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ABSTRACT

A COMPUTATIONAL FRAMEWORK FOR HUMAN-CENTERED

MULTIMODAL DATA ANALYSIS

VANGELIS METSIS, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professors: Heng Huang and Fillia Makedon

Human-Centered computing defines a field of study in which computational

processes affect the human being, either through ubiquitous and pervasive use of de-

vices or any effect that improves the human condition. Human-Centered Computing

applications face serious challenges in the handling of data collection, modeling, and

analysis. Traditionally, the analysis of different aspects of human well-being derives

from a variety of non-interrelated methods which has made it difficult to correlate

and compare the different experimental findings for an accurate assessment of the

contributing factors.

This dissertation describes new algorithms that enable more accurate and effi-

cient multimodal data analysis of Human-Centered computing applications in order

to improve decision-making in healthcare. In particular, this work provides a theoret-

ical framework for multimodal and inter-related data analysis and demonstrates the

theory in different cases where the purpose is to (a) monitor the health condition of

the human subject, and (b) to improve the quality of life through the understanding

of a subject’s behaviors.
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Our computational framework can efficiently analyze and interpret data of dif-

ferent modalities coming from the same human subjects. Emphasis is put on the

evaluation of feature selection and classification techniques and their use for hetero-

geneous data fusion in order to improve the accuracy of the obtained results. Our

experimental results show that the same basic methods can be used to analyze data

regarding both the physiological and behavioral properties of a human subject, and

to correlate the different findings into more meaningful and reliable information.
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CHAPTER 1

INTRODUCTION

1.1 Problem

As the field of Computer Science advances, the focus of the researchers shifts

from simply providing enhanced services to the humans, to improving their overall

well being and quality of life by putting the humans themselves at the center of

attention of the research and development process. In other words there is a trend

towards what we call Human-Centered Computing [1]. Human-Centered computing

defines a field of study in which computational processes affect the human being,

either through ubiquitous and pervasive use of devices or any effect that improves the

human condition. In this era of ubiquitous and mobile computing the aim of pervasive

assistive technologies is to provide for independent living and improve the quality of

life of people. The emphasis of ongoing research projects has been on providing the

necessary services and integrating the following types of system goals:

1. the ability to recognize fast and accurately important changes to the environ-

ment, changing needs, events and patterns through on-site or remote monitoring

using mobile and static sensors and software tools for automated data collection,

fusion and analysis of heterogeneous environmental/health/behavioral data;

2. early event detection for the prevention of accidents, emergency response and

decision support that helps make decisions as to the next step to take, alerts to

generate or the actuation/activation of assistive devices; and

3. seamless access to home and external virtual and physical resources through

an invisible and intelligent computing infrastructure that allows the human to
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control and make changes to his/her physical/digital environment. The latter

assumes the existence of easy to use communication interfaces with persons,

objects and entities inside and outside the home.

Human-Centered Computing applications face serious data collection, model-

ing, analysis and synthesis challenges. One such challenge is to enable the efficient

modeling and analysis of a plethora of multi-modal data collected from diverse human-

based activities. Traditionally, the analysis of different aspects of human well-being

has been based on a variety of non-interrelated methods which has made it difficult to

correlate and compare the different experimental findings for an accurate assessment

of the contributing factors. Tools are needed to make it possible to correlate, for ex-

ample, the clinical state with the behavioral, the genotype with the phenotype or the

psychosocial state with brain activation or neural condition as early and accurately

as possible. This challenge is particularly important in pervasive environments rich in

different types of sensors where the aim is at monitoring human activities implicitly.

1.2 Motivation

To date, there have been significant advancements in specific areas of Computer

Science such as: Sensor Networks [2], Wireless Communications [3], Databases [4],

Pattern Recognition and Machine Learning [5], Data Mining [6], Computer Vision [7],

Robotics [8] and other areas which can facilitate the creation of a smart interactive

environment adapted to assisted living. However, most previous works do not take

into consideration the specific properties of the data originating from human behavior

and physiology. Putting humans to the center of attention poses new challenges

regarding security and privacy, intrusiveness and the special needs of groups with

disabilities.

2



There is a need for a framework that will exploit the advancements in the differ-

ent research areas by taking into consideration the special requirements deriving from

direct interaction with humans and suggesting new advancements, where necessary,

to meet these requirements. When monitoring human beings, it is very common to

simultaneously obtain input from a variety of sensing devices. The amount of gener-

ated data is usually large and noisy. Therefore, methods to process the data, discard

the noise and extract meaningful information are a necessity. Moreover, the different

data modalities are not irrelevant to each other and in order to extract meaningful

information from them there is a need for methods to combine or fuse these data or

the features of interest extracted from them. Finally, the extracted information has

to be of type that can be interpreted by the experts which in this case are physicians

or doctors. That means the proposed computational methods have to be coupled

with knowledge from Bioinformatics and Medical Informatics.

In assistive environments, the data collected come from two main sources: (a)

the function of the monitored subject’s body and (b) the activities they perform

over time. The data collected from the first source are used to monitor the subject’s

health condition whereas the data collected from the second source are used to analyze

behavioral patterns which in turn can either be related with certain health conditions

or can just be used to facilitate everyday activities. The collected data can be analyzed

either in real-time or off-line in order to extract useful information about the subjects

being monitored. In addition, each of the above data major sources is further divided

into a number of different data modalities each of which may require a different

approach in order to become meaningful. These different modalities, although at first

may seem unrelated, usually carry complementary information about their sources,

which if strategically combined may become much more useful.

3



Figure 1.1. Architecture of the proposed Computational Framework for
Human-Centered Multimodal Data Analysis.

1.3 Proposed work

In this work we present a computational framework to efficiently collect, analyze

and interpret data of different modalities coming from the same human subjects. We

use computational methods and algorithms originating from the field of Machine

Learning and Pattern Recognition to discover useful patterns about human health

condition and behavior as well as other methods that facilitate the use of Pervasive

Technologies to the service of humans. The generated results include the biological

meaning of our findings and can be easily interpreted by the physicians. We focus

on the evaluation of feature selection and classification techniques and their use for

heterogeneous data fusion in order to improve the accuracy of the obtained results

and we show that the same basic methods can be used to analyze data regarding

both the health condition of the monitored subject and their behavioral patterns. In

addition, our methods take into consideration the specificalities of monitoring human

4



subjects and manage to be minimally invasive and privacy preserving. Finally, we

examine the properties that will guarantee the success of such a framework in real

life applications and we propose metrics to quantify the degree to which each of these

properties achieves its goals. In summary, we suggest a framework that can unify

the monitoring process and the analysis of data of different sources and modalities

coming from human subjects. Figure 1.1 gives a general overview of the proposed

Computational Framework for Human-Centered Multimodal Data Analysis.

The rest of this dissertation is organized as follows. Chapter 2 gives an overview

of our work in human-centered data collection methodologies. In chapter 3 we present

our work in feature selection from human-centric data. The methodology for fusion

of different modalities of human-centric data is described in chapter 4. Chapter 5

presents our evaluation framework. Finally, chapter 6 summarizes and concludes this

dissertation.
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CHAPTER 2

COLLECTION OF HUMAN-CENTERED MULTIMODAL DATA

2.1 Introduction

Data input to information processing systems has been a problem as old as

the problem of computing itself. In the past, data input types were limited to small

number of different formats, such as text coming from a keyboard, or encoded data

coming from card readers. With the introduction of multimedia devices, the range of

input types started to expand and included audio, video and various other signals.

More recently, the family of input devices has been extended by new members such

as touch screens and various static or mobile sensors. Together with the the range

of input types, there has been a big expand in the amount of data collected from

different sources. This created a challenge not only in processing and storing the col-

lected data, but also extracting meaningful information from them. Researchers have

invested their efforts in creating better methods for both collecting data accurately

and efficiently and analyzing the collected data.

The main focus of this dissertation is the development of methods to analyze

multimodal data coming from human subjects, however, in this chapter, we also

present a variety of methods that we have developed to collect the data that we

have used in some of our experiments. Although the data modalities that we are

interested in come from human subjects, the subjects themselves are not involved in

the data input process. That means that the data need to be automatically collected

and analyzed with minimal or no manual human effort. The collected data come

6



either from the natural interaction of the subjects with their environments, or from

measurements regarding their physiological condition.

2.2 Collection of Human Behavioral Data

The collection of behavioral data from human subjects is a challenging task

due to a number of reasons such as, the difficulty to anticipate and facilitate all

the different states of the environment, the dynamic nature and conditions of the

environments where the human beings live in and the sensing capabilities of the

sensors/devices used to collect the data. The collected data can be limited to a

specific task performed in a small predefined area, for example monitoring sleeping

in bed, or can be more general and span a large percentage of the environment used

by an average user during their daily routine activities, for example monitoring the

exact location of a human inside an apartment.

At the Heracleia Human-Centered Laboratory1, we have set up a simulated

Assisted Living apartment. The apartment is covered by a variety of sensors that are

used to monitor daily activities and provide assistive services to elderly or disabled

people. Figure 2.1 shows a graphical representation of the apartment and an example

of sensors used to detect the user’s location at every moment.

In the remaining of this chapter, we will describe examples of sensor types

and methodologies that we have developed to collect human behavioral data. In the

next chapters, we will apply our methods to analyze some of these data and extract

meaningful information from them. We will start by presenting methods tailored for

data collection of some specific type of activity performed by the user and we extend

to methods that handle more general (or high level) activities.

1For more information visit: http://heracleia.uta.edu/
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(a) (b) (c)

Figure 2.1. A graphical representation of the simulated assisted living apartment at
Heracleia Lab. (a) 3D representation. (b) 2D representation. (c) Examples of

sensors placed in the apartment.

2.2.1 Collection of Data to Monitor Sleep Patterns2

The monitoring of sleep patterns is of major importance for various reasons

such as, the detection and treatment of sleep disorders, the assessment of the effect of

different medical conditions or medications on the sleep quality and the assessment of

mortality risks associated with sleeping patterns in adults and children. Sleep moni-

toring by itself is a difficult problem due to both privacy and technical considerations.

The proposed system uses a combination of non-invasive sensors to collect data about

sleep patterns: a contact-based pressure mattress and a non-conntact 3D image ac-

quisition device, which can can complement each other. To evaluate our system we

used real data collected in Heracleia Lab’s assistive living apartment.

For the needs of our experiments we collected data from 7 different individuals

simulating their sleep habits. Each individual lied on the bed for a period of time and

performed the actions that they would normally perform if they went to bed. That

involved getting in bed, staying still for periods of time in different postures, changing

body postures, moving parts of the body like the arms or the legs and getting out of

the bed. The different actions performed during that period of time were recorded

2For more information about this project, the reader can refer to section 4.3
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using 2 different sensors. The first one was a bed pressure mat (see section 2.2.1.1)

that we put under the sheets, and the second one was a Microsoft Kinect sensor

(see section 2.2.1.2) that we mounted on the ceiling. The recorded data were then

manually annotated according to the various classes of interest, such body posture,

motion occurrence, etc. In section 4.3 we will explain our methodology to analyze

sleep patterns.

2.2.1.1 Data collected from FSA bed pressure mat

The FSA bed mat system produced by Vista Medical Ltd provides a 1920mm×

762mm sensing area which contains an array of 32× 32 pressure sensors. Each of the

sensors can capture a measurement in the range 0 to 100 mmHg (1.93 PSI) with a

scan frequency of up to 5 Hz. The measurements can be recorded over a period of

time and can be exported as a set of time stamped vectors containing the values of

each of the 1024 pressure sensors for each time stamp. To make visualization easier

we can consider each of these vectors as a frame of a video. Each of the sensors can

be considered as pixel of a gray-scale image with an intensity ranging from 1 to 100.

Thus each frame can be considered as a 32 by 32 pixel image. Figure 2.2 illustrates a

visualization example of the pressure values captured in one frame. The color coding

is just a convention to facilitate visualization.

2.2.1.2 Data collected from Kinect

Kinect is a motion sensing input device designed by Microsoft for the Xbox

360 video game console [9]. Kinect outputs 3 different data streams, RGB video

stream, depth sensing video stream and audio. The video output frame rate is 30

Hz. The RGB video stream uses 8-bit VGA resolution (640 × 480 pixels), while the

monochrome depth sensing video stream is in VGA resolution (640×480 pixels) with

9



Figure 2.2. An example of a subject lying on his side on the pressure mat (top) and
the measurement values obtained (bottom).

11-bit depth, which provides 2,048 levels of sensitivity. In our experiments we used

only the depth sensing video stream. The depth sensor consists of an infrared laser

projector combined with a monochrome CMOS sensor, which captures video data

in 3D under any ambient light conditions. That feature makes the kinect usable

even in very low lighting conditions, which is usually the case during the night sleep.

Furthermore, the 3D input that we get regarding the subject’s body posture is more

informative compared to the 2D information that we could get from the RGB video.

The value of each pixel in a depth video stream frame is the distance, in millimeters,

of the corresponding surface part of the object from the sensor.

10



0

20

40

60

80

100

120

0

50

100

150

200

250

600

800

1000

1200

Figure 2.3. A 3D representation of the input obtained by the Kinect depth sensor.

2.2.2 Collection of Data to Monitor Medication Intake3

It is estimated that half the people taking prescription medication fail to stick

to the regimen laid out by their doctor. As a solution to that problem, we have built

the SmartDrawer, a medicine cabinet system that can track the usage of medication

and prompt the user to remind them to take their prescription [10]. Benefits from

such a system include increasing the quality of life for the patient, the ability to assist

in the paperwork and other duties of a caregiver, and of course to verify information

on drug consumption for research to study trends and effects. Such effects could be

related to other cases of interest monitored at an assisted living home. For, example

what are the effects of taking a particular medication to sleep quality, or what is

the response of the patient to a given combination of drugs as opposed to a different

combination.

3For more information about this project, the reader can refer to [10].
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Radio Frequency Identification (RFID) is an emerging technology, being used

in monitoring including healthcare. We apply different types of RFID tags to monitor

drug taking and its impact in an assistive environment. Compared to other active

Wireless Sensor Networks (WSNs), RFID tags do not need a battery, recharging, and

so have no battery power loss problems. RFID tags are tiny in volume, and can be

embedded into different objects. In this work we have built an RFID-based prototype

application in an assistive environment called ”Smart Drawer”, which tracks medicine

taking for the elderly. The system, not only provides reminders and alerts to the users

but also logs their overall activity related to medication intake, which can be later

used by caregivers or researchers to deduce useful conclusions regarding the effect

of the medication to different individuals. Figure 2.4 presents an overview of the

different components of the system.

