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ABSTRACT 

PMU-BASED PARAMETER IDENTIFICATION FOR THE SYNCHRONOUS GENERATOR 

DYNAMIC MODEL  

 

Chin-Chu Tsai, PhD 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Wei-Jen Lee   

Power systems have become more complex and are found to be consistently operating 

closer to their stability limits under the deregulated environment. Power system dynamic 

simulation, which provides significant insight into the dynamic characteristics of system, is one 

of the most important tools for both planning and operation engineers. Since it heavily relies on 

the simulation result to make decisions related to operation strategies, grid expansion plain, 

facility maintenances schedules, an accurate simulation result can avoid unnecessary facility 

investment and improve the security of the system operation. However, the simulation result is 

affected by the model and parameters of the equipment. Since most models are provided by the 

manufacturer and derived through rigorous verification; it is reasonable to assume that model 

be trustworthy. However, there are many tunable or user definable parameters in the model. 

Assigning inaccurate parameters become the major source that causes the mismatch between 

the simulation results and actual system response. However, a large power system is 

composed of millions of component and many of them are inter-correlated, the parameter 

identification becomes very difficult.  
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This dissertation proposed a hybrid dynamic simulation strategy for parameter 

identification based on measurement data of phasor measurement unit (PMU). It efficiently 

makes a boundary on the measurement point of PMU to overcome the uncertainty of the 

external system elements which makes the proposed task manageable. 

To improve the computational efficiency, this dissertation also proposes a key 

parameter screening process based on trajectory sensitivity to identify the most significant 

parameters. A high efficiency global optimization algorithm called cooperative simultaneous 

perturbation stochastic approximation and particle swarm optimization (SPSA-PSO) is proposed 

to solve the parameter identification problem. The effectiveness and feasibility of the proposed 

method and process were demonstrated by a new installed generator unit in Electric Reliability 

Council of Texas (ERCOT) system. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

In recent years, the United States electric utility industry entered the phase of 

restructuring and deregulation. The traditional vertically integrated electric utility structure has 

been replaced by a horizontal structure with unbundled generation, transmission, and 

distribution companies in nearly half of the states [1]. Deregulation results in a more intensive 

use of the transmission network which pushes the electrical power system closer to the stability 

limit. Thus, the power system stability problem is more important and serious than ever.  

Power system dynamic simulation is widely applied to the study of the power system 

stability problem. It is an important tool to provide an insightful inspection of system dynamic 

characteristics after a disturbance. Therefore, power system design, planning, and operation 

engineers make decisions based on the results of dynamic simulations. The accuracy of 

dynamic simulation directly impacts the correctness of the engineers‘ and companies‘ decisions.  

Dynamic simulation results heavily depend on the accurate parameters of the system 

components such as generators, exciters, governors, power system stabilizers, and loads. 

Studies conducted by the Northeast Power Coordinating Council also showed that, ―in general, 

in stability analysis it is more important to use accurate machine data than elaborated machine 

models‖ [2]. 
 

1.2 Power System Parameter Identification  

Dynamic modeling and studies which reveal the dynamic characteristic of a power 

system play more critical roles in the planning and operation of power systems. The dynamic 
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simulation results are highly dependent on the parameters of the system components such as 

generators, exciters, governors, and loads. Unfortunately, many parameters in the system are 

not accurate due to the following reasons: 

 The dynamic parameters available to the Independent System Operator (ISO) are usually 

from generator owners. They collected the parameters from the manufacture data and/or 

on-site testing before the first operation. Some parameters may drift over a long period of 

operation or the replacement of components. In addition, it is very difficult to ask 

generator owners to check and update the parameters by performing frequent on-site 

tests. 

 Some parameters obtained from the manufacture data are a range of values and they can 

be re-adjusted during practical operation. The mean value sometimes is sent to the ISO 

from the generator owners. 

 Some parameters are not available from manufacture data or on-site testing. The ISO has 

to replace them by some typical value or by using the same value from the other 

generation with the same/similar dynamic model. 

It is common to see some mismatches between dynamic simulation results and the 

actual system response because of inadequate dynamic parameters. Too pessimistic simulation 

results will lead to conservative operation decision of transfer limits such as available transfer 

capacity (ATC) and total transfer capacity (TTC) in the system, and then result in additional 

congestion cost in the power market and reduce asset utilization of the transmission network. In 

contrast, too optimistic simulation results may also lead to over-estimate the transfer capacity 

and gave the operators the false sense of security of the system. Moreover, an unnecessary 

facility investment can be avoided when the simulation results are accurate.   

The impact of such over-optimistic estimations may cause a power system from a minor 

contingency event to cascading blackouts in a worst case scenario. A large blackout (about 
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30GW load loss) occurred in the Western Systems Coordinating Council (WSCC) system on 

August 10, 1996 [3]. The dynamic simulation results based on the standard WSCC dynamic 

database illustrate no stability problem in the system which is in direct contradiction to the actual 

system disturbance response as shown in Figure 1.1 and Figure 1.2. After that, WSCC 

established the Governor Modeling Task Force and the Load Modeling Task Force to address 

this issue. They modified some dynamic models such as exciters, governors and loads. A very 

good agreement was achieved between simulation results using the modified models and 

recordings, as shown in Figure 1.3 and Figure 1.4.  

 

Figure 1.1 Voltage - Recorded and the Simulated Using the Standard Models                   
(WSCC, 1996) 
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Figure 1.2 Active Power - Recorded and the Simulated Using the Standard Models          
(WSCC, 1996) 

 

Figure 1.3 Voltage - Recorded and the Simulated Using the Modified Models                    
(WSCC, 1996) 
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Figure 1.4 Active Power - Recorded and the Simulated Using the Modified Models            
(WSCC, 1996) 

Eight years later, on June 14, 2004, a major disturbance resulted in approximately 

1000MW load loss in the Western Electricity Coordinating Council (WECC, the successor of 

WSCC) [4].  As usual, WECC simulated the dynamic events and compared the simulation 

results with the recorded data. The initial simulation successfully reproduced the system 

frequency performance. However, the initial simulation failed to replicate the voltage profile in 

some areas. As a result, WECC had to re-start the model validation work again. The process 

lasted for more than one year and most of the work was manually and jointly performed by 

several utilities in WECC. Finally, the simulation results turned out to be closer to the recordings 

after some parameters were fine-tuned. The lessons learned in the WECC model validation 

effort can be summarized as follows: 

http://www.wecc.biz/
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 Maintenance of the dynamic models and parameters is a long-term and on-going effort. 

The planners and operators of the system need to study and update them on a continual 

basis.   

 Maintenance of the dynamic models and parameters is a local problem. The mismatch 

between the simulation and disturbance event records usually can be fixed through the 

adjustment on the models and parameters of the local devices such as generators and 

their associated control apparatuses. 

 Since manual adjustment is time consuming and it is difficult to obtain an optimal solution, 

it is necessary to develop an automated procedure for the parameter estimation.   

For the above reasons, this dissertation is dedicated to develop an on-line automatic 

parameter identification process for generator units. 

1.3 The Proposed Implementation Method 

The proposed dynamic model parameter identification scheme in this dissertation is an 

on-line PMUs-based application. The necessary PMU measurements for this application are 

merely voltage, angle/frequency, real power, and reactive power – (V, / f , P, Q). The internal 

information of the generator, such as field voltage and rotor speed, is not needed for this 

proposed method. Therefore, this proposed approach offers a feasible solution for ISO‘s to 

independently identify the model‘s parameters.   

It is a good indication that the simulation model or its parameters could be wrong or 

inadequate, if the simulation results have significant mismatches with actual system responses. 

A further fine tuning process for a model‘s parameters is necessary. Since it is difficult, if not 

impossible, to obtain complete pre-fault information, a system wide detail simulation is 

impractical. The hybrid dynamic simulations can effectively equivalent the outside system which 

uses PMU measurement points as a boundary. This equivalent approach not only simplified the 
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tedious manual procedures to rebuild the pre-disturbance system condition but also ruled out 

the simulation mismatches which are caused by outside systems and reduce the computational 

burden.  

After system reduction has been done by the hybrid dynamic simulation, the trajectory 

sensitivity analysis is used to screen out the parameters regarded as key parameters to further 

improve the efficiency of the proposed algorithm.  Since only key parameters have significant 

impact on the system response and will be fine tuned, the number of calibrating parameters can 

be deducted and the computation burden can be effectively reduced without scarifying the 

correctness of the model‘s behavior.  Finally, a new proposed optimization algorithm, 

cooperative SPSA-PSO, will take place to identify a set of parameters to minimize the mismatch 

between the simulation result and field measured data. This proposed algorithm preserves 

SPSA‘s fast converge ability and PSO‘s global searching ability. Therefore, an acceptable 

solution can be achieved in finite iterations.  

1.4 Assumptions and Contributions 

1.4.1 Assumptions  

The proposed method focuses on parameter verification for the governor, exciter, and 

power system stabilizer models used in the power system simulation. The dynamic model itself 

is assumed to be correct. This assumption is reasonable since the model was developed by the 

manufacturer and gone through both factory and on-site testing prior to the commercial 

operation. 

Some electrical quantities are very sensitive to the dynamic parameters. For example, 

Efd (exciter field voltage) is very sensitive to exciter parameters and can be used to identify the 

accuracy of these parameters. However, it is not practical to capture the value of Efd during 

routine operation. In addition, it is usually hard for an ISO to request Independent Power 

Producers (IPP) to provide internal operation condition of the generators after deregulation. 
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Therefore, only the on-line PMU measurement data on the grid side and at generator-grid 

interface are utilized for dynamic parameter identification in the proposed method. 

1.4.2 Contributions  

The proposed SPSA-PSO cooperative algorithm provides the right balance and trade-

off between convergence speed and global searching ability. This algorithm is not dependent on 

the initial guess and exhibits superior performance in terms of simulation time. The proposed 

method improves the solution accuracy and computation time of the PSO algorithm which has 

been identified by many researchers in power system optimization [5].  

The proposed parameter identification process is a model independent approach. 

Although this dissertation focuses on dynamic parameter estimation of exciters, PSS, and 

governors, the method can easily be extended to dynamic parameter estimation of other device 

models in power systems such as dynamic load models. A commercially available power 

system simulation software, PSS/E, is utilized as the simulation engine in the proposed 

parameter identification process so that the proposed method is applicable to and works well on 

large-scale systems. 

A system equivalent approach, hybrid dynamic simulation, has successfully adopted 

and modified in this dissertation for solving parameter identification problem and the detail 

implementation issues have been addressed. In addition, there are more than ten parameters in 

most exciter, power system stabilizer, and governor models. It will pose significant computation 

burden if one has to identify all of them. Based upon their impact on the system response, this 

dissertation analyzes and categorizes them into different groups. Those parameters which are 

adjustable and have a great impact on the dynamic simulation are defined as key parameters. 

Only the key parameters are needed to be incorporated in the estimation process which 

decreases the complexity and computation burden. Meanwhile, the correlation of parameters is 
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analyzed to assist the interpretation of the calibrated results and it will also benefit the 

model/parameter estimation work in the future. 

1.5 Synopsis of Chapters 

The organizational structure associated with this dissertation is as follows: 

Chapter 1 introduces the general background of the power system dynamic parameter 

identification, illustrates the importance, motivation, and objective of this dissertation.  

Chapter 2 reviews the historical research approaches, techniques, and the progress of the 

regulations which are relate to generator model validation or parameter identification.  

Chapter 3 describes an impotent system equivalent methodology, hybrid dynamic simulation 

method, in detail. This chapter focuses on comparison and discussion of the performance of 

different approaches when it applies on generator parameter identification.  

Chapter 4 presents the process associated with key parameters screening and parameter 

correlation analysis. The key parameters can be identified by trajectory sensitivity analysis 

developed in PSS/E dynamic simulation. The Singular Value Decomposition (SVD) method also 

developed to carry out the relationship among key parameters and improve the resolution of 

estimated results. 

Chapters 5 introduce the proposed SPSA-PSO cooperative algorithm in detail. The advantage 

and disadvantage of both SPSA and PSO algorithms also be discussed. 

Chapter 6 uses a new installed generator in ERCOT system as test case to demonstrate the 

validity of parameter identification process and the distinct advantages of the proposed 

optimization method. The detail application issues also address in this chapter. Moreover, the 

results show that a good agreement between the recorded information and the simulation 

results which derived with modified parameters obtained from the proposed identification 

process. 
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Chapter 7 presents the conclusions and recommendations drawn from the research 

associated with this dissertation and discusses the opportunities for further research. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Survey of Parameter Estimation Approaches  

Since the late 60‘s, many studies has been conducted to determine the parameters of 

the synchronous generator unit.  The modern techniques used can be classified into two typical 

approaches: field test, as in examples [6], [7], [8], [9] and on-line measurements, as in examples 

[10], [11], [12], [13]. Field tests are a good means to gain direct insight into dynamic parameters. 

They are usually preformed to establish the initial models and parameters before the new 

device is commissioned. However, parameters may be drifted or adjusted after continued 

operation or maintenance. Frequent field tests which require shutting down a unit several days 

for doing the test would be either impractical or even impossible due to the potential damage 

and high costs. In order to overcome the shortcomings of the field test method, online based 

identification methods have drawn attention to this application in recent years. The following 

literature review, hence, is based on online-based identification methods used to classify the 

different approaches according to different type of generator model, measurement data, and 

identification algorithm respectively. 

According to the difference types of identification models, the methods can be roughly 

divided into two categories. In the first category, a known structure is assumed for the generator 

units (as the field test methods), and the unit‘s parameters are estimated from online 

measurements. The second category treats units‘ models as black-boxes to represent the 

behavior of input/output data. In the black-box modeling, the structure of the model is not 

assumed to be known prior to the test. The only concern is to map the input data set with the 

output data set. Many different approaches, such as identification of nonlinear systems, like 



 

12 

 

 
generator, have theoretically been attempted using Nonlinear Least Squares, Wiener series 

[14], volterra series [15], Wavelet Nonlinear ARX Network [16], and Neural networks [17]. These 

black-box models can be used for system analysis and controller design, especially when 

designing a power system stabilizer (PSS) [15].  

