
 
 

  

NEEDLE DETECTION AND LOCALIZATION IN SIMULATED IN-VIVO ULTRASOUND IMAGE 

FOR USE IN BREAST BIOPSY 

  

by 

NIDHI KHULLAR 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2011 

 



 
 

Copyright © by NIDHI KHULLAR 2011 

All Rights Reserved



iii 
 

ACKNOWLEDGEMENTS 

             I am grateful to a number of people and organizations that helped me to pursue this 

research. First and foremost, my profound thanks and appreciation are addressed to my advisor 

Dr. Venkat Devarajan for his encouragement, help and kind support. His invaluable technical 

and editorial advice, discussions and guidance were a real support to complete this work. 

I wish to express my sincere thanks to my thesis committee members Dr. Alan Davis and Dr. R. 

Stephen Gibbs of the Department of Electrical Engineering, The University of Texas at 

Arlington. I would like to thank Dr. Balakrishnan Prabhkaran, Professor Department of 

Computer Science, The University of Texas at Dallas for his collaboration and guidance 

throughout this work. I thank Dr. Matthew Lewis, Assistant Professor, UT Southwestern Medical 

School at Dallas for providing all the Ultrasound imaging data for this research. 

I would like to thank my colleagues at Virtual Environment Lab for their moral support and 

assistance whenever required during this research. They played an important role in the 

successful completion of my work. 

Most of all, I would like to thank my family and friends for their constant encouragement and 

support. 

 

November 15, 2011 

 



iv 
 

ABSTRACT 

 
NEEDLE DETECTION AND LOCALIZATION IN SIMULATED IN-VIVO ULTRASOUND IMAGE 

FOR USE IN BREAST BIOPSY 

 

Nidhi Khullar, MS 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Venkat Devarajan 

 This thesis addresses needle segmentation in ultrasound images for breast cancer 

biopsy. The thesis reviews the state-of-the-art in object localization using ultrasound (US) 

imagery. In particular, principal component analysis, projection based methods (Hough 

Transform, Radon Transform and Parallel Integral Projection) and model fitting method using 

RANSAC and work in the field of diffusion filters are reviewed for potential use in a real breast 

biopsy environment, wherein the US imagery does not have much contrast and the speckle 

noise content is high. Other image artifacts in these images also mask the needle image. 

A new needle localization method called ANDSUI algorithm has been developed with focus on 

improved localization accuracy and computational complexity especially when the assumption 

“needle is brighter than background” fails such, in cases like needle is behind dense tissue.  

The new method and the state of the art methods have been compared to show that ANDSUI 

algorithm is superior.  
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CHAPTER 1 

INTRODUCTION 

“Breast cancer is the most common cancer among American women, after skin cancer. Today, 

approximately 1 in almost every 8 women (13.4%) develops breast cancer in her lifetime. Breast 

cancer is the second-leading cause of cancer death in women after lung cancer -- and is the 

leading cause of cancer death among women ages 35 to 54 [47].” Estimated new cases and 

deaths from breast cancer among females in the United States in 2011: New cases - 230,480 

Deaths - 39,520 [48]. 

A breast biopsy is a procedure in which part or all of a suspicious breast growth is removed and 

examined, usually for the presence of cancer. The growth sample is suctioned out through a 

needle or cut out using a surgical procedure. The sample is then examined and evaluated under 

a microscope by a pathologist to identify non-cancerous (benign) or cancerous (malignant) 

tissue.  

1.1 Types of Breast Cancer Biopsy 

1.1.1 Fine needle aspiration (FNA)  

Fine needle aspiration (FNA) is the least invasive method of biopsy. The surgeon uses a thin 

needle with a hollow center to remove a sample of cells from the suspicious area. If the area to 

be biopsied can be felt, the doctor locates the lump or suspicious area and guides the needle 

there. In cases where the lump cannot be felt, the surgeon may need to use imaging studies to 

guide the needle to the right location. This is called ultrasound-guided biopsy when ultrasound 

is used or stereotactic needle biopsy when mammogram is used [54] 
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1.1.2 Core needle biopsy 

Core needle biopsy uses a larger hollow needle than fine needle aspiration does because 

actual breast tissue is removed, rather than a tiny sampling of cells.  In most cases, the needle 

is inserted about 3 to 6 times so that the doctor can get enough samples. 

   1.1.2.1 Stereotactic biopsy  

This kind of biopsy is used to get a tissue sample from a lump that cannot be felt during a breast 

exam, but can be seen on a mammogram. The surgeon will use a special type of X-ray imaging, 

to find the lump that the needle must target, in order to get an accurate tissue sample. The 

needle will follow the X-ray to the area of concern, and take a tissue sample. 

   1.1.2.2 Ultrasound-guided core biopsy 

A biopsy needle is placed into the breast tissue. Ultrasound helps confirm correct needle 

placement -- using sound waves reflected off breast tissue -- so the exact location of the 

abnormality is biopsied. Ultrasound can distinguish many benign lesions, such as fluid-filled 

cysts, from solid lesions. 

1.1.3 Open biopsy or surgical biopsy  

This surgical technique requires a cut in the skin, in order to remove a sample of the lump, or 

sometimes, the entire lump. In addition to removing the suspected cancer, the surgeon 

generally removes a small rim of normal tissue around it as well. 

1.2 Drawbacks of the current breast cancer biopsy techniques 

Although we have different procedures to conduct breast biopsies, it is difficult to conclude the 

test in one attempt and multiple incisions are required to extract the exact suspicious tissue. 

The breast biopsy procedure is an uncomfortable and painful process, needing multiple sittings. 

Most of the physicians prefer the stereotactic procedure because the visualization and the 

accuracy of the localization of the cancer cell is excellent.  However, stereotactic biopsy makes 

use of X-Rays which is ionizing radiation. Using Ultrasound is an alternative to X-ray and it 

gives visualization in real time. However, Ultrasound provides noisy low-resolution images, and 
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so it is difficult to track the biopsy needle and avoid zones of exclusions which should not be 

pricked (blood vessels). These situations pose real challenges for the novice doctors, while 

even experienced physicians can arrive at incorrect conclusions. Also, in all the above 

procedures the patient is usually made to lie on her stomach, which is uncomfortable for the old 

patients that suffer from acid reflux. 

1.3 System design for breast cancer biopsy 

1.3.1 Research Motivation 

Doctors who are performing the biopsy on patients welcomed the idea of having some guidance 

and visualization, while they were performing the procedure on patients. The Virtual 

Environment Lab (Director: Dr. Venkat Devarajan) at The University of Texas at Arlington 

developed a haptic guided breast biopsy training system called ViHAB. In ViHAB, the doctor 

guides the haptic device (to which the needle is attached) to the target cancer tissue along a 

path calculated by the system. The haptic device gives feedback whenever the doctor tries to 

deviate from this path, thereby guiding it to the tissue. While this system proved the feasibility of 

the approach, there were several improvements to be made. For instance, in ViHAB, the doctor 

would not directly manipulate the needle, but would control the needle remotely by a joystick. 

This did not correspond to the actual biopsy performed by interventional radiologists, who would 

directly insert the needle into the tissue. Thus, as a part of a new collaborative effort with Dr 

Balakrishnan Prabhakaran of The University of Texas at Dallas, VEL developed a newer 

design. This design (in consultation with interventional radiologist Dr. Kathryn Hall at Baylor 

Medical Center), will be able to provide doctors guidance and visualization, and also work as a 

training tool for novice doctors so that they will gain experience without having to perform biopsy 

on patients. 

The imaging technique used needs to be non-ionizing, which leaves us with Ultrasound as the 

best option. The disadvantage with Ultrasound images is that they are noisy. We still prefer this 

as the imaging technique because it is a non-ionizing method. 
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The overall system can be divided into two blocks: Biopsy Planning Phase or Initial Setup and 

Biopsy Phase as shown in figure 1.1. 

 

 

Figure 1.1 Flowchart of new system design 

 

1.3.2 Biopsy Planning Phase or Initial Setup phase 

During this phase, the patient is made to sit in a comfortable position on a chair with the 

surgeon sitting beside her with the ultrasound equipment on the other side. Initially, the surgeon 

takes a Color Doppler Ultrasound scan of the breast to mark the target and the zones of 

exclusion. Once these are marked, a mesh of the entire breast is constructed from the 
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ultrasound data, which is used for deformation tracking. Meanwhile, the 3D ultrasound images 

are read and the best path from the surface of the breast to the target is determined. Also, an 

initial point of entry for the needle is provided. 

1.3.3 Biopsy phase 

This phase is a real time process. Once the path is planned for the doctor by the system, and 

the deformation tracking and needle tracking systems are initiated, the biopsy is started. The 

doctor inserts the needle and constantly observes the current position of the needle and the 

target provided on the user interface. The deformation tracking system tracks the position of the 

target in real time. The needle tracking algorithm returns coordinates of the needle axis location 

and tip position in real time. Information from the deformation tracking block and needle tracking 

block is provided to the path planning algorithm, to recreate a new path if required. Virtual 

resistance is provided if the doctor deviates from his path. 