2.2.3 Large-Scale Sensor Data Collection4

In contrast to what happens in cases the area to be monitored is limited and

the locations and functionalities of the sensors to be used known in advance, in cases

where we need to cover a larger area, like a whole apartment or a section of a hospital,

there is very high uncertainty as to what sensors to use, where to place them and

how to switch between active, power-save or other available modes. At the setting

of an assisted living home for example, one can have static sensors which can cover

one specific area, or mobile sensors, mounted for example at the waist of a human

subject or at a mobile robotic platform, or there can be sensors that alter their area

of coverage by panning and tilting. In such cases, to ensure optimal monitoring

and data collection there is a need for an adaptive cooperative setup of sensors that

can dynamically change to adapt to changes in the environment. To deal with such

4For more information about this project, the reader can refer to [11].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4. The smart drawer system. (a) State Machine of Smart Drawer Behavior.
(b) Smart Drawer System Architecture. (c) Sample interface to be used by the
administrator. (d) RFID reader and RFID tags on a bottle. (e) The maximum

sensing distance between the different types of tags and the RFID reader. (f) Touch
screen interface with sound alarms for the patient.
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a challenge, we have proposed a methodology which allows for automated Sensor

Placement and Coordination via Distributed Multi-Agent Cooperative Control [11].

The goal is to maximize the amount of information collected from the environ-

ment, given the limited amount of resources that the total of the available sensors can

provide, and at the same time to be tolerant to failures of individual sensors by us-

ing a decentralized approach that re-organizes their placement in case of failures. We

tackle this problem by employing a decentralized multi-agent coordination framework

using message passing and the Max-Sum algorithm [12] for building and maintaining

a common picture of the area to be monitored. We show that by representing each

sensor as an independent agent which can take decisions individually and at the same

time can affect the decisions of its neighboring sensor-agents we can provide a robust

and efficient system for the monitoring of life-critical environments such as assistive

environments or governmental infrastructures.

2.2.3.1 The Extended Max-Sum Decentralised Coordination Algorithm (EMSDC)

To deal with the problem of optimal placement, we created an extended version

of the Max-Sum Decentralised Coordination (MSDC) [12] algorithm. It is a message

passing algorithm applied on a factor graph. Factor graphs are graphical models that

are used to represent functions of the form:

f(x1, x2, . . . , xn) =
∏
i

φi(X
i) (2.1)

where X i are subsets of x1, x2, . . . , xn and φi(X
i) = p(xi|parents(xi)).

A factor graph has two types of nodes. Variable nodes, that represent variables

of the environment and factor nodes, that represent the factors φi(X
i). Edges are

only allowed between variable nodes and factor nodes. For example, the distribution
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Figure 2.5. Example of a factor graph.

p(a, b, c, d) = ψ1(a, c)ψ2(b, c)ψ3(c, d) can be represented by the factor graph in Figure

2.5.

Note that we can have directed edges on factor graphs. Factor graphs with

directed edges have the advantage that we can easily infer the assumed dependencies

between variables.

EMSDC, unlike MSDC, takes into account not only the state of the agents

but also the location of the agents (represented by utility - factor pairs). The main

idea is that each agent has two types of states, task and location. This means that

instead of having one factor graph, we have two, where at the second one variables

represent agents’ locations and utilities measure how good these locations are for each

agent (typically a measure of the overlap with its neighbours multiplied by a gaussian

function). We then run the MSDC two times, once for each factor graph, i.e. once for

task selection and once for placement. As is the case with task selection, the agents

exchange preferences on each other’s location instead of their own actual location.

Each agent then tries to push its neighbours away, to the direction that maximises

each neighbour’s utility. MSDC’s performance has already been proven in [13]. Our
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Figure 2.6. Example of messages being exchanged in the factor graph.

algorithm’s running time is twice the running time of MSDC, but asymptotically the

complexities are the same.

2.2.3.2 Optimal Placement with Gaussian Map

In most real world applications, when monitoring an area, there are important

and not that important sections of that area. For example in an assistive living

apartment, we probably do not want to monitor the inside of a closet or a storage area

rarely used, and instead we want to focus on high traffic areas, such as the bathroom

or the kitchen. In our model we represent this using a 3-dimensional Gaussian map.

For our experiments we used the Gaussian map (as viewed from above) depicted

in Figure 2.7, and run the algorithm for 10 to 150 agents. Figure 2.7 shows the

percentage of the covered area versus the number of agents. We can see that the

total area covered rises rapidly in the lower dimensions and slower in the higher

dimensions. This is because the agents are trying to cover the high interest areas

(red) first, leaving others (blue) less covered. This might be a desirable feature, since
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Figure 2.7. Percentage of coverage versus number of agents when using a Gaussian
map.

we may have some overlap in the red areas, but this also means redundancy and

increased fault tolerance. It is possible to tune the algorithm and put more weight

on the overlap between the agents and less on the effect of the Gaussian map. This

way we will have less overlap in the red areas and the agents will spread more.

2.2.3.3 System response to environmental changes

An interesting problem is how the system will respond to a change in the en-

vironment. To model this, we use two different Gaussian maps, depicted in Figure

2.8, where the second map (middle image) has one more “important” region. This

could be an event like a fire in the kitchen or a person falling in the bathroom. The

first image shows the initial random placement of the sensors, before the EMSDC

algorithm has been run. The percentage of coverage in this case is 39.1% The second

(middle) image shows the coverage of the area after the execution of the EMSDC

algorithm but before the occurrence of the critical event. The coverage in that case

is 68.5%. We then changed the map, at which point the coverage suddenly became
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Figure 2.8. Gaussian map coverage. The left image shows a random starting state
of the system when using a Gaussian map. The middle image shows the state of the

system after the execution of the EMSDC algorithm. The right image shows the
final state of the system after a change in the Gaussian map has taken place and the

system has converged to a new solution.

60.7% since an important area was not covered. After the algorithm ran for 100 cycles

the new resulting coverage increased to 64.2%. The rightmost image of Figure 2.8,

shows the final position of the agents. We can clearly see that the agents adapt very

well to the change in their environment. Note that it is not possible to achieve the

initial percentage of coverage with the same number of sensors, since after the map

change there is a bigger amount of “important” regions to be covered.

2.2.3.4 Fault Tolerance

The two main benefits of using multi agent systems are decentralised control,

meaning that each agent performs small tasks that can be performed by low cost

devices, and fault tolerance. Here we prove that EMSDC performs very well in the

presence of failures.

To test the fault tolerance of the system, we compared it to a static system,

i.e. a system where the sensors cannot move to compensate for failures. We run

EMSDC using 100 agents, calculated the coverage after 0% to 40% agents have failed

randomly and compared the results with the coverage of EMSDC in the presence of

failures. To simulate failures, we use a model where each sensor has a probability p

to fail at each cycle. After that point the sensor becomes useless either because it
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Figure 2.9. Percentage of coverage versus percentage of agents failed, for a static
and dynamic system. We can see that the dynamic system adapts well to failures.

cannot take measurements or because it cannot transmit/receive data. We can see

the results in Figure 2.9. The very small decrease in coverage for EMSDC means that

as the agents in important sections fail, others come and take their place. Contrary if

the placement of the sensors could not be re-organized after some sensors have failed,

important regions could remain uncovered and that would result in a rapid decrease

in percentage of coverage. As we can see from the graph, with 10% of sensors failed

we already have a 13% difference in the coverage between the static approach and

our dynamic system.

2.2.4 Higher Level Data Collection5

When dealing with data coming from a number of different sensors simultane-

ously, sometimes it does not make sense to examine each data source separately. The

collected data coming from individual sources are only useful if they are examined

5For more information about this work, the reader can refer to [14].
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longitudinally and are correlated temporally or spatially with data collected from

other sources. For example, if would like to determine the trajectory of a person go-

ing from their bed to their refrigerator which is located in another room, we will need

to examine all the sensors that were triggered along the path followed by the person

from the source to the destination. Moreover, in many cases we are not interested in

logging all the sequences of events that occur over time, but only those which would

require our attention. We call each individual sensor activation an “event” and each

sequence of events and “episode”. Our goal is to identify and log abnormal episodes,

or in other words, episodes that would require our attention.

In this section, we suggest a method [14] that detects abnormal behavior using

wireless sensor networks. We model an episode as a series of events, which includes

spatial and temporal information about the subject being monitored. We define

a similarity scoring function that compares two episodes taking into consideration

temporal aspects. To determine if an episode is abnormal or not we compare it to a

database of predefined normal and abnormal episodes. We propose a way to determine

the threshold to divide episodes into two groups that minimizes wrong classification.

Weights on individual functions that consist the similarity function are determined

experimentally so that they can produce the best results in terms of area under curve

in receiver operating characteristic (ROC) curve.

2.2.4.1 Definitions

An event is a 3-tuple which includes a sensor ID, a time stamp, and a duration.

We let ei be an event, where i indicates the order of activated sensors.

ei = (S, T,D) (2.2)

20



where S is a sensor ID that can represent the location of the sensor or an individual

action, T is a time stamp when the sensor is activated, and D is a duration, which is

time difference after one sensor is activated until the next sensor is activated.

An episode is a series of events. We let Ei be an episode, where i indicates the

index and define it as a sequence.

Ei = (e1, e2, ..., en) (2.3)

The order of events in an episode is determined by the timestamp T of ei. For

example, when a person walks from a bedroom to a kitchen through a hallway, three

sensors may react by detecting change of light intensity. In this case, we have three

events, e1, e2, and e3, which are corresponding to a sensor at a bedroom, a sensor on

a hallway, and a sensor at a kitchen, respectively.

We define abnormal behavior as “an episode which has not occurred before at

all, an episode which was rarely occurred before, or an episode which was not close

enough to any of the ones that have previously occurred.” But this is not enough to

define abnormal behavior since we do not consider temporal aspects in episodes. First,

we need to consider time and add it to the definition that “an episode whose sequence

of events are similar to the previous one, but the time of the day that the episode

happened is very different from the previous one.” Second, we need to consider the

duration of each event. Same sequences of events that happened at similar times can

have different duration. An example includes that a person goes to a bathroom at

1:00 am, and usually stays less than 10 minutes, but if the same person stays at the

bathroom for longer time, it should be regarded as an abnormal behavior. Therefore,

we need to add it to the definition that “an episode whose sequence of events are
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similar and whose time it happened is close to the previous one, but whose duration

for each event is not close enough to the previous one.”

To handle each of the above cases and reach a final consensus as to if an episode

is abnormal or not we define a set of different similarity sub-functions si for each

case, and then we combine them to a global similarity function S by giving them

appropriate weights.

S(E1, E2) =
n∑
i

wisi (2.4)

where, E1 and E2 are arbitrary episodes, whose lengths are the same, wi is the weight,

and si is an individual similarity measuring function. Every si is normalized so that

it can have a value between 0 and 1. The final decision if an episode is abnormal or

not is based on that score. For more information about how the weights wi, and the

individual similarity functions si are calculated, as well as the experimental results

regarding the effectiveness of this method, there reader can refer to our work in [14].

2.2.5 Ensuring the Quality of the Collected Data6

Building a large-scale sensor network of a set of heterogeneous sensing devices

can pose serious challenges with regard to the processing and storage of the generated

data. Especially in a dynamically changing network where sensors, can be activated

or added according to the temporary, local needs, the amount of data generated a

certain parts of the network can be unpredictable. In such cases, if the processing

or transmission capacity of network is exceeded, data can be lost or the system can

completely fail. To facilitate for such special situations and ensure the quality of

the data collected by the system, we have proposed the use of an Ontology Centered

Middleware which will handle the cooperation among the different devices or appli-

6For more information about this work, the reader can refer to [15].
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Figure 2.10. An example ontology centered middleware architecture.

cations running in the network [15]. Our goal is to maximize the utilization of the

data generated by the network while at the same time providing quality of service,

to avoid data loss or unacceptable delays in case of real-time applications. In this

context, the ontologies are used as a means of representing and exchanging specifi-

cations regarding client requirements about data generation and transmission rates,

queries and expected response times from other client/server applications, as well as

for high-level data transmission. Figure 2.10 gives an illustration of the architecture

of the proposed middleware.

In order to allow an ontology centered middleware architecture to provide QoS

support to context-aware applications, we need to provide an infrastructure to allow

applications to describe their structure and query patterns; this is generally referred

to as QoS specification. We characterize an application as ultimately consisting of

queries, which have end-to-end delay requirements. There are many factors that

influence the end-to-end delay of an application’s queries. Most of them can be

handled through heuristics and multi-resource reservation, such as those to manage

network bandwidth, memory usage, task scheduling, and I/O. However, ontology

centered middleware requires the use of an inference engine, where it is not possible
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to determine the inference time unless the size of the data set used is known. In order

to know how much data will be used by a query, it is necessary to establish restrictions

on how data is generated for the ontologies, and their corresponding properties. Each

property in an ontology can have a restriction on how many data entries can be

associated with that property. We call this the cardinality of a property. This posses

a conflict of interest, as the data restrictions that are necessary for one context aware

application might not be suitable for another context-aware application. A possible

solution would be to have both applications rely on a different set of ontologies with

different cardinality constraints for their properties, but that would defeat the purpose

of an ontology centered middleware architecture, whose greatest value is a unified

model for knowledge and data representation. To solve this problem we propose

a trade-off where we relax the unity of the data in order to allow some level of

QoS support. This component allows the client to have some level of participation

on the process of converting raw data into ontological data. This is done in order

for different applications to be able to modify the same sensor data and produce

different data while storing it using the same knowledge representation. While this

might seem counter-intuitive, the goal is to make a fine-grained distinction in the

different ontological properties used by the applications, where a single property can

be treated as a set of different ¡property, cardinality¿ couples by the middleware’s

inference engine. The challenge is to make this process completely transparent to the

client application. The basic flow of our proposed middleware is shown in 2.11. For

more information about the proposed architecture the reader to our work in [15].

