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In the name of God, the Benevolent, the Merciful.
(Quran, 1:1)

This is the God, Other than which there is no deity: Knower of the invisible
and the evident, the Benevolent, the Merciful.

This is the God, other which there is no deity: The Sovereign, the Holy, Peace,
the Giver of Safety, the Protector, the Almighty, the Omnipotent, the
Overwhelming; glory to God, beyond any association they attribute.

This is God, the Originator, the Creator, the Shaper, to whom refer the most
Beautiful names, celebrated by everything in the heavens and on earth,
being the Almighty, the Perfectly Wise.

(Quran, 59:22-24)

There is no ability or power except through God.
(Sahih al-Bukhari, 3883)
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ABSTRACT

SIMULTANEOUS ROBOT LOCALIZATION AND MAPPING OF
PARAMETERIZED SPATIO-TEMPORAL FIELDS USING

MULTI-SCALE ADAPTIVE SAMPLING

Muhammad Faizan Mysorewala, PhD.

The University of Texas at Arlington, 2008

Supervising Professor: Dr. Dan O. Popa

This dissertation presents a Multi-scale Adaptive Sampling (AS) framework for
combining measurements arriving from mobile robotic sensors of different scales, rates
and accuracies, in order to reconstruct a parametric spatio-temporal field. The proposed
sampling algorithm, “EKF-NN-GAS”, is based on the Extended Kalman Filter (EKF),
Radial Basis Function (RBF) Neural Networks and Greedy Search Heuristics. This
novel AS algorithm responds to real-time measurements by continuously directing
robots to locations most likely to yield maximum information about the sensed field.
EKF is used to derive quantitative information measures for sampling locations. In

addition, the localization uncertainty of the robots is minimized by combining the
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location states and field parameters in a Joint-EKF formulation. This feature is critical
in GPS-denied environment such as inside buildings or underwater.

Secondary objectives such as sampling duration, computational cost and energy
are minimized by adding several extensions called “Greedy Adaptive Sampling” (GAS)
heuristics. The issue of thorough sampling in dense regions is addressed using
Clustered Adaptive Sampling. Drawbacks of local searching approach used in GAS are
overcome with Non-uniform Grid Size AS and Multi-step AS. The proposed sampling
algorithms are compared with traditional raster-scanning through many examples.
Results indicate that that the proposed parametric algorithm provides faster convergence
with less number of samples. This dissertation also addresses issues of efficient
partitioning of the sampling area, distribution of computations and communication for
adaptive sampling with multiple robots. The performance of the algorithm was
experimentally validated using indoor multi-robot testbed at ARRI’s DIAL lab
(Distributed Intelligence and Autonomy Lab).

A real world scenario of mapping of forest fires is addressed in this thesis in
conjunction with the proposed sampling algorithm. Our strategy combines
measurements arriving at different times from sensors with different field of view
(FOV) and resolution, such as ground, air-borne and space-borne observation platforms.
In practice, such robots could be equipped with thermal imaging, topographic mapping

and other sensors for measuring environmental conditions.
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CHAPTER 1

INTRODUCTION

Mobile robots are being increasingly used on land, underwater, and in air, as
sensor carrying agents to perform sampling missions, such as searching for harmful
biological and chemical agents, search and rescue in disaster areas, and environmental
mapping and monitoring. Sampling problems are central aspects of deployment because
complete coverage is not possible if the environment is large, has only a few “hotspots”,
or if the sampling costs are high. Therefore, it is desirable to build robot teams that can
coordinate to maximize the amount of sensor data taken at these hotspots while
minimizing resource costs.

In general for environmental sampling, different types of sensors provide
different sampling ranges and resolutions. For example, a thermal image taken from an
aircraft or a satellite provides a high-spatial field of view (FOV) and low-resolution
coverage of the area of interest, whereas a measurement taken from a point
measurement thermal sensor on a robot provides a more accurate local reading. This
involves estimating a space-time field spread over wide area using multiple scale, rates
and accuracies of robotic sensing. An example of a relevant application is the

deployment of multiple underwater vehicles for the environmental monitoring of large



bodies of water, such as oceans, harbors, lakes, rivers and estuaries. Environmental
models and maps can be created by repeated measurements of physical characteristics,
such as water temperature, dissolved oxygen, current strength and direction, or
bathymetry.

Another motivating application is wildfire monitoring, which is a major natural
disturbance with a tremendous impact on environment, human and wildlife, ecosystem,
weather and climate. There appears to be an increasing trend of natural fire activity. In
the recent October 2007 California fires several people died, many were injured, and
around one million were evacuated from their homes. The fire destroyed approximately
1,500 homes, burned approximately 800 square miles of land and resulted in overall
estimated loss of more than 1 billion dollars just in the San Diego area alone [54].
During this time, fire suppression resources were in high demand and there was critical
need for air tankers, crews and personnel, but the speed and uncertainty of fire spread
surprised forecasters in several instances.

Fire management strategies have changed today with the introduction of new
fire suppression tools. The use of advanced technology helps in fire mapping through
satellite imagery, accurate weather forecasts, and fire behavior modeling. Air-borne and
space-borne observation platforms, air-tankers, bulldozers and tractor plows are
commonly used for fire mapping and control, and they improve the safety of firefighters
and the general public. Tractors are used for clearing vegetation and building fireline

faster more efficiently than human firefighters. Rescue operations consist of searching



for, and removing trapped occupants in hazardous conditions. Although the use of
advanced technology has reduced human involvement, self-preservation of the
personnel manning the observation platforms remains a critical issue. One of the best
ways to reduce the risk for firefighting personnel is to gather information about the
spread of the fire in real time using autonomous robots, however, such technology has
not yet been adopted.

However, it seems entirely plausible that in the near future, tracking and
prediction of the spread of forest fires will be achieved by mobile robots equipped with
sensors for measuring environmental conditions such as temperature, fire intensity,
humidity, slope, wind strength and direction, etc. Fire spread and intensity information
“measures” should then be used to reposition the robots in order to achieve optimal
sampling of this spatio-temporal field, e.g. to describe its spread as accurately, and in
the shortest time possible.

In the context of optimizing the sampling of spatio-temporal fields with mobile
robots, several Adaptive Sampling (AS) algorithms have recently been proposed [4, 15,
31, 34, 41]. The term “adaptive” refers to choosing the sampling points based on the
amount of information they provide about the spatio-temporal distribution being
mapped. Examples of spatially distributed fields that can be monitored using adaptive
sampling are salinity in lakes [34], humidity in forests [41], and chemical leaks in
buildings, as it is done in odor sampling [4, 17, 38].

Sampling using mobile robots is a typical example of a real-time density



estimation problem, and has been covered in detail in past work [39-40]. The sensor
fusion approaches for density estimation can be classified into 3 different categories.
The first is building physical parametric models, the second is parametric and non-
parametric feature-based inference, both of which involve clustering of observations,
and the third is cognitive-based modeling.

In general, a spatio-temporal distribution can be modeled in a parametric or
non-parametric manner. Strictly non-parametric field descriptions are accurate, as they
don’t assume any functional form of distribution in advance. However, they require a
lot of samples to reconstruct the distribution, which seems difficult to apply in practice
to situations involving time and energy constraints, and for time-varying fields. An
example of solutions with non-parametric distribution assumptions is discrete landmark
mapping [7] that involves exploration, instead of planned sampling missions. Other
examples are chemical source localization [38] using Hill (or Gradient) Climbing
Approach, and Adaptive Cluster Sampling [26] for wide-area sampling.

In contrast, parametric algorithms are computationally efficient and fairly easy
to run onboard mobile robots in a distributed fashion. Such models can sometimes be
constructed from physical or numerical models such as in the case of weather
prediction. With no apriori information, the sampling problem becomes an exploration
problem in the beginning, until enough samples are taken and distribution assumptions
can be made. The advantage of the parametric model is that, in fact, it can also include a

parametric model of sensor observable data and corresponding measurement



uncertainties. Also, the uncertainty in the field estimate can be measured indirectly
through uncertainty in the distribution parameters. Furthermore, parametric modeling
works better for time-varying fields, in which the field variation can be represented
through parameters instead of the entire density function. The main limitation of
parametric representations is modeling uncertainty which adds another source of
estimation error.

A problem which naturally arises in the process of sampling is making sure that
the measurements of sensors are correlated with their position, and that the data from
multiple sensors is fused efficiently. Multiple vehicle localization and sensor fusion are
by now classic problems in robotics, and there has been considerable progress in the
two decades in these areas [10, 37]. Furthermore, distributed field variable estimation is
relevant to charting and prediction in oceanography and meteorology, and has also
received considerable attention [6]. In both contexts, measurement uncertainty can be
addressed using Kalman-Filter Estimation [23]. Recently, Sanderson and Popa
described a combined multi-agent AS problem coupling wireless sensor nodes with
mobile robots, and using information measures to reposition the robots in order to
achieve near-optimal sampling of a distributed field [34]. Unlike other non-parametric
sampling methods [15, 41], this approach requires a parametric field description of the
sampled field, and a dynamic model for robots. The advantage of this approach was the
inclusion of vehicle localization uncertainty, but the disadvantage was the fact that it

could only handle very simple field models.



Localization uncertainties are especially relevant for robotic vehicles where
dead-reckoning errors are high such as in the case of GPS-denied environments. The
field model parameters are combined with uncertainty in the estimation of the robot
localization using the overall error covariance. Therefore, localization uncertainty is
reduced by building accurate models of distributed fields and vice versa. For instance, if
a robot is sampling an unknown field, but its location is accurately known, a distributed
parameter field model can be constructed by taking repeated field samples. Later on,
this field model can be used to reduce the robot localization error.

In this thesis we follow a similar parametric approach, and use sensor
measurements to improve both the field estimate and the localization of the robot. Since
this kind of formulation requires a parametric model for a potentially unknown and
complex field, we considerably extend and expand on results from prior work. In
particular, we address challenges related to sampling of complex, non-linear, and time-
varying space-time fields, we investigate considerations of computational complexity,
communication overhead, time and energy constraints, and sampling using multiple
robots.

Two popular non-adaptive sampling methods are Systematic Raster-Scan
Sampling and Random Sampling. In random sampling, all the points have equal
probability of being selected irrespective of the field variation. Raster scanning acquires
measurements at uniform intervals and ignores the field variability. Another sampling

scheme, called Stratified or Clustered Sampling, involves classifying the sampling area



into non-overlapping stratas based on apriori information about the field. This could be
accomplished either by parametric or non-parametric classification, and used to sample
only in hotspot areas. In practice, classification is also needed because many field
distributions are multimodal and require some parameters before sampling starts.
Examples of multimodal distributions are complex forest fires and chemical gas leaks
dominated by turbulence.

Environmental distributions such as forest fires, chemical source leaks and
temperature variations in oceans are examples of phenomena for which exact nonlinear
model descriptions are unattainable due to the high-level of complexity. Due to time
and energy-critical nature of some of these sampling scenarios, simply requiring that the
robots perform a raster scan or randomly sample the field is clearly sub-optimal and
highly inefficient. Moreover, many of these time-varying distributions encompass a
wide area, and must be observed from sensors of multiple size scales, rates and
accuracies.

In order to address these challenges we propose a Multi-scale Adaptive
Sampling approach with a parametric description of the field. In this approach, sampling
strategies continuously adapt in response to real-time measurements from sensors of
different scales. This scheme relies on building parametric models from high-spatial
sensor measurements that are less accurate, and then improving the models by more
accurate spot measurements. The Extended Kalman Filter (EKF) is used to derive

quantitative information measure for sampling locations mostly likely to yield optimal



information.

Five approaches are proposed in this thesis for sampling of parameterized fields:
The first one is Global Search Adaptive Sampling, in which sampling points are
selected in real time to gain maximum information about the estimates of unknown
parameters and entire search space is used to look for optimal sampling location.
This approach ignores the time (and distance) cost of sampling.

The second one is a local search heuristic, Greedy Adaptive Sampling (GAS), which
is a trade-off between gaining maximum information and minimizing the traveling
time and energy associated with sampling. Robot navigation vectors are selected by
searching in the neighborhood of the currently sampled location.

The third approach is Clustered Adaptive Sampling, in which low-resolution apriori
information is used to parameterize the field using Radial Basis Functions Neural
Networks. The centers of the RBF Gaussians are selected using self-organized
placement scheme to ensure that more samples are taken in high-variance regions.
The fourth approach proposes a Non-uniform Grid Size Greedy Adaptive Sampling
(also called Non-systematic Sampling) in which the grid size varies with local
variance of the distribution. Grids are smaller in high-variance areas and larger in
low-variance areas.

The fifth approach considers a Multi-step Greedy Adaptive Sampling Scheme (as
opposed to a single-step GAS), in which an exhaustive search is performed with a k-

step horizon.



In this thesis, a real world scenario of mapping of forest fires is considered in
conjunction with our sampling algorithms. The sampling strategy combines
measurements arriving at different times from sensors of different field of view (FOV)
and resolution, such as ground, air-borne and space-borne observation platforms. In
practice, such robots could be equipped with thermal imaging, topographic mapping
and other sensors for measuring environmental conditions, as illustrated in Figure 1.1.
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Figure 1.1 Illustration of the multi-scale sampling approach

1.1 Problem statement and approach

This thesis addresses the following problem:
Given N robotic vehicles sampling a spatio-temporal field whose distribution is

not known, where should the vehicles be directed to sample such that:



below:

1. The uncertainty in the knowledge of the field is minimized.
ii.  Localization uncertainty of the robotic vehicles is minimized.
iii.  Additional secondary objectives are minimized, such as energy,
sampling duration, etc.
iv.  Simultaneous sampling is done using robots covering multiple scales
and rate of sensing, in a scalable fashion, by addressing issues related to
distributed computation and communication environments.

The outline of the proposed approach for solving this problem is described

= First, a field distribution model, e.g. the initial estimate, is acquired by
clustering and unsupervised RBF parametric classification of the sensory data
obtained by robots with higher instantaneous field of view (IFOV). This ensures
that more RBFs are placed in “hot spot” regions.

= Next, uncertainty in the knowledge of the field is minimized by adaptive
sampling, using the Kalman Filter error covariance of the estimates as an
information measure. Localization uncertainty is also minimized by fusing the
location states and field parameters in a Joint Extended Kalman Filter.

= Next, secondary objectives such as sampling duration, computational cost
and energy are incorporated into the algorithm through the use of heuristics such
as Greedy Adaptive Sampling (GAS).

= Finally, sensing and computations are distributed among multiple robotic
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nodes that wirelessly share field estimates and localization information.

This thesis contains both algorithmic and experimental developments that
demonstrate the effectiveness of the proposed approach including:

= [t is demonstrated through extensive simulations that our approach along

with self-organized clustering is efficient way to accomplish wide-area

sampling using measurements from robots of different scales. The approach is

scalable, and computations can be distributed among the sampling agents.

= [t is demonstrated through experiments and simulations that the proposed

EKF based Adaptive and Greedy Adaptive Sampling algorithms provide field

reconstruction in significantly less time and number of samples, compared to

just random sampling or raster-scanning. This is due to sampling at locations

most likely to yield maximum information about the sensed field of interest.

= [t is demonstrated experimentally that the localization uncertainty of the

robots can be reduced by fusing the robot location states and field parameters in

a Joint-EKF and using the field sensor measurement only for simultaneous

localization and field parameter estimation. The convergence of this algorithm

depends on the initial conditions, because of the inherent linearization of the

Extended Kalman Filter.

= It is demonstrated through simulation and experiments results that our

proposed multi-scale sampling algorithm is an effective approach for sampling

of wide-area time-varying fields by combining sensor measurements of multiple
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scales, rates and accuracies. The convergence of this algorithm requires that the
rate of spatial field evolution be much slower than sampling (robot) speed.

= We provided a comprehensive simulated verification of our algorithm for
mapping spatio-temporal forest fire scenarios, with the help of realistic Cellular
Automata (CA) fire spread distributions, used as “truth models”. The sampling
performance was also experimentally validated with small in-door mobile
robots that navigate over a “virtual fire” projected on the floor from a ceiling-
mounted projector to emulate the sampling mission performed by aerial robots.

1.2 Contribution of the dissertation

The primary contribution of this thesis is the formulation of a novel
parametric multi-scale, multi-rate and multi-robot sampling algorithm called
“EKF-NN-GAS” for complex field estimation using RBF Neural Networks
based parametric classification, EKF based parameter estimation and a sampling
strategy based on Greedy Search Heuristics.

The first component of the algorithm is a multi-scale algorithm for wide-
area sampling, which involves unsupervised parametric classification of
complex high-spatial complex fields using RBF-NN.

The second component results in further parameter estimate
improvements by spot measurements in an EKF-based adaptive sampling
scheme. A Joint-EKF structure uses field measurement information to improve

robot localization, even in the absence of other location measurements.
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The third component is a greedy heuristic strategy with fast convergence
leading to considerably less field reconstruction time and number of samples.

Finally, we formulate a multi-robot parallel adaptive sampling algorithm
for distribution of computations and communication, and efficient partitioning
of sampling area.

Some of the results presented in this Thesis have also been published in
several other publications [31-32, 82, 153-155].

1.3 Organization of the dissertation

Chapter 2 summarizes prior research in robotic sensor deployment for sampling
missions. Two classes of sampling processes are described: the first one is based on
estimating parameters of an assumed processes model; and the second one is non-
parametric, in which the field model is either not known or not used. Several steps in
parametric density estimation are described, including clustering, parametric
approximation and parameter estimation. Several examples from literature of parametric
and non-parametric fields and their sampling using robots are discussed. A survey of
robot localization schemes is also presented, including: a survey of absolute and relative
localization schemes, sensor fusion for mapping and navigation, simultaneous
localization and mapping (SLAM), and multi-robot localization.

Chapter 3 presents the mathematical formulation of the proposed Adaptive
Sampling algorithm for parameterized fields. It starts with the qualitative and

quantitative definition of an Adaptive Sampling problem for a single robotic vehicle

13



considering the models and uncertainties involved. A Joint-EKF formulation is
presented for combining robot location states and field parameters in a single estimator.
Several field cases are considered, starting from simple field and vehicle assumptions
and working our way to more complex examples. At first, we assumed that a parametric
field measurement depends linearly on unknown field parameters, but non-linearly on
robot position. Linear least squares is used to find the estimated field parameters in a
closed-form. In the second case, a linear Kalman Filter is used to solve the same
problem and the results are compared to the first case. In the third case, a robot model
was introduced and uncertainties in both the vehicle and location measurements were
considered. A Joint Extended Kalman Filter (EKF) was used to estimate both the field
parameters and the robot location states. In the fourth case, we assumed that absolute
location measurement is not available and we estimated the field parameters and
location states by field measurements only. And in the last case, the field was
parameterized by Radial Bases Function (RBF) Neural Networks with Gaussian
activation. The error covariance of the unknown field parameters was used as an
information measure to direct the robots to sample locations minimizing the uncertainty
in the knowledge of the field. The performance of different sampling strategies such as
Raster scanning, Random Sampling, Adaptive Sampling and Greedy Adaptive
Sampling are compared.

Chapter 4 presents a multi-scale, multi-rate adaptive sampling algorithm and its

application to mapping of forest fires. Two existing semi-empirical parametric models
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were used to describe the spread of forest fires, and the parameterization of the forest
fire field was done by interpreting remote-sensing images. We formulate an EKF-based
adaptive sampling algorithm for spatio-temporal distributions, and applied it to mapping
of forest fires. Finally, we discuss potential field path planning for robots navigating
through the estimated fire field as a natural extension of sampling.

Chapter 5 presents detailed simulation results to support our conclusions, using
parametric fields of increasing complexity. We present simulation results for linear-in-
parameter fields without and with considering uncertainty in localization of the robots.
We then present simulations results for single Gaussian fields with and without
considering uncertainty in localization of the robots. The final section in Chapter 4
discusses the simulation of complex spatio-temporal forest fire fields, and their
parameterization using RBF Neural Networks. Simulation results are included for
stationary and time-varying forest fire fields, and potential field based approach for path
planning.

Chapter 6 presents experimental results of sampling with robotic hardware. We
describe the multi-robot testbed at the ARRI’s DIAL (Distributed Intelligence and
Autonomy Lab) used to validate the AS algorithms. For linear field distributions,
printed color on the lab floor was measured using color sensors mounted on small in-
door robots. For time-varying non-linear distributions, a camera-projector system was
employed. The ARRI-Bot robots are inexpensive Wireless Sensor Network units built at

DIAL, equipped with Javelin-stamp microcontroller, color sensor, cricket transceiver
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and dead-reckoning location estimation capabilities. In addition to relative localization
using optical encoders, absolute robot localization using the over-head camera and
triangulation was implemented. Several simulation cases from Chapter 3 were
experimentally validated. Results indicate that the proposed Greedy Adaptive Sampling
(GAS) works much better than other alternatives in terms of number of samples and the
time it takes to reconstruct the field.

Chapter 7 introduces multi-robot sampling based on existing approaches of
centralized, decentralized [57-59] and partially centralized federated filter [5S6]. We then
present the formulation of a distributed federated Kalman filter for multi-robot adaptive
sampling. This includes explanation of the scheme for efficient partitioning of the
sampling area using fuzzy c-means clustering and Centroidal Voronoi Tesselation
(CVT) diagrams. We then discuss the advantages of our approach in terms of reduction
in computations and communication overhead, and the proposed decomposition of the
filter via three categories of parameters which are unique, common or out-of-the-range
of a particular robot’s sampling area. Finally, simulation and experimental results of
sampling with multiple robots using a centralized filter are presented.

Chapter 8 concludes the dissertation and discusses future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter discusses background work related to the deployment of mobile
robots for sampling. Section 2.1 presents different sampling strategies. Section 2.2
describes the density estimation by sampling and sensor fusion. Sections 2.3 and 2.4
explain existing approaches for sampling using static and mobile sensor nodes,
respectively. Parametric and non-parametric solutions to the sampling problem are also
discussed. Section 2.5 presents the existing approaches for reducing the localization
error in mobile robots while sampling.

2.1 Sampling

The idea of sampling comes from Statistics where only a small set of
measurements are available and they are used to estimate the characteristics of a
population. Thompson [138] discusses several ways to select few samples from a large
dataset. When considering sequential estimation of a field distribution, the simplest
method is to randomly select samples for every measurement with each item in the
population having equal probability for being chosen irrespective of the field. In other
words, each sampling point is selected independently from all other sampling points as

shown in figure 2.1 (a). Another approach is Cluster or Stratified Sampling, in
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which the sampling area is classified into homogenous clusters. Such classified stratas
can be overlapping or non-overlapping. The formation of strata requires prior
information about the field of interest. In practice a combination of these approaches is
used, for example a simple Random Sampling (figure 2.1 (a)) or Stratified Random
Sampling (figure 2.1 (b)). Another sampling approach is Systematic Sampling (Uniform
Grid-size Sampling), which involves dividing the sampling area into equal sized grids.
Examples of these approaches are Systematic Raster-scan Sampling (figure (2.1 (c)) and
Systematic Random Sampling (figure 2.1 (d)). In Adaptive Sampling, sampling locations
are selected in real-time, based on the information that is gained by past sampling. In
this thesis, an Adaptive Sampling algorithm for complex parametric fields is proposed

and its advantages over random or raster non-adaptive sampling are highlighted.
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Figure 2.1 Sampling Strategies: (a) simple random sampling, (b) stratified random
sampling, (c) systematic raster-scan sampling, (d) systematic random sampling
[138]
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2.2 Sampling for density estimation

One purpose for sampling a space-time field is density estimation, e.g. the
construction of a field estimate of how a certain parameter varies in space and time
based on observed data. Data analysis can be performed by assuming either a
parametric or a non-parametric distribution. Parametric formulations assume a
functional form of the probability density function (PDF), while non-parametric

solutions don’t assume any particular distribution in advance. In the parametric case,

given a density f(./8), such as a two-parameter Normal family N(u, o), where

0= (,u,O'Z), the emphasis is on obtaining the better estimator 0 of @, and the error

criteria can be the MSE {é}: E[@—é]z. In the non-parametric case, the emphasis is

directly on obtaining a good estimate f (.) of the entire density function f(.), and the

error criteria can be MSE{f(&’)}: E[f(&’) - ]?(6’)]2 .

