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ABSTRACT 

 

SIMULTANEOUS ROBOT LOCALIZATION AND MAPPING OF 

PARAMETERIZED SPATIO-TEMPORAL FIELDS USING  

MULTI-SCALE ADAPTIVE SAMPLING 

 

Muhammad Faizan Mysorewala, PhD. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Dr. Dan O. Popa 

This dissertation presents a Multi-scale Adaptive Sampling (AS) framework for 

combining measurements arriving from mobile robotic sensors of different scales, rates 

and accuracies, in order to reconstruct a parametric spatio-temporal field. The proposed 

sampling algorithm, “EKF-NN-GAS”, is based on the Extended Kalman Filter (EKF), 

Radial Basis Function (RBF) Neural Networks and Greedy Search Heuristics. This 

novel AS algorithm responds to real-time measurements by continuously directing 

robots to locations most likely to yield maximum information about the sensed field. 

EKF is used to derive quantitative information measures for sampling locations. In 

addition, the localization uncertainty of the robots is minimized by combining the
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location states and field parameters in a Joint-EKF formulation. This feature is critical 

in GPS-denied environment such as inside buildings or underwater.   

Secondary objectives such as sampling duration, computational cost and energy 

are minimized by adding several extensions called “Greedy Adaptive Sampling” (GAS) 

heuristics. The issue of thorough sampling in dense regions is addressed using 

Clustered Adaptive Sampling. Drawbacks of local searching approach used in GAS are 

overcome with Non-uniform Grid Size AS and Multi-step AS. The proposed sampling 

algorithms are compared with traditional raster-scanning through many examples. 

Results indicate that that the proposed parametric algorithm provides faster convergence 

with less number of samples. This dissertation also addresses issues of efficient 

partitioning of the sampling area, distribution of computations and communication for 

adaptive sampling with multiple robots. The performance of the algorithm was 

experimentally validated using indoor multi-robot testbed at ARRI’s DIAL lab 

(Distributed Intelligence and Autonomy Lab). 

A real world scenario of mapping of forest fires is addressed in this thesis in 

conjunction with the proposed sampling algorithm. Our strategy combines 

measurements arriving at different times from sensors with different field of view 

(FOV) and resolution, such as ground, air-borne and space-borne observation platforms. 

In practice, such robots could be equipped with thermal imaging, topographic mapping 

and other sensors for measuring environmental conditions. 
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CHAPTER 1 

INTRODUCTION 

 

Mobile robots are being increasingly used on land, underwater, and in air, as 

sensor carrying agents to perform sampling missions, such as searching for harmful 

biological and chemical agents, search and rescue in disaster areas, and environmental 

mapping and monitoring. Sampling problems are central aspects of deployment because 

complete coverage is not possible if the environment is large, has only a few “hotspots”, 

or if the sampling costs are high. Therefore, it is desirable to build robot teams that can 

coordinate to maximize the amount of sensor data taken at these hotspots while 

minimizing resource costs.  

In general for environmental sampling, different types of sensors provide 

different sampling ranges and resolutions. For example, a thermal image taken from an 

aircraft or a satellite provides a high-spatial field of view (FOV) and low-resolution 

coverage of the area of interest, whereas a measurement taken from a point 

measurement thermal sensor on a robot provides a more accurate local reading. This 

involves estimating a space-time field spread over wide area using multiple scale, rates 

and accuracies of robotic sensing. An example of a relevant application is the 

deployment of multiple underwater vehicles for the environmental monitoring of large
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bodies of water, such as oceans, harbors, lakes, rivers and estuaries. Environmental 

models and maps can be created by repeated measurements of physical characteristics, 

such as water temperature, dissolved oxygen, current strength and direction, or 

bathymetry. 

Another motivating application is wildfire monitoring, which is a major natural 

disturbance with a tremendous impact on environment, human and wildlife, ecosystem, 

weather and climate. There appears to be an increasing trend of natural fire activity. In 

the recent October 2007 California fires several people died, many were injured, and 

around one million were evacuated from their homes. The fire destroyed approximately 

1,500 homes, burned approximately 800 square miles of land and resulted in overall 

estimated loss of more than 1 billion dollars just in the San Diego area alone [54]. 