1.3.4 System components 

In this new system design we have following five important components 

Visual Imaging (Ultrasound imaging) 

Path planning block 

Needle tracking block 

Tissue deformation tracking block 

User interface and Haptic block 

1.4 Research motivation for our specific problem 

Minimally invasive surgical procedures often involve an insertion of a thin tubular instrument into 

the human body. For example, in biopsy, tissue samples are taken from a particular region by 

means of a thin needle [41]. In breast cancer therapy, radioactive substance is injected near the 

tumor [42]. In all these cases, it is important to localize the instruments for the determination of 

their precise position. The desired accuracy depends on the application: for needle biopsy, it is 

of the order of millimeters [43]. 
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The navigation of the needle is vital for reducing the damage to the tissue. Also physician wants 

to reduce the number of failed insertions.  

A number of localization methods have been put into use to allow physicians with a way to know 

the exact position of the tool at any given time. Initially, a stereotactic frame for instrument 

guidance was introduced in 1908 [44]. It consisted of a fixed mechanical frame with respect to 

the patient’s body and the object to be tracked. Due to limitation of stereotaxy and patient 

discomfort, a frameless approach was then proposed: spatial localization of a tool using a radio-

frequency signal or optical tracking [45]. In parallel developments in medical imaging CT, MRI, 

and Ultrasound (US) were also introduced [46]. Here we focus on Ultrasound because of its 

advantages: there is no ionizing radiation and the cost of ultrasound is modest. Thus our aim is 

to develop localization method which relies solely on ultrasound data. 

1.5 Task Definition 

The task addressed in this study is to determine the 2-D position of a needle in an ultrasound 

image of biological tissue using a fast and robust method. Localization task comprises of two 

subtasks: 

Axis Localization: determination of the axis of the needle 

Tip Localization: the actual co-ordinates of the tip of the needle 

Localization information can also be used as initialization in an automatic guidance system 

during a surgical intervention. 

1.6 General Issues 

There are several impediments to accurate localization. These are enumerated below: 

Ultrasound Data Quality: Ultrasound data have low spatial resolution due to large amount of 

speckle noise. These artifacts make localization task difficult. 

Incomplete Object Structure: Sometimes the boundary of a needle in an image is distorted. 

Also, there are reverberations in the US image as needle is a strong reflecting object. So it is 

often difficult to find tip of needle. 
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Computational Cost: We need to localize the needle in real time in order to help with the real 

time movement of the needle during the actual surgery. So, computational complexity of 

algorithm must be low. 

View Dependency: The appearance of a tool in an ultrasound image depends upon the tool’s 

angle with respect to ultrasound probe. As the experienced surgeon holds the US scanner in his 

left hand, he “just knows” how to position the scanner with respect to the tip of the surgical 

needle in his right hand. This is a complex mental/physical co-ordination task that is difficult to 

teach to the surgical residents and is even more difficult to consistently model in a simulation 

environment. 
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CHAPTER 2 

ULTRASOUND SYSTEMS 

 Medical ultrasound is a diagnostic modality permitting view of anatomical structure of 

organs. Major applications of medical ultrasound can be found in obstetrics to assess fetal 

health, in cardiology to diagnose heart function and in general diagnostics to investigate inner 

organs such as liver, kidney and breast. Its popularity arises from the fact that it provides high-

resolution images without the use of ionizing radiation. Ultrasound imaging uses the 

transmission and reflection of high frequency longitudinal sound waves in tissue. Typically, the 

frequencies used in medical practice range from 1 to 20 MHz. A US image is formed by the 

received waves reflected from the surfaces between different tissues. The reflection is due to 

differences in acoustic properties of the tissue. The electrical/mechanical energy conversion 

required to generate/detect ultrasound waves uses the piezoelectric effect. 

2.1 Transducer 

The transducer is a key component of an ultrasound system. It acts as a converter of the 

electrical signal to the mechanical energy and vice versa. In transmission, the transducer 

excited by a short electric pulse generates mechanical vibrations, which are transmitted into the 

body as a sound wave (figure 2.1). Subsequently, the transducer operating in a reception mode 

converts the received sound waves into electrical signals which are processed and displayed as 

an ultrasound image.  
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Figure 2.1 each element of the transducer array excited by a delayed excitation pulse [4]. 
 

 
Most transducers are composed of an array of small piezoelectric crystals [1]. The physical 

layout of crystals on the transducer determines the size of the field of view (FOV) and its 

dimensionality (2D or 3D). 

2.1.1. Type of Transducers 

  2.1.1.1 Linear Array     

 A linear transducer consists of a large number (64 – 512) of piezoelectric crystals, 

arranged linearly. Applying a voltage pulse to a small number of adjacent crystals, a thin sound 

beam is produced. After all the backscattered echoes have been received by the same 

subgroup of crystals, a second voltage pulse is applied to the neighboring elements, creating a 

beam displaced laterally with respect to the first beam [2]. This type of imaging produces 

rectangular 2D images (Figure 2.2). 
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Figure 2.2 (a) Linear array transducer (b) Linear array image of breast cyst (c) Linear array 
scanning; a small number of adjacent crystals is excited with electrical pulses [1, 4, 6]. 

 

  2.1.1.2 Phase Array/Sector  

           The voltage pulse exciting each piezoelectric crystal of sector transducer is delayed in 

time with respect to each other (Figure 2.3). The sound waves from all piezoelectric elements 

interact with each other creating a thin, focused beam. The advantage of a phased array probe 

is that the small footprint allows for imaging in difficult locations [2]. The disadvantage is poor 

near field resolution. 

 

 

Figure 2.3 (a) Phase array transducer (b) Phased array image of breast cyst (c) Sector 
scanning; Electric pulses applied to crystals are time-delayed to steer and focus emitted sound 

beams [1, 4, 6]. 
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2.2 Image Formation 

The transducer, in transmission mode is excited by a short electric pulse and generates a sound 

impulse that is transmitted into the body in a narrow beam. At boundaries between organs and 

tissue in-homogeneities, a small portion of the wave energy is backscattered in the direction of 

the transducer. Received waves are converted into electrical signal by the same transducer that 

has been switched into reception mode. After all echoes have been received along one scan 

line, the beam is steered to acquire data along another direction [1, 4]. 

Let Nb be number of ultrasound beams in a scan plane and let θ be the total tilt angle of the 

scan planes (figure 2.4). The scanner provides for each ultrasound beam a discrete 1D signal 

that corresponds to the RF signal received from the particular direction.   

 

 

Figure 2.4 Coordinate system for ultrasound imaging [4] 

 

2.2.1 Filtering 

Received RF signals will have noise frequency components outside the frequency band of the 

transducer. So, typically RF signals are filtered with a band-pass filter to reduce noise outside 

the frequencies of interest (figure 2.5). 
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Figure 2.5 Flow diagram representation of the reconstruction of the ultrasound image from 
received RF signals [1] 
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2.2.2 Envelop detection 

Ultrasound imaging is typically accomplished non-coherently on the envelope of the signal. This 

envelope extraction process is commonly called detection in ultrasound terminology. Generally, 

this is performed by creating an analytic representation of the RF signal using Hilbert transform. 

Hilbert transform is given by equation 2.1 

.                                                    (2.1) 

 

 

Figure 2.6 Envelop detection using Hilbert transform [4] 

 

The amplitude envelope e(t) of a signal x(t) is computed as the complex module of the sum of 

the original signal and its Hilbert transformation (figure 2.6). The advantage of this operation is 

that it is independent of the actual frequency of the operating frequencies and independent of 

the imaging mode (conventional versus harmonic), or changes in the center frequencies with 

time. 

2.2.3 Log Compression 

The maximum dynamic range of the human eye is in the order of 30 dB. The actual dynamic 

range of the received signal depends on the A/D conversion bits and the depth of penetration 

dτ
τt

u(τ
 H{u(t)} ∫

∞

∞− −Π
=

)1
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[1]. The signal is compressed to fit the dynamic range used for display (usually 7 or 8 bits). It is 

typical to use a log compressor to achieve the desired dynamic range for display. 

2.2.4 Scan Conversion 

This is traditionally the stage at which interpolation between envelope-detected signal lines 

occurs, to determine the echo amplitude values to be displayed.  B-mode (See next section for 

an explanation of B-mode) images are stored in polar coordinates form. Thus, a scan 

conversion is needed to transform the polar coordinate data into standard Cartesian coordinates 

that are needed by standard graphics subsystems (figure 2.7). Generally, the algorithm 

computes the interpolated points based on their neighbors. Bilinear interpolation is the most 

commonly used technique for scan conversion [7]. 

 

 

Figure 2.7 (a) Raw B-mode image data; before scan conversion (b) B-mode image after scan 
conversion [1] 

 

2.3 Imaging Modes  

2.3.1 A-mode 

 This is now an obsolete mode in medical imaging. Wave spikes are represented when a single 

beam passes through objects of different consistency and hardness. The distance between 
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these spikes (for example A and B) can be measured accurately by dividing the speed of sound 

in tissue (1540 m/sec) by half the sound travel time (figure 2.8 (a)).  

2.3.2 B-mode (Brightness) 

Brightness is used to represent the amplitude of the sampled signal. B mode imaging is 

performed by sweeping the transmitted sound wave over the plane to produce a 2D image 

(figure 2.8 (b)). Typically, multiple sets of pulses are generated to produce sound waves for 

each scan line, each set of pulses are intended for a unique focal point along the scan line 

[3,5,6]. 