There are two types of information for density estimation: apriori information
and empirical information. Apriori information is the knowledge that was already there
before a given observation became available. The combination of prior knowledge and
empirical knowledge leads to aposteriori information. Parametric description of
distributions can be either a physical model of the system, or a black or grey box model
acquired by clustering the apriori data, and then fitting a linear or non-linear model to it.
Non-parametric formulations can also involve clustering. The concepts of clustering,
parametric approximation and parameter estimation are introduced in this section in the

context of using apriori data for clustering and system identification to acquire a
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parametric description and, therefore improve the parameter estimates when empirical
knowledge is available.

2.2.1 Clustering

Clustering is the process of organizing a set of data into groups in such a way
that observations within a group are more similar to each other than they are to
observations belonging to a different cluster. Clustering can be done either by
supervised or by unsupervised learning of the data. Examples of clustering are
hierarchical clustering, k-means clustering, and mixture of Gaussians clustering, etc.
the details of which can be found in the literature [84]. Two examples of k-means
clustering and fuzzy c-means clustering are relevant to this thesis and are further
covered in this section.

2.2.1.1 K-means clustering

K-means clustering is one of the simplest unsupervised learning algorithms for
clustering discussed in detail in the literature [45]. The objective is to classify a given
set of data into k clusters where each cluster has a centroid c. There are three ways to
select centroid locations: randomly, at fixed distances, or at locations where significant
data is present. Once the centroid locations are selected, the next step is to assign each
of the available data to the nearest centroid. When all the data is assigned, the locations
of centroids are recalculated. The procedure is repeated until the centroids no longer

move. The objective function which is minimized for recalculating the centroid is:

7= -

i=l j=1

) 2.1
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where N is the number of Gaussian centers, K is the number of clusters and ¢ j is the

centroid of the cluster ;.

2.2.1.2 Fuzzy c-means clustering

The fuzzy clustering approach was introduced by Bezdek [51]. When compared
to k-means clustering, fuzzy clustering allows one piece of data to belong to 2 or more
clusters. Each Gaussian center belongs to a cluster to some degree which is defined by
membership grade by a value u between 0 and 1. The algorithm involves the

minimization of the cost function:

N C 2
— m _
=22 Hxi il o

i=l j=1

I<m<oo. (2.2)

where N is the number of Gaussian centers, C is the number of clusters, u is the
degree of membership of center x; in cluster j, c; is the centroid of the cluster j and

m is a real number greater than 1. The member function and cluster centroids are

iteratively optimized by the following equations:
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(k+1)

; (")‘}< &, where & is the termination

This iteration stops when max U{J

criteria, and k is the number of iterations.
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2.2.2 Parametric approximation

Parametric approximation is a curve-fitting problem the objective of which is to
use the apriori information about a non-parametric field to approximate it with a
parametric field. Methods for parametric approximation are well described by Nelles
[45] and are some of the ones used in this work are covered below.

2.2.2.1 Linear and polynomial approximations

The simplest of parametric approximation is linear for the fields whose non-

linear characteristic is weak. For example:
A~ P
F=a,+au, +au,+---a,u, :zaiui with u, =1, (2.4)
i=0

where a, are the slope values in the direction of u,, and a, is the ordinate value at
u = 0. Equation (2.4) can be consolidated in vector form through a parameter vector:
A=la, a -~ a,J. (2.5)
For non-linear fields a polynomial approximation can be considered, which is a
straightforward extension of a linear model. The higher the degree of the polynomial,
the more flexible the model is. For instance, a 3-dimensional polynomial of degree 2 is
given by:
F = ay +a,, + a,i, +aity +a,u’ +agu i, +agu i, +a,u’ +agi, +agu’ . (2.6)
Equations (2.5) and (2.4) represents static fields for which the values of these

parameters stay the same. But time-varying fields can also be modeled through time-

dependent parameters.
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2.2.2.2 Neural Network approximation
A general formulation of parametric approximation is an artificial neural

network. Instead of assuming a linear or polynomial basis, a neural network assumes a
general non-linear basis function 6" organized in multiple of layers. The most

common neural network architectures are MLP (Multi-Layer Perceptrons), and RBF
(Radial Basis Functions) networks. Both MLPs and RBFs are universal approximators,
e.g. they can approximate any smooth function [45]. The universal approximation
capability is an important property which will be used in this thesis to approximate
complex fields. Although MLP has its own advantages in terms of accuracy, its hidden
layers are either log or tanh, which are global activation functions. It may be good to
approximate a complex field with parameters of log function layer, but it is difficult to
distribute computations with global activation functions because the information is not
locally contained. In contrast, RBFs activation is local, which is advantageous in
sequential robotic sampling, because samples have an effect on neighboring Gaussians
only. This is further elaborated in Chapter 7. In short, in RBF networks, the parameters
of the hidden layers have a more appropriate sampling interpretation than MLP.
An RBF network consists of three types of parameters:

e Output layer weights, a,, are linear parameters. They determine the height of

the basis functions and the offset value.

o Centers, c;, are nonlinear parameters of the hidden layer neurons. They

determine the positions of the basis functions.
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e Standard deviations, o, are also nonlinear parameters of the hidden layer
neurons. They determine the width of the basis functions.
Radial basis functions exhibit good approximation properties of their own. Any
continuous function can be approximated with RBF neural network according to
Universal Approximation Theorem:

Let G:R™ — R be an integrable bounded function such that G is continuous

and I G(x)dx #0. Let 3, denote the family of RBF networks consisting of functions:
RO

F:R™ — R represented by:

F(x) = iaiG(x_c’} , 2.7)
i=1 O;

l

where o, >0,a, € R and ¢, e R™for i=1,2,---,N. The universal approximation

theorem for RBF networks can then be stated as:

For any continuous input-output mapping function f(x) there is an RBF
network with a set of centers ¢, and width o, where i=1,2,---,N such that the input-
output mapping function F(x) realized by the RBF network is close to f(x) inthe L, -
norm, p €[1,0].[52]

For training a RBF neural network, different strategies exist. In the simplest
case, the hidden layer of the network is not optimized, which means that there is no

optimal learning strategy for c,,o;. But there are several strategies for placing the

center locations before learning of other parameters begins. One such strategy is the
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random center placement, which is considered a reasonable initialization method for
some of the advanced learning schemes [45]. A straightforward improvement of random
selection of centers is the application of clustering techniques discussed in previous
section. The greatest advantage of using this approach is that the centers are selected
according to the training data distribution in input space. Therefore, more RBFs are
placed in regions where data is dense, and few RBFs are placed in regions where data is
sparse.

The universal approximation theorem is valid even for a constant o for all
neurons, but there are heuristic methods to calculate standard deviations for training the
RBF network. The most common is the k-nearest neighbor rule, which assigns each
RBF a standard deviation based on average distance between its center and the center of
the k nearest neighbor RBFs. Finally, the weights of the output layer can be computed
using least squares. The clustering and LS algorithms are both very fast, even for
relatively complex fields.

2.2.3 Parameter estimation

Parameter estimation problems involve finding the best value for parameters of
a process based on noisy measurements. Least squares estimation is the most common
criteria used for batch as well as sequential estimation problems. For recursive
estimation problems, an initial estimate and uncertainty (error covariance) is assumed.
As noisy measurements become available sequentially, the parameter estimates, as well
as the estimation error covariance are updated. The Kalman filter is a fundamental

estimation tool, which uses the dynamical description of the system along with
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recursive least squares estimation for processing measurements. Robot location states
and field parameters estimation using Kalman filters is covered in great detail in the
next chapter.

2.3 Sampling for static Wireless Sensor Network (WSN)

Wireless networks of spatially distributed sensors provide an attractive approach
to spatially monitor the environment. The obvious advantage of using static nodes
compared to mobile robots is that there are no localization errors due to navigation.
However, using higher densities of sensors provides more measurements, higher
resolution and better accuracy, at the expense of more communication and processing.
Several deployment schemes for static nodes have been recently proposed to reduce
communication and energy consumption. For the simplest scenario of field estimation,
sensors are deployed at the centers of uniformly-space square grids [77]. Based on the
initial information about the field to be mapped, the sensors could be deployed more
densely in the high-variance areas and far apart in the areas with small variation [15].
Usually the objective is to minimize the energy consumption and communications by
activating only a fraction of sensors for measurements and communication while
maintaining high-accuracy. However, this kind of approach cannot be used to monitor
wide areas. Also, a sparse density of placement of static nodes reduces the accuracy of
the estimate.

Other related problems for static sensor network are coverage and connectivity
[16]. The coverage problem is defined as the maximization of the total area covered by

the sensors, while connectivity is the requirement that every sensor should be able to
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communicate with every other sensor. There are many applications of coverage and
connectivity for applications such as target tracking, search and rescue, etc.

Static nodes are also widely used in applications involving navigation and
controlling of mobile robots, environmental monitoring, disaster and rescue work and
healthcare, etc. When used for tracking mobile targets, static sensors act as anchor
nodes with known position and help the mobile robots localize.

2.4 Robotic sensor deployment for sampling

Mobile robots are being increasingly used on land, underwater, and in air, as
sensor carrying agents to perform sampling missions, such as searching for harmful
biological and chemical agents, search and rescue in disaster areas, and environmental
mapping and monitoring. A multitude of research groups have published results on
sampling using mobile robots for chemical plume source localization, mine-detection,
ocean sampling, forest mapping, etc [4, 8, 15, 17, 38, 41, 73, 74, 76, 97-99].

One of the problem most commonly discussed in mobile WSNs are team
objectives for exploration and mapping in an unknown environment. Sensor
deployment for sampling can be considered a variant of the exploration and mapping
problem. The aim in mapping and exploration is to build a global map of the
environment by sequentially visiting each location with one or more robots, whereas in
information-aware sampling the aim is choosing the best locations that minimize the
uncertainty of the field estimate. In exploration for building a global map it is

impractical to have the robots take measurements at all locations.
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When using mobile robots for sampling missions, accurate localization 1is
needed, because the uncertainty in localization affects the estimate of the spatio-
temporal field. Even though mobility introduces additional degree of complexity for
navigation and localization, it allows the repositioning of on-board sensors, thus
expanding the coverage and operational lifetime of the sensor network. For instance,
Howard et .al. [16] discusses the mobile robotic sensor deployment using potential
fields for maximization of area covered by the network. In addition to coverage, the
problem of distributed field variable estimation by inverse modeling of the
measurements has been addressed for oceanography and meteorology [149]. Popa et. al.
[33] proposes using a potential field framework to control the behavior of the mobile
sensor nodes by combining classical robotic team concepts (obstacle avoidance, goal
attainment flight formation, environment mapping and coverage) with traditional sensor
network concepts (node energy minimization, optimal data rate and congestion control,
routing in ad-hoc networks).

In the end, the performance of any deployment scheme for sampling will also
depend on the type of field distribution, and its representation.

2.4.1 Parametric field representation

Parametric representation is a model-based method in which parameters of a
process model is estimated using techniques such as the Kalman Filter, Least Squares
Estimation or other optimization schemes.

Christopoulos and Roumeliotis [4] present an approach for estimating the

parameters of diffusion equation that describes the propagation of an instantaneously

28



released gas. This is accomplished by first building a model considering factors such as
the diffusion phenomena of the chemical, wind direction and speed, turbulence, etc. The
selection of the set of locations where chemical concentration measurements should be
recorded is performed in real-time with the objective of maximizing the accuracy of the
parameter estimates and reducing the time to convergence of this estimation problem.
The selection of sequence of locations where the measurements are recorded is based on
the minimization of the uncertainty of the estimated parameter which is represented by
the trace of the error covariance of parameters estimates.

Cannell and Stilwell [3] present two approaches for adaptive sampling of
underwater processes using AUVs. The first one assumes a parametric model, while the
second one uses an information theoretic approach. For the parametric approach, two
methods for estimating the unknown parameters of the process model are considered.
The first method is related to mapping algorithms where the unknown parameters in an
assumed measurement model are states of a Kalman Filter. In the second method, non-
linear least squares are used to estimate the parameters.

2.4.2 Non-parametric field representation

A number of strategies for non-parametric adaptive sampling can also be found
in the literature. A solution for non-parametric ocean sampling is proposed in [15] based
on classification of the sampling area. The area is divided into non-uniform size grids
and the size of the grid is selected based on the local variance of the distribution. Hence

the areas with high variance have small size grids and the areas with small variance
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have large size grids, which is important for thoroughly sampling the areas with more
variation and just taking a few samples in more uniform areas.

In some cases, information theoretic approaches are utilized, which process data
via sequential classification and tracking phases. During the classification phase,
measurements are collected in the assumed ambient flow, and an empirical distribution
is formed. This distribution represents the measurements taken outside the process. As
new measurements are taken, updated empirical distributions are computed and
compared to the assumed ambient distribution using the Minimum Description Length
(MDL) test. This test utilizes the Kullback-Leibler Divergence, which does not require
any explicit defined process model. It characterizes the boundary of a closed
Divergence, also known as Relative Entropy, to determine if two distributions are
different in a statistically significant manner. This result is then used as a test for
identifying data that is statistically different from the ambient distribution. This
information theoretic approach has been applied to ocean sampling and prediction [34].

Another non-parametric approach is cognitive or rule-based in order to
adaptively select sample locations in real-time based on current and past samples to
ensure that a field source is localized. This scheme does not involve formation of any
distribution, but it is used to find distribution maxima. This non-parametric approach is
used very widely in chemical plume tracing on land and in water [8], odor sensing,
mine detection [76], etc.

Chemical source localization is usually a gradient climbing problem with

disturbances caused by wind, gas diffusion and turbulence from the obstacles and the
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environment. A lot of research has been done in the area of odor source localization,
land-mine detection, etc. using both parametric and non-parametric approaches. Non-
parametric approaches involve taking appropriate samples in a recursive fashion in
order to find the source. In practice, such approaches generally involve three phases:
detecting the plume, tracking the chemical towards its source and finally locating the
source. Some source localization algorithms are biologically inspired because insects
and most other animals are very apt at sensing odors in order to find food, locating
mates or communicate. The applications for source localization using robots are in
locating harmful biological and chemical agents, avalanche and earthquake victims,
landmine detection, etc. It would be difficult for humans to find chemical sources
because of presence of poisonous gases, nuclear radiation or any other hazardous
conditions.

Chemotaxis and Anemotaxis are the most common techniques used for
estimating chemical distributions. Chemotaxis relies on the local gradient of the
chemical agent concentration while Anemotaxis based approaches require that the agent
move in the upwind direction. The robots used for source localization are equipped with
anemometric sensors and gas sensors, and in some cases with vision. Several algorithms
such as step-by-step, zigzag, active sampling can be found in the literature [17, 38, 74,
97-99].

Another similar application of non-parametric sampling is mine detection using
demining robots. The sensors used are metal detectors, IR detectors and chemical

sensors. Literature on mine detection using robots can be found in [76].
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2.5 Robot localization

Knowing the location of a robotic vehicle is a fundamental problem in order to
navigate autonomously and perform useful tasks. Irrespective of whether the vehicle is
aerial, under-water or a ground vehicle, it is crucial for the robots to get a good estimate
of their location. Measurements of robot localization can be categorized into relative
and absolute location measurements.

2.5.1 Relative measurement

Relative localization relies on the on-board inertial sensors of the robot, such as
encoders, gyroscopes or accelerometers. This technique is also called “dead-reckoning”,
and uses the kinematic model and odometric data to compute position and orientation
for the robot. The advantage of odometry is that it is self-contained, and hence always
available. The disadvantage is that there is unbounded accumulation of errors [80, 109-
114].

There are two types of errors in relative location measurement: (i) systematic
errors, and (i) non-systematic errors. Systematic errors are due to errors in the robot
model parameters. For wheeled robots, the sources of systematic errors could be
unequal wheel diameters, uncertainty about effective wheel-base, limited encoder
resolution, misalignment of wheels, limited encoder sampling rate, etc. Non-systematic
errors are due to the surroundings of the robots such as uneven floors, unexpected
object, fast-turning, over-acceleration, etc. As this problem is fundamental in robotics,
many researchers have tried to improve odometric errors. Borenstein and Feng [80, 112]

present a calibration technique called UMB-Mark test to calibrate the systematic errors
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of a mobile robot with differential drive. Martinelli [79, 80] proposes a method to
estimate both systematic and non-systematic errors for synchronous drives.

2.5.2 Absolute measurement

Relative localization is prone to errors in the calculation of robot’s location. To
overcome this problem, absolute localization can be performed using GPS, landmarks
or maps. The landmark could be an active beacon or passive landmarks (natural or
artificial). The advantage of absolute measurement is that the location is independent of
previous location estimates and hence there is no accumulation of errors with time or
distance traveled. One of the drawbacks of these measurements is that they are not
always available. For example, for AUVs performing ocean sampling, GPS information
is only available when the vehicles rise to the surface.

2.5.2.1 Artificial Landmarks (Beacon based localization)

Landmarks are features in the environment that a robot can detect. These
landmarks could be active or passive. Active landmarks are the ones that actively
transmit signals (radio, sonar, etc) that can be received by the receiver on the robot.
Robots then can triangulate or trilaterate to estimate their location, if distance is
available from several active beacons. Localization using GPS uses the same idea by
using satellite landmarks. Active landmarks are usually artificially placed at known
location. These kinds of localization algorithms where some of the nodes knows their
location is called ‘anchor-based localization’ and the nodes with known location are
called ‘anchor nodes’ [143]. The ‘incremental algorithms’ usually start with a set of 3 or

4 nodes with assigned coordinates. Then they repeatedly add appropriate nodes to this
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set by calculating the node’s coordinates using the measured distances to previous
nodes with already computed coordinates. In ‘concurrent algorithms’ all the nodes
calculate and refine their coordinates in parallel.

The main type of signals used by beacon based localization systems are infrared
laser, ultrasound and millimeter wave radar.

2.5.2.2 Natural Landmarks (apriori map based localization)

Landmarks could also be naturally existing objects in a structured environment
or it could be artificially placed objects with particular shapes. Many artificial landmark
positioning systems are based on computer vision. In addition bar-coded reflectors are
also used laser scanners or sonar sensor. The important issues in passive landmark

based localization are:

Landmark based localization requires good initial estimates of robot
location. In the absence of such estimate, a time-consuming search
process to form an association between different objects [68-69].

= Localization accuracy depends on the distance and angle between the

robot and the landmark. Hence line-of-sight is an important issue.

= A database of the landmarks their location needs to be maintained.

= Ambient conditions also affect the accuracy.
Tanaka et. al. [66] discusses the robot’s localization with incomplete maps in

non-stationary environments which is done by detecting changes in the environment.
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2.5.2.3 Map building

In map building, a robot that is completely localized uses its sensors to build a
map of the environment. This could be map matching problem, involving establishing a
correspondence between a current local map and a stored global map. Mapping is
achieved by capturing images and then performing “feature extraction”.

2.5.3 Sensor fusion

There is no single sensor measurement that can adequately capture all relevant
features of a real environment. To overcome this problem most localization algorithms
combine data from different sensors. This multi-sensor fusion is based on probabilistic
approaches such as Bayesian estimation, or the use of the Kalman Filter (KF). KF
provides an optimal unbiased estimate, and its predictor-corrector structure works very
well for combining reading from different sensors at different rates. Fusion algorithms
combine relative measurement from encoders and absolute measurement from beacons
which are usually available at different rates [102, 106].

This kind of location estimation approaches relies on a model of the vehicle and
the sensor. The estimate is updated each time a new measurement is taken, and the
vehicle location is corrected using a prediction of its position based on control inputs.

Roumeliotis and Bekey [63] and Roumeliotis and Sukhatme [67] present a
general EKF formulation for the fusion of relative and absolute position measurement
for improving the localization. In [62, 64], the approach is validated for the fusion of
dead-reckoning and ultrasonic measurement. Mourikis and Roumeliotis [66] propose a

scheme for using the relative distance measurement and correlating the estimates to
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improve the overall state estimate. They fuse dead-reckoning location estimates with
relative distances between the two robots when the location of both needs to be
estimated. Multi-robot localization using relative observations is discussed in [37, 66].

2.5.4 Simultaneous Localization and Mapping (SLAM)

Simultaneous localization and mapping is currently one of the most important
goals of autonomous robots navigation. Solving this problem will allow robotic sensor
nodes to be deployed easily with very little initial preparation. The problem of
localizing robotic vehicles in a previously unexplored environment is addressed by
using the vehicle location to build the map of the environment and simultaneously using
the map to localize the vehicle.

A comprehensive survey on the solution of SLAM problems is given in [68-69].
Early work in SLAM assumed that the world could be modeled as a set of simple
discrete landmarks. However, in more complex and unstructured environments this
assumption does not hold. More realistic solutions to SLAM problems include:

= Delayed mapping- involving accumulating information and permitting delayed
decision making. Deferred data facilitate reliable data association.

= Partial observability- including bearing-only SLAM e.g. with a camera, or
range-only SLAM e.g. with sonar sensors.

= Unstructured or dynamic environment- involves detecting and removing the
landmarks that are moving.

= 3D SLAM- Increased complexity compared to 2D case.
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= Multi-Robot SLAM or Cooperative SLAM- Different robots act as landmarks for
each other. One scheme to avoid complexity is that only one robot moves at a
time and other remains stationary and act as landmarks for other robots. After
some time they can swap their roles.
2.5.5 Multi-robot localization
Collaborative multi-robot localization schemes rely on using robots as
landmarks for one another. The key idea is to combine localization through internal
sensors (such as encoders) with measurements from the neighboring robots, in order to
improve localization. The earliest approach presented for multi-robot localization
assumed that only one robot move at one time while the rest of the team forms an
equilateral triangle of localized beacons [81]. After some time the robots swap roles.
For this kind of approach, only one robot can move at a time, and robots must maintain
contact either through vision or sonar sensing. Other approaches are presented in [120-
128], in which sensor data from multiple robots is combined in a single Kalman Filter to
estimate the position of each robot in the team. Several research groups have also
formulated how a centralized KF can be divided into N separate KFs, one for each
robot, in order to to allow distributed processing:
= None of the Robot has absolute positioning information. By measuring the
relative locations, multiple robots can improve their position tracking
accuracy, but they are not able to bound the overall uncertainty.
o Dead-Reckoning: No exchange of information causes the error to

grow drastically.
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o Continuous relative position measurement: the rate at which
positioning uncertainty grows is considerably lower.

o Intermittent relative position measurement: positioning errors are
reduced even if the robots exchange position information
intermittently.

=  One of the robots has absolute positioning information. The system 1is

observable if communication takes place.

o Continuous communication between the robots: positioning error is
bounded for all robots.

o No communication between the robots: rhe robot which does not
have absolute position information will just rely on DR and the
location estimates will eventually diverge.

= One of the robots remains stationary. One of the robots remains stationary,

while the others move in the same area and measures their relative locations
with respect to the standing on. Even though no absolute positioning
information is available to any of the robots in the group the system is
observable.

In this Chapter, we presented prior work in sensor fusion and localization for
density estimation of space-time fields using mobile robots. The approaches are based
on physical models, parametric and non-parametric feature-based inference, and
cognitive-based models. Different methods for localization of mobile nodes and related

errors were also summarized, because of their relevance to robotic sampling problems.
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CHAPTER 3

ADAPTIVE SAMPLING OF PARAMETRIC FIELDS

This chapter focuses on the mathematical formulation of AS problem for
parameterized fields, including models, uncertainties, and sampling criteria. Section 3.1
gives both a qualitative and quantitative definition for the Adaptive Sampling problem.
Section 3.2 presents the EKF formulation of the AS problem with a single mobile
sensor node. Section 3.3 discusses the parameterization of non- parametric fields using
RBF Neural Networks. Finally section 3.4 discusses sampling strategies such as Raster
Scanning, Random Sampling, Adaptive Sampling and Greedy AS.

