j2π(f−f ′)mr, for τ = 0

0, for τ = ktb, k = 1, 2, ..., N1 − 1
(7.36)
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Assuming that the estimated parameter equals to the normalized spatial fre-

quency of the target, f = f ′, we get the function

χ(τ, 0, f, f) =





MEs

N
, for τ = 0

0, for τ = ktb, k = 1, 2, ..., N1 − 1
(7.37)

Consider the same example, where, Es = 8,M = 4 and N = 20. We can easily get

the range resolution shown as following

χ(τ, 0, f, f)) =






1.6, for τ = 0

0, for τ = ktb, k = 1, 2, ..., 4
(7.38)

Accordingly, it is easy to draw the conclusion that the MIMO radar system using

our proposed set of orthogonal codes could improve the range resolution to 1
N

(N is

the length of the corresponding sequence) of the original one. And the peak value is

increased from 1 of single radar system without using pulse compression technique to

1.6 in the above case. However, the time delay should be limited to the value of ZCZ

of the codes here.

Nevertheless, if there is no limit to the time delay, the range resolution would

be interfered. We use the MATLAB to simulate the range resolution performance

of three examples, such as 12x4 length ZCZ codes, 20x4 length ZCZ codes and 28x4

length ZCZ codes in Fig. 7.4.

The above figures show that the ambiguity function parallel along time domain

at Doppler shift ν = 0 has high peaks at the period of the ZCZ expect for a short

sharp at zero time delay. However, there might be the concern that multiple peaks of

the autocorrelation function would lead to ambiguity in ranging. Since the periodic

correlation function is used in this paper, the peaks from other targets would not be

high enough to mask the peak of the target under the study. In addition, we are

studying the single target system in this research and well controlling the PRF (pulse
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Figure 7.4. Range Resolution:(a) 12x4 ZCZ codes;(b) 20x4 ZCZ codes;(c) 28x4 ZCZ
codes.
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repetition frequency), the only concern is that multiple peaks of the transmitting

signal reflected from one target may affect determining the main peak of ACF. As a

matter of fact, the matched filter here could shift at the period of ZCZ length to track

each peak instead of shifting bit by bit after the first peak is acquired, which could

make the system work more efficiently. Alike the tracking technology in synchroniza-

tion of CDMA system, checking several peaks instead of only one peak guarantee

the precision of PD and avoidance of PFA. And the range could be determined by

obtaining the the middle point of time range of the first and the last high peaks where

we could achieve a short sharp.

7.5 Simulations and Analysis

In this section, we are running MATLAB simulations of the MIMO radar sys-

tem using different number of transmit antennas and receive antennas to see the

direction finding performance. The configurations of transmit and receive antennas

are illustrated in Fig. 7.1. The transmit antennas are spaced sufficiently far to each

other and the antenna array is used in the receive part. The target fluctuating model

in which the channel fluctuated according to a Rayleigh distribution is considered

besides the nonfluctuating model. The mean-squared errors (MSEs) of the angle-of-

arrival (AOA) estimation is used as the common figure of merit for comparing the

performance. Using nonfluctuating and fluctuating target model, the MIMO radar

systems of different antennas are illustrated in Fig. 7.5.

According to Fig. 7.5, 8x8 MIMO radar system achieves better MSE of AOA

estimation than the 4x4 MIMO radar system as is expected that more transmit and

receive antennas can work better than less transmit and receive antennas. On one

hand, if the number of receive antennas is increased from 4 to 8, the direction finding

performance of 4x8 MIMO radar system becomes worse than that of 4x4 MIMO
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radar system. This complies with the equation (7.15) that more receive antennas

than transmit antennas introduces more noise interference to make the performance

worse. On the another hand, by increasing the number of transmit antennas from 4

to 8, the 8x4 MIMO radar system could not obtain less MSE of AOA than 4x4 MIMO

radar system which satisfies the analysis to equation (7.16) that using more transmit

antennas than receive antennas brings more paths within noise to the system and the

limit number of receive antennas wastes the signal transmitted by the extra transmit

antennas. It is also easy to see that 4x8 MIMO radar system could perform better

than 8x4 MIMO radar system when the value of SNR is small. However, 8x4 MIMO

radar system obtains less MSE of AOA estimation than 4x8 MIMO radar system as

the value of SNR increases. Since the noise interference brought by extra transmit

antennas is not as sever as the noise introduced by extra receive antennas shown as

the second part of equation (7.15) when the value of SNR is large. Comparing the Fig.

7.5(a) and 7.5(b), the performance for fluctuating model is degraded, since the the

variable RCS value brought by Rayleigh fading may interfere with the orthogonality

of the transmit waveforms and the receive waveforms. So we can see that the model

using our proposed codes could work well both under fluctuating and nonfluctuating

conditions. As a result, a general conclusion could be drawn that based on the same

number of transmit antennas and receive antennas, the more antennas MIMO radar

system utilized the better direction finding performance could be achieved.

In addition, we provide the MATLAB simulations of the MIMO radar system

using the second model in Fig. 7.6. The results show that increasing the number

of either transmit antennas or receive antennas could improve the direction finding

performance of the system as expected. 4x2 MIMO radar system achieves better

MSE of AOA estimation than the 2x4 MIMO radar system just as shown in equation

7.21 that more receive antennas introduce more noise to the receive part. Comparing
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Fig. 7.5 and Fig. 7.6, it is also obvious that the system using second model could

outperform the system within the first model. However, the second scheme is more

complicated than the first one and may introduce more interference in the real world.

7.6 Conclusions

In this Chapter, we introduced the orthogonal pulse compression codes to the

MIMO radar system to improve the radar direction finding performance. In addition,

we presented and analyzed a generalized MIMO radar system model for our provided

framework, in which Beamforming and estimate MSE are also used to find the direc-

tion of the target at receive part. Simulation results showed that significant diversity

gain could be obtained in MIMO radar system using orthogonal pulse compression

codes. The MIMO radar system using the same number of transmit antennas and

receive antennas performs best in the first model.
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Figure 7.5. MSE of beamforming at the receiver within the first model: (a) Nonfluc-
tuating model; (b) Fluctuating model .
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Figure 7.6. MSE of beamforming at the receiver within the second model: (a) Non-
fluctuating model; (b) Fluctuating model .

105



CHAPTER 8

FROM VIEW OF INFORMATION THEORY FOR WAVEFORM DESIGN AND

OPTIMIZATION IN RSN

8.1 Introduction

Information theory has been widely applied to investigating radar detection

problem. It is summarized to gain information from a mixture of signal and unwanted

noise by obtaining as large a signal-to-noise ratio as possible on the grounds[47].

In addition, Bell[50] firstly used mutual information in the design of single radar

waveforms and processing to conclude that distributing energy is a good choice to

better detect targets.

In this chapter, we analyze and formulate the problem of waveform design

for target estimation in RSN. We further study the estimation waveform problem

for target recognition in RSN and derive a close formula for the maximum mutual

information between the extended target and the receiver output. We provide an

example to show that the performance of waveforms for optimal target estimation

problem in RSN. Finally, conclusions are drawn on waveform design by introducing

of information theory to RSN

8.2 Problem Analysis

In a radar system, we make measurements of a target in order to determine

unknown characteristics of it. In other words, we make measurements of a target in

order to decrease a priori uncertainty about the target. From the view of information

theory, it makes sense that if greater accuracy is required in the measurements, more
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information must be provided about the object being measured. Thus, it is easy

to understand that the greater the mutual information between the target and the

received radar signal when the transmitting signal is given, the greater the quantity

of information describing the object and the greater the reduction in the a priori

uncertainty about the target. The waveforms solved for maximizing such mutual

information is called information extraction waveforms or estimation waveform which

is studied in this paper.

Considering the RSN, we still need to maximize the mutual information between

the target and the received radar signal when transmitting signals are transmitted by

several radar sensors. The radar sensor network channel model is shown in Fig. 8.1.

Here, x1(t), ..., xN(t) are a set of N finite-energy deterministic waveforms with the

g(t)
+

X1(t)

X2(t)

XN(t)

z(t)

n(t)

y(t)
��������� ���h1

hN

h2

Figure 8.1. Radar sensor network channel model.

total energy Ex transmitted by all the transmitters in order to make a measurement

of the radar target. Each waveform is assumed to be of the same duration T and

confined to the symmetric time interval [−T/2, T/2].

Ex =
N∑

i=1

∫ T/2

−T/2

|xi(t)|2dt (8.1)
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The average power Px, which satisfies the relation Ex = NPxT , is introduced,

since most of the practical radar systems have the energy constraint on the average

power of the waveform instead of the total energy. We also assume that each waveform

is confined to a frequency interval w = [f0, f0 + W ] so that only negligible energy

resides outside the frequency interval w.