2.3.3 M-mode  

M-mode refers to scanning a single line in the object and then displaying the resulting 

amplitudes successively [3]. This shows the movement of a structure such as a heart. Because 

of its high pulse frequency (up to 1000 pulses per second), this is useful in assessing rates and 

motion and is still used extensively in cardiac and fetal cardiac imaging (figure 2.8 (c)). 
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Figure 2.8 Ultrasound images of different modes (a) A-mode image (b) B-mode image (c) M-
mode image (d) Color Doppler image (e) Power Doppler image [6] 

 
 

2.3.4 Color Doppler 

In this mode, several pulses are transmitted along each scan line and the Doppler frequency is 

estimated from the relative time between the received signals [3, 5, 6]. Since pulses are used 

for the signaling, the velocity location can also be determined. This is used to create a color 

image that is super-imposed on top of the B-mode image. A color code is used to denote the 

direction and magnitude of the flow ((figure 2.8 (d)). Red typically denoted flow towards the 

transducer and blue denotes flow away from it. A darker color usually denotes a larger 

magnitude while a lighter color denotes a smaller magnitude. 
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2.3.5 Power Doppler 

In this mode, the strength or the power of the motion is estimated and displayed, instead of 

estimating the actual velocity of the motion as in Color Doppler [3, 5, 6]. It is useful to display 

small motion. There is no directional information in this measurement ((figure 2.8 (e)). 
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CHAPTER 3 

STATE OF THE ART IN OBJECT LOCALIZATION AND SEGMENTATION IN ULTRASOUND 
DATA 

 

Ultrasound (US) image segmentation is strongly influenced by the quality of data. There are 

characteristic artifacts in the image, which make the segmentation task complicated such as 

attenuation, speckle, shadows, and signal dropout; due to the orientation dependence of 

acquisition that can result in missing boundaries. Further complications arise as the contrast 

between areas of interest is often low. This chapter attempts to provide a brief review of the 

approaches that were proposed to solve the task of object localization and segmentation in 

ultrasound data. 

3.1 Hough Transform 

3.1.1 Standard Hough Transform 

Hough Transform [9] was proposed for detection of lines in 2D images using a voting algorithm. 

It represented a line in the image space, as a point (a, b) in the parametric space (also known 

as Hough Space) 

Linea, b: {(x, y) ∈ R2 | y = ax + b} Image                                                             (3.1)    

Each point (x, y) in the image space is transformed into a set of possible line parameters (a, b), 

such that a line Linea,b passes through (x, y), which is a line in Hough space. The intersection of 

all such lines in Hough space is a single point (a, b) Hough and represents the desired line in the 

image space: 

Pointx, y: {(a, b)    R2 | y = ax + b} Hough                                                            (3.2) 
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The lines can be detected as local peaks in the Hough space. 

Line parameterization is now accomplished using polar coordinates, because it avoids the 

singularity of line parallel to Y-axis. 

Linea,b : {(x, y) ∈ R2 | y sin θ + x cos θ = r}Image                                                     (3.3) 

The following properties are considered for Picture plane to parameter plane transformations 

[9]: 

A point in the picture plane corresponds to a sinusoidal curve in the parameter plane. 

A point in the parameter plane corresponds to a straight line in the picture plane. 

Points lying on the same straight line in the picture plane correspond to curves through a 

common point in the parameter plane. 

Points lying on the same curve in the parameter plane correspond to lines through the same 

point in the picture plane. 

The steps in the implementation of standard Hough transform are as follows: 

Specify the acceptable error in θ and r and quantize the θ-r plane into a quadruled grid. The 

quantized region is treated as a two-dimensional array of accumulators. For each point (xi, yi) in 

the picture plane, the corresponding curve given by (3.3) is entered in the array by incrementing 

the count in each cell along the curve. Thus, a given cell in the two dimensional accumulator 

eventually records the total number of curves passing through it. After all figure points have 

been treated, the array is inspected to find cells having high counts. 

3.1.2 3D Hough Transform (3DHT) 

3D Hough Transform is an extension of 2D Hough Transform assuming that the approximate 

needle position and orientation are known either from the manual insertion or the 3D US 

imaging system [11]. Also, this a priori knowledge is used to discard portions of the 3D US 

image, which do not contain the needle, thereby reducing the amount of data to be processed. 

A straight line in Euclidean 3D space can be defined in terms of a point and an orientation [11], 

[12]. Each of these components can be represented as 3-tuple over real numbers: the point p = 
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(px, py, pz) as the Cartesian coordinates of the position of a point, and the orientation b = (bx, 

by, bz) as the direction cosines with respect to the coordinate axes x, y and z. Then, a line in 3D 

space can be represented as: 

LineΦ,ρ,θ,r : [x(t), y(t), z(t)] = pθ,r + tbΦ,ρ                                                                  (3.4) 

Where point pθ,r is an intersection of line with base plane (intercept point with plane xy). The 

polar coordinates for pθ,r and azimuth and elevation for vΦ,ρ are: 

                          pθ,r = [r cos(θ), r sin(θ), 0] , v Φ,ρ = [cos(Φ) cos(ρ), sin(Φ) cos(ρ), sin(ρ)]      (3.5) 

Linnes are detected as in 2D HT by using a 4D accumulator is used. 

The steps in the implementation of a line in 3D space are as follows: 

Create a set D of all edge points of a 3D image.  

Determine the proper threshold according to the histogram of the 3D image, and convert the 

original 3D image into a binary 3D edge image.  

Calculate the Hough parameter accumulator H(Φ, θ, ρ, α).  

The ranges of 3D line parameters can be further decreased if the approximate needle position 

and orientation are known.  

Initialize H(Φ, θ, ρ, α) with zeros.  

For each 3D edge point(x, y, z), calculate all possible parameters (Φ, θ, ρ, α) using the 3D line’s 

equations, and accumulate the H(Φ, θ, ρ, α).  

Detect the global maximum cell Hmax in the H(Φ, θ, ρ, α). (Φmax, θmax, ρmax, αmax) will be 

the parameters of the needle in the 3D image 

Bhattacharya [14] proposed decomposing the finding of a line in 3D into first finding the slope of 

3D line in 2D parameter space (Φ, ρ) and subsequently finding its intercept of 3D line also in 2D 

parameter space. 

This approach requires a priori knowledge of the orientation and position of the needle to 

discard portions of the 3D US image which do not contain the needle. Also, in this work an 

assumption was made that needle has a high gray value.  
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3.1.3 Randomized Hough Transform (3DRHT) 

Xu and Oja [15, 16] proposed Randomized Hough Transform (RHT). The RHT maps a pair of 

points (x1, y1), (x2, y2) ∈ R2 (which define a line), into a single point (a, b) in the parameter 

space 2  

       Points: {(x1, y1), (x2, y2)}Image → (a, b)Hough                                                    (3.6) 

(In contrast to the standard HT, which maps point (x, y) to a curve in a parameter space) 

The RHT randomly iteratively samples a random pair of points in a thresholded image and 

increments corresponding bins in the accumulator. The solution candidates are found to be 

local maxima in the accumulator. RHT has been generalized in 3D [10, 16] and is used for 

needle detection. The improved Quick RHT (QRHT) uses a coarse to fine strategy to improve 

the speed. 

Table 3.1 Comparison of 3D Hough transform and 3D Randomized Hough transform [12] 

Method Angle deviation Length deviation Time Memory 

3DHT 1.30 0 1.26 mm 3.03 s 2.27 Mb 

3DRHT 2.62 0 2.39 mm 0.10 s 0.13 Mb 
 

3D Hough transform is more accurate in terms of needle angle and length deviation compared 

to 3D randomized Hough transform but later is more efficient in terms of time and memory 

consumption (Table 3.1). 

3.1.4 Probabilistic Hough Transform 

In Probabilistic Hough transform [17] a subset of points selected at random is used as input for 

the Standard Hough transform. The time complexity of PHT is decreased in comparison to 

Standard Hough transform at the expense of increased variance.  
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3.1.5 Shortcomings of Hough Transform approach 

Hough transform is a time and memory consuming process especially for a large data set. For 

3D images, even with the different implementations of the algorithm to make the process 

efficient, this approach is not cost effective.  

Also, Hough transform cannot locate the needle, if its intensity is lesser than the background or 

if its boundaries are distorted. This algorithm will only work with the assumption that needle’s 

appearance in the image is a straight line. 

3.2 Principal Component Analysis Method 

Principal component analysis (PCA) is a mathematical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of 

values of uncorrelated variables called principal components. The number of principal 

components is less than or equal to the number of original variables. First principal component 

has as high a variance as possible and each succeeding component in turn has the highest 

variance possible under the constraint that it be orthogonal to (uncorrelated with) the preceding 

components. 

3.2.1 2D Ultrasound Image 

The first variance I1 of the image is created from original ultrasound image I0 to enhance tool 

voxels and suppress background noise [18]. 

   I1 (i,j) = ∑ ∑ �����,	
���
�������	������                                               (3.7) 

where,       Imean = ∑ ∑ ����,�
����������     

The variance kernel is an area of N*N pixels, where N is odd, centered on the pixel to be 

replaced. This process emphasizes the needle, making it appear larger in the image and 

smoothes the background speckle to provide a more uniform background. 

