

A THEORETICAL FRAMEWORK FOR DESIGN SPACE EXPLORATION OF MANYCORE

PROCESSORS

by

HUN JUNG

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2011

Copyright © by Hun Jung 2011

All Rights Reserved

iii

ACKNOWLEDGEMENTS

 First of all, I want to express my deepest appreciation to Dr. Hao Che. Without his

careful guidance, encouraging advises, I would have been in trouble keeping my research going

to its completion. His strong theoretical and practical knowledge of the network and system

architectures have led me to obtain better solutions in various problems I have faced. I would

also like to thank all the committee members: Dr. Roger Walker, Dr. Mohan Kumar, Dr. Ramez

Elmasri for valuable advises on my research.

 I also want to tell all my friends that I have enjoyed their personalities and supports. In

particular, I am thankful for the enjoyable friendship and valuable discussions I have had with

David Levine and Miao Ju throughout the years.

 Finally, I’d like to express my deep appreciation for my parents’ endless support and

care. Last but not the least, I would like to thank my wife and my two princesses for their

constant patience, love and support.

October 27, 2011

iv

ABSTRACT

A THEORETICAL FRAMEWORK FOR DESIGN SPACE EXPLORATION OF MANYCORE

PROCESSORS

Hun Jung, PhD

The University of Texas at Arlington, 2011

Supervising Professor: Hao Che

As design space and workload space in multicore era are continuously expanding, it is

a challenge to identify optimal design points quickly during the early stage of multicore

processor design or programming phase. To meet this challenge, a thread-level modeling

methodology is developed in this dissertation. The idea is to model multicore processors at the

thread-level, overlooking instruction-level and microarchitectural details. Since the thread-level

modeling is much coarser than the instruction-level modeling, the analysis at this level turns out

to be significantly faster than that at the instruction level. This feature makes the methodology

particularly amenable to fast performance evaluation for manycore systems in a large design

space.

Based on this methodology, we developed a thread-level simulation tool for quick

evaluation of any given design point and also a theoretical framework that can capture the

general performance properties for a class of multicore processors of interest over a large

design space and workload space, free of scalability issues. In the theoretical framework,

queuing network models that model multicore processors at the thread level are developed and

v

scalability issues in the queuing networks are solved based on an iterative algorithm over a

large design space and workload space. This framework scales to virtually unlimited numbers of

cores and threads.

For the simulation tool, case studies based on a large number of code samples

available in IXP1200/2400 workbenches show that the maximum throughput estimated using

our tool are consistently within 6% of cycle-accurate simulation results. Moreover, each

simulation run takes only a few seconds to finish on a Pentium 4 computer, which strongly

demonstrates the power of this tool for fast communication processor (CP) performance testing.

For the theoretical frame work, the testing results demonstrate that the throughput performance

for manycore processors with 1000 cores can be evaluated within a few seconds on an Intel

Pentium 4 computer and the results are within 5% of the simulation data obtained based on the

thread-level simulator tool.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ……………..iii

ABSTRACT ... iv

LIST OF FIGURES ... viii

LIST OF TABLES .. ix

Chapter Page

1. INTRODUCTION……………………………………..………..…..1

2. METHODOLOGY OF MODELING MULTICORE PROCESSORS 5

 2.1 Thread-Level Modeling .. 5

 2.2 Design Space ... 8

3. SIMULATION TOOL ... 16

3.1 Design Idea .. 16

3.2 Simulation Architecture .. 19

3.3 Sustainable Line Rate Estimation .. 25

3.4 Simulation Testing .. 29

3.4.1 Simulation Setups .. 29

3.4.2 Test Results ... 34

3.5 Related Work .. 36

4. THEORECTICAL FRAMEWORK FOR DESIGN SPACE EXPLORATION 38

4.1 Queuing Network Model ... 38

4.2 Iteration Algorithm .. 41

4.3 Testing .. 44

4.3.1 Accuracy Test .. 44

4.3.2 Example of Design Space Exploration ... 49

vii

4.4 Related Work .. 53

5. CONCLUSION ... 57

APPENDIX

A. SAMPLE CODE PATHS ... 58

REFERENCES ... 64

BIOGRAPHICAL INFORMATION .. 70

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Comparison of Our Approach with Function Analysis .. 3

2.1 An Example of Code Path .. 5

2.2 Execution Sequence for Coarse-Grained Core ... 6

2.3 Queuing Network Models ... 7

2.4 Design Space ... 9

3.1 Generic CP Organization ... 19

3.2 A graphical Representation of A Code Path .. 21

3.3 CP Simulation Model .. 23

3.4 An Example of Event-Annotated Code Path .. 24

3.5 Event-Level Simulation... 25

3.6 Pipeline Configuration for Packet Count, Generic IP Forwarding and Layer-2 Filtering 31

3.7 Pipeline Configuration for ATM/Ethernet Forwarding .. 31

3.8 Ingress Blocks for IXP2400 Code Samples ... 33

4.1 An Iterative Procedure for Decoupling Shared Memories .. 43

4.2 Iteration Algorithm .. 44

4.3 Core Types for Testing ... 45

4.4 Processor Types .. 50

4.5 Throughputs in MT, SMT, and MP with Multidimensional Changes .. 52

ix

LIST OF TABLES

Table Page

2.1 Component Modeling Using Queuing Models with Local Balance Equations 11

3.1 The Tool versus CAS (IXP1200) for Packet Counting ... 35

3.2 The Tool versus CAS (IXP1200) for Generic IPv4 Forwarding ... 35

3.3 The Tool versus CAS (IXP1200) for ATM/Ethernet IP Forwarding .. 35

3.4 The Tool versus CAS (IXP1200) for Layer-2 Filtering ... 36

3.5 The Tool versus CAS (IXP2400) with 8 Threads ... 36

4.1 All and Each Type’s Throughputs with Various Common Memory Service Time.................... 47

4.2 Changes in All Cores in Group 1 (μ1 = 0.05 −> 0.03, m1 = 6 −> 8) .. 48

4.3 A Change in One Target Core in Group 4 (L2 hit rate 98% −> 90%) 48

 1

CHAPTER 1

INTRODUCTION

As multicore processors (MPs) become the mainstream processor technology,

challenges arise as to how to design and program MPs to achieve desired performance for

applications of diverse nature. This type of processors is generally built based on either

specially designed processor cores, as in the case of Communication Processors (CPs) [1], or

general purpose processor cores [2]. There are two scalability barriers that the existing MP

analysis approaches (e.g., simulation and benchmark testing) find difficult to overcome. The first

barrier is the difficulty for the existing approaches to effectively analyze MP performance as the

numbers of cores and threads of execution become large. The second barrier is the difficulty for

the existing approaches to perform comprehensive comparative studies of different

architectures as MPs proliferate. In addition to these barriers, how to analyze the performance

of various possible design/programming choices during the initial MP design/programming

phase is particularly challenging, when the actual instruction-level program is not available.

 To overcome the above scalability barriers, approaches that work at much coarser

granularities (e.g., overlooking microarchitectural details) than the existing approaches should

be sought to keep up with the ever growing design space. Such an approach should be able to

characterize the general performance properties for a wide variety of MP architectures and a

large workload space at coarse granularity. Moreover, such an approach should not require the

availability of the instruction-level programs as input for performance analysis. The aim is to

narrow down the design space of interest at coarse granularity, in which the existing

approaches can work efficiently to further pin down the optimal points at finer granularities. To

 2

this end, we believe that an overarching theoretical approach, encompassing both existing and

future design and workload spaces, must be sought. In this dissertation, we develop a

simulation tool and a theoretical framework of such kind.

 A common unique feature is employed in both our simulation tool and theoretical

framework to overcome the scalability barriers. First, they works at the thread level, overlooking

instruction-level and microarchitectural details, except those having significant impact on thread

level performance. A simulation tool developed at this granularity [3] was found to be capable of

predicting the system performance pretty accurately, i.e., within 6% of the cycle-accurate

simulation results. Also, the theoretical framework testing [52] demonstrates that the throughput

performance for many-core processors with 1000 cores can be evaluated within a few seconds

on an Intel Pentium 4 computer and the results are within 5% of the simulation data obtained

based on the simulation tool. The performance data within 5-6 % of actual performance in this

programming phase should be considered reasonably accurate. This is because such

performance data is obtained using a piece of pseudo code with normally inaccurate instruction

count, not the executable program itself, as input. The program developed in later phases can

generally be fine tuned to compensate for such loss of accuracy. Moreover, as we shall see in

Chapter 3 and 4, this granularity is particularly amenable to large design space exploration in

both simulation and theoretical analysis.

 The unique feature in our theoretical framework is that the approach taken for the

design space exploration is unconventional. Instead of exploring the design space based on

sampled points in the space, the framework directly study the general performance properties of

system classes over the entire design space. Here a system class characterizes a class of

multicore architectures, a workload space, and a set of performance measures. Understanding

the general performance properties of a system class leads to the understanding of the

properties of all individual points in the design space (i.e., specific multicore architectures,

specific workloads, and the associated performance data). This approach is quite similar to

 3

Function Analysis in mathematics that analyzes general properties of functions over the entire

vector space, as illustrated in Figure 1.1. At the core of this approach is to derive the

generation function G(x) for a system class of interest defined in a large design space, through

which all the performance measures can be further derived. In our framework, the design space

and system classes are expressed mathematically using the language of queuing network

models.

 In this dissertation, we make the following major contributions. First, we develop a novel

design methodology which is a thread-level modeling technique for multithreaded MPs. Second,

based on this modeling technique, we build a simulation tool which is fast and generic. Third,

we develop the theoretical framework that allows G(x) to be derived for classes of multicore

processors with virtually unlimited numbers of cores, overcoming the above mentioned

scalability barriers.

Figure 1.1 Comparison of Our Approach with Function Analysis

General Properties
of G(x) in Entire

Space

 Function Analysis

A General Class
of MP with
Generation

Function G(x)*

General Properties
of G(x)* in Entire

Design Space

Design
Space

 Our Approach

A General Class
of Functions

Euclidian
Space

Program (workload)

Number of Threads per Core

·G(x)* is the generation function from
which most system performance

measures can be derived.

Thread Scheduling Discipline
Number of Cores

G(x) = cx2n

Resource Access

Shared
Resources

:Core

 4

 The rest of the dissertation is organized as follows. Chapter 2 describes the proposed

methodology which is applied to both the simulation tool and the theoretical framework.

Chapter 3 introduces the simulation tool. Chapter 4 shows how the theoretical framework is

defined and developed. Finally, Chapter 5 concludes the dissertation.

 5

CHAPTER 2

METHODOLOGY OF MODELING MULTICORE PROCESSORS

In this chapter, we first describe the thread-level modeling concepts and how the

thread-level modeling can be mapped to queuing network models. Then we introduce a large

design space that can be represented in terms of queuing network models, whose generation

functions have closed-form solutions.

2.1 Thread-Level Modeling

At the core of the simulation tool and theoretical framework is the modeling of the

workload, defined as a mapping of program tasks to threads in different cores and system

components, known as code paths. As shown in Figure 2.1, a code path handled by a given

thread in a given core is a sequence of segments (measured in the unit of CPU cycles)

representing the durations the thread is serviced by the CPU and other resources (not including

queuing delays or other idle times) throughout the execution of the entire program or program

task.

Figure 2.1 An Example of Code Path

CPU

Memory 1

Critical Region

Memory 2

 6

The code path is defined at the thread level, in the sense that it only captures the events that

have major impact on the thread-level performance. In other words, the instruction-level and

microarchitectural details are overlooked, unless they trigger events that may have a significant

effect at the thread level, such as an instruction for memory access that causes the thread to

stall or instructions corresponding to a critical region that causes serialization effect at the

thread level. A code path defined at this level can be easily derived from a pseudo code, rather

than an instruction-level program, which may not be available during the processor design or

initial programming phase.

 Correspondingly, all the components including CPU, cache/memory, and

interconnection network are modeled at a highly abstract level, overlooking microarchitectural

details, just enough to capture the thread-level activities. For example, for a CPU running a

coarse-grained thread scheduling discipline and a FIFO memory, they are modeled simply as

queuing servers running a coarse-grained thread scheduling algorithm and FIFO discipline,

respectively. As an example, we consider a single coarse-grained core with a FIFO memory.

The core runs two active threads loaded with the same code path (on the left in Figure 2.2). The

execution sequence is shown on the right in Figure 2.2. The black segments are thread idle

times for the CPU.

 Now consider a closed queuing network composed of two FIFO queuing servers,

modeling the coarse-grained CPU and the FIFO memory, as shown in Figure 2.3 (a). Assume

that there are two jobs circulating in this network, modeling the two active threads.

Figure 2.2 Execution Sequence for Coarse-Grained Core

Time

Code Path

CPU

Memory

 7

Figure 2.3 Queuing Network Models

 As one can see, without considering the queuing times or thread waiting times, a thread

making a round-trip, CPU-to-Memory-to-CPU, plus CPU-to-Memory, generates three segments

corresponding to the code path in Figure 2.2. If the service times at the CPU and the memory

exactly match the corresponding segment lengths of the code path, this queuing network model

exactly emulates the execution sequence for that thread. Now, with two threads, it is not difficult

to convince ourselves that due to the queuing effect, the two threads making such a trip will

generate the same pattern of the execution sequence as the one on the right in Figure 2.2.