During this time, fire suppression resources were in high demand and there was critical 

need for air tankers, crews and personnel, but the speed and uncertainty of fire spread 

surprised forecasters in several instances. 

Fire management strategies have changed today with the introduction of new 

fire suppression tools. The use of advanced technology helps in fire mapping through 

satellite imagery, accurate weather forecasts, and fire behavior modeling. Air-borne and 

space-borne observation platforms, air-tankers, bulldozers and tractor plows are 

commonly used for fire mapping and control, and they improve the safety of firefighters 

and the general public. Tractors are used for clearing vegetation and building fireline 

faster more efficiently than human firefighters. Rescue operations consist of searching 



 

 
 

3 

 

 

 

 

for, and removing trapped occupants in hazardous conditions. Although the use of 

advanced technology has reduced human involvement, self-preservation of the 

personnel manning the observation platforms remains a critical issue. One of the best 

ways to reduce the risk for firefighting personnel is to gather information about the 

spread of the fire in real time using autonomous robots, however, such technology has 

not yet been adopted. 

However, it seems entirely plausible that in the near future, tracking and 

prediction of the spread of forest fires will be achieved by mobile robots equipped with 

sensors for measuring environmental conditions such as temperature, fire intensity, 

humidity, slope, wind strength and direction, etc. Fire spread and intensity information 

“measures” should then be used to reposition the robots in order to achieve optimal 

sampling of this spatio-temporal field, e.g. to describe its spread as accurately, and in 

the shortest time possible. 

In the context of optimizing the sampling of spatio-temporal fields with mobile 

robots, several Adaptive Sampling (AS) algorithms have recently been proposed [4, 15, 

31, 34, 41]. The term “adaptive” refers to choosing the sampling points based on the 

amount of information they provide about the spatio-temporal distribution being 

mapped. Examples of spatially distributed fields that can be monitored using adaptive 

sampling are salinity in lakes [34], humidity in forests [41], and chemical leaks in 

buildings, as it is done in odor sampling [4, 17, 38].  

Sampling using mobile robots is a typical example of a real-time density 
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estimation problem, and has been covered in detail in past work [39-40]. The sensor 

fusion approaches for density estimation can be classified into 3 different categories. 

The first is building physical parametric models, the second is parametric and non-

parametric feature-based inference, both of which involve clustering of observations, 

and the third is cognitive-based modeling.  

In general, a spatio-temporal distribution can be modeled in a parametric or 

non-parametric manner. Strictly non-parametric field descriptions are accurate, as they 

don’t assume any functional form of distribution in advance. However, they require a 

lot of samples to reconstruct the distribution, which seems difficult to apply in practice 

to situations involving time and energy constraints, and for time-varying fields. An 

example of solutions with non-parametric distribution assumptions is discrete landmark 

mapping [7] that involves exploration, instead of planned sampling missions. Other 

examples are chemical source localization [38] using Hill (or Gradient) Climbing 

Approach, and Adaptive Cluster Sampling [26] for wide-area sampling.  

In contrast, parametric algorithms are computationally efficient and fairly easy 

to run onboard mobile robots in a distributed fashion. Such models can sometimes be 

constructed from physical or numerical models such as in the case of weather 

prediction. With no apriori information, the sampling problem becomes an exploration 

problem in the beginning, until enough samples are taken and distribution assumptions 

can be made. The advantage of the parametric model is that, in fact, it can also include a 

parametric model of sensor observable data and corresponding measurement 
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uncertainties. Also, the uncertainty in the field estimate can be measured indirectly 

through uncertainty in the distribution parameters. Furthermore, parametric modeling 

works better for time-varying fields, in which the field variation can be represented 

through parameters instead of the entire density function. The main limitation of 

parametric representations is modeling uncertainty which adds another source of 

estimation error.  