 



23 
 

Then a binary image is created by adaptively thresholding the variance image to approximately 

classify electrode and background pixels. The intensity of variance image is modeled as a 

single normal distribution with mean µ and variance σ2 that are estimated from training data. 

Then threshold T is determined by: 

T = µ + k σ                                                                 (3.8) 

For a small value of k, other background pixels above the threshold will be maintained along 

with the needle pixels, leading to difficulties in separating the needle from pixels outside the 

needle region. However, for large k, an image would result in which none of the needle pixels 

are maintained, leading to errors in its position and orientation measurements. 

I2(I,j) = �255 ��  I��i, j
   !0    ��   I� �i, j
 ≤  !  

To smooth the needle contour, morphological closure with a 3x3 symmetrical structuring 

element is applied. 

A cluster Ci is defined as a group of pixels connected within the 8-pixel neighborhood. Each 

cluster of pixels is processed using the principal component analysis to determine the best 

fitting straight line in terms of the least mean squares criterion. Let us denote by Ri the 

covariance matrix of pixel coordinates in the cluster Ci.  

Ri =  #$%%& $%'&$'%& $''& (                                                             (3.9) 

where,  σxy = 
∑ �%)�%*+,-
�')�'*+,-
.)/0 1  ,B is the number of pixels in the cluster 

The first and second eigenvectors of the covariance matrix represent the directions in which the 

variance is minimized and maximized respectively, and can be used to define an ellipse [21].  

The line is determined by the eigenvalue corresponding to the highest eigenvector. This was 

tested by the authors on a cryogel phantom with a breast biopsy needle (2.1 mm in diameter).  

A phantom is a physical simulation of an organ, in this case the human breast, using animal 

tissue, gels etc. Targets, to represent cancer cells are placed in this phantom. In this case, the 



24 
 

phantom was scanned with a 2D ultrasound scanner operating at 5.5 MHz.  Results of the 

experiment to localize the biopsy needle using this PCA method show the algorithm has an 

accuracy of 1 mm for a depth of insertion greater than 15 mm. 

3.2.2 3D Ultrasound Image 

Novotny [19] extended Draper´s [18] method to 3D. 3D data is pre-segmented using 

thresholding. Thereafter, connected components (using a 26-voxel neighborhood) are analyzed 

by PCA. The longest and the straightest candidate is selected by maximizing the ratio of the first 

and second eigenvalue. The test is performed with a cylindrical rod with 6.2mm in diameter 

submerged in a water tank. It indicates a mean tip accuracy of 0.7 mm with a standard deviation 

of 0.6 mm. 

3.2.3 Shortcomings of the Principal Component Analysis approach 

Experiments were conducted only for the small range of angles 0°–13.1° of needle axis. For this 

range of angles, the contrast between the needle and the background is high. Segmentation 

may not be successful at larger angles, where the contrast between the needle and the 

background is reduced, and thus the contrast in the variance image is also reduced [18].  

During the PCA step, the needle cluster is determined to be the cluster that has the longest 

major axis. This isolates the needle from the background for the ideal data set considered in 

these papers, wherein the needle is the only structure in the image. However, in an in vivo 

situation, the images would contain other specular reflectors and scattering structures, which 

can interfere with the segmentation of needle.  

Also, there are possibilities of classifying a wrong cluster to be the needle cluster, when only a 

small part of the needle appears in the image and, thus does not have a long major axis. 

3.3 Radon Transform 

The Radon transform maps an image I, into the Radon space wherein‘d’ and ‘Φ’ define a 

line in two dimensions by its perpendicular distance to the origin and slope, respectively. ‘s’ is a 

free parameter that corresponds to a specific point on the shape. 

}{IR
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                                     (3.10) 

This can also be extended to 3D [20]. Points on a parametric shape are defined by the function 

c(s, p) where p defines the parameters of the shape. A line is represented by the midpoint of the 

line (x0, y0, z0), angular parameters (Φa θa) and the length of line L. 

Points lying on a line segment are now defined for p and s as: 

 C(s,p) =   2 30 4050 6 +7cos� θ
 cos �Φ
sin� θ 
 cos �Φ
sin �Φ
 < * =/2 *s    where s belongs to [-1, 1]             (3.11) 

 And the Radon Transform can be written as: 

Rc(s,p){ I }(p) = ? I�C�s, p
�. ds���                                                               (3.12) 

Identifying lines in the 3D volume now becomes a problem of finding local maximums of Rc(s,p){ I 

}(p) from equation 3.12. The image volume I, along a direction defined by (θ, Φ) is integrated 

through the point (x0, y0, z0) and the maximum of R is identified. 

For e.g. in above figure 3.1 c contains points with a high integral and so the image is brighter   

than the other four images (with maximum integral value R) 

 

 

 

dssdsdIdIR ))cos()sin(),sin(cos((),}({ φφφφφ +−= ∫



26 
 

 

Figure 3.1 Example of Radon Transform: Image (a–e) is a projection of the ultrasound image 
along the corresponding direction shown in the schematic. The projection along the axis of the 

instrument (c) is the brightest [20]. 
 

To detect the tip location, the authors use a new marker design shown in figure 3.2. Bumps are 

identified using template matching on ultrasound slice. The positions of the three best matches 

found in the slice are used to determine the tip position of the instrument and the roll angle. 

 

 

Figure 3.2 (a) Picture (b) ultrasound image of the needle with passive markers [20]. 

 

Initially, equation 3.12 is calculated for evenly spaced points throughout the volume space I. 

The volume is sampled at 5 voxel increments in x, y, and z. For angles Φ, θ, equation 3.12 is 

sampled in 10 degrees increments from 0 to 180 degrees. In this way, the initial coordinates of 
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the instrument are found. For subsequent frames, the tracking algorithm confines its search 

space to an area centered on the location found in the previous frame. 

Results show this implementation detected a surgical instrument in 31 ms, sufficient for real-

time tracking at the 25 volumes per second rate of the ultrasound machine. A water tank 

experiment found instrument orientation errors of 1.1 degree and tip position errors of less than 

1.8 mm. 

3.3.1 Shortcomings of Radon transform approach 

This work uses passive markers to detect the needle tip. This requires wrapping of 800 µm 

polyurethane foam around the instrument shaft (figure 3.2). Polyurethane can cause allergic 

reactions to eyes, nose, throat, lungs and skin [49]. Even with the markers, the algorithm 

sometimes incorrectly identifies the position of the passive markers.  

This method is also computationally exhaustive. It requires five parallel graphical processing 

units to calculate the five parameters x, y, z, Φ and θ discussed above. Also, sixteen parallel 

programs are needed to be executed using the graphic card to calculate the integral in equation 

3.12. 

3.4 Parallel Integral Projection 

The PIP is a transform that maps an image function I : R3 → R representing volume data to a 

function PI : R4 → R [22] describing its projections (see figure 3.3) as a function of the 2-D 

displacement (u, v) and the projection direction determined by two angles (α, β)  
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Figure 3.3 (a) Integral of the image intensity function is calculated along a line given by the point 
Q [u, v] and a vector w. (b) Evaluation of the PIP transformation of a 3-D image [22] 

 

So PIP is defined as: 

P (α, β, u, v) =? E�F�∞�∞ α,β
. �u, v, t
T) dt                                       (3.13) 

Where R (α,β
 is a rotational matrix given by:  

R (α, β) = J KLMβ M�Nα O M�Nβ   0 KLMα PKLMα O M�NβM�Nα M�Nβ PM�Nα O KLMβ KLMα O KLMβQ                               (3.14) 

The axis of electrode is identified in 3D image using the following steps: 

Let I: R3 → R be an image function such that intensity of the electrode M is greater than the 

background: R31 S M,  R32 T M, I (31) >I (32)                                             (3.15) 

When the electrode diameter is infinitely small, PIP transform P (α, β, u, v) has the maximum 

when the line of integration is coincident with the axis of M: 

(umax, vmax, αmax, βmax) = argmaxP(u, v, α, β) 
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Discretization of the PIP Transformation: The authors maximize PIP transform on a discrete gird 

such that the discretization steps ∆α, ∆β, ∆u, ∆v  are sufficiently fine not to miss the electrode. 

That is, 

∆α, ∆β  ≤  2 arctan 
U&OV%*,W V                                                      (3.16) 

∆u, ∆v  ≤ d,                                                                (3.17) 

where, d is the electrode diameter and xmax is the position of the most distant voxel from the 

origin. 

Maximizing the PIP Transformation: The authors decompose the maximization of PI (u, v, α, β) 

to an inner maximization with respect to (u, v) and an outer maximization with respect to (α, β). 

A(α,β) is angle function which is maximized by αmax, βmax  and maximizes P(u, v, α, β) for umax, 

vmax: 

A(α, β) =maxu,v P(u, v, α, β)                                                    (3.18) 

They then use a hierarchical mesh-grid search (figure 3.4) to find maximum of A(α, β) [23]. 