3.1 Adaptive Sampling problem

Mobile robots are being used on land, underwater, and in air, as sensor carrying
agents to perform sampling missions, such as searching for harmful biological and
chemical agents, search and rescue in disaster areas, and environmental mapping and
monitoring. Sampling can be simply defined as a set of elements drawn from and
analyzed to estimate the characteristics of a population. In adaptive sampling,
strategies continuously adapt in response to real-time environmental measurements

without human intervention. Once such scenario involves the
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deployment of multiple underwater vehicles for the environmental monitoring of large
bodies of water, such as oceans, harbors, lakes, rivers and estuaries [3, 8, 34]. Predictive
models and maps can be created by repeated measurements of physical characteristics,
such as water temperature, dissolved oxygen, current strength and direction, or
bathymetry. However, because the sampling volume could be large, only limited
measurements are available. Intuitively, a deliberate sampling strategy based on models
will be more efficient than just a random sampling strategy.

Popa and Sanderson [34] described a combined multi-agent AS problem
coupling uncertainty in localization as well as in the sensor measurements to achieve
effective adaptive sampling using a solar AUV (Autonomous Underwater Vehicle),
considering very simple, linear field models. Localization uncertainties are relevant to
the sampling problem since position estimates for underwater robots are often
inaccurate due to navigational errors from dead-reckoning. In this thesis we expand and
extend this parametric approach to include much more complex fields and heuristics
with much better sampling performance. Unlike non-parametric sampling methods,
such as [15], our approach requires a parametric field description of the sampled field.

Qualitatively, a multi-agent AS problem for spatio-temporal fields can be posed
as follows:

We wish to describe an unknown nonlinear spatio-temporal field variable via a

parametric approximation Z = Z(A, X ,t) depending on an unknown parameter vector

A, position vector X, and time t. The field is recovered by using N robotic vehicles,

sampling the field with localization and sensing uncertainty. We wish to:
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° Decide  what  sampling locations X ,i, 1<i<N,1<k<n should be

chosen such that the uncertainty in estimating the unknown parameter vector is
minimized, and,

o Additional secondary objectives such as the number of samples, sampling
duration, energy, etc., are minimized.

o Distribute the computational and communication load, and the sampling space
among N robots in an efficient manner.

3.2 Basic EKF formulation

To pose the AS problem in a quantitative way, an information measure and
uncertainty model needs to be selected. We use the Extended Kalman Filter where the
state transition and measurement equations during sampling can be described through
non-linear mappings (functions h, m, f & g) as follows:

Robotic sensor nodes state dynamics:

X =X, +h(X, U,)+w,, (3.1
where X ,i,U ,’< are the i™ vehicle state and control input, where the state has noise
. . i iNT i
covariance matrix E[w,(w,) =0, .

Field parameter dynamics:

A = A +m(AL Uy + oy, (3.2)
where A, is a vector of unknown coefficients describing the field with noise covariance

matrix E[a,a]1=Q,,, and U,, is the uncontrollable (but measurable) “field evolution
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vector”. This parameter is a slow-varying correction factor in the field parameters,
assuming that infrequent, low resolution measurements of the entire field are available.

Robot position output measurement:

Y, = f(X)+&, (3.3)
where the output noise covariance is E[£ ()" ]=R,, .

Distributed field variable measurement model:

Zl =g(X,A)+V, (3.4)
where Z; is the field variable with measurement noise covariance E[v, (v;)" ]=R), .

Robot input measurement:

Uy, =Uj + By (3.5)
where Ufk is the measured control input with measurement noise covariance
E[BL(B)"1=R.,. U}, is the output caused by the control input U, .

Field evolution factor measurement:

UZk =U, +1;5 (3.6)
where U ,; 18 the measured field parameter evolution using high-spatial and low-rate

measurement with measurement noise covariance E[n,7.]1=R,,. U,, is the actual

change in the parameter value since the last estimate.

For the single mobile agent i sampling the field, the EKF overall state vector is

(X ,i ,A,), and the system and measurement models are thus summarized as:
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(Xiﬂj :(X,ij{h(X,i,Ufk)]{Wij
A A, m(A,, Uy ay

Y =f(X)+&

Z =g(X, A)+v, (3.7)
Ulik = Ulik +/B/i
Uy =Uy +1,

Using the standard nonlinear, discrete EKF formulation [23], the time and

measurement update equations are given by:

o i— i h Xi,ﬁi
)
A Ay m(A., U,
A d .0 | F!
Gl=— B p =T Hi{ k,}
o(X, ,A,) oX, G, (3.8)
i i-\! i in-lgpi |
P :((Pk+1) +HkT+1(Rk) 1Hk+1)

(%j:ffiﬂ}p,;ﬂﬂ,@(ze;ﬂ)1 (Y{“ ]-[fk“(’f?“ : J
A Ay Zy Sia (X Ay)

where the state is the combined position of all the robots and the field parameter vector
[x A]', P is the state covariance, and the process and measurement error
covariances are given by:

R, 0 0 0

.ol 0 ; 0 R, 0 0
O, = N , Ry = * i

0 0, 0 0 R, 0

0 0 0 R,

By using a norm of the state covariance as information measure, the adaptive

(3.9)

sampling algorithm moves the vehicle i from X, to X, such that the following p-

norm of the covariance matrix is minimized over the search space © :
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m(Xk):“Pki

(X )<m(X]), VX' €®. (3.10)
p

The above formulation applies to both single as well as multiple robotic sensor
agents on a spatio-temporal field with location and field parameter measurements
available at the same rate. In past work, several cases were considered by Sreenath et.
al. [140-141] to estimate the parameters of stationary field using least squares and the
Kalman Filter with single robot, as detailed below:

3.2.1 Least-squares estimation for linear-in-parameters field

If the dynamics of the robot is ignored, and if we assume that the parametric
field measurement Z depends linearly on the unknown parameter vector A, but non-
linearly on position vector X, then a closed-form solution on the unknown parameters
can be obtained, subject to the condition that there is no process and position

measurement noise. After n scalar measurements Z,..,Z are taken at location

n

vectors X |,..., X, , the field equations can be used to find the least squares solution:

Z =a, +a1g1(X1)+"'+amgm(Xl)
Z,=a, +a1g1(X2)+"'+amgm(X2)

, (3.11)
Z, =a, +a1g1(Xn)+...+amgm(Xn)
where A = [ao a, - am]T is the parameter vector, and g,,g,,-,&, are nonlinear
basis functions of the field. Equation (3.11) can be written in matrix format as:
1 1 1

2 e gy x|
ol 81.1 g2.1 . gm. 1 t =M A, (3.12)

z, : : . : a

gl(Xn) gl(Xn) gm(Xn)
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where M, is a nxmmatrix. The least-square solution of equation (3.12) is simply:
A, = g;(X,»));mu,.g,, D=EM | (3.13)

where M, is the Moore-Penrose inverse of M, . Moreover, the pseudo-inverse has a
closed-form solution given by:
+ T RV
M =(M"M, )M, (3.14)

leading to a parameter estimate closed-form:

1 1
A=l - alx) - oslx) alx)|] Xz alx)| Gas)
gm(Xj) gm(Xj)

Assuming that the robot locations are known without uncertainty, the covariance
matrix of An can be related directly to the constant measurement uncertainty as:

var(ﬁn): var(Z, )(Man )_1 : (3.16)

An Adaptive Sampling algorithm should then move the robot from X, to X, ,

such that the p-norm of the covariance matrix is minimized over the search space © :

1
T : Mn
m(X)=|| M, gi(:X) o a(X) e g (X) , or (3.17)
g (X) ,
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m(X,)=

F,

p,m(X )<m(X,), VX €0O. (3.18)

n+l

3.2.2 Kalman filter estimation for linear-in-parameters field with no uncertainty
in localization

Like in the previous case, if the parametric form of a measurement field is
known, as might be the case, for example, with a bottom profile or systematic variations
in temperature or salinity, the field estimation can be integrated with localization in
order to improve the estimation process. The assumption that the field distribution is
linear in its parameters allows computing a closed-form solution for the information
measure used by the sampling algorithm, as we saw in the previous section. The same
result can be recovered using the Kalman Filter. After n measurements taken at location

X,, the field model depends linearly on m-dimensional parameter coefficients
A=(a;),, via position-dependent functions as in equations (3.11) and (3.12).

If the robot dynamics and localization uncertainty are ignored, the state is
simply the parameter vector, and KF equations can be written simply as:

Ak+1 = Ak

(3.19)
Z, =GA +v,

G =01 .. g.(X) ... g,(X)))
Elv,v.]1=R

The error covariance matrix from the KF is used to decide where to sample

next. Because of the simple state update equation, the KF equation can be reduced to:
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A ~ (AU’PA,, ), P = PAO
P =P'+G],R'G_, . (3.20)
A=A+ Pk+16kT+1R_l (Zk+1 - Gk+1Ak+1)

The error covariance is similar to the least squares solution in (3.14) and (3.15),

and can be directly calculated by the following formula:

k
P, =(P'+> G/R'G)" (3.21)

J=1

3.2.3 Simple Kalman Filter estimation for linear field with uncertainty in
localization

In this case, in addition to the parameter state equation update A,,, = A, , the

vehicle dynamics must also taken into account. In the simple case when the vehicle
motion can be represented by a single particle equation with uncertainty:

X.,=X,+U, +w,, and assuming that we use dead-reckoning for localization, and
that the function g(X,)is linear, the KF equations become:
X X I X
(i) ()
A1) A ) 0 0 Ay
X 1 0
Y k 3 X
k|- T N T Klea, (3.22)
Z, 1 og(x )" A, Vi 0 |1 g(Xp) AL
X=X+ (X% up)
where X/”® is the dead-reckoning estimate for the robot position computed after a

command vector u, is applied to the robot to cause a predicted position change

equivalent to u, , and
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T Ql 0 T Rl 0
E[SkSk]:Q:( ! 0} E[/lk/lk]zR:(O Rj (3.23)
2

are the white noise covariances of the state and output.

The linear Kalman Filter equations become:

- X
X
- k+1 || Kk
Pk+1—Pk+Q,(A_ ]— 3 +BUk
k+1 k
- -1 T - -1
P =By +GgR Gryy)
I 0 X X (3.24)
08X )) A k
X - Y -
k+1 — Xk+1 +P GT R_l k+1 _G Xk+1
A AT k+1 k+1 7= k+1) -
k+1 k+1 k+1 ka1

If on the other hand the robot dynamics or the field is nonlinear in parameters or
in the robot state, equation (3.24) will become a Non-Linear Kalman Filter (EKF).

3.2.4 Kalman filter estimation for linear-in-parameters field with location
measurement unavailable

In previous cases it is assumed that both the sensor node position measurement

(Y,) and field variable measurement (Z,) to estimate parameter states (A,) and
position states (X, ). In this case we assume that the node position output is not present

and we rely on field variable measurements alone, but we allow for the field to be linear
in parameters but nonlinear in the location state. Localization uncertainties are
especially relevant in GPS-denied environments, but they can also be present in
situations where local visual information is unavailable (for instance due to thick

smoke), and GPS data rates are slow.
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Here model parameter estimation for the field variable is integrated with
estimation of the uncertainty in the mobile robot localization and the overall covariance
of the estimate is used for sampling. This way localization uncertainty can be reduced
by building accurate models of distributed fields and vice versa. For instance, if a robot
is sampling an unknown field, but its location is accurately known, a distributed
parameter field model can be constructed by taking repeated field samples. Later on,
this field model can be used to reduce the localization error.

In the case of an m-dimensional linear-in-parameters field distribution,
gX A =a, + Y g(X)a, =1 /(X" ], (325)
i=1

where A, is the parameter vector and is a nonlinear basis g, for the field, the non-linear

EKF equations can be written as:

X X 1 w X
=T e o+ = [+ BU+
Ak+1 Ak 0 O Ak
Z, =(l g(X)")A, +v, (3.26)
X=X (X PR uy)

where,
E[3.9/1=0= (% 8], E[AL A 1=R. (3.27)

The nonlinear Kalman Filter update equations become:

49



P, :Pk"'Q’{A]j lj:(Akj"'Bk(Xlgﬁ_XfR

k

0
Hk=%= Al 98 (X) (1 gl(X;)T)
o(X;,AD) X . (3.28)

S _ !
P :((Pk+1) +HkT+1R 1Hk+1)

( f”J - ( A’j“] +P H R [Zm =8 (X, A/Z)]
A A

3.2.5 Extended Kalman Filter estimation for a field represented by Radial Basis
Function (RBF) neural network

We now consider sampling problems for distributed fields with increased
complexity, including nonlinearities in both the parameters and locations. In this case,
we can use Gaussian (or radial) basis functions. Hence, the field is represented by a
neural network having radial bases (i.e. RBF), with a Gaussian activation function. The
use of such model is motivated by ability to approximate complex non-linear parametric
fields by the Universal Approximation Theorem. Modeling of complex forest fires by
RBF-NN is considered in great detail in Chapter 4, but here a general framework is

shown. The measurement model is given by:

Z, =X, A)+v, =q, +iai exp[— o; {(xk _x0i)2 +(y — in)z}]+Vk .(3.29)

i=1
The Neural Network, as well as the corresponding EKF equations can now be

summarized as shown in Figure 3.1.
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Figure 3.1 A radial basis neuro-EKF to represent a non-linear field and estimate the
field parameters and robot location states.

3.3 RBF neural network for parameterization

As explained in Chapter 2, parametric approximations of complex fields can be
achieved using artificial neural networks. Apriori information of the field is used to
approximate the continuous field with an RBF neural network according to the
universal approximation theorem. The inputs (states) and outputs (field measurements)
are used to train the neural network. Training is done at a lower rate in a multi-rate EKF
estimation process (e.g. of sampling with robots). Using the training algorithm, the
network adjusts its weights so that the error between the actual and desired response is

minimized.
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RBF is a two-layer network. The hidden layer has radial (Gaussian) bases while
the output layer is linear. Both layers have biases, and the output of the network is

simply:
N
8= zwiq)i(“(xi _Ci)si”)
i=0

P
D, = exp(—”(Xl. —ci)si”): exp{— siZ(Xj —c; }
j=1

) (3.30)

where X is the field location, X € R”, where P is the dimension of the field e. g. two or

three dimensional distribution. It is desired to learn parameters w,,w,,...,w, , centers
¢;,C,,...,Cy and the spread parameter s,,s,,...,s, of the network. The spread parameters

are the measure of the variance of the Gaussians. The hidden and output layer of the
RBF network can be optimized separately by a hybrid algorithm, the “self-organized
selection of centers” [14, 45, 83]. This algorithm uses k-means clustering for placing the
Gaussian centers, heuristic r-nearest neighbors rule for width optimization, and LMS
for estimating the peak value.

A supervised or random approach for the selection of centers will be less useful
in this case when compared to the self-organized approach because the former schemes
ignore the non-uniformities in the distribution which will give less accurate results. On
the other hand, k-means clustering adjust the centers using “minimum distance
Euclidean distance” criteria, ensuring that there are more Gaussians overlapping in

high-variance areas. This results in thorough sampling in high-variance areas due to the
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presence of more parameters dominating in those areas when ‘“minimum error
covariance” criterion is used to seek optimal sampling locations.

The parameters of the output layer are learned using a LMS algorithm. A hybrid
algorithm is also necessary because the hidden layer evolve slowly compared to the
linear layer. The selection of spread parameters is crucial. The spread parameters are the
measure of the variance of the Gaussians. As there is no optimal scheme to find the
spread factor especially in the case of non-uniform distributions, and several fixed and
variable width heuristic methods have been proposed in the past [53]. Considering the
fact that all the approaches are sub-optimal, a fixed width can be assumed while training
as it is corrected by the EKF when high-resolution measurements are taken. In this case
the larger spread is, the smoother the function approximation. Too large a spread means
a lot of neurons are required to fit a fast-changing function. Too small a spread means
many neurons are required to fit a smooth function. Therefore, the accuracy of the
initial estimated field depends on resolution of apriori data, number of neurons used and
the spread factor. As shown in figure 3.2 & 3.3, input-output data is used for training
the RBF neural network which gives an initial estimate of weights in linear layer, non-
linear layer and the center of Gaussians. These initial estimates are later used as initial

conditions for the parameterized EKF-based sampling algorithm.
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Figure 3.2 RBF NN architecture with p inputs (u,,u,, --,u ) and one output y.
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3.4 Sampling strategies: where to sample

3.4.1 Global search AS
In the absence of model and measurement uncertainties in localization and field
parameters, the sampling task would be a deterministic case and all the sample locations

X,,(1<i< N) will provide same information about the unknown X and A. Hence there

would be no difference in random, row-by-row or adaptive sampling. But in the
presence of uncertainties discussed, the error covariance (uncertainty) of states can be
used to decide the next best sampling location. The error covariance of the parameter
states is the measure of uncertainty of the parameters. High value of error covariance
indicates higher uncertainty and lower value indicate lower uncertainty.

Adaptive sampling location calculates the anticipated error covariance of all the
candidates’ location and selects the one which gives minimum value. The minimization
in the error covariance of a parameter is achieved by sampling along the extreme
(boundary) values of the parameter. A summary of different ways to pick the next
sampling location is shown in Figure 3.4.

It will be shown later (Chapters 5, 6) through numerous simulation and
experimental results that Adaptive Sampling (e.g. equation (3.18)) requires considerably
fewer samples than just Raster Scanning or Random Sampling, because AS minimizes
the uncertainty in unknown parameters. However, one drawback of using this standard
approach of AS is that it is computationally complex, because it calculates the

anticipated error covariance of the locations in the entire search space. To overcome this

55



drawback, a heuristic greedy AS is used to indirectly incorporate the time-to-move for

the robot and reduce complexity.

(b} Greedy Adaptive
{ap Aduptive Sampling with Sampling with umiform g {c) Ruster Scanning
uniform grid size size and uniform step

Grid Size {

';Y_}

Horizon Size = 2 grids

Figure 3.4 (a) Adaptive sai(rll)lpling with uniform grg size, (b) Greedy AS with
uniform grid size and uniform step size, (c) Raster scanning, (d) Adaptive Cluster
Sampling, (¢) Non-uniform grid size sampling

3.4.2 Heuristic Greedy AS
If the sampling area is large, the optimal sampling position could far away from
current robot location, and it will not be a efficient in minimize the sampling time. A
heuristic greedy approach is adopted instead, where the next sampling location is
searched within the vicinity of the currently sampled location. The advantage is that the
robot covers less distance which saves time and number of samples. Also it reduces the
complexity of the algorithm because only the anticipated error covariance of sampling

neighboring locations is calculated. The Heuristic Greedy AS algorithm helps to answer

the following question:
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Given a parametric field variable Z =Z(A,X) depending on an unknown
parameter vector A and position vector X, and a robotic vehicle/sensor node navigating

the field with localization uncertainty, what sampling locations X, (where 1<i< N ),

in the immediate vicinity of the current sampling location should be chosen such that a
trade-off between the uncertainty in estimating the unknown parameter vector and the
sampling distance is minimized.
3.4.3 Multi-step Greedy AS
There are three different cases for choosing the step size, or horizon in greedy
AS:
= Look I-step ahead and move 1-step ahead (single step)
= Look k-steps ahead and move k-step ahead
= Look k-step ahead and move 1-step ahead
The first case is the simplest one, and involves minimum computations, but
since the search space is restricted, it might lead the robot to end up in areas providing
limited information about the field. To avoid this, the “look k-step ahead and move k-
step ahead” approach can be adopted with increasing values of k. But the disadvantage
of this approach is that it generates a path based on current information about the
parameter estimates which are constantly improving. Therefore, the third case ensures
that the robot reevaluates sampling location k-steps ahead after each motion command.
3.4.4 Cluster Adaptive Sampling
For a sampling scheme to be efficient, it should consider more samples in

regions with large variations compared to regions with small variations. A solution for
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non-parametric ocean sampling in [15] requires the adaptive sampling criteria to take
more samples in high-variance area and fewer samples in low-variance areas by having
a non-uniform size grid formed using Centroidal Voronoi Tesselation (CVT) diagram as
shown in figure 3.4 (e). The grid size depends on the local variance of the field.

For parametric fields, more densely sampling non-uniform areas is achieved by
placing the centers of the Gaussians while training the RBF such that there are more
Gaussians in high-variance areas, as illustrated in figure 3.4 (d). Hence, the adaptive
sampling criteria automatically direct the robots to sample thoroughly in dense areas.

Typically, a complex field is represented by numerous of parameters but only a
specific set of parameters are dominant in specific regions, which for Gaussian fields is
generally within thel — o circle. As it will be shown in the simulations of Chapter 4, the
uncertainty in parameters of a Gaussian is most reduced by sampling within this circle.
Therefore, taking the 2-norm of error covariance of those parameters whose 1—o circle
includes the next candidate sampling location is a good choice. And it can also be
assumed that the candidate sampling location will provide estimates only for few
neighboring parameters. This approximation also helps in distributing the computations
among multiple robots which will be discussed in Chapter 7.

In summary, this Chapter introduced the use of the EKF for sampling of
parametric fields, discussed how to incorporate measurement and robot location
uncertainty, discussed the use of RBF Neural Networks to approximate complex fields,
and the heuristics that can be used to reduce the computational complexity of the search

necessary to select sampling locations for the robots.
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CHAPTER 4
ADAPTIVE SAMPLIMG ALGORITHM APPLIED TO FOREST FIRE
MAPPING
The chapter is organized as follows: in section 4.1 the two parametric models
used to describe the spread of forest fires are presented, section 4.2 discusses the
parameterization of the field by interpreting remote-sensing images, section 4.3
presents the formulation for EKF-based adaptive sampling algorithm for spatio-
temporal distributions and the multi-scale algorithm for mapping of forest fires using
adaptive sampling, and section 4.4 discusses potential fields based path planning for
robots navigating through the estimated fire field.

4.1 Parametric description of forest fire spread

The physics of the fire behavior, its spread, and immediate effects have been
studied extensively [5, 9, 18, 36]. Fuel, weather and topography are the key
considerations in the spreading of fire. Most common are the semi-empirical fire
modeling that uses Rothermel’s equation for calculation of local rate of fire spread [9,
36], Huygen’s principle for modeling the shape of fire front [9, 36], and the use of
discrete-event cellular automata models [19, 24, 28, 42]. Furthermore, neural network
and other classification schemes have been used for some time for supervised

classification of remote sensing data, especially in applications of urban planning and
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atmospheric modeling, for instance, in order to classify the area as water, forest,
wetlands, lakes, etc [24]. Since the fire spread phenomena is too complex to understand,
and the effect of each and every variable is difficult to predict, a neural network can be
used as a “black box” for measuring the influence of the independent variables. For
instance, representing the fire spread as a parametric time-varying sum of several
Gaussians makes for an attractive approximation.

In this thesis, complex forest fires distributions are modeled through the use of
RBF (Radial Basis Function) Neural Networks. RBF parametric models resulting from
a low-resolution satellite image, for instance, serve as good low-resolution initial
approximations for the fire field. When combined with a high-resolution adaptive
sampling strategy, the errors introduced by low-resolution sampling and training are
reduced. Sampling is done heuristically by mobile robots (agents) that search in the
vicinity of the current location for future sampling locations minimizing field parameter
uncertainty. This results in a quick, high-resolution reconstruction of the field at the end
of the sampling process. Furthermore, the parametric description of the field can be
used along with the robot dynamic model to reduce the localization uncertainty of the
agents. This may not be needed in scenarios where GPS measurements are available,
but it is critical in GPS-denied environments, such as underwater or inside buildings.

The validity and performance of the sampling algorithm is tested here with
increasingly complex fire spread scenarios. First, a simple time-varying elliptical forest
fire spread model is considered that has been fitted to empirical data. This model

considers a decreasing intensity Gaussian distribution from the head of fire to the fire
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tail. The model is accurate at the beginning of the fire spread, and less accurate as time
goes on. In later sections of the Chapter, we consider more realistic fire spread models
simulated by cellular automata (CA), using discrete rules to decide the burning of
certain cells based on conditions at neighboring cells. A low-resolution satellite image
is used to approximate this field by a RBF neural network training algorithm that also
acts as a classifier. The objective of the classification is to introduce more neurons in
high-variance areas of the field, and fewer neurons in low-variance areas. Training of
the neural net is only needed infrequently, and it need not be very accurate.