Again, if the service times exactly match the segment lengths, the thread circulation exactly

recovers the execution sequence in Figure 2.2.

 So far we have been trying to emulate the actual execution process for the threads,

which is no different from simulating the actual process at the thread level. Now we need to

realize that the queuing models are in essence stochastic models, which are meant to capture

long-run stochastic/statistic effects of a real system (open queuing network models may need to

be used if the workload may be on and off, which however, can always be transformed into

closed queuing network models [4]). In other words, the service time for a queuing server is in

general a random number, following a given distribution, denoted as μi, for queuing server i. As

a result, it is the distribution of the segment lengths, not the individual segment lengths, that

p01

CPU

(a)

CPU Memory p0,N-1

p0,N

p02

(b)

 8

needs to be used to characterize the service time. Moreover, for a code path that characterizes

a workload for a processor with multiple parallel resources, such as the one in Figure 2.1, the

corresponding closed queuing network, as depicted in Figure 2.3 (b), also involves a routing

probability p0i for a thread to go to the i-th resource upon exiting the CPU server. This parameter

should also be evaluated statistically by counting the frequency of such occurrences in the long-

run code paths handled by these threads.

 From the above examples, we conclude that at the thread level, any types of MPs with

N components and any long-run workloads can be generally modeled as a closed queuing

network with N queuing servers of various service types in terms of queue scheduling

disciplines and a workload space ({μi}, {pij}) spanned by various possible combinations of

service time distributions and routing probabilities. The central task of this framework is to

develop mathematical techniques to analytically solve this closed queuing network model. The

solution should be able to account for as many service types and as large a workload space as

possible, aiming at covering a large design space.

 Finally, with regard to the workload, there is a fundamental difference between

analytical modeling and simulation/benchmark testing. For the latter, one does not know the

actual code path until the testing is over (since there might be conditional branching and

dynamic program generation at runtime), whereas for the former, one can assume that the

actual code path is known in advance (since the aim of analytic modeling is to try to explain

what have happened, i.e., answering “what causes what” and “what if” types of questions).

2.2 Design Space

We want the design space to be as large as possible to encompass as many multicore

architectures and workloads as possible. Figure 2.4 depicts such a design space. It is a five

dimensional space, including resource-access dimension, thread-scheduling-discipline

dimension, program dimension, number-of-thread-per-core dimension, and number-of-core

dimension.

 9

Figure 2.4 Design Space

 The Thread-Scheduling-Discipline dimension determines what CPU or core type is in

use. The existing commercial processors use fine-grained, coarse-grained, simultaneous

multithreading (SMT), and hybrid coarse-and-fine-grained thread scheduling disciplines. Some

systems may also allow a thread to be migrated from one core to another.

 The Resource-Access dimension determines the thread access mechanisms to MP

resources other than CPU. It may include memory, cache, interconnection network, and even a

critical region. The typical resource access mechanisms include first-come-first-serve (FCFS),

process sharing (parallel access), parallel resources (e.g., memory bank), and pipelined access.

For cache access, a cache hit model may have to be incorporated, which may be load

dependent.

 The Program dimension includes all possible programs. This dimension is mapped to a

workload space, involving all possible code paths, for a given type of processor organization

(e.g., a code path for a single-core processor with three parallel resources as in Figure 2).

Number-of-Threads-per-Core

Memory Bank

Number-of-Cores

Program (workload)

Thread-Scheduling-Discipline

Coarse-grained

Fine-grained
SMT

Hybrid Coarse-
Fine-grained

FCFS
PS

Pipelined

Load-dependent
Cache hit rate

16

32

128
1024

1024 16 32 128
Dynamic Multithreading

Thread Migration

Space has been
exploited

Resource Access

 10

We expect that both Number-of-Cores and Number-of-Threads-per-Core dimensions will reach

thousands in the near future. Our theoretical framework needs to be able to deal with MPs of

such scale. Moreover, the theoretical framework needs to be able to account for dynamic

multithreading, where the number of threads used for a program/program task may change over

time.

 The queuing network modeling techniques at our disposal restrict the size of the design

space to one that must be mathematically tractable. This makes the coverage of the design

space in Figure 2.4 a challenge. As shown in Figure 2.4 (i.e., the small cone on the left), the

part of the design space that has been (incompletely) explored by the existing work using

queuing network modeling techniques is only a tiny part of the entire space.

In what follows, we discuss how our framework allows almost the entire design space in

Figure 2.4 to be explored, except dynamic multithreading. We look at different dimensions of the

design space separately.

 Resource-Access and Thread-Scheduling-Discipline Dimensions: Without resorting to

any approximation techniques, the existing queuing network modeling techniques will allow both

of these dimensions to be largely explored analytically. Any instance in either of these two

dimensions can be approximately modeled using a queuing server model that has local balance

equations (i.e., it leads to queuing network solutions of product form or closed form). More

specifically, Table 2.1 shows how individual instances in these two dimensions can be modeled

by three queuing models with local balance equations, including M/G/∞; M/M/m FCFS

(including M/M/1); and M/G/1 PS (Processor Sharing).

 Note that the memory banks should be modeled as separate queuing servers and

hence, are not listed in this table. Also note that for all the multithread scheduling disciplines

except the Hybrid-Fine-and-Coarse-Grained one (to be explained below) in Table 2.1, the

service time distribution of a queuing model models the time distribution for a thread to be

 11

serviced at the corresponding queuing server. With these in mind, the following explains the

rationales behind the mappings in Table 2.1:

Table 2.1 Component Modeling Using Queuing Models with Local Balance Equations

 Queue Model

 Component

M/G/∞

M/M/m
FCFS M/G/1 PS

M/M/1

SMT √ √

Fine-Grained Thread scheduling √

Coarse-Grained Thread
scheduling √

Hybrid-Fine-and-Coarse-Grained
Thread scheduling √

Resources dedicated to individual
threads √

FCFS shared Memory, Cache,
Interconnection Network, or

Critical Region
 √

FCFS Memory with Pipelined
Access √

• SMT: It allows multiple issues in one clock cycle from independent threads, creating

multiple virtual CPUs. If the number of threads in use is no greater than the number of

issues in one clock cycle, the CPU can be approximately modeled as an M/G/∞ queue,

mimicking multiple CPUs handling all the threads in parallel, otherwise, it can be

modeled as an M/M/m queue, i.e., not enough virtual CPUs to handle all the threads

and some may have to be queued.

• Fine-grained thread scheduling discipline: All the threads access the CPU resource will

share the CPU resource at the finest granularity, i.e., one instruction per thread in a

round-robin fashion. This discipline can be modeled as an M/G/1 PS queue, i.e., all the

threads share equal amount of the total CPU resource in parallel.

 12

• Coarse-Grained thread scheduling discipline: All the threads access the CPU resource

will be serviced in a round-robin fashion and the context is switched only when the

thread is stalled, waiting for the return of other resource accesses. This can be

approximately modeled as a FCFS queue, e.g., an M/M/1 queue.

• Hybrid-Fine-and-Coarse-Grained thread scheduling discipline: It allows up to a given

number of threads, say m, to be processed in a fine-grained fashion and the rest be

queued in a FCFS queue. This can be modeled as an M/M/m FCFS queue. In this

queuing model, the average service time for each thread being serviced is m times

longer than the service time if only one thread were being serviced, mimicking fine-

grained processor sharing effect.

• Resources dedicated to individual threads: Such resources can be collectively modeled

as a single M/G/∞ queue, i.e., there is no contention among different threads accessing

these resources.

• FCFS Shared Memory, Cache, Interconnect Network, or Critical Region: This kind of

resources can be approximately modeled as an M/M/1 queue.

• FCFS Memory with Pipelined Access: It can be modeled as an M/M/m FCFS queue.

The pipeline depth determines how many threads can be serviced simultaneous in the

M/M/m FCFS queue.

 We note that the resource access dimension also includes load-dependent cache hit

rate. The cache hit probability (i.e., the routing probability to move back to the CPU) is generally

load-dependent in the sense that it may be either positively or negatively correlated with the

number of threads in use due to temporal locality or cache resource contention, respectively.

These effects can be accounted for in our framework without approximation, by means of the

existing load-dependent routing techniques (e.g. [5]).

 13

 We also note that the thread-scheduling-discipline dimension includes thread migration.

The thread migration allows a thread to be migrated from one core to another for, e.g., load

balancing purpose. This effect can be accounted for without approximation by allowing jobs to

have non-zero probabilities to switch from one class to another [4] [6].

 More capabilities may be identified and included in these two dimensions as long as

they are mathematically tractable.

 Program Dimension: In principle, this dimension can be fully explored through a

thorough study of the workload space, characterized by the service time distributions and

routing probabilities, i.e., a collection of ({μi}, {pij})’s. However, for the solvable queuing server

models in Table 2.1, such as M/M/m and M/M/1 queues, the service time distribution μi is a

given, i.e., exponential distribution. Since the exponential distribution is characterized by only a

single parameter, i.e., the mean service time ti, it can only capture the first order statistics of the

code path segments corresponding to that server, hence providing a first order approximation of

the program dimension or workload space. Although as part of our future work, we will consider

more sophisticated queuing models in an attempt to overcome this limitation, it is widely

recognized that the queuing performance for closed queuing networks is insensitive to the

service distributions of the queuing servers, generally known as the property of robustness of

the closed queuing networks [6]. Hence, we should expect that our first order approximation

provides a good coverage of the workload space.

Number-of-Cores and Number-of-Threads-per-Core Dimensions: First, we note that the

number of threads dimension should allow dynamic multithreading, meaning that at different

program execution stages, the number of active threads may vary. We plan to use a set of

ancillary thread classes with different delay loops to join and leave the queuing network

modeling a core. It can be easily shown that with n job (or thread) classes and 2i−1 threads in

the i-th class for i = 1,…, n, any number of threads in the range [1, 2n+1−1] can be generated in

the core. For example, with n = 4, any number of threads in the range of [1, 31] can be

 14

generated. The first thread class has only one thread in it. This thread class runs in the queuing

network modeling the core. The rest (n – 1) thread classes run in the delay loops, It can also

be shown that by properly setting the delay value for each delay loop, the proposed model can

match any distribution of parallelism (i.e., with probability pk
 that k threads are presented in the

core). The queuing network with these delay loops has closed-form solution. Second, we need

to address the scalability issues in calculating the generation functions as the numbers of cores

and threads increase. We consider a general closed queuing network modeling an N-core (or

core cluster) system with K shared resources. We want to be able to get closed-form generation

function G for such closed queuing networks, from which any performance measures can be

derived. As long as all the queuing servers in the system have local balance equations (e.g.,

following the queuing server models in Table 2.1), the generation function (also known as the

normalization function in queuing theory) can be generally written as:

…
∑ ∑

, … , 2.1

where fi (mik) is a function corresponding to the probability that there are mik threads currently in

core i (for i = 1,..., N) for thread class k (for k = 1,..., N, i.e., the threads from each core forms a

class), fj (mj1,…,mjN) is a function corresponding to the probability that there are mj1 threads of

class one, mj2 threads of class two, and so on, in shared memory queuing server j (for j = N+1,

…, N+K), and Mi is the total number of threads belonging to core i (for i = 1,..., N). fi takes

different forms for different core organizations, in terms of e.g., CPU, cache, and local memory

of different types from the resource-access dimension and thread-scheduling-discipline

dimension of the design space.

 On one hand, we note that G is defined in the entire design space (with the first order

approximation of the program-dimension or workload space). Understanding the general

 15

properties of G over this space will allow the properties of individual points in the design space

to be understood, just like function analysis (see Figure 1.1). On the other hand, we also note

that the number-of-core and number-of-thread-per-core dimensions create scalability barriers

that prevent us from being able to effectively calculate G. This is because the computational

complexity for G is O (NS M N+K), where M is the average number of threads per core and NS is

the number of queuing servers per core. Our experiments on an Intel Core-Duo, T2400, 1.83

GHz processor showed that for NS = M = 2 and K = 1, it takes about 24 hours to compute the

generation function for a 20-core system. Clearly, it is computationally too expensive to cover

the entire number-of-core and number-of-thread dimensions. In chapter 4, we develop an

iterative procedure to overcome this scalability barrier.

 16

CHAPTER 3

SIMULATION TOOL

 In this chapter, we describe our simulation tool for multicore processors based

on the thread-level methodology introduced in Chapter 2. In particular, we focus on the

simulation model for communication processors (CP), which is the most complex processors in

the multicore processor family. The tool applies to other multicore processors as well. Our major

goal is to focus on modeling features common to a wide variety of CP architectures and

incorporate relevant CP specific features as plug-ins. This tool not only allows user-defined

packet arrival processes and code path mixtures to be tested, but also provides a way to allow

the maximum sustainable line rate to be quickly estimated. In Section 3.4, Case studies based

on a large number of code samples available in IXP1200/2400 workbenches show that the

maximum sustainable line rates estimated using our tool are consistently within 6% of cycle-

accurate simulation results. Moreover, each simulation run takes only a few seconds to finish on

a Pentium 4 computer, which strongly demonstrates the power of this tool for fast CP

performance testing.