Many researchers have proposed algorithms to solve the parameter estimation 

problems using online measurements. One of the methods [18] employed was the recursive 

maximum likelihood (RML) estimation technique for the identification of an armature circuit 

parameter. The field winding and some damper parameters are estimated using output error 

method (OEM) techniques. Their objective function is to minimize errors by using the iterative 

Gauss Newton method, and the data set required for estimation consists of field side current, 

terminal voltages, and currents.  Reference [11] required currents, voltages, and the generator 

speed to perform the proposed identification process. The estimation of generator‘s parameters 

is decoupled offering a more robust estimation algorithm. In order to achieve this robustness 

with respect to the initial parameter guess, the Differential Algebraic Equations which model the 

generator are replaced by a constrained minimization problem that overcomes singular 

problems of the algebraic equations. Reference [10] proposed a procedure for identifying an 

excitation model through information from online measurements, voltage regulator and field 

voltage, and a plant transient recorder system. The parameter fitting algorithm is formed as an 

optimization problem and solved by the Newton method. A conjugate type stochastic 

approximation (SA) algorithm is proposed in [19] to deduce wind turbine parameters from the 

disturbance measurements of active and reactive powers. The reported approaches have a 

common point that uses the generator unit‘s field measurement signals during dynamic events 

to gain direct insight into the dynamic characteristic. Although the results shown that the online 

measurements approach can precisely estimate most of the parameters, it is difficult for an ISO 
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to obtain the details and internally recorded data of a generator from the Independent Power 

Producers (IPPs). 

     Another alternative approach for dynamic parameter estimation is the PMUs-based 

method. PMU devices and PMU-equipped numerical relays can provide time-synchronized data 

necessary for the parameter identification with good resolution and high sampling rate. 

Moreover, the Energy Management System (EMS) can provide the steady-state pre-

disturbance data needed for parameter identification. Therefore, the PMUs-based approach 

becomes a promising solution for the parameter identification problems. However, little research 

has been carried out regarding this problem since this is a relative new technologies. Reference 

[13] proposed a method that used whole system simulation with a curve fitting approach to 

estimate parameters. However, due to whole system simulation, the performance of the 

algorithm is slow, and the accuracy of estimated result is not guaranteed.  Although [19] 

successfully developed a system reduction technique that improves computational efficiency 

and the estimation precision, the detailed application issues and performance of the 

optimization algorithm are not well defined. In [20], the authors employed an extended Kalman 

filter to calibrate the parameters of the dynamic models for a power system. Using the data from 

the PMU following a fault, the parameters converged to the true value by a prediction-correction 

process. However, the noise effect is not studied in this paper. Theoretically, the extended 

Kalman filter is not an optimal estimator since both the measurement and the state transition 

model are non-linear. Therefore, the estimation results are less accurate. The purpose of this 

dissertation is dedicated to develop a high efficiency algorithm and a detailed application 

scheme for solving PMUs-based dynamic model parameter identification problems.  A brief 

review of the PMU technologies and its potential applications is provided in the following section.   
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2.2 PMU Applications 

A phasor is a complex number that represents both the magnitude and phase angle of 

the sinusoidal waves found in electricity. Phasor measurements that PMU devices sample at 

the same time are called "synchrophasors". In typical applications, PMUs are sampled from 

widely dispersed locations in the power system network and synchronized from the common 

time stamp of a Global Positioning System (GPS) radio clock. Synchrophasor technology 

provides a tool for system operators and planners to measure time-stamped voltages and 

currents at diverse locations in a power system. By utilizing PMUs, the reliability and stability in 

a given power system are expected to improve. Figure 2.1 shows the PMUs installation map in 

North American in early 2011.  

 

Figure 2.1 PMU Locations in Early 2011 [21] 

In 2007, the organization of  U.S Department of Energy (DOE) and the North American 

Electric Reliability Corporation (NERC), along with involved electric utility companies and other 

http://en.wikipedia.org/wiki/Phasor_(sine_waves)
http://en.wikipedia.org/wiki/Radio_clock
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organizations, formed the North American SynchroPhasor Initiative (NASPI) [21]. The goal of 

NASPI is to improve power system reliability through PMUs measurement, monitoring and 

control. This will be archived by installing PMUs data measurement infrastructure for the 

interconnected North American electric power system and by developing associated analysis 

and monitoring tools for better planning and operation, and improved reliability. With funding 

from both The American Recovery and Reinvestment Act of 2009 (Recovery Act), several smart 

investment grant and demonstration projects have been awarded to advance the synchrophsor 

technology. The Recovery Act provided significant funding for smart grid technology, with $4.5 

billion of Federal funding allocated to projects that involve significant industry cost share. Two 

major categories of projects were included as parts of the Recovery Act: Smart Grid Investment 

Grants (SGIG) and Smart Grid Demonstration Projects (SGDP). Specifically, $3.4 billion of 

Federal funding was allocated to SGIG, which were intended to be near-term projects that 

required a minimum of 50% cost match from the industry [22].  These projects were organizes 

into six categories one of which involve synchrophasor technology were associated with the 

electric transmission systems category. Companies that submitted proposals which were 

selected for award include: 

 American Transmission Company, LLC 

 Duke Energy Carolinas, LLC 

 Entergy Services, Inc 

 Midwest Energy, Inc 

 Midwest ISO, Inc 

 ISO New England, Inc 

 New York ISO, Inc 

 PJM Interconnection, LLC 

 Western Electricity Coordinating Council 



 

16 

 

 
And, the projects which involved the synchrophasor applications include: 

 Wide-Area Visualization and Monitoring 

 Angle and Frequency Monitoring 

 Interarea Oscillation Detection & Analysis 

 Proximity to Voltage Collapse 

 State Estimation 

 Dynamic Model Validation 

 Fast Frequency Regulation 

Although the above applications are from the view of ISO, The PMUs-based 

applications also benefit generator owners. PMUs are able to continuously record several 

different signals which are the requirements of ancillary services like spinning reserve, 

frequency control and voltage control. Once the infrastructure is permanently installed at the 

power plant, the online tests such as voltage step-change can be easily applied and recorded. 

Since this dissertation is focused on dynamic model parameter identification, only the 

PMU‘s application of dynamic parameter validation issues is addressed. Reference [23] 

presents an PMU‘s recorded voltage and a frequency injection approach for generator model 

validation based on the PMU measurements taken at the point of interconnection. The 

approach is applied for the Dallas, Jone Day, and the Grand Coulee powerhouse in WECC 

system. Based on this method, [24] named this approach as ―hybrid dynamic simulation‖ and 

implemented in a commercial power analysis software, PSLF/PSDS. Additionally, a small 

system case has been demonstrated to extend this approach to a system-wide usage. Two 

application examples in [24] on generator and load model validation are presented to show the 

validity of this methodology. Therefore, model validation and parameter identification could be a 

feasible application of PMU.  
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2.3 Relatively Regulation 

Model validation and parameter identification are not only an important issue for power 

engineer, but also the requirement of new regulatory standards for measurement and 

verification of dynamic models for generators and their control systems. In order to ensure that 

generator models accurately reflect the generator‘s capabilities and operating characteristics, 

the NERC has addressed verification of generator dynamic models in its now retired Planning 

Standards, and the NERC is currently developing Reliability Standards containing mandatory 

and enforceable requirements for verification of these generator dynamic models, as in [25].  

As a result of the August 14th, 2003 northeast blackout and associated investigation, 

the NERC Board of Trustees in February 2004 approved 14 recommendations to address the 

shortcomings that contributed to the blackout [25]. One of these recommendations was to direct 

the NERC Regions to implement processes for validating power system models and data 

including generator dynamic models. This same recommendation was repeated in the final 

report of the US Canada Power System Outage Task Force [26]. Subsets of the Planning 

Standards were converted to “Version 0 Reliability Standards.” The Version 0 Reliability 

Standards became effective in April 2005. However, compliance with these standards was 

voluntary. 

Planning Standards Section IIB is the base line for the current Reliability Standard 

drafting efforts regarding generator dynamic models by the NERC Generation Verification. 

Regarding the verification of generator excitation model verification, the most relevant 

Measurement (M6) states ‖Generation equipment owners shall verify the dynamic model data 

for excitation systems (including power system stabilizers and other devices, if applicable) at 

least every five years‖. Designed data for new or refurbished excitation systems shall be 
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provided at least one year prior to the in-service date with updated data provided once the unit 

is in service, as in [25].  

The current Reliability Standards related to generator model verification are: 

 MOD-026-1 — Verification of Models and Data for Generator Excitation System Functions 

 MOD-027-1 — Verification of Generator Unit Frequency Response 

 PRC-002-1 —Define Regional Disturbance Monitoring and Reporting Requirements 

Standards MOD-026 [27] and MOD-027 [28] are currently under development and focus on the 

validation of the dynamic simulation models. Both standards included the following common 

draft Requirements: 

1) The Regional Reliability Organization (RRO) was responsible for the development 

and maintenance of the applicable dynamic model verification procedures. The RRO 

procedures were required to include generating unit exemption criteria, acceptable dynamic 

modeling verification methods with verification periodicity and scheduling, and an additional list 

of supplementary information. This list included manufacturer and type of associated equipment, 

the verified model and model data, the verified response data, and the method of verification 

used. 

2) The aforementioned generator owner was given the responsibility of following the 

RRO procedures MOD-026-1 and MOD-027-1. 

From a high-level viewpoint, the goal of the model test was to determine whether it was 

feasible to implement the current draft versions of the MOD-026 -1 and 027-1 Reliability 

Standards. Moreover, The Standard Drafting Team felt that the standard should be written 

based on applicable techniques. The techniques which are under development or in limited use 

but could become common in the future if they are found to still fit well within the Reliability 

Standard Requirements. Therefore, the current draft of the standard states ―what is required” 
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instead of stating ―how to accomplish the required‖ [25]. For example, the traditional field 

testing, such as open step voltage tests, could be a possible method. Any technique that 

adequately demonstrates correlation between the responses predicted by the excitation system 

models to voltage variations in comparison to actual equipment performance becomes an 

acceptable way to verify excitation system models. In addition, using recorded power system 

quantities which were captured during natural system disturbances that result in an excitation 

system response, the predicted model response can be compared to the actual equipment 

response by capturing key electrical parameters associated with the excitation system response. 

The proposed model identification procedure verified the simulation with PMUs measurements 

is adequate to meet the requirements of the new standards. 

Moreover, NERC Standards PRC-002 [29] require the installation of disturbance 

monitoring equipment (DME). The RRO should develop a plan with the criteria and 

requirements for the installation of such instrumentation, as well as the technical requirements 

associated with the signals to be recorded. Generator owners are required to comply with the 

requirements posed by the RRO deployment plan, in which case instrumentation would have to 

be installed at selected power plants and/or substations. Reference [30] discusses that the 

characteristics of the instrumentation which are usually applied to record commissioning tests, 

and tests associated with the dynamic model validation are a close match to the requirements 

derived from the PRC-002 Standard. Significant savings could be achieved if the 

instrumentation installed to comply with the PRC-002 Standard could also provide the 

necessary data for the dynamic model validation required under Standards MOD-026 and 

MOD-027. Generator owners in particular should be aware of the potential savings that could be 

achieved by combining all of the data recording necessary to comply with the disturbance 

monitoring (PRC-002) and model validation (MOD-026 and MOD-027) Standards. Like the main 
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ideal of this dissertation, PMU based model identification, can satisfy the requirements of both 

monitoring and model validation standards at the same time.    

2.4 Review Conclusions 

Dynamic simulations are applied in the assessment of the adequacy, security, and 

reliability of the power systems. In particular, dynamic stability simulations are concerned with 

the ability of synchronous generators to stay in synchronism with the power grid following 

different disturbances, which usually involve faults in the system and the subsequent response 

of the protection schemes to clear these faults. 

NERC standards, once approved, will establish a maximum time period between model 

validation tests. It is expected that the Standards MOD-026 and MOD-027 would impose a 

certain periodicity for the revalidation of the models. In other words, compliance with these 

Standards would become a continuous mandatory effort. 

PMUs, relatively inexpensive monitoring devices, are able to continuously record 

several different signals. They are becoming widely available and might become standard 

equipment installed at large power systems to meet the demands of the increasing 

requirements for monitoring of system stability and security. The approaches of using data 

associated with online operation of synchronous generators for the validation of dynamic 

simulation models is not new and significant research effort has been reported in research and 

literature over past several decades. However, the research devoted on the PMUs based model 

identification problem is not extensive, by any means. Thus, further research on the application 

of PMUs based model identification approaches should be supported.   
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CHAPTER 3  

HYBRID DYNAMIC SIMULATION 

Since the generator is attached to the system and it is not clear how uncertainties 

derived from the power system side could affect the estimation process. The traditional 

simulation system reduction method is able to use equivalent models for the external system to 

remedy the uncertain effect that comes from the system. Since an equivalent model is an 

approximate of the physical system, simulation error is inevitable.  Recently, a hybrid dynamic 

simulation concept has been reported for the purpose of model validation [23] [24]. This method 

allows for the dynamic simulation of a subsystem with measured signals injected at its boundary 

without introducing errors caused by an external systems model. This method employs PMU 

measurements, which accurately record the system behavior, at the boundary to precisely 

represent the response of external system in the simulation. This dissertation modifies the 

original concept of hybrid dynamic simulation and applies in the generator parameter 

identification and incorporated the idea of the hybrid simulation algorithm into commercial power 

system simulation software (PSS/E) by using the time-series measures records for the desired 

function.   

3.1 Introduction of Hybrid simulation 

The dynamic behavior of a power system can be represented by a set of differential 

algebraic equations as shown in (3.1). 