In addition to sampling and reconstruction of the fire field, it is sometimes
necessary to direct the robots or human personnel through this field and avoid
dangerous locations, e.g. “hot zones”. This type of navigation can be accomplished
using Potential Fields [11], and the estimated fire field model itself can serve as the
navigation potential. Extensive research has been done in the area of path planning
using potential fields for robotic vehicles [22]. Obstacle avoidance or goal attainment
schemes often use penalty functions to bend feasible paths around obstacles as it was
introduced by Krogh [21] and Khatib [20]. As the fire intensity field is generated via
sampling, we can use it to generate fire-safe trajectories to and from rescue locations for
fire-fighter human crews.

The sampling and navigation algorithms presented in this Chapter will be
validated in Chapter 5 using extensive realistic, time-varying forest fire simulation
models. In Chapter 6, using a camera-projector system and mobile wireless robot nodes,

ARRI-Bots, the algorithms will also be validated experimentally with relative ease.
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The fire spreading phenomenon is highly complex, and existing mathematical
models of its spread require extensive computing resources. Regenerating time-varying
fire spread models might be adequate to run in batch mode, but they are difficult to use
in real-time fire-fighting scenarios. However, these models help in understanding the
influence of different factors on fire propagation without the need for an analytical
solution.

Existing fire spread models are divided into three classes: empirical, semi-
empirical and physical models. Using semi-empirical models is particularly interesting
for our sampling approach because they use empirical measurements in addition to a
physical description of the forest, hence providing a parametric space-time distributed
field whose parameters can be estimated by adaptive sampling. By contrast, physical
models are too simplistic, while empirical models involve too many parameters for the
EKF. The most common fire modeling approaches include semi-empirical models using
Rothermel’s equation for calculation of local rate of fire spread, Huygen’s principle for
modeling the shape of fire front and Discrete-Event Cellular Automata (CA) models.
Several powerful software applications such as FARSITE, FireGIS, Fire!, SPREAD, etc
are available to demonstrate the fire spread .

Many factors influence fire behavior, with fuels, weather and topography being
the primary factors. Parametric models have been empirically fitted to observe data
using four primary inputs: fuel type, fuel moisture, wind and slope. Second-order
variables such as temperature, humidity, shading and shelter operate through one of the

four primary inputs. The effect of the primary inputs is described below:
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Slope: fire can spread significantly faster up a slope than on level terrain in the
same fuels. In many cases topographic maps are very helpful for understanding
the fire spread.

Wind: wind speed and direction are the most critical factors required for
predicting fire behavior.

Fuel: fuel types are lumped together into different models. Fuel loading, fuel
depth, fuel particle density, head content of fuel, moisture of extinction and
surface area to volume ratio are the factors used to further describe it.

Fuel moisture: fuel moisture is an expression of the amount of water in the fuel
component. It determines both fire intensity and the heat required to bring the
fuel ahead of spreading fire up to the ignition temperature.

4.1.1 Simple elliptical fire-spread model

Given homogenous fuel and weather conditions, and assuming a constant,

moderate wind, a fire growing from an ignition point is initially close to an elliptical

shape. Strong winds or steep slopes can elongate the shape, but it remains consistent

until fuels or wind change. The spread distance is the product of projection time and the

rate of spread.

The most common simulation model for forest fires growth from point sources

uses the Huygens’ principle, which considers the elliptical nature of fire growth with

(a,b) as the minor and major axes respectively and (x,,y ) as the distance from the

center of the fire ellipse to the fire source. Figure 4.1 depicts the elliptical spread of a

fire starting at an ignition point. Since this function is a constrained Gaussian, it will
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later be used as a Radial Basis Function (RBF) function with constraints. For a typical

case the dimensions of the elliptical axis can be calculated by the following equations

[9, 36]:
; :0.5R+R/HB,b: R+R/HB’c:b_R/HB
LB
LB =0.936.e"7Y +0.461."*" ~0.937 4.1)

5 LB+ (LB> 1)’
LB—(LB*-1)*

where R is the fire spread rate in ft/min, LB is the length to breadth ratio, HB is the

head to back ratio, and U is the wind speed.

Ignition Wind Direction
Point i -
[
ra
(G0 | \

Figure 4.1 Elliptical Fire growth model represented by an elliptically constrained
RBF function.

The variable which will later need to be mapped is the temperature of the fire
field, a Gaussian distribution only defined in an elliptical region. It is further assumed

that the maximum fire temperature [ , variance o and y,are time invariant, while the

firehead (x0 ®),y, (t)) location is proportional to the fire spread rate which in turn is
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proportional to the wind speed. If y,(t) = C (e.g. fire spreads horizontally), then the fire

intensity is given by:

Fire Intensiy
8 §
r

=
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- e
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Figure 4.2 Four fire ellipses originated at different points and with different
spread rate, peak intensity and variance. The head of fire is the mean of the
Gaussian distribution

_(Jc—xo(t))2+(y—yo)2 (x—x,(D+b(1)*  (y—y,)’
(X, A= IGXP{ 257 } b(1)’ ) <1, (4.2)
0 otherwise
where
X,(t)=x,+b(t)+c(t) . “4.3)

If wind is blowing at an angle¢ to the x-axis, the new parametric equation of
ellipse can be derived by a rotation around the fire source (x,,y ) by angle¢g. In this

case in equation (4.2) becomes:

X, - X IP+I1X,-X,IP+2(X,,, - X,) R,(X,-X
g(X"ew,A,t):IeXp _ new K K 0 2 - ( new ,s) ¢( s ()) , (4'4)
O
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where R; is a 2x2 rotation by angle ¢, and

Xpo = vl Xo=l w1 X =l 0] (4.5)

4.1.2 Complex Cellular Automata (CA) based discrete event model

The Huygens fire-spread model is quite simple, but it is quite reasonable for
short intervals of time after ignition. Because it assumes uniform, continuous fuel,
uniform wind velocity throughout the burning area and flat terrain, the model becomes
inaccurate if the fire spreads over large distances. Cellular Automata (CA) are very
good for modeling and simulating complex dynamical systems whose evolution
depends on the state of the current cell, neighboring cells, wind, slope and fuel. This
scheme can also recover the Huygens fire spread model discussed in previous section at
a cellular level. The fire spread region is divided into cells, as shown in figure 4.3, and
the fire propagates from cell to cell governed by discrete-event rules which iterate the
temperature at the next sample time as a function of the temperature of its cell

neighbors, and of several local fire parameters. The transition rules can be written as:
T = f(T@),.T.....T . ,,wind, slope, fuel), (4.6)

INE

where Tl"j are temperatures of the current cell and its neighbors.
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Figure 4.3 CA model inputs, outputs and transition rules

Each cell is considered to be in one of the following four states (inactive,
unburned, burning and burned) as shown in figure 4.4. The fire starts from a hotspot in
an elliptical shape in the sense that each burning cell generates an ellipse with focus on
the cell center. Depending on fuel type, moisture, slope, wind and the state of the

surrounding cells, each may have different rate of increase of temperature (o),
maximum temperature (7, ), ignition temperature(7,,,,,,), rate of temperature
decay(f), time threshold for switching to unburned state (z,,,)and ignition
time (¢ ignition ).

The following set of equations govern the temperature variation with respect to

time, as suggested by [42]:
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Figure 4.4 Cell temperature variations with respect to time
The rules can be simply defined as:

= A cell remains in inactive state until it is outside the burning ellipse. The
state switches to unburned state when one of its neighbors starts burning.

= Once the cell switches from inactive state to unburned state, its
temperature starts to rise at a rate of «, which depends on the fuel
availability, wind and terrain.

= The cell starts burning after it reaches the ignition temperature. The

combustion duration and rate of temperature decay £ depends on fuel,

wind and terrain.
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(c) (d)

Figure 4.5 Fire at time 7 = 2, 3, 4 & 5 minutes shown in (a), (b), (c¢) and (d)
respectively
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(c) (d)

Figure 4.6 Fire at time ¢ = 20, 40, 60 & 80 minutes shown in (a), (b), (c) and (d)
respectively

Figure 4.5 shows a MATLAB simulation of a fire generated from the hot spot at
(244,127) using CA at time instants ¢ = 2, 3, 4 and 5 minutes. The number of pixels for
the fire field was xx y=300x300. The fire is circular in shape because slope variation
and wind direction are not considered. But because of the different fuel present in each
cell the temperature is different and keeps increasing. Figure 4.6 shows the fire at time ¢
=20, 40, 60 & 80 minutes in figures (a), (b), (c) & (d) after some time elapsed and most
of the area with significant fuel content is burning. In Chapter 5, these fire field models

will be sampled and reconstructed using the algorithms discussed in Chapter 3.
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4.2 Neural network for parameterization

Digital remote sensing images of forests can be acquired from field-based,
airborne, and satellite platforms. Imagery from each platform can provide a data set
with which forest analysis and modeling can be performed. Airborne images typically
offer greatly enhanced spatial and spectral resolution over satellite images. In addition,
airborne images provide greater control over capturing images only from specific areas
of interest and at different altitudes. In section 3.3, we discussed the parameterization of
complex time varying fields which is applied here to a fire spread model using RBF
neural nets. We assume that low-resolution images are available from overhead imagery
at infrequent time intervals.

In the case of fire distribution, an exact nonlinear model description is
unattainable due to the high level of complexity. Instead, a parameterized
approximation of the field is used, which is acquired by means of a neural network. In
order to obtain an initial approximation of the field, a neural network is trained with a
low-resolution “fire field image”. Training is done at lower rates in this EKF estimation
process (e.g. of sampling with robots). The network is presented with training pairs,
which in our case are temperatures at different locations taken from a low-resolution
infra-red image. Therefore, we roughly approximate the complex spatio-temporal field
with a sum-of-Gaussian parametric field by means of the Universal Approximation

Theorem.
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4.3 EKF Adaptive Sampling of spatio-temporal distributions using mobile
agents

The presented nonlinear EKF approach is an efficient framework for combining
the uncertainty in robot localization with errors in field sensor measurements. State-
measurement minimization of the EKF covariance matrix norm is used to achieve
effective adaptive sampling using a variety of mobile robotic platforms including
underwater and in-door vehicles. Localization uncertainties are especially relevant in
GPS-denied environments, but they can also be relevant to fire fields in situations where
local visual information is unavailable (for instance due to thick smoke), and GPS data
rates are slow. Time-varying complex models are considered here stemming from
realistic fire-spreading simulations of the previous sections.

Model parameter estimation for the field variable (fire temperature) is integrated
with estimation of the uncertainty in the mobile robot localization and the overall
estimate covariance is used for sampling. This way, localization uncertainty can be
reduced by building accurate models of distributed fields and vice versa. For instance, if
a robot is sampling an unknown field, but its location is accurately known, a distributed
parameter field model can be constructed by taking repeated field samples. Later on,
this field model can be used to reduce the localization error of the robot.

The multi-agent AS problem considered can be described as follows:
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Assumptions:

i) A nonlinear spatio-temporal field variable is described via a parametric
approximation Z=Z7Z(A, X, t) depending on an unknown parameter vector A, position
vector X, and time t.

it) N robotic vehicles (agents) sample the field with localization and sensing
uncertainty in order to obtain higher resolution estimates of the field, and also to
improve their own location estimates.

iii) The number of field parameters (M) and their initial guess is based on a
hypothesis originating from prior knowledge of the field consistent with a low-
resolution image of the entire field.

In this section, the mapping of a slow time-varying complex forest fire field is
considered, with measurements performed at different rates. For sampling slow-varying
fields, the time update is performed at a slower rate compared to the measurement

update. The time update (Equation 3.8) is performed at a sampling rate of 7, by high-
spatial infra-red imaging with an uncertainty represented by the process covariance
noise Q,,. The field evolution is measured by the difference U rd+1 -0 r4) between
these consecutive measurements. High rate field measurement updates are then done by
robotic sampling, with uncertainty represented by covariance noise R,, .

Assuming that the i”robot location Y, is measured using some absolute

localization scheme such as GPS, and if, for simplicity, we ignore the robot dynamics

73



and localization uncertainty, we can write the state and output equations as:

A=A +Up, U +agy,,
Uy =Upsy
v -xi

Z, =g ,A)+v,

(4.8)

Therefore, the EKF equations become:

~

Po=P +0., A=A +Up, _UTd)
oY, A) (4.9)
1

1
P= ((P/<11) + HkT+1R71H/<+1
A=At P/<+1H/<T+11r1 [Zk+1 8k (chi+1 s A)

k

where, O, =0y R, =Ry, .

4.3.1 Formulation for elliptically constrained single Gaussian time-varying field

In this section, a time-varying field is assumed where the input U,, depends on
the measured velocity of spread (wind velocity). The Kalman Filter equations are used
to estimate the peak intensity, variance and mean of the time-varying forest fire field.
Using equation, the fire model equation can be written as:

A=A +B U, + o

I 1 0 0
o o 0 0
= + + , (4.10)
Xo Xo BBy a
Yo Jyn Yo Iy 0 0

a~N(0,0,)
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where At,,, is the time from sample k to k+1,x, is a continuous function which is
sampled at time ¢,,7,,...t,,,, and r is a time-varying function describing the velocity of
spread, and r,,, is the velocity of spread r for (k +1) th sample.

The state estimates are updated using equation (4.10). The measurement
equations are given by equations (4.11) and (4.12) with noise covariance
v, ~ N(0,R)). The time and measurement update equations are given by:

Lia=1,65,=6 (30 =

()i = Eo)e + 1AL, , 4.11)
P =PF +0,

and

- 08, _[ og dg og og }
k+1 — A - A A— A - A =
oAy el 86 ax, &, |,

= [C Ik+l'(6-1:+1)3‘{(xk+l - )AC(;kH)z + (Ve — )A’(;k+1)2}'c

L (X = Xorar) C L (Vi = Vorar) .C}

G’ (G1)’
—_ ¥ 2 — 3y 2
where C:eXp{— (s = gy i(ylzm Yossr) } . (4.12)
2(6.)

K, = Pk_-¢—1HIZ-+l(Hk+1Pk:—1HT + Rk+l)_1

k+1

P=U,- Kk+1Hk+1)Pk_+l

A=A+ K {Zk+1 - gk+l}

A B N _ N B
= A+ Ky e — Ik+1‘eXp|:_ (s = ) A,(yém Vo) }
2(6.1)
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4.3.2 Formulation of the general multi-scale algorithm EKF-NN-GAS for fire
fields

In previous sections we considered different cases of increasing complexity, in
which a robots sample a parameterized field distribution. In a practical scenario,
measurements will be arriving from different sensors, at different dimensional and time
scales, and must all be fused into the EKF filter. We propose the following sampling
algorithm to negotiate the increased complexity of mapping the fire field:

Algorithm EKF-NN-GAS (multi-scale, multi-rate adaptive sampling)

Step 1 (Setup): Give the environmental parameters and rules for fire spread as
input to the CA model as shown in figure 4.8. This will generate a 2-D temperature field

T(x,y,t) which has a dimension of mxm at time ¢. In practice, this step is omitted,

and replaced by the actual spread of the fire. Go to step 2.
Step 2 (Initialization): Divide the field into square size grid of nxn,

n < m,and average values in each grid. This gives a low-resolution version of the actual

field of size m/nxm/n, illustrated in figure 4.8. In practice this low-resolution
temperature distribution is acquired by an infra-red image taken from an airborne
platform. Go to step 3.

Step 3 (Training): Train the RBF neural network using this low-resolution
temperature data. In the training algorithm, the number of neurons and smoothness
factor are specified. The number of neurons depends on the complexity of the field so
that the error is minimized within an acceptable threshold. This gives the parameterized

version of the field with N neurons and each neuron has parameters a,o,x, and y,
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representing this RBF field. The error in the actual field and the initial estimate using
neural network also gives a guess for initial error covariance P in later EKF steps. Go to
step 4.

Step 4 (High rate sampling): Spot measurement robots sample locations in a

grid of size px p, (where p <n <m) based on a Greedy Adaptive Sampling criterion

to minimize the error covariance. The EKF framework shown in figure 4.8 is used to
correct the estimates as the subsequent measurements are available one by one. The
robot location is calculated by GPS measurement, via dead-reckoning, or relative
position measurements. Localization uncertainty is ignored in the simulation results of
the next Chapter, but should be considered along with the robot dynamical model. The
EKF sampling rate, 7 should be as fast as sensory measurements from robots are
available. Repeat Step 4 until new low resolution updates of the entire field are
available, else go to step 5.

Step 5 (Low rate sampling): Because of the time varying nature of the field, a

low resolution update of the field is performed at a sampling rate 7,, and the evolution

of the parameters is updated by comparing the low resolution field distribution at time

T,,, and T,. This involves repeating step 3 by retraining the neural network at time

T,., and updating the parameters since the last training at time 7,. The low rate

parameter update (U _ ~U 1) » and its uncertainty Q, are given as inputs to the EKF

block for high rate sampling update shown in figure 4.8. Low rate sampling is

performed at a very low rate (approximately every 5 minutes for the simulation
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examples we considered), compared to the high rate of sampling (which takes several
sensor measurements every minute for the simulation examples). This scheme gives a
better estimate of the time-varying field than if it was not included in the parameter time
update. Go to step 4.

Since the sampling robot dynamics is ignored here for the sake of simplicity, the

parameter estimation model is simply:

T
Ak+l:Ak+ak:[b a, o; Xy Yo --- Ay Oy Koy yON]k+a
a~N(@0,0)

(4.13)

Moreover, if the field is time-varying the field parameters propagate as:

A=A +Upy, ~U)+a, (4.14)
where A, is the field parameters update when (k +1)" sample is taken (step 4) and
(ljm+1 -U . 1s the field parameters propagation obtained by performing step 5. The

measurement model is:

N
Z, =h(A)+v, =b+ a;expl- o, {(x, —x0)> + (3, =y J+ v

pr , (4.15)
v~N(,R)
while the low rate sampling update equations are given by:
Ay = A + (ﬁTd+1 - ﬁTd) (4.16)

P=F+0
Step 5 does not reset the previous state estimates, but calculates the evolution of

parameters (U Tdl -U ) based on the difference between current and past field images

added to the old parameter estimate Ak to predict a new estimate Ak"ﬂ .
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Finally, equations similar to (4.12) can be used in the EKF sampling update.
Figure 4.8 shows a block diagram for algorithm EKF-NN-GAS. Its full update

equations are given by the following block equations:

~

A O,

T aAL)

oh,,, — oh,., oh,.,, oh,.,, oh,.,

by, 0@ 06 0 Ee)i 0o
oh,., oh,., oh,., oh,.,

a(&N );H a(&N );‘Fl 6(5&0N );H 6(5)0N );‘Fl

A

A=l @D =20)106)10 € (D)

208016 e (€D v —Godia ) 20104610 ) Vi = Goia )
Co)ir =203) 10631 (Cy) (D)

280Gy s =G )i} 280106000 4Co) i D = Gowdin |

where (C,),., = exp%(«%,-);f(ﬁ,-)m } D)) = 00 =G i) + Gt =Godi)? )

K= ijrleIkTJrl (ITIkHijrlITIIil +R,. )71
P.,=U -K, H )P,
Ay =AL, K {Zkﬂ _hk+l}

= AIZH +K, ., {Zkﬂ _51;1 _i(&i)2+l CXP[_ ((OA-i);H )2 {(xkﬂ = (X0 ) en )2 + (Vi _()A’m);n)z }]}

i=1

4.17)
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Figure 4.8 Block diagram for temporal field model identification and parameter
estimation

4.4 Potential field to aid navigation through fire field using mobile agents

The estimated fire field intensity distribution can be used as a repulsive potential
to keep the fire fighters away from dangerous areas in the field and show them safe
paths towards important destinations. Potential field methods create a vector field

representing a navigational path based on a potential function. The sampled field
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variable intensity can be used to plan collision-free paths around the fire “obstacles”.
Given a scalar potential function U(X) where X =(x,y), that depends on the rescuer
position and the field intensity at that point, one can calculate forces governing the

rescuer motion based on the gradient of the scalar potential field:

Figure 4.9 The attractive forces on point X, towards the goal X ,,, and repulsive

forces from the obstacles

F(X)=-VU(X) . (4.18)
The following forces can be considered in the potential field:

. Attractive forces towards goals:

F o (X)=-VU,(X)==E0,,,(X)Vp,.(X)

(4.19)
= g(X - Xg()ul)
. Repulsive forces from obstacles which are fire ellipses
% Il
U, (X)=>U/(X), U(X)=14—= (4.20)
’ Z ‘ ' p (XY’
F,(X)=Y F(X), F,(X)=-VU,(X), (4.21)
k=1
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where A is the positive scaling factor, p(X) is the Euclidean distance from X to the
center of ellipse, r is the number of elliptical components close to current location and

I, is the fire intensity at the point on ellipse at shortest distance from X . The trajectory

can then be updated using a depth-first planning algorithm, which constructs a path as

the product of successive segments starting at the initial configuration X, :

X, =X, +6F,, (4.22)
where X, and X,,, be the origin and end extremities of the i" segment in the path.

In summary, this Chapter discusses the application of the Adaptive Sampling
algorithm to the mapping of forest fires. In addition to the basic approach discussed in
Chapter 3, we also offer a complete framework encapsulated in the Algorithm EKF-
NN-GAS, which combines sensor measurements from different scales, rates and
accuracies to map the time-varying spread of forest fires

Finally, we need to briefly discuss issues related to the convergence of the
proposed algorithms. Since we are using the Extended Kalman Filter, any estimation
scheme that utilizes it must be initialized sufficiently close to the actual field. Overhead
satellite imagery of the field provides a reasonable initial estimate, but the absolute
algorithm convergence cannot be guaranteed, as widely discussed in the literature [152].
In addition, the use of Heuristic Search methods in the algorithm can also lead to the
presence of local minima . We can avoid such minima by restricting the search space so
that we do not re-visit already sampled points, but such heuristics may not always work

for time-varying fields. While studying convergence conditions for our algorithms was
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beyond the scope of our thesis, simulation results presented in the next sections indicate
that the algorithms converge in numerous instances. The algorithms of Chapters 3 and 4

will be simulated and experimentally validated in subsequent Chapters of the thesis.
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CHAPTER 5

SIMULATION RESULTS

This Chapter focuses on simulation results with Adaptive Sampling for
parametric fields of increasing complexity, in order to validate the formulations
presented in previous Chapters. Section 5.1 presents simulation results for linear-in-
parameter field first without considering uncertainty in localization and then
considering uncertainty in localization of the robots. Section 5.2 discusses simulations
results for a single Gaussian field without considering uncertainty in localization and
then considering uncertainty in localization of the robots. Section 5.3 presents the
simulation results for parameterization of complex space-time fields using the neural
network. Finally, section 5.4 discusses simulations of complex, stationary and time-
varying spatio-temporal forest fire fields, and potential field based approach for path
planning for fire fighters.

5.1 Linear parametric field

5.1.1 Kalman filter estimation for the linear-in-parameters field without
considering uncertainty in localization

For the algorithm described in section 3.2.2, consider a stationary linear field,
with two spatial variables (x,y), and three unknown parameters to be estimated. The
field model is simply defined as:

Z=a+bx+cy. 5.1
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For simplicity, assume that we wish to recover the parameters by sampling with

a robot with no localization uncertainty. The process, measurement models, and update
equations are given by:

e System Model: A,,, = A, = [a b c]T . (5.2)

e Measurement Model: Z, = H, A, +v, =[I x y|A, ++v,. (5.3)

e Model and measurement uncertainties:

Q=0,v, ~N(O,R), x, ~ N(X,,P,).