The target has a scattering characteristic modeled by the random impulse re-

sponse g(t). The resulting scattered signal turns to be

z(t) =

N∑

i=1

∫ T/2

−T/2

g(τ)xi(t− τ)dt (8.2)

The noise process at the receiver is the zero-mean additive Gaussian noise pro-

cess n(t) which is assumed to be stationary and ergodic, and to have one-sided power

spectral density Pnn(f) = 2Snn(f) for f > 0. n(t) is also statistically independent

of both the transmitted waveforms and the target impulse response. The ideal linear

time-invariant bandpass filter B(f) is included so that the transmitted signal has no

significant energy outside the frequency interval w, neither does z(t) which is the

summation of responses of a linear time-invariant system to the transmitted signal.

According to the Fig. 8.1, the problem of Radar Sensor Network can be stated as

following. Given a Gaussian target ensemble with random impulse response g(t) hav-

ing spectral variance σ2
G(f), find the set of waveforms x1(t), ..., xN (t) each confined

to the symmetric time interval [−T/2, T/2] and having all but a negligible fraction of

their energy confined in (one-sided) frequency to w = [f0, f0 +W ] that maximize the

mutual information I(y(t); g(t)|x1(t), ..., xN(t)) within additive Gaussian noise and

with one-sided power spectral density Pnn(f).
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8.3 Waveforms for Estimation in Radar Sensor Network

We are interested in finding the set of waveforms x1(t), ..., xN(t) that maximize

the mutual information I(y(t); g(t)|x1(t), ..., xN (t)) between the random target im-

pulse response and the received radar waveform under the constraints of their energy

and bandwidth. Since it could be shown that I(y(t); g(t)|x1(t), ..., xN (t)) could be

maximized when I(y(t); z(t)|x1(t), ..., xN(t)) is maximized, we will find the functions

x1(t), ..., xN(t) that maximize I(y(t); z(t)|x1(t), ..., xN(t)). [50] could be referred to

for the proof in detail.

According to the chain rule for mutual information in information theory,

I(y(t); z(t)|x1(t), x2(t), ..., xN(t)) (8.3)

chain rule
=

N∑

i=1

I(y(t); z(t)|xi(t))

Then, we consider the small frequency interval Fk = [fk, fk +∆f ] of bandwidth

∆f small enough so that for all f ∈ Fk, X(f) ≈ X(fk), Z(f) ≈ Z(fk), and Y (f) ≈

Y (fk). If ẑk(t) correspond to the component of z(t) with frequency components in

Fk, and ŷk(t) correspond to the component of y(t) with frequency components in Fk,

the mutual information between ẑk(t) and ŷk(t) could be expressed as [50], given that

xi(t) is transmitted,

I(ŷk(t); ẑk(t)|xi(t)) = T̃∆f ln[1 +
2|hiXi(fk)|2σ2

G(fk)

Pnn(fk)T̃
] (8.4)

Here, the observing time interval is T = [t0, t0 + T̃ ].

We partition the frequency bandwidth into M disjoint frequency intervals Fk,

with ŷk(t), ẑk(t) and n̂k(t) in the component in Fk. According to [101], when it is made

up of Gaussian random processes with disjoint power spectral densities, such processes
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corresponding to each Fk are known to be statistically independent. Therefore, the

mutual information, given that xi(t) is transmitted, is equal to the sum of each mutual

information between ŷk(t) and ẑk(t) given that xi(t) is transmitted:

I(y(t); z(t)|xi(t)) =
M∑

k=1

I(ŷk(t); ẑk(t)|xi(t)) (8.5)

If we enlarge the number M of disjoint intervals of bandwidth ∆f in the fre-

quency bandwidth w = [f0, f0+W ], then ∆f → 0. In the limit, we achieve an integral

for the mutual information I(y(t); z(t)|xi(t)) :

I(y(t); z(t)|xi(t)) (8.6)

= T̃

∫

w

ln[1 +
2|hiXi(f)|2σ2

G(f)

Pnn(f)T̃
]df

Take equations (8.4) and (8.6) into consideration, we could easily get:

I(y(t); z(t)|x1(t), x2(t), ..., xN (t)) (8.7)

=
N∑

i=1

T̃

∫

w

ln[1 +
2|hiXi(f)|2σ2

G(f)

Pnn(f)T̃
]df

We assume that

Ex =

N∑

i=1

∫

w

|Xi(f)|2df, (8.8)

and the resulting maximum value of I(y(t); z(t)|x1(t), ..., xN(t)) is

NT̃

∫

w

max[0, ln(
2σ2

G(f)

NPnn(f)λ

N∑

i=1

|hi|2)]df (8.9)

Proof: According to Log sum Inequality[102]

I(y(t); z(t)|x1(t), x2(t), ..., xN (t)) (8.10)

≤ (
N∑

i=1

T̃ )[

∫

w

ln(1 +
2σ2

G(f)
∑N

i=1 |hiXi(f)|2
∑N

i=1 Pnn(f)T̃
)df ]

with equality if and only if T̃ Pnn(f)

T̃ Pnn(f)+2|hiXi(f)|2σ2
G

(f)
= const.
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Based equations (8.7) and (8.8), we use the Lagrange multiplier technique [103]

to form a function

Φ(|Xi(f)|2) =

N∑

i=1

T̃

∫

w

ln[1 +
2|hiXi(f)|2σ2

G(f)

Pnn(f)T̃
]df

−λ(
N∑

i=1

∫

w

|Xi(f)|2df − EX) (8.11)

The equation (8.11) is equivalent to maximizing ϕ(|Xi(f)|2) with respect to

|Xi(f)|2, where

ϕ(|Xi(f)|2) =
N∑

i=1

T̃ ln[1 +
2|hiXi(f)|2σ2

G(f)

Pnn(f)T̃
]

−λ
N∑

i=1

|Xi(f)|2 (8.12)

Here, λ is the Lagrange multiplier which could be determined by the constraint

of (8.8). Thus, maximizing Φ(|Xi(f)|2), the |Xi(f)|2 that maximizes ϕ(|Xi(f)|2) is

|Xi(f)|2 = T̃ /λ− Pnn(f)T̃

2σ2
G(f)|hi|2

(8.13)

Since the magnitude-square spectrum should be no less than zero, we could further

rewrite the equation (8.13) as

|Xi(f)|2 = max[0, T̃ /λ− Pnn(f)T̃

2σ2
G(f)|hi|2

] (8.14)

We take (8.14) into (8.10), and the result could be easily proved.

In addition, substituting the (8.13) into the constraint of (8.8), we obtain

N∑

i=1

∫

w

|Xi(f)|2df =

N∑

i=1

∫

w

(T̃ /λ− Pnn(f)T̃

2σ2
G(f)|hi|2

)df

= Ex (8.15)
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Solving it, we have

λ =
T̃Nw

Ex +
∑N

i=1

∫
w

Pnn(f)T̃

2σ2
G

(f)|hi|2
df

(8.16)

As a result, I(y(t); z(t)|x1(t), ..., xN (t)) could be maximized by the |Xi(f)|2 that

|Xi(f)|2 =
Ex +

∑N
i=1

∫
w

Pnn(f)T̃
2σ2

G
(f)|hi|2

df

Nw
− Pnn(f)T̃

2σ2
G(f)|hi|2

(8.17)

Observing the equation (8.14), we see that |Xi(f)|2 is a function of several

factors such as T̃ , λ, Pnn(f) and |hi|. |Xi(f)|2 gets larger as Pnn(f) gets smaller if

all the other factors are held constant for f ∈ w. Oppositely, |Xi(f)|2 gets larger as

the variance of G(f), σ2
G(f) or the pulse duration T̃ get larger if all the other factors

are held constant. Since we have different channels for different transmitting sensor

in a RSN, the effect of different channel gain hi for each transmitter should be of

importance here. If all the other factors are held constant for f ∈ w, we show an

interesting interpretation of the relationship between |Xi(f)|2 and |hi| in Fig. 8.2.
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Figure 8.2. Waterfilling interpretation of magnitude-squared spectrum |Xi(f)|2.
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The Fig. 8.2 is a ”waterfilling ” strategy which is widely used in problems

dealing with power or energy allocation in information theory [104]. As a result,

Fig. 8.2 gives a pictorial view of optimal power allocation strategy for RNS if each

channel gain could be properly estimated. The transmitter allocates more power to

the stronger channel, taking advantage of the better channel conditions and less or

even no power to the weaker ones.

8.4 Results and Comparison

In this section, we will illustrate an example to examine the optimal transmitted

signals’ spectrum characteristics and the amount of information obtained. From (8.9),

the maximum mutual information is given

Imax(y(t); z(t)|x1(t), ..., xN(t))

= NT̃

∫

w

max[0, ln(
2σ2

G(f)

NPnn(f)λ

N∑

i=1

|hi|2)]df (8.18)

The Fig. 8.3 displays the results of numerical solutions of (8.16) and (8.18) for the

mutual information Imax(y(t); z(t)|x1(t), ..., xN(t)) as a function of both the pulse

duration T (here, since we assume T >> 1/w, then T = T̃ ) and average power Px.