3.1 Design Ideas

 The following three key ideas underlay the CP simulation tool development.

Focus on emulating common CP features while taking the relevant performance

impacts of CP-specific features into account through user provided models. Our approach

attempts to strike a balance between complexity and simplicity by adopting a hybrid simulation-

and-modeling based approach. Specifically, our approach focuses on faithfully emulating

important features common to a wide variety of CP architectures (e.g., multithreading and multi-

 17

core) and account for the relevant performance impacts of CP-specific features (e.g., I/O

interface, cache, memory, memory controller, and bus architectures) through user provided

models, called plug-ins. For example, by focusing on the throughput, delay, and loss

performance, our tool only requires a plug-in that captures the memory access latency for each

CP memory. In other words, the plug-in only needs to capture the delay performance aspect of

memory accesses, which can be modeled by the user, based on, for example, a queuing model

or even an empirical chart, without having to emulate the processing details cycle-by-cycle. This

design approach makes the simulation tool generic and adaptable to a wide range of CP

architectures with the addition of a set of user provided plug-ins, capturing CP architecture

specific features. With limited number of I/O and memory interfaces for CPs in general, the

number of plug-ins needed are generally small, e.g., less than a dozen.

Capture important events only. The existing approach which attempts to accurately pin

down the CP performance generally resorts to cycle-by-cycle or instruction-level simulation.

This not only makes the simulation slow and storage space demanding, but also requires the

availability of the executable program as input for the simulation. What is available to us,

however, is only a piece of pseudo code for packet processing tasks mapped to each core,

which defies the use of cycle-by-cycle simulation. Instead, we adopt the thread-level

performance analysis methodology introduced in Chapter 2. Namely, we propose to identify a

sequence of events that may have significant impact on the thread-level performance,

identifiable from the pseudo code and perform event-by-event, rather than instruction-by-

instruction simulation. Since the number of important events identifiable in each code path is

generally small, e.g., one dozen to a few dozen, one can expect that event-by-event simulation

would be significantly faster than cycle-by-cycle simulation. Identifying important events is not

difficult. For throughput, delay, and loss performance analysis, the important events may include

memory and I/O accesses that results in a context switching, cache accesses that may cause a

context switching, events that cause serialization effects, such as a critical section, and events

 18

that cause run-time code generation, such as packet fragmentation for which the code size is a

function of the packet size. Although the instruction level activities, such as per instruction cycle

time and instruction-level-pipelining (ILP) aborts, cannot be directly captured based on a piece

of pseudo code, the average impact of these activities on the overall throughput, delay, and loss

performance may be modeled. For example, by defining an event for code branching and

associating with each branching event an average ILP abort cost in terms of wasted cycles, the

impact of ILP aborts can be accounted for on average. In fact, using average data to simplify

the simulation is not original. For example, the average per instruction cycle time has been

widely used in processor performance analysis.

In summary, combining the event-by-event simulation and the separation of CP

common features from CP specific features makes the tool very lightweight in terms of both time

and space complexities. Moreover, simulation at the event level makes it possible to allow the

use of pseudo code, rather than an exact program, as input for the simulation.

Allow for sustainable line rate estimation. No matter how lightweight a simulation tool

would be, the simulation time is guaranteed to be prohibitively long if the goal is to perform

exhaustive statistic analysis. This is because there are virtually unlimited numbers of possible

packet arrival processes and mixtures of code paths the threads in each core may concurrently

handle, which has made a CP the most difficult one to simulate, among all MPs in the MP family.

Unless a user has in mind small numbers of targeted packet arrival processes and code path

mixtures to be tested, performing exhaustive statistical analysis in a large design space is

guaranteed to be extremely time consuming, if possible. In practice, for most CP programmers

and designers, what they really want to know is, for a given task-to-CP-topology mapping,

whether the CP can sustain wire-speed forwarding performance or not. Unfortunately,

traditionally, the data inputs, including packet arrival processes and code path mixtures, are

provided by the user of the tool, rather than part of the tool design. As a result, all the existing

CP simulation tools were developed without being concerned with how the input data should be

 19

generated. This makes it difficult for a user or designer to effectively use such a tool to test

whether the CP can keep up with the line rate or not. To address this issue, as part of the tool

design, we develop a systematic approach to allow the sustainable line rate to be estimated for

any given task-to-CP-topology mapping. In this approach, the user does not have to provide any

packet arrival processes, nor code mixtures as input to the tool, but simply a piece of pseudo

code for the tasks mapped to each core. The tool will automatically return the line rate the CP

can sustain, under such a mapping.

3.2 Simulation Architecture

In this Section, we introduce the generic CP organization, the code path definition, the

simulation model, and an approach to estimate the sustainable line rate.

Figure 3.1 Generic CP Organization

Generic CP Organization: Based on the aforementioned methodology, we consider a

generic CP organization depicted in Figure 3.1. This organization focuses on the

characterization of multicore and multithreading features common to most of the CP

architectures, leaving all other components being summarized in highly abstract forms. More

specifically, in this organization, a CP is viewed generically as composed of a set of cores and a

set of on-chip or off-chip supporting components, such as I/O interfaces, memory, level one and

MEMS

R

 MEMC

MEMT

MEMT

Thread

Thread
.
.
.

Core

.

.

.
NP Core

.

.

.

 Core

CP

R’

 Core

 Core

 Dispatcher
 &
Input queue

 20

level two caches, special processing units, scratch pads, embedded CPUs, and coprocessors.

These supporting components may appear at three different levels, i.e., the thread, core, and

system (including core cluster) levels, collectively denoted as MEMT, MEMC, and MEMS,

respectively. Each core supports multiple threads which are scheduled based on a given thread

scheduling discipline. Cores may be configured in parallel and/or multi-stage pipeline (a two-

stage configuration is shown in Figure 3.1). Packet processing tasks are partitioned and

mapped to different cores at different pipeline stages or different cores at a given stage. A

dispatcher distributes the incoming packets to different core pipelines based on any given

policies. Backlogged packets are temporarily stored in an input buffer. A small buffer may also

present between any two consecutive pipeline stages to hold backlogged packets temporarily.

Packet loss may occur when any of these buffers overflow. The tool is concerned with the CP

throughput, latency, and loss performance only and the power and memory resource

constraints are assumed to be met. This implies that we do not have to keep track of memory or

program store resource availabilities or power budgets.

Code Path: The code path concept was introduced in Chapter 2. Here we give a more

accurate definition of it. A code path is defined at the core level. For tasks mapped to a given

core, a piece of pseudo code for these tasks can be written. Then a unique branch from the root

to a given leaf in the pseudo code is defined as a code path associated with that core. An

incoming packet to the core is accepted if there is a free thread in the core, and is associated

with one code path, or a sequence of instructions that the core needs to execute throughout the

life-time that the packet is in that core.

In this simulation model, a code path is broken down into a sequence of segments of

instructions intermediated by events. For each segment, we are only concerned with the

segment length, i.e., the number of instructions in the segment (which can be easily estimated

on the basis of the pseudo code), or more precisely, the number of core cycles the core

 21

arithmetic logical unit (ALU) has to spend on the segment, assuming the average per instruction

cycle time is known. Hence, a code path can be formally defined as follows:

Tk (Mk; m1,k , t1,k, τ1,k, … , mMk, k, t Mk, k, τ Mk, k): Code path k with event mi,k occurred at the ti,k-th

core clock cycle and with event duration τi,k, where k = 1, …, K and i = 1, 2, …, Mk, where K is

the total number of code paths in the pseudo code mapped to the core and Mk is the total

number of events in the code path.

|Tk|: the code path length or the total number of core clock cycles in the code path Tk (Mk; m1,k ,

t1,k, τ1,k, …, mMk, k, t Mk, k, τ Mk, k), where k = 1, 2, …, K.

A graphical representation of such a code path is given in Figure 3.2.

Figure 3.2 A graphical Representation of A Code Path

We note that a code path thus defined is simply a sequence of events with event inter-

arrival times (ti+1,k – ti,k) for i = 1, 2, …, Mk –1. We also note that the first instruction and the last

instruction in the code path must be treated as events. For these events, τi,k= 0. For an event

mi,k ∈ MEMT, MEMC, or MEMS, τi,k represents the loaded resource access latency. To account

for the serialization effect caused by, for example, a critical section, two events must be

included, indicating the start and end of the critical section. Again, for these events, τi,k= 0.

An important event is defined as one that is expected to have an impact on the

throughput, delay, and loss performance. Currently, we have defined the following four types of

important events: (1) events for the start and end of the code path; (2) resource access events

 mMk-1, k, tMk-1, k, τMk-1, k

. . .
m2,k, t2,k, τ2,k mMk, k, tMk, k, τMk, k m1,k, t1,k, τ1,k

 |Tk|

 22

which may cause significant delay and thread level interactions (context switching), events mi,k

MEMT, MEMC, or MEMS ; (3) events that cause a serialization effect; and (4) events that cause

dynamic code generation. More types of events can be incorporated if they are expected to

contribute significantly to the throughput, delay, and loss performance. For example, a new type

of event that identifies branching points in the code can be included for the purpose of

estimation of ILP abort cost caused by branching, if the abort effect cannot be neglected.

Simulation Model: Our simulation tool focuses on three performance measures:

throughput, delay, and loss. All three measures can be obtained at runtime as long as the

latency Lk, a packet with code path k in each core can be simulated, which can be expressed

conceptually as:

Lk = |Tk| + ∑j=1: Mk (τj,k + τw
j,k), (3.1)

where τw
j,k is the thread waiting time in the ready state after the event mj k finishes and

τw
j,k= 0 if event mj,k does not cause a context switching. For mi,k∈ MEMT, MEMC, or MEMS, τj,k is

dependent on the nature of mj,k access (number of memory reads or writes), the access speed

(bus speed and memory speed), and access contention resolution mechanisms, such as the

memory access pipelining and queuing architectures, which must be estimated based on a user

provided plug-in. τw
j,k is dominated by multithreading effects, which is the core parameter to be

simulated at runtime. |Tk| is the total number of core clock cycles the core ALU spends on the

packet.

Hence, for throughput, delay, and loss performance analysis, in general, all we need

from the user is a set of plug-ins that estimate τj,k for mi,k∈ MEMT, MEMC, or MEMS at runtime.

Note that, although modeling CP-specific features in general is a nontrivial task, it should not be

difficult to come up with empirical memory access latency models, e.g., in the form of charts or

tables for a given CP. For example, by loading a given memory with different number and types

 23

of requests and measuring the corresponding loaded latencies using a cycle-accurate simulator

or test board, one can build empirical charts or tables offline to be used to quickly estimate the

memory access latency at runtime. There is no need to emulate the microscopic process for

memory access at run-time, saving significant simulation time. As we shall see in the next

section, with the unloaded memory access latencies provided by Intel, as well as a memory

access waiting time estimated based on a simple FIFO queuing model, our simulation tool

accurately characterizes IXP1200/2400 performance without further information about

IXP1200/2400 specific features.

With the previously described preparation, now we describe our simulation model,

which focuses on emulating non-CP specific components, including core topology,

multithreading, code path, code path mixtures, and packet arrival processes, pertaining to all

the CP architectures, with a limited number of plug-ins for resource access latency estimation.

These plug-ins are pre-developed and plugged into the simulation model. Figure 3.3 gives a

logic diagram for the proposed simulation model, which is composed of four major components:

(1) a simulation core based on the generic CP organization described in Figure 3.1; (2) code

path association with a packet in a core; (3) a packet arrival process; and (4) a set of plug-ins to

the simulation core.

Figure 3.3 CP Simulation Model

 CP

(3) Packet Arrival Process (1) Simulation Core

 (4) Plug-ins

(2) Code Path Association

 24

Based on the generic CP architecture in Figure 3.1, the simulation model focuses on

emulating multithreaded cores which can be configured in any pipeline/parallel topology. Each

core is modeled at a highly abstract level, running any number of threads based on a given

thread scheduling discipline (our current design includes fine-grained, coarse-grained, and

TDM-based disciplines). No further details of the core are modeled. A thread in a core that

receives a packet will be assigned a code path. The way to assign code paths to threads in a

core determines the mixture of code paths in that core. The packet arrival process can be

generated from real traces (which also determine the code path mixture in each core),

stochastic models, or deterministic models. Traditionally, the code path assignment and packet

arrival process generation are not part of the simulation tool design, but as user provided inputs.

Since all four components can be designed independent of one another, the design of

components (1) and (4) combined constitutes a fast performance analysis tool in the traditional

sense. In other words, as in traditional approaches, our tool allows any user provided packet

arrival processes and/or mixtures of code paths to be simulated. Our goal, however, is to also

design components (2) and (3) (to be discussed in Section 3.3) such that for any given task-to-

CP-topology mapping, the tool can quickly return the maximum line rate the CP can sustain.

With the CP organization in Figure 3.1 and the event annotated code path in Figure 3.2,

the fast simulation tool is developed based on the event-driven simulation approach. To help

understand why such a tool can be made to execute quickly, here we give an intuitive

explanation by way of a simple example. Consider a code path in Figure 3.4.