A A

e Effect of System Dynamics: A, = A, ,P_, =P,. (5.4)

+1
e Effect of Measurement:

K, = ijrlHkTH (HkHijrlHkTH + Ry, )71
P, = (112 - Kk+1Hk+l)ijrl ’ (5'5)
A=A + Ky {Zkﬂ -H, A, }

We simulate the sampling process in MATLAB assuming the following

numerical values:
o Actual parameters - [@ b c¢|=[10 02 0.7]
o Initial parameter estimates - [I 1 1]

o Parameters to estimate - A=[a b c]

10 0 O
e Initial Error covariances- P=| 0 10 O
0O 0 10

e Model error covariance - Q =0

e Measurement error covariance - R =1
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<0.7

e Convergence Criteria = HA -A,

The sampling area is divided into grid sizes of 5 and 10 units and we assume
that only the center of the grid is sampled. For the greedy adaptive sampling heuristic,
we pick a horizon size equal to 2, to limit the search for the next appropriate sampling

location, as depicted in Figure 5.1.

100

Horizon Size
=>2 grids

Figure 5.1 Grid size and horizon size are shown for sampling a linear parametric
field

In this very simple case, there are three parameters to estimate and the AS
algorithm looks for the next sampling location which minimizes the 2-norm of the error
covariance matrix of these three parameters. If we wish to focus on minimizing the
uncertainty of a specific parameter, instead of the 2-norm aggregate, the next sampling
location would be the point which minimizes the error covariance of that particular
parameter only. In our simulation, a grid size of 5 is chosen, and therefore a maximum
horizon size of 19 will cover the entire field. Simulations results are plotted in figures

5.2-5.6 for a global search AS. These plots are organized to include a snapshot of the
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first few samples (top left), many samples (top right), the plots of error covariance, the
parameter estimate, and values of error in parameter estimates with respect to number of
samples (bottom left), and the plots of error in parameter estimates and error

covariances with respect to the distance travelled (bottom right).

Greedy AS with Grid Size=5, Horizon Size=19 Greedy AS with Grid Size=5, Horizon Size=19
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Figure 5.2 Sampling points when error covariance of a is minimized which takes 38
samples and a total distance of 1417 is covered

Figure 5.2 shows the results when the information measure of the algorithm is
the error covariance of a estimates only. We observe that the maximum information

about parameter a is achieved by first sampling the extreme (x, y) locations. The plots

show that parameter a converges faster i.e. within 5 samples is this case. Results in

Figure 5.3 indicate that the maximum information about parameter b is achieved by
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sampling along x-axis, first starting at the extreme locations. Similarly, Figure 5.4
shows that the maximum information about parameter ¢ is achieved by sampling along
y-axis first starting at the extreme locations. And, in the last case, when the 2-norm of
error covariance of all parameter estimates is used as information measure, the AS
algorithm produces the combined effect to select appropriate locations. In all cases, we
also computed the combined distance traveled by the sampling agent, displayed it in the

captions, and summarized it in Table 5.1.

Greedy AS with Grid Size=5, Horizon Size=19 Greedy AS with Grid Size=5, Horizon Size=13
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] o
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L R R R, L e Lol AR Distance Distance
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o -2 -2 2
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Figure 5.3 Sampling points when error covariance of b is minimized which takes 68
samples and a total distance of 5458 is covered
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Greedy AS with Grid Size=5, Horizon Size=19 Greedy AS with Grid Size=5, Horizon Size=19
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Figure 5.4 Sampling points when error covariance of ¢ is minimized which takes 68
samples and a total distance of 5458 is covered

An interesting observation emerges from examining Table 5.1 — namely that
minimizing the error covariance of parameters b and c¢ requires more distance and
number of samples to achieve the same convergence threshold. This is due to the fact
that sampling along extreme x and y axes by minimizing uncertainty in » and ¢ does not
provide enough information about rest of the parameters. This can also be observed in
Figure 5.3, where minimization of uncertainty in b causes a and ¢ to converge very
slowly compared to case in figure 5.2, where minimization of uncertainty in a causes b

and ¢ converge at significantly faster rate within 5 samples.
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Greedy AS with Grid Size=5, Horizon Size=19 Greedy AS with Grid Size=5, Horizon Size=19
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Figure 5.5 Sampling points when 2-norm of error covariance matrix P is minimized
which takes 34 samples and a total distance of 1445 is covered

Table 5.1 Comparison of GAS and AS for number of samples and distance
when error covariances of different parameters are minimized

Minimizing No. of .
Error Distance
. Samples
Covariance

Adaptive P(a) 38 1417
Sampling P(b) 68 5458
(Grid Size=5, P(c) 68 5458
Horizon Size=19) ” P|| 34 1445
Greedy P(a) 64 412
Adaptive Sampling P(b) 128 720
(Grid Size=5, P(c) 128 720
Horizon SIZC=1) ||P|| 64 396
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Greedy AS with Grid Size=5, Horizon Size=1 Greedy AS with Grid Size=5, Horizan Size=1

(@ (b)

Greedy AS with Grid Size=5, Horizon Size=1

(© (d)
Figure 5.6 For GAS (a) the error covariance of a is minimized, (b) the error covariance
of b is minimized, (c) the error covariance of ¢ is minimized, (d) the 2-norm error
covariance matrix P is minimized

Next, we run the AS algorithm with a smaller horizon size of 2, as shown in the
sampling sequences of Figure 5.6. And, in Figures 5.7 to 5.9, a comparison is shown for
sampling with a grid size of 5 and 10 for raster scanning (RS), adaptive sampling AS
(e.g. a horizon of 19), greedy adaptive sampling (GAS) (e.g. a horizon of 2). In Figure
5.7 it is apparent that for RS increasing the grid size reduces the number of samples
required to meet the convergence criterion. The number of samples per row is smaller
and hence more rows are scanned by covering more area on x-axis. Figure 5.9 shows a
comparison of simulations with grid sizes 5 and 10 for GAS. A larger grid size of 10
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gives better results because it covers more area with fewer samples, while the field does
not have local variance because it is linear.

It is summarized in Table 5.2, and apparent from Figure 5.8, that changing the
grid size does not reduce the number of samples and distance for AS because the next
best sampling point is searched in the entire area. Moreover, in some cases increasing
the grid size increases the number of samples and the distance to convergence because
the data set becomes smaller.

In summary, these simple simulation results reveal that the field discretization
grid, the information measure, and the horizon size greatly impacts the route taken by
the robot to accomplish sampling missions. The sampling behavior can be intuitively
understood, and shows that GAS requires a much smaller sampling distance than RS,
while AS offers the least number of samples at the cost of the greatest travel distance.
This observation is still valid for all simulation and experimental results presented in the
Thesis.

Table 5.2 Comparison of RS, GAS and AS for number of samples and distance
when different grid size and horizon size are considered for sampling a linear field

Grid Size | o siﬁ;ﬁis Distance
Raster Scan 150 : 17183 3 g 8
Adaptive Sampling 150 199 ;Z gég
Greedy Adaptive Sampling 150 i gé 322
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Raster Scan Grid Size=h Raster Scan Grid Size=10
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Adaptive Sampling with Grid Size=5, Horizon Size=1 Adaptive Sampling with Grid Size=10, Horizon Size=1
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5.2 Gaussian parametric field

5.2.1 Estimating parameters for a single Gaussian field
We now consider sampling of a stationary nonlinear field represented by a
Gaussian with four unknown parameters, the center, amplitude, and variance

A= [a o X, Y, ] This distribution is represented by the equation:

= (5.6)

Z:a_exp{_ (x=2,)% +(y=y,) } .

5.2.1.1 Minimization of uncertainty in single parameter
Four sampling routes are shown in figures 5.10-5.13 in which the sampling
criterion seeks to minimize uncertainties in estimates of individual parameters. The
numerical assumptions for simulation were:
o Actual parameters - [a o x, ,]=[100 20 40 60]
e Initial parameters - [a o x, y,|=[105 15 45 65]
e Model error covariance - Q =0

e Measurement error covariance - R =1
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Figure 5.10 Sampling locations for minimizing the uncertainty in a for adaptive
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(bottom). Initial estimate for a is 105 and initial error covariance of 10
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We can observe that minimizing the error covariance of a, while disregarding
the uncertainty in other parameters, leads to samples being taken at the current estimate

of (x,,y,) and in its neighborhood. Similarly, minimizing the uncertainty in o,x,,y,
reslts in samples taken around (x,*o,y,*o), (x,*o,y,)and (x,,y,t0)

respectively. This idea is illustrated in figure 5.14.
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Figure 5.14 Applying minimum error covariance criterion for different parameters
results in specific areas of the Gaussian to be sampled

5.2.1.2 Minimization of uncertainty in multiple parameters

It is apparent that a single scalar value cannot capture all the aspects of the error
covariance matrix. For cases involving combined uncertainty of several parameters,
information measures that can be considered include the 2-norm, inf-norm, trace or log-

determinant of the error covariance matrix, as discussed in [49]. The 2-norm of error
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covariance is a popular choice, however, most of these measures lead to parameter
convergence as illustrated in Figures 5.15-5.19. The Log-det(P) measure can take
negative values. Inf-norm(P) minimizes the uncertainty of the parameter which has the
maximum uncertainty, and, as a result oscillations can be seen before the estimates
converge to final values. These oscillations can also cause the EKF filter to diverge due
to operating in non-linear regions. Trace(P), although it shows convergence, might not
be appropriate because it doesn’t consider the cross correlation terms of P. The
following numerical assumptions were used for initial uncertainty:

e Initial parameter estimate vector - [95 25 45 65], and

10 0 0 O
o . 0 10 0 O
e Initial error covariance - P =
0 0 10 O
0 0 0 10
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We conclude that the choice of covariance matrix norm will affect the
performance of the sampling algorithm. In the absence of any prior information about

the field, the 2-norm is an appropriate choice.
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5.2.1.3 Effect of sampling grid size
We also investigated the effect of changing grid sizes for the sampling
simulations. We used the following numerical assumptions:

o Actual parameters - [a o x, y,]=[100 50 40 60],

Initial parameter estimates - [80 40 35 75],

10 0 0 0
N _ 0 10 0 0

e Initial error covariance - P = s
0 0 10 0
0 0 0 10

e Model error covariance - Q =0,
e Measurement error covariance - R =1

e Convergence Criteria - HA - Akﬂ <25

Table 5.3 Comparison of RS, GAS and AS for number of samples and distance
when different grid size and horizon size are considered for sampling a Gaussian field

Grid Size H(ériizzeon Sljr(;pcl)is Distance
Raster Scan 150 - 29065 1905200
Adaptive Sampling 150 199 ij igi?
Greedy Adaptive Sampling 150 } Zi ?13(6)

Simulation results are shown in Figures 5.20 and 5.21 for raster scan with
different grid sizes the plots for individual parameter estimates, error covariance of
individual parameters, error in individual parameter estimates, error in individual error

covariance, 2-norm of parameter estimates, and 2-norm of error covariance of
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parameters. We notice that in both cases parameters a and x, converge slowly because

the minimizing the uncertainty of a involve sampling near the Gaussian peak, and of

x, by sampling along x-axis. However, raster scanning in this case is performed by

sampling along y-axis, and therefore convergence will take a while. With a grid size of
10 instead of 5, fewer samples are required because in fewer samples most of the area
will be covered. The results are tabulated in Table 5.3. As in the previous sections, GAS
leads to a much smaller sampling distance, while AS requires the least number of

samples.
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5.2.2 Estimating parameters of single Gaussian field and robot location states
by field measurements only

We now consider the case of sampling a stationary Gaussian field with four
unknown parameters defined by equation (5.6) with a differential drive robot. Both
location states for the robot X, :[xk yk] and field parametersA:[a o X, yo]
need to be estimated. The kinematic model for the robot will be discussed later, in
Chapter 6, and is shown in Figure 6.6. The robot is equipped with wheel encoders that
are used to estimate its position, however, the source of error in robot localization is the
difference in wheel radii between the actual and the nominal robot models as discussed
in section 6.1.3. Therefore, during simulation the robot ended up at locations different
from where it thinks it is based on its dead-reckoning model. The robot kinematic
model now included in the Joint EKF as described in equations (6.2), and the following
numerical assumptions were used in the simulation:

e Actual field parameters - [a o x, y,]=[100 50 40 60],
e Initial parameter estimates - [80 30 45 55|,

e Final parameters estimate - [99 50 42 57],

o Statestoestimate- [a o x, y, x ]

e Initial error covariances

e £, =100, F,_ =100, R, , =100, R, , =100, F, =100, F,, =100
e Model error covariances - 0, =0,0,=0,0,=0,0,=0,0, =1, 0 =1

e Measurement error covariance - R =1
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e The robot wheel radii are different: r =1, r. =1.05.
Actual Field Initial estimate
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Figure 5.26 The actual field (left), and the initial estimate (right)

Actual field with 100 points sampled

Reconstructed field after 100 samples

a0

&0
o 0 v

Figure 5.27 The actual field with points sampled using GAS (left), the
reconstructed field after 100 samples (right)
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Figure 5.28 Error between true, dead-reckoning and estimated robot locations

Figures 5.26 and 5.27 show the actual Gaussian field, the initial estimate, the
path taken by the robot during sampling, and the reconstructed field after 100 samples
of GAS. Figure 5.28 plots the 2 norm of the error between the actual robot position
(based on the actual wheel radii), the dead-reckoning estimate (based on incorrect
values in the model), and the robot location estimate as computed by the joint EKF. It
can be observed from the Figure 5.28 that initially the dead-reckoning error (in blue) is
small but it grows as time passes. Also, initially the estimated location based on field
measurements is not very good (in red). However, while the dead reckoning error keeps
accumulating, the robot localization error stays bounded with increasing number of
samples because as more samples are taken the algorithm has better knowledge of the
field, and this helps localize the robot. A windowed average for the parameter estimates
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is taken every 20 samples, and the trends are shown by solid horizontal lines in Figures
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5.3 Simulations for forest fire mapping

In this section, increasingly realistic fire spread models are used to assess the
effectiveness of the sampling algorithm presented in Chapter 4, by comparing it to a
basic raster scanning sampling approach. Also the performance of the multi-rate EKF
scheme to estimate the time-varying fire field model is also investigated by simulation.
First, sampling results on a single Huygen’s spread model are presented. We then
consider the case of a field represented by a sum of five Gaussians with slow spreading
over time, and finally, the case of a time-varying CA fire spread complex model. In all
simulations, sampling is performed with a single robotic vehicle. For multiple vehicles,
the EKF computations can be distributed among robots as discussed in Chapter 7. The
model of the robots is ignored in order to focus on quantifying the accuracy of field

estimation.
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5.3.1 Elliptically constrained single Gaussian time-varying forest fire field

Simulations are performed to estimate four fire field parameters given in
equation (4.10)-(4.12) for a single ellipse. The numerical simulation model assumed a
forest area of 1 sq. mile, in which multiple robots take fire intensity measurements (or
some measure of temperature) and estimate the desired parameters. The location of

firehead x, is time-varying. The fire can spread at arbitrary rates, but in this simulation,

the case of a slow sinusoidal fire spread rate was considered as an example:

r=——cos(—1t) . 5.7)

Other choices of rate spread will not affect the rate of convergence as long as
the spread model is known, and the rate of spread is much smaller than the speed of

sampling. As a result of the fire spread rate in equation (5.7), x, will be sinusoidal with

respect to time and space, as shown in Figure 5.32, while the other fire field parameters
are stationary. A comparison sampling simulation was conducted between sampling
using raster scanning and heuristic greedy adaptive sampling. For GAS, the algorithm
looks for the next best sampling location in a circle of 50 ft radius around the currently
sampled location as shown in figure 5.32. Raster scanning does a row-by-row scanning.

Table 5.4 summarizes the sampling results of Greedy AS and Raster Scanning
when sampling performed for 60 minutes. We assumed that the robot navigation speed
was 30 ft/min, that the robot sampling and processing time are neglected,

whileQ =0, R, =0.1.
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Figure 5.32 Elliptical fire spread with greedy adaptive sampling algorithm which
looks for the appropriate location on the elliptical fire

Results indicate that GAS leads to faster convergence, and requires considerably

less numbers of sampling points than RS or AS. In Table 5.4, the 2-norm of the error
covariance P, is 7.3 for GAS, and 44.2 for Raster Scanning after 60 minutes of

sampling. If sampling continues further, raster scanning takes almost 6 times more time
than GAS to converge to same parameter estimate values. We also observed that the
error covariance decreases very slowly for raster scanning, and it will require almost the
entire sampling area to reduce the parameter estimate uncertainty. Raster scanning
performs even worse when sampling is being conducted in an area where the parameter

of interest does not vary significantly.
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Table 5.4 Comparison of Raster Scan and Greedy AS for sampling of

elliptically constrained single Gaussian time-varying field

A, A, A, A, P, P,

I 80 80 90 79.4 10 0.7

Greedy | & 400 400 410 401.1 20 4.9

(124?9) x, | 2700 2760 2720 | 2759.7 50 3.8

Yo | 1000 1000 1020 | 1001.2 50 3.8

I 80 80 90 85.7 10 2.4

Raster | & 400 400 410 397.9 20 5.1
Scan

(k=68) | % | 2700 2760 2720 | 2765.5 50 21.8

Yo | 1000 1000 1020 | 1024.8 50 38.1

5.3.2 RBF-NN parameterization using low-resolution information

2

Radial bases neural network using “newrb” is available in Neural Network
toolbox of MATLAB. “newrb” creates a two-layer network, with the first layer
containing “radbas” neurons and the second, “purelin” neurons. In this section, we
make use of this Toolbox to simulate the sampling process of a slightly more complex
field than a single Gaussian.

In Figure 5.34 (a), a simple field is presented where a sum of 5 Gaussians field
is approximated by a RBF neural network with 5 neurons, while in Figure 5.34 (b) a
more complex field is displayed. A low-resolution version of the original fields is

acquired by averaging points in a square such that only a small percentage of the total

numbers of points are used for training the neural network. The number of neurons and
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the spread factor are chosen such that the ‘normalized SSE’ between low-resolution of
the actual field and the estimated field is kept below an acceptable threshold of 1.

As discussed in Chapter 2, the neural network learning algorithm doesn’t train
for spread parameters. Although some heuristic algorithms exist to select different
values for spread factor, we are assuming a constant spread value. For our simulations,
p=300, a typical case a grid size is nxn = 20x20, spread factor is 30 with 5 neurons are
assumed as shown in figure 5.34 (top). The 2-norm of error between actual and initial
estimated field is 38.7 and error extrema are -144 and 204.

A similar scheme is used to approximate the complex field, which is generated
using CA discussed in Chapter 4. Since the field is more complex, more neurons are
required for a good approximation. At a particular time, a low-resolution version of
field is taken by averaging on a grid size of 20x20 and passed through RBF NN training
for 20 neurons and spread factor of 40. The training using the hybrid algorithm only
takes 2-3 seconds for 60 neurons neural network. Hence, the training time is much

smaller than the speed of field evolution.
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Figure 5.34 Sum-of-five Gaussian fire field approximation using 5 RBF neurons
(top), Complex field approximation using 20 neurons and a grid size of 20x20
(bottom)
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' 20 _
Figure 5.35 Illustration of the presence of more overlapping Gaussians in areas of
large variance for thorough sampling

40 B0 80 100 120

Figure 5.35 also illustrates the use of self-organized selection of centers
classification algorithm used for selection of centers while training the neural network.
The objective of the classification is to introduce more neurons in high-variance areas
of the field, and fewer neurons in low-variance areas. Figure 5.35 shows a sum of 30
Gaussians approximated with a 30 neuron RBF neural network.

The plots shown in Figure 5.36 are the 2-norm of relative error of all the points
between the actual fire field and the field estimated by the neural network. The
estimated field is achieved by considering lower resolutions of the actual field with grid
sizes of nxn = 5x5, 10x10 and 20x20. In Figure 5.36 (a) a 5x5 size grid is considered,
hence the error in smaller compared to Figure 5.36 (b) where a 10x10 size grid is
considered. An increase in the number of neurons decreases the error but after a while,
the error doesn’t reduce any further. For a spread factor of 40 and 60 the error stays the
same even if more than 40 neurons are considered. Figure 5.36 (c) illustrates the
obvious fact that taking smaller size grid (indicating a higher resolution) increases the
accuracy of initial estimate with same number of neurons. As the number of neurons
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increases, the initial estimate gets better. This is valid until the neural network becomes
over-trained. Figure 5.36 (d) shows the error in approximating a sum-of-five Gaussians
field with RBF NN with different number of neurons when a 20x20 size grid and
different spread factors are considered. Increase in the spread factor decreases the error
as the number of neurons increase but leads to saturation as shown in Figure 5.36 (d)
where the error for spread factor of 80 is higher compared to 60. Simulations are
performed to estimate the 21 parameters of the field represented by a sum of five
Gaussians. The system is parameterized using NN as explained in Chapter 3 and the

sampling results are shown in Figure 5.36.
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In our simulations, additional numerical assumptions for uncertainties were as

follows:

P, =200,P,, =50,P,, =10"°, P, =4, P,,, =4

S ’ (5.8)

Less parameters in areas
More parameters in areas with small variations

RGB Color Map
Figure 5.37 Actual image of California 2007 fires taken from a NASA satellite
(top), RGB intensity map (bottom left), and RBF-NN approximation with 300

neurons (bottom right)

Figure 5.37 shows the NN approximate when an actual fire field satellite image
was used to train the neural network. For a complex continuous field, the following

heuristic value for the spread factor was used to improve the NN training error:
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Xy ) ) )
s = W’ where s is the spread parameter, x and y are maximum values of coordinates,

and N is the number of neurons.

5.3.3 Sum-of-Gaussians stationary field

A comparison simulation of GAS and Raster Scan sampling was carried out for
the sum of 5 Gaussians nonlinear field. The sampling area was divided into square grids
and several search horizons were considered. For Greedy sampling, a grid size of n = 5,
p =5, and horizon size of 5 square grids were assumed. The simulation stopped when
the 2-norm error between the actual and estimated fields reduces below 15. It is
depicted in Figures 5.38 & 5.39 (f) that at the start of sampling represented by ‘black’

circles with center and radius (%,,,,,.,,0,,,), coincides with the ‘red’ circles with
center and radius (X,, y,,0,), but start chasing the ‘blue’ circles which have center and

radius (x,y,o), as the sampling continues. Simulation results for raster scan sampling

are shown in Figure 5.38, where it took 170 samples to achieve the norm of error in the
original and estimated field less than 15, while the 2-norm of error covariance reduced
from 229.5 to 10.72. Simulation results for GAS are shown in Figure 5.39, where
sampling required 41 points to achieve the norm of error in the original and estimated
field less than 15, and the 2-norm of error covariance to reduce from 229.5 to 2.04. A
comparison between initial and final errors is shown in Figures 5.38 & 5.39 (h) and (i).
Table 5.5 clearly indicates the Greedy AS performs much better than Raster
Scan in terms of sampling distance (time) as well as number of samples. Also it is
apparent in Figures 5.38 & 5.39 that the norm of error between the original and
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estimated fields, as well as the norm of state error covariances decrease faster in the

case of GAS.
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Figure 5.38 Simulation results with raster scanning sampling for sum of Gaussians
stationary field
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Figure 5.39 Simulation results with GAS for sum of Gaussians stationary field

Table 5.5 Comparison of Raster Scan and Greedy AS for sum of Gaussians field

Greedy AS

Raster Scan

Distance

2175

3400

No. of samples

41

170

Initial 2-norm of error in
actual and estimated field

38.7

38.7

Final 2-norm of error in
actual and estimated field

14.97

14.26

Initial 2-norm of error
covariance

229.5

229.5

final 2-norm of error
covariance

2.04

10.72
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Figure 5.40 Distance covered for Greedy AS (left) and Raster scanning (right)
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Figure 5.42 Sampling points for GAS (left) and Raster Scanning (right)
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5.3.4 Sum-of-Gaussians time-varying field

Here we make the sum of 5 Gaussians to vary slowly, and we re-run our
sampling algorithms. Depending on the anticipated variation of the field parameters

based on the CA model and NN inverse model, the inputs B,u, will vary, but this

variation is available to the EKF estimator according to Equation (4.16).