The value of T equals to 10µs, 100µs, 1ms, 10ms and 100ms, while average power Px

varies over the range from 1W to 1000W for each T value. And the number of radar

sensors in the RSN is 8.

Fig. 8.3 shows that the mutual information Imax(y(t); z(t)|x1(t), ..., xN(t)) is

proportional to transmitted pulse duration T . In the practical RSN, the duration of

the transmitted signal T is often referred to as the ”time-on-target” in radar target-

recognition problems. It makes sense that if all other factors are equal, the longer

the ”time-on-target”, the better the target could be recognized. This point also well

matches up to the expression in (8.18). In addition, it is easy to see and understand
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Figure 8.3. Maximum mutual information as a function of T and Px.

that the more average power allocated on transmitting signals the more mutual in-

formation we get at the receiver, as well as the better performance of the target

recognition system.

Since RSN is constructed by a number of radar sensors, it is necessary to study

the maximum mutual information as a function of the number of radars N in RSN

and average power Px and a function of N and T . The resulting maximum values

of I(y(t); z(t)|x1(t), ..., xN(t)) are plotted in Fig. 8.4(a). The solution is carried out

for values of N equal to 1, 10, 20 and 30, while Px varies from 1W to 1000W and T

varies over the range from 10µs to 100ms.

Though the number of radar sensors are changing here, we assume the total

power allocated on the transmitting sensors are equal in order to compare the target

recognition performance. Observing Fig. 8.4(a), the maximum mutual information is

proportional to the number of radars N in RSN. For larger number of radar sensors

such as N ≥ 10, the increase of the maximum mutual information is not as distinct as

when the value of N is small. The same story happens to the the maximum mutual
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Figure 8.4. Maximum mutual information: (a) A function ofN and Px; (b) A function
of N and T .
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information as a function of N and T in Fig. 8.4(b). In a word, the more radar

sensors, the better the target could be recognized. However, all three factors N, T

and Px should be carefully decided between the balance of optimizing recognizing

performance and the industry implementation cost.

8.5 Conclusions

In this paper, we studied the waveforms design for the measurement of extended

radar targets in radar sensor networks (RSN) in the view of information theory. Con-

sidering the effect of different channel gains, we investigated the estimation waveforms

that maximize the mutual information between a target ensemble and the received

signal within additive Gaussian noise when the transmitting signals are given in order

to well recognize characteristics of the target. We also the study of the maximum

mutual information under the constraints of the number of radar sensors, waveform

energy and duration, which could be taken into consideration when waveforms are

designed for RSN, and draw some useful conclusions for waveforms design in RSN.

If the channel could be well estimated, the transmitter could allocate more power to

the stronger channel to gain better performance.

116



CHAPTER 9

COMPRESSIVE SENSING WITH SIMPLIFIED RECOVERY

9.1 Introduction

Compressive sensing (CS) [60][61] is an emerging framework that a signal vec-

tor which is K-sparse in a specific domain can be completely characterized by M

measurements (M > K) with M << N , where N is the traditional Nyquist based

number of samples required.

The major algorithmic challenge in compressive sensing is to approximate a

signal given a vector of noisy samples. There are three rough categories of signal re-

covery algorithms: convex relaxation, combinatorial algorithms and greedy pursuits.

The convex relaxation algorithms leading to l1-minimization–also called basis pursuit

[62] succeed with a very small number of measurements, however, it tends to be com-

putationally burdensome. Many of the combinatorial algorithms are extremely fast,

but they require a large number of somewhat unusual samples that may not be easy to

acquire. Greedy pursuits, such as various matching pursuits [63][64], are intermediate

in their running time and sampling efficiency but has its own disadvantages.

In this chapter, we provide a new algorithm-the CS-SVD algorithm for signal

recovery in compressive sensing by introducing the concept of SVD (Singular Value

Decomposition). We use SVD to study the compressive sensing framework and de-

velop two simple and straightforward methods to implement the CS-SVD algorithm

in the presence of additive noise.
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9.2 Preliminaries

9.2.1 Compressive Sensing

The recent results of compressive sensing have shown that the information from

a signal may be captured with a small set of nonadaptive, linear measurements as

long as the signal is sparse in some basis or frame [51][52]. We acquire a signal vector

x ∈ ℜN via linear measurements

y = Φx+ e = ΦΨθ + e (9.1)

where Φ is an M × N measurement matrix with φ1, φ2, ..., φM as rows modeling the

sampling system, y ∈ ℜM is the vector of samples observed, and e is an M × 1 vector

that represents measurement errors. If x is termed as K−sparse in the sparsity basis

Ψ, i.e, θ = ΨHx containing no more than K nonzero elements, we need to acquire only

M = O(K log(N/K)) random measurements to recover the signal x. It is convenient

to express x as Ψθ where Ψ is the n× n matrix with ψ1, ψ2, ..., ψN as columns.

Here, (Φ,Ψ) is a pair of orthobases which follow the incoherence restriction. In

[70], the coherence between the measurement basis Φ and the sparsity basis Ψ is

µ(Φ,Ψ) =
√
n · max

1≤k,j≤n
| < φk, ψj > | (9.2)

the coherence measures the largest correlation between any two elements of Φ and Ψ.

If Φ and Ψ contain correlated elements, the coherence is large. Otherwise, it is small.

As for how large and how small, it follows from linear algebra that µ(Φ,Ψ) ∈ [1,
√
n].

And compressive sensing is mainly concerned with low coherence pairs.

In this chapter, we will take Fourier basis for Ψ. Φ is the random waveforms

with independent identically distributed (i.i.d.) entries, e.g., Gaussian which exhibit

a very low coherence with any fixed representation Ψ. According to equation (9.2),

we assume that y = Aθ, then H = ΦΨ. It is easy to see that studying µ(Φ,Ψ)/
√
n

equals to find the maximum value of the entry in A.
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The convex relaxation algorithm is a powerful method for CS signal recovery,

so one can use l1 minimization with relaxed constrains for reconstruction [105]:

min||θ̃||l1 subject to ||ΦΨθ̃ − y||l2 ≤ ǫ (9.3)

where ǫ bounds the amount of noise in the data.

The convex relaxation algorithm could obtain a small number of measurements,

but results in large computational complexity. In Section 4, the signal recovery per-

formance of using the convex relaxation algorithm will be provided to compare with

the performance of using the proposed algorithm.

9.2.2 Singular Value Decomposition

In this section, we introduce the concept of the extremely useful singular value

decomposition.

Theorem 1 (Singular Value Decomposition (SVD))[106] If A is a real

m-by-n matrix, then there exist orthogonal matrices

U = [u1, ..., um] ∈ ℜm×m and V = [v1, ..., vn] ∈ ℜn×n

such that

UHAV = diag(σ1, ..., σp) ∈ ℜm×n, p = min(m,n)

where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0.

According to the above theorem, assuming that Σ = UHAV = diag(σ1, ..., σp), then

A = UΣV H , where (·)H is the Hermitian symbol. We could also obtain the important

properties of orthogonal matrices that UHU = diag(1, ..., 1) ∈ Im×m and V HV =

diag(1, ..., 1) ∈ In×n.
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9.3 The CS-SVD Algorithm

Based on the concept of SVD, we provide the CS-SVD algorithm for compressive

sensing and propose two methods to implement the CS-SVD algorithm for signal

recovery in this section.

9.3.1 The First Method

If the signal or the sparse representation scheme of signal is properly chosen, x

is K-sparse in the basis ΨV (V would be mentioned in the latter part), i.e., x = ΨV θ′

with ||θ′||l0 = K, the measurements M required to recover the original signal is only

K, and the recover algorithm is easy and very straitforward.

9.3.1.1 Signal Model

We study the signal vector x which is obtained by linear measurements

y = Φx+ e = ΦΨθ + e (9.4)

where Φ is an M × N measurement matrix modeling the sampling system, x is

expanded in the sparsity basis Ψ, i.e,. x = Ψθ and y ∈ ℜM is the vector of samples

obtained.

We assume that A = ΦΨ. Based on the definition and properties of SVD that

Σ = UHAV = diag(σ1, σ2, ..., σp), we use SVD to decompose the matrix A so that

A = ΦΨ = UΣV H . Without loss of generality, we let θ′
∆
= V Hθ, then θ = V θ′.