Figure 3.4 An Example of Event-Annotated Code Path

e = {m, t, τ} Start End

 25

In this code path, there are only three events, the start, end, and e. Event e takes place

at the t-th cycle for resource, m, access with loaded latency τ. Now consider two threads in a

core, each handling a code path as in Figure 3.4. They share the ALU resource based on a fine-

grained thread scheduling discipline (i.e., switch context at every instruction). Figure 3.5 gives

the instruction execution timeline for the two code paths. The dark gray parts represent the code

path segments. The light gray parts represent the cycles spent on event e, i.e., the loaded m

access latencies. The white part stands for the cycles spent in the ready state waiting for

execution after event e finishes. In this case, each code path involves three event boundaries:

the start of the code path, the end of the code path, and the start and end of event e. The

arrows represent the switches of control from one thread to the other after executing one

instruction. The idea is not to simulate each and every switch of control, but only the cycles at

the event boundaries, i.e., the positions indicated by vertical lines. Since each code path may

have up to a few dozens of events, only a few dozens of event boundaries need to be simulated

per packet. As a result, the event-driven simulation tool that captures only those events can run

several orders of magnitude faster than cycle-accurate simulation tools, as our testing results

showed (a few seconds per simulation run on a Pentium 4 Computer).

Figure 3.5 Event-Level Simulation

3.3 Sustainable Line Rate Estimation

The simulation model proposed in the previous section allows any packet arrival

processes and code path mixtures to be simulated. In this section, we go one step further by

designing the packet arrival processes and the code path mixtures to allow the maximum line

rate a CP can sustain to be quickly simulated.

 26

In the router industry, the performance of a router is judged mainly by whether its

network interface cards can sustain wire-speed forwarding performance or not. A typical testing

scenario is to use back-to-back, minimum-sized packets running at the line rate as input for the

testing and all the packets are loaded with a typical code path, such as the code path that

carries out basic tasks for IP forwarding. Following this industry practice, we would have

already achieved our objective. However, while the packet arrival process thus generated

makes sense, the use of a “typical” code path to determine whether a CP can sustain wire-

speed forwarding performance may not always be a good idea, as long as untypical code paths

may occur with non-negligible probabilities. For this reason, we adopt the industry practice on

packet arrival process, but design our own code path assignment mechanism. In what follows,

we discuss these two aspects separately.

Packet Arrival Process: Denote R as the line rate. Then the minimum packet time is

P/R, where P is the size of a minimum-sized packet. We define a deterministic packet arrival

process as minimum-sized packet arriving at fixed packet time interval TP. For this process, the

packet arrival rate r = P/TP. The r value at which the packet loss is about to occur is then the

maximum line rate the CP can sustain and if r ≤ R, we say that the line rate R can be sustained.

Here, what code path mixture should be used as input to the simulation is yet to be specified,

discussed below.

Code Path Assignment: Assume the user of the tool does not have a typical code path

mixture in mind to test whether the line rate can be sustained. Our goal is then to identify the

worst-case mixture of code paths that gives the lowest line rate the CP can sustain. This will

ensure that the estimated sustainable line rate can always be achieved, under any mixtures of

code paths. To this end, we first make the following two important observations.

First, intuitively, it is clear that the worst-case scenario for a given core will occur only

when all the code paths in a code path mixture are the same. This is because having one code

path for all the threads in the core will stress a particular resource the most. For example, if the

 27

longest code path may potentially create a bottleneck for the core ALU resource, then loading

the core with this code path for all the threads will stress the core ALU resource the most. This

observation significantly reduces the complexity for the identification of the worst-case mixture

of code paths. In this case, one may then test different potential worst-case code paths

separately, rather than different combinations of code paths, significantly reducing the number

of test cases.

Second, with a deterministic arrival process and code path mixture, and at the saturated

arrival rate, queuing cannot help improve the throughput performance simply because there is

no traffic fluctuation to provide rooms for the buffers between pipeline stages to offload the

queued packets once the queue levels build up. In this case, we may view a core pipeline as a

buffer-free system and the throughput for a core pipeline is determined by the throughput at the

bottleneck pipeline stage.

Based on these observations, we can logically decompose the problem into two sub-

problems: (1) identifying the bottleneck pipeline stage; and (2) finding the worst-case code path

that leads to the minimum throughput for the core at the bottleneck stage. In practice, these two

sub-problems may not be separable. In what follows, we present a mechanism to address these

problems.

In principle, the worst-case code path for one core must be associated with some given

mixtures of code paths (not necessarily the worst-case mixtures of code paths) for other cores.

The reason is that packet processing processes in different cores are coupled together through

the sharing of supporting components of type MEMS (see Figure 3.1). As a result, to identify the

worst-case code path for a particular core, one must also identify the associated code path

mixtures for other cores. These code path mixtures are then associated with the arriving

packets as input to various cores that simulates the entire system (see Figure 3.1) as a whole.

This simulation run will return the sustainable line rate for that core and this process must be

repeated for all the cores to identify the bottleneck core. However, in practice, this coupling

 28

effect is not strong for the following reasons. First, different cores in different pipeline stages

generally carry out distinct packet processing tasks. For example, in a three stage pipeline, the

first stage may perform initial processing of incoming packets by loading the packets into an

external DRAM. The second stage may perform major packet processing functions, which may

involve significant table lookups in an external SDRAM. The last stage may mainly provide

queue scheduling functions. As a result, the chances for different stages to interact with one

another through MEMS types of resource accesses are small. Second, due to the wide use of

multiple external memory interfaces, memory banks, and core clusters sharing different L2

caches in CP design, such coupling effects are further reduced. Hence, in our current tool

design, we simply overlook such coupling effects. Nevertheless, our tool can be easily extended

to take such effects into account, e.g., by modeling the MEMS accesses from other cores as a

background random process derived from the core-access-intensive code path loaded to other

cores.

Without considering the inter-core coupling effects, the problem is then reduced to one

of finding the worst-case code paths for individual cores, separately. The worst-case code path

k by definition generates the largest core latency Lk (see Eq. (3.1)). However, since without

simulation, we have no idea about the values for the last term in Lk. The approach taken is to

simply neglect τw
j,k and approximate Lk by |Tk| + ∑j=1: Mk τj,k, where τj,k is now the unloaded latency.

This approximate latency can be estimated easily for each and every code path. We simply

select an x % of the code paths with the largest Lk values to be considered as potential worst-

case code paths to be tested. The reason to choose x % rather than just the one with the

largest approximated Lk to be tested is simply to compensate for the inaccuracy of such

estimations.

An initial testing of the above approach is encouraging. We tested the above approach

against 50 randomly generated pseudo codes with each having 100 to 1000 branches or code

paths with multiple MEMT, MEMC, and MEMS types of memory accesses. Since the tool finishes

 29

running each case within 10 seconds on a Pentium IV PC, an exhaustive search of the worst-

case code path for each pseudo code was performed. The worst-case code path thus found is

then compared against the ones found by the above approach. For all 50 cases, we find that the

true worst-case code path always falls into the top 1% (i.e., x = 1) of the entire code paths pool.

This means that even for a pseudo code with up to 1000 code paths, only ten simulation runs

with a fixed TP are needed to identify the true worst-case code path, which takes a bit more than

one minute. For a CP with a dozen of cores, this will take only dozens of minutes to pin down

the worst-case code paths for all the cores.

Finally, for each core loaded with the worst-case code path, several simulation runs

with different Tp values are performed to identify the maximum sustainable line rate for that core.

This process is repeated for all the cores to identify the bottleneck pipeline stage for each core

pipeline and finally the maximum sustainable line rate for the entire CP.

3.4 Simulation Testing

In this section, the accuracy of the proposed tool is tested against the CAS (Cycle-

Accurate Simulators), i.e., IXP 1200/2400 SDK Developer workbenches [8] [9]. With a set of

code samples available in both IXP1200/2400, the sustainable line rates obtained from our tool

are compared with those from CAS. For all the code samples, there are only a few number of

code paths for each core and we can afford to perform exhaustive search for the bottleneck

core and the corresponding worst-case code path. For this reason, the simulation focuses on

testing the accuracy of the simulation tool only, assuming the bottleneck core and the

corresponding worst-case code path are known. The code samples and corresponding

simulation setups are described in Section 3.4.1 and Section 3.4.2 presents the test results

3.4.1. Simulation Setup

 Since all the cores in IXP1200/2400 run a coarse-grained thread scheduling discipline,

our simulation tool is configured to run the coarse-grained thread scheduling algorithm as well.

 30

The functions in the core topology for IXP1200 and IXP2400 sample applications are briefly

described as follows.

IXP1200 code samples: Four different code samples, Packet Count [1], Generic IPv4

Forwarding, Layer-2 Filtering, and ATM/Ethernet IP Forwarding, available in IXP1200 Developer

workbench [8] are tested. The worst-case code paths at the bottleneck cores for these code

samples are given in Appendix A. The complete implementation details can be found in the Intel

IXP1200 building blocks application design guide with the Developer workbench. In the

following description of code samples, we focus on the functions mapped to the bottleneck core.

Packet Count: this code sample counts the number of packets received. A receive

thread checks for data on the MAC port, transfers packet from MAC port to receive buffers.

After packet reception is complete, the thread moves the packet into SDRAM and reads the

packet header into the core. A counter is maintained in SCRATCH and is incremented on

receiving a packet.

Generic IPv4 Forwarding: after packet reception as in Packet Count, RFC1812 generic

IPv4 forwarding is implemented in this code sample.

ATM/Ethernet IP Forwarding: This code sample is a mixed code implementation of ATM

/Ethernet IP forwarding. Only Ethernet-to-ATM flow is considered in the test. The header

checksum check, TTL update, and IP lookup are performed in the receive block after packet

reception as in Packet Count. Then the LLC/SNAP and modified IP headers are written back

into the SDRAM. When the frame fragment with EOP (End of Packet) information is received,

AAL5 trailer information is written into the SDRAM buffer and the complete PDU is enqueued for

CRC generation at the next pipeline stage.

Layer-2 filtering: This code example implements Ethernet protocol, MAC address

filtering and layer 2 forwarding in the receive block after packets are received.

 Packet Count, Generic IPv4 Forwarding, and Layer-2 Filtering code samples are

mapped to two core pipelined stages as shown in Figure 3.6 and ATM/Ethernet Forwarding is

 31

mapped to three core pipeline stages as shown in Figure 3.7. The original code samples are

modified to allow only one core at the receive stage handling packets coming from a single port.

As a result, the receive core becomes the bottleneck core to be tested. The code samples can

also be changed to allow configuration of the number of threads from one to four.

Figure 3.6 Pipeline Configuration for Packet Count, Generic IP Forwarding and Layer-2 Filtering

Figure 3.7 Pipeline Configuration for ATM/Ethernet Forwarding

Packet Count, Generic IPv4 Forwarding, and Layer-2 Filtering code samples are

mapped to two core pipelined stages as shown in Figure 3.6 and ATM/Ethernet Forwarding is

mapped to three core pipeline stages as shown in Figure 3.7. The original code samples are

modified to allow only one core at the receive stage handling packets coming from a single port.

As a result, the receive core becomes the bottleneck core to be tested. The code samples can

also be changed to allow configuration of the number of threads from one to four.

IXP2400 code samples: IPv4 Ethernet, DiffServ POS, and MPLS in IXP2400

Developer workbench [9] are tested. Again, the associated code paths are given in Appendix A.

RX Stage
CRC

Generation TX Stage

RX Stage

TX Stage

 32

In what follows, the code samples are briefly explained. All of these applications have five

blocks and the same pipeline configuration as shown in Figure 3.8. The complete

implementation details can be found in the Intel IXP 2400 building blocks application design

guide with the Developer workbench.

The first block is a packet receive block and uses a scratch ring to communicate with

the next block. The second block is a functional block where application specific functional

pipeline executes in parallel on four cores. The pipeline has five microblocks in DiffServ POS

application: PPP decapsulation/classify microblock, 6-tuple classifier microblock, TCM meter

microblock (ignored for our simulation setup: in case of no traffic profile in effect, packets may

only pass through a classifier and a marker [RFC 2475]), DSCP Marker microblock and IPv4

forwarder microblock. In MPLS and IPv4 Ethernet applications, the pipeline consists of two

microblocks: MPLS processing and IPv4 forwarder microblocks for MPLS and Ethernet

decapsulation/classify/filter and IPv4 forwarder microblocks for IPv4 Ethernet. The third block is

the queue manager which performs enqueue/dequeue operations on the hardware-assisted

SRAM queues. The queue manager receives enqueue requests from the functional pipeline

through a scratch ring. Another scratch ring is fed with dequeue requests from the CSIX

scheduler. The fourth block is the CSIX scheduler which selects constant-length packet

segments to be transmitted to the CSIX fabric. The final block is the CSIX transmit block which

receives transmit messages from the queue manager and moves packet segments into a

transmit buffer.

For all the IXP2400 code samples we tested, the number of threads in use is not

configurable in the original code samples, which is fixed at eight. To test the functional block,

three of the four cores are disabled and the remaining core creates a bottleneck at this block.