2.3 Collection of Human Genomic and Physiological Data

Traditionally, in order to understand the functionality of the human body and

deal with possible abnormalities, the physicians have to examine data coming from the
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Figure 2.11. The proposed QoS negotiation mechanism.

human physiology. Human physiology [16] is the science of the mechanical, physical,

bioelectrical, and biochemical functions of humans in good health, their organs, and

the cells of which they are composed. In recent years, there has been a shift of

focus towards genomics and their effect in human physiology and behavior. There is

strong evidence that many diseases or physiological abnormalities originate in genomic

abnormalities or alterations. Researchers have tried to discover correlations between

genomic and physiological abnormalities and combine these two different sources of

information for better diagnosis, prognosis and disease treatment. In other words,

there have been research efforts to connect the human genotype with the phenotype7.

7According to Medterms.com, Genotype is the genomic constitution (the genome) of a cell, an
individual or an organism. The genotype is distinct from its expressed features, or phenotype. The
genotype of a person is her or his genomic makeup. It can pertain to all genes or to a specific gene.
By contrast, the Phenotype results from the interaction between the genotype and the environment.
It is the composite of the characteristics shown by the cell, individual or organism under a particular
set of environmental conditions.
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In this work we will show how genotypic data can be used together with phys-

iological/phenotypic data for disease prognosis and treatment monitoring. Further-

more, we will see that the same computational methods that we have used to analyze

behavioral data, can be also used to analyze genomic and physiological data, thus

creating a common framework to analyze different modalities of data coming from

the same human subjects. In most cases the raw data obtained by medical measure-

ments are noisy and redundant. In addition, there is no obvious way of directly using

the data to extract information regarding the examined disease. In the next chapters

we will see methods to extract features that can be used for disease classification and

select the most important features related to the disease. To reduce noise and avoid

over-fitting a feature selection step is necessary before training and classification. An

extra advantage of the feature selection process is that the majority of the irrelevant

features are discarded and the few remaining can be indicators of possible biomarkers

related to the observed disease.

The collection of genomic and physiological data in most cases requires special

medical laboratory equipment, therefore it is out of the scope of this work to propose

new methods for doing so. However, since in this work we propose methods for

processing and analyzing such data, in the next sub-sections, we will give a brief

description of the data that we used in our experiments and the method that is

usually used by physicians to collect such data. Our experiments focus on methods

for cancer diagnosis, prognosis and progression monitoring. Following we present the

data format and collection methods of cancer-related data.

2.3.1 HRMAS 1H MRS Data

Magnetic resonance spectroscopic (MRS) studies of brain biomarkers can pro-

vide statistically significant biomarkers for tumor grade differentiation and improved
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Figure 2.12. Ex vivo HRMAS 1H MR spectrum of a 5.8 mg glioblastoma multiforme
(GBM) tissue biopsy. Val, Valine; OH-but, OH-butyrate; Lac, Lactate; Ala,

Alanine; Lys, Lysine; Glx, β-CH2 of Glutamine and Glutamate; Glu, Glutamate;
Gln, Glutamine; Cr, Creatine; Tau, Taurine; Myo, Myo-inositol; Hypo,

Hypotaurine; Scy, Scyllo-inositol; Gly, Glycine; β-CH of aliphatic aminoacids; PE,
PhosphoEtanolamine; Thr, Threonine; PC, PhoshoCholine; Cho, Choline. The

insert shows the choline containing compounds region.

predictors of cancer patient survival [17]. Ex vivo high-resolution magic angle spin-

ning HRMAS proton 1H MRS of unprocessed tissue samples can help interpret in vivo

1H MRS results, to improve the analysis of micro-heterogeneity in high-grade tumors

[18]. Furthermore, two-dimensional HRMAS 1H MRS enables more detailed and un-

equivocal assignments of biologically important metabolites in intact tissue samples

[19]. In Figure 2.12, an ex vivo HRMAS 1H MR spectrum of a 1.9 mg anaplastic gan-

glioglioma tissue biopsy is shown together with metabolites values that correspond

to each frequency of the spectrum.
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2.3.2 Gene Expression Data

According to MedTerms.com8, Gene Expression, is the translation of informa-

tion encoded in a gene into protein or RNA. Expressed genes include genes that are

transcribed into messenger RNA (mRNA) and then translated into protein, as well

as genes that are transcribed into types of RNA such as transfer RNA (tRNA) and

ribosomal RNA (rRNA) that are not translated into protein. Gene expression is a

highly specific process in which a gene is switched on at a certain time and “speaks

out.” Figure 2.139 shows an example of how the double helix DNA is transcribed into

RNA and how later the RNA is translated into proteins which control the functions

of the cell.

A major focus in cancer research is to identify genes, using DNA-microarrays,

that are aberrantly expressed in tumor cells, and to use their aberrant expression

as biomarkers that correspond to and facilitate precise diagnoses and/or therapy

outcomes of malignant transformation [20]. In our study, the Affymetrix gene-chip

U133Plus R©DNA microarray of the complete human genome was used to perform

transcriptome profiling on each specimen. The raw expression data were analyzed

for probe intensities using the Affymetrix GeneChip expression analysis manual pro-

cedures; and the data were normalized using current R implementations of RMA

algorithms [21].

2.3.3 Array Comparative Gene Hybridization (aCGH) Data

Array comparative genomic hybridization (aCGH) is a recently introduced tech-

nique for identifying chromosomal aberrations in human diseases throughout the hu-

man genome. aCGH can be used for detection and mapping of copy number abnor-

8http://www.medterms.com/script/main/art.asp?articlekey=3564
9Image borrowed from Wikipedia.org.
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Figure 2.13. An example of how Genes are expressed by being transcribed into
RNA, and subsequently translated into proteins.

malities which can be associated with certain disease phenotypes. Specific patterns

in DNA copy number variations (CNVs) can be associated with certain disease types

and can facilitate prognosis and progress monitoring of the the disease. This, in turn,

can facilitate the localization of critical genes related to specific diseases which can be

used as biomarkers for disease diagnosis, prognosis and response to therapy [22, 23].

A set of chromosomal aberrations occurring consistently when a certain disease

is observed can indicate that there is correlation between those aberrations and the

observed disease. Such patterns have been utilized by researchers [24, 25, 26, 27, 28,

22, 29, 30, 31, 32, 33] for cancer detection and typing. In general, the number of

probes of a high-resolution CGH can span from hundreds to thousands. Contrary,

only a few genes are associated with most diseases.

Figure 2.14 visualizes a cancerous sample which contains colorectal cancer with

liver metastasis. In 2.14b we can see the original log-ratios of the DNA copy number

variations throughout the chromosome. In 2.14c we can see the pointwise averaging of

all computed profiles after the sample has been segmented. During segmentation, each

single-sample signal is divided into regions of constant copy number, called segments

[26, 34]. Finally, 2.14d shows 4 different heatmaps obtained from the same sample.
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The first line is the heatmap of the original log-ratios; the last is the heatmap of

the averaged profile (pointwise averaging across the outputs of all algorithms); and

the lines in the middle are the heatmaps corresponding to the data discretized and

smoothed by different algorithms (CBS [35], CGHseg [31] and cghFLasso [36]).
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(a)

(b)

(c)

(d)

Figure 2.14. The images in this figure visualize the CNVs of a sample of colorectal
cancer with liver metastasis. (a) Full male human genome. (b) Original data.

Chromosome numbers are given on top and bottom of the image. Log-ratios are
indicated by both the y-axis and the color (green indicates regions of chromosomal
loss and red indicates regions of chromosomal gain). (c) Summary data (Pointwise

averaging of all computed profiles). (d) CNV Heatmap. The first line is the
heatmap of the original log-ratios; the last is the heatmap of the averaged profile

(pointwise averaging across the outputs of all algorithms); and the lines in the
middle are the heatmaps corresponding to the data discretized and smoothed by

different algorithms (CBS [35], CGHseg [31] and cghFLasso [36]). To visualize the
data we used the CGHweb tool (http://compbio.med.harvard.edu/CGHweb/).
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CHAPTER 3

EFFICIENT FEATURE SELECTION IN HUMAN-CENTERED DATA

3.1 Introduction

The data collected from human subjects can be used in several ways in order

to extract useful information regarding the well-being of the examined subject. Ma-

chine Learning is a scientific discipline concerned with the design and development of

algorithms that allow computers to evolve behaviors based on empirical data, such

as from sensor data or databases. The advantage of Machine Learning lies int he fact

that it allows us to analyze huge datasets and extract knowledge with minimal human

intervention. In the general case, machine learning algorithms base their decisions on

the properties of a set of features regarding the analyzed data. These features can

either be discovered automatically or defined manually. However, in most cases, out

of the big set of features that can be extracted from a dataset, only a small subset

is related to the examined problem. Identifying that subset is crucial to the success

of the outcome of the application. Using the full set of available features, not only

increases the complexity of the problem and requires more computational resources,

but also decreases the accuracy of the result due to added noise.

In this chapter we attempt to tackle that problem by proposing a method to

identify those features which are the most related to our problem. These methods

are known as Feature Selection methods. A variety of feature selection methods

have been proposed in the past [37]. What differentiates our proposed method from

existing ones is that it is more suited to human-centered data and it gives better

accuracy when used for Supervised Learning compared to other methods. In the
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following sections of this chapter we present our proposed feature selection method

and show its superiority when applied to array comparative genomic hybridization

(aCGH) data.

3.2 Hybrid Sparsity Regularization (HSR) for Feature Selection in aCGH Data

Array comparative genomic hybridization (aCGH) is a newly introduced method

for the detection of copy number abnormalities associated with human diseases with

special focus on cancer. Specific patterns in DNA Copy Number Variations (CNVs)

can be associated with certain disease types and can facilitate prognosis and progress

monitoring of the the disease. Machine learning techniques can be used to model

the problem of tissue typing as a classification problem. Feature selection is an im-

portant part of the classification process and several feature selection methods have

been examined in the different domains where classification has been applied. In this

work we present a novel feature selection method based on sparsity regularization

which shows a promising performance when used for classification of aCGH data. To

validate the performance of the proposed method we experimentally compare it with

existing feature selection methods on four publicly available aCGH datasets.

Chromosomal aberrations occur in many diseases. For example, in cancer, in-

creases or decreases in DNA copy number can alter the expression levels of tumor

suppressor genes and oncogenes resulting in tumor genesis. Array comparative ge-

nomic hybridization (aCGH) is a recently introduced technique for identifying chro-

mosomal aberrations in human diseases throughout the human genome. aCGH can

be used for detection and mapping of copy number abnormalities which can be asso-

ciated with certain disease phenotypes. This, in turn, can facilitate the localization of

critical genes related to specific diseases which can be used as biomarkers for disease

diagnosis, prognosis and response to therapy [22, 23].
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Machine Learning techniques can be used to discover patterns in DNA copy

number variations associated with certain diseases. A set of chromosomal aberrations

occurring consistently when a certain disease is observed can indicate that there is

correlation between those aberrations and the observed disease. Such patterns have

been utilized by researchers [24, 25, 26, 27, 28, 22, 29, 30, 31, 32, 33] for cancer

detection and typing. In the general case, the task to accomplish is the classification

of tissue samples as cancerous or non-cancerous, and extensively their classification

to a specific cancer type.

In the setting of supervised learning, the copy number changes of particular

locations (probes) of the genome are used as features for training and classification.

In general, the number of probes of a high-resolution CGH can span from hundreds to

thousands. Contrary, only a few genes are associated with most diseases. Moreover,

the number of available samples to be used for training is usually only a few dozens.

To reduce noise and avoid over-fitting a feature selection step is necessary before

training and classification. An extra advantage of the feature selection process is that

the majority of the irrelevant features are discarded and the few remaining can be

indicators of possible biomarkers related to the observed disease.

Feature selection has already been shown to significantly benefit the classifica-

tion accuracy of aCGH data [26, 27, 30]. In this work we introduce a novel feature

selection method based on sparsity regularization that produces higher accuracy com-

pared to the methods that have been previously tested on aCGH data. Our method

is inspired by multi-task learning and feature selection [38, 39], which have developed

a similar model of `2,1-norm regularization to couple feature selection across tasks.

Previous works have examined sparsity regularization in dimensionality reduction

and feature selection [40, 41]. `1-norm regularization can be used by regression or

SVM models to perform feature selection by shrinking the coefficients of the irrele-

34



vant features to zero. However, the number of features that can be selected by this

method is bounded by the number of the samples in the training dataset. `2-norm

regularization does not have that limitation but is sensitive to outliers and results

in decreased classification accuracy when used. Nie et.al. [42] proposed the use of

joint `2,1-norm minimization on both loss function and regularization. Unlike `2-norm

which is sensitive to outliers, `2,1-norm can effectively remove outlying values. In ad-

dition, a `2,1-norm is performed to select features across all data points with joint

sparsity. That means that each feature has small scores for all or has large scores

over all data points.

In this work we propose a hybrid regularization method which uses two separate

regularization terms involving `2,1-norm and `1-norm. This is particularly important

in multi-class classification problems which contain a big number of classes because

a feature, for example, that is important for one class but not important for all

others get a low total score (coefficient) a be lost in the feature selection process.

Our method ensures that such features will at least get a high coefficient value for

the classes that they are important to and have more chances to be included in the

final set of selected features. Each regularization term is assigned a different weight

according to the specifics of the dataset. We also propose an efficient algorithm to

solve the objective function of our method.

To test the performance of our proposed method we conducted experiments on

four different, publicly available aCGH datasets. We compare with other methods

that have been recently proposed for feature selection on aCGH data and present

the classification accuracy results using SVM [43] and Logistic Regression [44, 45] as

classifiers.
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3.3 Feature Selection Methodology

3.3.1 Hybrid Sparsity Regularization (HSR)

Feature selection methods can be divided into wrappers, filters and embedded

methods. Wrapper methods utilize the learning machine of interest as a black box

to select the subset of features that give the best predictive accuracy. Filter methods

select features based on discriminant criteria that rely on the characteristics of data,

independent of any classification algorithm. Filter methods are limited in scoring the

predictive power of combined features, and thus have shown to be less powerful in

predictive accuracy as compared to wrapper methods, whereas wrapper methods are

much slower and cannot be efficiently applied to large datasets. Embedded methods

perform feature selection as part of the training process and are usually specific to

given learning machines [46].

In this work we will introduce a filter feature selection method based on least

square regression with `2-norm minimization on the loss function and hybrid `2,1-norm

and `1-norm regularization.