Stating differently, θ′ is K−sparse when represented in the sparsity basis V . The

equation (9.4) could be expressed as

y = ΦΨθ + e = UΣV HV θ′ + e = UΣθ′ + e (9.5)
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9.3.1.2 Recovery Algorithm

Motivated by how SVD works in MIMO system, we multiply y by UH and

obtain that

UHy = UH(ΦΨθ + e) = UHUΣV HV θ′ + UHe = Σθ′ + e′ (9.6)

where e′ = UHe. As it is known that Σ = diag(σ1, σ2, ..., σp) ∈ ℜM×N , p =

min(M,N), where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0. We observe that p = min(M,N)

and M is usually less than N in CS, hence, we could obtain that p = M here. We

could express the equation (9.6) as the following vector

UHy = [y′1, y
′
2, ..., y

′
M ]H = [σ1θ

′
1, σ2θ

′
2, ..., σMθ

′
M ]H + e′ (9.7)

Without changing the property of sparsity basis, we could easily reorder the

columns of sparsity basis corresponding to the non-zero value in θ′ so that all the

non-zero values of θ′ are arranged in the beginning. Once Φ and Ψ are known, Σ is

known and fixed. We could obtain θ′i by

|θ′i −
y′i
σi
|2 ≤ ǫ, i = 1, 2, ...,M (9.8)

According to equation (8), the values of θ′i, i = 1, 2, ...,M are obtained and θ′i = 0, i >

M when M ≥ K.

The original signal x could be recovered by

x = Ψθ = ΨV θ′ (9.9)

Stating differently, the number of measurements M depends on the number and

positions of nonzero values in θ′ where x is K-sparse when represented in the basis

ΨV , i.e., x = ΨV θ′.

For the sake of simplicity, but without loss of generality, we assume that θ′i =

0, i > K, if the sparsity basis and measurements matrix are properly chosen, i.e., x =

121



ΨV θ′. Using the proposed scheme, we only have to captureM(M ≥ K) measurements

to recover the signal vector x. Recalling the standard state-of-art compressive sensing

techniques, they usually require M = O(K log(N/K)) measurements which is much

larger than K to recover the original signal.

9.3.2 The Second Method

In the previous method, the original signal x has been represented by the basis

ΨV . Stating differently, x is firstly mapped to basis Ψ, i.e., x = Ψθ and secondly

mapped to basis θ = V θ′. For the second method, we will map the original signal to

the sparsity basis only once. Nevertheless, a new measurement matrix Φ′ has to be

produced here. If the signal or the sparse representation scheme of signal is properly

chosen, x is K-sparse in the basis Ψ, i.e., x = Ψθ with ||θ||l0 = K (|| · ||l0 calculates

the number of non-zero values among θ), the measurements M required to recover

the original signal is only K, and the recover algorithm is demonstrated as following.

9.3.2.1 Signal Model

We study the signal vector x which is obtained by linear measurements

y = Φx+ e = ΦΨθ + e (9.10)

where Φ is an M × N measurement matrix modeling the sampling system, x is

K−sparse when expanded in the sparsity basis Ψ, i.e,. x = Ψθ and y ∈ ℜM is the

vector of samples obtained.

We assume that A = Φ. Based on the definition and properties of SVD that

Σ = UHAV = diag(σ1, σ2, ..., σp), we use SVD to decompose the matrix A so that

A = Φ = UΣV H . It is known that the matrix V is the unitary matrix which satisfies

V HV = I, where I is the identity matrix. In addition, we usually take Fourier basis
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fb as the sparsity matrix Ψ which also satisfies fH
b fb = I. Without loss of generality,

we use Fourier basis in place of the unitary matrix V to construct a new measurement

matrix Φ′ = UΣfH
b . The equation (9.10) could be expressed as

y = Φ′Ψθ + e = UΣfH
b fbθ + e = UΣθ + e (9.11)

9.3.2.2 Recovery Algorithm

Motivated by how SVD works in MIMO system, we multiply y by UH

UHy = UH(ΦΨθ + e) = UHUΣfH
b fbθ + UHe = Σθ + e′ (9.12)

where e′ = UHe. As it is known that Σ = diag(σ1, σ2, ..., σp) ∈ ℜM×N . Similar to the

first method, p = min(M,N) = M , where σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0. The equation (12)

turns to be

UHy = [y′1, y
′
2, ..., y

′
M ]H = [σ1θ1, σ2θ2, ..., σMθM ]H + e′ (9.13)

Once Φ and Ψ are known, Σ is known and fixed.

As a result,

|θ′i −
y′i
σi
|2 ≤ ǫ, i = 1, 2, ...,M (9.14)

Observing equation (9.14), we could obtain the values of θi, i = 1, 2, ...,M and θi =

0, i > M when M ≥ K.

The original signal x could be recovered by

x = Ψθ = fbθ (9.15)

M depends on the number and positions of nonzero values in θ where x is K-

sparse when represented in the basis Ψ, i.e., x = Ψθ. We assume that θi = 0, i > K, if

the sparsity basis and measurements matrix are properly chosen, i.e., x = Ψθ. Using

the proposed scheme, we only have to capture M(M ≥ K) measurements to recover

the signal vector x.

123



9.3.3 Comparison of the Above Two Methods

According to the results in second part of the chapter, the incoherence property

depends on the maximum entry value of the matrix UΣ which is determined by the

measurement matrix Φ. In our research, the coherence becomes larger but is still

acceptable.

For the first method, we firstly represent the original signal X into the basis

Ψ and then represent θ in the basis V . And for the second method, we reproduce

the measurement matrix by Φ = UΣfb. The second method is easy to implement

when the original signal could be sparsely represented in the basis Ψ. However, when

the original signal is not sparsely represented in the basis Ψ as X = Ψθ, θ could

be represented by θ = V θ′ to decrease the non-zero values in θ′, for which the first

method could be considered.

9.4 Simulation Results

In this section, we firstly simulate the signal recovery from the data without

the noise interference.

In Fig. 9.1(a), we use the first method to implement the CS-SVD algorithm

and simulate the reconstructed signal comparing with the original signal. We set

N = 500, K = 40 and M = 40, where N is the number of samples of the signal

vector x and x has sparsity K in the properly chosen basis , i.e., x = (ΨV )θ′. The

reconstructed signal is comparing with the original signal by applying the second

method to implement the CS-SVD algorithm in Fig. 10.4(b), where N = 500, K =

100 and M = 100.
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According to the above simulation results, it is easy to see that the reconstructed

signal could perfectly comply with the original signal by using both of the two methods

when there is no noise with the data.

In addition, we compare the mean-squared error (MSE) for the proposed algo-

rithm with the MSE for the convex relaxation algorithm as we increase the number

of measurements M for fixed SNR = 20dB. Here, SNR is the power ratio of useful

signal to noise among the original signal. According to the two different methods

mentioned above, we study two different cases here.

Considering the first method, where x = ΨV θ′, we assume that θ′ contains only

K non-zero values in the beginning of vector θ′ and set N = 500 and K = 40, where

N is the number of samples of the signal vector x. We use different values of M to

reconstruct the compressed signal.

According to the Fig. 9.2(a), it is easy to see that the lower values of M

results in higher error. Increasing the value of M , we see the expected decay in MSE.

Observing Fig. 9.2(a), the first method for implementing CS-SVD algorithm could

provide stable and best recovery performance in this case. Because the original signal

used here could be termed as K-sparse as x = ΨV θ′.

Taken the second method into account, we assume that θ is K-sparse in the

beginning of vector θ. Setting N = 500 and K = 100, we use different value of M to

reconstruct the compressed signal.

Similar to Fig. 9.2(a), it is obvious that the lower values of M results in higher

error in Fig. 9.2(b). Increasing the value of M , we see the expected decay in MSE.

The second method for implementing CS-SVD algorithm could provide stable and

best recovery performance in this case, since the original signal used here could be

termed as K-sparse as x = Ψθ. In addition, we also find that when the number of

measurements M is larger than the number of non-zero values K = 100, the MSE

125



decreases sharply which comply with the theoretical result. Based on the above

simulation results, two different methods could be chosen to implement the CS-SVD

algorithm according to the different sparsity representation of the original signal.