 33

Figure 3.8 Ingress Blocks for IXP2400 Code Samples

Our simulation tool only needs to run a single core, corresponding to the bottleneck

core for sample applications described above. The sustainable line rate for this bottleneck core

is compared with that of CAS simulation involving the entire multi-stage pipeline. All the worst-

case code paths for the corresponding bottleneck cores in table format are listed in Appendix A.

The first column lists the task performed in each code path segment; the second column gives

the segment length in terms of core clock cycles; the third column describes the type of

resource accesses between segments; and the last column gives the unloaded resource access

latency for each resource access. We assume that in the presence of resource access

contentions, the resource access requests will be serviced based on a simple FIFO queuing

mechanism. This means that unloaded resource access latencies and a set of simple resource

access FIFO queues are the only IXP1200/2400 specific features or plug-ins used in our

simulation tool. The rest are generic or common features pertaining to all the CP architectures.

This indicates that our simulation tool is indeed generic and easily adaptable to a specific CP

architecture. Clearly, the code paths as given in Appendix A can be easily derived from a piece

of pseudo code provided by the user.

: scratch Packet
Receive
Core 0

Functional Pipeline
Core 1, 2, 5, and 6

Scheduler
Core 4

CSIX
Transmit
Core 7

Queue

Manager
Core 3

 34

The parameter settings for the simulation are as follows:

IXP1200/2400: ME clock rate = 200/600 MHz, Packet size = 64/64 bytes,

 SDRAM = 24/64MB, SRAM = 1/64 MB (for each channel of two).

3.4.2. Test Results

In this Section, we compare sustainable line rates obtained from our tool with those

obtained from IXP1200/2400 CAS for the code samples described in Section 3.4.1. Tables 3.1

through 3.4 give the results for different cases in similar formats. For IXP 1200 case studies in

Tables 3.1 through 3.4, the first column gives the number of threads configured; the second and

the third columns list the core latencies and the sustainable line rates obtained from our tool and

CAS, respectively. The last column lists the percentage difference between the two sets of

results. The table format for IXP2400 case studies in Table 3.5 is similar to the ones for IXP

1200 case studies, except the first column, where now the applications are listed, rather than

the number of threads, which for IXP2400 is fixed at eight. As one can see, for all the cases

studied, the results obtained from our tool are within 6% of the CAS results. Moreover, each

simulation run finishes in a few seconds on a Pentium 4 Computer. Since there are significant

differences between IXP1200 and IXP2400 architectures, such consistent agreement of the two

provides strong evidence, indicating that our tool can serve as an effective tool to aid the initial

programming of a CP as well as new CP architecture design.

Finally, we note that in all the code samples, there is a critical section in the receive

stage. In particular, the critical section dominates the code path of the Packet Count sample,

constituting about 67% of the total code path, from the first task to the 6th task in the code path

for Packet Count Sample given in Appendix A. This dominant serialization effect causes the line

rate to decrease when more than two threads are configured as shown in Table 3.1. This effect

is successfully captured by our tool, which accounts for the impact of the critical section by

recognizing the start and end of critical section events in the code path. Interested readers may

 35

refer to [10] for detailed explanation on why this critical section causes the decrease of line rate

when adding more than two threads.

Table 3.1 Tool versus CAS (IXP1200)
 for Packet Counting

Threads
Tool CAS % Error rate

|R1-R2|*100/R2 Total Latency(TL)
(cycles)

Receive rate R1
(Mbps) TL R2

1 296 334 293 337 0.89
2 375 525 380 518 1.40
3 645 460 627 473 2.74
4 875 450 856 460 2.17

Table 3.2 Tool versus CAS (IXP1200)
for Generic IPv4 Forwarding

Threads
Tool CAS

% Error rate TL R1 TL R2
1 560 183 537 183 0.00
2 590 347 600 328 5.79
3 687 447 687 431 3.71
4 936 438 876 449 2.45

Table 3.3 Tool versus CAS (IXP1200) for ATM/Ethernet IP Forwarding

Threads Tool CAS % Error rate TL R1 TL R2
1 732 140 724 140 0.00

2 830 247 812 250 1.20

3 985 312 981 311 0.32

4 1260 326 1184 343 4.96

 36

Table 3.4 Tool versus CAS (IXP1200)
for Layer-2 Filtering

Threads Tool CAS % Error rate TL R1 TL R2
1 735 140 730 140 0.00
2 816 251 798 257 2.33
3 960 320 978 314 1.91
4 1168 351 1304 354 0.85

Table 3.5 Tool versus CAS (IXP2400)
with 8 Threads

Applications Tool CAS % Error rate TL R1 TL R2
Diffserv Pos 2960 830 2950 832 0.24

MPLS 2824 870 2750 890 2.25
IPv4 Ethernet 2898 849 2935 839 1.19

3.5 Related Work

There are a vast number of processor simulation tools available [1] [12-26] (e.g. cycle-

accurate, allowing detailed timing analysis, and providing primitives for flexible component

modeling). Particularly relevant to our work are the Network Processor analysis tools (e.g., [1]

[16-24]).

Most CP simulation software (e.g., [16-19]) aims at providing rich features to allow

detailed statistical or per-packet analysis, which is useful for program fine tuning, rather than

fast CP performance testing. Even for the most lightweight CP simulator described in [16], it is

reported that to simulate one second of hardware execution, it takes 1 hour on a Pentium III 733

PC. Moreover, it assumes the availability of the executable program or microcode as input for

the simulation. On the other hand, the algorithms for data path functions to CP core topology

mapping (e.g., [21] [23] [24]) are generally fast, but at the expense of having to overlook many

essential processing details that may have an impact on the overall system performance. To

make the problem tractable, a common technique used in these approaches is to partition the

 37

data path functions into tasks and each task is then associated with one or multiple known

resource demand metrics, e.g., the core latency and program size. Then an optimization

problem under the demand constraints is formulated and solved to find a feasible/optimal

mapping of those tasks to a pipelined/parallel core topology. Since the actual resource demand

metrics for each task are, in general, complex functions of mapping itself, and are a strong

function of the number of threads and thread scheduling discipline in use at each core, these

approaches cannot provide mappings with high accuracy. Although the approach in [23]

accounts for certain multithreading effect, it only works for a single memory access and under a

coarse-grained scheduling discipline.

From previous work, all the above existing tools lack of the following feature needed to

address the problem at hand. Namely, they are not concerned with how the packet input

process should be generated, which is assumed to be provided by the user, rather than part of

the tool design. Given that there are virtually unlimited numbers of possible packet arrival

processes and mixtures of packets carrying various code paths, it is a daunting task for a user

of an existing tool to decide what input processes should be tested, or what statistics should be

collected. Note that no matter how fast a simulation tool may be, the simulation time is

guaranteed to be prohibitively long if the goal is to perform exhaustive statistical analysis, based

on the simulation data collected from a large number of packet arrival processes and mixtures

of code paths

 38

CHAPTER 4

A THEORETICAL FAMEWORK FOR DESIGN SPACE EXPLORATION

In this chapter, we develop a theoretical framework for a large design space based on

the methodology introduced in Chapter 2. Section 4.1 introduces the queuing network model

that covers the entire design space in Figure 2.4. Section 4.2 proposes an iteration algorithm

that addresses the scalability issue concerning the queuing network modeling technique, as

explained in Section 2.2. Section 4.3 provides the testing results in a large design space for the

proposed analytic model versus simulation results using the simulation tool developed in

Chapter 3. Finally, Section 4.4 discusses the related work.

4.1 Queuing Network Model

For MPs in the design space covered by the queuing network models in chapter 2, all

the performance measures can be derived from a generation function, which is described

mathematically as follows.

First, we define N as the total number of jobs (or threads) for the entire system and it

follows that,

, , 4.1

where kir is the number of jobs in the rth job class at the node i and M is the total

number of queuing servers and R is the number of job classes in the system.

 39

According to the BCMP theorem [27], the state probabilities of the system can be

written as:

, … ,
1

G , 4.2

where the state of the ith node is , . . , and the population vector containing

the total number of jobs is ∑ and G is the so-called normalization constant or

generation function of the system and it is given by:

G
∑

, 4.3

The ’s are the relative state probabilities of the state at the node i , which are

defined as follows:

!
1

·
1

·
1

! , for M⁄ m⁄ FCFS,

!
1

! · , for G⁄ 1⁄ PS & LCFS PR, 4.4

1
! · , for G⁄ ∞⁄ IS ,

The relative arrival rate eir of jobs in the rth class at the ith node can be calculated

directly from routing probabilities as follows:

 40

· , , for 1, … , , 1, … , . 4.5

And the function is given by

! , ,
! · , ,

1 , 1 .
 4.6

where is the number of active threads in node i.

Based on the generation function defined above, relevant performance measures in our

model can be written as follows [6]:

Throughput:

 ·
G 1

G , for 1, … , 4.7

Mean Response Time:

By the little’s law,

 4.8

Where the mean number of jobs at the ith queuing server is,

 41

 · ·
G

G
∑ &

, for 1, … , 4.9

Where G can be interpreted as the generation function with the queuing server i

removed from the network.

We note that the generation function G and the resulting performance measures are

defined in the entire design space in Figure 2.4 (with the first order approximation of the

program-dimension or workload space). As a result, a salient feature of our analytical modeling

approach is its ability to explore the general performance properties of the design space

analytically, just like the analysis of the general properties of functions in a multidimensional

space in function analysis. Since understanding the general performance properties over the

entire design space results in the understanding of the performance at any point in the design

space, this approach is particularly useful for the performance analysis in the initial

programming phase, when a desirable design choice/point must be identified from a large

number of possible choices/points in the design space. Due to the multiplicative increase of

computational complexity of G in terms of both cores and threads, however, this approach

becomes computationally too expensive as the numbers of cores and threads per core reach a

few dozen. The iteration Algorithm introduced in the following section can overcome this

limitation.

4.2 Iteration Algorithm

The difficulty for calculating G(x) lies in the fact that different cores interact with one

another through shared resources. A key intuition is that the effect on each core due to resource

sharing would become more and more dependent on the first order statistics (i.e., mean values)

and less sensitive to the higher order statistics (e.g., variances) or the actual distributions, as

the number of cores sharing the resources increases (reminiscent of Law of Large Numbers

and Central Limit Theorem in statistics and the Mean Field Theory in physics, although actual

 42

formal analysis could be difficult). With this observation in mind, we were able to design an

iterative procedure to decouple the interactions among cores, so that the performance of each

core can be evaluated quickly as if it were a stand-alone core.

Assume there are NC cores sharing M common FIFO memories. Initially, we calculate

the sojourn time 0 and throughput 0 for single core system i consisting of a core i and

the common memories for 1, … , and 1, … , . Then the initial mean sojourn time for all

the cores, , is calculated over all the single core systems and the routing probabilities, , for

the aggregate core to memory j are measured by arrival rate to the memory relative to total

arrival rates as in the following iteration formulae:

∑

, 4.10

where

∑

 , 1, … , 4.11

Where is the probability to access the shared memory j from the aggregate core.

Then we enter an iteration loop as shown in Figure 4.1. At the n-th iteration, first the

average sojourn times for the common memories, , are calculated based on a queuing

network on the left of Figure 4.1, including queuing servers for the common memories and an

M/M/∞ queuing server characterized by the mean service time . There are a total of

 ∑ threads circulating in this network, where mi is the number of active threads from

core i. In other words, we approximate the aggregate effect of all the threads from all the cores

 43

on the common memories using a single M/M/∞ queuing server with the mean service time

 and routing probabilities to the common memories from the M/M/∞ queuing server. Then,

we test if 1 ε holds for all j with a predefined small value ε. If it does, exit

the loop and finish, otherwise do the following. The sojourn time and throughput for

core i (for 1, … ,) are updated based on the closed queuing network on the right of Figure

4.1. This time, the effects of other cores on core i is approximated by a single M/M/∞ server with

the mean service time (for 1, … ,). There are threads circulating in this network.

After all (for 1, … ,) are calculated, will be updated based on the interaction

formulae, eq. 4.10 and eq. 4.11, before going to the next iteration. Note that both steps involve

only queuing network models that have closed-form solutions, which make the iterations

extremely fast. The iteration procedure is summarized in Figure 4.2.

Figure 4.1 An Iterative Procedure for Decoupling Shared Memories

Step 1

μ* = 1/T*

Step 2

 i-th Core

μm1 = 1/Tm1

Tm1

Ti

μmM = 1/TmM

 Mem 1, μm1

Mem M, μmM

TmM

Tmj

Ti

q1

qM

pi1

piM

 44

Figure 4.2 Iteration Algorithm

4.3 Testing

We test the accuracy of the queuing modeling technique by comparing against those

obtained by the simulation tool introduced in Chapter 3 in Section 4.3.1 and also explore system

behaviors at various points in the design space in Section 4.3.2.

4.3.1 Accuracy Test

Note that the simulation tool must be able to perform a significantly large number of

simulation runs (e.g., 104 − 106) in a reasonable amount of time for many-core systems (e.g.,

with 1000 cores). The existing simulation tools are not up to the task. Fortunately, our simulation

tool [3] is well suited for the purpose as explained in Chapter 3.