 

 

Figure 3.4 Principle of hierarchical mesh-grid algorithm [22] 
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On the first level, A(α, β) is evaluated on a rectangular grid of points <0◦, 180◦> x<0◦, 180◦> that 

are uniformly sampled with steps ∆init
α , ∆init

β .The maximum location (α1 
max, β

1
max) is 

determined. On the second level, the angle function is evaluated on a rectangular grid <α1
max – 

450, α1
max + 450 > × <β1

max−450,β1
max + 450> uniformly sampled with steps ∆2

α = (∆1
α/2),∆2

β = 

(∆1
β/2), where ∆1

α = ∆init
α , ∆1

β =∆init
β . The pair (α2

max, β
2
max) that maximizes A(α, β) is 

established. This algorithm is repeated for i levels until both steps ∆i
α, ∆

i
β are equal, figure 3.4. 

Results show experiments were performed on numerical phantoms with localization accuracy 

between 0.2 and 0.3 mm for real images. But processing time for current MATLAB 

implementation is tens of minutes. 

3.4.1 Shortcomings of Parallel Integral Projection 

This approach is not feasible for real time applications due to its processing speed. The 

processing time of the current algorithm implementation in MATLAB is tens of minutes. Even 

rewriting the method in a compiled language such as C or Java will likely not allow real time 

implementation. 

This algorithm makes two assumptions: electrode appears as a cylindrical object with a straight 

axis and, the intensity of electrode voxels is much higher than the intensity of background 

voxels. So, in an in vivo situation, where above assumptions are not true, this algorithm will not 

accurately segment the needle. 

3.5 Model fitting using RANSAC 

Martin Barva [1, 24, 25] proposed an algorithm for finding needle axis and tip using model fitting 

using RANSAC. Given input data set model and a cost function, RANSAC provides, with a 

certain predetermined probability, the model parameters that maximize the cost function and all 

inliers consistent with the corresponding model. The algorithm is based on the following two 

assumptions. 

1. Assumption 1: The intensity of the tool’s voxels is higher than the surrounding tissue. 
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2. Assumption 2: The shape of the tool is a thin, long, and possibly curved cylinder. 

The propose algorithm consists of following steps: 

3.5.1 Thresholding  

A set of voxels with coordinates X ⊆R3 and intensities I(X) ⊆ R is split by thresholding (using 

Assumption 1) into two disjoint sets: Xt (tool’s voxels) and Xb (background voxels) 

Xt = {x ∈ X: I(x) ≥ TI}          X = X \Xt                                                                     (3.19) 

 

 

Figure 3.5 Statistical models of the intensity distribution. The parameters of four probability 
distributions were estimated to fit the intensity of training images [1]. 

 

Barva estimates the threshold TI as the 95% quartile of the input data by fitting Gamma 

distribution [24]. This is based on the expectation that the proportion of voxels belonging to the 

tool is less than 5%. 
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3.5.2 Axis localization 

The tool’s axis is represented by a spatial parametric polynomial curve c(t;H): R → R3 of order  

n – 1 

c(t;H) = YZ11 Z12Z21 Z22     Z13 Z14     Z23 Z24Z31 Z32Z41 Z42     Z33 Z34     Z43 Z44^.

_̀
a 1bb&bc de

f
  ; t ∈ R                                          (3.20) 

Where H is a matrix of curve coefficients and t is a curve parameter. They defined a cubic curve 

(figure 3.6) by means of four points (denoted as the control points) that lie on the curve.  

Figure 3.6 Parametric cubical curve [1].  

 

They deduced an H matrix using D = (D1, D2, D3, D4). The curve parameters t1, t2, t3, t4 of the 

control points, which are required to determine H, are not known a priori. They let t1 = 0. And 

deduce the values of the other curve parameters t2, t3, t4 from Euclidean distances between 

adjacent control points to approximate the true arc length parameters: 

t2 = gD1 –  D2g                                                               (3.21) 

t3 = t2 + gD2 –  D3g                                                          (3.22) 

                                        t4 = t3 + gD3 –  D4g                                                          (3.23) 
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So condition imposed on H is: 

YZ11 Z12Z21 Z22     Z13 Z14     Z23 Z24Z31 Z32Z41 Z42     Z33 Z34     Z43 Z44^. 
_
à 1b1b1&b1c 

   
1b2b2&b2c 

   
1b3b3&b3c 

  
1b4b4&b4c d

ef =jD1, x D2, xD1, y D2, y    D3, x D4, x    D3, y D4, yD1, z D2, z      D3, z D4, z  n          (3.24) 

                                                                Or,     H = D · T-1  

3.5.3 Shortcomings of model fitting approach 

The optimal value of Ti was deduced from the estimated statistical model that describes the 

voxel intensities (figure 3.5). The model parameters were estimated using a training set of five 

ultrasound images acquired by scanning a portion of tissue containing an electrode. But, in real 

time biopsies, it will not be always possible to establish prior intensity distributions. 

Like the parallel integral projection approach, two assumptions were made: the electrode 

appears as a cylindrical object with a straight axis and, the intensity of electrode voxels is much 

higher than the intensity of background voxels. Then using thresholding, image intensities are 

split into two disjoint sets: Xt (tool’s voxels) and Xb (background voxels). So, this approach will 

likely fail to the isolate tool’s voxels for real ultrasound images. 

Table 3.2 summarizes the methods discussed above. Also it compares the angle accuracy, 

positional accuracy and computational time for them. 
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Table 3.2 Comparison of previous work: Object localization and segmentation. 

Method Basic Idea Angle 
accuracy 

Length 
accuracy 

Computational 
Time 

3DHT Uses extension of 2D Hough 
Transform. New representation of 
line in 3D is discussed. Requires 
a priori knowledge of needle 
position and orientation. 
 

1.30 0 1.76 mm 3.03 s (Visual 
C++) 

3DRHT Concept is same as 3DHT but 
different implementation is used. 
Instead of linearly sampling, this 
iteratively samples random points 
in thresholded image and 
increments corresponding bins in 
the accumulator. 

2.62 0 2.39 mm 0.10 s (Visual 
C++) 

Radon 
Transform 

Radon transform is the integral 
transform consisting of the 
integral of a function over straight 
lines. Lines are identified as the 
local maximums of the integration 
results. 

1.10 1.88 mm 31 ms (used 
parallel 
processing and 
GPU) 

Parallel 
integral 
projection 
(PIP) 

PIP transforms maps the 3D 
image to its 2D projections in 
terms of the 2-D displacement (u, 
v) and the projection direction 
determined by two angles (α, β). 
the 2-D displacement (u, v) and 
the projection direction 
determined by two angles (α, β). 
The PIP transform is similar to the 
Radon transform. 

Not 
Available 

0.2 -0.3 
mm 

10 -20 minutes 
(MATLAB) 

Principal 
Component 
Analysis 
(PCA) 

 PCA uses an orthogonal 
transformation to convert a set of 
observations of possibly 
correlated variables into a set of 
uncorrelated variables 
called principal components, 
thereby decreasing the number of 
components required to represent 
the data. 

Less than 
40 

1mm Not Available 

 

*All data is taken from the corresponding articles and different data sets were used for 
experiments. 
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The Radon transform approach gives the best accuracy for angular deviation but, at the cost of 

computational time and the hardware required (table 3.2). We get the best accuracy for tool 

length deviation by PIP approach but like Radon Transform, this approach is not efficient for 

real time applications. The PCA approach gives good results both in terms of accuracy and 

computational cost if the needle is the only structure in the image.  

Work in this thesis uses images which are likely to be much closer to the images encountered in 

in-vivo situations. We consulted two practicing interventional radiologists, Dr. Katherine Holly at 

the Baylor Hospital, Dallas, TX and Dr. Robert Wynn at UT Southwestern Medical Center. In 

addition Dr. Mathew Lewis, a cancer researcher at UT Southwestern Medical Center also gave 

us substantial advice on procuring realistic US images obtained using realistic phantoms. Thus 

our US images are distorted due to the presence of artifacts and speckle noise. The contrast 

between the intensity of the needle and the background is not high. Also needle boundaries are 

distorted and they do not appear as perfect straight lines in the images. So, we cannot use 

PCA, model fitting using RANSAC or PIP approach. Between Radon transform and Hough 

transform, the latter is better in terms of the computational and underlying hardware cost 

requirement.  

But image enhancement is required due to degraded images used in this work. Image 

enhancement using diffusion filters is described in chapter 4. 
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CHAPTER 4 

DIFFUSION FILTERS FOR SPECKLE RESUCTION 

Ultrasound images suffer from speckle due to the interference of back-scattered signal [28]. It is 

caused by the interference of energy from randomly distributed scatters, which is too small to be 

resolved by the imaging system. The speckle noise is the limiting factor for image contrast in US 

images and produces the familiar apparently random modulation of the image in regions that 

would otherwise be displayed as a uniform gray level, so the speckle significantly degrades the 

image quality and hinders the discrimination of the fine details [29].  

Image filtering is one of the steps used in image processing to remove the noise. The traditional 

methods of de-noising, using simple filters as a Gaussian filter not only smooth the noise in the 

image but also, blur the edges and change their location. Alternative methods based on partial 

differential equation [26, 28] have been proposed to address this problem. 

4.1 Speckle Model 

Speckle pattern can be categorized into one of the following three classes according to the 

number of scatters per resolution cell also known as scatter number density.(SND) [27].  

Fully Formed Speckle pattern - This occurs when many randomly distributed scattering sites 

exist within the resolution cell SND > 10. The amplitude of the backscattered signal can be 

modeled as a Rayleigh distributed random variable [27, 29]. 