9.5 Conclusion

Motivated by the concept of SVD, we provide a new CS technique-the CS-SVD

algorithm in this dissertation. We propose two methods to implement the CS-SVD

algorithm. The theoretical results show that the CS-SVD algorithm requires less mea-

surements than the standard state-of-art compressive sensing techniques and provide

a simpler and more efficient recovery scheme. The simulation results demonstrate

that both of our two methods provide considerable gains over convex relaxation al-

gorithm in terms of number of measurements required for stable recovery. And each

of them could work well in different cases in which different original signal could be

sparsely represented in different sparse basis.
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Figure 9.1. Reconstructed signal VS. original signal: (a) Using the first method for
K = 40 and M = 40; (b) Using the second method for K = 100 and M = 100.
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Figure 9.2. MSE versus M for fixed N = 500 and SNR = 20dB: (a)K = 40;
(b)K = 100 .
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CHAPTER 10

COMPRESSIVE SENSING IN DISTRIBUTED RSN USING PULSE

COMPRESSION WAVEFORMS

10.1 Introduction

RSN has been recently considered to overcome the performance degradation of

a single radar. Due to the expansion of data introduced to RSN, the compression and

reconstruction of the received data is a design challenge of future RSN. In this chapter,

we investigate how to employ compressive sensing in Radar Sensor Network (RSN),

in which we have a number of transmit sensors but only one sensor on the receiving

part. It is known that the scene must be ’compressible’ for compressive sensing to

have benefit. Recognizing that the Stepped-Frequency train could act as the sparsity

basis for the signal, we apply Stepped-Frequency train as the pulse compressions

codes to construct the ’compressible signal’ at each transmit sensor. We choose

the Gaussian matrix as the measurement matrix that satisfies the restricted isometry

property (RIP) with this basis. In addition, we propose an Maximum Likelihood (ML)

algorithm to estimate the target RCS parameter and use the Cramer-Rao lower bound

(CRLB) to validate our theoretical result. In the simulation parts, the performance of

signal recovery is studied as well as the performance of target RCS value estimation.

The simulation results show that the the signal could be precisely recovered if the

number of measurements is no less than the number of sensors in RSN and the actual

variance of the RCS parameter estimation θ̂ satisfies the CRLB.
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10.2 The Basic Model

10.2.1 The Produced Signal for Compressed Sensing

The Stepped-Frequency pulse train is a pulse burst waveform which obtains

large overall bandwidth while maintaining narrow instantaneous bandwidth. Each

pulse in the burst is a simple, constant-frequency pulse; however, the RF frequency

is added by a frequency step ∆F between consecutive pulses. The most common

Stepped-Frequency waveform employs a linear frequency stepping pattern, where the

RF frequency of each pulse is increased by ∆F Herts from the preceding pulse. In

addition, the frequency steps can be added to a train of unmodulated pulses, as well

as to a train of modulated pulses. The Stepped-Frequency waveform we study in this

chapter is expressed as follows:

s(t) =

I−1∑

i=0

si(t− iTp)e
j2πi∆F (t−iTp) (10.1)

where Tp is the length of each pulse and I is the number of pulses in a burst (train)

of pulses. Observing the right side of equation (10.1), we see that ej2πi∆F (t−iTp) can

be expressed into the orthogonal Fourier basis ej2π ni
I

(t−iTp), where ∆F = n
I

and n is

the index of a transmit sensor in a radar sensor network. Here, we let the frequency

step ∆F among each pulse burst waveform corresponding to each specific transmit

sensor be different and related to the index n. The goal of CS is to perform good

reconstruction of the signal by using a few sparse samples. Here, we collect the

data in such a way that is compressed already. We establish a RSN which uses the

Stepped-Frequency waveforms as pulse compression codes. The radar sensor network

consists of N transmit sensors indexed by n and only one receiving sensor. Then

sn(t) =
∑I−1

i=0 xn(t − iTp)e
j2π ni

I
(t−iTp) denotes the transmit signal for the transmit

sensor n. Let xn(t) =
∑I−1

i=0 xn(t − iTp) and ψn(t) =
∑I−1

i=0 e
j2π ni

I
(t−iTp) denote the

information signal and the pulse compression waveforms, where N is the number
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of transmit sensors and I is still the number of pulses in a burst or the number of

time samples. In order for the later use, we express the preceeding equations in vector

format that x̄n = [xn(t1), xn(t2), ..., xn(tI)]
T and ψ̄n = [ej2π n

I
t1 , ej2π 2n

I
t2 , ..., ej2π nI

I
tI ]T =

[ψ1n, ψ2n, ..., ψIn]T . Then, S = ΨXT is the transmit matrix, where X = [x̄1, x̄2, ..., x̄N ]

and Ψ = [ψ̄1; ψ̄2; ...; ψ̄N ].

The RCS is the property of a scattering target that is included in the radar

equation to represent the magnitude of the echo signal returned to the radar by the

target. As a result, the RCS returned to the receiving sensor by the target is assumed

to have isotropic reflectivity modeled by zero-mean, unit-variance, independent and

identically distributed (i.i.d.) Gaussian complex random variables λn. Assuming that

it is the slow fading system, where the amplitude and phase change imposed by the

channel can be considered roughly constant over the period of use, we suppose that

the Rayleigh distortion does not fluctuate during the whole pulse burst. The RCS

can be modeled by the diagonal matrix

Σ =
1√
2N




λ1 0 · · · 0

0 λ3
. . .

...

...
. . .

. . . 0

0 ... 0 λN




(10.2)

where the normalization factor makes the target average RCS=
∑N

n=1
|λn|2

2N
= 1 in-

dependent of the number of transmit sensors in the model. A popular method for

representing the fluctuations of targets are the four statistical models described by

Swerling in [107]. The nonfluctuating target modeled using non-zero constants for

λn = λ is identified as ′Swerling 0′ or ′Swerling 5′ model. For the fluctuating target,

if |λn| is drawn from the Rayleigh P.D.F. and varies independently from path to path,

the target model represents a classical ′Swerling 2′ model.
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Taken all the above parameters into account, we use the following block diagram

illustrating as Fig. 10.1 to show our basic model.

… T a r g e t1 111 )(x  
t 1 212 )(x  

t nt 11n )(x  

!
"

N nt1n 11nn )(x  #

Figure 10.1. The block diagram of the model.
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A vector form of the received signal including the useful signal and the system

noise is r̄ and we will process with this r̄ in the following section

r̄ = diag(ΨΣXT ) + n (10.3)

=
1√
2N

diag(




ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N

...
...

. . .
...

ψI,1 ψI,2 ... ψI,N




·




λ1 0 · · · 0

0 λ2
. . .

...

...
. . .

. . . 0

0 ... 0 λN




·




x1(t1) x1(t2) · · · x1(tI)

x2(t1) x2(y2) · · · x2(tI)

...
...

. . .
...

xN (t1) xN(t2) · · · xN(tI)




)

+n

=
1√
2N

[
N∑

n=1

λnxn(t1)ψ1,n,
N∑

n=1

λnxn(t2)ψ2,n, ...,
N∑

n=1

λnxn(tI)ψI,n

]T

+ n

=
1√
2N

[
N∑

n=1

λnxnψ1,n,

N∑

n=1

λnxnψ2,n, ...,

N∑

n=1

λnxnψI,n

]T

+ n

where n is the noise vector. Here, the transmitted information bits are always known

and the pulse compression technique is used, it is assumed that xn(t1 = xn(t2 = ... =

xn(tI = xn.

10.2.2 Decomposition and Recovery of the Signal

In order to obtain some benefit form CS, we choose the same orthogonal basis

ψ̄n as the sparse matrix Ψ to study the received signal r̄ including the useful signal

and the noise, where

r̄ =

N∑

n=1

θnψ̄n = Ψθ̄ (10.4)
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with θ̄ = [θ1, ..., θN ]T = [< r̄, ψ̄1 >, ..., < r̄, ψ̄N >]T . The CS can only work when

there are K non-zero coefficients in the vector θ̄, where K < I. There should be only

a few large coefficients and many small ones in θ̄.

The CS approach uses a set of measurement probes {ϕ̄m = [ϕ1,m, ϕ2,m, ...,ϕI,m]T}Mm=1

where M is significantly less than the dimensionality I of each individual probe (I

is just the size of receive signal r̄ in our case). In a different way, we would like to

recover all the I coefficients of r̄ by observing or measuring a subset M of these

ym =< r̄, ϕ̄m >, ∀m ∈M (10.5)

where Y = [y1, y2, ..., yM ]T , M ⊂ 1, ..., I. Since random matrix Φ with independent

identically distributed (i.i.d.) entries, e.g., Gaussian or binary entries, exhibit a very

low coherence with any fixed sparse matrix Ψ [53], we take the Gaussian matrix as

the measurement matrix.

The recovery of r̄ is done by solving a constrained l1-norm minimization problem

and the reconstructed r̄∗ is given by r̄∗ = Ψθ̄∗ where θ̄∗ is the solution to the convex

optimization program

minθ̄∗∈RI ||θ̄∗||l1 subject to ym =< ϕ̄m,Ψθ̄
∗ >, ∀m ∈M (10.6)

We choose the solution whose coefficient sequence has the minimal l1 norm.