A problem which naturally arises in the process of sampling is making sure that 

the measurements of sensors are correlated with their position, and that the data from 

multiple sensors is fused efficiently. Multiple vehicle localization and sensor fusion are 

by now classic problems in robotics, and there has been considerable progress in the 

two decades in these areas [10, 37]. Furthermore, distributed field variable estimation is 

relevant to charting and prediction in oceanography and meteorology, and has also 

received considerable attention [6]. In both contexts, measurement uncertainty can be 

addressed using Kalman-Filter Estimation [23]. Recently, Sanderson and Popa 

described a combined multi-agent AS problem coupling wireless sensor nodes with 

mobile robots, and using information measures to reposition the robots in order to 

achieve near-optimal sampling of a distributed field [34]. Unlike other non-parametric 

sampling methods [15, 41], this approach requires a parametric field description of the 

sampled field, and a dynamic model for robots. The advantage of this approach was the 

inclusion of vehicle localization uncertainty, but the disadvantage was the fact that it 

could only handle very simple field models.  
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Localization uncertainties are especially relevant for robotic vehicles where 

dead-reckoning errors are high such as in the case of GPS-denied environments. The 

field model parameters are combined with uncertainty in the estimation of the robot 

localization using the overall error covariance. Therefore, localization uncertainty is 

reduced by building accurate models of distributed fields and vice versa. For instance, if 

a robot is sampling an unknown field, but its location is accurately known, a distributed 

parameter field model can be constructed by taking repeated field samples. Later on, 

this field model can be used to reduce the robot localization error.  

In this thesis we follow a similar parametric approach, and use sensor 

measurements to improve both the field estimate and the localization of the robot. Since 

this kind of formulation requires a parametric model for a potentially unknown and 

complex field, we considerably extend and expand on results from prior work. In 

particular, we address challenges related to sampling of complex, non-linear, and time-

varying space-time fields, we investigate considerations of computational complexity, 

communication overhead, time and energy constraints, and sampling using multiple 

robots. 

Two popular non-adaptive sampling methods are Systematic Raster-Scan 

Sampling and Random Sampling. In random sampling, all the points have equal 

probability of being selected irrespective of the field variation. Raster scanning acquires 

measurements at uniform intervals and ignores the field variability. Another sampling 

scheme, called Stratified or Clustered Sampling, involves classifying the sampling area 



 

 
 

7 

 

 

 

 

into non-overlapping stratas based on apriori information about the field. This could be 

accomplished either by parametric or non-parametric classification, and used to sample 

only in hotspot areas. In practice, classification is also needed because many field 

distributions are multimodal and require some parameters before sampling starts. 

Examples of multimodal distributions are complex forest fires and chemical gas leaks 

dominated by turbulence.  

Environmental distributions such as forest fires, chemical source leaks and 

temperature variations in oceans are examples of phenomena for which exact nonlinear 

model descriptions are unattainable due to the high-level of complexity. Due to time 

and energy-critical nature of some of these sampling scenarios, simply requiring that the 

robots perform a raster scan or randomly sample the field is clearly sub-optimal and 

highly inefficient.  Moreover, many of these time-varying distributions encompass a 

wide area, and must be observed from sensors of multiple size scales, rates and 

accuracies.  

In order to address these challenges we propose a Multi-scale Adaptive 

Sampling approach with a parametric description of the field. In this approach, sampling 

strategies continuously adapt in response to real-time measurements from sensors of 

different scales. This scheme relies on building parametric models from high-spatial 

sensor measurements that are less accurate, and then improving the models by more 

accurate spot measurements. The Extended Kalman Filter (EKF) is used to derive 

quantitative information measure for sampling locations mostly likely to yield optimal 
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information. 

Five approaches are proposed in this thesis for sampling of parameterized fields:  

• The first one is Global Search Adaptive Sampling, in which sampling points are 

selected in real time to gain maximum information about the estimates of unknown 

parameters and entire search space is used to look for optimal sampling location. 

This approach ignores the time (and distance) cost of sampling.  

• The second one is a local search heuristic, Greedy Adaptive Sampling (GAS), which 

is a trade-off between gaining maximum information and minimizing the traveling 

time and energy associated with sampling. Robot navigation vectors are selected by 

searching in the neighborhood of the currently sampled location.  

• The third approach is Clustered Adaptive Sampling, in which low-resolution apriori 

information is used to parameterize the field using Radial Basis Functions Neural 

Networks. The centers of the RBF Gaussians are selected using self-organized 

placement scheme to ensure that more samples are taken in high-variance regions. 