Nonrandomly distributed with long-range order [30] - This occur due to the correlation between 

scatterers, and hence the effective number of scatterers is finite SND < 10. This case is 

modeled by the K-distribution [29]. 
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Nonrandomly distributed with short-range order [30] - This occurs when a spatially invariant 

coherent structure is present within the random scatterer region [27]. The probability density 

function (PDF) of the backscattered signals becomes close to the Rician distribution [29]. 

Hence, the coherence phenomena make the SNR an ambiguous feature that cannot be used 

alone to characterize the speckle model. 

4.2 Diffusion Filters 

4.2.1 Physical background of diffusion filters 

Diffusion is a physical process that equilibrates concentration differences without creating or 

destroying mass [28]. The equilibration property is expressed by Fick’s law that relates the 

diffusive flux ‘j’ to the concentration gradient  ∇u, by postulating that the flux goes from regions 

of high concentration to regions of low concentration, with a magnitude that is proportional to 

the concentration gradient : 

                                                                (4.1) 

where, D is the diffusion tensor, a positive definite symmetric matrix. 

The case when j and ∇u are parallel is called isotropic and we may replace the diffusion tensor 

by a positive scalar-valued diffusivity g. Continuity equation, i.e., the statement that the rate at 

which mass enters a system is equal to the rate at which mass leaves the system, can be 

expressed by pqr s  Pdiv t                                                       (4.2) 

If we combine equation 4.1 and equation 4.2 we get diffusion equation: pqr s  Pdiv �u. ∇u)                                                          (4.3) 

If the diffusion tensor D is constant over the whole image domain, then equation 4.3 represents 

homogeneous diffusion. A space-dependent filtering is called inhomogeneous diffusion [28]. 

Often the diffusion tensor is a function of the differential structure of the evolving image itself. 

Then above equation represents nonlinear diffusion filters. Diffusion which does not depend on 

the evolving image is called linear.  

uDj ∇−= .



38 
 

4.2.2 Linear Diffusion Filters 

Linear Homogeneous diffusion process, where image intensity I is being diffused is given by: 

v�vq s w. �KwE
  ; At t=0 I(x,y;0) = f(x,y)                                               (4.4)                                           

where, diffusion coefficient c has a constant value and ∇. and ∇ are divergence and gradient 

operators respectively [33]. Linear diffusion filtering is equivalent to convolution with a Gaussian 

which is given by: 

y�3, 4, b
 s  �&z{� |��%�} '�
/&q�
                                            (4.5) 

L(x,y;t) = g(x,y,t) * f(x,y) ; at t = 0 L(x,y,0) = f(x,y) 

Linear diffusion filters are used for multi-scale segmentation of the image. As t increases, I(x,y,t) 

is the result of smoothing f with a larger and larger filter, thereby removing more and more of the 

details in the image. The idea is to identify segments at coarse scales and to link backwards to 

the original image in order to improve localization [28]. 

Limitations of linear diffusion filtering: 

It does not only smooth noise, but also blurs important features such as edges and, thus, makes 

them harder to identify. 

Linear diffusion filtering dislocates edges when moving from finer to coarser scales [34]. So 

structures which are identified at a coarse scale do not give the right location and have to be 

traced back to the original image. 

4.2.3 Nonlinear Diffusion Filter 

   4.2.3.1 The Perona–Malik model (Nonlinear isotropic diffusion models) [26]  

Perona and Malik introduced a nonlinear isotropic diffusion method, which avoids the blurring 

and localization problems of linear diffusion filtering described in section 4.2.2, by applying an 

inhomogeneous process that reduces the diffusivity at those locations, which have larger 

likelihood to be edges. The likelihood of edges is proportional to |∇u|2: 

pqr s  div�y�|wr|&
wr
                                        (4.6) 
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where, diffusivity g(.) is given by: 

   y�|wr|&
  s ���}|��|��� 
                                              (4.7) 

or,                                       y�|wr|&
 s exp��|��|� ��                                            (4.8) 

For the diffusivity (equation 4.7) it follows that the flux function θ(s):= sg(s2) satisfies θ′(s) ≥ 0 for 

|s| ≤ λ, and θ′(s) < 0 for |s| > λ.  

Canny edge detector is based on calculating the first derivatives of the Gaussian-smoothed 

image. After applying sophisticated thinning and linking mechanisms (non-maxima suppression 

and hysteresis thresholding), edges are identified as locations where the gradient magnitude 

has a maximum. This method is often acknowledged to be the best linear edge detector, and it 

has become a standard in edge detection. 

The experiments of Perona and Malik demonstrated that edge detection based on this process 

gave better results compared to the linear Canny edge detector, even without applying non-

maxima suppression and hysteresis thresholding. 

   4.2.3.2 Regularized Perona–Malik model 

To overcome theoretical instabilities of Perona–Malik [28] some numerical schemes were 

introduced. The first spatial regularization attempt is due to Posmentier, who observed 

numerically, the stabilizing effect of averaging the gradient within the diffusivity [35, 28]. 

Mathematical formulation of this idea is done by [36], replacing the diffusivity g(|∇u|2) of the 

Perona–Malik model by a Gaussian-smoothed version g(|∇uσ|
2) with uσ:= Kσ Ou, where Kσ is a 

Gaussian filter given by: 

���3, 4
 s �&z�� exp �P |%|�}|'|�&�� )                                 (4.09) 

And thus, diffusion filter is given by: 
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 pqr s  div�y�|wr�|&
wr
                                   (4.10) 

   4.2.3.3 Nonlinear anisotropic diffusion models  

The Perona–Malik model and its regularized form used scalar-valued diffusivity g, which is 

adapted to the likelihood of edges. Therefore, the flux j = −g∇u is always parallel to ∇u. But, for 

the edge detection, it is desirable to bias the flux towards the orientation of edges. To fulfill 

these requirements, a diffusion tensor leading to anisotropic diffusion filters was introduced. 

   4.2.3.4 Anisotropic regularization of the Perona–Malik model for edge enhancement 

 The non-homogeneous isotropic diffusion limits the smoothing of an image near pixels with a 

large gradient magnitude, which are essentially the edge pixels. As the diffusion near an edge is 

minimal, the noise reduction near the edge is also small. To address this, anisotropic diffusion 

was proposed to allow the diffusion to be different along different directions. For Anisotropic 

models, we have to consider the direction of the edge detector ∇uσ also, along with the 

magnitude |∇uσ|. For edge detection, the orthonormal system of eigenvectors v1, v2 of diffusion 

tensor was adapted [37]: 

v1 || ∇uσ   ; v2 ⊥ ∇uσ                                                                                 (4.11)  

In order to perform smoothing along the edge and not across it, Weickert [38] proposed to 

choose the corresponding eigenvalues λ1 and λ2 as: 

λ1(∇uσ) = g(|∇uσ|
2)  ; λ2(∇uσ) = 1                                             (4.12) 

and y�M
 s  �1                                    �L� M � 01 P exp #P �*����*(      �L� M  0�        ,                           (4.13) 

1 = exp(−Cm)(1 + 2Cmm).                                                    (4.14) 



41 
 

The constant Cm is calculated in such a way that the flux θ(s):= sg(s) is increasing for s ∈ [0, λ] 

and decreasing for s ∈ (λ, ∞). Thus, it is regarded as an anisotropic regularization of the 

Perona–Malik model [28]. 

In this thesis work, edge enhancing nonlinear anisotropic diffusion filter was used (equation 4.10 

and 4.13), as nonlinear diffusion avoids blurring at those locations, which have larger likelihood 

to be edges. Results of actual simulation to demonstrate the difference between linear and 

nonlinear anisotropic diffusion are shown in chapter 5, section 5.2. 
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CHAPTER 5 

ALGORITHM FOR NEEDLE SEGMENTATION AND SIMULATIONS 

In most of the previous work described in chapter 3, the authors assumed the needle to be 

brighter than the background. None of these approaches applied any image enhancement 

algorithms to remove the speckle noise or other artifacts. They just focused on using different 

forms of edge detection algorithms (Hough transform approach, Radon transform, principal 

component analysis or parallel integral projection approach) to find the needle location.  

But this assumption, that the needle is brighter than the background, is not always true. The 

needle is brightest in the case when ultrasound transducer is perpendicular to the needle axis. 

But as the angle between transducer and the needle axis starts decreasing from 900, needle 

becomes less bright. There are other artifacts like reverberation, which occurs when ultrasound 

is repeatedly reflected between two highly reflective surfaces, resulting in an identical artifactual 

image. Also, ultrasound images suffer from speckle noise, which significantly degrades the 

image quality and causes distortion at needle boundaries, as described in chapter 4. Figure 5.1 

shows the comparison of the data used by some of the aforementioned work and this thesis.  
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Figure 5.1 Comparison of data set used by some of the researches (a) used in article [10] (b) 

used in article [8] (c) used in article [1] (d) used in article [22] (e), (f), (g) used in this work 
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In this thesis, cases in which the needle is not brighter than the background due to 

reverberation artifacts (figure 5.1 (g)) and speckle noise (figure 5.1 (f)) are also considered. 

 

Considering the presence of speckle and artifacts in the data used for this thesis, various 

approaches to enhance the ultrasound images by removing the speckle without destroying 

important image features, like needle in this case were reviewed [27, 29, 50, 51, 52, 53]. 