Initialize: ►Get a sojourn time 0 for each and every core in the network consisting of
 the i-th core and the shared memories without considering other cores.

 ►Calculate the average sojourn time, 0 for the aggregate core using eq. 4.10 and
 get the routing probabilities to the common memories, 0 using eq. 4.11.

 ► Set n=1.

 Step1: ►Calculate the average sojourn times for the memories, with from previous
 iteration as in Figure 4.1.

 ►If n 1 ε for all & 2
 Stop Iteration.
 Else
 Go to Step2.

 Step2: ►Get a sojourn time for each core with the from step1 and calculate
 the and .

 ►Set n = n+1.
 Go to Step1.

 45

Figure 4.3 Core Types for Testing

To test the performance of the core decoupling procedure, we consider a MP with 1000

cores and core clusters sharing a common FIFO memory. There are two types of cores (Core

Type 1 with 6 active threads and Core Type 2 with 9 active threads) and core clusters (Core

Local Memory

CPU

p11

p1m
p12

μ2

μ1

Core Type 1

Local Memory

CPU

p11
p3m

p12
μ2

μ1

Core Type 2

μ3 p13

p31

L1 Cache

CPU 1

p11

p5m

p22

Core Type 3

μ1 μ3 p13

p31

L1 Cache

μ2 μ4

μ5
CPU 2 L1 Cache

L2 Cache

p42

p24
p45

p35

CPU 1

p11

p5m

p22

Core Type 4

μ1 μ3 p13

p31

L1 Cache
μ4

μ5
CPU 2

L1 Cache L2 Cache

p42

p24 p45

p35

μ2

μ2

 46

Type 3 with 8 active threads and Core Type 4 with 10 active threads), with 250 each, as given

in Figure 4.3. Core Type 1 may model a CPU with a local memory (with routing probability p12),

routing probability p1m to access the common memory and routing probability p11 for events

triggering thread switch other than memory accesses. Core Type 2 involves an additional server,

modeling, e.g., an L1 cache. Core Type 3 models a two-core cluster with dedicated L1 caches

and local shared L2 cache. Group 4 differs from group 3 just in one of its cores, which runs SMT

CPU instead of a coarse-grained one (i.e., an M/M/m queue and all the rest are M/M/1 queues).

 The parameter settings for each type of cores are given as follows:

 A Common Memory Type = M/M/1

 Service Rate = μm

 Core Type 1−group1 (single job (or thread) class):

 (μ1, μ2) = (0.05, 0.03)

 (p11, p12, p1m) = (0.25, 0.7, 0.05)

 m1=6

 Core Type 2−group 2 (single job class)

 (μ1, μ2, μ3) = (0.2, 0.1, 0.1)

 (p11, p12, p13, p31, p3m) = (0.3, 0.6, 0.1, 0.95, 0.05)

 m1=9

 Core Type 3−group 3 (two job classes)

 (μ1, μ2, μ3, μ4, μ5)= (0.2, 0.2, 0.2, 0.2, 0.1)

 (p11, p13, p22, p23, p31, p35, p42, p45, p5m) =

 (0.2, 0.8, 0.2, 0.8, 0.9, 0.1, 0.9, 0.1, 0.02)

 (m1, m2) = (8, 8)

 Core Type 3−group4 (two job classes)

 (μ1, μ2, μ3, μ4, μ5)= (0.2, 0.1, 0.15, 0.15, 0.1)

 47

 (p11, p13, p22, p23, p31, p35, p42, p45, p5m) =

 (0.2, 0.8, 0.2, 0.8, 0.9, 0.1, 0.9, 0.1, 0.02)

 (m1, m2) = (10, 10)

For the simulation tool, simulation stops when all nodes in all cores execute at least 106

events. For the iteration procedure, ε in the iteration stop condition is set to 0.1 % of Tm(n).

The throughputs for the proposed Queuing Model (QM) and Simulation Tool (ST) at

three different common memory service rates are listed in table 4.1 through table 4.3. Both QM

and ST are done on an Intel Pentium 4 computer. The computation and simulation times are

also listed in the tables.

In each table, there are three columns with different common memory service rates

representing three distinctive cases. In the first case, the memory capacity is larger than the

aggregate capacity of all cores (i.e., the memory is in under loaded condition). In the second

case, their capacities are almost the same. In the last case, the aggregate capacity of all cores

is larger than the memory capacity (i.e., the shared memory is potential bottleneck resource).

Each column has three sub columns, with the first sub column showing the results from QM and

the second from ST and the last the difference between the two. Table 4.1 gives the results for

the above parameter settings. Table 4.2 and 4.3 give the results with some parameter changes

(see the parameter changes at the top of each table).

Table 4.1 All and Each Type’s Throughputs with Various Common Memory Service Time

μm
1.0 0.95 0.90

QM ST Error QM ST Error QM ST Error

λm 9.79E-1 9.64E-1 1.6% 9.50E-1 9.46E-1 0.39% 9.00E-1 9.02E-1 0.24%

λgroup1 1.93E-3 1.87E-3 3.2% 1.81E-3 1.80E-3 0.60% 1.62E-3 1.65E-3 1.8%

λgroup2 7.98E-4 7.91E-4 0.86% 7.92E-4 7.83E-4 1.1% 7.84E-4 7.81E-4 0.43%

λgroup3 6.13E-4 6.10E-4 0.54% 6.13E-4 6.09E-4 0.79% 6.13E-4 6.07E-4 1.1%

λgroup4 5.80E-4 5.79E-4 0.18% 5.80E-4 5.78E-4 0.30% 5.80E-4 5.78E-4 0.41%

Run-
time

0.2 s
4 loops

3h47m
40s 0.5 s

9 loops
3h46m

6s 0.4 s
8 loops

3h47m
23s

 48

Table 4.2 Changes in All Cores in Group 1

 (μ1 = 0.05 −> 0.03, m1 = 6 −> 8)

μm
0.90 0.85 0.80

QM ST Error QM ST Error QM ST Error

λm 8.65E-1 8.59E-1 0.68% 8.50E-1 8.44E-1 0.66% 8.00E-1 8.04E-1 0.45%

λgroup1 1.47E-3 1.45E-3 0.99% 1.42E-3 1.42E-3 0.15% 1.25E-3 1.27E-3 1.8%

λgroup2 7.98E-4 7.93E-4 0.64% 7.87E-4 7.85E-4 0.16% 7.60E-4 7.60E-4 0.16%

λgroup3 6.13E-4 6.09E-4 0.80% 6.13E-4 6.09E-4 0.77% 6.13E-4 6.03E-4 1.7%

λgroup4 5.80E-4 5.80E-4 0.02% 5.80E-4 5.79E-4 0.26% 5.80E-4 5.78E-4 0.40%

Run-
time

0.3s
6 loops

3h46m
55s 1.3s

26 loops
3h47m

34s 0.6s
12 loops

3h45m
10s

Table 4.3 A Change in One Target Core in Group 4

 (L3 cache hit rate 98% −> 90%)

μm
1.0 0.85 0.80

QM ST Error QM ST Error QM ST Error

λm 8.67E-1 8.62E-1 0.39% 8.50E-1 8.47E-1 0.34% 8.00E-1 8.05E-1 0.62%

λgroup1 1.47E-3 1.46E-3 0.82% 1.42E-3 1.42E-3 0.12% 1.24E-3 1.28E-3 4.1%

λgroup2 7.99E-4 7.94E-4 0.91% 7.88E-4 7.86E-4 0.24% 7.58E-4 7.57E-4 0.23%

λgroup3 6.13E-4 6.11E-4 0.45% 6.13E-4 6.09E-4 0.69% 6.13E-4 6.01E-4 2.3%

λgroup4 5.80E-4 5.78E-4 0.36% 5.80E-4 5.79E-4 0.17% 5.80E-4 5.76E-4 0.63%

λgroup4-

target
2.90E-3 2.89E-3 0.42% 2.90E-3 2.89E-3 0.28% 2.90E-3 2.83E-3 2.6%

Run-
time

0.2s
3 loops

3h46m
53s 0.5s

10 loops
3h47m

11s 0.6s
12 loops

3h48m
3s

It turns out that our iterative procedure is highly accurate and fast. For the cases in the

tables 4.1 and 4.3, it takes less than 12 iterations to get the results. For the case in table 4.2,

the number of iterations increases up to 26. For all the cases studied, the technique is three

orders of magnitude faster than ST, finishing within a few seconds. This allows a large design

 49

space (or parameter space) to be scanned numerically. Moreover for all the cases, the results

are consistently within 5 % of the simulation results.

One can further reduce the time complexity by running the iterative procedure only once

for a given set of parameters to get effective Tm. Then study the performance for any target core

in a range of workload parameters based on the closed queuing network in Figure 4.1(the one

on the right) with Tm fixed. One can expect that changing parameters for just one core out of

1000 cores should not significantly affect Tm as is evidenced from the case study in table 4.3

compared with table 4.2. This approximation can further reduce the time complexity by another

two orders of magnitude.

As one can see, with the proposed technique, the closed queuing network models can

now be effectively used to explore the design space in Figure 2.4. A user of our technique may

start with a coarse-grained scanning of the entire space first, which will allow the user to identify

areas of further interests in the space. Then perform a finer grained scanning of the areas of

interests.

4.3.2 Example of Design Space Exploration

In this section, we demonstrate how the proposed solution can be used for comparative

study of different processor architectures in a large workload space.

We consider three different types of processors as given in Figure 4.4, including (a) a

multithreading (MT) processor; (b) a simultaneous multithreading (SMT) processor; and (c) a

multicore processor (MP). The MT processor in Figure 4.4 (a) consists of a coarse-grained CPU,

a local memory with routing probability p12 and a cache with routing probability p13. The SMT

processor in Figure 4.4 (b) is the same as the MT processor except that it runs a SMT CPU,

rather than a coarse-grained one. The MP processor in Figure 4.4 (c) runs three MT cores in a

die in parallel. All three types of processors have a single off-chip memory.

Obviously, we can expect that with the same CPU powers, both SMT and MP

processors will outperform the MT processor performance. Hence, the MT processor provides a

 50

baseline reference against which the performance gain of the other two types of processors can

be measured. Given the complex interactions among threads and cores due to the sharing of

on-chip caches and an off-chip memory and a large workload space, how effective SMT and

MP are able to enhance the system performance over the baseline is a challenging question to

answer. Our modeling technique is particularly viable to tackle such questions.

In our study, we consider two distinct workload types, i.e., CPU-bound (CB) and

memory-bound (MB). For CB, μm = μ1, and for MB, 10 μm = μ1. In other words, for MB, the mean

service time at the off-chip memory is ten times longer than that for CB, meaning that the latter

one has ten times of workload on the memory than the former one.

Figure 4.4 Processor Types

 51

In summary, we explore 12 points in the design space: 2 (CB or MB)*2 (with cache or

without) * 3 (MT, SMT, or MP).

The parameter settings for each type of processors are given as follows:

 MT :

 (μ1, μ2, μ3) = (1, 3, 10), μm = 1 (CB)

 (μ1, μ2, μ3) = (1, 3, 10), μm = 0.1 (MB)

 SMT:

 (μ1, μ2, μ3) = (1, 3, 10), μm = 1 (CB)

 (μ1, μ2, μ3) = (1, 3, 10), μm = 0.1 (MB)

 MP:

 3MT processors in parallel, μm = 1 (CB)

 μm = 0.1 (MB)

 Routing probabilities: (p11, p12, p13, p31, p3m) = (0.1, 0.5, 0.4, 0.8, 0.2)

 Without Cache, routing probabilities will be:

 (p11, p12, p1m) = (0.1, 0.5, 0.4)

 The workloads on all threads have the same statistic characteristics (same

 code path)

All service rates are relative to the CPU service rate (=1). The off-chip and CPUs in MT

and MP are modeled as M/M/1 queue and the CPU in SMT is modeled as M/M/m queue. The

processor models are solved analytically.

 First, we study the overall system throughput performance as a function of the number

of threads for all 12 points. The numerical results are plotted in Fig. 4.5. There are four subplots

corresponding to the four points in the workload and cache dimensions.

 52

Figure 4.5 Throughputs in MT, SMT, and MP with Multidimensional Changes

First, we note that the highest possible throughputs for MT, SMT, and MP are 1, 3, and

3, respectively. They are reached for the case in the lower left plot in Figure 4.5, when the

workload is CB; the cache exists; and the number of threads reaches 8. Moreover, when the

number of threads is less than 8, MP outperforms SMT, which is the case for all other scenarios

as well, at however a much higher cost (three cores versus a single core with three issues per

clock cycle). This means that for the CB workload, cache and multithreading can effectively hide

the memory access latency from the CPUs, which are particularly useful for improving the SMT

processor performance while avoiding higher cost for a multicore solution.

 Second, we look at the other extreme, i.e., the workload is MB and the cache does not

exist, as is the case in the upper right plot in Figure 4.5. In this case, both SMT and MP are

ineffective. The multithreading cannot effectively hide memory latency from the CPUs. Both

multiple issues and multicore do not do better than the baseline solution, i.e., MT, which

 53

however, also performs poorly, reaching only 0.22 throughput performance. In this case, adding

caching can greatly enhance the baseline as well as SMT and MP, as is evident in the lower

right plot in Figure 4.5.