 

( , , , )

0 ( , , , )

dx
f x y u

dt

g x y u









 

                                                              (3.1)       
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where  1, , Mx x x  denotes the dynamic state variables, such as the rotor angle and 

the rotor speed etc, and  1, , Ny y y  denotes the algebraic variables, such as the bus 

voltage and the phase angle;   denotes the parameters and u  denotes the controls. As power 

system simulation software is applied to solve (3.1), the results of each computation step are 

available to the user to proceed with the next step; therefore, the evolution of the system 

dynamics with respect to time can be derived. In addition, when the synchronized record data is 

available, hybrid dynamic simulation becomes possible. The hybrid dynamic differential 

algebraic equation can be described as follows: 

 

1 1 2 2

1 1 2 2

( , , , , , )

0 ( , , , , , )

dx
f x y u x y

dt

g x y u x y









 

                                                   (3.2)                                               

                    

The dynamic state variables x  and the algebraic variables y  in (3.1) are classified into 

two subsets,  1 1,x y  and 2 2,x y . The subset  1 1,x y includes all the states that could be derived 

from a step by step breakdown of digital simulations, and the subset  2 2,x y includes all the 

variables that could be obtained from the PMUs. The basic idea of the hybrid dynamic 

simulation can be illustrated by Figure 3.1. If the Phasor Measurement Unit (PMU) is installed at 

the boundary of the subsystem, then the whole system can be merely represented by the 

subsystem using the information from the PMUs. Therefore, only the models and parameters of 

the components in the subsystem and the actual measurements from the boundary of the 

subsystem are needed for the simulation. Through this approach, the simulation validation work 

can be reduced into a much smaller region.  
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SubSystem

Boundary-Buses

With PMU  

 Figure 3.1 System Reduction Employing PMU Measurements 

Hybrid dynamic simulation provides an entry for PMU measurements to integrate with 

the traditional dynamic simulation. Applications of such hybrid simulation include [31]: 

 System Scenario “Playback” 

 Power systems have experienced some severe failures in this decade. Post-event analyses 

are important to figure out the problems of system and prevent the same failure from 

occurring. Hybrid simulation employing measurements can assist in this way, gaining better 

understanding of system behaviors and identifying the causes of failure. 

 Software Validation.  

With validated models and measurement records, software simulated results can be 

compared with records to evaluate the simulation software. 

 State Estimation.  

PMUs have been installed at many important locations nationwide and have recorded quality 

measurements for system analysis, monitoring and control. However, still numerous signals 

are not measured by PMUs. In this case, hybrid simulation can use available measurements 

to generate those unmeasured signals. This method can be used offline with archived 

historical data, or real-time with online measurements if the simulation is fast enough.  
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 Model Validation.  

Comparison between measurements and simulation results have been employed to validate 

models used for simulation, as in [13]. However, a real power system, e.g. ERCOT system 

has hundreds of models, each of which may contribute to the error between measurements 

and simulation. Therefore, it is very difficult to locate the real modeling problem which 

causes the mismatches in a large system.  In hybrid dynamic simulation, such a comparison 

can be done in a reduced subsystem with measured signals which are injected as boundary 

conditions, as shown in Figure 3.1. The measured and simulated power flows can be 

compared and the mismatch can indicate modeling problems inside the subsystem. This 

generator model validation method is been applying to validating some WECC models [23].  

In power systems, four quantities are usually associated with the system status: voltage, 

angle/frequency, real power and reactive power – (V, / f , P, Q). Ideally, if any two of them are 

known, one can solve for the other two through simulation. Hence, hybrid dynamic simulation 

according to their implementation method can be classified into two approaches. The first one, 

voltage-injection, forces the voltage and angle as recorded data at the measurement points [31] 

[23] [24]; the other, Load-injection, matches the real and reactive power at the measurement 

points [19]. The idea of the two methods is explained in the following section. 

3.2 Voltage injection method 

Currently, a phase shift method [31], classified as a voltage-injection approach, is 

proposed for model validation and implemented for parameter identification. Phase shift method 

is an indirect implementation method of hybrid simulation as shown in Figure 3.2. In order to 

retain the response of boundary bus, a dynamic device needs to be added at the boundary bus 

to create the entry point for measurements. 
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Figure 3.2 Phase Shift Method of Hybrid Dynamic Simulation 

In Figure 3.2, the boundary bus is the location where voltage magnitude (V ), angle ( ), 

real (P) and reactive (Q) powers are measured by PMU. The objective is to enforce both the 

measured voltage and the angle records at the boundary bus during the simulation. As a result, 

an artificial generator and an ideal transformer are added at the boundary bus. The model of the 

generator is a classical generator model with zero internal reactance, very high inertia constant, 

and zero damping rations. The transformer is a near zero impedance ideal transformer. The 

initial conditions for the added generator and transformer are determined as follows: 

 The voltage setting for the generator is 1 pu. 

 The initial power output of the generator is the initial load flow on the transmission line 

where the measurement point is located. 

 The initial turn ratio (n) of the transformer is the initial recorded bus voltage (V). 

 The initial phase shift (α) of the transformer is the initial recorded bus voltage angle ( ). 

By adjusting the turn ratio and phase shifter of ideal transformer at each simulation step, 

the voltage and the angle at the boundary bus can be matched to the measurements. A 

demonstration case is built for testing the performance of hybrid dynamic simulation. The 

mismatch between simulation results and measurement data of real power, reactive power, 

voltage, and angle are shown in Figure 3.3 (a), (b) and Figure 3.4 (a), (b) respectively.  The 

diagram with the legend ―Rec‖ is the simulation result of the whole system and is assumed as 

the recorded data at the PMU boundary bus. Then, injecting this recorded data at PMU 

boundary bus and running the reduced system, the hybrid simulation results are shown by 
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legend ―Sim.‖ The results proved that the phase shift method can reliably present the system 

dynamic response for model variation purposes. However, the simulation mismatch can be 

noted at Figure 3.3, the effect of which will distort the results for parameter identification process.  

 

           (a) 

 

           (b) 

Figure 3.3 Comparison of Simulation Result and Record Data (a) Real Power (b) Reactive 
power  
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           (a) 

 

           (b) 

Figure 3.4 Comparison of Simulation Result and Record Data (a) Voltage (b) Angle 

The mismatches of simulation results are shown in Figure 3.5. These inherent mismatches are 

caused by the added ideal generator and transformer is not accepted by analysis software.  

Therefore, for parameter identification problem, the simulation mismatching issue should be 

addressed and the further discussion will be presented in chapter 5.   
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(a) 

 

(b) 

Figure 3.5 The Mismatch of Simulation Results (a) Real Power (b) Reactive Power 

3.3 Load Injection Method 

A relatively simple method is proposed [19] to replace the phase shift method by 

converting measurement data into equivalent impedance. However, this method is not suitable 

to apply directly with dynamic simulation software, since it only accepts using impendence as a 

loading. Based on the equivalent impedance method, we proposed an accurate method called 

―Dynamic Load Injection‖ to seamlessly integrate with the dynamic simulation software. The 
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synchronized measurements at the boundary buses are converted to an equivalent Load, as 

shown in Figure 3.6. 

 

Boundary-Bus

With PMU
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Measurement P 

and Q

 

Figure 3.6 Load Injection Method of Hybrid Simulation 

The equivalent loading can be calculated at each time step as follows: 
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                                                     (3.3) 

 

where ( )recV t , ( )recP t  and ( )recQ t  are recorded voltage, active and reactive power from 

PMUs. The baseV  is the base voltage on the PMU measurement bus. The ( )simP t  and ( )simQ t  are 

equivalent loads used in simulation.  

From (3.3), one can see that the boundary loads, ( )simP t  and ( )simQ t  , are changed 

based on the synchronized measurements at each simulation time step. The characteristic of 

this variable load method is to replace the power system outside the boundary bus by a 

dynamic load injection based on PMU measurements at each simulation step. It is not difficult to 

deal with the impedance load in the current commercial power system simulation software. 

Commercially available simulation software, PSS/E, is applied in this dissertation to implement 
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this proposed dynamic load injection method. The same test case in the previous section is 

performed and the mismatch between simulation results (Sim) and record data (Rec) of real 

power, reactive power, voltage, and angle is shown in Figure 3.7 (a), (b) and Figure 3.8 (a), (b) 

respectively. Both active and reactive powers are matched very well. From Figure 3.8 (b), it can 

be noted that the mismatches of the angle are significant, though the curve trends are similar. 

Because of this mismatch, the sensitivities of both the active and reactive powers corresponding 

to these parameters are impeded.  

 
(a) 

 
           (b) 

Figure 3.7 Comparison of Simulation Result and Record Data (a) Real Power (b) Reactive 
power 
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(a) 

 

(b) 

Figure 3.8 Comparison of Simulation Result and Record Data (a) Voltage (b) Angle 

3.4 Conclusion of Hybrid Dynamic Simulation 

The hybrid dynamic simulation was first developed for model verification purpose. Since 

the system outside the PMU measurement boundary buses can be reliably equivalent with PMU 

measurements, the simulation mismatch caused by outside system can be avoided and only the 

models inside of boundary buses need to be considered.   
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The implementation method can be classified into two categories, Load-injection 

approach and Voltage-injection approach. The Load-injection approach can get a better 

simulation result than the voltage-injection approach when mismatch of real power and reactive 

power are used as comparison objective function. However, the former approach will lead to a 

poor simulation result of voltage and angle measurements. Therefore, voltage-injection 

approach can represent the system response more due to a parameter change. In other words, 

voltage-injection is more suitable for the implementation of model parameter identification. 
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CHAPTER 4  

PARAMETERS ANALYSIS AND KEY PARAMETERS IDENTIFICATION 

Dozens of parameters in generator unit‘s models, including generator, exciter, power 

system stabilizer, and governor make the identification problem more complicated and less 

efficient. Fortunately, not all of the parameters are critical enough to be incorporated in the 

estimation problem. The parameters are generally classified into three categories in terms of the 

purpose of identification. 

 The zero parameters. Some parameters are set as zero to represent the absence of the 

corresponding sub-block in the model. 

 The non-significant parameters (except zero parameters) which have trivial impact on 

the result of dynamic response. 

 The key parameters (except zero parameters) which have significant impact on the 

dynamic response. 

The zero parameters and the non-significant parameters are excluded from the 

parameter identification process since they are not critical, or not used. Only the key parameters 

are going to be estimated. Thus, the computation burden of the parameter estimation problem 

can be tremendously reduced. Furthermore, parameter correlation is a common problem for 

power system parameter identification, which results in non-unique parameter values. The 

system‘s extreme correlation existence causes it much difficultly to uniquely estimate the 

parameters of generator unit. Extreme parameter correlation often hampers calibration of the 

generator unit‘s model. Therefore, a parameter correlation analysis is necessary to get an 

insightful interpretation of the estimated results.  The following sections provide detailed 
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approaches to deal with the problems of key parameters screening and parameter correlation 

analysis. 

4.1 Key Parameter Screening by Trajectory Sensitivity  

Some parameters have to be adjusted to reduce the mismatch between the 

measurements and the simulation response. However, it is not simple to identify which 

parameters are creating the mismatch. Trajectory sensitivities can provide a way of quantifying 

the variation of a trajectory corresponding to small changes in the parameters, as in [32] [33] 

[34]. 

4.1.1 Trajectory Sensitivity Analysis 

Most of power system models can be described by a set of differential and algebraic 

equations with the form of 

( , , )

0 ( , , ) ( , , )

dx
f x y

dt

g x y g x y



  





  

                                               (4.1) 

Where x are the dynamic state variables, y are the algebraic state variables, and  are 

parameters. The initial conditions of (4.1) are given by 0 0( )x t x , 0 0( )y t y  

For reason of compactness, the following definitions are used 
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                                                                          (4.2) 

With above definition, Equations (4.2) can be rewritten in a compact form as 

( , )

0 ( , ) ( , )

dX
F X y

dt

g X y g X y 





  

                                                     (4.3) 

The initial conditions of (4.3) are given by 0 0( )X t X , 0 0( )y t y  
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The time interval of simulation is selected to be the same as the sampling period of the 

PMU and it is assumed that the system is smooth ( 0 0( ) ( )g t g t  ). The sensitivities 
0
( )XX t and 

0
( )Xy t on the time intervals can be derived from partial differentiating of (4.3) with respect to the 

initial conditions 0X . The results are shown in (4.4) and (4.5):  
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matrix. Using (4.5) and assuming that it is non-singular along the trajectories, initial condition for 
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                                                      (4.6)                                                                    

Therefore, the trajectory sensitivities 
0
( )XX t and 

0
( )Xy t  can be obtained by solving (4.4) 

and (4.5) simultaneously with (4.6) using the numerical method with the initial conditions.  

Since the simulation time step is very small, the perturbed trajectories can be 

expressed as (4.7). The estimation is based on first-order approximation and higher order terms 

are neglected. 
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For parameter identification problems, the two most important values are active and 

reactive power at the PMU measurement bus.  It is necessary to obtain the sensitivity of the 

flows P and Q to both initial conditions and parameter variations: 
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                                          (4.8)                                             

Note that sensitivities incorporate parameters   to
0X . Therefore, the sensitivity of the 

flow to 0X  fully describes its sensitivity to 0x and  .
     

 

A program has been developed to derive above trajectories for key parameter 

screening process. Moreover, a study case based on a new installed generator unit in the 

ERCOT system is created for verification. The generator unit includes generator, governor, 

exciter, and power system stabilizer to which corresponding models are GENROU, IEESGO, 

ESAC1A, and PSS2A, respectively. The real power corresponding trajectories are shown in 

Figure 4.1, Figure 4.2, and the reactive power corresponding trajectories are shown in Figure 

4.3, Figure 4.4. Mean square errors as shown in (4.9) are used to be an index for key parameter 

screening, which is shown in upper-right hand corner of each figure.    

21
( )

n

t i

MSE P t
n 

   or  21
( )

n

t i

MSE Q t
n 

 
   

                                  (4.9)   

   

 



 

37 

 

 

 
(a) 

 

(b) 

Figure 4.1 Active Power Trajectory Sensitivity of Models (a) GENROU (b) IEESGO
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(a) 

 

(b) 

Figure 4.2 Active Power Trajectory Sensitivity of Models (a) ESAC1A (b) PSS2A 
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(a) 

 

(b) 

Figure 4.3  Reactive Power Trajectory Sensitivity of Models (a) GENROU (b) IEESGO 
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(a) 

 

(b) 

 

 
Figure 4.4  Reactive Power Trajectory Sensitivity of Models (a) ESAC1A (b) PSS2A 
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4.1.2 Key Parameters 

As indicated in the previous subsection, the trajectories ( )P t and ( )Q t  which are 

obtained by using dynamic simulation shown in Figure 4.1 and Figure 4.2 can be used to guide 

the search for key parameters, i.e., the parameters that are good candidates for the parameter 

estimation process. If a parameter has a large influence on the trajectory of a particular state, 

then its corresponding trajectory sensitivity will be large. This kind of parameter can be 

classified as ―Key Parameters.‖ For example, referring to (4.8), if the parameter corresponding 

to the element i of 0X  has a distinct influence on the trajectory of state P or Q, then the 

trajectory sensitivity
0
( )XP t , 

0
( )XQ t  will take on observable values over time.  