We describe how our model recovers a particular r̄∗ in Table 10.1. We first

produce the transmit signal and receive it as r. Then, we compute Y by compressing

the received signal r. Finally, we use the l1 minimization with relaxed constraints to

reconstruct the original signal r̄∗.
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Table 10.1. The Basic Model

Input: Φ,Ψ,Σ, X
r̄ ← r̄ = diag(ΨΣXT )
Y← ym =< ϕ̄m,Ψθ̄ >, for all m ∈M
θ̄∗ ← minθ̄∗∈RI ||θ̄∗||l1, subject to ||ΦT Ψθ̄∗ − ym||l2 ≤ ǫ
Output:r̄∗ = Ψθ̄∗
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We explicitly tie together the parameters for the decompressive process, i.e.,

Y = ΦT r̄∗ = ΦT Ψθ̄∗ = Aθ̄∗ (10.7)

One of the important properties that A = ΦT Ψ should satisfy is the Restricted Isom-

etry Property (RIP) [60]. A sufficient condition for the RIP is that the measurement

vectors and the sparsity basis must be incoherent with each other. The coherence

between the measurement matrix Φ and the sparsity basis Ψ here is defined as

µ(Φ,Ψ) = max1≤m≤M,1≤n≤N | < ϕm, ψn > | (10.8)

If Φ and Ψ contain uncorrelated elements, the coherence is large. So the ‘incoherency’

here means that the inner products between the probes and the sparsity basis vectors

are small, or, in other words, µ is small.

In this dissertation, we express the SF coefficients in the method of Fourier

basis as the sparse matrix

ψ̄n = [ej2π n
I
t1 , ej2π 2n

I
t2 , ..., ej2π nI

I
tI ]T = [ψ1n, ψ2n, ..., ψIn]T (10.9)

Here, the sparse matrix can be non-squared, i.e., the number of rows can be different

from the number of columns in the sparse matrix. The number of rows is based on the

number of transmit sensors N and the number of columns depends on the number of

time samples I. The reason why we can use such a non-squared matrix is that we use

the same sparse matrix to produce the ‘compressible’ transmit signal. In addition,

the random waveforms ϕm(t) with independent identically distributed (i.i.d) vectors

are largely incoherent with the fixed basis Ψ. Hence, we choose the complex Gaussian

random vectors as the measurement matrix in our work.
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10.2.3 The Output of the Matched Filter

Different from previous CS-based radar system, we proposed a totally new

model for CS-based RSN. Since we use the matched filters in the receiving sensor, let

us assume that the received signal could be well recovered as r̄∗

r̄∗ = r̄ =
1√
2N

[
N∑

n=1

λnxn(t1)ψ1,n,

N∑

n=1

λnxn(t2)ψ2,n, ...,

N∑

n=1

λnxn(tI)ψI,n

]T

+ n′

where n′ = [n′
1, n

′
2, ..., n

′
I ]

T is the noise vector. Actually, the noise n′ in the recoverd

signal is less than the system noise in the received signal in equation (10.4). Since the

n may not have good sparsity property in the basis Φ, some information of n could

not be exactly recovered by n′ Here, we choose the matched filters corresponding to

the transmit signal S = ΨXT . Processing by a bank of matched filters, we express

the output of the matched filter as the following matrix operations

Z̄ =




x∗1(t1)ψ
∗
1,1 x∗1(t2)ψ

∗
2,1 · · · x∗1(tI)ψ

∗
I,1

x∗2(t1)ψ
∗
1,2 x∗2(t2)ψ

∗
2,2 · · · x∗2(tI)ψ

∗
I,2

...
...

. . .
...

x∗N (t1)ψ
∗
1,N x∗N(t2)ψ

∗
2,N ... x∗2(tI)ψ

∗
I,N




· 1√
2N




∑N
n=1 λnxn(t1)ψ1,n +

√
2Nn1

∑N
n=1 λnxn(t2)ψ2,n +

√
2Nn2

...

∑N
n=1 λnxn(tI)ψI,n +

√
2NnI




=
1√
2N

[
N∑

n=1

λn

[
I∑

i

xn(ti)ψi,nx
∗
1(ti)ψ

∗
i,1

]
+ n′

1 ,

N∑

n=1

λn

[
I∑

i

xn(ti)ψi,nx
∗
2(ti)ψ

∗
i,2

]
+ n′

2, ...,

N∑

n=1

λn

[
I∑

i

xn(ti)ψi,nx
∗
N (ti)ψ

∗
i,N

]
+ n′

N

]T

(10.10)
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Since Ψ is the Fourier basis in this dissertation, and X is information bits expressed

as pulsed signals, it is easy to obtain that

I∑

i

xn(ti)ψi,nx
∗
k(ti)ψ

∗
i,k =





E, n = k

0, Otherwise
(10.11)

Where E is the energy of the burst of pulses. Therefore,

Z̄ =
1√
2N

[λ1E + n′
1, λ2E + n′

2, ..., λNE + n′
N ]T (10.12)

Where λn is the radar cross section for n-th transmit sensor. According to the equa-

tion (10.12), all the N radar cross section parameters could be taken into account

to detect or recognize the target, so that the diversity gain of transmit side can be

obtained as well.

10.3 Increased Range Resolution

The range resolution improvement is one of the important properties of the lin-

ear Stepped-Frequency waveforms (LSFWs). The details of the Doppler response and

range resolution can be expressed by the Ambiguity Function (AF) of the LSFW [94].

The AF is defined as

Â(τ, υ) ≡ |χ(τ, υ)| = |
∫ ∞

−∞

u(t)u∗(t+ τ)exp(j2πυt)dt| (10.13)

We designate the complex envelope of the Stepped-Frequency pulse train by u(t)

given by

u(t) =

M−1∑

m=0

u1(t−mTp)e
j2πm∆F (t−mTp) (10.14)

where u1(t) is a radar pulse waveform. Fig. 10.2 presents a sample AF of a Stepped-

Frequency train of unmodulated pulses calculated by using the MATLAB tool.
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Figure 10.2. Ambiguity function of Stepped-Frequency train of unmodulated pulses.

It is obvious to see that the range resolution of the signal is improved, but there

are still prominent sidelobes in delay and ambiguity in Doppler. As a result, LFMs

and Stepped-Frequency can be combined to mitigate the raging lobes, i.e. , Stepped-

Frequency train of LFM pulses could be used. An example of Stepped-Frequency

train of LFM is shown in Fig. 10.3.

We compare the AF of a Stepped-Frequency train of LFM pulses, as shown in

Fig. 10.3, with the AF of a Stepped-Frequency train of unmodulated pulses as seen

in Fig. 10.2. Clearly, by adding the LFM, the range and the Doppler resolutions are

improved by canceling the sidelobes along the delay and Doppler axes. As a result, we

choose to use the Stepped-Frequency train of LFM pulses as the transmit waveforms

in our model to obtain both the range and Doppler resolution gain.
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Figure 10.3. Ambiguity function of Stepped-Frequency train of LFM.

10.4 Target RCS Value Estimation

In this section, we use the maximum-likelihood (ML) estimation algorithm to

perform target radar cross section (RCS) parameter estimation [108] in the proposed

RSN model. For the ‘Swerling 2’ model, the RCS voltage |λ(u)| follows a Rayleigh

distribution and the I and Q subchannels of λ(u) follow zero-mean complex Gaussian

distribution with a variance γ2 (the RCS average power value)

λ(u) = λI(u) + jλQ(u) (10.15)

In addition, n(u) = nI(u)+jnQ(u) follows a zero-mean complex Gaussian distribution

with a variance σ2 for each I and Q subchannel. We express equation (10.12) as

following

Z̄(u) = [λ1(u)E + n′
1(u), λ2(u)E + n′

2(u), ..., λN(u)E + n′
N(u)]T (10.16)

Here, we let

|Zn(u)| = |λn(u)E + n′
n(u)| (10.17)
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Since λn(u) and n′
n(u) are zero-mean complex Gaussian random variables, λn(u) +

n′
n(u) is zero-mean complex Gaussian random variable with a variance E2γ2 + σ2.