Least square regression has been widely used for classification. Given training

data {x1, x2, . . . xn} ∈ Rd and the associated class labels {y1, y2, . . . yn} ∈ Rc, tradi-

tional least square regression solves the following optimization problem to obtain the

projection matrix W ∈ Rd×c and the bias b ∈ Rc:

min
W,b

n∑
i=1

‖W Txi + b− yi‖22. (3.1)
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For simplicity, the bias b can be absorbed into W when the constant value 1 is added

as an additional dimension for each data point xi, (1 ≤ i ≤ n). Thus the problem

becomes:

min
W,b

n∑
i=1

‖W Txi − yi‖22. (3.2)

To control variance and prevent overfitting we need to add one or more regu-

larization terms to the above equation. Several regularizations are possible:

R1(W ) = ‖W‖2,

R2(W ) =
c∑

j=1

‖wj‖1,

R3(W ) =
d∑

i=1

‖wi‖02,

R4(W ) =
d∑

i=1

‖wi‖2.

R1(W ) is the ridge regularization which suffers from the existence of outliers in the

dataset due to high variance. R2(W ) is the LASSO regularization which has the

desired property of giving different weights to a feature across different classes c

but produces very sparse solutions, especially when the number of samples is small.

R3(W ) and R4(W ) penalize all c regression coefficients corresponding to a single

feature as a whole. Although the `0-norm of R3(W ) is the most desirable [47], it

is difficult to compute, so in this work we use R4(W ) instead which gives similar

results, in combination with R2(W ), thus creating a hybrid regularization term which

combines the desired properties of both while reducing the non-desired properties of

each at the same time.
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By adding the two regularization terms our problem becomes:

min
W

J(W ) =
n∑

i=1

‖W Txi − yi‖2 + γ1R2(W ) + γ2R4(W ) (3.3)

or

min
W

J(W ) = ‖W Txi − yi‖2 + γ1‖W‖1 + γ2‖W‖2,1. (3.4)

Although solving this problem seems difficult as all terms are non-smooth, we

will show in the next section that is can be efficiently solved. For short we will call this

objective function “L2R21R2”. The optimal value of the parameters γ1 and γ2 can be

determined experimentally from the dataset. The resulting values in the projection

matrix W will determine the optimal coefficient values for each attribute xi. To select

the best k features we can just sort the features by decreasing coefficient value and

keep the top k of them. Figure 3.1 shows a visualization of the coefficient table W after

the application of HSR feature selection method on aCGH dataset 3 (see section 3.4).

In the visualized gray-scale heat-map, each row represents a class and each column

represents a feature. The gray-scale color of each square represents the calculated

coefficient value of the feature for the corresponding class. Lighter color means the

coefficient has a positive value, darker color means negative coefficient value, gray

color means a value close to 0. Large absolute values for each square indicate strong

correlation for the corresponding feature-class pair. The overall importance of each

feature is measured by calculating the sum of the absolute values of the feature for

all classes. In the figure, the features are sorted from left to right by total importance

value.
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Figure 3.1. Visualization of the coefficient table W after the application of HSR
feature selection method on aCGH dataset 3. Each row represents a class, each

column represents a feature. The grayscale color of each square represents the final
coefficient value of the feature for the corresponding class. Lighter color means the
coefficient has a positive value, darker color means negative coefficient value, gray
color means a value close to 0. The features are sorted from left to right by total

importance value.

3.3.2 An Efficient Algorithm to Solve L2R21R2

Although our objective function is convex, it is difficult to be solved. Because

both regularization terms are non-smooth. It was generally felt that the `2,1-norm

minimization problem is much more difficult to solve than the `1-norm minimization

problem. Existing algorithms usually reformulate it as a second-order cone program-

ming (SOCP) or semidefinite programming (SDP) problem, which can be solved by

interior point method or the bundle method. However, solving SOCP or SDP is com-

putationally very expensive, which limits their use in practice. Here, we propose an

efficient algorithm to solve our objective function in Eq. (3.4).

The Eq. (3.4) can be written as:

min
W

Tr(XTW − Y )T (XTW − Y ) + γ1 ‖W‖1 + γ2 ‖W‖2,1 . (3.5)

Taking the derivative w.r.t wi(1 ≤ i ≤ c), and setting it to zero, we have

XXTwi −Xyi + γ1Diwi + γ2D̃wi = 0, (3.6)
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where Di(1 ≤ i ≤ c) is a diagonal matrix with the k-th diagonal element as 1
2|wki|

, D̃

is a diagonal matrix with the k-th diagonal element as 1
2‖wk‖2 . Thus,

wi = (XXT + γ1Di + γ2D̃)−1Xyi. (3.7)

Note that Di and D̃ depend on W and thus is also unknown variables. We pro-

pose an iterative algorithm to solve this problem, and the algorithm is described in

Algorithm 1.

Input: X, Y
Initialize W 1 ∈ Rd×c, t = 1 ;
while not converge do

1. Calculate the diagonal matrices D
(t)
i (1 ≤ i ≤ c) and D̃(t), where the

k-th diagonal element of D
(t)
i is 1

2|w(t)
ki |

, the k-th diagonal element of D̃(t)

is 1
2‖(w(t))k‖2

;

2. For each i(1 ≤ i ≤ c), w
(t+1)
i = (XXT + γ1D

(t)
i + γ2D̃

(t))−1Xyi ;
3. t = t+ 1 ;

end

Output: W (t) ∈ Rd×c.
Algorithm 1: Hybrid Sparsity Regularization Algorithm

3.3.3 Algorithm Analysis

We will prove that the above algorithm converges to the global optimum.

Lemma 3.3.1 ‖w‖2 −
‖w‖22

2‖w0‖2
≤ ‖w0‖2 −

‖w0‖22
2‖w0‖2

Proof : Obviously, −(‖w‖2 − ‖w0‖2)2 ≤ 0, thus we have

−(‖w‖2 − ‖w0‖2)2 ≤ 0 (3.8)

⇒ 2 ‖w‖2 ‖w0‖2 − ‖w‖
2
2 ≤ ‖w0‖22 (3.9)

⇒ ‖w‖2 −
‖w‖22

2‖w0‖2
≤ ‖w0‖2 −

‖w0‖22
2‖w0‖2

(3.10)
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which completes the proof. �

Theorem 3.3.2 The algorithm decreases the objective value in each iteration.

Proof : According to Step 2 in the algorithm, we have

W (t+1) =

min
W

Tr(XTW − Y )T (XTW − Y )

+ γ1

c∑
i=1

wT
i D

(t)
i wi + γ2TrW

T D̃(t)W,

(3.11)

therefore we have

Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+γ1

c∑
i=1

(w
(t+1)
i )TD

(t)
i w

(t+1)
i + γ2Tr(W

(t+1))T D̃tW (t+1)

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+γ1

c∑
i=1

(w
(t)
i )TD

(t)
i w

(t)
i + γ2Tr(W

(t))T D̃(t)W (t)

⇒ Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+γ1

d∑
i=1

c∑
j=1

(w
(t+1)
ij )2

2
∣∣∣w(t)

ij

∣∣∣ + γ2

d∑
k=1

∥∥(w(t+1))k
∥∥2
2

2
∥∥(w(t))k

∥∥
2

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+γ1

d∑
i=1

c∑
j=1

(w
(t)
ij )2

2
∣∣∣w(t)

ij

∣∣∣ + γ2

d∑
k=1

∥∥(w(t))k
∥∥2
2

2
∥∥(w(t))k

∥∥
2
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⇒ Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+γ1

d∑
i=1

c∑
j=1

(w
(t+1)
ij )2

2
∣∣∣w(t)

ij

∣∣∣ −
∣∣∣w(t+1)

ij

∣∣∣+
∣∣∣w(t+1)

ij

∣∣∣


+γ2

d∑
k=1

(∥∥(w(t+1))k
∥∥2
2

2
∥∥(w(t))k

∥∥
2

−
∥∥∥(w(t+1))k

∥∥∥
2

+
∥∥∥(w(t+1))k

∥∥∥
2

)
≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+γ1

d∑
i=1

c∑
j=1

∣∣∣w(t)
ij

∣∣∣+
(w

(t)
ij )2

2
∣∣∣w(t+1)

ij

∣∣∣ −
∣∣∣w(t)

ij

∣∣∣


+γ2

d∑
k=1

(∥∥∥(w(t))k
∥∥∥
2

+

∥∥(w(t))k
∥∥2
2

2
∥∥(w(t))k

∥∥
2

−
∥∥∥(w(t))k

∥∥∥
2

)

⇒ Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+γ1

d∑
i=1

c∑
j=1

∣∣∣w(t+1)
ij

∣∣∣+ γ2

d∑
k=1

∥∥∥(w(t+1))k
∥∥∥
2

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+γ1

d∑
i=1

c∑
j=1

∣∣∣w(t)
ij

∣∣∣+ γ2

d∑
k=1

∥∥∥(w(t))k
∥∥∥
2

⇒ Tr(XTW (t+1) − Y )T (XTW (t+1) − Y )

+γ1

∥∥∥W (t+1)
∥∥∥
1

+ γ2

∥∥∥W (t+1)
∥∥∥
2,1

≤ Tr(XTW (t) − Y )T (XTW (t) − Y )

+γ1

∥∥∥W (t)
∥∥∥
1

+ γ2

∥∥∥W (t)
∥∥∥
2,1
.

The last but one step holds according to Lemma 3.3.1. Therefore, the algorithm

decreases the objective value in each iteration. �

In the convergence, W (t), D
(t)
i (1 ≤ i ≤ c) and D̃(t) will satisfy the Eq. (3.7).

As the problem (3.5) is a convex problem, satisfying the Eq. (3.7) indicates that W
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is a global optimum solution to the problem (3.5). Therefore, the Algorithm 1 will

converge to the global optimum of the problem (3.5). Because we have closed form

solution in each iteration, our algorithm converges very fast.

3.3.4 Competitive Feature Selection Methods

To validate the effectiveness of the proposed method on feature selection from

aCGH data we compared its performance with existing feature selection methods

which have either been effectively used for aCGH feature selection recently or have

shown good performance on other related bioinformatics tasks. Specifically, in our

experiments we compared with Maximum Influence Feature Selection (MIFS) [30],

Relief-F [48], Information Gain (IG) and χ2-statistic (chi-squared) [49] as imple-

mented in Weka [50] and Minimum Redundancy Maximum Relevance (mRMR) found

in [51].

3.4 Datasets

In order to assess the performance of our proposed method for feature selection

in aCGH data, we conducted extensive classification experiments where we compared

our method with other state-of-the-art feature selection methods that have been re-

cently proposed for aCGH feature selection. For our experiments we used 4 different

publicly available aCGH datasets.

Dataset 1: The first dataset contains a total of 75 samples coming from sub-

jects with oral squamous cell carcinoma (SCC) (14 TP53 mutant samples) and healthy

subjects (61 wildtype samples). The dataset is available as part of the supplementary

material of the publication [34]. Each CGH sample consists of 1979 probes.

Dataset 2: The second dataset has been collected by the authors of [52] to

investigate the biological basis between aging and sporadic breast cancer incidence
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and prognosis. DNA samples from matched ER+ invasive breast cancers diagnosed

in either young (¡45) or old (¿70) women were analyzed with aCGH. The datasets

consists of 71 samples, 27 of them coming from young women and 44 from old women.

Dataset 3: Our third dataset, consists of 98 samples of aCGH profiles coming

from 3 different types of primary colorectal cancer: metastasis-free, liver and peri-

toneal metastasis. 36 samples come from patients who developed liver metastasis, 37

come from patients who developed peritoneal metastasis and 25 from patients who

remained metastasis-free. The dataset can be found in NCBI GEO database with the

code name ”GSE20496”.

Dataset 4: The forth dataset consists of 101 samples coming from 5 different

breast cancer subtypes (basal-like - 23 samples, luminal A - 43 samples, luminal B -

14 samples, ERBB2 - 15 samples, and normal breast-like - 6 samples). Each CGH

sample consists of 2149 probes. The dataset can be found in the supplementary data

of [25].

3.5 Experiments

To evaluate the performance of our proposed feature selection method we con-

ducted experiments on 4 aCGH datasets, where we used HSR and compared to five

other feature selection methods. In our experiments we measured the performance

of each of the above methods using SVMs [43] and Logistic Regression (LR) [45] for

classification. For the needs of our experiments we used the LIBSVM [53] implemen-

tation of SVM with RBF kernel and the implementation of Logistic Regression found

in Weka [50]. We evaluated the performance of each of the different feature selection

methods on a range of different number of selected features (from 5 to 100). To assess

the classification accuracy we performed 10-Fold Cross validation applying each of the

feature selection methods on the same data subsets and using the same SVM param-
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eters, which have been determined in advance as appropriate for the target dataset,

throughout the experiments. Furthermore, to eliminate the effect of randomness, we

repeated each 10-Fold CV round 10 times, with different sample distributions every

time, and we took the average accuracy. The results are shown in Figure 3.2.

The first dataset contains samples from only 2 different classes (oral squamous

cell carcinoma vs. healthy tissue), thus forming a binary classification problem. In

this dataset HSR shows superior performance compared to the other feature selection

methods for both SVM and Logistic Regression classifiers, especially when using

between 30 to 50 features. MIFS and mRMR compete for the second place when

using the SVM classifier, while IG, ReliefF and chi-squared have a significantly lower

performance. When using Logistic Regression as a classifier MIFS, mRMR, IG and

chi-squared show a slightly lower performance than HSR, however there is no clear

winner between them. ReliefF shows the lowest performance in this case.

The second dataset is again a binary dataset (breast cancers diagnosed in either

young (¡45) or old (¿70) women). In this dataset, when using SVM classifier, HSR and

MIFS compete for the first place, whereas the other feature selection methods lag far

behind. With Logistic Regression as classifier, the overall performance of all methods

is lower at smaller number of features and only when using 65 features and above,

HSR shows a clear advantage. As it appears, this is inherently a difficult dataset

as there might not be enough biormarkers to differentiate between breast cancers in

younger and older women. That leads to a low overall classification accuracy for all

feature selection and classification methods.

The third dataset is the first multi-class dataset, containing samples from 3

different types of primary colorectal cancer. In this dataset HSR shows significantly

higher performance compared to all other feature selection methods for both SVM

and LR classifiers.
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Finally, the forth dataset contains samples from 5 different classes, thus forming

another multiclass classification problem. In this dataset again HSR feature selection

methods show superiors performance for both SVM and Logistic Regression classifiers

compared to the other feature selection methods, although as one can see HSR is a

clear winner when using Logistic Regression classifier. As for the rest of the feature

selection methods, we can see that MIFS, IG and chi-squared show a slightly lower

performance compared to the HSR, whereas mRMR and ReliefF perform poorly in

this dataset for both classifiers tested.