    Large trajectory sensitivities are important because they can give the corresponding 

parameters a strong influence in adjusting the model trajectory to better match the measured 

response. On the other hand, the small trajectory sensitivities mean that large change in 

parameter values is required to get a notable trajectory change. It is important that only 

parameters which influence measured states can be identified. A parameter may have a 

significant influence on the system behavior. But if that influence is not observable in the 

measured states, then the parameter is not identifiable. According to the trajectory results, the 

key parameters are shown in Table 4.1, where the threshold criterion is 0.05. 

 Table 4.1 The List of Generator Model‘s Parameter and Corresponding MSE Value                       
(GENROU) 

CONs Parameter MSE of  P MSE of  Q 
Key 

Parameter 

J T d́o  0.0128 0.0088 X 

J+1 T´‘do  0.0011 0.0002  

J+2 T q́o  0.0007 0.0004  

J+3 T‖qo  0.0172 0.0045 X 

J+4 H, Inertia 1.2246 0.0655 X 

J+5 D, damping 0.0 0.0  
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Table 4.1 – Continued     

   
J+6 Xd 0.0025 0.4703 X 

J+7 Xq 0.007 0.1143 X 

J+8 X d́ 0.0686 0.1074 X 

J+9 X q́ 0.1441 0.0879 X 

J+10 X‖d = X‖q 0.1049 0.0434 X 

J+11 Xl 0.0088 0.002 X 

J+12 S(1.0) 0.0 0.0044 X 

J+13 S(1.2) 0.0 0.0006 X 

 
Table 4.2 The List of Governor Model‘s Parameter and Corresponding MSE Value                         

(IEESGO) 

CONs Parameter MSE of  P MSE of  Q 
Key 

Parameter 

J T1 0.0001 0.0  

J+1 T2 0.0 0.0  

J+2 T3 0.0007 0.0001  

J+3 T4 0.001 0.0001  

J+4 T5 0.0 0.0  

J+5 T6 0.0 0.0  

J+6 K1 0.0013 0.0002  

J+7 K2 0.0 0.0  

J+8 K3 0.0 0.0  

J+9 PMAX 0.0 0.0  

J+10 PMIN 0.0 0.0  

 

Table 4.3 The List of Exciter Model‘s Parameter and Corresponding MSE Value                             
(ESAC1A) 

CONs Parameter MSE of  P MSE of  Q 
Key 

Parameter 

J TR  0.0001 0.0006  

J+1 TB  0.0077 0.0126 X 

J+2 TC  0.0081 0.0116 X 

J+3 KA 0.007 0.3701 X 

J+4 TA  0.0 0.0  

J+5 VAMAX 0.0 0.0  

J+6 VAMIN 0.0 0.0  
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Table 4.3 – Continued     

 
J+7 TE > 0  0.0117 0.0031 X 

J+8 KF 0.0071 0.6706 X 

J+9 TF > 0  0.0013 0.0042 X 

J+10 KC 0.0 0.0062 X 

J+11 KD 0.0004 0.1187 X 

J+12 KE 0.0123 1.1068 X 

J+13 E1 0.0 0.0  

J+14 SE(E1) 0.0 0.0  

J+15 E2 0.0 0.0  

J+16 SE(E2) 0.0 0.0  

J+17 VRMAX 0.0 0.0  

J+18 VRMIN 0.0 0.0  

 
Table 4.4 The List of Power System Stabilizer Model‘s Parameter and Corresponding MSE 

Value (PSS2A) 

CONs Parameter MSE of  P MSE of  Q 
Key 

Parameter 

J Tw1 (>0)    

J+1 Tw2    

J+2 T6 0.0 0.0  

J+3 Tw3 (>0)    

J+4 Tw4 0.0 0.0  

J+5 T7 0.0479 0.0255 X 

J+6 KS2 0.0408 0.0239 X 

J+7 KS3 0.0182 0.0118 X 

J+8 T8 0.0016 0.0011  

J+9 T9 (>0) 0.0177 0.0059 X 

J+10 KS1 0.0045 0.0035 X 

J+11 T1 0.0045 0.0049 X 

J+12 T2 0.0007 0.0002  

J+13 T3 0.0045 0.0049 X 

J+14 T4 0.0007 0.0002  

J+15 VSTMAX 0.0 0.0008  

J+16 VSTMIN 0.0012 0.0207  
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4.2 Parameters Correlation Analysis by Singular Value Decomposition (SVD) 

Parameter correlation is a common issue for power system parameter identification 

problems and results in non-unique estimated parameter values. i.e., it is impossible to uniquely 

estimate the parameters of generator unit, when the system extreme correlation exists. Extreme 

parameter correlation often restrains calibration of the generator unit‘s mode, regardless of how 

models are calibrated. However, the accuracy of results can be dramatically improved by using 

associated statistics and parameter correlation analyses. 

One convenient method to indicate the parameter correlation is the correlation 

coefficient. However, reference [35] notes some problems about using parameter correlation 

coefficients to detect parameter correlation. Such as, if the element of sensitivity metric has too 

many errors or the calculated correlation coefficients are corrupted and can no longer have 

sufficient precision to identify. Furthermore, the correlation coefficient can only identify 

correlation between pairs of parameters and is not able to determine the extent of correlation 

when more than two parameters are correlated. The following presents a brief review of some 

important facts about the Singular Value Decomposition (SVD) and how the SVD might assist 

the parameter correlation analysis. 

4.2.1 Properties of the SVD  

The fundamental treatment of SVD is referred to [36] and interpreted as follows: 

 Any rectangular matrix, X , with m  rows and n  columns can be written as : 

TX USV                                                                       (4.10) 

where  U  is an orthogonal m  by m  matrix, i.e. IT T

m mU U UU   , 

            V  is an orthogonal n  by n  matrix, i.e. 
T T

n nV V VV I   , and 

S  is an m  by n  matrix containing non-negative numbers (the singular values) on the 

diagonal  and zeros outside the diagonal. 
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The column vectors { }iu  of U  are called left-singular vectors, the column vectors { }iv  

of V  are called right-singular vectors, and the diagonal elements { }i of S  are the singular 

values.  Here is the discussion about how to interpret the results from the SVD. 

 

The singular values: The number of singular values equals to the number of parameters. If 

one or more singular values are zero or very small, this indicates that two or more of the 

columns of X  are linearly dependent and two or more of the parameters are extremely 

correlated. 

The right-singular vectors: There is one right-singular vector corresponding to one singular 

value, and in each right-singular vector there is one component for each parameter. If extreme 

correlation is indicated by one or more than one of very small singular values, then the right-

singular vectors corresponding to the small singular values are particularly meaningful. 

The null space: The components in the corresponding right-singular vector with small absolute 

values correspond to parameters which are not correlated and therefore can be uniquely 

estimated. Components with large absolute values correspond to parameters which are 

correlated and therefore cannot be uniquely estimated. 

4.2.2 Apply SVD in Parameters Correlation Analysis 

Consider the same example using trajectory sensitivity analysis. Since only key 

parameters are taken into account for further calibration, the sensitivity matrix, X , is built by the 

active power trajectories  which are corresponding to key parameters. The key parameters are 

listed in the first column of Table 4.5.  The sensitivity matrix, X , SVD decomposed results are 

shown as Table 4.5. 
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Table 4.5 SVD Decomposition Results

Parameter v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 

H, Inertia -0.057 0.165 -0.119 0.116 -0.101 0.119 -0.031 0.299 -0.090 0.375 -0.279 0.370 -0.167 0.062 0.456 -0.030 0.059 -0.019 -0.173 -0.400 -0.172 

KE 0.101 0.027 -0.018 -0.252 -0.003 -0.138 -0.009 -0.151 0.155 0.049 -0.558 -0.429 -0.193 0.192 0.145 -0.261 -0.417 0.120 0.030 0.030 -0.085 

KF -0.938 0.216 0.147 -0.120 0.036 -0.088 -0.043 -0.121 0.094 0.034 0.014 -0.032 -0.016 0.003 -0.011 -0.028 0.005 0.013 -0.008 -0.005 -0.002 

Xd -0.033 0.023 0.022 -0.010 -0.109 -0.356 0.331 -0.059 -0.237 -0.619 -0.206 0.051 0.043 -0.049 0.232 0.372 -0.032 -0.060 -0.032 -0.242 -0.033 

KA 0.063 -0.029 0.025 -0.011 -0.151 -0.322 0.598 0.039 0.615 0.159 0.093 0.119 -0.133 -0.004 -0.037 -0.124 0.218 0.012 -0.015 -0.006 0.039 

X q́ -0.066 -0.215 -0.539 -0.524 -0.418 -0.125 -0.181 -0.019 -0.067 0.070 0.112 0.104 -0.214 0.071 -0.159 0.212 0.043 0.048 -0.042 0.014 0.015 

X d́ -0.213 -0.549 -0.114 0.684 -0.203 -0.175 -0.126 0.049 0.030 0.019 -0.078 -0.134 -0.168 0.086 -0.056 0.043 -0.105 0.060 -0.008 0.030 -0.013 

X”d = X”q 0.162 0.257 0.633 0.027 -0.445 -0.108 -0.261 0.011 0.005 0.053 0.045 0.032 -0.327 0.119 -0.170 0.249 -0.020 0.083 -0.049 0.012 0.004 

Xq -0.012 0.085 -0.120 0.039 0.556 0.158 0.160 0.115 0.049 -0.011 0.010 -0.063 -0.534 0.204 -0.236 0.434 -0.041 0.112 -0.100 -0.040 0.005 

KD 0.034 0.399 -0.303 0.238 -0.166 0.115 -0.052 -0.156 0.110 -0.117 -0.072 -0.096 -0.249 -0.699 -0.070 -0.032 -0.019 0.112 -0.061 0.075 -0.066 

T7 -0.026 -0.369 0.286 -0.223 0.179 -0.166 0.093 0.151 -0.253 0.116 -0.038 0.153 -0.115 -0.490 -0.240 -0.207 -0.203 0.220 -0.227 -0.202 0.049 

KS2 -0.048 -0.229 0.166 -0.157 0.032 0.070 0.004 0.229 0.069 0.213 -0.363 -0.149 0.065 -0.327 0.162 0.431 0.275 -0.153 0.199 0.392 -0.127 

T9 -0.002 -0.061 0.007 0.046 -0.074 0.264 0.026 -0.342 0.155 0.022 -0.499 0.212 0.306 0.089 -0.418 0.140 0.118 -0.022 -0.389 -0.101 0.105 

VSTMIN 0.006 0.180 -0.094 0.037 -0.005 -0.212 -0.059 0.321 -0.057 0.078 -0.145 -0.237 0.044 -0.039 -0.462 -0.079 0.051 -0.554 0.230 -0.363 0.037 

T”qo -0.019 -0.180 0.087 -0.025 -0.022 0.280 0.048 -0.329 0.092 -0.027 -0.062 0.349 -0.191 -0.071 -0.041 0.015 -0.173 -0.070 0.707 -0.239 -0.031 

T d́o 0.021 -0.158 0.092 -0.050 0.108 -0.004 -0.108 -0.280 -0.149 -0.194 -0.082 0.023 -0.463 0.033 0.104 -0.356 0.507 -0.384 -0.165 0.101 -0.003 

TB -0.029 0.208 -0.106 0.090 0.041 -0.212 0.018 0.250 -0.213 -0.110 -0.331 0.424 -0.038 0.138 -0.194 -0.210 0.070 0.235 0.254 0.454 0.218 

TC -0.062 0.006 0.024 0.009 -0.250 0.305 0.366 0.011 -0.370 0.094 -0.038 -0.405 -0.029 0.084 -0.071 -0.095 0.379 0.384 0.172 -0.181 0.137 

TE -0.015 0.017 0.006 0.015 -0.043 0.009 0.162 -0.011 -0.140 -0.032 0.040 0.062 0.052 0.103 -0.265 -0.100 0.012 0.036 -0.006 0.130 -0.913 

Xl -0.086 0.018 0.020 0.021 -0.252 0.298 0.435 0.047 -0.242 0.097 0.069 0.037 -0.121 0.023 0.003 -0.021 -0.436 -0.453 -0.173 0.331 0.154 

Singular 
Value 

51.773 19.313 16.188 9.535 5.827 2.290 1.567 1.291 1.081 0.594 0.479 0.419 0.345 0.271 0.186 0.120 0.108 0.091 0.078 0.067 0.045 

Table 4.5 SVD Decomposition Results 
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The right-singular vectors are shown in Table 4.5, where the last row notes the 

singular values. In normal cases, when the singular values drop below 5% of the maximum, it is 

difficult to calibrate parameters uniquely. Hence, the models here with the maximum of 5 

parameters among 21 parameters might be accurately calibrated, the others are highly 

correlated. Moreover, the small singular values which near zero provide the correlation among 

two or more parameters. For example, form the correlation equation from the last 6 columns as 

follows: 

21 210.218 0.913 , 0.045v TB TE                                                                                   (4.11) 

20

20

0.400 0.242 0.202 7 0.392 2 0.363 0.239 0

0.454 0.331 , 0.067

v H Xd T KS VST T q

TB XI 

              

    
                  (4.12)

 

19 190.227 7 0.389 9 0.707 0 0.254 , 0.078v T T T q TB            
                                  

(4.13)

 

18 180.220 7 0.554 0.384 0 0.235 0.384 0.453 1 , 0.091v T VST T d TB TC X               

(4.14)

 

17 170.417 0.218 0.203 7 0.275 2 0.507 0 0.379 0.436 , 0.108v KE KA T KS T d TC XI                  
 
(4.15)

 

16

16

0.261 0.372 0.212 0.249 0.434 0.207 7

0.431 2 0.356 0 0.210 , 0.120

v KE Xd X q X q Xq T

KS T d TB 

               

      
                      (4.16)

 

Equation (4.11) interpreted that parameters TB and TE are correlated. In other words, 

the simulation output response could reached the same level by tuning either TB or TE.  