Assuming that yn
∼= |Zn(u)| follows a Rayleigh distribution:

f(yn) =
yn

E2γ2 + σ2
exp

[
− y2

n

2(E2γ2 + σ2)

]
(10.18)

Let y = |Z̄(u)|, |Z̄(u)| = [|Z1(u)|, |Z2(u)|, ..., |ZN(u)|] and yn = |Zn(u)|, we can obtain

that y ∼= [y1, y2, ..., yN ]. Assuming that yn are independent of each other, then the

P.D.F. of y is

f(y) =
N∏

n

f(yn) =
N∏

n

yn

E2γ2 + σ2
exp

[
− y2

n

2(E2γ2 + σ2)

]
(10.19)

If θ ∼= γ2, we can express (10.18) as

f(yn) =
yn

E2θ + σ2
exp

[
− y2

n

2(E2θ + σ2)

]
(10.20)

Therefore, we represent the ML algorithm to estimate the RCS average value θ as

θ̂ML(y) = arg sup
θ∈R+

f(y) (10.21)

= arg sup
θ∈R+

N∏

n

yn

E2θ + σ2
exp

[
− y2

n

2(E2θ + σ2)

]

It is equivalent to maximize log f(y) (natural logarithm),

log f(y) =
N∑

n=1

[
log(

yn

E2θ + σ2
)− y2

n

2(E2θ + σ2)

]
(10.22)

It is a continuous function for yn > 0 and θ > 0, hence, a necessary condition for the

ML estimation is

∂

∂θ
log f(y)|θ=θ̂ML(y) (10.23)

=
E2(
∑N

n=1 y
2
n − 2N(E2θ + σ2))

2(E2θ + σ2)2
= 0
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Equation (10.24) has the unique solution

θ̂ML(y) =
1

E2

(∑N
n=1 y

2
n

2N
− σ2

)
(10.24)

Since θ > 0,

θ̂ML(y) = max

[
1

E2
(

∑N
n=1 y

2
n

2N
− σ2), 0

]
(10.25)

Since

∂2

∂θ2
log f(y)|θ=θ̂ML(y) = E4

(
N

(E2θ + σ2)2
−

∑N
n=1 y

2
n

(E2θ + σ2)3

)

= − 4E4N3

(
∑N

n=1 y
2
n)2

< 0 (10.26)

this solution gives the unique maximum of log f(y). The expectation of θ̂ML(y) is

then

Eθ

[
θ̂ML(y)

]
= Eθ

[∑N
n=1 y

2
n

2NE2

]
− σ2

E2
(10.27)

The mean value of yn is
√
π(E2θ + σ2)/2, and its variance is (4 − π)(E2θ + σ2)/2.

Since yn are independent of each other, it is

Eθ(y
2
n) = 2(E2θ + σ2) (10.28)

Therefore,

Eθ[θ̂ML(y)] =
Eθ[y

2
n]

2E2
− σ2

E2
(10.29)

=
2(E2θ + σ2)

2E2
− σ2

E2

= θ

As a result, it is an unbiased estimator.
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Fisher’s information [109] in this case can be obtained as

Iθ = −Eθ

[
∂2

∂θ2
log f(y)

]
(10.30)

= −Eθ

[
N(E2θ + σ2)−

∑N
n=1 y

2
n

(E2θ + σ2)3

]

=
E4N

(E2θ + σ2)3

(
Eθ(y

2
n)− (E2θ + σ2)

)

=
E4N

(E2θ + σ2)2
.

Taking equation(10.28) into account, we can obtain the Cramer-Rao lower bound

(CRLB) [109]

Varθ[θ̂(y)] ≥ 1

Iθ
=

(E2θ + σ2)2

E4N
(10.31)

From (10.31), we observe that CRLB is inversely proportional to the number of radars

N in the RSN, which means that the RSN with large N will have a low CRLB. We

draw this conclusion by assuming that the radar pulses are independent (in time and

space) and follow a Rayleigh distribution, according to the ‘Swerling 2’ model.

10.5 Simulation Results

10.5.1 Signal Recovery

In this section, we study the scenario where we have N transmit sensors but

only one receiving sensor. We assume that the number of samples is set to 500. We

apply the Stepped-Frequency train of LFM pulses as pulse compression codes on the

transmit side and use the CS technique in the receiving side. The classical ‘Swerling

model 2’ and Gaussian noise are also considered in the simulation. The reconstructed

signal is compared with the original signal by calculating the mean square error (MSE)

in order to evaluate the reconstruction ability. The Mean Square Error between the

original signal and the reconstructed signal is shown in Figs. 4 and 5 as a function of
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different number of measurements M and SNR values. The noise considered here is

introduced by the propagation in the air but not by compressing and decompressing

process. We use the Monte-Carlo simulation model here and the results are averaged

by 105 runs/iterations. The cases of N = 50 and N = 100 where N is the number of

transmit sensors are illustrated in Fig. 10.4 and Fig. 10.5 separately.

According to both Figs. 10.4(a) and 10.5(a), MSE is reduced as the number of

measurements M is increased. The system can perfectly reconstruct the signal which

includes the received signal and the system noise when the number of measurements

M is equal to the number of transmit sensors N . In addition, the slope of MSE

versus the number of measurements M is almost a consistent for each SNR value.

From Figs. 10.4(b) and 10.5(b), we draw the same conclusion that the closer the

number of measurements approaches N (M ≤ N), the better performance of signal

recovery is achieved. In addition, we also discover that the MSE does not depend

much on the SNR, especially when M is large. As a result, the proposed model can

be used under a low SNR if the number of measurements M could be properly chosen

according to the number of transmit sensors N .

On the basis of the simulation results, we can draw a brief conclusion that the

number of measurements M of our model only depends on the size of RSN even

when the number of samples is fixed as large as 500 here. Another important result

emerging from the simulations is that the probability of target miss detection is zero

no matter how small a number of measurements we use in the recovery process. That

is to say, less measurements can be used to detect the target in the system, since a

kind of diversity gain is achieved at the output of the matched filters on the receiving

sensors.
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10.5.2 RCS Parameter Estimation

In this section, we will consider the fluctuating target with an RCS parameter

θ (following Rayleigh distribution). We will apply the ML estimation algorithm to

estimate the parameter θ̂. The scenario is similar to the one in the section above,

but the number of samples in time domain is reduced to 100 for complexity reasons.

We ran Monte Carlo simulations for 105 iterations at each SNR value. We have

considered the fluctuating target with RCS parameter θ = 2 (Small flighter aircraft

or 4 passenger jet) in Fig. 10.6. We plotted the variance of the RCS ML estimator

with different number of radars in RSN.

According to Fig. 10.6, the variance of θ̂ closely approaches the CRLB but

doesn’t exactly match it. The reason why the variance of θ̂ is not exactly the same as

the CRLB is that the noise power is to some extent increased after processing with

the matched filters. We take the noise power in the transmitting signal into account

directly, therefore, the value of noise power used in the simulation is not exactly the

same as σ2 in equations 10.27 and 10.31. The power of noise σ2 reduces so that the

calculated CRLB might be lower than the practical CRLB and the obtained variance

of θ̂ becomes larger than the accurate θ̂. It is also easy to see that the actual variance

of θ̂ reduces as the number of radars increases from N = 10 to N = 20. Hence, the

actual variance of θ̂ is inversely proportional to N , as we have shown in the theoretical

result Varθ[θ̂(y)] ≥ (E2θ+σ2)2

E4N
.

It is easy to see that the actual variance of θ̂ and the CRLB do not change

much as the SNR increases. Stating differently, our ML estimator performs well even

for low SNR ratios. In all, the simulation results validate the theoretical results. The

variance of the RCS parameter estimation satisfies the CRLB and our ML estimator

on the RCS parameter is an accurate estimator.
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10.6 Conclusions

Motivated by the representation of Stepped-Frequency waveforms, we intro-

duced CS to the Radar Sensor Network (RSN) exploiting the pulse compression tech-

nique. A set of Stepped-Frequency waveforms were applied as pulse compression

codes at the transmit sensors, and the sparse matrix is also constructed based on the

same Stepped-Frequency waveforms. We observed that the signal samples along the

time domain can be significantly compressed and recovered by using a small number

of measurements which depend on the number of transmit sensors. A diversity gain

is also achieved after the matched filters in the proposed model, so the probability of

target miss detection can be zero even if the signal could not be perfectly recovered.

In addition, we propose a ML algorithm to estimate the target RCS parameter and

use the CRLB to successfully verify our theoretical result.
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Figure 10.4. Normalized MSE between reconstructed signal and original signal for
fixed N = 100: (a) Normalized MSE versus M ; (b) Normalized MSE versus SNR.
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Figure 10.5. Normalized MSE between reconstructed signal and original signal for
fixed N = 50: (a) Normalized MSE versus M ; (b) Normalized MSE versus SNR.
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CHAPTER 11

CONCLUSIONS

This chapter concludes the whole dissertation. It begins with a summary of

the dissertation results and contributions, follows with a discussion of future research

directions in further investigation of Compressive Sensing.