In total, we see that HSR shows top performance in all different datasets and

classification methods used. Especially when we are dealing with multi-class prob-

lems, such as in datasets 3 and 4, we see that HSR has a clear advantage compared

to existing feature selection methods due to its ability to identify features that may

be important for one class but insignificant for the rest of them.

3.5.1 Biomarker analysis

Apart from classifying the tumor tissue samples based on their aCGH analysis,

it is of great importance to identify what genomic abnormalities cause the disease

itself. In other words we are interested in identifying the biomarkers that may connect

certain properties of the genotype with their corresponding effects on the phenotype.

Those connections are already known for some disease types. For example, in figure

3.4 we can see the connection between certain genes and diseases as listed in Entrez

Genome NCBI Database1. The visualizations are made using the on-line Entrez

Map Viewer Software2. However, for many disease types, their connection to certain

1Entrez Genome NCBI Database organizes information on genomes including maps, chromo-
somes, assemblies, and annotations (http://www.ncbi.nlm.nih.gov/sites/genome).

2The Map Viewer provides special browsing capabilities for a subset of organisms in Entrez
Genomes. Map Viewer allows you to view and search an organism’s complete genome, display
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genomic functionalities is yet to be discovered. The BAC/PAC clones used to form

the aCGH datasets can help towards this direction. BAC (F-factor-based Bacterial

Artificial Chromosome) and PAC (P1-derived Artificial Chromosome) are cloning

systems specifically designed at cloning DNA fragments in excess of 100 - 300 kb.

In aCGH analysis, BAC/PAC clones are used to measure areas of the genome with

increased or decreased DNA copy numbers compared to the normal/control levels.

Each clone region can contain one or more genes. Over or under-expression of such

genes can lead to cell abnormalities such as tumor genesis. Therefore, CNVs that

occur consistently for a certain disease in the genomic area covered by a specific clone

can be an indication that the associated genes existing in that area could be related

to the disease itself.

Our feature selection method allows us to automatically analyze aCGH data and

find clones who’s CNVs are related to specific cancer types. The clones are ranked in

order of importance based on their predictive power with regard to the examined can-

cer classes of each dataset. For example, in dataset 3, the clone RP11-47L3 is ranked

as the most important with regard to its ability to differentiate between the three dif-

ferent cancer types of the dataset. Increased copy number of the clone shows a strong

correlation with colorectal cancer type 1 (liver metastasis), whereas decreased copy

number shows strong correlation with colorectal cancer type 2 (peritoneal metas-

tasis). The CNVs of the clone does not show strong correlation with class type 3

(metastasis-free colorectal cancer), (see figure 3.1). The RP11-47L3 comes from locus

AC022706 of Homo Sapiens chromosome 17 (see figure 3.5). In the same region lies

the gene SLFN5 (schlafen family member 5) which encodes a protein believed to have

a role in hematopoeitic cell differentiation. Therefore, this gene and the correspond-

chromosome maps, and zoom into progressively greater levels of detail, down to the sequence data
for a region of interest.
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Table 3.1. The 20 most important BAC/PAC clones of Dataset 1 and the
corresponding genes found in the genomic area covered by each clone.

Dataset 1

Clones Genes

1 RP11-43B19 LPAL2
2 RP11-42A17 GABRG1
3 GS1-174H8 BBS9
4 CTB-1O12 FHIT
5 RP11-110I16 RP11-110I16
6 RP11-59E12 LAMA3
7 RP11-52B21 LRCH1, ESD
8 RP11-14I14 JMJD1C
9 RP11-130N6 N/A
10 RP11-283M20 RPS15A, ARL6IP1, SMG1
11 RP11-109D4 RP11-109D4, ARL6IP1, SMG1
12 RP11-119N7 LOC645481
13 RP11-70F16 N/A
14 RP11-221G13 MAMLD1
15 RP11-34J24 VOPP1
16 RP11-162F2 RPS27AP11
17 RP11-88B16 EFCAB5
18 RP11-160L9 CDK2AP2, CABP2, GSTP1, LOC100505621,

NDUFV1, LOC390213, NUDT8, TBX10, ACY3
19 RP11-94J8 IL13RA2, LOC100419790, YAP1P2
20 RP11-97P11 LANCL2, VOPP1

ing encoded protein may be related to the metastasis type developed by the examined

patients. Tables 3.1, 3.2, 3.3 and 3.4 list the top 20 clones of each dataset and the

corresponding genes found in the genomic area covered by each clone. Where ”N/A”

appears instead of a gene, it means that there is no known gene in the covered area

according to NCBI Genome Entrez Database.
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Table 3.2. The 20 most important BAC/PAC clones of Dataset 2 and the
corresponding genes found in the genomic area covered by each clone.

Dataset 2

Clones Genes

1 RP11-145B20 SLC1A2
2 RP11-568F15 OR10V1, OR10Y1P, OR10V3P, OR10V2P,

STX3, FABP5L7, MRPL16, GIF, TCN1
3 RP11-49D19 ZBTB3, POLR2G, TAF6L, TMEM179B,

TMEM223, NXF1, STX5, WDR74, RNU2-2,
SNHG1, SNORD22, SNORD25-SNORD31,
SLC3A2, CHRM1

4 RP11-729B4 MS4A14, MS4A5, MS4A1, MS4A12, MS4A13
5 RP11-77M17 SERPING1, MIR130A, LOC100507106,

YPEL4, CLP1, ZDHHC5, MED19,
LOC100507231, TMX2, C11orf31, BTBD18

6 RP11-129G17 VN1R55P, RNLS
7 RP11-45L17 C10orf68, ITGB1, LOC100288319
8 RP11-35F11 HRASLS5, LGALS12, TMSL5,

RARRES3, HRASLS2
9 RP11-181I11 N/A
10 RP11-61G7 SPAG8, HINT2
11 RP11-40G3 DLG2
12 RP11-48K2 BOD1
13 RP11-206I1 RP11-206I1, LOC100507338, LOC100419850
14 RP11-287G20 CCDC147
15 GS1-54J22 C1GALT1, LOC100505904
16 RP11-39C2 GPR116, GPR110
17 RP11-160A13 PAQR9, LOC100289361, SR140
18 RP11-1L22 GPR39
19 RP11-215H8 ODZ4
20 RP11-39I6 CLTA
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3.6 Discussion

In this chapter we presented a novel feature selection method and compared its

performance with existing state-of-the-art feature selection methods. The proposed

method, which applies regression based hybrid sparsity regularization to determine

the optimal coefficients for the initial set of features, consistently showed superior

performance compared to other feature selection methods when user for feature se-

lection in aCGH data. Especially in multi-class problems our method manages to

significantly outperform the competitive feature selection methods. Our method is

independent of the algorithm to be used during the classification process which makes

it ideal for use in combination with different classification methods. Although in this

work we examine the performance of our proposed method on aCGH data, it can be

also applied in a variety of different data types where feature selection is useful.
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Figure 3.2. Classification accuracy results for datasets 1 and 2 comparing HSR
(L2R21R2) with 6 existing feature selection methods using SVM and Logistic

Regression classifiers. (a) Dataset 1 - SVM. (b) Dataset 1 - Logistic Regression. (c)
Dataset 2 - SVM. (d) Dataset 2 - Logistic Regression.
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Figure 3.3. Classification accuracy results for datasets 3 and 4 comparing HSR
(L2R21R2) with 6 existing feature selection methods using SVM and Logistic

Regression classifiers. (a) Dataset 3 - SVM. (b) Dataset 3 - Logistic Regression. (c)
Dataset 4 - SVM. (d) Dataset 4 - Logistic Regression.
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Figure 3.4. Genotype-Phenotype mapping of well known genes and diseases on
Chromosome 17, extracted from Entrez Genome NCBI Database.

Figure 3.5. Clone-Gene mapping in the region 33,080K-34,650K bp of Chromosome
17. In the genomic area covered by the examined clone (RP11-47L3) we find the

gene SLFN5.
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Table 3.3. The 20 most important BAC/PAC clones of Dataset 3 and the
corresponding genes found in the genomic area covered by each clone.

Dataset 3

Clones Genes

1 RP11-47L3 SLFN5
2 RP11-202L1 N/A
3 RP11-213G21 N/A
4 RP11-339F13 EGFR, LOC100507500, LOC100130121,

CALM1P2
5 RP11-338H14 N/A
6 CTC-263A14 LOC100131520
7 RP11-359H18 LOC100131479, RPS27P29, VN1R93P,

ZNF675, VN1R94P, ZNF681
8 RP11-219A15 LOC266619, LOC353194, LOC400578,

LOC147228, LOC339186, CLPSMCR,
TBC1D27

9 RP4-552K20 MAGEC3, LOC100420249, MAGEC1
10 RP11-447J13 CADM2, LOC100422711
11 RP11-767J14 N/A
12 RP11-164K24 LOC100506669, LOC283710
13 RP11-125I23 GTF3A, MTIF3
14 RP11-122N14 DMD
15 RP11-326G21 PDE4DIP, LOC100505971
16 RP11-27C22 RP1-27C22
17 RP11-67F24 IL12A, LOC730109, BRD7P2
18 RP11-187L3 CRYL1
19 RP11-426J23 EPHB6, TRPV6, TRPV5, C7orf34
20 RP11-182H20 TTTY8, TTTY7B, TTTY21, TTTY2, TTTY1
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Table 3.4. The 20 most important BAC/PAC clones of Dataset 4 and the
corresponding genes found in the genomic area covered by each clone.

Dataset 4

Clones Genes

1 RP11-48I18 ZNF423, MRPS21P7, MRPS21P8
2 RP11-58M3 MARVELD3, PHLPP2, SNORA70D,

SNORD71
3 CTA-799F10 SHANK3
4 RP11-52K17 RPL5P26, COL13A1
5 RP11-14G23 TDRG1, LRFN2, LOC100505697
6 RP11-105E14 LIX1L, RBM8A, GNRHR2, PEX11B,

ITGA10, ANKRD35, PIAS3, NUDT17,
POLR3C, RNF115

7 RP11-204D12 PCSK1
8 RP11-44N11 LOC392265, LOC100507001, ZHX2
9 RP11-15L8 LRFN4, PC, RNU7-23P, MIR3163, C11orf86,

SYT12
10 RP11-116F9 RPL5P22, PNOC, ZNF395
11 RP11-249H15 CDK18
12 RP11-16A21 LOC100131036, SPIRE1
13 RP11-141N1 LOC100132126
14 CTB-23D20 TAX1BP1, JAZF1
15 RP11-208E21 VPS13B, LETM1P3
16 RP11-33J8 SFMBT2
17 RP11-35I11 N/A
18 RP11-125O21 LOC100131849, KCNS2, STK3
19 RP11-177M14 EYA4
20 RP11-45B19 ZFAT, ZFATAS
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CHAPTER 4

ANALYSIS AND FUSION OF HETEROGENEOUS MULTIMODAL DATA

4.1 Introduction

When dealing with problems which involve understanding and classification of

human behavioral patterns or medical conditions, in many cases it helps to exam-

ine different aspects of the same problem. Such aspects could come from different

data modalities collected from the same subjects. The different modalities could be

generated by monitoring the subjects with different sensor types simultaneously or

by measuring their medical condition indicators with different types of devices or

techniques. Often, the different data modalities could be completely heterogeneous

and the information that they convey may seem unrelated to each other, however,

when suitably combined may significantly facilitate our understanding of the prob-

lem or increase the accuracy of the obtained results. In this chapter, we present our

work in dealing with two different problems related to human subjects, that is brain

tumor typing and detection of sleep abnormalities, and we show how the fusion of

heterogeneous data sources can increase classification accuracy.

4.2 Heterogeneous Data Fusion to Type Brain Tumor Biopsies1

4.2.1 Problem

Brain tumors are one of the leading causes of death in adults [57]. The po-

tential value of combining high resolution magic angle spinning (HRMAS) proton

(1H) Magnetic Resonance Spectroscopy (MRS) and gene expression data for brain

1For details about this work see [54, 55, 56].
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tumor typing has been previously proposed [58]. Also the molecular classification of

brain tumor biopsies using 1H HRMAS MRS and robust classifiers has been recently

reported [59]. However, this classification was limited to the binary classification

problem of discriminating between tumor types using the one-versus-all classification

methodology. Here, we use machine learning algorithms to create a novel framework

to perform the heterogeneous data fusion on MRS and gene expression data coming

from the same brain tumor biopsies, to identify different profiles of brain tumors. We

concentrate on the data fusion for the problem of assigning each sample to one of

the multiple possible tumor type classes. Therefore, we select features (biomarkers)

from multi-source simultaneously and those selected features are discriminative to all

brain tumor types used in our study, not just to individual ones.

4.2.2 Datasets

We used 46 samples of normal (control) and brain tumor biopsies from which we

obtained ex vivo HRMAS 1H MRS and gene expression data respectively. The sam-

ples came from tissue biopsies taken from 16 different people. Out of the forty-six

biopsies that were analyzed, 9 of them were control biopsies from epileptic surg-

eries and the rest 37 were brain tumor biopsies. The tumor biopsies belonged to

5 different categories: 11 glioblastoma multiforme (GBM); 8 anaplastic astrocy-

toma (AA); 7 meningioma; 7 schwanoma; and 5 from adenocarcinoma. From the

MRS data we extracted and used as features 15 significant metabolites: choline

(Cho), phosphocholine (PC), glycerophosphocholine (GPC), phosphoethanolamine

(PE), ethanolamine (Etn), γ-aminobutyric acid (GABA), n-acetyl aspartate (NAA),

aspartate (Asp), alanine (Ala), polyunsaturated fatty acids (PUFA), glutamine (Gnl),

glutamate (Glu), lactate (Lac), taurine (Tau) and lipids (Lip). For the gene expres-

sion profiles the original feature space comprised 54,675 genes. We experimented with
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feature selection from both dataset types in order to reduce redundancy and noise

before using them for classification.