The numerical values for simulation uncertainties were as follows:
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— — —10°8 — —
P,y =200,P, =50,F,, =107, P, =4, P,,, =4,
Q40 =050,,=3,0,=0,0,, =0, QyOO =0, (5.9)
R=1
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Figure 5.45 Actual and initial estimated field from NN for Sum of Gaussians
time-varying field
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Figure 5.46 Actual and estimated field after 50 samples for Sum of Gaussians
time-varying field
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Figure 5.47 Actual and estimated field after 99 samples for Sum of Gaussians
time-varying field
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Original Field after 199 samples

Reconstructed Field after 199 samples
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Figure 5.48 Actual and estimated field after 199 samples for Sum of Gaussians
time-varying field
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update occurs and reduces again when measurements are taken, and (c) 2-norm of error

only 4% samples from the original data. The error between the original and initial
estimate is also shown in this figure. 1-c Gaussian circles of initial and estimate
coincide with one another, and they are different from the actual Gaussian centers

shown in blue color.

slower than the rate at which measurements are taken. In other words, robots take

sensor measurements faster than the update in parameters available from remote sensing

ey S L N
e a2

Tontitn of aisgd (o mfietcd of Wlale eatemislien

_ 1 |
W W W & B W T e W m

otz (5 PN e
T i [re—————
J|{revarisnce at time P
hesiech rind H-q-l.u-_ s i'¥+.
| | B A Py g 1 %
:'1}-.:5-,1 VYR BN
!i‘_.,’fl.‘*,l E%“"'I.l i -y
WA V1 LIAYRTER
1 [ { |
v, \ﬂ 14- b

Sariple

(B)

s"‘-" !
in

w1t
o st

b | o L

- -
& o~
* 5 -".__
] Lo
A i) WH.—;
% = ® mh:; T
(c)

in actual and estimated field

138

Figure 5.45 shows the original field and the initial NN approximate by taking

Since the field is slow-varying, we assume that the time update is available



measurement. When there is time update, the error covariance of the states goes higher
but keeps on reducing again when measurements are taken. This observation is
illustrated in Figure 5.49.

5.3.5 Complex RBF time-varying field

In this section, the complexity of the fire field model increases again by
considering a slow time varying field generated using the Cellular Automata model
presented in Chapter 4. As the sampling algorithm uses an Extended Kalman Filter, the
observability of the parameters (algorithm convergence) will depend on the initial
conditions. The initial error covariance is selected depending on the error in actual field
and the initial estimated field, which in-turn depends on the percentage of data from the
actual field which is used for training the neural network, number of neurons and spread
parameter. In our simulation models, the following parameters were chosen: the
field is defined in a mxm = 300x300 area, and an average of values in a nxn = 30x30
grid is used for training the neural network. 40 neurons are used, with a spread
parameter of 30. These parameters can vary as the complexity of the field varies and the
goal of sampling is to minimize the sum of squares error. The numerical values for

uncertainties in our model were:

P,y =100,P,, =5,F,, =107, Py =1, Py =1,

0, =0.020,)=0.02,0,,=0, Q0 =0, O, =0, (5.10)
R=1

Figure 5.50 shows simulation results for GAS illustrating (a) actual field

generated using CA, (b) initial approximate with 40 neuron RBF-NN and spread factor
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of 30 when grid size of n=30 is used for low-resolution sampling, (c) reconstructed
field after 168 samples with GAS heuristic sampling approach when grid size of p=5 is
used for high-resolution sampling, (d) sum-of-square Error (SSE) in actual and
estimated field which drops faster compared raster scanning, (e) sampled points, (f) red
and black circles indicate initial and estimated Gaussian locations respectively, (g) 2-
norm of error covariance of parameter estimates, which drops faster compared raster
scanning, (h) error in actual and initial estimate, and (i) error in actual and final estimate
after 168 samples.

Figure 5.51 shows simulation results for raster scan sampling illustrating (a)
actual field generated using CA, (b) initial approximate with 40 neuron RBF-NN and
spread factor of 30 when grid size of n=30 is used for low-resolution sampling, (c)
reconstructed field after 951 samples with raster scanning when grid size of p=10 is
used for high-resolution sampling, (d) sum-of-square Error (SSE) in actual and
estimated field, (e) sampled points, (f) red and black circles indicate initial and
estimated Gaussian locations respectively, (g) 2-norm of error covariance of parameter
estimates, (h) error in actual and initial estimate, and (i) error in actual and final

estimate after 951 samples.
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Figure 5.51 Simulation Results for Raster scan sampling for complex time-
varying field

Table 5.6 Comparison of Raster Scan and Greedy AS for complex time-varying

Greedy AS

Raster Scan

Distance

3380

19020

No. of samples

168

951

Initial 2-norm of error in
actual and estimated field

58.07

58.07

Final 2-norm of error in
actual and estimated field

23.95

27.49

Initial 2-norm of error
covariance

632.5

632.5

final 2-norm of error
covariance

43.23

33.62




Figure 5.51 shows the raster scanning simulation results when sampling in

performed row-by-row in a grid size of pxp = 20x20. Figure 5.50 shows the GAS

sampling simulation results when a grid size of p = 5 and a horizon size of 20 are
considered. Grid size is an important parameter. A very large grid size will not reduce
the error significantly, even if the whole area is scanned, because thorough sampling is
required in high-variance areas. As the robot start sampling with given initial estimates
and uncertainties, the uncertainty of the parameters does not decrease until the robot
reaches the area where those parameters have a significant influence. In other words,
the uncertainty of the Gaussian is most reduced when sampling is performed within a
few variance values away from its center.

A comparison of GAS and Raster Scanning is summarized in Table 5.6. We
notice that since raster scan performs a row-by-row scanning, it takes a longer time and
many more samples than GAS. The simulation stops when 2-norm of error in actual and
estimated field reduces below a threshold. It can be seen from Figures 5.50 & 5.51 that
SSE (sum of squares error) between the actual and the estimated field, as well as the 2-
norm of state error covariances decrease faster in case of GAS.

5.3.6 Potential fields for safe trajectory generation

Simulations were also performed to generate fire-safe paths through the
estimated field, as shown in Figure 5.52, as presented in Section 4.4. In our simulations,
we assumed that 4 fire ellipses are ignited simultaneously, and that 4 robots are
simultaneously sampling in designated areas. Every robot runs a separate EKF based

AS algorithm to estimate the parameters of its local fire field. Fire field data is then
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aggregated in a central processing location, which is also responsible for on-line fire-

safe trajectory generation. The trajectory is dynamically updated from X, to X,

every time the field parameters estimate updates. In a practical implementation
scenario, a human firefighter can carry a wireless device receiving estimates from the
robots in order to generate a collision-free path around fire obstacles towards the goals
using equations (4.19) & (4.20). Assuming the human crew is at location

X, =(2000,2000) and needs to go to rescue location X ,, =(2500,4500), the path is

goal
divided into 50 segments and repulsive forces from each of these virtual obstacles, and

attractive force towards the goal is calculated. The numerical coefficients used in the

simulation are: £=1,1=10°, § =0.01. The trajectory is updated using this suitable

& and net force F , value using equation (4.21), and a fire-safe trajectory is generated.

4500 34
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Figure 5.52 Estimated fire ellipses and dynamically generated path using potential fields

for the human firefighter to go from X; to rescue location X ,,,,

In this Chapter were presented extensive simulation results to validate the
algorithms proposed in Chapters 3 and 4. We progressively increased the complexity of

the field distribution from simple spatial-stationary fields represented by only a few
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parameters, to a fairly complex spatio-temporal field represented with a RBF-NN and
hundreds of parameters. In each case, convincing evidence was presented to support the
conclusion that the EKF-based adaptive sampling algorithms using the GAS heuristic
and a RBF-NN approximation perform more efficiently than a simple raster scan, and

that the robot uncertainty can be reduced by sampling.
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CHAPTER 6

EXPERIMENTAL RESULTS

This Chapter discusses experimental sampling results obtained using a mobile
wireless testbed located at ARRI’s DIAL (Distributed Intelligence and Autonomy Lab).
It includes a brief description of the ARRI-Bot hardware, its localization and
navigation, distributed parametric field and its sensing and finally experimental results
validating the proposed adaptive sampling algorithms.

6.1 Description of testbed

Team members at the Distributed Intelligence and Autonomy Lab (DIAL) at
UTA’s Automation & Robotics Research Institute (ARRI) validated the algorithms
proposed in Chapter 3 on mobile wireless sensor nodes (MWSN). These nodes can be
thought of as robotic platforms delivering a sensor pack to a location of interest in order
to take samples, and transmit sensor information via radio signals through a wireless
network. A first version of the sampling setup is shown in Figure 6.1. In it, an
inexpensive wide-angle overhead camera system is used to estimate the true robot
location as an in-door GPS, and is used to compare it with the estimated robot location

via the EKF.
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Overhead Camera -

ARRI-hots sampling
on the printed field

Figure 6.1 Tllustration of the experimental setup bing used to validate the AS
algorithm

6.1.1 Color field

Within this initial testbed, a simple linear field was printed on the lab floor. The
field was physically distributed over a search space of 3.15 m x 2.25m. The camera at a
height of 10.5 m encompasses the entire area in its field of view. Three separate linear
field models, one for each primary color (RGB), are used to generate a color field, with
numerical values:

R=ry+nx+nrny,G=g,+gx+g,y,B=b,+bx+b,y , 6.1)

r, =0.2307,7, =0.0012, r, =—0.00048, g, =0, g, = 0.0002,
g, =0.0018,b, =1.0, b, =—0.00078,b, =—0.001

The sampling mission is for mobile robots equipped with a color sensor to

recover the unknown (to the robot) field coefficients by sampling.
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6.1.2 ARRI-Bots

ARRI-Bots are inexpensive MWSN units built at DIAL that are depicted in the
schematic diagram in Figures 6.2-6.3. The ARRIBot energy harvester consists of a solar
panel and associated electronics for outdoor operation and a piezoelectric energy

harvester that augments an on-board Ni-CAD battery pack.

Cricket
[ Processor &
Radio Module

Javelin Stamp
Microcontroller

' Figre .2 Inexpensive RRI—Bbts V-1 (left) and V-2 (right)

Figure 6.3 Schematic diagram of the ARRI-Bot V-2
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The subsystems of the ARRI-Bot include:

(1) Mechanical subsystem, consisting of an aluminum frame chassis, a
differential drive and a front omni-directional wheel.

(i1) On-board sensor systems, consisting of wheel encoders for dead-reckoning
localization, ultrasonic rangefinders for obstacle detection, and a color sensor for
detecting color printed on the lab floor.

(i11)) Wireless sensor node, consisting of a Parallax Transceiver (for ARRI-Bot
V-1) or a Cricket® processor/radio module (for ARRI-Bot V-2), operating in the 433
MHz frequency band. Each Mote is equipped with a default sensor pack (light,
temperature, etc). The Cricket unit carries ultrasonic transducers for range finding and is
used for both communication and localization.

(iv) ARRI-Bot electronics, consisting of a custom-made PCB board containing
Javelin stamp CPU, and glue electronics for interfacing to all the sensor and wireless
subsystems. In addition, the electronics board contains power management and energy
harvesting circuitry.

(v) The ARRI-Bot power system, consisting of a Ni-MH battery pack, a solar
panel for out-door recharging and operation, and a piezoelectric cantilever array for
battery augmentation.

The intelligence of ARRI-Bot to carry out various maneuvers is regulated by
on- board processing unit, a Javelin Stamp micro-controller. The motivation behind
using a simple Javelin Stamp was to demonstrate that our AS algorithms can be

implemented on a cost effective, and not very powerful computing platform. Cost-
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effectiveness considerations are important for deploying large numbers of simple robot
nodes to sample the environment. For the work presented in this Thesis, our original
goal was only partially accomplished, since the EKF field calculations were performed
on a base-station PC running MATLAB. However, at the time this dissertation was
written, many inexpensive mobile robot units, with more powerful processors have
become available on the market, and they have a similar price target as the ARRI-Bot
V-2. In the future, the AS algorithms should be validated on such hardware, but it is
clear that the results can only improve beyond the results presented here.

ARRI-Bot maneuvers are accomplished by means of easy, structured and object
oriented Java based programming. Further detail about the design of the ARRI-bot can
be found in the MS thesis of DIAL team members Sreenath [141] and Ghadigaonkar
[142]. Figure 6.4 shows a screen capture of the Javelin programming interface
environment, while Figure 6.5 depicts the list of simple wireless commands used to

position the ARRI-Bots.
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1§ JavelinIDE - Paint
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Figure 6.4 Snapshot of Javelin Stamp IDE

Commands Interpretation
F Move Forward infinitely
200 Ilove forward by the specified number of encoder values
fore g mowe for 250 encoder walue,
where 0= encoder value=32767
B Ilowe Backward infinitely
W-2507 Mowe Backward by the specified of encoder walue
e.g move backward for 250 encoder value,
where -32767<enc walue<(
=l Stop
gt Turn Left infinitely
T20 Turn Left for the specified encoder value
0< encoder values32767
‘B Turn Eight infinitely
‘T-20 Turn Eight for the specified encoder value
-32767<encoder value<ll
o Take a color sample

T Switch the crickets mode from radio to Beacon for 15 sec
and then back to radio
A switch the crickets mode from radio to listener for 10 sec

and then back to radio

Figure 6.5 Simple robot commands for ARRI-Bot
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6.1.3 Robot model and dead-reckoning location estimation

A differential kinematic robot model with uncertainty in wheel radii and
unequal wheel base was used in conjunction with a dead-reckoning localization
algorithm. In our simulations presented in Chapter 5, a systematic error is injected into
the system to account for navigational errors that arise due to inaccuracies in

construction and mechanical assembly, ad depicted in Figure 6.6.

O w,

T

r+sr, r+%r

_=

r+sr [+§r
I

=

I+l L,

Figure 6.6 Differential-drive mobile robot with uncertainty in wheel radii and axle
length
The robot runs an onboard position estimator using encoder data and nominal

physical dimensions (lengths, wheel radii, etc) by dead-reckoning. The states of the
robot are the position and orientationX =[x y @] . A discrete time position

K. _ are

drv? "> turn

estimator using the encoder counts A¢, ,A¢, is shown in equation (6.2). K

the actuator drive constants for either actuator in terms of distance, turn per drive count:

A

£, (k)= %, (k-1

)+ K irv—RAPRR + K gy 1 29171

; cos()23(k - 1))

A

%,(k)=%,(k-1)

 Kar-rRAIRR Kap 129171 sin(% k1)
2 3 (6.2)

)23(,{): )?3(k 1)+ Kturn-RAIRR — K

L,

turn—LA¢LrL

X =[X; X, X3]=[x y 0]
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To implement (6.2), a series of Monte-Carlo experiments were performed to
find the constants K, and K, in equations (6.3) and (6.4). The ARRI-Bot is a non-
holonomic robot. DIAL team member Talati [156] considered path planning navigation
algorithms for this robot, but his planner was not used in our work. Instead, we used a
“quasi-holonomic” path planner to validate the AS algorithms. With this planner,
navigating the wheeled mobile robot from (x,,y,) to (x,,,,y,,,) involves a turn (e.g.
pointing the robot to the target) and a move (e.g. moving the robot in a straight line to
the target). Both of these commands involve simple (A¢,,Ad, ) encoder turns.

6.1.3.1 Servo Motors & Optical Encoder

Futaba S148 RC servo motors are used on ARRI-bots. The servo module has a

built in motor, gearbox and the controlling electronics. The direction and speed of the

motors is controlled through PWM pulses generated by a PIC 12F508 micro-controller.
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Figure 6.7 RC servo motors PWM signals [139]

The pulse width determines the direction and speed of the motor, as shown in
Figure 6.7. In order for the robot to move straight, the speed of both motors should be
identical. For negotiating a turn in place maneuver, the speed of both motors should be
equal, but in opposite directions. Ideally, a pulse width of 1.5 ms stops the motors, and
similarly, a pulse width of 1.2 ms should run both motors at the same speed. However,
due to the low cost of the hardware, after continuous use, the motors start drifting. An
auto-calibration code was written to apply different PWM signals to both wheels and
check for the time it takes for the motors to reach certain distance. The program then
compares the two times to adjust appropriate PWM widths for both motors. This
procedure is illustrated in Figure 6.8. Furthermore, the Javelin-Stamp performs only
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fixed-point calculations for localization while navigating, making the implementation of
closed-loop control and KF estimation more difficult to program.

Wheel encoders (WW-01) from Nubotics were mounted on the servos to
measure the angular displacement of the motors. In comparison to the old encoders
600EN-128-CBL on the first generation ARRI-Bot V-1, the WW-01 units are easy to
mount, can be directly interfaced with the processor and are less expensive. Highly
precise maneuverability of resolution less than 3 mm was achieved through the use of
the servo motors and optical encoders. The list below summarizes some of the
specifications for the ARRI-Bot V-2 hardware:

= Encoder Resolution = 64 pulses per rotation
=  Wheel Diameter = 2.75 inches
= Wheel Circumference = 8.639 inches
= Distance traveled in one rotation ~ 21.9 cm
= Resolution Achieved ~ 3mm
By amplifying the encoder resolution to 128 pulses per rotation, a small motion

up to 1.7 mm can be captured.
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Figure 6.8 Left and right wheels motor calibration
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Figure 6.9 Differential drive robot’s navigation from (x,,y,) = (x;,y,;) to

Xt Vi) = (X5 ¥ )

In order to navigate with the differential drive ARRI-Bot, a simple point and
turn maneuver was implemented, as depicted in Figure 6.9. This maneuver consists of a
“turn in place” and point to target, and a “forward move” to the target. To achieve

left/right turn in place, the robot states evolve according to:

X = X
Yier = Yk
Hk+l = ek + KIA¢I > (6.3)
o
Ap =—
?, X

t

where K, is the angle turn per encoder count (left and right encoder counts are equal in
magnitude but with opposite sign), Ag, is change in encoder counts andd is the in

angle turned.

Similarly, to accomplish a "forward” move, the robot states evolve according to:
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Xen =% +K,AQ, COS(@k)
Yia =Y T K, AP, Sin(ek)

O =0, ’ (6.4)
d
Ap, =—
Z K

m

where K 1is the distance covered per encoder count (left and right encoder counts are

the same).

6.1.3.2 Accuracy measure of DR location

The UMBmark test [80, 112], which is a bi-directional square path test, was
performed for measuring the dead-reckoning error of the ARRI-Bot. The results are
shown in Figure 6.10 and they clearly indicate that the true robot position deviates more
from the desired path than the dead-reckoning position. The former involve both
systematic as well non-systematic influences, while later can only capture systematic

CITOrS.
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Figure 6.10 Results of UMBMark (square path) test for measuring dead-reckoning
error. Box of 32x32 square inches along which robot navigates in clockwise (top)
and counter-clockwise (bottom) direction
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6.1.3.3 Fixed-point calculations

Since the Javelin stamp processor doesn’t support floating point operations, a
fixed-point math library was written to perform 32-bit addition, subtraction
multiplication, division and trigonometric operations. This makes the implementation of
calculation such as (6.3) and (6.4) possible. However, in the experimental results
reported in the next section, the AS EKF field estimation calculations run in MATLAB
on the ARRI-Bot base-station and not on the robot.

6.1.4 Color sensor measurement

ARRI-Bot first and second generations are equipped with a TAOS TCS230
color sensor used to validate the adaptive sampling algorithm based on the color
measurement obtained from a linear parametric field, printed color field on the floor.
The color sensor module is comprised of a color detector including a RGB sensor chip,
white LED illuminator and a collimator lens (Figure 6.11). It has an array of photo
detectors each with a red, green, or blue filter or no filter (clear). The filters are

distributed evenly throughout the array to eliminate location bias among the colors.

Figure 6.11 TAOS Color Sensor
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The proportion of R, G, and B at a sampled point varies from 0 to 255, which
are then normalized to values between O and 1. A series of Monte Carlo experiments
were performed to find the repeatability, accuracy and resolution errors of color sensor
measurement at different locations on the printed color field with slightly varying
ambient light to decide for appropriate value of measurement error covariance R. These
steps were taken also to minimize the discrepancy in the printed color field. A
reasonable error of 10% was reached in all experiments for RGB measurement values.

6.1.5 Absolute localization using over-head camera

The overhead camera system serves as a positioning system with low sampling
rate in order to correct dead-reckoning navigation errors. Unlike the dead-reckoning
error, localization using vision doesn’t grow with time.

Robot localization using vision is a simple object recognition problem for the
lab floor image. MATLAB Image Acquisition & Image Processing toolboxes running
on a base-station computer are used to process the camera images to get correct robots’
position and orientation (‘“‘surrogate GPS”). The orientation of the robots can be
estimated by using the robot triangular shape, and calculating properties such as the
centroid, major axis, minor axis and area of the object, and finding the farthest point
from the centroid that lies on the object. A rectangular grid array was used to correct the
wide-angle lens distortion, and a GUI shown in Figure 6.12 was used for manual
wireless control of the rovers, as well as field estimation calculations and display. The
characteristics of the image processing algorithm for our testebed were:

= Image Resolution=3.64 pixels/inch
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Accuracy of robot localization (~17,~17,<5°)

Repeatability of robot localization (<0.17,<0.17,<1°)

The following image processing steps are taken after the subtracted image is

acquired using a custom MATLAB code written for localizing ARRI-Bots:

‘Filling’ to convert the robots pixels to solid objects.

‘Boundary Tracing’ for the objects.

Ignoring objects other than the robot objects by reading
‘MajorAxisLength’, ‘MinorAxisLength’ and ‘Area’ of the objects.
Calculate the ‘Centroid’ of the objects.

Finding the farthest point on the robot object from the centroid

Finding the robots orientations based on the line joining the centroid and
the farthest point.

Acquire the position and orientation of the robot in pixel co-ordinates
system.

Convert the position and orientation in pixel coordinate system to world

coordinate system by incorporating the grid distortion factors.