Similarly, from (4.12), we can note that parameters H, Xd, T7, KS2, VST, 0T q , TB, and XI are 

correlated. The conclusion results are shown in Table 4.5. The values shown in red are the 

magnitude of the components with large absolute values in the corresponding right-singular 

vector. The values give information on the extent of the correlation and shown which 

parameters cannot be uniquely estimated.   
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4.3 Conclusion of Parameters Analysis 

 This study used trajectory sensitivity analysis extracting out 21 key parameters which 

are listed in Table 4.6. The parameters with the higher MSE of sensitivity can be easily 

calibrated. However, this example has 16 very small singular values, and some parameters are 

correlated. Therefore, they cannot be uniquely estimated. Those parameters are the magnitude 

of the components with large absolute values in the corresponding right-singular vector.  The 

parameters with higher sensitivity can be estimated more precisely. In contrast, the parameter 

correlation hampers the accuracy of the estimated results. Therefore, according to 

corresponding sensitivity and correlation of each parameter, the identifiability of parameters can 

be classified into three categories, high, medium, and low, as shown in Table 4.6. The 

identifiability can be an index of the accuracy of expected results. 

Table 4.6 The List of Correlation and Identifiability of Key Parameter  

Parameters 
MSE of 

Trajectory 
Correlation identifiabilty 

H 1.2901 X High 

KE 1.1191 X High 

KF 0.6777 
 

High 

Xd 0.4728 X High 

KA 0.3771 
 

High 

X q́ 0.2320 
 

High 

X d́ 0.1760 
 

High 

X‖d = X‖q 0.1483 
 

High 

Xq 0.1213 X Medium 

KD 0.1191 X Medium 

T7 0.0734 X Low 

KS2 0.0647 X Low 

KS3 0.0300 
 

Medium 

T9 0.0236 X Low 
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Table 4.6 – Continued     
 

VSTMIN 0.0219 X Low 

T‖qo 0.0217 X Low 

T d́o 0.0216 X Low 

TB 0.0203 X Low 

TC 0.0197 X Low 

TE 0.0148 
 

Medium 

Xl 0.0108 X Low 

 

After identifying the level of parameter‘s identifiability and whether a correlation exists, a 

multi-dimension optimization algorithm is proposed to find a set of best fitting parameters. 
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CHAPTER 5  

OPTIMIZATION ALGORITHM 

The objective of this dissertation is to make the simulation results match with the 

measured curve by identifying accurate parameters of devices in a power system. As described 

in Chapter 2, the conventional optimization methods depend upon on the quality of the initial 

guess. The intelligent method is not affected by the initial guess, but it requires many time-

consuming fitness evaluations, because of the need to perform the dynamic simulation. 

Therefore, a new intelligent optimization method known as the SPSA-PSO cooperative method 

proposes the using of second–order SPSA along with an inexact line search in order to 

accelerate the convergence of the PSO while maintaining the advantageous global search 

ability it possesses. This method is proposed and described below. 

5.1 Particle Swarm Optimization  

A stochastic population-based intelligent optimization algorithm, Particle Swarm 

Optimization (PSO) was originally developed in 1995 by Kennedy and Eberhart as a novel 

intelligent optimization method. The optimized solution is achieved through the mathematical 

simulation of the social behavior of a flock of birds. Since 1999, power system researchers have 

applied the PSO technique to solve optimization problems in many areas such as economic 

dispatch, reactive power and voltage control, state estimation, as well as load flow and optimal 

power flow [5]. PSO is based on the swarm concept, that is, each particle represents a 

candidate solution and has two properties: position ( ix ) and velocity ( iv ) which direct the flight 

of the particle. A population of particles, called a swarm, keeps flying around the search space 

until the stop criteria is satisfied. 
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A variety of PSO algorithms have evolved since the technique‘s first development [37]. 

In the basic global best PSO algorithm, each particle in the swarm is randomly initialized in the 

problem space. At each step, each particle is updated according to the formulas: 

1

1 1 2 2( ) ( )k k k k k k

i i besti i best iv wv c r p x c r g x                                    (5.1) 

1 1

1

1

( ) ( )

( ) ( )

k k k k

i i i ik

i k k k

i i i

x v if f x f x
x

x if f x f x

 





  
 


           

                     (5.2)                                                                                                    

where k

iv is the velocity vector of particle i in dimension i=1,...,p  at iteration k 

k

ix
 
is the position of particle i in dimension i=1,...,p  at iteration k 

 1c  and 2c  are two positive acceleration constants used to scale the contribution of the  

      cognitive and social components respectively 

w  is the inertia weight and can be define as a linear decreasing sequence as below 

     max max min max( ) ( ) / ( 1)w k w k w w k    , where maxw is the largest inertia weight (usually  

      0.9), minw is the smallest inertia weight (usually 0.4), and maxk is the maximum  

       iterations number. 

1r  and 2r  are two random numbers in range [0, 1] 

k

best ip is the personal best position associated with particle i. this is the best position the  

        particle has visited since the first iteration 

k

bestg  is the best position of the whole swarm after k iterations. 

 One of the main advantages of PSO is that this method can explore multiple solutions 

in parallel and utilizes a cooperative manner to search for the global minimum solution. In 

addition to this, a good initial guess solution is not required and the algorithm can be easily 

implemented. However, the drawback of PSO is the slow convergence rate, due to the low 

driving force of the 
bestg

 
particle, except with inertia weight, w . As shown in (5.1), the first term 
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in the summation is the only way for 

bestg
 
to update itself. For the generator parameter 

identification problem, the fitness evaluations are the most burdened by computation. Therefore, 

a gradient based algorithm, Simultaneous Perturbation Stochastic Approximation (SPSA), could 

be adopted to improve the effectiveness of this computation.  

5.2 Simultaneous Perturbation Stochastic Approximation  

The recently developed Simultaneous perturbation stochastic approximation (SPSA) 

method is used virtually in all areas of engineering, as well as in physical and social sciences 

[38] [39]. These applied problems are without a closed-form for the solution and the input 

signals for an optimization problem may be contaminated with noise. Typical applications 

include: model fitting and statistical parameter estimation, adoptive control, pattern classification, 

simulation-based optimization, etc. The SPSA‘s principal benefit is the reduction in the number 

of objective function evaluations required to achieve a given level of accuracy in the 

optimization process. Regardless of the dimension of the optimization problem, SPSA needs 

only two (for the gradient) or four (for the Hessian matrix) objective function estimates in each 

iteration. Because each objective function evaluation stands for a dynamic simulation which 

needs to be performed, the aforementioned benefit becomes very important. The dynamic 

simulation portion of this algorithm requires the highest computational burden, while the other 

parts of the algorithm are relatively insignificant in terms of computation.       

The SPSA algorithm is the general iterating process for an estimate ( ˆ
k ) of a solution 

( * ) with dimension p. The principal iterations for the first and second-order SPSA algorithms 

are as follows [39] [40] [41] [42] [43]: 

1SPSA: 

1
ˆ ˆˆ ( ), 0,1, 2,k k k k ka g k                                                                                (5.3)  

2SPSA: 
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1

1
ˆ ˆ ˆˆ ( ), ( )k k k k k k k k ka H g H f H  

                                                                    (5.4)  

1

1 ˆ , 0,1, 2,
1 1

k k k

k
H H H k

k k
  

                                                                    
(5.5) 

where  

ka and 
ka  are the nonnegative decaying gain sequences that satisfy certain SA  

            conditions, 
 

ˆˆ ( )k kg  is the SP estimate of the objective function gradient 

kH is the SP estimate of the Hessian matrix 

kf  
is a mapping function which transfers the usual non-positive-definite  

kH to a positive- 

            definite  p p matrix. 

Both ka and ka  can be represented by the same as shown in (5.6). However, the 

constant values A and a are different from each other.  

( 1)
k

a
a

A K 


 
                                                                         

(5.6)
 

 

The ˆˆ ( )k kg  is shown in (5.7).  ˆˆ ( )k kg  depends on the gain sequence kc as shown in (5.11) and a 

p-dimensional random variable, k , usually chosen as Bernoulli 1 distribution. 

1

1

1

2

1

ˆ ˆ( ) ( )ˆˆ ( )
2

k

kk k k k k k

k k

k

kp

f c f c
g

c

 








 
 
      

  
 
                                           

(5.7) 

The formula for estimating the Hessian matrix (
kH ) at each iteration is   

1ˆ
2 2 2

T
T T

k k

k

k k k k

G G
H

c c

   
    

                                                               

(5.8) 
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And, let 

(1) (1)ˆ ˆ( ) ( )k k k k k k k k kG G c G c       
                                          

(5.9) 

where (1) ( )kG  as shown in (5.10) is using one-sided gradient approximation in order to reduce 

the total number of objective function evaluation. 

1

1

1

2(1)

1

ˆ ˆ( ) ( )ˆ( )

k

kk k k k k k k k

k k k k

k

kp

f c c f c
G c

c

 








 
 
        

    
 
  

                               

(5.10) 

where kc  and kc are similar as shown in (5.11), a sequence of positive scalars gain sequence 

generated in the same statistical manner. For instance, the value of c could be the standard 

deviation of the objection evaluation in the first few iterations, and  is a positive constant value.  

( 1)
k

c
c

k 



                                                                             (5.11) 

Since the dimension of p in this application is not too large, one useful form for kf is 

1/2( )T

k k k k pH H H I  ; where k  is a positive near zero value and 
pI  is a p p identity matrix 

and other forms for kf  may be useful [13][15] .   

From (5.3) and (5.4), we can note that 1SPSA predetermines the gain sequence ( ka ) 

as a step size for every parameters in the whole iteration process, whereas 2SPSA derives a 

generalized gain sequence ( 1

k ka H  ) adapted to near optimal step size for the different 

parameters at each given iteration. This is the reason why 2SPSA may outperform 1SPSA. 

Furthermore, [44] shows that 2SPSA can achieve a nearly optimal solution with a trivial gain 

sequence ( 1/ ( 1)ka k  ), which effectively eliminates the troublesome issue of selecting a 

―good‖ gain sequence, A and a .       
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Another helpful aspect to note is that SPSA needs only 2-4 measurements, regardless 

of the dimension of the objective function. This result makes SPSA as the best choice for 

parameter identification process. Taking into account the advantages of global search ability of 

PSO, as well as the fast convergence rate, and the less objective function estimations of 

2SPSA, a high efficiency global optimization algorithm is presented in this dissertation.  

5.3 The Proposed SPSA-PSO Cooperative Method 

As mentioned in the previous section, the poor gbest particle updating is the major 

drawback of the PSO algorithm. SPSA can be successfully utilized to steer the gbest particle in 

the right direction, using the objective function gradient estimation, meanwhile, avoiding 

becoming trapped locally due to its stochastic nature. However, the convergence speed of 

SPSA becomes decreased over the iteration time. In order to force  the optimization algorithm  

converge to a certain level in finite iterations,  an inexact line search method as shown in (5.12) 

is applied to derive the next iteration solution 1
ˆ
k  . This is accomplished by searching for the 

minimum value among the estimated objective values of 2SPSA, which can consequently and 

effectively enforce the descent of the objective function.  

1

ˆ ˆ ˆ( ), ( ), ( )
min

ˆ ˆ( ), ( )

k k k k k k k k k k k

k k k k k k

f c f c f c c

f c c f

  

  

         
 

                           

(5.12)

 

Using 2SPSA algorithm, four objective function estimations, ˆ( )k k kf c   , ˆ( )k k kf c   , 

ˆ( )k k k k kf c c     , and ˆ( )k k k k kf c c     , are required per iteration, two for the standard 

gradient estimate ˆ ( )kg   and two for the one-side gradient (1) ( )kG  . Additionally, a blocking 

process used to prevent the step size from exceeding a certain level is based on one additional 

objective function estimation, 1
ˆ( )kf   . i.e., if 1

ˆ ˆ( ) ( )k kf f tolerance    , then 1
ˆ ˆ
k k   . Therefore, 
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the inexact line search method can improve the convergence rate through existing five 

estimated objective functions, without an additional computational cost. 

In this integration approach, the internal PSO structure will not be changed. Only the 

movement of gbest particle will be affected. The flow chart of this approach is shown in Figure 5.1. 

At each iteration of PSO, the gbest particle is updated using 2SPSA. Meanwhile, the 2SPSA 

process takes the PSO‘s result, gbest, as an initial value, and keeps driving the objective function 

descent. Both processes of PSO and 2SPSA require same number of objective function 

estimations. For example, a specific PSO has 30 particles; while equally, 2SPSA, which costs 

five objective function evaluations with each iteration, will take 6 iterations in 30 objective 

function estimations, as well. 

 

PSO Process
Program 

Initialization

 2SASP 

process

No
Iteration>N ?

Stop

Yes

bestg 

bestg 

 

Figure 5.1 The Flow Chart of Cooperation SPSA-PSO 

For the application of generator parameter identification, the accuracy of the estimated 

results and the amount of computational time are critical. This proposed SPSA-PSO 

cooperative algorithm can provide a balance between convergence and global search ability. 
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CHAPTER 6  

CASE STUDY 

This dissertation proposes a new approach and implementation process for solving 

Phasor Measurement Unit (PMU) based generator unit‘s parameter identification problems. The 

implementation scheme established a close link among hybrid dynamic simulation, trajectory 

sensitivity, and SPSA-PSO cooperative algorithm for parameter identification. The hybrid 

dynamic simulation is implemented in commercially available software, PSS/E, to create the 

equivalent of an external-system outside the buses of PMU boundary. This crucial process 

effectively reduces the burdens of computation and increases the accuracy of the results. 

Furthermore, trajectory sensitivity is used to provide valuable information for determining key 

parameters which will be tuned. After this, an enhanced optimization algorithm, Simultaneous 

Perturbation Stochastic Approximation (SPSA) is used to drive Particle Swarm Optimization 

(PSO), is proposed for solving parameter identification. This novel algorithm effectively speeds 

up the convergence rate and maintains the ability to find global minima using the PSO method, 

thereby dramatically improving the search efficiency and solution quality. The effectiveness and 

feasibility of the proposed method and processes are demonstrated by a newly installed 

generator unit in the ERCOT system. In this case study, practical implementation issues are 

further illustrated. Additionally, the experiment shows encouraging results and verifies that the 

proposed approach was capable of efficiently determining higher accuracy parameters 

regarding PMU-based dynamic model parameter identification problems. 