Finally, we note that for the CB workload without caching, memory access latency

cannot be completely hidden by multithreading, resulting in reduced throughput performance for

SMT and MP, as shown in the upper left plot in Figure 4.5. Also in all the cases studied,

multithreading helps to only a certain extent. In other words, having more than eight threads

cannot help further improve the throughput performance for all the cases.

In summary, a system with multithreading and SMT can be good solutions to achieve

high performance at a lower cost than a multicore solution with the number of cores no greater

than the number of simultaneous issues for a SMT CPU. Moreover, for SMT and MP to be

effective under MB workload, shared resources should not pose bottlenecks that might throttle

the overall throughput performance. In addition to multithreading and caching, other

mechanisms such as parallel memory accesses using, e.g., memory banks, or pipelined

memory access, may need to be used to ensure reasonably high throughput.

 As one can see, a user may use our technique to performance a coarse-

grained scanning of the entire design space to identify design points of interest. Then

performing a finer grained scanning using other techniques to further pin down the optimal

design points.

4.4 Related Work

Traditionally, simulation and benchmark testing are the dominant approaches to

evaluate the processor performance. Unfortunately, these approaches quickly become

ineffective as the number of cores increases. Hence, there have been many alternative

approaches in an attempt to address this scalability issue. Statistical simulation (e.g., [28] [29]

[30]) makes the short synthetic trace from a long real program trace and save time by simulating

the short statistic trace. Partial simulation (e.g., [31] [32] [33]) reduces total simulation time by

 54

selectively measuring a subset of benchmarks. The design space exploration based on

intelligent predictive algorithms trained by sampled benchmarks (e.g., [34] [35] [36] [37]) can

predict the performance in the entire design space from simulations of a given benchmark from

a small set of the design space. However, most existing approaches have focused on the

exploration of microarchitectural design space and again quickly become ineffective as the

numbers of cores and threads in the system increase. Moreover, the pace at which the

multicore architectures proliferate makes it difficult for the existing approaches to keep up,

especially in terms of comparative performance analysis of different architectures. Our

approach makes it possible to quickly identify the areas of interests in a large design space at

coarse granularity, in which the existing finer granularity tool can work efficiently to pinpoint the

optimal operation points.

In terms of queuing network modeling, since Jackson’s seminal work [38] in 1963 on

queuing networks of product form, a wealth of results on the extension of his work has been

obtained for both closed and open queuing networks. Notable results include the extensions

from M/M/1 FCFS (First-Come-First-Served) to LCFS (Last-Come-First-Served) preemptive

resume, PS (Processor Sharing), and IS (Infinite Server) queuing disciplines, multiple job

classes (or chains) and class migrations, load-dependent routing and service times, and exact

solution techniques such as convolution and Mean Value Analysis (MVA), and approximate

solution techniques for queuing networks with or without product form. Sophisticated queuing

network modeling tools were also developed, making queuing modeling and analysis much

easier. These results are well documented in standard textbooks, tutorials, and research papers

(e.g., [4] [6] [11] [39]). As a result, in the past few decades, queuing networks were widely

adopted in modeling computer systems and networks (e.g., [39] [40] [41] [42] [43] [44] [45]).

However, very few analytical results are available for multicore processor analysis. The

work in [46] introduced a fast analytical modeling technique for multiprocessors. However, it

didn’t model the multithreading effect, which is at the core of our framework. The work in [7]

 55

modeled the heterogeneous multicore processors with multithreading. But as the number of

multithreaded cores increases, the computational complexity quickly becomes unmanageable

as mentioned in the paper. The work in [47] was able to accurate model a multithreaded

processor using Markovian models. But the model can only be applied to fine-grained CPUs

and hence cannot cover a large design space. In [48], a mean value analysis of a multithreaded

multicore processor is performed. The performance results reveal that there is a performance

valley to be avoided as the number of threads increases, a phenomenon also found earlier in

multiprocessor systems studied based on queuing network models [49][50]. Markovian Models

are employed in [47] to model a cache memory subsystem with multithreading. However, to the

best of our knowledge, the only work that attempts to model multithreaded multicore using

queuing network model is given in [51]. But since only one job class (or chain) is used, the

threads belonging to different cores cannot be explicitly identified and separated in the model

and hence multicore effects are not fully accounted for.

Most relevant to our work is the work in [43]. In this work, a multiprocessor system with

distributed shared memory is modeled using a closed queuing network model. Each computing

subsystem is modeled as composed of three M/M/1 servers and a finite number of jobs of a

given class. The three servers represent a multithreaded CPU with coarse-grained thread

scheduling discipline, a FCFS memory, and a FCFS entry point to a cross-bar network

connecting to other computing subsystems. The jobs belonging to the same class or subsystem

represent the threads in that subsystem. The jobs of a given class have given probabilities to

access local and remote memory resources. This closed queuing network model has product-

form solution.

The above existing application of queuing results to the multithreaded multicore and

multiprocessor systems are preliminary (i.e., within the small cone on the left in Figure 2.4). The

only queuing discipline studied is the FCFS queue, which characterizes the coarse-grained

thread scheduling discipline at a CPU and FCFS queuing discipline for memory or

 56

interconnection network. No framework has ever been proposed that can cover a design space

anywhere near the size as the one in Figure 2.4 and that allow system classes to be analyzed

over the entire space.

Moreover, no existing queuing network model is capable of characterizing the dynamics

of a program in terms of thread-level parallelism (i.e., different code segments use different

numbers of threads). Although the traditional Fork-Join approach [6] can capture such effect, it

cannot be applied to multicore systems simply because it assumes that different parallel code

branches are handled by different processors, rather than different threads belonging to the

same processor or core. Another approach being proposed [6], which is amenable to queuing

analysis, is to use a hybrid open-and closed queuing network with two job classes. The job

class running in the closed loop emulates a fixed level of parallelism, whereas the job class in

the open loop models the dynamics of thread-level parallelism. The problem with this approach

is that it is difficult to match the model with the statistics of parallelism of the actual code.

 57

CHAPTER 5

CONCLUSION

This dissertation defined, developed, and tested a theoretical framework for design

space exploration of multicore systems. In addition, a fast and accurate thread-level simulation

tool was developed, that allows many-core processor performance to be tested quickly for given

points in a large design space. This has made the testing of our theoretical framework for

many-core processors possible. The novelty of the framework lies in the fact that it works at the

thread level and it studies the general properties of system classes over the entire space.

Hence, it is free of scalability issues. One additional feature of our framework is its ability to be

applied to any system, including real-time, embedded, multicore, manycore, and communication

systems.

This dissertation is expected to provide much needed techniques and tools to help

better understand MPs and effectively aid the analysis, design, and programming of MPs. Our

approach is expected to strengthen the awareness in the research community and industry of

the importance of analytical approaches in guiding the design of robust complex systems. The

queuing modeling techniques developed in the dissertation will make a contribution to the

advancement of applications of queuing theory.

 58

APPENDIX A

SAMPLE CODE PATHS

 59

Table A.1 Code Path for Packet Count (IXP 1200)

Task

instructions
in code

segment
(t m,k-t m-1,k)

Type of I/O
Access

Unloaded latency
τ j,k

Poll to get control of
receive state machine 11 Voluntary yield 0

Check receive ready flag 4 FBI CSR read 15
Issue receive request and
move packet from MAC to

RFIFO
11 FBI CSR write

& IX bus read 84

Check receive control
register 1 FBI CSR read 14

Check for proper reception
& Allocate buffer 9 SRAM read 21

Move packet to buffer 25 SDRAM read 50
Increment packet count 9 Scratch read 14
Increment byte count 3 Scratch write 17
Release buffer handle 2

total 75 215

Table A.2 Code Path for ATM/Ethernet IP Forwarding (IXP 1200)

Task
instructions in
code segment

(t m,k-t m-1,k)

Type of I/O
Access

Unloaded
latency
τ j,k

Get port ready (CSR read) 7 FBI read 12
Start receiving packet from MAC to

RFIFO 5 FBI write & IX
Bus receive 92

Move packet from IX Bus to RFIFO -
Switch context for completion of packet

reception
4 FBI write &

IXBus receive 76

Read Control Register 2 FBI read 12
Get buffer descriptor from SRAM

(memory address to store packet) -
Switch context for completion of SRAM

access

11 0

If a buffer is available read the packet
from RFIFO to DRAM 17 RFIFO read 15

Complete reading to buffer from RFIFO 14 RFIFO read 20
Verify TTL, Check sum 18 SRAM read 15

IP route lookup 27 0
Get TRIE pointer 7 SRAM read 15
Get TRIE pointer 5 SRAM read 15
Get TRIE pointer 5 SRAM read 15
Get TRIE pointer 5 SRAM read 15

 60

Wait for SDRAM access completion -
Switch context for completion of SDRAM

access
4 0

Forward to an ATM port 1 SDRAM write 46
Forward to an ATM port 15 SRAM write 17

Enqueue ATM AAL5 PDU (calculate # of
bytes to pad, write AAL5 trailer) - Switch
context for completion of SDRAM access

34 SDRAM read 47

Write PDU - Switch context for completion
of SDRAM access 9 SRAM write 14

Enqueue ATM – begin 12 SRAM read 19
Enqueue ATM – complete - Switch

context for completion of SRAM access 20 SRAM write 20

Miscellaneous 6
Total 228 465

Table A.3 Code Path for Layer-2 Filtering (IXP 1200)

Task
instructions in
code segment

(t m,k–t m-1,k)

Type of I/O
Access

Unloaded
latency
τ j,k

Check CSR for data in the port 4 FBI read 15
Write control word to CSR and start

receiving packets 6 FBI write &FBI
read 84

Read recive control information (to check
status of packet receive operation from port) 1 FBI read 15

Swap context and wait to receive buffer
address for packet from SRAM 11

Read from SRAM (3 consecutive memory
locations) 20 SRAM read 23

Read from RFIFO 6 RFIFO read 26
Hash source address and destination

address 22 RFIFO read 37

SRAM lookup (Source Address (SA),
Destination Address (DA) and hash value) 9 ScratchPad

write 19

Read the forwarding table for DA in SDRAM
(4 long words) 14 SRAM read 47

Check for Bridging and isolate DA from
forwarding table entry 9 SDRAM read 25

Read the forwarding table for DA in SDRAM
(4 long words) 20 SRAM read 57

Do Layer 2 packet filtering (Packet filtering
rules obtained from forwarding table in

SRAM)
43 SDRAM read 48

Check for EOP and Packet discard bit
information in packet receive state 10 SRAM write 21

Enqueue packet (2 long words) 5 SRAM read 23
If empty queue create a queue for

enqueuing packet 14 SRAM write 22

 61

Miscellaneous 5
total 199 462

Table A.4 Code Path for Generic IPv4 Forwarding (IXP 1200)

Task
instructions in
code segment

(tm,k – tm-1,k)
I/O τ j,k

Check receive ready flags 5 FBI read 14

Move packet from IX Bus to RFIFO 8 FBI write & IX Bus
receive 76

Read receive control information 2 FBI read 19
Wait for buffer allocation in

SDRAM; get the descriptor from
SRAM

11 SRAM read 17

Read 3 Quad words from RFIFO
into ME for IP validation 16 RFIFO read 18

Read 2nd 32 byte to SDRAM(in the
allocated buffer) 15 RFIFO read 22

IP lookup 40 SRAM read 17
IP lookup 7 SRAM read 17
IP lookup 5 SRAM read 17

Go next hop information from
SDRAM 7 SDRAM read 47

Write packet descriptor to SRAM
(after associating it with a TX port) 16 SRAM write 18

Read queue descriptor from SRAM
(for enqueue operation) 4 SRAM read 22

Write the packet descriptor to
SRAM(to the TX queues

associated with the TX port)
15 SRAM write 20

Miscellaneous 6
total 157 324

Table A.5 Code Path for Diffserv POS (IXP2400)

Task
instructions in
code segment

(tm,k – tm-1,k)
I/O τ j,k

PPP decapsulation, PPP classifier and
DSCP classifier 28 SRAM read 88

6-tuple classifier 35 Hash operation 102
Get hash table entry using a hash key

as an index 4 SRAM read 93

Free the hash entry and check if the IP
is valid 35 SRAM Test and

add 103

Update test_byte_count 3 yield 0
DSCP Marker and IPv4 forwarder 110 SRAM read 97

 62

Allocate transfer registers and store
packet into them 60 SRAM & DRAM

write 48

Send the packet to the next block
through scratch ring 22 Scratch put &

get 87

Read the packet header and cache it in
local memory 15 DRAM read 148

Total 312 766

Table A.6 Code Path for MPLS (IXP2400)

Task

instructions
in code

segment
(tm,k – tm-1,k)

I/O τ j,k

Reads packet header from SDRAM and
caches aligned header to local memory 17 DRAM read 156

PPP decapsulation, PPP classifier and
DSCP classifier 97 SRAM read 84

First Lookup on destination 20 3SRAM reads 83
Second Lookup 11 SRAM read 74

Third Lookup 9 SRAM read 76
Read and process the Next hop

information 10 SRAM read 78

Process MPLS packet, forward ipv4 and
write back IP header to DRAM and write

back meta-data to SRAM
126 DRAM &SRAM

write 38

Put ring and sink data to next block and
get the data from the previous block for
packet availability for MPLS processing

17 Scratch put & get 77

Total 311 666

Table A.7 Code Path for IPv4 Ethernet (IXP2400)

Task
instructions in
code segment

(tm,k – tm-1,k)

Type of I/O
access

Unloaded
Latency
τj,k

Reads packet header from DRAM and
caches aligned header to local memory 16 DRAM read 116

Ethernet frame destination MAC filtering,
decap and classification.