4.2.3 Methods and Experimental Results

4.2.3.1 Stage 1: Experimentation with Existing Feature Selection Methods

At first, because the main goal was to examine the potential gain from com-

bined heterogeneous data for tumor typing, we only performed experiments with the

most well studied feature selection and classification methods. The feature selection

methods we applied include the filter methods Relief-F (RF) [60], Information Gain

(IG) [49] and χ2-statistic [61], and a Wrapper feature selection method for each clas-

sification algorithm. As for the classification methods, we used Nave Bayes [62] and

Support Vector Machines (SVMs) [43, 63]. The methodology of our classification

framework is summarized in Figure 4.1 and is comprised of 3 main steps: feature se-

lection from each dataset separately, merging of the top features from both datasets,

and classification based on the combined feature set ([55, 56]).

We performed experiments to evaluate the classification accuracy when using

each of the datasets separately and in combination. For the MRS data we tested our

classifiers for the case of using all available metabolites and for the cases of applying

each of the 4 feature selection methods. The best accuracy of 78.72% (Figure 4.2a)

was obtained by the SVM classifier by using the wrapper feature selection method.

For the gene expression data we followed a hybrid feature selection approach selecting

the top 100 genes by using a filter feature selection method and then further reducing

the feature number by using wrapper feature selection. The best accuracy we could

get for this dataset came from the Naive Bayes classifier and it reached 82.98%

(Figure 4.2b). Finally, we experimented with the combination of the best features
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Figure 4.1. Fusion feature selection and classification framework.

drawn from each of the above dataset. In this case both classifiers outperformed the

respective best accuracies for the individual datasets. The best result of 87.23%

(Figure 4.2c) was given by the NB classifier when using wrapper feature selection for

the MRS dataset and a combination of IG and wrapper feature selection for the gene

expression dataset.
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(a) (b) (c)

Figure 4.2. Classification results with various combinations of data and feature
selection methods. (a) Classification accuracy for the using MRS data only. (b)

Classification accuracy using gene expression data only. (c) Classification accuracy
using a combination of features from multi-source.

4.2.3.2 Stage 2: Experimentation Sparse Feature Selection

At the next stage we tried to further improve the classification accuracy by en-

hancing our feature selection methodology. To achieve so we employed a novel sparse

filter feature selection method, based on `2,1-norms minimization, which resulted in

a significant increase in the classification accuracy compared to the previous results

on the same datasets. This method reduces the feature dimensionality by performing

sparsity regularization on the initial feature set which gives a high weight to the most

discriminative features and small weight to the rest of them. The optimal weights (co-

efficients) are obtained by performing `2,1-norm minimization on the linear regression

objective function.

Denote data matrix X = {x1, x2, . . . xn} ∈ Rd×n and

label matrix Y = {y1, y2, . . . yn}T ∈ Rn×c. To perform feature selection, we optimize:

min
W

J(W ) =
n∑

i=1

‖W Txi − yi‖2 + γR4(W ) = ‖W Txi − yi‖2,1 + γ‖W‖2,1. (4.1)
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Although solving this joint `2,1-norm problem seems difficult as both terms are non-

smooth, it has been shown in [42] that is can be efficiently solved. The other filter

methods used were χ2-statistic (χ2), Information Gain (IG) and Relief-F (RF) [49].

To compare with the previous classification accuracy results reported on the

given datasets [55] we followed the same experimentation process, but this time we

replaced the previously used filter feature selection methods with our newly intro-

duced one. Our findings showed, again, that the combination of data from two dif-

ferent sources yields higher accuracy compared to the accuracy that we obtain get by

using each of the datasets separately. Also, same as before, our experiments reported

perfect accuracy in the ability of the system to differentiate between tumor and non-

tumor (normal) samples when the two datasets are combined. For the more difficult

task of 6-class classification problem (5 tumor types + 1 normal) though, the use of

the new feature selection method significantly increased the accuracy from the 87.23%

that was the best previous performance to 95.75% (Table 4.1). This accuracy was

achieved by performing a 10-Fold cross validation on the combined data using Naive

Bayes for wrapper feature selection and as classifier to do the final classification. The

SVM achieved a relatively lower accuracy due to its inability to be successfully used

as a wrapper feature section method because of the high computational complexity

required for tuning its parameters.

4.2.4 Biological Meaning

The final set of features that were selected by our system to achieve the above

accuracy was a combination of 4 metabolites (Asp, Etn, GPC, PE) and 9 genes (ADM,

CD24, ACTB, HSPA1B, CRYAB, MPZ, ABCA2, ID4, PTGDS). The discriminative

power of this relatively small set of metabolites and genes may be suggesting that
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Table 4.1. Best results for each dataset and each classifier for the 6 class
classification task. The feature selection method that achieved the highest accuracy

along with the accuracy itself is shown in each table cell.

they can be used as possible Biomarkers related to the development of brain tumors

and further investigation of their properties would be worthwhile.

4.3 Non-Invasive Analysis of Sleep Patterns via Multimodal Sensor Input

4.3.1 Introduction

According to the American Academy of Sleep Medicine, there are 81 official

sleep disorders, presented in [64]. 70 million people in the USA have a sleep disorder,

the vast majority of which remain undiagnosed and untreated. It is estimated that

sleep related problems incur $15.9 billion to national health care budget. There is

then great need for automatic non-intrusive methods for sleep disorder recognition,

that patients can use in their homes. This would not only help decrease health care

costs but also increase the number of diagnosed patients.

Another reason why sleep disorder detection is important is the fact that it is

related to other potentially more serious medical conditions. According to [65], results

of their study involving 1506 participants (out of which 83% reported some medical

condition) show that sleep disorders are related to comorbidities rather than age. This

is most likely because major comorbidities such as stroke, heart disease, osteoporosis
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or arthritis impact the patients’ quality of sleep. Detection of sleep disorders could

therefore be an indication of another important disorder.

[66] studied 917 patients from a wide range of ages and suggest that patients

with chronic sleep disorders are more likely to have depression and in fact about 1 in

4 patients who went to a sleep disorder clinic admitted to be experiencing depression,

although only 3.5% were found with moderate to severe depression.

We propose a non invasive system that is able to analyze and recognize sleep

patterns which can be further utilized to detect various types of sleep disorders. The

first sensor that we employ is a bed pressure mat (product of Vista Medical Ltd2)

where the patient sleeps. The second sensor is the Kinect 3D image acqusition device

by Microsoft [9]. Our aproach is strongly motivated by the fact that by combining

the information acquired by the two sensors it is possible to attain better results than

from a single one, due to the complementarity of the acquired information. Indeed,

the pressure mattress is very reliable in capturing the information about the users’

body parts that are in contact with it, but cannot provide any information about the

rest of the body. On the other hand, the Kinect cannot see the body parts touching

the mattress, but can provide rich data about the rest of the body parts that are

visible. To the best of our knowledge this is the first such multimodal approach for

non-invasive recognition of sleep patterns.

We analyzed the acquired data using Supervised Machine Learning techniques

and the system classified the sleep patterns of the user in one or more predefined

categories regarding both posture and motion. In this work we experimented with

data collected from seven individuals. The different patterns included periods of

normal sleep and periods of abnormal sleep such as restlessness, and frequent changes

2http://www.pressuremapping.com/
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of body position. Preliminary results show that our system is able to successfully

recognize sleep patterns and classify them among a predefined set of categories.

4.3.2 Related Work

Related research has focused on detecting various parameters of sleep for hu-

mans and animals as well as sleep quality and body posture recognition. More specif-

ically, studies on rodents focus mainly on detecting if the animal is asleep or awake

using piezoelectric films, used as a filtering stage for traditional classifiers using Elec-

troengephalograms (EEG) and Electromyograms (EMG) [67]. The authors use EEG

signals, preprocessed using Fast Fourier Transform (FFT), Principal Components

Analysis (PCA) for feature selection and classified using the k-Nearest Neighbour

(k-NN) algorithm. [68] also uses EEG and other signals and Markov modeling tech-

niques to classify normal and abnormal human sleeping patterns. These types of sig-

nals require traditional Digital Signal Processing techniques such as Discrete Fourier

Transform (DFT) and PCA for extracting meaningful features and k-NN or Artifi-

cial Neural Networks for the recognition step. Nevertheless, these methods require

sensors or cables attached to the skin of the subject which is not acceptable for as-

sistive pervasive applications. Other researchers use additional types of data, such

as oxymetry information to detect respiratory abnormalities [69]. The authors eval-

uate classification results using spectral and nonlinear analysis for feature extraction

and Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA),

k-NN and Linear Regression (LR) for classification. In [70] the authors try to as-

sess sleep quality using near-infrared video only. The authors apply a homomorphic

filtering technique to tackle the problem of over exposure in the center, common in

near-infrared cameras. The authors also learn a threshold to differentiate noise from

actual motion, since this type of cameras have ver low signal to noise (SNR) ratio.
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They then use the Motion History Image (MHI) technique that provides direction of

movement to identify motion.

Pressure has also been used to infer if the subject is asleep or awake by detecting

movements and respiration of rodents. There exists one previous approach to our

knowledge that recognizes sleeping posture of humans using pressure sensors. More

specifically 32 pressure sensors where used to record the pressure pattern of the subject

at a particular pose and Naive Bayes as well as Random Forests where used for

classification and compared to each other [71]. In [72] the authors use a pressure mat

to identify sleeping postures of babies possibly assisting prevention of Sudden Infant

Death Syndrome. The authors collected the data from a one year old baby freely

moving on the pressure mat and after a feature selection stage they classified each

posture using majority vote of k-NN, SVM, linear and quadratic classifiers and then

applied a sliding window algorithm to eliminate possible mis-classifications.

In our literature survey we didn’t find any other non-invasive method that would

be able to combine the benefits of a contact-based sensor such as a pressure mattress

with the merits of non-contact sensors such as 2D or 3D cameras. Furthermore, the

related work is rather limited to posture identification and does not cover motion

patterns, which may be of importance. In this work we aim to cover this gap.

4.3.3 Multimodal Sleep Pattern Analysis

4.3.3.1 Description of Datasets

For the needs of our experiments we collected data from 7 different individuals

simulating their sleep habits. Each individual lied on the bed for a period of time and

performed the actions that they would normally perform if they went to bed. That

involved getting in bed, staying still for periods of time in different postures, changing
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body postures, moving parts of the body like the arms or the legs and getting out of

the bed. The different actions performed during that period of time were recorded

using 2 different sensors. The first one was a bed pressure mat (see section 2.2.1.1)

that we put under the sheets, and the second one was a Microsoft Kinect sensor

(see section 2.2.1.2) that we mounted on the ceiling. The recorded data were then

manually annotated according to the various classes of interest, such body posture,

motion occurrence, etc. More details about the collected data and the methods used

to collect them can be found in section 2.2.1.

4.3.4 Data Analysis and Classification

The detection/recognition of sleep disorders usually boils down to the recogni-

tion of a set of symptoms that are related to a specific sleep problem. Such symptoms

are: how long it takes for the person to fall asleep, how many times (if any) they wake

up during the night, how often do they move during their sleep time, how many hours

on average do they sleep, etc. These indicators are difficult to monitor at home. Our

immediate goal is to create a system that can recognize these indicators and make

them easily accessible to the physicians. The long term goal is to create a system

that will be able to automatically detect specific sleep disorders based on training

data from previous known cases.

To achieve our goal we break our problem into a set of classes and we employ

a combination of rule based and supervised learning methods to classify the various

instances into one of those classes. To evaluate the classification accuracy, we perform

leave-one-out cross validation experiments where every time we test the classification

accuracy on the data collected from one user, by training it on data collected from

the other users.
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In more detail, we are attempting to recognize the following situations: (i) if

the person is in bed or not, (ii) when does motion occur while in bed, (iii) what type

of motion is that, and (iv) while the person is not moving what is their body posture

in bed. Being able to detect and recognize the above situations and then combining

them together can be a very rich information source with regard to the symptoms that

we want to identify. In the following sub-sections we will describe how we approach

each of the above situations and how efficient our system is in terms of recognition

accuracy.

4.3.4.1 Detecting if the person is in bed or not

The first case of interest in our experiments would be to detect when the person

is in bed or not. This is useful in cases, for example, where we want to know how

many hours in total does the person spend in bed and how often do they get up

during their sleep time. It turns our that this is a very easy problem to solve by just

using the bed pressure mat. All we had to do is just define a threshold of the total

amount of pressure that we get in the pressure mat. If the total pressure exceeds

that threshold it means that the person is in bed. Using this approach we got 100%

accuracy in detecting if the person is in bed or not in our experiments. Note that we

did not consider cases where somebody puts something heavy on the bed that might

confuse our system, since we assume that participants are willing to be examined and

they are not willing to mislead the system.

4.3.4.2 Motion Detection

Another case of interest, is to detect when motion occurs while the person lies

in bed. The detection of motion can be related to various sleep disorder symptoms.
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For example, it can be an indication of how long does the person take to fall asleep

after they go to bed, or how often do they wake up during the hight.

To detect motion we used the standard computer vision technique of frame

differencing. That means that we compared consecutive frames by subtracting the

frame n from the frame n+ i, where i ≥ 1 depending on the frame rate, and summing

up the absolute differences. The value of that sum S is a very good indicator of the

existence of motion in the time slot between the two frames.

For example, by using the only bed pressure mat, this can be achieved by

calculating the sum of absolute differences of the values of each of the 1024 pressure

sensors between consecutive frames represented as vectors. Assuming a frame vector

Xk = {x1, x2, . . . , xn}, where n = 1 . . . 1024, at each time point k, this sum S can be

can be calculated as follows:

S =
n∑

i=1

|xk+1,i − xk,i| (4.2)

It turns out that motion can be easily detected by specifying a threshold T on the

value of S. If S becomes greater than T , the subject is moving. The optimal value

of T can be calculated from the training dataset and it is almost constant among

subjects of similar weights. Figure 4.3 shows a graph of the values of S over a period

of about 1500 frames obtained from one of the subjects. The green horizontal line

defines the threshold.

Exactly the same approach can be used on the data collected from the Kinect

sensor. The only differences compared to the pressure mat frames, are the frame rate,

the frame resolution and the pixel value range. However, the formulas to calculate

the sums S and the optimal threshold are exactly the same.
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Figure 4.3. Detection of motion using the sum of absolute frame differences (S) and
a threshold T = 130.

Using this approach we classified each frame in the stream as containing motion

or not. We tested our system’s accuracy against the manually annotated data where a

human had specified the time points where motion occurred. We experimented using

the pressure mat only, and the combination of pressure mat and Kinect. To combine

the two different data sources we re-samples the Kinect data to meet the pressure

mat frame rate (3 Hz) and then we aligned the frames using their timestamps. Each

frame was classified as containing motion, if the value of S in either of the two data

sources exceeded the predefined threshold.