In this chapter, we use the assumed test case and data to evaluate the feasibility and 

effectiveness of the proposed method. 
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6.1 Case Configuration and Data Set 

A newly installed power plant with two identical generators in the ERCOT system is 

studied as a test case.  The power plant is connected to the ERCOT system through a 138kV 

line, as shown in Figure 6.1. A PMU has been installed in bus # 8126 to record the necessary 

disturbance signals  which it requires to identify the parameter identification problems. 

#A

#B

PMU Measurement Point

Power Gird

 

Figure 6.1 One Line Diagram of Local System of the Test Case 

The assumed generator unit #A is the parameter estimation target, and the unit‘s 

models are used for the generator, governor, exciter, and power system stabilizer (PSS) are 

―GENROU‖, ―IEESGO‖, ―ESAC1A‖, and ―PSS2A‖ respectively. The detailed parameters and the 

block diagram of the models are shown in Figure 6.2. to Figure 6.5. 
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CONs   Description Value 

J T d́o (>0) (sec) 8.4 

J+1 T d́o (>0) (sec) 0.04 

J+2 T q́o (>0) (sec) 2.5 

J+3 T”qo (>0) (sec) 0.15 

J+4 H, Inertia 4.47 

J+5 D, Speed damping 0.0 

J+6 Xd 1.98 

J+7 Xq 1.88 

J+8 X d́ 0.27 

J+9 X q́ 0.45 

J+10 X”d = X”q 0.2 

J+11 Xl 0.14 

J+12 S(1.0) 0.07 

J+13 S(1.2) 0.31 
 

Figure 6.2 Model Diagram of GENROU [28] 

 
CONs   Description Value 

J T1, controller lag (sec) 0.045 

J+1 T2, controller lead compensation (sec) 0 

J+2 T3, governor lag (>0) (sec) 0.2 

J+3 T4, delay due to steam inlet volumes associated with 

steam chest and inlet piping (sec) 

0.6 

J+4 T5, reheater delay including hot and cold leads (sec) 0 

J+5 T6, delay due to IP-LP turbine, crossover pipes, and 

LP end hoods (sec) 

0 

J+6 K1, 1/per unit regulation 22.2 

J+7 K2, fraction 0 

J+8 K3, fraction 0 

J+9 PMAX, upper power limit 1 

J+10 PMIN, lower power limit 0 

 

Figure 6.3 Model Diagram of IEESGO [28] 



 

60 

 

 

 

 
CONs   Description Value 

J TR (sec) 0.035 

J+1 TB (sec) 0.46 

J+2 TC (sec) 0.26 

J+3 KA 104.7

7 

J+4 TA (sec) 0 

J+5 VAMAX 7 

J+6 VAMIN -7 

J+7 TE > 0 (sec) 0.84 

J+8 KF 0.08 

J+9 TF > 0 (sec) 1.5 

J+10 KC 0.13 

J+11 KD 0.35 

J+12 KE 1 

J+13 E1 1.125 

J+14 SE(E1) 0 

J+15 E2 1.5 

J+16 SE(E2) 0.029 

J+17 VRMAX 7 

J+18 VRMIN -7 
 

 

Figure 6.4 Model Diagram of ESAC1A [28] 

 

 

CON

s   

Descript

ion 

Value 

J Tw1 

(>0) 

5 

J+1 Tw2 5 

J+2 T6 0 

J+3 Tw3 

(>0) 

5 

J+4 Tw4 0 

J+5 T7 5 

J+6 KS2 0.44 

J+7 KS3 1 

J+8 T8 0.5 

J+9 T9 (>0) 0.1 

J+10 KS1 5.299

7 

J+11 T1 0.515 

J+12 T2 0.03 

J+13 T3 0.515 

J+14 T4 0.03 

J+15 VSTMAX 0.1 

J+16 VSTMIN -0.1 
 

Figure 6.5 Model Diagram of PSS2A [28] 

In this test case, a shot circuit fault event, we assume three-phase-ground fault near the 

power plant. The event lasts 6 cycles and is cleared by tripping signal line. For the purposes of 

algorithm validation, it is assumed that the dynamic parameters received from the generator 
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owner, submitted to ERCOT, are correct. The dynamic simulation of this scenario is performed 

based on these existing dynamic parameters. The simulation results (Meas_P , Meas_Q, 

Meas_Angle, and Meas_Voltage) at bus # 8126 are treated as the PMU ―measurement‖ data, 

as shown in Figure 6.6 and Figure 6.7.  After that, these parameters are assumed to be 

unknown and are altered to some other values. The system response from these altered 

parameters is treated as ―simulation‖ results. The proposed method will use the ‖measurement‖ 

data to adjust these altered parameters back to the existing value, which is defined as 

the ‖actual response value‖ for the proposed parameter identification process.    

The algorithm is programmed in Python 2.5 with PSS/E simulation engine (version 32) 

and runs on a computer with Intel Core i3 Quad-Core CPU 2.27GHz and 4 GB RAM. 

 
(a) 

 
(b) 

Figure 6.6 PMU Measurements at Boundary Bus (a) Active Power (b) Reactive Power               
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(a) 

 

(b) 

Figure 6.7 PMU Measurements at Boundary Bus  (a) Voltage (b) Angle   

6.2 Parameter Identification Process and Objective Function Description 

6.2.1 Parameter Identification Process 

      The proposed implementation scheme of PMUs-based dynamic model parameter 

identification is shown in Figure 6.8. Firstly, the PMU data including voltage, angle/frequency, 

real power and reactive power – (V, / f , P, Q) is needed for this application. Secondly, an 

isolated subsystem based on measurement points of PMU must be created. The power flow 

case of this subsystem as shown in Figure 6.1 should match the pre-disturbance condition.  
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Figure 6.8 Flow Chart of Parameter Identification Process 

 

Thirdly, in order to compare the simulation results with the actual records, the 

simulation time-step of dynamic simulation software shall be synchronized with the PMU‘s 

sampling rate. Afterward, the key parameter screening process is used to determine which 

parameters contributed more to the system simulation response. Finally, the SPSA-PSO 

cooperative algorithm will identify a set of parameters which will serve to minimize the mismatch 

between the simulation results and the measurement data.  

6.2.2 Objective Function Description 

The objective of this algorithm is to make the simulation curve match with the 

measurement curve by adjusting the key parameters derived in the trajectory sensitivity analysis. 

Nevertheless, the objective function cannot be directly formed by the ―simple‖ means of 

squaring the difference between two curves: the measurement and simulation curves. This is 

because the mismatch caused by the hybrid dynamic simulation method may incidentally 

increase the error of the estimated results. In order to overcome this deficiency of the hybrid 

dynamic simulation, we must form the objective function by both the differences and similarities 

of the curves.  The differences are used in steady-state and the similarities are used in 

dynamic-state. These both states can be detected by using edge detection method. 
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(a) 

  

(b) 

Figure 6.9  The Similarity and Difference of the Fitting Curves 

This example is used to illustrate the affects of using different defined objective 

functions. We assumed that the fitting curves are the PMU measurement (Meas_P, Meas_Q) 

and hybrid dynamic simulation (Sim_P, Sim_Q) curves as shown in Figure 6.9. In the dynamic-

state period, a significant mismatch between the two curves is caused by the hybrid dynamic 

simulation, mentioned in Chapter 3. The similarity of the waveforms defines the objective 

function as a squared error as in (6.1), 
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the results of MSE would be  
2

1

( ) P ( )
n

meas sim

t

P t t


  8554.2 and  
2

1

( ) ( )
n

meas sim

t

Q t Q t


  10158.0. 

Since these results exhibit obvious errors, the curve fitting optimization algorithm, which is 

applied to find a set parameters with minimum fitness value, will fit over the curves and resulted 

in a set of estimated premasters with less accuracy.  Therefore, in order to reduce the effects of 

curve mismatch, the curve similarity will be defined for forming the objective function in 

dynamic-state. 

The problems of curve similarity appear in many applications, such as: time series 

analysis, shape matching, speech recognition, and signature verification, etc. Curve similarity 

has been studied extensively by geometer computations which can be classified as the Fréchet 

distance method [45]. The Fréchet distance between two curves is the similar in principle to the 

maximum length of a leash required to connect a dog and its owner, constrained on two 

separate comparison paths, as they walk without backtracking along their respective curves 

from one endpoint to the other. Imagine a dog walking along one curve and the dog's owner 

walking along the other curve, connected by a leash. Both walk continuously along their 

respective curve from the prescribed start point to the prescribed end point of the curve. Both 

may vary their speed, and even stop at arbitrary positions for various amounts of time, but 

neither can backtrack. The Fréchet distance between the two curves is the length of the 

shortest leash, not the shortest leash that is sufficient for all possible ―walks,‖ but the shortest 

leash of all the leashes present, yet still being sufficient for traversing both curves in this manner. 

Taking the same idea of the traveling path in our application, since the comparison curves are 

synchronized, the similarity can be simply represented by the difference of discrete path lengths 
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as shown in Figure 6.10. We can determine that the greater the similarity between the two 

comparison cures, the closer the sum of the discrete paths. 

 

 

Figure 6.10  The Similarity of Two Curves Using the Discrete Path Length 

Considering the curve similarity for the curves in Figure 6.8, the objective function 

redefined as a squared error of two discrete path lengths as in (6.2) 

   
1

2 2

1

( 1) P ( ) ( 1) P ( )
n

meas meas sim sim

t

P t t P t t




     
 

                                 

or                      

   
1

2 2

1

( 1) ( ) ( 1) ( )
n

meas meas sim sim

t

Q t Q t Q t Q t




     
   

 

                         (6.2) 

the values are 57.3 and 353.7 respectively. Compared with the results, 8554.2 and 10158.0, 

which were calculated by square error in (6.1), the objective function has been significantly 

improved. The estimated parameters can now be expected more precisely.  

From Figure 6.9, we can note that both curves are nearly identical in steady-state, but 

have some mismatch in dynamic-state. In order to account for the difference in steady-state and 

the similarity in dynamic-state, the mathematical objective function can be formed as:  
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where  

 W  is a weighting constant,
 

1iW   

 measP  and measQ  are PMU measurements.  

 
Psim and simQ  are simulation results.  

  t    from 1 to n samples are in steady-state 

       from n+1 to N samples are in dynamic-state  

  p are the most sensitive parameters based on the trajectory sensitivity analysis. 

In (6.3), the first two terms in the summation,
 1 [ ]W  

and 2 [ ]W   , represented by the 

difference of two curves in steady state. The similarities of the curves in dynamic state are 

represented by the last two terms in the summation,
 3 [ ]W   

and 4 [ ]W  . Using the similarity 

in (6.3), the effects of mismatch caused by the hybrid dynamic simulation can be significantly 

reduced. 

This dissertation forms an objective function by using waveform similarity and difference 

to overcome the drawbacks of the simulation mismatch. However, this multi-objective 

optimization problem consists of four different objectives in (6.3) which may conflict with each 

other, but need to achieve minimum value simultaneously. One common way to approach this 

problem is to find the multiple Pareto optimal solutions (Pareto front) [46] [37]. However, finding 

several passable solutions to build the Pareto front is even less efficient than single objective 

function problems. A more simple way to approach this problem is aggregating the multiple 

objectives into one objective function, which considering weights that can be fixed or 

dynamically changed during the optimization process. The main disadvantage of this approach 
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is the fact that it is not always possible to find the appropriate weighted functions. Fortunately, 

it is relatively simple to consider the constant weighting value in (6.3), because the similarity 

values are always remain about two to three times lower than the given difference value. More 

intuition inputs often include choosing 1 2 0.1W W   and 3 4 0.4W W  . Afterward, the 

experience test results show the objective function can accurately represent the best fitness 

curves. 

6.3 Parallel Computation 

Thousands of buses and hundreds of generators exist in the EROCT system. Dynamic 

simulation of the ERCOT system involves the computation of thousands of algebraic and 

differential equations. Typically, it takes approximately one minute to perform one dynamic 

simulation of the ERCOT system using a desktop PC. Fortunately, the hybrid dynamic 

simulation can effetely reduce the size of the given subsystem, and only the models of the 

generator equipment residing inside this subsystem needs to be considered. However, the 

dynamic simulation process still requires approximately four to five seconds in order to perform 

a single simulation. Thanks to parallel computing technology, many results of dynamic 

simulation can be carried out simultaneously for accelerating the parameter identification task.  

According to the level at which the hardware supports parallel computing, the multi-core 

and multi-processor computers having multiple processing elements within an individual 

machine; the clusters, the massively parallel computer (MPPs), and the grids use multiple 

computers to work on the same task. Specialized parallel computer architectures are 

sometimes used alongside traditional processors. However, parallel computer programs are 

typically more difficult to write than sequential ones, because concurrency introduces several 

new classes of potential software bugs, of which race conditions are known to be the most 
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common. Communication and synchronization between the different subtasks typically 

become some of the greatest difficulties in getting good parallel program performance. 

An open source software package, Parallel Python PP [47], provides a high level 

interface for executing Python code in parallel on multi-core CPUs cluster. The Client is used in 

top-level code to submit tasks to the controller, supercomputers, and the cloud. The proposed 

SPSA-PSO cooperative algorithm significantly benefits from the multi-core parallel computing, 

because of the PSO‘s population-based nature as well as its concurrent objective function 

estimation needs of SPSA. The test cases show the benefits below. The computation time of 

whole process included 3,000 fitness function estimations can be cut down to 40 to 50 percent. 

It drastically accelerating the computation speed.  

Table 6.1 The Computation Time With 3000 Fitness Function Estimations 
 

Without parallel computing With parallel computing 

4:11:14 2:18:04 

 

6.4 Setting of Algorithm‘s Parameter 

Like other stochastic approximation algorithms, the proposed PSO and the 2SPSA 

cooperative algorithm have some parameters necessary to be chosen by the user. It is an 

important task to see that these parameters are selected in order to optimize the performance of 

the convergence and variability of the search area. 