IPv4 Forwarder: IPv4 total length verification,
IPv4 Checksum verification, Ipv4 Address
verification, Extract source address. Fetch

directed broadcast table entry, which is in the
SRAM

100 SRAM read 100

Perform lookup on destination address. IPv4
Trie5 lookup. It uses maximum 5 SRAM

references. First Lookup
20 SARM read 84

Second Lookup 11 SRAM read 78

 63

Third Lookup 9 SRAM read 81
Fourth Lookup 9 SRAM read 79
Fifth Lookup 9 SRAM read 79

Read and process the Next hop information 10 SRAM read 84
Sets the next hop id, Set the fabric port. This

more like a blade ID, IPv4 update header
(Decrement TTL, update checksum and place

the packet in destination buffer).
Write back IP header to DRAM. Write back

meta-data to SRAM.

90

DRAM write
& SRAM

write
45

Check ring and sink data with (buffer handle,
last buffer in the chain and queue number) for

next block(Queue manager).Check the ring
from the previous block (Packet Receive

stage) for packet availability for Ethernet/IP
processing.

21 SCRATCH
put & get 84

Total 295 830

64

REFERENCES

[1] E. Johnson and A. Kunze, “IXP 1200 Programming,”, Intel Press.

[2] Cavium Octeon CN38xxx (http://www.cavium.com/) and SUN UltraSPARC T2

(http://www.sun.com).

[3] H. Jung, M. Ju, H. Che, and Z. Wang, “A Fast Performance Analysis Tool for Multicore,

Multithreaded Communication Processors,” in Proc. of the 11th IEEE High Assurance

Systems Engineering Symposium (HASE), Dec. 2008.

[4] “Teletraffic Engineering,” ITU-D Study Group 2, 2002.

[5] D. Towsley, “Queuing Network models with state-dependent routing,” Journal of ACM, Vol.

27, No. 2, pp. 323-337, Apr. 1980.

[6] G. Bolch, S. Greiner, H. de Meer and K. S. Trivedi, “Queueing Networks and Markov

Chains,” John Wiley, 2nd edition, 2006.

[7] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, “Single-ISA

Heterogeneous Multi-Core Architectures for Multithreaded Workload Performance,” in

Proceedings of the 31st Annual International Symposium on Computer Architecture

(ISCA’04), 2004.

[8] Intel, IXP1200 developer workbench, provided by IXA SDK 2.x

[9] Intel, IXP2400 developer workbench, provided by IXA SDK 3.x

[10] H. Che, C. Kumar, and B. Menasinahal, “Fundamental Network Processor Performance

Bounds,” the 4th IEEE International Symposium on Network Computing and Applications

(IEEE NCA05), 2005.

65

[11] I. F. Akyildiz and A. Sieber, “Approximate Analysis of Load Dependent General Queuing

Networks,” IEEE Transactions on Software Engineering, Vol. 14, No. 11, pp. 1537-1545,

Nov. 1988.

[12] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an Infrastructure for Computer System

Modeling, “ IEEE Computer, Vol. 35, No. 2, 2002.

[13] M. Rosenblum, E. Bugnion, S. Devine, S. A. Herrod, “Using the SimOS Machine Simulator

to Study Complex Computer Systems,” Modeling and Computer Simulations, Vol. 7, No. 1,

pp. 78-103, 1997.

[14] E. Kohler, R. Morris, B. Chen, J. Janotti, and M. F. Kaashoek, “The Click Modular Router,”

ACM Transactions on Computer Systems, Vol. 18, No. 3, pp. 263-297, Aug. 2000.

[15] Z. Huang, J. P. M. Voeten, and B. D. Theelen, “Modeling and Simulation of a Packet Switch

System using POOSL,” Proceedings of the PROGRESS workshop 2002, pp. 83-91, Oct.

2002.

[16] W. Xu and L. Peterson, “Support for Software Performance Tuning on Network Processors”,

IEEE Network, July/Aug. 2003.

[17] Y. Luo, J. Yang, L. N. Bhuyan, and L. Zhao, “NePSim: A Network Processor Simulator with

a Power Evaluation Framework,” IEEE Micro, Special Issue on Network Processors for

Future High-End Systems and Applications, Vol. 24, No. 5, pp. 34 – 44, Sept/Oct. 2004.

[18] P. Paulin, C. Pilkington, and E. Bensoudane, “StepNP: A System-Level Exploration Platform

for Network Processors,” IEEE Design & Test of Computers, Vol. 19, No. 6, pp. 17-26, Dec

2002.

[19] “Advanced Software Development Tools for Intel IXP2xxx Network Processors,” Intel White

Paper, Oct. 2003.

[20] L. Thiele, S. Chakraborty, M. Gries, S. Kiinzli, “Design Space Exploration of Network

Processor Architectures,” Network Processor Design: Issues and Practices, Editors: P.

66

Crowley, M. Franklin, H. Hadimioglu, P. Onufryk, Morgan Kaufmann Publishers, October

2002.

[21] J. Yao, Y. Luo, L. Bhuyan, and R. Iyer, “Optimal Network Processor Topologies for Efficient

Packet Processing,” in Proc. of IEEE GLOBECOM, Nov. 2005.

[22] R. Ramaswamy, N. Weng, and T. Wolf, “Analysis of Network Processing Workloads,” in

Proc. of IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS), pp. 226-235, Austin, TX, March 2005.

[23] N. Weng and T. Wolf, “Pipelining vs Multiprocessors – Choosing the Right Network

Processor System Topology,” in Proc of Advanced Networking and Communications

Hardware Workshop (ANCHOR 2004) in conjunction with ISCA 2004, June 2004.

[24] L. Yang, T. Gohad, P. Ghosh, D. Sinha, A. Sen, and A. Richa, “Resource Mapping and

Scheduling for Heterogeneous Network Processor Systems,” in Proc. of Symposium on

Architecture for Networking and Communications Systems, 2005.

[25] J. Emer, et. al., “Asim: A Performance Model Framework,” Computer Magazine, pp. 67, Feb.

2002.

[26] M. Vachharajani, N. Vachharajani, D. Penry, J. Blome, and D. August, “The Liberty

Simulation Environment,” Version 1.0.

[27] F. Baskett, K.M. Chandy, R.R. Muntz and F. Palacios, “Open, Closed, and Mixed Networks

of Queues with Different Classes of Customers”, Journal of the ACM 22, No. 2, pp. 248–260,

Apr. 1975.

[28] D. Genbrugge and L. Eeckhout, “Chip Multiprocessor Design Space Exploration through

Statistical Simulation”, IEEE Transactions on Computers, Vol. 58, No. 12, pp. 1668-1681,

Dec. 2009

67

[29] C. Hughes and T. Li, “Accelerating Multi-Core Processor Design Space Evaluation Using

Automatic Multi-Threaded Workload Synthesis,” Proc. IEEE Int’l Symp. Workload

Characterization (IISWC), pp. 163-172, Sept. 2008.

[30] S. Nussbaum and J.E. Smith, “Statistical Simulation of Symmetric Multiprocessor Systems,”

Proc. 35th Ann. Simulation Symp., pp. 89-97, Apr. 2002.

[31] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. “Automatically Characterizing Large

Scale Program Behavior.” Intl. Symp. On Architectural Support for Programming Languages

and Operating Systems, pp. 45-57, Dec. 2002.

[32] R. Wunderlich, T. F. Wenish, B. Falsafi, and J. C. Hoe. “SMARTS: Accelerating

Microarchitectural Simulation via Rigorous Statistical Sampling” Intl. Symp. on Computer

Architecture, pp. 84-95, June 2003.

[33] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe, “TurboSMARTS: Accurate

microarchitecture simulation sampling in minutes,” SIGMETRICS Performance Evaluation

Review,33, 1, pp.408–409, 2005

[34] E. Ipek , S. A. McKee , K. Singh , R. Caruana , B. R. de Supinski, and M. Schulz, “Efficient

architectural design space exploration via predictive modeling,” ACM Transactions on

Architecture and Code Optimization, Vol.4 No.4, pp.1-34, Jan. 2008

[35] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using Predictive Modeling for Cross-

Program Design Space Exploration in Multicore Systems”, in Proc. of the 16th International

Conference on Parallel Architecture and Compilation Techniques (PACT), Sept. 2007

[36] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. “A Predictive Model for Superscalar

Processor Performance.” Intl. Symp. on Microarchitecture, pp. 161-70, Dec. 2006.

[37] B. C. Lee and D. M. Brooks. “Accurate and Efficient Regression Modeling for

Microarchitectural Performance and Power Prediction.” Intl. Conf. on Architectural Support

for Programming Languages and Operating Systems, pp 185-194, Oct. 2006.

68

[38] J. R. Jackson, “Jobshop-like Queuing Systems,” Management Science, Vol. 10, pp. 131-

142,1963.

[39] A. Thomasian and P. F. Bay, “Integrated Performance Models for Distributed Processing in

Computer Communication Networks,” IEEE Transactions on Software Engineering, Vol. SE-

11, No.10, pp. 1203-1216, Oct. 1985.

[40] P. P. Chen, “Queuing Network Model of Interactive Computing Systems,” in Proc. of the

IEEE, Vol. 63, No. 6, June 1975.

[41] D. Ghosal and L. Bhuyan, “Performance Evaluation of a Dataflow Architecture,” IEEE

Transactions on Computers, Vol. 39, No. 5, pp. 615 – 627, May 1990.

[42] N. Lopez-Benitez and K. S. Trivedi, “Multiprocessor Performability Analysis,” IEEE

Transactions on Reliability, Vol. 42, No. 4, pp. 579-587, Dec. 1993.

[43] S. S. Nemawarkar, R. Govindarajan, G. R. Gao, and V. K. Agarwal, “Analysis of

Multithreaded Multiprocessors with Distributed Shared Memory,” in Proc. of the Fifth IEEE

Symposium on Parallel and Distributed Processing, Dec. 1993.

[44] B. Smilauer, “General Model for Memory Interference in Multiprocessors and Mean Value

Analysis,” IEEE Transactions on Computer, Vol. 34, No. 8, pp. 744-751, Aug. 1985.

[45] M. Woodbury and K. G. Shin, “Performance Modeling and Measurement of Real-Time

Multiprocessors with Time-Shared Buses,” IEEE Transactions on Computers, Vol. 37, No. 2,

pp.214-224, Feb. 1988.

[46] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vermon, and D. A. Wood, “Analytic Evaluation of

Shared-memory System with ILP Processors,” in Proceedings of the 25th Annual

InternationalSymposium on Computer Architecture (ISCA’98), 1998.

[47] X. E. Chen and T. M. Aamodt, “A First-Order Fine-Grained Multithreaded Throughput

Model,” in Proc. of the 15th IEEE International Symposium on High-Performance Computer

Architecture (HPCA), Feb. 2009.

69

[48] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and U. C. Weiser, “Many-Core vs.

Many-Tthread Machines: Stay Away From the Valley,” IEEE Computer Architecture Letter,

vol. 8, no. 1, pp. 25-28, Jan. 2009.

[49] A. Agarwal, “Performance Tradeoffs in Multithreaded Processors,” IEEE Transactions on

Parallel and Distributed Systems, Vol. 3, No. 5, pp. 525-539, Sept. 1992.

[50] R. Saavedra-Barrera, D. Culler, and T. von Eicken, “Analysis of Multithreaded Architectures

for Parallel Computing,” in the Proc. of the 2nd Annual ACM Symposium on Parallel

Algorithms and Architectures, pp. 169-178, 1990.

[51] V. Bhaskar, “A Closed Queuing Network Model with Multiple Servers for Multithreaded

Architecture,” Journal of Computer Communications, Vol. 31, pp. 3078-89, 2008.

[52] H. Jung, M. Ju, and H. Che. “A Theoretical Framework for Design Space Exploration of

Manycore Processors,” in the Proc. of the 19th IEEE Annual International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), pp.117-125, July 2011.

70

BIOGRAPHICAL INFORMATION

Hun Jung is currently a Ph.D. Student in the Department of Computer Science and

Engineering at the University of Texas at Arlington. He received his B.S. degree from Korea

University in Seoul, South Korea in 2002, his M.S. degree from State University of New York at

Buffalo, New York in 2005, and his Ph.D. degree from the University of Texas at Arlington in

2011. His current research interest is in the area of performance design and analysis for

Multicore processors including communication processors. He is currently a member of IEEE

society.