Using the pressure data only, we achieved an average motion detection accuracy

of 96.83%, whereas adding the Kinect data the accuracy increased to 97.57%. The

increase in accuracy can be attributed to cases where a motion (e.g. hand movement)

is not strong enough to be detected by the pressure mat but it can still be detected by

Kinect. The majority of the misclassified frames were spotted either at the beginning

or at the end of movement of the subject where the levels of motion are very low.

Hence, some of those might have actually been miss-annotated during the manual

annotation process. In any case, the results of motion detection accuracy can be

considered satisfactory.
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4.3.4.3 Recognition of motion types and body postures

After detecting motion, our next step was to recognize the motion type, when

motion occurred, and the the subject’s body posture when there was not motion. To

do that, we first used our motion detection method to segment the data steams into

sequences of frames which are part of a motion and sequences of frames where there is

no motion. Then we classified each of those sequences into one of the motion classes

or body posture classes.

The basic motion classes that we defined were the following:

1. Changing body posture.

2. Moving arms or Legs.

3. Getting in bed or out of bed.

4. Making bed.

The first class refers to the case where the subject is changing sides, for example,

they are sleeping on their back and then they turn their left. The second class refers

to more subtle motion types where the subject moves a part of their body, usually a

limb, but they don’t completely change their body position. The third class, occurs

when the bed gets in or out of the bed. This motion type differs from the previous

two considerably. The last class, refers to the case where the person is not actually in

bed but there is still some type of motion detected by the pressure mat or the Kinect.

This is usually the case when someone makes their bed.

Regarding the body postures we defined the following classes:

1. Back

2. Left Side

3. Right Side
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(a) (b) (c) (d) (e)

Figure 4.4. The 5 different body postures. (a) Back. (b) Left Side. (c) Right Side.
(d) Stomach. (e) Sitting.

4. Stomach

5. Sitting on bed

The first four classes cover the basic usual sleeping postures, whereas the fifth

class occurs when the subject is on the bed but they are not actually lying on it.

Such cases usually occur when the subject is about to get in or out of the bed, but

there could also be cases where they don’t feel good and the temporarily get up for

a few seconds. Figure 4.4 gives an overview of these 5 postures.

To recognize the body postures, we experimented with two different techniques.

The first one is a Computer Vision based technique, called Template Matching (TM),

which has been used in face detection [73] and other similar applications. The idea

behind this technique is that for each posture you pick a representative frame to

use it as a template, after possibly cropping it appropriately, and then for every

other frame to be classified, you compare it with all the templates and see which

one matches better according to some distance criterion. In our case, we used the

simple frame difference as a distance criterion. That means we calculated the sum of

absolute differences of each pixel of the template subtracted from the corresponding
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pixel in the frame to be classified. To accommodate for cases where the subject lied

in a different position of the bed compared to the template or they were taller/shorter

compared to the subject used in the template, we tried different scales and different

centering position of the template.

The second technique that we used was based on supervised learning. In or-

der to perform supervised learning, we converted each frame to a a feature vector

where each pixel represented a feature. To remove redundant features and reduce

noise before classification we performed a Principal Components Analysis (PCA) [74]

transformation on the data. In addition, we calculated the Central Image Moments of

the original frames and we added those as features to the feature vector the resulted

from PCA. An image moment is a certain particular weighted average (moment) of

the image pixels’ intensities. The advantage of Central Moments is that they are

translation invariant which could be useful in cases where the subject is lying in

an unusual position of the bed. For a digital grayscale image with pixel intensities

I(x, y), the raw image moments Mij are calculated by

Mij =
∑
x

∑
y

xiyjI(x, y) (4.3)

The central moments can be calculated using the following equation:

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qf(x, y) (4.4)

where x̄ = M10

M00
and ȳ = M01

M00
are the components of the centroid. We used Central

Moments of order up to 2, which yields 8 different moments. For the data coming

from the Kinect we assumed a near-constant background and we defined the region

of interest to be the area that covers the dimensions of the bed.
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In our experiments we evaluated our methods using each of the data sources sep-

arately and in combination. To combine features from the two different data sources

we aligned the pressure and the depth sensing frames using their timestamps and

we created a composite feature vector which included the top Principal Components

and the Central Moments of each pair of frames. To deal with the difference in the

frame rate, we re-sampled the depth sensing stream to reduce its frame rate. The

classification methods that we used to classify each single frame were based on the

well known KNN [75] (we used 10 neighbors) and Linear Kernel SVM [43] algorithms.

In order to recognize the body posture in the sequence of frames, in both the

cases of template matching and supervised learning, we first classified each of the

frames in the sequence to one of the predefined classes and then we used majority

voting to decide the final posture class.

At each round we trained our system using data coming from 6 our the 7 users

and classified the motion sequences of the 7th user. This ensures that if the system

is to be used in real life, it can be trained off-line in advance and it does not require

any re-training for the specific user.

For the classification of the sequences of motion frames into one of the 4 classes

we used Hidden Markov Model (HMM). A HMM is a statistical model of a system

having hidden states and operating under the Markovian assumption. HMMs have

been proven to model effectively temporal sequences as well as other forms of sequen-

tial data. The models are trained using the Baum-Welch algorithm that calculates

their parameters. As for the recognition step, it is done using the Forward-Backward

algorithm [76].

For the KNN classifier, we found that the combination of the top 40 principal

components from each data source plus the central moments for each frame gave us

the best classification accuracy. Similarly for SVM we used the top 30 principal com-
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ponents plus the central image moments. For the classification of motion using HMM

we used the top 7 principal components plus the central moments from the pressure

sensing datasets and the top 14 principal components plus the central moments from

the depth sensing datasets.

Table 4.2 presents the classification accuracy results for each user and the

weighted average accuracy, where the weight represents the number of instances per

dataset. In the different columns of the table we present the result for body posture

recognition and motion type recognition, separated by the classification algorithm

that was used and also by the type of data source that was used to perform the

training and testing. At each experiment we evaluated our system using the pressure

sensing (P) data only, the depth sensing (D) data only and their combination (C).

As one can notice, combining the two different data sources by fusing their

features gives the best classification accuracy in most cases. Also, with the exception

of Template Matching (TM), using the pressure sensing data alone to recognize body

postures and motion types gives better accuracy compared to using the depth sens-

ing data alone. The supervised learning methods (KNN and SVM) outperform the

template matching classification in the majority of the cases. In our experiments we

constructed the templates from one user (User 1) and we applied those same templates

to all the other users. That is the reason why template matching works particularly

well on “User 1”. Since, the template construction only requires the capturing of one

frame for each posture and some cropping to match the body dimension, it would not

be unreasonable to construct new templates for each new user in real life.

4.3.5 Discussion

In this section we presented our work on analysis of sleep patterns using non-

invasive sensors and applying a combination a rule based and machine learning meth-
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Table 4.2. Classification accuracy results for Body Posture and Motion Type
recognition. ”P” as a column title denotes that only pressure sensing date were

used, ”D” denotes that only depth sensing data were used and ”C” denotes that a
combination of pressure and depth sensing data were used. For the posture

recognition, the best accuracy per data source is in boldface and the best accuracy
across the different classification methods is underlined. For the motion recognition,

the best accuracy per data source is in boldface.

Posture Recognition Motion Recognition
TM KNN SVM HMM

P D C P D C P D C P D C
User 1 87.75 91.83 89.79 83.67 57.14 83.67 89.79 87.75 91.83 80.39 74.51 92.15
User 2 47.72 56.81 77.27 90.90 77.27 88.63 81.81 77.27 84.09 95.74 76.59 97.87
User 3 31.91 57.44 65.95 95.74 97.87 95.74 91.48 89.36 93.61 94.23 78.84 96.15
User 4 52.17 63.04 84.78 89.13 67.39 86.95 89.13 91.30 93.47 75.51 63.26 79.59
User 5 30.43 08.69 47.82 69.56 73.91 69.56 78.26 56.52 86.95 90.90 27.27 95.45
User 6 30.76 33.33 66.66 56.41 41.02 53.84 51.28 64.10 56.41 76.08 65.21 78.26
User 7 57.14 52.38 73.81 73.81 92.85 76.19 90.47 76.19 92.85 95.45 54.54 86.36

Average 53.10 64.82 83.79 81.38 72.76 80.69 82.76 79.66 86.21 86.50 66.24 89.07

ods. Our experimental results on real user datasets show that the task of analyzing

sleep patterns with the intent to detect symptoms related to sleep disorders can be

successfully achieved. Although the available dataset was relatively small, the classifi-

cation accuracy results are promising and show that the proposed tools and methods

could be used in the future for the detection of sleep disorders and other related

diseases affecting sleep quality. To this end, further experimentation with bigger

datasets, extended recognition categories and improved fusion methodology would be

of high interest.
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CHAPTER 5

DISCUSSION OF FRAMEWORK AND EVALUATION

5.1 Introduction

The computational framework proposed in this work, aims at creating the in-

frastructure for effective human-centered data analysis in order to provide enhanced

assistive services to humans. Our main focus falls on how to collect and analyze

data coming from monitoring the human behavior inside an assistive environment as

well as data coming from their medical condition. The ultimate goal is to create an

environment where pervasive technologies will seamlessly provide services to humans

in an automated and non-intrusive way. In order for such an environment to be suc-

cessful in practice, understanding human’s behavior and their medical condition is

not enough. There are many other parameters that are as important in determining

the final success of the system and its adoption by the end users. In this chapter we

make an attempt to look at the bigger picture and identify those parameters.

We use as a workbench the setting of an assistive environment and we approach

the overall existence of a human-centered computational framework from the software

engineering point of view which takes into consideration not only the computational

aspects of such a system but also factors such as security/privacy and cost to build

and maintain such a system. Finally, in order to ensure the quality of the services

provided and the viability of such a system we suggest a set of metrics that need to be

used by its creators both during the building process and during the final evaluation

of the system.
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Figure 5.1. The basic attributes of the framework.

5.2 Evaluation of a Computational Framework for Assistive Environments

An assistive environment can be successful only if its potential users are willing

to adopt it. This section identifies a set of attributes that are considered critical to

user adoption. Sample metrics, as well as possible approaches to measure them, are

suggested to quantify those attributes. In the following, we divide these attributes into

the following seven categories, namely, functionality, usability, security and privacy,

architecture, intelligence, quality of service and cost, and discuss each of them in

details. Figure 5.1 gives a visual overview of these attributes.

5.2.1 Functionality

A computational framework targeted to assistive environments must perform

correctly in order to serve its purpose, i.e., facilitating the patient’s independent living.

More importantly, failure in an assistive environment could carry severe consequences.

For example, if an acute event is detected by the chest belt, an emergency signal must

be sent to a base-station, which should further generate an alarm to alert the caregiver
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and if needed, the staff in an emergency room. If the acute event is not detected, or

if the emergency signal is not sent timely, the life of the patient may be in danger.

Therefore, the evaluation of whether an assistive environment can perform its tasks

correctly is at the very core of the evaluation of an assistive environment.

The proposed framework identifies the following major attributes to be used for

functional evaluation.

• Correctness : A task is implemented correctly if it delivers the required function-

ality as specified in the requirement document. Ideally, this attribute can be

measured by the ratio of the number of tasks that deliver the expected results

over the total number of tasks that can be performed in an assistive environ-

ment. In practice, the total number of tasks is often difficult to derive. One

possible approach is to generate a set of test scenarios that exercise a repre-

sentative set of the tasks, e.g. based on the functional requirements, and then

check how many of those scenarios can be performed correctly. In addition,

feature-specific metrics can be developed. An important feature is that the

event recognition component must be able to correctly identify events that oc-

cur in the environment, based on the activities being monitored. A possible

metric for this feature is the ratio of the events that are recognized correctly

over the total number of events that occur in the environment.

• Robustness : This attribute refers to the ability of an assistive environment to

deal with unusual situations [77]. In particular, can faults that may occur or

exist in the environment be tolerated? There are two major types of faults to

consider: (1) User errors, i.e. mistakes that a user may make when performing

a task, e.g., a user may have pressed a button that is not supposed to be pressed

given his or her situation. Considering that the users are typically not familiar

with technology, user errors are particularly common in assistive environments.
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On the one hand, assistive environments should be designed in a way such

that user errors are prevented from happening in the first place as much as

possible. On the other hand, the system should be able to continue to operate

correctly even in the presence of a user error. (2) Device failures. An assistive

environment often consists of many small devices that may be subject to failures

due to either malfunctions or adverse conditions in the environment. In the

case of the assistive apartment environment, a sensor in the data collection

component may give an incorrect reading due to some environmental noise or

may have gone down due to the depletion of its battery. The failure of one or

a few devices should be tolerated, or its impact should be limited as much as

possible, in an assistive environment.

Robustness can be difficult to measure precisely because, for example, there

can be an infinite number of ways for a user to make mistakes. One possible

approach is to generate a set of test scenarios to exercise failures that have a

high probability to occur based on an operational profile or based on a careful

analysis of the vulnerability of the devices deployed in an assistive environment.

The percentage of those test scenarios that can be tolerated by an environment

can be used as a possible indicator of the robustness of the environment.

• Reliability : This attribute refers to the sustainability of an assistive environ-

ment. That is, how long can the environment operate continuously without

breaking down? Many assistive environments are designed to monitor the pa-

tients’ daily living continuously, where a reset can be very inconvenient. In

addition, as discussed earlier, assistive environments can be safety-critical, and

unexpected breakdowns may have severe consequences. One possible metric for

reliability is mean-time-to-failure, i.e., the average time a system can operate

continuously before a failure occurs. The key to measure mean-time-to-failure in
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an assistive environment is to build an operational profile that is representative

of the way in which the environment is used in real life.

5.2.2 Usability

Usability is one of the most important concerns in assistive environments. There

are two major reasons. First, assistive environments target a special group of users

who are typically not familiar with technology, and may even have mental and/or

physical challenges to learn and memorize instructions [78]. Second, the purpose of

assistive environments is to assist, rather than create new challenges, in one’s daily

life. This purpose would be easily defeated if an assistive environment were difficult

to use. A key to achieving usability is to make the technology invisible. That is,

tasks should be performed in a natural way, i.e., with minimal deviation from how an

average person would expect these tasks to be performed by intuition [79]. Related

to the above is the fact that an assistive environment should be easy to use for both

the patients and the caregivers.