Extensive work is done in the field of enhancing images using partial differential equation based 

diffusion filters. There are also articles related to edge enhancing diffusion filters. Results 

established in previous works indicated the effectiveness of diffusion filters in the problems 

related to edge enhancement and speckle reduction. Approaches to improve the feature 

boundaries were also analyzed, to reduce the distortion in the needle boundaries and hence 

improve the chances of segmentation. Finally, work related to edge detection and feature 

segmentation were studied. Some of the work in this field addressed the issue of segmenting 

surgical tools in ultrasound images, but by neglecting the presence of speckle and other 

artifacts in the considered data. 

 

Figure 5.2 shows the accurate needle detection in speckled US images algorithm (ANDSUI) 

used in this thesis work. In the ANDSUI algorithm, ultrasound images are first enhanced using a 

nonlinear diffusion filter, staggered components are removed using connected component 

analysis, needle boundaries are improved using morphological closing and 2nd order Gaussian 

filter is used and finally the needle is segmented using gray scale Hough transform. 

Following sections discuss each step of the algorithm and results by applying these steps on 

ultrasound images in detail. 
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Figure 5.2 Flowchart for the Accurate Needle Detection in Speckled US Images algorithm (a) 
Steps in ANDSUI algorithm (b) Initial manual settings. 
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5.1 Cropping borders 

The first step after choosing the input frame is to remove the unwanted borders. Although this 

might seem like a simple, even primitive step and reasonably obvious at first glance, it turned 

out to have far reaching implications for this class of practical US images commonly used today. 

It neatly avoids false results when future steps are applied. Borders are cropped by creating a 

binary mask (Fig 5.3 (b)). This binary mask is inverted and then applied to the original image to 

obtain the cropped image (Fig 5.3).  

 

Figure 5.3(a) Original image (b) Binary mask (c) Cropped image after removal of the borders. 

 

5.2 Nonlinear anisotropic diffusion filter 

Ultrasound images suffer from speckle noise. Diffusion filters based on the partial differential 

equation are used to enhance the image quality.   
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5.2.1 Demonstration of difference between linear and nonlinear anisotropic diffusion. 

Figure 5.4 demonstrate the difference in output when linear and non linear anisotropic diffusion 

filters are applied to the same simulated image. So, linear diffusion does not only smooth noise, 

but also blurs important features such as edges and, thus, makes them harder to identify. But, 

nonlinear diffusion avoids blurring by applying an inhomogeneous process that reduces the 

diffusivity at those locations which have larger likelihood to be edges. 

 

 

    (a)                                                              (b) 

Figure 5.4 Demo to show the difference between linear and nonlinear diffusion.(a) Linear 
Diffusion(b) Nonlinear diffusion. 

 
5.2.2 Effect of Parameters used in the calculations for nonlinear diffusion. 

There are four parameters which are involved in the calculation of diffusion filters: contrast 

parameter λ, speed of diffusivity m, space regularization parameter or standard deviation of the 

Gaussian kernel σ and number of steps T.  

   5.2.2.1 Contrast parameter λ 

Contrast parameter λ is used in the calculation of diffusivity (equation 4.13). As described in 

section 4.2.3, when gradient is smaller than λ, flux (θ(s):= sg(s)) increases with the gradient 

(forward) and when gradient is larger than λ, flux decreases as the gradient increase 

(backward). Also diffusivity decreases monotonically as gradient increases (figure 5.4). 
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Figure 5.5 Comparison of Diffusivity and Flux with increasing gradient magnitude for λ=10 (red 
line) and λ=20 (blue line). 

 

Hence, λ plays the role of a contrast parameter separating forward (low contrast) from backward 

(high contrast) diffusion areas. Also, with the increase in λ, diffusivity increases for the same 

gradient.  

Figure 5.6 demonstrates the effect of nonlinear diffusion due to change in λ on US images. So, 

as λ increases, diffusivity increases. For large values of λ, edges blur. Best choice of λ for the 

data set used in this thesis work is 2< λ<5.  
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Figure 5.6 Effect of increasing λ on US images. From left to right, λ increase from 3 to 20. 

 

   5.2.2.2 Speed of diffusivity m 

'm' defines the speed the diffusivity and the flux changes for a variation in the gradient. 

Diffusivity and flux changes quickly for larger values of m (figure 5.7).  

 

Figure 5.7 Effect of increasing m on Diffusivity and Flux. 
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A good choice for m is 8 < m < 16 [28]. 

   5.2.2.3 Space regularization parameter or standard deviation of the Gaussian kernel σ 

‘σ’ is the standard deviation of the Gaussian filter which is convolved with the image before the 

gradient is calculated (equation 4.09). The space regularization parameter σ gives the user 

liberty to adapt nonlinear diffusion scale-spaces to the desired purpose in order to reward 

interesting features with a longer lifetime [28]. By increasing σ, Gaussian filter becomes faster 

and more insensitive to small-size structures. But this also leads to stronger blurring of large 

structures and hence they become difficult to segment (figure 5.8). Best choice of σ for the data 

set used in this thesis work is 1< σ <6.  

 

 

Figure 5.8 Effect of increasing σ on US images. From left to right, σ increase from 3 to 20, 
keeping λ, m and T fixed. 

 
 

   5.2.2.4 Number of steps T 

Number of steps T represents the number of diffusion filter step is repeated. Different values of 

T provide a family of subsequently simplified versions of the original image, which gives a 
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hierarchy of structures and allows extracting the relevant information from a certain scale (figure 

5.9). Also, by increasing T, execution time for the algorithm increases. Best choice of T for the 

data set used in this thesis work is 20< T<50.  

 

Figure 5.9 Effect of increasing T on US images. From left to right, T increase from 50 to 1000 
steps, keeping λ, m and σ fixed. 

 

5.2.3 Simulation results of linear and nonlinear diffusion filter on US images. 

Figure 5.10 demonstrates the effect of linear and nonlinear anisotropic diffusion applied on the 

actual ultrasound image. Linear diffusion filter is implemented using equation 4.4: 

dy/dt = div( C . grad(y) ), 

y(0) = u,  y(t+T) = y(t) + T*dy/dt,  where T is the step size. 

 

This process is repeated for the number of steps provided as input by the user. For this 

experiment, the number of steps is chosen to be 20 and step size as 0.2. ‘C’ diffusivity constant 

is taken as 1 for this implementation.  

Nonlinear diffusion filter is implemented using equation 4.10:  
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dy/dt = div( d(grad(y)).grad(y) ),   

y(0) = u,  y(t+T) = y(t) + T*dy/dt, where T is the step size. 

The diffusivity function (d) is given by the equation 4.13 and constant Cm is calculated using 

equation 4.14. For this experiment, λ and m (used in calculation of equation 4.13) are taken to 

be 3 and 8 respectively. Gaussian filter is calculated using equation 4.09 and σ is chosen as 

3.5. This process is also repeated for the number of steps input by the user. Again, the number 

of steps is chosen to be 20 and step size as 0.2.  

 

Figure 5.10 Result of Diffusion filter step. (a) Original Image (b) Linear Diffusion (c) Nonlinear 
Diffusion with (d) Diffusivity used for nonlinear diffusion.  
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So, for our thesis data, linear diffusion blurs the edges, while nonlinear diffusion maintains the 

edges and removes the noise. However, it must be pointed out that before the cropping step 

was performed, even the non-linear diffusion process resulted in a large number of false 

positives for edges, which would have been mistaken for the needle. Thus, only the combination 

of the non-linear diffusion and the cropping that eventually resulted in the correct identification 

of the needle. Clearly this is a case of “human assisted automation”, a seemingly contradictory 

terminology, but in practice an effective strategy! 

 

Figure 5.11 Colormap images of the diffusion filter step. (a) Original Image (b) Linear Diffusion 
(c) Nonlinear Diffusion with (d) Diffusivity used for nonlinear diffusion. 
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5.3 Connected component analysis 

Connected-component analysis is a well understood algorithm, where subsets of connected 

components are uniquely labeled based on some properties like intensity, area, orientation etc. 

Any set of pixels which are not separated by a boundary are called connected.  

In this thesis work, one might recall that at first a binary image was created using the input US 

image. Then connected component analysis is performed on this binary image by using an 

eight-connected neighborhood connectivity (8-connected pixels are neighbors to every pixel that 

touches one of their edges or corners. These pixels are connected horizontally, vertically, and 

diagonally. In addition to 4-Connected pixels, each pixel with coordinates x y or x y is 

connected to the pixel at (x, y)). 

 

 

Figure 5.12 (a) Connected components are marked in a binary image (b) Connected 
components are labeled. 

 

Once region boundaries have been detected, regions are labeled according to the number of 

pixels (figure 5.12). Thereafter, the algorithm removes all the connected components with fewer 

than 40 points. The logic for the choice of this number is as follows: Considering that the 

minimum length of the observed needle is 59.986mm or 170.037 points table 5.1, components 

with fewer than 40 points can be removed. This can be varied according to the minimum length 

± µ
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of the needle inserted, when the ANDSUI algorithm starts. This binary image is used as a mask 

for the input image. This helps in removing the staggered components seen in figure 5.10. 