Results of image processing with our code are shown in Figures 6.12 and 6.13.
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Figure 6.12 Grid (top left), Distortion in the grid image (top right), Image
Segmentation as seen from the MATLAB image (bottom left) and MATLAB GUI
(bottom right) to determine robot position and orientation

-
| =4 = =

y s
£40:450 regolution Image with robots Subtracting the images
image of empty field

Conwerting to B&W Image
with an appropriate Defining region
Threshold

Figure 6.13 Steps involved in image processing for robot localization
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6.1.6 Absolute localization using Cricket beacons

The most common way to use Cricket® Motes is to deploy actively transmitting
beacons on walls or ceilings and attach listener to host devices whose location needs to
be obtained. In the case of our testbed, the Crickets are mounted vertically on the
robots as shown in Figure 6.14 and the robot that needs to be localized is in “listener”
mode. Each beacon periodically broadcasts its space identifier and position coordinates
on a RF frequency channel which listener within radio range can receive. Each beacons
also broadcast an ultrasonic pulse at the same time as the RF message. Listeners that
have line of sight connectivity to the beacon and are within the ultrasonic range receive
this pulse. Because RF travels about 10° times faster than ultrasound, the listener can
use the time difference of arrival between the start of the RF message from a beacon
and the corresponding ultrasonic pulse to infer its distance from the beacon. If the
listener robot can get this distance from three static nodes with known location it can

easily triangulate to find its relative location.
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a3
Beacon A

Figure 6.14 Robot localization from static beacons by triangulation

For an output power of 9 dbm a linear increase in error is observed in the actual
distance and the measured distance from cricket, which is compensated through a

simple correction equation: d =1.1141d —2.1150, plotted in Figure 6.15.

actual measured
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Figure 6.15 Difference in actual distance and measured distance for localization
by triangulation

6.1.7 Camera-projector system

In order to test the sampling algorithms for complex, time-varying, non-linear
fields, the printed color field on the lab floor is no longer appropriate, and instead we
installed a camera-projector system at DIAL, as shown in Figure 6.16. The hardware
includes a projector mounted 22 ft high on the ceiling. The projected image size is 124
x 93 inches and the image resolution is 1024 x 768. The projector is of 3000 ANSI
lumen brightness so that it can perform satisfactorily in bright light in the lab. The
projector is connected to the base-station which runs MATLAB to generate any

complex field that can be projected on the lab floor.
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Figure 6.16 Testbed with simulated fire field projected on the floor from a
projector. ARRI-Bots are shown sampling at various locations for estimating field
parameters. Over-head IR camera is used to aid in localization and for validating
the accuracy of estimated location

6.2 Experimental validation of AS algorithms for linear parametric field

In a first set of experiments, the ARRI-Bot takes color sensor measurements and
sends it to the base-station computer, which runs adaptive sampling algorithms. The
algorithm uses the color sensor and dead-reckoning position measurement from the
ARRI-Bot, and location information from the overhead camera, in order to run the EKF
estimator. The adaptive sampling algorithm then find the next sampling location based
on the minimum variance criterion with the 2-norm, as described in Chapter 3. The flow

chart of the robot operation is shown in Figures 6.17 and 6.18.
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Figure 6.18 Flow of EKF-AS algorithm running on the base-station

Webeam

6.2.1 KF estimation for linear color field with no uncertainty in localization

through camera

Here we present the experimental validation of the case discussed in Section

(3.2.2), when uncertainty in camera measurement is ignored. In this case, we are

recovering

a linear

color

field

with

9

parameters,

therefore

X, =x,X,=y,8,(X,)=x,8,(X,)=y. The base station runs the adaptive sampling

algorithm and commands the mobile sensor to sample at a particular location. The
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mobile sensor navigates to that location by dead reckoning and thus will end up at a
location different than the commanded one. The process and measurement model and
updates equations of the sampling algorithm are:

e System Model:
A/m:Ak:[ro norn 8 & & by b bz]T (6.5)
e Measurement Model:

7 = hk(Ak)+Vk

Ty Tor T X+ 1y

~ (6.6)
8c |=| 8ok T8uXt+8uY| TV
b, by +byx+byyy
0=0,v, ~N(O,R), x, ~ N(x,,P,)
e Effect of System Dynamics:
Ak_+1 = Ak (67)
P =P

e Effect of Measurement:

I x y 00 O
H,=0 0 01 x y
0 0 O

- O O
= O O
= O O

Ky = Pk_+1HkT+1 (Hk+1Pk_+1HkT+1 +R, )_l

Poy=Up —K H )P,

A A - A Forst F X+ oy
Aa =AL K {Zlm - hk+1 }: A, + Ky K+l | T g:(;kﬂ + Sszﬂx + §;k+1y
by + by X+ by y

»@‘z o =1

(6.8)
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6.2.1.1 Simulation based on experimental setup

We first performed a simulation using similar uncertainty values as in the
experimental setup. We assumed the following true values for the unknown field
parameters, as they were used to print the lab floor image:

R=r,+rnx+nrny,G=g,+gx+g,y,B=b,+bx+b,y (6.9)

r, =0.2307,7 =0.0012, , =—-0.00048, g, =0, g, = 0.0002,
g, =0.0018,b, =1.0, b, =—0.00078,b, =—-0.001

In Figures 6.19 and 6.20, a comparison of Raster-Scan sampling and AS is
presented. The simulation runs until the 2-norm of error in coefficients reduces to small
values. The simulations also show the convergence of all the parameters to their desired
value. Initially it was assumed that the robot samples in a grid of 1 sq inch (6.55 cm?)
which leads to a search space of 126 x 90 points for the AS algorithm. In order to
decrease the run time for the algorithm, the grid size was increased to 91.7 cm?, and
only the center of the cell was considered for sampling.

By using dead-reckoning, the error in position and orientation for the robot
increases as the robot travels more distance. Furthermore, the AS simulation results in
the robot taking long-jumps, thus increasing sampling time. As a result, we also
compare the results with a simple Greedy adaptive sampling strategy in Figure 6.21.
This scheme has a 1-step horizon search for the next sampling location.

The above three algorithms are compared in the Table 6.1 with respect to
estimation error in the unknown coefficients below 0.2. It can be seen that Greedy

Adaptive Sampling lies somewhere in between raster scan and simple adaptive
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sampling in terms of number of samples, but takes the least time to reconstruct the field.
As expected, the standard Adaptive Sampling algorithm takes the least number of

samples. At the start of all simulations, the EKF assumes zero values for R, G, and B.

Samples taken on original field

Morm of error:0.19582

Estimated Field after:28 Samples
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Figure 6.19 Simulation results based on experimental setup for raster scanning of
a linear field. Simulation stops when norm of error covariance of field parameters
drops below 0.2. It takes 28 samples when Raster scanning is done
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Samples taken on original field
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Figure 6.20 Adaptive sampling algorithm takes 13 samples but more time to
reconstruct the field
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Figure 6.21 Greedy adaptive sampling algorithm is the best trade-off between
time and number of samples as it takes 20 samples but least time to reconstruct
the field
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Table 6.1 Comparison of standard AS, Greedy AS & Raster scanning for linear
color field (Simulation Results)

— Time Taken | norm(F)

samples
Raster Scan Sampling 28 4.0077 min | 0.19582
Adaptive Sampling 13 48225 min | 0.19576
Greedy Adaptive Sampling 20 3343 min | 019497

6.2.1.2 Experimental results

Experimental results in Figures (6.22)-(6.24) are now presented to confirm that
the Greedy AS algorithm recovers the color field in minimum time as shown in Table
6.2. The results illustrate the convergence of the field parameters to values close to
nominal after successive samples are taken. The rate of convergence of the three

algorithms can be compared through the speed of convergence for r,,g, and b,. The

figures also show a camera snapshot of the actual field, estimated field and norm of the
error in these coefficients that decreases with the number of samples. The reason for the
slight discrepancy is not color measurement or estimation errors, but differences
between screen and printer colors on the lab floor. In these experiments, the robot
localization is obtained through the overhead camera image, as opposed to Dead-
Reckoning.

Table 6.2 Comparison of standard AS, Greedy AS & Raster scanning for linear
color field (Experimental Results)

No. of | 2-norm of “error

Algorithms Samples | in coefficients”

(n) after ‘n’ samples
Raster Scan 50 0.378
Adaptive Sampling 15 0.365
Greedy AS 30 0.499
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Carmera Snap of the Printed Field
50 Samples for Raster Scan Sampling
Estimated Field after 50 samples
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Figure 6.22 Experimental results for Raster Scan Sampling of linear color field
shows estimated field after 50 samples

Catnera Snap of the Printed Field
15 samples for Adaptive Sampling

Estimated Field after 15 sammples

2Nclrrn :0.36514 04 : : 01 : i 0.05

i, rl &2 020

0 frrreass 0
il Lo 01 Lo 0.05
0 & 10 15 0 5 10 15 0 5 10 15
0.4 0 0.05 —
i R L
g0, gl & g2 02} [ e - 0 ferrairere
il 01 — opsle
0 5 10 15 0 5 1 15
1 02— 02
b0, b1 &bZ 05} 0 [ dewed L
gl b ¥}7) B i) [
0 & 10 15 0 5 10 15 0 5 10 15

Figure 6.23 Experimental results for AS shows estimated field after 15 samples
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Clamera Znap of the Printed Field.
30 Samples for Greedy Adaptive Sampling
Estimated Field after 30 samples
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Figure 6.24 Experimental results for GAS shows estimated field after 30 samples

6.2.2 KF estimation for linear color field with uncertainty in localization
through camera

In this section, we present experimental validation of the case discussed in
(3.2.3) ,when uncertainty in camera measurement is added to the model. Hence there

are now two measurements, namely Y, for localization and Z, for field measurement.

The EKF equations consist of:
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e Effect of System Dynamics:
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e Effect of Measurement:
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Through Monte-Carlo experiments, the following uncertainties are determined and

added to the EKF model:
(i) Camera accuracy error of zero mean and (2,2, 2°) variance, meaning that

our surrogate GPS measurements are accurate within 2 inches and 2 degrees.

(i) Color sensor uncertainty of zero mean and (0.01, 0.01, 0.01) variance,

meaning that the color sensor accuracy is 1% RGB.

In Figures 6.25 the lines in Cyan color shows the dead-reckoning robot location
based on the encoder counts. It is observed that the dead-reckoning error increases as
the distance covered increases. At every sample, a color measurement is taken by the
robot, and the overhead camera finds the robot location, which is shown in Red color.

Location information and color sensor information are fused in the EKF model in
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(3.2.3). The estimated robot locations are shown in Black color. After taking 25
samples, error-covariance in  (x,y,0) drops from  (10%,10%,10%) to
(0.8239, 0.8257, 3.5078) . The error covariance for the color states drops to:

(0.0034, 9.43*107,1.58*107°, 0.0034, 9.44*107,
1.58*107°, 0.0034, 9.40%1077, 1.58*10°°)

The total norm of error in coefficients after 25 samples is 0.8741. Qualitatively,

the AS algorithm recovers the printed image on the lab floor very well.

Camera Snap of the Printed Field

Onginal Field & Samgling Pts: Est(Black), DR{Cyan), True{Red)

Estimated Field for Greedy Sampling after 25 samplas

Original RGB

] s et I FERCUE Tt PP

Estimated RGB after 25 samples 'Su 1‘0 2:[| 30 0 1‘0 20

Figure 6.25 Experimental results for GAS when location information from camera
and color measurement is fused in the EKF. Figure shows the field convergence
after 25 samples considering the camera uncertainty
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6.2.3 KF estimation for linear color field with no camera for localization

In this experimental validation for the case presented in section (3.2.4), only the
color measurement Z, is available. In this case, the color sensor measurement is used
for field estimation as well as for the robot location estimation. In other words, we are
using the color measurements to aid in the localization of the robot. The system model
and update equations are the same as the previous case, but measurement equation are
now:

e Measurement Model:

Z =hk(Xk’Ak)+vk

i;c Tok T X T 1 Vi (6.14)
8k |=| 8ok T 8uXi T8 Vi [TV
by by +by X% + Dy y,
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Results indicate that the field parameters converge to values close to the actual

values for 10 samples, after which the norm of error start to increase rather than
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decrease, due to the accumulation of dead-reckoning errors. Hence it is a good idea to
estimate the field for a few samples, then stop the field estimation and switch instead to
improving the localization using the estimated field. Here the location estimate stays
close to the dead-reckoning estimate instead of getting closer to the true robot location

(Figure 6.26). After taking 25 samples, the error-covariance in (x,y,f) drops from
(10%, 10*,10%) to (90.5653, 65.9856, 0.9902). The error covariance for the color states

drops to:

(0.0058, 1.7359*107°,2.7066*107°, 0.0079, 3.0633*10°°,
4.1337*107°,0.0066, 1.4988*107°°, 2.3830*10°°)

The total norm of error in coefficients after 25 samples is 1.3568. In this case
again, the AS algorithm again recovers the printed image on the lab floor as shown in

Figure 6.26.
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Camera Snap of the Printed Field
Original Field & Sampling Pts: Est{Black), DR{Cyan), True(Red)

Estimated Field for Greedy Sampling after 25samples

1 T T 0.015 T T 0.04

Original RGB

Estimated RGB after 25 samples

Figure 6.26 Experimental results for GAS with location estimation from color
sensor measurement when location information from camera is not available.
Figure shows the field convergence after 25 samples

6.2.3.1 Simulations showing the effect of field measurement error on
localization and field estimates

As expected, since only the field sensor measurement is used for localization,
the increase in sensor noise adversely affects both the estimation of the field, as well as

the localization of the robot.
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In Figures 6.27-6.30, the lines in cyan color show the dead-reckoning robot
location calculated from a differential drive kinematics without using geometric and
encoder uncertainties. The location estimate based on the color sensor measurement
EKF is shown in yellow, while the “true” robot position calculated from differential
drive kinematics with added geometric and encoder uncertainties is plotted in red. The
“true” sampling locations correspond to measurements of position using the overhead
camera. As expected, the dead-reckoning error increases as the robot covers more
distance.

By comparing figures 6.27-6.31 it is clear that the location estimate is close to
the true location for small errors in color sensor measurement. Figure 6.31 shows that
large discrepancies in both the estimated field and robot position result for large

measurement uncertainties.

Criginal Field & Sampling Pts: DR (Cyan), True(Red), Est(Yellow)  Estimated Field after [25] Samples
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Figure 6.27 Uncertainty of (0.01, 0.01, 0.01) in color sensor measurement: Field
estimate converges and localization error is very small (after 25 samples)
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Criginal Field & Sampling Pts: DR (Cyan), True(Fed), Est(Yellow)  Estimated Field after [25] Samples
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Figure 6.28 Uncertainty of (0.1, 0.1, 0.1) in color sensor measurement: Field
estimate converges and localization error is very small (after 25 samples)

Criginal Field & Sampling Pts: DR (Cyan), True(Red), Est(Yellow)  Estimated Field after [28] Samples
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Figure 6.29 Uncertainty of (0.35, 0.35, 0.35) in color sensor measurement: Field
estimate converges but with a marginal error and localization error is large
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Original Field & Sampling Pts: DR (Cyan), True(Red), Est(Yellow)  Estimated Field after [25] Samples
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Figure 6.30 Uncertainty of (0.45, 0.45, 0.45) in color sensor measurement: Field
estimate diverges and localization error is unacceptable (after 25 samples)

Table 6.3 Effect of sensor measurement error on estimated field parameters

Sensor Norm of Error in
measurement estimated parameters
error (R) (after 25 samples)
0.01 1.0240
0.1 1.0316
0.3 1.0911
0.35 1.1995
0.45 1.2462
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Error
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Figure 6.31 Difference between the True and Estimated robot location versus the
number of samples for different sensor measurement errors

In this Chapter, experimental results of sampling with simple ARRI-Bot
wireless mobile robots are presented for sampling of a linear color field. We used a
single robot in several scenarios related to the type of sensor measurements that are
available to localize the robot. Different methods to localize the robot were employed,
including relative localization using optical encoders, and absolute localization using
Crickets and overhead camera. Results clearly demonstrate that in the absence of
relative location information, the joint-EKF and the field distribution measurements can
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help improve the location estimation of the robot beyond dead-reckoning. Furthermore,
the performance of sampling algorithms AS, GAS and RS is similar to the simulation

results, with GAS showing the shortest time to recover the color field.
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CHAPTER 7

MULTI-ROBOT ADAPTIVE SAMPLING

If the environment is large, it may be impractical for a single robot to navigate
to many sampling locations, even in the presence of efficient sampling algorithms.
Using multiple robots, the sampling area can be divided into smaller regions, thus
reducing the navigation time. Furthermore, since complex fields are represented by
hundreds of parameters, it is computationally cumbersome for a single robot to compute
and store all parameter estimates and the uncertainty measures. It also quickly becomes
unfeasible for individual robots to run a large EKF-AS algorithm, and share large
covariance matrices wirelessly. Furthermore, with multi-robot sampling, the resources
can be allocated efficiently if some resources are busy or not available.

If we somehow can distribute the filter computation among multiple robots, the
number of computations performed by all the robots will be greater than the processing
by just one robot doing sampling. However, we expect that the speed of convergence
and reduction in complexity that will be gained is significant. With a single robot, the
total field estimation time includes the time necessary for navigation, sensing and

computations of the estimate (as there is no communication). With multiple robots, the
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field estimation time includes the time taken for sensing, computation, communication,
and final fusion to recover the field. We expect that the speed of convergence increases
using multiple robots simply because of sampling in parallel, and the navigation time
reduces significantly compared to modest increases in computation, communication,
and fusion.

Our proposed parametric adaptive sampling algorithm, EKF-NN-GAS,
represents a complex field with sum of overlapping Gaussians, which means that each
sampling instance in a region gains information about the parameters which have
dominant effect in that region. Therefore, in order to distribute computations, we need
to fuse the parameter estimates and construct the map of density distribution.

This problem is similar to reformulating the algorithm from a conventional
single sensor, single processor system to a multi-sensor, multi-processor system.
Distributed algorithms have been used before in many applications, and the degree of
parallelism varies from algorithm to algorithm. Example includes target location
estimation using several sensors, and fusing the measurement either at the central
station or at each sensor depending upon the degree of parallelism of the multi-sensor
fusion algorithm [35]. Another example is formation control for multiple robots [157].

As discussed in Chapter 2, decentralized and distributed KF are two different
problems. In a decentralized algorithm, the filter is full-order, which means that every
local filter carries partial information about all parameters, and the information is shared
to reach consensus. The objective of distributed algorithms is to efficiently decompose

the full-order filter into several reduced-order filters, in order to reduce the
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computational complexity and communication overhead, and hence improve the
scalability. It can be said that decentralization is the first step towards efficient
distribution. Decentralized approaches are good enough for applications involving a
small number of states such as tracking of objects, etc. But problems such as parametric
sampling involve hundreds of parameters, and hence distributing the filter is very
important.

This Chapter focuses on examining completely and partially centralized,
decentralized and distributed multi-robot computations, and formulating a sampling
scheme which is efficient for running the proposed multi-robot adaptive sampling
algorithm. Section 7.1-7.3 summarizes the existing approach for completely centralized,
completely decentralized, and partially centralized federated filters respectively. Section
7.4 presents the distributed federated Kalman filter along with description of
partitioning of sample space, and the distribution of computations and reduction of
communication overhead. Finally in Section 7.5 and 7.6 we discuss the simulation and
experimental results respectively to demonstrate the effectiveness of the distributed AS
algorithm.

7.1 Completely centralized filter

In a completely centralized sampling approach, each robot j takes sensor

measurement Z;, ., and transmits it to the central processor, which then calculates

parameter estimates A, ,, and error covariances P, ,, . The central processor computes the

estimated error covariance and parameter estimation using an equation similar to
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equation (3.7), with the difference that here it fuses multiple measurements from N
robots:

-1
_ 1 _ N
P, = [(th) 1 + G/<T+1R/:1Gk+1 = {(le) 1 + ZG£k+1R;,Ik+1Gj,k+1
j=1

Z, 8 (Ak_ﬂ ) . (7.1)

. z (A
_ A- T p-l 2,k+1 81 Ay
A = A + P Gra Ry . - .

L Zy s 8k (Ak_ﬂ) ]

Robot #1
| Sensor |
(1) Transmit Sensor
Measurement
Robot #2
| Sensor | \‘_\—\1
Central Filter
(2) Calculate estimate of
all parameters
Robot #N
| Sensor |

Figure 7.1 Completely centralized AS algorithm

Figure 7.1 illustrates the completely centralized approach, in which all robots
transmit their sensor measurement to the central filter, which then calculates the field
estimate using equation (7.1). This type of scheme is simple, as there is little
communication involved and no redundant computations. But the disadvantage is that

the sensing robots do not carry any information. Hence, they do not know where to
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sample next until told to do so by the central processor, which is running a large
algorithm receiving asynchronous data.

7.2 Completely decentralized filter

For a completely decentralized filter implementation, each robot runs the AS
algorithm, and generates new sampling locations within the vicinity of its current
position. The robots take new measurements and calculate only partial estimates of the
field parameters and error covariance. After a few samples, the robots communicate and
share their field estimate information. The parameter estimate and the error covariance
are the two terms each robot needs to transmit to others. Each robot assimilates the
received information using for instance a decentralized EKF scheme similar to [35].

If a completely decentralized approach considered, then an AS algorithm

running on each robot carries the information about all the field parameters, and there is
no data fusion filter. Hence each robot i can calculate the local field estimate fliykﬂy e

and P, . using the following equations:

1

_ - ¥t T -1
Pz',k+l,LE = [(Pi,k+1) +Gi,k+lRi,k+lGi,k+l

k X L (7.2)
A = Aijk+l + Pi,k+1,LE Giy,-kJrl (Ri,k+1 )_l [Zi,k+1 - gk+1 (Xk+1 ’ Ak_+1 )]

i,k+1,LE

Robot i acquires the local estimate A‘i’kﬂy and P, from the other (N —1)

robots and assimilates it to get the complete information P, and fliykﬂ. The following

assimilation equation need to run on robot i :
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(P = Po)” + 2P ) =P

j=1

' (7.3)
~ _ 1A= N 1A _ I
Ai,k+l = Pi,k+l|:(Pi,k+l) Ai,k+1 + Z[(Pj,kH,LE) Aj,k+1,LE _(Pj,k+1) Aj,k+l ]}

j=1
Figure 7.2 illustrates the completely decentralized filter in which each robot has

a local filter to compute local estimates and a global filter for assimilating the estimates

acquired from other nodes and generate the global field estimate.

Robat #2
| Sensor ]
| Local Filter I
[ GlobalFiter |
Robot #1
(3) Calculate ’ Bansor |
complete | |
Estimate of all Local Filter
Robot #3
paramelers | ™ Giobal Filter | | Sensor 1
(2) Receive [ Local Filter |
partial Estimate =
. _ g [ Global Filter |
I c{;al}er?ﬂsT;t f parameters
calculated on ek
robot #1
Robot #N
Sensor (3) Calculate
complete
| Local Filter | | Estimate of all
[ GlobalFilter || Paremeters

Figure 7.2 Completely decentralized AS algorithm

The advantage of this approach is that it does not involve any approximations,
and there is no dependence on a central filter, at least for computing the local estimate.
Also the objective of sampling in parallel can be successfully achieved. The
disadvantage of the algorithm is that it is inefficient in terms of communication and

computational requirements. The network has to be fully connected and there is

194



excessive communication. This type of algorithm is good for applications such as target
tracking, because the problem involves estimating only few parameters (such as
location, speed, etc of the target). Hence, the distribution of computations may not be
that important if the number of parameters is small. For an adaptive sampling algorithm
running such that each robot has a designated sampling region, different robots carry
better information about different parameters. Hence, a loss of information from only a
few robots will make a significant difference to the field estimation result. This is not
the case for target tracking, where a loss of information from one or two nodes does not
significantly impact the accuracy of estimate, if enough nodes can still track the target.

For an adaptive sampling scenario, if, for example, a field is represented by 100
parameters, running this decentralized algorithm would require each robot to calculate
the local estimate of 100 parameters, and to wirelessly transmit an error covariance
matrix of size 100x100, and a parameter estimate vector of size 100x1 to every other
robot. Clearly, such a scheme would be very inefficient and not scalable.

7.3 Partially centralized federated filter

A tradeoff approach can be adopted for sampling, in which each robot i takes
sensor measurements, estimates local error covariances and field parameters, and
transmits this information to the global filter for assimilation, in a similar fashion to the
approach proposed in [137]. Each robot runs equation (7.2), but the fusion is done only

at the fusion filter using equation (7.3).
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Figure 7.3 Partially centralized federated AS algorithm

Figures 7.3 illustrate the centralized federated filter in which each robot
calculate a local estimate and transmits it to the fusion filter, which then computes the
global field estimate. The advantage of this approach is that there is less communication
compared to the completely decentralized case. Although none of the robots carries
complete information about all parameters, this approach will be more efficient than the
centralized implementation, because adaptive sampling algorithms can run based on the
knowledge about local parameter estimates. The formulation of the filter can be
implemented in a general approach by assuming that each robot carries some
information about all the parameters. For multi-robot sampling performed in such away
that sampling area for robots is assigned apriori, it is quite reasonable to assume that

every robot carries information about some parameters and no information about others.
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This assumption can be used to distribute the filter equations, as described in the
following section.

7.4 Distributed Federated Kalman Filter (DFKF)

In this section we describe an algorithm to distribute the computations of the
field parameter estimates among multiple robots, and we show that the scheme is
efficient in terms of communication and computation overhead. The sampling area is
divided, e.g. each robot is responsible for sampling certain regions and sets of
parameters. A block diagram of the distribution scheme is shown in Figure 7.4.
Compared to the approach presented in previous section, such a distributed scheme

involves the transmission and computation of only certain parameters.

{2) Transmit local
estimate of unigue

(1) Estimate Robot #1 and commaon
local estimate of | Sonsof | parameters that
unique and has changed to
comman | Local Filter | fusion filter (4) Transmit
parameters global estimate of
using local filter unique and
commaon
parameters to
Robot #2 robot #1
[ Sensor | Fusion Filter
| Local Filter | ‘\\\_‘“
- | Global Filter |

(3} Calculate global
estimate of all
parametars

Robot #N
| Sensor |

[ LocalFilter |

Figure 7.4 Distributed federated AS algorithm
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7.4.1 Partitioning of sampling area

A method is clearly needed to efficiently divide the sampling area into clusters,
in order to run a parallel AS algorithm with multiple robots. Fuzzy c-means clustering
(FCM) has been used in many applications for classification of numerical data [51]. The
basics of FCM were presented in Chapter 2. Moreover, Centroidal Voronoi Tessellation
(CVT) diagrams [50], have been recently proposed for forming non-uniform size grids
to better explore high variance areas for non-parametric distributions [15]. Here a
scheme is proposed in this thesis to efficiently divide the sampling area for parametric
distributions using both FCM and CVT. In this approach, the FCM algorithm clusters
based on estimated location of the center of approximating Gaussians.