 The parameters for PSO are particle numbers, inertia weight ( w ), the acceleration 

coefficients (c1, c2). The more particle numbers, the larger searching space which can be 

covered per iteration. However, having more particles increases the per iteration computational 

cost. It has been shown in a number of empirical studies that the PSO has ability to find optimal 

solutions with swarm size from 10 to 30 [48]. Since the proposed algorithm cooperated with 
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2SPSA, the PSO is better to have a varied searching space, therefore increasing the rate of 

successful solutions found. Therefore, the swarm size equal to 30 was chosen in this 

application. The inertia weight, w , controls the momentum of the particle by weighting the 

contribution of the previously recored velocity. The value of w  is important to ensure 

convergent behavior and to optimally tradeoff between global searching ability and convergence 

rate.  A large value of w  speeds up exploration and increases diversity; while a small value of 

w  promotes convergence at local optimal. However, the optimal value for the inertia weight is 

the problem dependent. The approaches with dynamic inertia weight can be classified into the 

four categories: random adjustment, linear decreasing, nonlinear decreasing, and fuzzy 

adaptive inertia [37].   A simple and efficient inertia weight adopted in this dissertation is a linear 

decreasing weighting as mentioned in section 5.1. The decreasing sequence descends linearly 

from an initially maximum inertia weight ( maxw ), and ends at a minimum value, ( minw ). The 

values are usually set as 0.9 and 0.4 respectively. The acceleration coefficients (c1, c2) control 

the influence of cognitive and social components on the overall velocity of a particle. When 1c  

and 2c  coexist in a good balance, i.e. 1 2c c , particles draw their moving force from their 

cooperative nature and are considered to be effective.  Low values for 1c  and 2c result in 

smooth particle trajectories, giving the particles the ability to move to far-off areas. High values 

cause more acceleration with abrupt movement towards or past the ―good‖ regions. Typically, 

the optimized 1c  and 2c are found empirically and through tests. In general, 1 2 1.49c c   can 

result in more stable results. 

The parameters for 2SPSA are two constants ( ,  ) for gain sequences ( ka and kc ), 

and two perturbation sizes ( c  and c ).   The choice of the gain sequences is critical to the 

performance of 2SPSA. With  and  as specified in (5.6) and (5.11), we can note that 
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choosing 1.0  yields better finite-sample performance through maintaining a larger step size; 

hence the recommendation to use values: 0.602 and 0.101, which  are effectively the lowest 

allowable satisfying the theoretical conditions [42]. According to an empirically rule, it is effective 

to set c  at a level approximately equal to the standard deviation of the measurement noise in 

( )y  in order to keep the p elements of ˆˆ ( )k kg   from getting excessively large in magnitude (the 

standard deviation can be estimated by collecting several ( )y  values at the initial guess ˆ
k . 

However, a precise estimate is not required in practice. In this dissertation‘s application, the 

noise of ( )y  only comes from minor imperfect measurements of ( )L  , then c should be 

chosen as some small positive value. The values of a and A can be chosen together to ensure 

effective practical performance of the algorithm. A large a  may enhance performance in the 

later iterations by producing a larger step size when the effect of A is small. A guideline 

recommended by [42] is used to take 10% (or less) of the maximum number of allowed 

iterations and choose a  such that / ( 1)a A 
 
 times the magnitude of elements in 0 0

ˆˆ ( )g   is 

approximately equal to the smallest of desired change magnitudes among the given elements of 

 in the early iterations. For example, if the elements of   typically move by a magnitude 0.1 in 

the early iterations, the elements in 0 0
ˆˆ ( )g 

 
is approximately 10, then with A=100 and   =0.602, 

a =0.16 would be chosen. For 2SPSA, since it can achieve a nearly optimal solution with a 

trivial gain sequence ( 1/ ( 1)ka k  ), the difficulty of selecting A and a can be eliminated.       

Moreover, since the scale of the generator unit‘s parameter varies widely, a parameter 

normalization process is necessary to acquire a better result. In this case, the normalization 

scale is 1000. The parameters used in the optimization program are shown in Table 6.2. In this 

study, the objective is to evaluate whether the algorithm can found the best solution within a 

restricted time period. A stopping condition has been used to terminate the program when a 
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maximum number of fitness estimations has been exceeded. In this study case, the maximum 

number of fitness estimations is 3000.  

Table 6.2 Parameters Using In Optimization Program 

PSO 2SPSA 

Particles c1=c2 
minw  maxw  Scale  c c      

30 1.49 0.2 0.9 1000 20 30 0.1667 1 

 

6.5 Results of Dynamic Parameter Identification 

To examine the effectiveness and convergence speed of the proposed SPSA-PSO 

cooperative method and to avoid any misinterpretation of the optimization results, we compare 

these results with the basic PSO by performing each method for 50 runs.  Every test is started 

from a randomly selected initial solution and uses the same termination criteria. The termination 

criterion allows for 3000 evaluations of the objective function.  

Table 6.3 lists the results of 50 runs. Maximum and minimum values are shown, as well 

as the mean values and standard deviation which were calculated. Comparison of the result of 

the SPSA-PSO cooperative algorithm and the results of basic PSO algorithm demonstrates that 

the former has performed consistently better than the latter. The convergence behaviors of the 

fitness values averaged by 50 runs for the two approaches are shown in Figure 6.11. It is also 

shown that the efficiency and accuracy has been significantly improved by using the SPSA-PSO 

cooperative algorithm.   

Table 6.3 Statistical Results from 50 Runs 

Basic PSO Cooperative SPSA-PSO 

Max. Min. Mean
 
 

standard 
deviation  

Max. Min. Mean 
standard 
deviation 

4.5567 
 

1.4407 
 

2.3334 
 

0.7253 
 

2.2483 
 

1.4439 
 

1.7734 
 

0.1956 
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Figure 6.11  Convergence Diagram of Two Approaches 

The best fitting simulation results of SPSA-PSO cooperative method among the 50 runs 

are shown in Figure 6.12 and 6.13. Both active power and reactive power can be fitted to be 

nearly identical. 

 

Figure 6.12 Active Power Simulation Result of Best Fitness among 50 Runs 
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Figure 6.13 Reactive Power Simulation Result of Best Fitness among 50 Runs 

The statistical results of all parameters of 50 runs of the SPSA-PSO cooperative 

method are shown in Table 6.4, which includes the parameter‘s actual value, maximum value, 

standard deviation ( ) , mean value ( ) , percentage error ( ) , and the set of the best fit 

parameters. There are two different percentage errors; the first one ( )  is the error between the 

mean value and the actual value, whereas the second one ( ')  represents the error between 

the best fit value and the actual value. We can note that the error ( ')  shown in the last column 

of Table 6.4 is significant even if the best fit curve matches the target curve very well, as shown 

in Figure 6.11. The result is not surprising, because an extreme parameter correlation often 

hampers the calibration of a generator unit‘s model. Parameter correlation causing non-unique 

parameter values is a common problem for system identification. Regardless of how models are 

calibrated, the system‘s extreme correlation existence makes it impossible to uniquely estimate 

the parameters of a generator unit. This weakness could be remedied when more associated 

statistics are available.  Therefore, taking the mean value ( ) of the parameters derived from 50 

runs into account as the final estimate result becomes more accurate than the result derived 
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from solely the best fit result. Furthermore, the errors ( ) of the mean values are all within a 

small range, verifying that the results are trustworthy and reliable.     

Table 6.4 The Statistic Results of Parameters through 50 Runs 

Parameter Actual Max. Min. 
standard 

deviation 

Mean 

value 

percentage 

error 

Best 

Value 

percentage 

error 

Generator Model -GENROU 

T d́o 8.4 10.92 5.88 1.61 8.63 2.8 9.28 10.4 

T”qo 0.15 0.20 0.11 0.03 0.15 2.6 0.18 20.5 

H, 

Inertia 
4.47 5.13 4.05 0.24 4.58 2.4 4.73 5.8 

Xd 1.98 2.47 1.45 0.26 2.02 2.0 1.79 9.7 

Xq 1.88 2.34 1.48 0.19 1.92 2.2 1.61 14.1 

X d́ 0.27 0.32 0.23 0.02 0.27 0.7 0.27 0.0 

X q́ 0.45 0.49 0.41 0.03 0.45 0.1 0.46 2.2 

X”d= 

X”q 
0.2 0.24 0.16 0.02 0.20 0.8 0.20 0.4 

Xl 0.14 0.18 0.10 0.02 0.14 2.1 0.13 9.2 

Exciter Model- ESAC1A 

T7 5 6.50 3.57 0.80 4.87 2.6 4.66 6.8 

KS2 0.44 0.56 0.32 0.06 0.45 1.9 0.44 0.3 

KS3 1 1.30 0.71 0.17 1.04 3.6 1.09 9.1 

T9 (>0) 0.1 0.13 0.07 0.02 0.10 2.9 0.12 22.8 

Power System Stabilizer Model-PSS2A 

TB (sec) 0.46 0.60 0.32 0.07 0.45 2.8 0.50 9.5 

TC (sec) 0.26 0.34 0.19 0.04 0.26 1.8 0.31 18.5 

KA 104.8 136.20 80.34 12.82 107.44 2.6 104.76 0.0 

TE (sec) 0.84 1.06 0.62 0.12 0.84 0.1 0.81 3.1 

KF 0.08 0.10 0.06 0.01 0.08 1.3 0.07 11.3 

KD 0.35 0.45 0.25 0.06 0.36 2.4 0.37 6.4 

KE 1 1.27 0.70 0.15 1.01 0.5 1.07 7.4 
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6.6 Summary 

A new SPSA-PSO cooperative algorithm and a novel parameter identification scheme 

are discussed in this dissertation.  The new algorithm and scheme are used to evaluate the 

parameters of dynamic models from PMU-based measurements recorded during disturbances.    

The SPSA-PSO cooperative algorithm is used to estimate power system parameters 

from measurements taken during a system disturbance. The algorithm is based on PSO and 

2SPSA method, in which the 2SPSA provides a more efficient way to improve the global best 

position and accelerate convergence. This reliable algorithm significantly improves the global 

search ability and convergence rate. 

Using hybrid dynamic simulation, the system outside the studied model can be 

effectively reduced. Therefore, the quality of the results and the computation time are 

dramatically improved. Moreover, trajectory sensitivities provide information which is valuable 

for determining key parameters. This dissertation establishes a close link among hybrid 

dynamic simulation, trajectory sensitivity, and the optimization algorithm for parameter 

identification processes. 

The proposed approach has been demonstrated in a case that models a newly installed 

generator unit in the ERCOT system.  This approach is proven to have superior features, 

including high accuracy of the estimated results, stable convergence, and good computational 

efficiency.  The most important features of the proposed approach are feasibility, simplicity, and 

relatively ease of implementation for an ISO.  
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CHAPTER 7   

CONCLUSIONS AND FUTURE RESEARCH 

7.1 Conclusions 

The accuracy of the dynamic parameters affects the reputation of the power system 

dynamic simulation, thereby affecting the economical implications and overall reliability of the 

power system. Inaccurate dynamic simulation results may lead to exceedingly conservative 

estimation of the system transfer limit, such as TTC, or ATC,  causing additional congestion in 

the power market. Additionally, this factor will singlehandedly increase the market clearing price 

(MCP) or locational marginal price (LMP) and decrease the utilization rate of the transmission 

network. Alternatively, inaccurate dynamic simulation results could lead to overestimation of the 

system transfer limit, as well. In the worst case scenario, this may give rise to a local or system 

level blackout. Therefore, it is very important to ensure the accuracy of the dynamic parameters 

in the system database for simulation. However, the mismatch between simulation results and 

the on-site recording data exists as documented data in research papers and reports of fault-

event investigation. The area of dynamic parameter estimation is thus being identified as a 

potential area of research by the engineers and researchers in the power system area. 

The current methods of online dynamic parameter estimation for generator unit typically 

depend upon the given on-site measurements, such as field current, voltage, and rotor speed. 

From ISO‘s implementation point of view, it is difficult or even impossible to access necessary 

measurement records. Meanwhile, PMUs have been widely installed nationwide, and the 

approach of PMU-based dynamic parameter estimation continues to gain momentum as a 

prominent solution for the utility industry to reach the goal of total parameter verification and 

identification automatically. For that reason, this dissertation proposes an identification process 
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in order to demonstrate and prove that PMU-based dynamic parameter estimation is a feasible 

solution for the discussed issues.  

The predominant issues, tremendous computation time and initial guess solution, are 

two troublesome obstacles for the optimization algorithm of parameter identification processes. 

The approach proposed in this dissertation is described as a robust method for accurate 

dynamic parameter estimation. The proposed method utilizes a new intelligent method, PSO, to 

find the global optimization solutions and uses a second-order gradient-based method, 2SPSA, 

to speed up the convergence rate of PSO. The initial guess solution for PSO is no longer 

required and has an outstanding global searching ability. Meanwhile, the slow convergence rate 

of PSO is vastly improved by 2SPSA. Therefore, the proposed method could keep the balance 

of global searching ability and convergence rate. Additionally, the optimization algorithm is 

programmed with parallel calculating structure to take advantage of the multi-core computer to 

reduce computation times.  

The proposed method achieves the target value of the dynamic parameters such as 

generators, governors, exciters, and PSS in the assumed test case. It successfully tunes each 

of the dynamic parameters of the generator, governors, exciter, and PSS in a given power plant 

to dramatically decrease the mismatch between the simulation results and the field recording 

data following the disturbance event in ERCOT system. 

7.2 Possible Future Research 

7.2.1 Future works 

The research presented a test case to demonstrate and verify the proposed parameter 

identification process. The results show that the proposed approach can be a promising solution 

for solving PMU based parameter identification problems. There are several future works 

stemming from this work which could be pursued to improve the accuracy of estimation results 

and to deal with reality application issues. 
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 Use a statistical analysis approach, such as the parameter regression method to 

remediate the affect of parameter correlation.  

 Decouple the identification model to increase the accuracy of estimated results. For 

example, the governor model and d-axis parameters of generator can only matching with P 

(active power) measurement; the exciter model and q-axis parameters of  generator can 

only matching with Q (reactive power) measurement.  

 Use several results derived from different disturbance events to accurately determine a set 

of parameters.  

 Develop a user-friendly interface to reduce the complexity of program usage. 

 Develop an automatic data retrieving process for assessing disturbance records from 

PMUs, as well as the pre-disturbance power flow case from EMS. 

 Design a signal denoising filter for the disturbance records, if the signals are accompanied 

by noise. 