 

Figure 5.13 Result after applying connected component analysis (a) Original Image (b) Linear 
Diffusion (c) Nonlinear Diffusion with (d) Diffusivity used for nonlinear diffusion. 

 

5.4 Second order Gaussian filter and morphological closure 

In this step, the appearance of the needle in the images is enhanced by first applying 

morphological closing and then convolving the US images with a second order of Gaussian 

filter. 
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5.4.1 Morphological closing 

Morphological closing is an operation in which image is first dilated and then eroded. This 

operation is used to eliminate holes in the image. Dilations is an operation in which neighbors of 

every white pixel in an original image is made white in the resulting image.  It is used for probing 

and expanding the shapes contained in the input image. Erosion is an operation in which 

neighbors of every black pixel in original image is made black in the resulting image. 

Morphological closing is applied to eliminate holes from the distorted needle boundaries. Line is 

used as a structural element for this process. 

5.4.2 Second order Gaussian filter  

A second order Gaussian filter is specifically designed for exploiting the tubular structure of the 

needle and suppressing the imaging noise at the same time. The second order derivative of 

Gaussian filter is suitable for this work. In 2D, the filter can be formulated as [40]: 

� ′′�3, 4
 s 2 �&%����W � &'����� � exp�P %��W P '���
                                   (5.1) 

where σx, σy are the variation in x, y directions, respectively. While this edge detection is also a 

well known approach, we customize it for our application. We know that the needle is tubular. 

To exploit the tubular structure of the needle, the values of σx, and σy are selected in a way that 

σy  > σx. Figure 5.14 shows the surface of a second order Gaussian filter. The response of the 

filter is low on the needle and is high at other places.  

 

 

Figure 5.14 Surf of 2nd order Gaussian filter. 
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5.4.3 Demonstration for results of Morphological closing and 2nd order Gaussian filter 

Figure 5.15 shows the result after morphological closing is applied to the US image and then 

convolved with second derivative of the Gaussian filter. Visually, the needle becomes sharper 

and the holes are reduced after passing through these two operations. 

  

 

Figure 5.15 Second order Gaussian filter (a) Original image from step nonlinear diffusion (b) 
Image after passing through the second order Gaussian filter and morphological closure. 

 
 

5.5 Needle marking using Hough Transform 

Finally, the needle is marked using the grayscale Hough Transform described in chapter 3.1. 

Hough Transform was implemented such that, the range of angle ‘θ’ (described in chapter 3.1) 

for the current frame is considered to be θcurrent ∈ [θprevious - 50, θprevious + 50], where θprevious is 

the angle of a needle axis segmented in the previous frame and θcurrent is the angle of a needle 

axis segmented in the current frame. This approach has two advantages: Computational time for 

the algorithm reduces as range of angular search is decreased and also needle segmentation 

can be accomplished in the cases with false markings along with the needle, such as 5.19 (d).  
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Lines due to image boundary and lines containing less than 20 points are ignored (The 

minimum length of the observed needle is 59.986mm or 170.037 points - seeTable 5.1. So, 

lines with length less than 20 points can logically be ignored. This can be varied according to 

the minimum length of inserted needle, when ANDSUI algorithm starts). Section 5.6 shows the 

results for needle marking using Hough Transform. 

5.6 Results and Calculation 

Needle segmentation algorithm, described above, is applied on the images shown in figure 5.1 

(e), (f) and (g). The Hough Transform step of the ANDSUI algorithm, described in the section 

5.5, returns the coordinates of start (x1,y1) and end points (x2,y2) of the needle axis, shown in 

table 5.1. Also, the observed needle location is marked on these images (figure 5.17 (c) to 5.19 

(c)) and compared with the results of the ANDSUI algorithm.  

5.6.1 Angle Calculations 

Angle made by the needle axis can be calculated by: 

��

U	
  s tan��� '��'&%��%& 
                                                                                       (5.1) 

 And angle deviation can be calculated using: 

�U
���q��� s |���	��	�q
U�

U	
 P  ����
��
U�

U	
|                                                      (5.2) 

5.6.2 Length Calculations 

Length of the needle can be calculated by: 

=�

U	
 s ���3� P 3&
& �  �4� P 4&
&
                                         (5.3) 

And length deviation can be calculated by: 
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U	
|                             (5.4) 

The length and the length deviation given by equation 5.3 and 5.4 are in unit “point”. This can 

be converted to millimeters using the conversion equation: 1 point = 0.35278 millimeters.  

5.6.3 Tip Position Calculations 

Needle tip is given by the end point coordinates (x2,y2). Positional deviations for the needle can 

be calculated as: 
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Table 5.1 summarizes the output of algorithm used in this work. The ANDSUI algorithm 

successfully finds the location of needle with average angle deviation < 10, average length 

deviation of 2.135 mm and average positional deviation of 3.383mm.  

Table 5.1 also mentions the average time taken to execute the algorithm with 5 experimental 

execution for each case. Time taken can typically be decreased 20 times, in worst case, by 

converting the matlab code to traditional programming language like C/C++. 

 

Table 5.1 Needle location in terms of angle, length, starting coordinates and ending coordinates 
for different input images 
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Figure 5.16 demonstrates the case when step 1 of the ANDSUI algorithm, cropping borders, is 

not executed. Figure 5.6 (c) shows the segmented needle marked with red color. Clearly, boder 

lines are mistakenly classified as the needle. Infact, the actulal needle is not at all classified. So 

step 1 of the ANDSUI algorithm is necessary for the proper segmentation of the needle. 

 

 

 

Figure 5.16 False results when borders are not cropped (a) Original image (b) Accumulator 
array plot of Hough transform (c) Needle segmented marked as red. 
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Figure 5.17(a) Original image (b) Accumulator array plot of Hough transform (c) Observed 
needle (d) Needle segmented marked as red. 
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Figure 5.17 demonstrates the case when the US image has reverberation artifacts. Figure 5.17 

(c) and (d) shows the needle marked by the observer and by the algorithm respectively. The 

start and the end points are also marked. Table 5.1 show the comparison between these two 

needle locations in terms of angular, positional and length deviations. 

 

Figure 5.18 demonstrates the case when the brightness of the needle voxels is comparable to 

the background. Figure 5.18 (c) and (d) shows the needle marked by the observer and by the 

algorithm respectively. Figure 5.18 (b) shows the bright line in the plot of accumulator 

corresponding to the needle. Table 5.1 show the comparison between the manually marked 

needle location and needle location segmented by the ANDSUI algorithm.  
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Figure 5.18(a) Original image (b) Accumulator array plot of Hough transform (c) Observed 
needle (d) Needle segmented marked as red 
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Figure 5.19 (a) Original image (b) Accumulator array plot of Hough transform (c) Observed 
needle (d) ) Needle segmented marked as red. There are also some false markings. This is the 

case when the needle is not bright compared to background due to speckle noise. 
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Figure 5.19 demonstrates the case when brightness of needle voxels is less compared to the 

background due to presence of speckle noise. Figure 5.19 (c) and (d) shows the needle marked 

by the observer and by the algorithm respectively. As shown in figure 5.19 (d), there are some 

false markings along with the needle. But these false markings can potentially be ignored after 

considering the information about the needle location from the previous frame. Table 5.1 show 

the comparison between these two needle locations in terms of angular, positional and length 

deviations. 

Compared to the algorithms discussed in chapter 3, our algorithm has the highest accuracy in 

angular deviation, 0.349 degrees, among all the algorithms. Also, accuracy in length deviation 

(2-3 mm) is comparable to these works, even with the speckled US images. Our computational 

time is also less compared to most of the algorithms discussed above. The ANDSUI algorithm 

for segmenting needle performs all the calculations on CPU. So, the computational time can be 

reduced considerably, by taking advantage of parallel processing and using GPU. Also, as 

mentioned before, this computational time can be reduced 20 times, in worst case, by 

converting the matlab code to traditional programming language like C/C++. Hence, ANDSUI 

algorithm can be used for the real time breast biopsy procedures. 

 

The needle axis and tip location calculated from the ANDSUI algorithm is then provided to the 

path planning block (shown in figure 1.1). If required, this algorithm recreates a new path for the 

surgeon to follow from the current needle location to the cancer cell location [54] 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

The main aim of this thesis is to find the needle axis and tip location in real time, even when the 

general issues of ultrasound imaging like low spatial resolution due to a large amount of speckle 

noise, incomplete object structure etc. prevail.  

The algorithm described in this thesis reads the US frames one by one from the input video, 

improves the quality of the image by applying a customized non linear anisotropic diffusion 

followed by connected component analysis, removes the needle distortions by morphological 

closure and a second order Gaussian filter and finally, marks the needle axis and tip using an 

edge detector (Hough Transform).  

Also, different types of diffusion filters, based on partial differential equation, are explored and 

there results are gauged on both real and simulated data sets for improving image quality. 

Nonlinear anisotropic diffusion filtering is found to be better in the case of edge enhancement 

for this specific class of US images. 

6.2 Future Work 

Work mentioned in this thesis primarily works on 2D images. This work can be extended to find 

the needle location in 3D space by taking a set of orthogonal 2D images and applying the 

algorithm on each of the 2D images and collating the results in an intelligent fashion.  

The ANDSUI algorithm can be converted from MATLAB to the tradition programming languages 

like C/C++ to make the system more time efficient. 
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