11.1 Summary

This dissertation has focused on but not limited to signal processing in radar

sensor network. The main work is of the waveform design problem . The contributions

of this dissertation are:

• Optimized Punctured Sequence-Pair Sets and Three Constructing Methods (Chap-

ter 2 and 3): based on the Zero Correlation Zone concept, we introduced the

Optimized Binary Sequence-pair which has high autocorrelation peak and zero

autocorrelation sidelobe. Based on the ideal autocorrelation property of the Op-

timized Binary Sequence-pair, we present and study the Optimized Punctured

Binary Sequence-pairs, the LCZ/ZCZ Sequence-pair Sets and the Optimized

Punctured LCZ/ZCZ Sequence-pair Sets. We have presented three methods

to construct the Optimized Punctured LCZ/ZCZ Sequence-pair sets: using the

odd length Optimized Punctured Binary Sequence-pair together with Hadamard

matrix to construct an Optimized Punctured ZCZ Sequence-pair set; using the

even length Optimized Punctured Binary Sequence-pair together with modified

Hadamard matrix to construct an approximately Optimized Punctured LCZ

Sequence-pair set and using any length Optimized Punctured Binary Sequence-
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pair together with Orthogonal matrix to construct an Optimized Punctured

ZCZ Sequence-pair set. According to the property analysis of sample sequence-

pair sets constructed by each method, the Optimized Punctured ZCZ Sequence-

pair set constructed by the first method have zero autocorrelation sidelobes dur-

ing the ZCZ but zero cross correlation values during the whole time domain, the

approximately Optimized Punctured LCZ Sequence-pair set using the second

method have zero autocorrelation sidelobes during the LCZ, a low cross corre-

lation peak value and zero cross correlation sidelobe during the LCZ, and the

Optimized Punctured ZCZ Sequence-pair set constructed by the last method

have zero autocorrelation sidelobes and zero cross correlation values during the

ZCZ. The ambiguity function is also used to study the sequence-pairs under the

condition of time delay and Doppler shift. To sum up, these sequence-pair sets,

which possess both the good cross correlation between different sequence-pairs

of the set and the ideal autocorrelation property of each sequence-pair, could

be potent candidates for set of best signals.

• Radar System Using Optimized Punctured Sequence-pair (Chapter 4): the sig-

nificant advantage of the optimized punctured sequence-pair is the consider-

ably reducedn autocorrelation sidelobe. According to the simulation results,

the new code can provide better performances than the Barker and P4 codes

of corresponding length and be a good alternative for the current used pulse

compression codes in radar system.

• Radar Sensor Network Using Optimized Punctured Sequence-Pair Sets (Chap-

ter 5): we have studied the phase coded waveforms design for the radar

sensor networks (RSN). We provide a new ternary codes–the optimized punc-

tured ZCZPS which could be used as the phase coded waveforms in a RSN. The

significant advantage of the optimized punctured ZCZPS is the considerably re-
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duced sidelobe as low as zero and zero mutual cross correlation value in the zero

correlation zone (ZCZ). Based on the ideal orthogonal property of the proposed

codes, they can coexist in the RSN and achieve better detection performance

than that of a RSN using other orthogonal codes such as the Gold codes. Con-

sequently, the optimized punctured ZCZPS could be effectively applied to RSN

in order to satisfy higher demands criterion for detection accuracy of the RSN

in the modern military and security affairs.

• Sonar Sensor Network Using Optimized Punctured Sequence-Pair Sets (Chapter

6): we investigate the definition and properties of optimized punctured ZCZPS

constructed by one of the three constructing methods. The significant advantage

of the optimized punctured ZCZ sequence-pair set is a considerably reduced

autocorrelation sidelobe as low as zero and zero mutual cross correlation value

within ZCZ. The results show that applying our optimized punctured ZCZPS

as a bank of phase coded waveforms to the SSN can effectively satisfy higher

demands criterion for detection accuracy in modern military and security affairs.

• MIMO Radar Sensor Network Using Optimized Punctured Sequence-Pair Sets

(Chapter 7): we present and analyze two MIMO radar system models, in which

Beamforming is used to find the direction of the target at receive part. We

also apply the proposed codes to the above MIMO radar systems to improve

the radar range resolution and direction finding performance. The MIMO radar

ambiguity function of the system within phase coded waveforms are investigated

and used to study the properties of our proposed codes. Simulation results

showed that significant diversity gain could be obtained in both MIMO radar

systems using orthogonal phase coded waveforms. In the first MIMO radar

system model, the more antennas applied, the better performance obtained

only if there are equal number of transmit antennas and receive antennas. In
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addition, the direction finding performance could be improved by increasing the

number of either transmit antennas or receive antennas for the second MIMO

radar system model.

• Radar Sensor Network from Information Theory Perspective (Chapter 8): we

studied the waveforms design for the measurement of extended radar targets

in radar sensor networks (RSN) in the view of information theory. Considering

the effect of different channel gains, we investigated the estimation waveforms

that maximize the mutual information between a target ensemble and the re-

ceived signal within additive Gaussian noise given the transmitting signals so

that characteristics of the target could be well recgonized. From the study

of the maximum mutual information under the constraints of the number of

radar sensors, waveform energy and duration, which could be taken into con-

sideration when waveforms are designed for RSN, some useful conclusions for

waveforms design in RSN could be drawn. If the channel could be well esti-

mated, the transmitter could allocate more power to the stronger channel to

gain better performance. Considering the factors such as the number of radars

in RSN N , the signal duration T , and average power Px, and their relations

the corresponding maximum mutual information as a function of them could

be used.

• Compressive Sensing Using Singular Value Decomposition (SVD) (Chapter 9):

motivated by the concept of SVD, we provide a new CS technique-the CS-SVD

algorithm in this paper. We propose two methods to implement the CS-SVD al-

gorithm. The theoretical results show that the CS-SVD algorithm requires less

measurements than the standard state-of-art compressive sensing techniques

and provide a simpler and more efficient recovery scheme. The simulation re-

sults demonstrate that both of our two methods provide considerable gains over
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convex relaxation algorithm in terms of number of measurements required for

stable recovery. And each of them could work well in different cases in which

different original signal could be sparsely represented in different sparse basis.

• Compressive Sensing in Radar Sensor Network (Chapter 10): motivated by

the representation of Stepped-Frequency waveforms, we introduced CS to the

Radar Sensor Network (RSN) exploiting the pulse compression technique. A

set of Stepped-Frequency waveforms were applied as pulse compression codes

at the transmit sensors, and the sparse matrix is also constructed based on the

same Stepped-Frequency waveforms. We observed that the signal samples along

the time domain can be significantly compressed and recovered by using a small

number of measurements which depend on the number of transmit sensors. A

diversity gain is also achieved after the matched filters in the proposed model, so

the probability of target miss detection can be zero even if the signal could not

be perfectly recovered. In addition, we propose a ML algorithm to estimate the

target RCS parameter and use the CRLB to successfully verify our theoretical

result.

11.2 Future Directions

11.2.1 Extending Compressive Sensing using SVD

In chapter 9, we provided a new CS technique-the CS-SVD algorithm and pro-

poses two methods to implement the CS-SVD algorithm. Both of the theoretical and

simulation results show that the CS-SVD algorithm requires less measurements than

the standard state-of-art compressive sensing techniques and provide a simpler and

more efficient recovery scheme. However, after the original signal has been projected

to the sparse matrix, the nonzero values of the sparsed vector have to be continuously
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allocated among the beginning part of the vector to comfier the efficiency of the pro-

pose algorithm. Due to this restriction, two methods might be taken into account.

Firstly, we could further study how to choose the sparse basis and measurements ma-

trix in our scheme, since the sparse representation of the signal has a great effect on

the performance of the proposed scheme. Secondly, Compressive Sampling Matching

Pursuit (CoSaMP) could be investigated and introduced to CS-SVD so that priory

information of positions of non-zero values of sparsed vector could be provided to

help improve the restrictions of CS-SVD algorithm.

11.2.2 Compressive Sensing in SAR (Synthetic Aperture Radar)

Synthetic Aperture Radar (SAR) is an active ground imaging system based on

coherent processing of multiple radar echoes acquired along the path of a moving

platform (aircraft or satellite). Due to the low computational resources of the ac-

quisition platforms and the steadily increasing resolution of SAR systems, the data

cannot generally be processed on board and must be stored or transmitted to the

ground where the image formation process is performed. The amount of image data

produced is now constrained by on board storage capabilities and transmission links.

To address this problem, many techniques have been proposed to compress the

raw SAR data [110][111][112]. However, SAR systems in practice mostly use the

simplest methods because of their low computational requirements. In this context,

an appealing idea is to apply results of the rapidly developing field of compressed

sensing. The key idea of compressed sensing is to exploit redundancy in the data

modeled as sparsity in an appropriate dictionary.

In the future work, we would like to exploit our study in two directions.

Firstly, in the spotlight mode, SAR data is acquired from a moving platform

by emitting at close intervals a bandpass microwave radar signal in direction of a
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specific area, or scene, and sampling the signal backscattered by the ground objects.

Based on this simple interpretation of SAR data in the Fourier domain (2D Fourier

transform of the scene), we could use simulation data of SAR to study the application

of compressive sensing matrix to SAR.

Secondly, we have obtained the practical SAR raw data of Greenland icesheet.

We could study the redundancy in the SAR raw data modeled as sparsity in an

appropriate dictionary to better compress SAR raw data.
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