The proposed framework identifies the following major attributes to be used for

usability evaluation:

• Ease of Use: This attribute consists of several aspects. The user interface of an

assistive environment should be easy to navigate. In particular, a user should

be able to quickly find commonly used operations. If a sequence of operations

needs to be performed to accomplish a given task, then the order in which those

operations are performed should be made as straightforward as possible, and

the sequence should contain as few operations as possible. If certain input can

be derived from context, then it should be done so, instead of asking the user to

provide it explicitly. Hints and help should be made readily available, especially

for less straightforward operations.

80



Note that an assistive environment should be easy to use not only for the patient

who lives inside the environment, but also for the operators who help to set up

and maintain the environment. That is, ease of use implies easy to set system

up, easy to maintain, easy to update and easy to learn how to use it. One

possible metric for ease of use is the length of the learning curve for a typical

user. That is, how long does it take the user to learn the use of an assistive

environment? Metrics like the average length of navigation, the average number

of steps required to perform a common task, can also be used. However, as this

attribute largely deals with user perception, a completely objective measure-

ment would not be possible. Having a group of testers who is representative

of the target user base is the key to mitigate the potential variations in user

perception.

• Accessibility : Assistive environments target a special user group in which many

people have mental and/or physical challenges. The user interface of an assistive

environment should be made accessible to accommodate the special needs of

those people. For example, if the user has difficulties to read the screen, then

an audio-based interface may be employed to better interact with the user. Some

metrics that can be used to measure accessibility include the number of available

accessible options, the number of transformations that are available between

different options, and the degree of transparency between those transformations.

• Non-obtrusiveness : To maximize the utility of an assistive environment, it is

often necessary to be proactive. For example, it is desirable to remind a person

who suffers Alzheimer’s disease of taking medicine at a regular interval. How-

ever, there is a fine line between being proactive and obtrusive. People tend to

reject systems that they consider to be obtrusive [80].
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This attribute depends on user perception to a large degree, and is thus difficult

to measure on a purely objective basis. In particular, the same operation might

be considered obtrusive by some people but not by other people. One possible

approach to measure obtrusiveness is to identify a group of testers who are

representative of the user base and then collect feedback from them.

5.2.3 Security and Privacy

Security and privacy attract more attention when a system involves remote

users and when data are shared with other institutions, even for the research purpose.

Secure communication, data access control, and robustness against certain attacks are

among the most important aspects to be evaluated.

The proposed framework identifies the following major attributes to be used for

security and privacy evaluation:

• Violation reports : The number of security violation reports (or breaches) and

the number of privacy violations could be used to measure the accomplished

strength of security and privacy protection.

• Configurable privacy/access control : Users can customize policy agreements to

grant access and release data; they configure setting files to choose what types

of data are sharable with his physicians and other researchers and what types

of access they can have.

• Encryption strength: Robustness of security & privacy control against crypt-

analysis depends on the encryption strength. The length of common module for

public/private key pairs can be used for measuring the strength. The password

setting could be measured by weak, fair, and strong according to the combina-

tion of characters against off-line dictionary attack.
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5.2.4 Architecture

Architecture refers to the interconnection of the major components in an assis-

tive environment [81]. An assistive environment often consists of a number of hard-

ware components, e.g. various types of sensors, which are heterogeneous in nature.

This calls for an open architecture that allows those components to work together in

a seamless manner and in a way that can be easily configured and extended.

The proposed framework identifies the following attributes to be used for archi-

tecture evaluation:

• Modularity : Modularity is one of the most fundamental principles underlying

modern system designs [82]. The idea is to make each component a relatively

independent module by reducing the coupling between different components.

Doing so makes it easier to change or replace individual modules with minimal

effect on the rest of the system. For example, in the assistive apartment environ-

ment in Section 3, a modular architecture would allow a data mining component

to be easily replaced by another one that employs a different algorithm, or a

different type of sensor to be added into the environment. Modularity can be

measured by the average number of other modules with which each modular

has a direct or indirect dependency relation. The dependency relation between

modules can be derived either by analyzing the source code, if available, or by

conducting experiments.

• Interoperability : An assistive environment may interoperate with other systems.

For example, in the assistive apartment environment in Section 3, the base

station needs to interact with the server in the emergency room. In addition,

within an assistive environment, different components need to interact with each

other, and those components may come from different vendors. For example,

in the assistive apartment example, the data collection component needs to
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work with different types of sensors. The key to achieve interoperability is to

define a standard interface (or protocol) so that different parties can speak the

same language. Interoperability can be measured by the number of interfaces

that conform to a standard. One way to check if an interface of an assistive

environment conforms to a standard is to perform conformance testing, i.e.,

having the environment actually work, at the interface point, with a third-party

component or system that is known to be conforming to the standard.

Note that modularity and interoperability are orthogonal attributes, in terms

that the former characterizes an assistive environment from a static perspective while

the latter does so from a dynamic perspective.

5.2.5 Intelligence

Since assistive environments are a special case of so-called “smart” environments

they heavily rely on techniques for inference and automated decision making. Those

techniques are based on other well-studied areas such as Machine Learning, Pattern

Recognition, Data Mining, and Information Retrieval. These areas of study are known

to produce output which is not deterministic and is greatly affected by the type and

amount of data to be processed, the noise that is introduced during data collection, the

system training procedures and other similar factors that cannot be fully controlled.

As a consequence the decision making process does not always produce optimal results

and actually in some cases the decisions made may completely contradict with the

common logic. However, such techniques are inherent in any smart environment and

therefore we need to find ways to assess their efficiency and acceptability by the end

users.

Because intelligence is a highly subjective concept and is related to high level

cognitive procedures, one way to judge the “artificial intelligence” of a system is to
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get feedback from its users. Therefore, we suggest that there should be an intuitive

and user friendly mechanism to receive feedback from the users in an assistive envi-

ronment. We do not expect the users to give feedback for every single decision of the

system, but only for the negative cases. For the cases that the users did not give a

negative feedback we assume that the decision/action of the system was correct. Note

that the user who provides the feedback can be the patient who is being monitored,

or a healthcare professional who might be remotely monitoring the patient using the

assistive environment.

By quantifying the user input we can assess the intelligence of the system using

well known statistical metrics for the evaluation of the system’s decision making and

predictive performance. Such metrics can include Accuracy, Precision, Recall, Sen-

sitivity and Specificity [83]. For example, one of the functionalities of the assistive

apartment environment described in section 2 is to detect dangerous situations for

patients with memory problems and fire an alarm. Such dangerous situations can

be scenarios like: “the patient is lying on his bed and the stove is on for more than

45 minutes”. This could mean that the patient has gone to sleep and has forgotten

the stove on. In order to be able to tell if that is the case the system needs make

a decision based on behavioral patterns of the patient. In case of a false alarm, the

user that will turn the alarm off should also have an option to notify the system that

this was a false alarm. In that case the decision made by the system will be logged

as false positive. If we define a case of emergency as a case where the system needs

to detect it and report it as an example of positive value, then we can measure the

system’s intelligence as follows:

True Positive (TP): Emergencies successfully reported.

False Positive (FP): No real emergencies reported as emergences.

True Negative (TN): No emergency cases not reported.
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False Negative (FN): Emergencies not reported.

A set of metrics than can be used to measure the intelligence of the system are

the following:

• Accuracy : TP+TN
TP+FP+TN+FN

• Precision: TP
TP+FP

• Recall or Sensitivity : TP
TP+FN

• Specificity : TN
FP+TN

5.2.6 Quality of Service (QoS)

In general terms, QoS can be defined as an agreement for service between a cus-

tomer and a provider in which there is a guaranteed level of performance. QoS has

been studied extensively in application domains such as Networks and Multimedia

[84, 85]. Key aspects have been identified [86] to enable QoS in ubiquitous and hetero-

geneous environments, such as QoS specification, translation, setup, and adaptation;

and specific solutions have been proposed [87]. However, many design considerations

remain to be answered when building QoS enabled assistive environments. Typical

QoS strategies that affect user-perceived quality or fidelity of an application generally

do not apply to context-aware pervasive applications and for this reason, it is neces-

sary to devise other mechanisms and metrics to define, establish, and guarantee QoS.

In the context of an assistive environment, we observe QoS from two different aspects,

including the QoS that the system can provide to the end users and the QoS that

the various system components can provide to each other. Both aspects are equally

important for the smooth and unobtrusive operation of an assistive environment.
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Many QoS attributes need to be defined in a way that is specific to the features

they are applied to. The following are two major QoS attributes that are applied to

the system level:

• Consistency : Consistency can be defined as the ability of the system to maintain

a standard behavior in the type and the end-to-end delay of the output given to

the user as well as the ability of the different system components to obey certain

constraints that are imposed to achieve a certain level of operation quality,

regardless of the changes that might occur in the environment. The consistency

of a system can be measured as the number of times that the constraints were

not obeyed and by what degree.

• Adaptability : Adaptability refers to the ability of the system to adapt to varying

workloads regarding number of users to serve, number of simultaneous events,

the varying resource demands of an application, and the increasing amounts

of data to be stored and processed while preserving any previously established

agreements on service performance. The adaptability can be measured, for

example, as the percentage increase in the amount of workload that the system

can tolerate without losing its stability and consistency compared to the initially

estimated workload. The percentage increase can be defined as:

newWorkload− initialWorkload

initialWorkload
× 100

5.2.7 Cost

The cost of an assistive environment must be controlled so that it is affordable

to its user base. An assistive environment typically consists of many software and

hardware components. The way in which those components are integrated can signif-

icantly affect the overall performance, and thus must be managed carefully. In par-
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ticular, the most expensive components put together may not always deliver the best

performance system-wide. Cost can also be controlled by seeking a balance between

optimal performance and affordability. Note that the cost of an assistive environment

does not only include the purchase price, but also the cost of maintenance.

The proposed framework identifies the following major attributes to be used for

cost evaluation:

• Installation Cost : This is the cost that has to be paid to set up an assistive

environment. It includes both the cost of purchasing the necessary hardware

and software components, and the cost of putting them together and installing

them in the physical space.

• Maintenance Cost : Maintenance activities are often necessary to keep an assis-

tive environment up and running. Examples of such activities include regular

replacement of sensor batteries, system reset after a breakdown, hardware and

software components upgrade, and such.

Note that both installation and maintenance costs contribute to the overall cost

of an assistive environment. In addition, there is often an interplay between the two

types of cost. For example, some sensors cost more but are more robust and have

a longer lifespan, which reduces the cost of maintenance in the long run. Therefore,

the two types of cost should be considered in an integrative manner.

5.3 Discussion

Assistive environments are unique in that they target a special group of users

who are typically not familiar with technologies. Thus, user adoption is the key to

the success of those environments. In this work, we have identified a set of attributes

that are considered critical to user adoption. Table 5.1 summarizes those attributes.

The framework also suggests sample metrics, as well as possible approaches to mea-
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Table 5.1. Summary of attributes to evaluate a Human-Centered Computational
Framework for Assistive Living.

General Attributes Specific Attributes

Functionality
- Correctness
- Robustness
- Reliability

Usability
- Ease of Use
- Accessibility
- Non-obtrusiveness

Security and Privacy
- Violation reports
- Configurable privacy/access control
- Encryption strength

Architecture
- Modularity
- Interoperability

Intelligence

- Accuracy
- Precision
- Recall or Sensitivity
- Specificity

Quality of Service (QoS)
- Consistency
- Adaptability

Cost
- Installation Cost
- Maintenance Cost

suring them, to quantify those attributes. In case the proposed system does not meet

requirements, the designer has to go back and improve things to meet the minimum

defined standards. This work is part of a larger effort in building an infrastructure for

evaluating assistive environments. The infrastructure will consist of hardware compo-

nents that are commonly needed to deploy an assistive environment, and a collection

of software tools that help to automate the evaluation process. We plan to build a

database of operation and user profiles that are representative of real life scenarios

that may occur in assistive environments. Those profiles will provide us with a more

realistic assessment of those environments.
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CHAPTER 6

CONCLUSION

In this dissertation, I have presented my work in creating a Computational

Framework for Human-Centered Multimodal Data Analysis. The proposed frame-

work examines different views of an assistive environment to support the human well

being by providing services to improve health condition and quality of life. We have

examined what it takes to set up such an environment, how to collect the necessary

data to understand the human condition and behavior and how to efficiently ana-

lyze the collected data in order to obtain accurate results regarding the underlying

problem.

Our findings show that the same basic computational methods can be used to

analyze different aspects of the human presence inside an assistive environment, such

as behavioral patterns and health condition. Efficient feature selection methods allow

us to reduce the size of the problem and successfully extract meaningful information

out of data collected from various sources. We have suggested methods to tackle

specific problems, such as cancer and sleep problems detection, which can generalize

to other similar human-centered activities or conditions. Furthermore, we have shown

that the fusion of heterogeneous data about the same subject coming from different

sources can improve the accuracy of the obtained results and we have suggested

methods to efficiently do so.

Finally, we have examined the various aspects that would make a human-

centered computational framework built for assistive environments successful in real

life and we have suggested metrics to quantitatively measure and and evaluate those
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aspects. Table 6.1 summarizes the problems framework that our proposed tried to

solve and the methods to solve them.
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Table 6.1. Summary of problems solved by our Human-Centered Computational
Framework and methods we proposed to solve them.

Problem Suggested Methods

Human-Centered
Data Collection

- Sleep Patterns : Pressure mat, Kinect
- Medication: RFID reader
- Sensor placement/coordination: Factor Graphs
- Longitudinal events : Detection of Episodes
- QoS : Ontology centered middleware

Feature Selection
and Analysis
of Human-Centered
Data

Various Cancer Types - aCGH data
- Hybrid Sparsity Regularization for feature selection
- Accurate Cancer classification
- Identification of Biomarkers (disease-related genes)

Human-Centered
Data fusion

Brain Tumors
- Fusion of Gene Expression & MRS data
- Accurate Brain Tumor Typing
- Identification of Biomarkers (disease-related genes)

Sleep patterns
- Fusion of pressure and depth data
- Sleep Pattern Recognition

System
Evaluation

Evaluation of Computational Framework
- Identification of Important Attributes to Evaluate
- Proposition of Quantitative Evaluation Metrics
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