The implementation of the CVT diagram is based on Lloyd’s algorithm [50],
and uses the centroid locations acquired by fuzzy clustering to fuse all points in discrete

space that are closest to the centroid as a single group. Mathematically, a point p on

the field is part of the cluster r if:

|p—cr|S|p—cS, s=L..C,s#r. (7.4)

As a result, more Gaussians will overlap in those areas where there are large
field variations. The use of fuzzy c-means clustering and the CVT diagram for area
classification results in regions which have more variations to be as small as it is
required in order to sample them thoroughly. The area with less variation, though large,
requires less samples, since it is represented by only a few parameters. The idea is

illustrated in the simulation of figure 7.5, where we partitioned the sampling space of a

non-uniform distribution represented by L=100 Gaussians into 8 regions.
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Figure 7.5 Sampling area with Gaussian field centers partitioning performed in
two steps using FCM and CVT
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Figure 7.6 Three categories of parameters (Unique, Common and Uncorrelated)
can be formed if DFKF approach is used along with partitioning of sampling area
for each robot

Individual robots are only interested in the parameters that are either unique to it
or common with other robots. These parameters fall under three categories of obvious
significance, referred here as: common, unique, and uncorrelated. Common parameters

are most crucial to the field estimate, as they exist near the border of the sampling areas.
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The sampling information from multiple robots contributes to the estimation of
common parameters. As shown in figure 7.4, only the estimate of common and unique
parameters that have changed need to be transmitted to the fusion filter. Furthermore,
the cross-covariance terms of unique states with uncorrelated states can be assumed to
be zero. Similarly, some of the common states are not correlated with the uncorrelated
states.

7.4.2 Distributed computations and communications

The objective of the work presented in this section is to modify the formulation
of a completely decentralized federated scheme, in order to reduce communication and
computational load. This formulation is new because it considers the cross-covariance
terms of neighboring Gaussians and ignores the ones which are far from each other as a
tradeoff between accuracy and computational complexity. Accurate DKF is not possible
in this adaptive sampling problem because local measurement models are not available.
Furthermore, the use of global measurement models on each node requires the estimate
of all parameters, which will contradict the motivation behind the implementation of
DKF. There are other schemes that handle the error covariance terms “very lightly”
such as Kalman Consensus schemes, which take the average of error covariance of
parameter estimate in order to implement the DKF with only neighboring nodes

communication [29].
EKF has O(n’) computational complexity if each sample updates all the S

parameters of the n-dimensional parametric field. However it can be assumed that a
single sample affects only neighboring parameters. With this assumption, the algorithm
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can run in distributed fashion, and sampling nodes computation complexity can be
reduced. Only the fusion filter’s complexity remains of order O(#n’), because it needs

to combine information about all the parameters. However, this central field parameter

fusion process occurs less frequently.

Table 7.1 Comparison of computational complexity and communication overhead for
centralized, decentralized, federated and distributed federated filter

Fusion .
Robot Cirtor Combined
Centralized 7 3
- N
Filter O(Nmn™) O(Nmn') X Nm)
a?t‘;?”tra lized Ol + (W -1)pr) - ol + (N -1)pr’) OV -1 pi?®)
Decentralized - 3 7 ; ¢
Federated Filter Omr’) Olpr’) O(Nmn™ + pn’) O(Npn' )
Distributed min’ , mn pn’
Filter O[ e ] O(pn’) o N TP e, —

Table 7.1 illustrates a comparison of computations and communication
complexity for centralized, completely decentralized, federated decentralized and
distributed filter. Let N be the number of sampling robots, m is the number of sensor
measurements per robot, n is the number of field parameters, and p is the number of
times robots communicate to share their information.

For the centralized filter, the sensing robots do not perform any computation.
Hence, the computational and communication complexity are O(Nmn’)and O(Nm)

respectively.
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For a completely decentralized filter, the computational complexity to calculate

the local estimate on each robot is O(mn”), and to calculate the global estimate on each
robot is O((N —1)pn?), after taking estimates from (N —1) robots at a frequency of p .
Hence the combined computational complexity becomes O(Nmn® + N(N —=1)pn’). At

the same time, the communication complexity is O(N(N —1)pn’) .

In order to reduce the communication overhead and computational complexity,
a federated filter calculates the global estimate on the fusion filter, which reduces the
computational complexity to O(mn’ + pn’), and the communication complexity to
O(Npn?).

Finally, for the proposed distributed version of federated decentralized filter,

instead of calculating n states on a single robot, we simply calculate the estimate of
n/N states on a single robot. This approach reduces the computational and
communication complexity to O(mn’ / N* + pn®) and O(pn’ /N?), respectively.

Let’s now assume that the field classification includes a large cluster for a
continuous field distribution. A large cluster is defined as the one whose parameters are
independent of parameters outside that cluster. This means that the Gaussians
representing this large cluster do not overlap with other Gaussians outside the cluster.
Furthermore, let’s assume that there are L parameters in a large cluster, and that a
cluster head robot is in-charge of carrying the updated parameters estimates and the

error covariance of all L parameters.
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Figure 7.7 Centers of Gaussians that are close to sampling locations x, and x, ,,

The large cluster will contains smaller clusters. A small cluster is defined as one
whose parameters are estimated by the same robot for a span of time until the
tessellation changes. The participant parameters, and hence the shape of a small cluster
might change after some samples are taken and as the parameter estimates change.
Parameters of one small cluster can be dependent on parameters of another small cluster
around it. Furthermore, let’s assume that there are S parameters in or around a particular
small cluster that are expected to change because of sampling for next few samples by a
particular robot. Assume M parameters are expected to change by sampling at a
particular location. In our scheme, instead of computing the error covariance and
parameter estimate of size S, each sample updates only M parameters.

Summarizing the clustering parameters, and referring to the diagram in Figure
7.8, let

N = Number of sampling robots

L = Parameters in large cluster

S = Parameters in or around small cluster
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M= Parameters that are expected to change by sampling a particular location
C= Parameters whose estimates have change so far since last update from

cluster head
P, =Error covariance of L parameters which includes unique, common and
uncorrelated parameters

P; =Error covariance of S parameters which are either unique or common
P,, =Error covariance of M parameters

P, =Error covariance of C parameters

AL =Estimate of L parameters

A

A, =Estimate of S parameters

A

A,, =Estimate of M parameters

A

A, =Estimate of C parameters

P, AL are carried by the cluster head
McCcSclL

8. (X,,A, ) =sum of L Gaussians
gs(X,, Ag ) =sum of S Gaussians
8w (X,, A, )=sum of M Gaussians

Sampling in region M, the field measurements are given by:

Zii = 8Ky A i) FVikn ® X As i) Vikn ® 8(X b Ay i) Vg (7.5)
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M
g(Xk+l’AM,k+l) = zg(XkH’Au,k-H) ) (7.6)

u=1
where M Gaussians are the ones whose centers are closest to the currently sampled

location X, by robot i, and

_ 08 (Xpt> Ay i)

GM,k+l -

cR™M G _ ag(Xk+1’As,k+1)
» Ug ~

aAM K+l 6AS K+l

eR'™. (7.7

8(X ., 1»A, ;) 1s sum of L Gaussians, but for a particular sampling location it

will only affect M Gaussians considerably, and to a lesser extent other Gaussians. These
M Gaussians can be assumed to be the ones close to the currently sampling location.
The dimension of the matrices is reduced by binary transformation matrices U that act
as masks over the actual dense EKF matrices. The communication between robots is
reduced by transmitting only the parameter values that changed since last update,
instead of transmitting the information about all the parameters every time. The
transformation matrix is also sent along with the estimates to the fusion filter in order
for the cluster head to know which parameters have changed since the last update. The

proposed algorithm consists of the following steps:
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(3) Run the
assimilation

equation

Robot #N
(cluster Head)

12) Esti
C parameters
that has
changed since
last update

Robot #2

Robot #1

S-parameters

Robot #3

L-parameters
Figure 7.8 Partially centralized AS algorithm with distributed computations

Distributed Federated Kalman Filter (DFKF)

Step 1: At the Cluster head transformation from (P, ,, AL’k) to (P, As,k)

The cluster head evaluates the initial estimate of (PS,k’AS,k) by first generating

the transformation matrix U, and transmitting (PS,k’AS,k) to robot 1. The matrix

l]L&k -

_qrT
ng __[]L&kliﬁkl]LSk

A

_77T A
Agy =U s A

=U STL! . 1s kept in memory by the cluster head for the final assimilation stage.

(7.8)

n Sx1 SxS 4 Lxl LxL LxS
Ag, eR7TLP L, eRTA L, eRT,P L, eRT U, eR

Step 2: Transmit estimate of S parameters (P, ’As,k) to Robot #1

Step 3: Take measurement sample and calculate estimate of M parameters

(P 15 Ay ) Vi
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3 B 1 .
Pyin = [(UgM,kHPS,kUSM,kH) + GAT/I,kHRkilGM,kH} e R
A =UlsAsi 4 PusaGlra Re) 2o - (X, Ay ] €™ 7.9)

_ 0g(X, ’Aﬂ},lm) c RIM

aAM Jk+1

M k+1

1 Mx1 MxM Sx1 SxS SxM
AM,k+1 EER ’PM,k+1 ESR ’AS,k+1 EER ’PS,k+1 EER ’USM,k+1 ESR
Step 4: Transformation from (P, ,.,,A, ,.,)to (P ,Aq,, ) using:

PC,k+1 = UZOIPC,kUCOI + UAT/IC,kH (PM,kH - USTM,k+1 PS,kUSM,kH )UMC,k+1 (7 10)

N _ r oA T A T A
AC,k+l - UCOIAC,k + UMC,k+l (AM,k+l _USM,k+1AS,k)

A Cxl cxC R Copxl CyxC,
Ay ERTLP L ERTALLERT P ER ,

MxC CoxC
Ucrn €R7 U €R

A

Step S: Transmit estimate of (P.,,,,A,,,Uc,.,) parameters to cluster

head when requested

Step 6: At Robot 1: Transformation from (PM,M,AM,kH)to (PS,,M,AS’,M) for

further sampling. Go to step 3

_ T T
PS,k+l _PS,k + UMs,k+1 (PM,k+l - USM,k+lPS,kUSM,k+l )UMS,k+1

_ T T -1
= Ps,k + UMS,k+lGM,k+1Rk+lGM,k+1UMS,k+l

N oA T ~ T ~
As,k+1 - As,k + UMs,k+1 (AM,k+l - USM,k+1AM,k ) (7'1 1)
n Sx1 xS A Mxl1 MxM MxS
AS,k+1 € SR ’PS,k+1 € SR ’AM,k+1 ESR ’PM,k+1 ESR ’UMS,k+1 ESR

_yqT
UMS,k+1 - USM,kH

Step 7: At Cluster head: Run the assimilation equations after n steps:
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(PL,k+n)_l = (PL,k)_l + i [(PL,k+n)_l - (PL,k)_l ]j

N (7.12)
Aupn = PL,,C{(PL,,{)I A+ DB Ay~ (B A ]}
J=1 Jj
where,
[PL,k+n ]j = [PL,k + U.STL,kJrn (UgS k+n PC,k+nUCS,k+n - UZS,/{ PC,kUCS,k )USL,k+n ]j (7 : 1 3)

N 1A T T n T %
[AL,kJrn Jj - [AL,k + USL,k+n (UCS,k+nAC,k+n - UCS,kAC,k )J]

Let’s now consider an example for the proposed algorithm:

Assume that there are 10 parameters in a small cluster S, to be calculated by a

robot. The error covariance P, and parameter estimate Ag, matrices can be written as:

i Pu  Pr P Pu Pis P P Pis P Puo | _al |
Pa Pn Py Pu P P Pu P P Pao a,
Pyt P P P Pss P Py Pz P Psuo a;
Pa  Pu Piz Pu Piss P Py P Pa Dy a,
Psi P2 Pss Pss  Pss  Pss  Psi Pss  Pso Psio ds

Py, = A =
Psi P2 Pz Pea  Pes  Pes Pe1 Pes  Peo  Pero ag
Pn Pn P Pu P P Pn P P Pro a;
Psi Ps2 Pss Psa Pss  Pss  Psi Pss Pso Psao ag
Poi Poa Pos Pos Pos  Pos  Por Pos  Poo  Poro ay
L Pio1 Pz Pz Posa Pios Pios Pos Pios  Pos  Pioo | L %10 |

Let the sample taken at time (k +1),(k+2) and (k+3) respectively estimate

the parameters (2,4,7), (3,4,6) and (1,2,4,9). Then,

a,
a, as
a,
Ay ay |, Ay sa a, | Ay i a , and
4
a, ag
Qg
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PM Jk+1

PM,k+3 =

P
P
P

P
Px
Py
Po

Py
P4
P

P4
P
Pus
Doy

Pro
P
P
Py

’PM,k+2 =

P
P
Pe3

P
P
Pes

P
Pas
Pes

The transformation matrices at these instances will be:

USM,k+1 =

S O O O o o o o~ O

S O O O O o~ O O O
S O O = O O O O O O

> USM,k+2 =

S O O O o o o ~—= O O

S O O O O o = O O O

S O O O O O O O O

The error covariance calculated at instant (k + 2) is:

Uco =

o o =

UMc,k+2 =

o o O

o o O

oS = O

o o =

oS = O

o o O

T

U

- O O

- O O
S O O

P

CO1~ C,k+1

Ch+2 =

U
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7.5 Simulation results

7.5.1 Sampling of complex field with centralized AS algorithm using 4 robots
along with partitioning of sampling area

A complex fire field of size 124x90 pixels generated using a CA simulation is to
be reconstructed in parallel by sampling using 4 robots. An initial approximation is
acquired by training the RBF neural network with 30 neurons with spread factor of 25.

The numerical covariance assumptions are:

Py =5P,=57F, =107, Py =5, Py =5
R=0.01,n=15 p=5

(7.14)

Figures 7.9 (b) and (c) respectively show the initial field, and final estimated
field after 172 samples. Figure 7.9(e) indicates the locations where the 4 robots took
samples, represented by different symbols. It also shows the 4 regions formed using
fuzzy c-means clustering algorithm and the Voronoi Tessellation Diagram, where
different robots sample. Regions are updated after every 20 samples. The partitioning
algorithm is implemented with fcm and voronoi functions of MATLAB. As shown in
figure 7.9 (d) and (g), the parametric error drops from 47.7 to 14.83, and the non-
parametric error drops from 24.34 to 10.62 by taking 172 samples. The estimate of 120

parameters of 30 Gaussians are updated using the centralized AS algorithm.
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The use of 4 robots instead of 1 for sampling also reduces the time for field
reconstruction from 6.7 to 1.2 minutes (more than 4 times reduction). The reason can be
understood intuitively, because by sampling using 4 robots not only the number of
samples per robot reduces, but also navigation time reduces because of a smaller

sampling area allocated to each robot.

Actual Fild Initial Approximate frarm REF NN Reconstructed Field after-172-zamples

Location of Gaussians
Red==initial, Black==Estimate after 172 samples
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Parametric Error: 2-norm of error covariances Error in actual field and initial estimate Error in actual and estimated field after 172 samples
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Figure 7.9 Sampling operation divided between 4 robots using GAS algorithm to
reconstruct the field. The results plotted are after 172 samples

Table 7.2 illustrates the number of computations and communications involved
in sampling of complex field represented with 30 Gaussian RBF, using 4 robot, and
considering a decentralized and distributed federated filter. Since the decentralized filter
is full-order, it includes estimates of all 120 parameters. The number of computations
performed on the fusion filter is same for decentralized and distributed filter. The
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combined computations for distributed filter are 675,840 compared to 8,631,840 for
decentralized federated filter, e.g. approximately 12 times smaller. Similarly, the
number of data communicated in case of distributed filter is 15 times smaller compared

to the decentralized filter.

Table 7.2 Comparison of decentralized and distributed federated filter for sampling of a
complex field represented with 30 Gaussian RBF using 4 robots

Robot Fusion Center Combined

Decentralized p=lomo10n=120 p:126,n=120,N=4 PN’ + 1)
Federated pCm’n+2me’ +m’ +w)  p(2r’ + 0 N +nN) 8,631,840 — 929,280
Filter — 2,041,000 — 467,840

p=16,m=10,r=30 p=16,r=120,N=4 2
Distributed T P L I i 675.840 PN + 1)
Filter pQumn+ 2m +ov +1) p(2n’ +1° N +mN) ’ — 59,520

= 52,000 = 467,840

7.6 Experimental results

7.6.1 Sampling of linear color field with centralized AS algorithm using 2 robots

A linear RGB field represented by 9 parameters was considered in the
experiments of Chapter 6. The same color field was reconstructed using 2 robots with
an AS algorithm running on the central base-station. A star-network was formed, and
the base-station runs the adaptive sampling algorithm and communicates with two
ARRI-Bots. The base-station uses both robots to estimate the field parameters in half
the time if data packet collisions are not encountered. If the sampling space is
partitioned apriori, the results shown in Figure 7.10 indicate that the color field is again

recovered with reasonable accuracy after 30 combined samples.
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Figure 7.10 Experimental results for GAS with 2 robots showing the estimated
field after 30 combined samples

7.6.2 Sampling of complex fire field with centralized AS algorithm using 2
robots

Experimental results are shown in figure 7.11 for a complex fire field projected
in an area of 124x90 square inches. Figure 7.11(a) shows the field that is generated
using the Cellular Automaton. A low-resolution grid size with n=20 gives 27 (3x3)
samples for training the neural network. We use 20 neurons and a spread factor of 25 to
approximate the field with 80 parameters (20x4). Two robots sample the field in parallel
using the GAS algorithm with grid size p=5 and horizon size 3.

Figure 7.11 (b) and (c) respectively shows the initial field and final estimated
field after 118 samples. Figure 7.11(e) indicates the locations by ‘x’ and ‘o’ symbols

where the 2 robots took samples. As shown in figure 7.11 (d) and (g), the parametric
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error drops from 37.6 to 13.91, and the non-parametric error drops from 39.05 to 15.86
by taking 118 samples. This final non-parametric error is close to what we would get if
we sample data from an actual field assuming a grid size of 5 (which uses 446 samples)

to train the neural network. The numerical assumptions for uncertainties were:

Py =5P,=5F, =107, Py =3, Py =5
R =0.01

(7.15)

The use of 2 robots instead of 1 for sampling also reduces the time for
reconstruction from 6.7 to 2.6 minutes (which is less than half). This can be understood
intuitively because not only the number of samples per robot reduces, but also

navigation time reduces in a smaller sampling area.
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Figure 7.11 Experimental results for estimation of a complex field represented by
20 neurons RBF using 2 robots
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In summary, in this Chapter we propose a distributed federated filter, and a
clustering scheme for the distribution of computational and communication load among
N robots performing sampling missions. Estimates of communication and
computational load on the robots show that a dramatic reduction can be expected
compared to a centralized sampling scheme, while a reduced sampling time in excess of
N times can be expected. Further simulations and experiments are needed to verify the

efficiency and convergence properties of the distributed filter scheme we propose.
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CHAPTER 8

CONCLUSION & FUTURE WORK

This dissertation presents a Multi-scale Adaptive Sampling (AS) algorithm
called “EKF-NN-GAS” for combining measurements from robotic sensors of different
scales, rates and accuracies to reconstruct complex spatio-temporal fields. Adaptive
sampling algorithms continuously adapt in response to real-time measurements, and
direct the robots to locations most likely to yield maximum information about the
sensed field. It is demonstrated through extensive simulations and experiments that the
proposed AS algorithm provides field reconstruction in significantly smaller number of
samples compared to a simple raster scan approach. The sampling time and
computational complexity of the algorithm also improves by using a local search greedy
adaptive sampling strategy.

In addition, the localization uncertainty of the robots is reduced by combining
the location states and field parameters in a Joint-EKF. In the absence of absolute
location information such as GPS, inertial localization information from internal sensors
can still be used for a short while to build a parametric model of the environment. Later,

the acquired model can be used to reduce the location uncertainty of the robots. The

216



algorithm has been experimentally validated on ARRI-Bots in DIAL Lab (Distributed
Intelligence and Autonomy Lab) at ARRI.

Further analysis is needed to evaluate the performance of non-uniform grid size
sampling and to quantify how they contribute to the objective of collecting more
samples in dense regions of parametric field representations. Also, the multi-step GAS
needs investigation in terms of how it improves local searching and to prevent it from
being trapped in local minima.

It is demonstrated through extensive simulations that the proposed multi-scale
sampling approach, along with self-organized clustering and RBF parameterization is
an efficient way to accomplish wide-area. Furthermore, this RBF parameterization can
model even the fields with sharp variations by selecting appropriate number of neurons
and width of the Gaussians using heuristic approaches.

The multi-scale approach of adaptive sampling was also applied to map the
forest fires. The proposed algorithm uses a multi-scale, multi-rate approach achieved by
taking two types of measurements: a low-resolution (high-spatial) satellite measurement
gives an initial estimate of field parameters, which is further refined by high-resolution
(low-spatial) sampling. In this thesis, a single measurement of fire field intensity was
considered, which, in practice, can be captured using thermal imaging equipment. Due
to time-varying nature of the fire, additional measurements that contribute to the spread
of fire should also be investigated, such as wind speed and direction, slope, air
temperature and humidity, etc. Future work should include the implementation of the

sampling algorithms using multi-scale robots equipped with thermal imaging
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equipment, topographic mapping, wind, air temperature and other sensors for fire
monitoring.

The proposed parametric sampling algorithm in this Thesis uses the standard
Extended Kalman Filter. In the future, it can be modified to use an Ensemble Kalman
filter (EnKF) which is suitable for problems with large number of variables. EnKF is
commonly used in data assimilation algorithms such as weather prediction. EnKF uses
sample (or mean) covariance of parameters rather than auto and cross covariance of all
the parameters. This makes the filter simpler and easier to implement.

Since we used the Extended Kalman Filter, the proposed sampling schemes
must be initialized sufficiently close to the actual field parameters. Overhead satellite
imagery of the field provides a reasonable initial estimate, but the absolute algorithm
convergence cannot be guaranteed, as widely discussed in the literature. In addition, the
use of Heuristic Search methods in the algorithm can also lead to the presence of local
minima. We can avoid such minima by restricting the search space so that we do not re-
visit already sampled points, but such heuristics may not always work for time-varying
fields. While studying convergence conditions for our algorithms was beyond the scope
of our thesis, future work should investigate these limitations.

The use of multiple robots for sampling was also investigated in the thesis. It
was inferred from simulations that the partitioning of the sampling area reduces the
reconstruction time by a factor greater than the number of robots. Furthermore, a
distributed multi-robot scheme was proposed for parametric adaptive sampling,

resulting in reduction in computations and communication overhead. Every robot
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focuses on certain parameters which are unique to itself, or common between itself and
other robots. Hence, reaching a consensus only on certain parameters of interest will
speed up the computational efficiency of the algorithm. If N is the number of robots

used for sampling, then our approach reduces the number of computations and

communication per robot by a factor of N°, when compared to the decentralized
approach.

A completely decentralized and distributed approach for adaptive sampling with
multiple robots is the best choice. In this case, studying the required information flow
through the network such that different robots can reach consensus about the desired
parameters in minimum time, should also be addressed in the future. These aspects
relate to multi-robot cooperation for AS problems, and include routing, coverage,
connectivity, congestion control, communication bandwidth, node energy and mission
planning.

Finally, future work should include the implementation of the proposed
sampling algorithms in conjunction with information, communication, mission and

energy-aware deployment schemes on low-altitude UAVs for fire mapping.
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