7.2.2 Potential Research 

The current installed wind generation capacity in Texas is more than 10,000MW, which 

accounts for about 10% of the total installed generation capacity in ERCOT. In the near future, 

the overall wind generation in ERCOT will be approximately one third of the total installed 

generation capacity. The potential stability problems caused by the wind farms should be 

considered important to ERCOT. Therefore, it is virtually necessary to conduct the dynamic 

study, including frequency and voltage stability. The voltage stability results are highly affected 

by the dynamic load model in the system. However, dynamic simulations using standard static 

stability load models were not successful in reproducing the event. The actual response of the 

transmission system may be reproduced using aggregate load models that include the effect of 

induction motors and distribution system impedances. Therefore, it is critical that the load 
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models used in dynamic studies correctly represent the behavior of actual load. As noted, 

there is no dynamic load model in the current model database in ERCOT. It is very urgent to 

develop a dynamic load model to prevent associated phenomenon, such as fault induced 

delayed voltage recovery, which may result in a large amount of load loss, as previously 

experienced in WECC.  

Although this dissertation focuses on the generator, exciter, governor, and PSS 

parameters, the proposed method can be extended to any other dynamic method, such as load 

models and wind generator models, since they are model-independent methods. Meanwhile, 

this approach opens doors to similar opportunities, such as: 

 Indentifying the wind-turbine or big-size motor‘s parameters and monitoring the health 

conditions.   

 Detecting the power system areas which exist in simulation mismatch validation. 

 Identifying the dynamic load model. 

 Calibrating the parameters of a transmission line or transformer. 

 Validating the power system simulation software.    

As mentioned in the introductory chapter, the model/parameter validation is a long-term 

and on-going effort. The proposed approach should be automatically invoked following any form 

of disturbance event. Following the disturbance events, the pre-disturbance power flow case 

from SCADA/EMS and the disturbance PMU measurement data could be sent to the computer 

where the proposed application is located. The proposed method would then use the captured 

data to validate the simulation results and determine the mismatched areas which PMU 

measurements have significant differences with the simulation results. After the inaccuracy 

models have been located, parameters in the model database will begin the calibration 

processes. The optimized parameters will then be recommended by the program to decrease 
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the discrepancy when the mismatch index is high. The basic system infrastructure required for 

the application of the proposed method is shown in Figure 7.1. 

. . . . .

GPS

Ethernet

PMU

PMU

PMU

hp Workstation i2000

hp Workstation i2000

Phasor Data 

Concentrator

EMS 

Database

Applications
Communication Standards

IEEE C37.118.2

IEC 61850-90-5

ICCP

 

Figure 7.1 Basic System Structure of Proposed Application in Parameter Identification 

The most commonly used communication standards as shown in Figure 7.1 are IEEE 

C37.118.2, IEC 61850, or ICCP [21]. These protocols can run over TCP/IP networks and/or 

substation LANs using high speed Ethernet to obtain the necessary response times of < 4 ms 

for data communication. Currently, C37.118 is widely used for synchrophasors and is adequate 

for many systems. In order to adapt to IEC, C37.118 split into separate standards, the new 

standard, C37.118.2, covers only the communications for measurement; IEC 61850 is new 

development for synchrophasors communications and other substation automation, and ICCP is 

defined to provide a communication profile for sending basic telecontrol messages between two 

systems, and is often widely used in EMS or substation communication. As a system uses more 

than one kind of communication standards, the issue of protocol harmonization and integration 

will become more important for the application of the proposed method.  

http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/LAN
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Recently, the Electrical Power Research Institute (EPRI) conducted a study of the CIM 

(Common Information Model) for power system dynamic models. The electric utility software 

vendors are encouraged to exchange XML (Extensible Markup Language) versions of the CIM 

to demonstrate interoperability of products. Including CIM in the loop will enhance the capability 

of the proposed parameter estimation process. 

7.2.3 Potential Applications 

While the proposed approach, the dynamic parameters estimation for generation 

facilities, has been implemented in ERCOT, the system models can attain an even better 

calibration level. Furthermore, the hardware installation as shown in Figure 7.1 would also 

satisfy the need of a ―smart grid‖ which employs innovative technologies and services, coupled 

with intelligent monitoring, control, communication, and self-healing applications; the software 

utilized in this dissertation could also be applied to realize the essential calculation of the smart 

grid. All technology areas could deploy on a fully optimized electricity smart grid as shown in 

Figure 7.2. However, the applications discussed here focus on transmission level, and not all 

technology areas are suitable for this application. Based on the proposed hardware structure, 

the potation applications are as following: 
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Figure 7.2 Smart Grid Technology Areas [49] 

 Wide-area monitoring and control 

Real-time monitoring and display of power system components and performance, 

across interconnections and over large geographic areas, help system operators to understand 

and optimize power system components, behavior, and performance. Advanced system 

operation tools avoid blackouts and facilitate the integration of various renewable energy 

resources. Monitoring and control technologies along with advanced system analytics – 

including wide-area situational awareness (WASA), wide-area monitoring systems (WAMS), 

and wide-area adaptive protection, control and automation (WAAPCA) – generate data to 

inform decision making, mitigate wide-area disturbances, and improve transmission capacity 

and reliability. 

 Renewable and distributed generation integration 
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It can become difficult to integrate renewable and distributed generator resources 

which include the large scale at the transmission level, the medium scale at the distribution level, 

and the small scale on commercial or residential buildings. In addition, energy storage systems 

can alleviate some operation problems by decoupling the production and delivery of energy. 

The problems of dispatch and control upon these resources to power system become even 

more complicated. The proposed structure can help through automating the control of 

generation and demand to ensure an optimized balance of supply and demand.   

 Transmission enhancement applications 

There are a number of technologies and applications for the transmission system. 

Flexible AC transmission systems (FACTS) could are used to enhance the controllability of 

transmission networks and maximize power transfer capability. The deployment of this 

technology on existing lines can improve efficiency and defer the need of additional capital 

investment. High voltage DC (HVDC) technologies are used to connect wind farms, solar farms, 

and inter-area to power system, with decreased system losses and enhanced system 

controllability, allowing efficient use of energy sources, despite being operated from remote load 

centers. Dynamic line rating (DLR), which uses sensors or weather data to identify the current 

carrying capability of transmission lines in real time, can optimize the utilization of existing 

transmission assets, without the risk of causing overloads. The proposed structure can help to 

enhance the utility of those facilities in order to improve the stability and reliability of entire 

electric system. 
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APPENDIX  

USER INSTROCTIONS OF PARAMETER IDENTIFICATIO PROCESS  
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Software Requirement  

 PSS/E 32 Version 

 Python 2.5 Version 

 NumPy / SciPy – are two of many open-source packages for scientific computation used 

the Python programming language. 

 Matplotlib -is a python 2D plotting library. 

 Xlrd/Xlwt- are two libraries for developers to extract data or to create spreadsheet from 

Microsoft Excel spreadsheet files 

 

Input Data Requirement  

 An Initial Study Case: 

An isolated subsystem case should be provided and the all boundary buses of his 

subsystem should have PMU installed or synchronized data are available.  

  A PMU measurement data: 

The disturbance record, real power P, reactive power Q and Bus Voltage and Angle, 

are the minimum requirement. The length of recorded data is at least 10 seconds and the 

sampling rate should be higher than 20Hz. 

  

http://www.scipy.org/more_about_SciPy
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Step-by-Step Usage Instruction 

This appendix contains the step-by-step procedures for generator parameter 

identification process for example case in Chapter 6. Each step of this section documents a 

single necessary activity for parameter identification process.  

 

Main.py
SPSA.py

Dataimport.py

*.xlsx

Convert.py

Step 1

Step 2

*.sav

*.dyr

*.cov

*.snp

Hybrid_dynamic.py

 Output the Best Fitting 

Parameter set

 

 

Figure A.1 Block Diagram of the Program 

Two steps process are designed to accomplish the unit‘s parameters identification. As 

shown in Figure A.1, in the first step, Convert.py is used to convert power flow case (*.sav) and 
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link dynamic model file (*.dyr) into a converted file (*.cov). Meanwhile, the snapshot file (*.snp) 

also will be created.  

    The second step is the Main.py which used to import the measurement data (*.xlsx) 

and run the optimization process, SPSA.py, to find a best fitting parameters set. To improve 

simulation accuracy and reduced the complexity of simulation case, the Hybrid_dynamic.py is 

developed for this proposed. 

Input Data 

The input data is the record data of PMU saved in EXCEL spreadsheet format. As 

shown in Figure A.2, the first column is time stamp where time value should begin from 0 

second to the length of data record and the sapling rate of data is recommended higher than 20 

Hz. The measurement data should include voltage amplitude, voltage angle, real power and 

reactive power the unit of that values are p.u., degree, MW and Mvar respectively. 

 

Figure A.2 Input Data Format 
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System Reduction 

As shown in below figure, an example system is created to illustrate the requirement of 

power flow case. Assumed the PMU is installed in Bus 8126, the network structure of internal 

system needs to build up as a PSS/E power flow case.   

 

 

 

Figure A.3 An Internal System from Measurement Point 

 

From measurement point, bus 8126, a transformer and a generator need to add in. 

Since the impedance of the transformer is not zero, negative impedance is connected 

between transformer and generator to cancel the mismatch caused by this impedance. The 

network configure is shown in Figure A.4. 

Based on the system condition in steady state before disturbance, the users can adjust 

the power flow of this reduction system which is identical to the original system. For this case, 

only the P and voltage of generators need to adjust. Finally, the power flow case of this 

complete reduced system saves into a *.sav file. 
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Figure A.4 the Complete Reduced System 

 

Environment Setting 

All of files, measurement data, PSS/E case, should be put into the same file directory where the 

execution path of our developed Python program. In addition, each developed Python program 

in begin section has defined the path of PSS/E‘s python program. The user should set this path 

according to the directory of PSS/E installation. Where to setting this path is shown as following: 

 

Figure A.5 the Setting of PSS/E Program Path 

Dynamic Case Convert 

The linkage and conversion of the activities DYRE, case Convert and SNAP of PSS/E 

is accomplished by the subroutine called Convert.py. The file name of power flow case (*.sav) 

and the converted case are shown as below.  
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      Figure A.6 the File Name of Power Flow Case and Converted Case  

The dynamic file of model (*.dyr) and output channel selection are shown in below 

figure. Where the voltage, angle, P and Q at measurement point, bus 8126, are selected.   

 

 

Figure A.7 the Dynamic File and Output Channel Selection 

 

The last setting is to define the snap file (*.snp), shown in below.  

 

Figure A.8 the Snap File 

Trajectory Sensitivity  

The key parameter screening process is handled by a standalone program called 

Trajectory Sensitivity.py which is similar to main.py process mention in previous section. The 
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converted case (*.cov) , the snapshot case (*.snp) and the measurement data (*.xlsx) are 

necessary to give before executing the Trajectory Sensitivity.py 

Trajectory Sensitivity.py

*.cov

*.snp*.xlsx

Output sensitivity waveform

 

Figure A.9 the Flow Chart of  Trajectory Sensitivity 

As shown in below, a unit at bus 80097 is an example, where executor, generator, 

stabilizer and governor are defined before performing the trajectory sensitivity. 

 

Figure A.10 the Definition of Unit‘s Model (for the unit at bus 80097) 

In addition, the bus-id, bus-number and model‘s name also need to address as shown 

in below.  
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Figure A.11 the Unit‘s Information (for the unit at bus 80097) 

Each model with two trajectory sensitivity output, P and Q, will be provided and the 

MSE caused by each parameter also will be label on up right corner of output diagram.  In this 

study case, 4 models are used; therefore, 8 trajectory sensitivity outputs are produced. The 

below diagram shows the two of them for example. 

 

 

Figure A.12 Trajectory Sensitivity of Real Power (P) Corresponding to Model of Generator 
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Figure A.13 Trajectory Sensitivity of Reactive Power (Q) Corresponding to Model of Exciter 

Users, on above results and their own experiments, can easily choose the parameter 

that contributed more on output mismatch and is necessary to adjust as key parameters.  

Main Program 

  After the key parameters are decided, the main program, main.py, is used to perform 

the parameters evaluation process.  As mentioned before, the necessary files and relate 

information of identify target need to be checks before performing this process are: 

converted file (*.cov)  

snapshot file (*.snp)  

Generator‗s model information  

Index of key parameters  

The place to check above data are shown sequentially in below diagrams 
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Converted file (*.cov) and snapshot file (*.snp)  

 

Generator„s model information  

 

 

Index of key parameters  

 

Figure A.14 the Input Data for Main Program 

The search range of parameters also needs to be defined; 40%  of parameter default 

value in this case is used to set up the search space. 

 

Figure A.15 Setting the Hi/Low Limit of Parameters  

Data Import subroutine 
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The subroutine, Dataimport.py, is a procedure to import data from Excel spreadsheet 

as following process. 

 

Figure A.16  Import  File of Measurement Data 

where num_col is the value used to define the column number of input data and 

begin_row is the first row of input data. Furthermore, the file name and spreadsheet name also 

need to define as shown in Figure A.16. The length of data will be detected automatically. 

Optimization algorithm subroutine 

The optimization used to find the best fitting parameters set is SPSA, the subroutine 

called SPSA.py. As mentioned in previous section, the some critical values of SPSA should be 

properly decided. They are set as following in this case. Where Nspsa is the maximum iteration 

number and the value of a, A, alpha, gamma and c are parameters in section5.2. 

 

Figure A.17 the Parameters of SPSA 
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Hybrid Dynamic Simulation Subroutine 

The value of measurement voltage and angle should be replaced into PSS/E when 

trying to implement hybrid dynamic simulation. A subroutine, hybrid_dynamic.py, is created to 

enforce the simulation initial value at each sampling step the same with the data at 

measurement point.  

 The *.snp and *.cov file need to read into PSS/E again and a text file for logging the 

information of simulation log also need to give. 

 

Figure A.18 Import File of Study Case 

Moreover, the two buses of inserted ideal transformer need to give as below. Where 

bus 8126 is measurement point and bus 2 is the bus which connected to ideal generator.   

 

 

Figure A.19  The Bus Number of Ideal Transformer (above) and the Sampling Rate of Imported 
Measurement Data (below). 

Output Results 

Until the optimization process is finished, the final results will be saved into Result.txt 

which path is defined in SPSA.py. 
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Figure A.20 Import File of Measurement Data 

And the result shown the final results that contain all parameters of each model in 

Result.txt are as following. 

 

Figure A.21  The Final Estimated Parameters 

Finally, the output of the simulation will waveform will also be produced as below: 

 

Figure A.22  The Simulation Output   
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