•  The fourth approach proposes a Non-uniform Grid Size Greedy Adaptive Sampling 

(also called Non-systematic Sampling) in which the grid size varies with local 

variance of the distribution. Grids are smaller in high-variance areas and larger in 

low-variance areas.  

• The fifth approach considers a Multi-step Greedy Adaptive Sampling Scheme (as 

opposed to a single-step GAS), in which an exhaustive search is performed with a k-

step horizon. 
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In this thesis, a real world scenario of mapping of forest fires is considered in 

conjunction with our sampling algorithms. The sampling strategy combines 

measurements arriving at different times from sensors of different field of view (FOV) 

and resolution, such as ground, air-borne and space-borne observation platforms. In 

practice, such robots could be equipped with thermal imaging, topographic mapping 

and other sensors for measuring environmental conditions, as illustrated in Figure 1.1.  

 

nn×

 mm×

pp ×
 

Figure 1.1 Illustration of the multi-scale sampling approach 

1.1 Problem statement and approach 

This thesis addresses the following problem: 

Given N robotic vehicles sampling a spatio-temporal field whose distribution is 

not known, where should the vehicles be directed to sample such that: 
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i. The uncertainty in the knowledge of the field is minimized. 

ii. Localization uncertainty of the robotic vehicles is minimized. 

iii. Additional secondary objectives are minimized, such as energy, 

sampling duration, etc. 

iv. Simultaneous sampling is done using robots covering multiple scales 

and rate of sensing, in a scalable fashion, by addressing issues related to 

distributed computation and communication environments. 

The outline of the proposed approach for solving this problem is described 

below: 

� First, a field distribution model, e.g. the initial estimate, is acquired by 

clustering and unsupervised RBF parametric classification of the sensory data 

obtained by robots with higher instantaneous field of view (IFOV). This ensures 

that more RBFs are placed in “hot spot” regions. 

� Next, uncertainty in the knowledge of the field is minimized by adaptive 

sampling, using the Kalman Filter error covariance of the estimates as an 

information measure. Localization uncertainty is also minimized by fusing the 

location states and field parameters in a Joint Extended Kalman Filter. 

� Next, secondary objectives such as sampling duration, computational cost 

and energy are incorporated into the algorithm through the use of heuristics such 

as Greedy Adaptive Sampling (GAS). 

� Finally, sensing and computations are distributed among multiple robotic 
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nodes that wirelessly share field estimates and localization information. 

This thesis contains both algorithmic and experimental developments that 

demonstrate the effectiveness of the proposed approach including: 

� It is demonstrated through extensive simulations that our approach along 

with self-organized clustering is efficient way to accomplish wide-area 

sampling using measurements from robots of different scales. The approach is 

scalable, and computations can be distributed among the sampling agents. 

� It is demonstrated through experiments and simulations that the proposed 

EKF based Adaptive and Greedy Adaptive Sampling algorithms provide field 

reconstruction in significantly less time and number of samples, compared to 

just random sampling or raster-scanning. This is due to sampling at locations 

most likely to yield maximum information about the sensed field of interest. 

� It is demonstrated experimentally that the localization uncertainty of the 

robots can be reduced by fusing the robot location states and field parameters in 

a Joint-EKF and using the field sensor measurement only for simultaneous 

localization and field parameter estimation. The convergence of this algorithm 

depends on the initial conditions, because of the inherent linearization of the 

Extended Kalman Filter. 

� It is demonstrated through simulation and experiments results that our 

proposed multi-scale sampling algorithm is an effective approach for sampling 

of wide-area time-varying fields by combining sensor measurements of multiple 
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scales, rates and accuracies. The convergence of this algorithm requires that the 

rate of spatial field evolution be much slower than sampling (robot) speed.  

� We provided a comprehensive simulated verification of our algorithm for 

mapping spatio-temporal forest fire scenarios, with the help of realistic Cellular 

Automata (CA) fire spread distributions, used as “truth models”. The sampling 

performance was also experimentally validated with small in-door mobile 

robots that navigate over a “virtual fire” projected on the floor from a ceiling-

mounted projector to emulate the sampling mission performed by aerial robots. 

1.2 Contribution of the dissertation 

The primary contribution of this thesis is the formulation of a novel 

parametric multi-scale, multi-rate and multi-robot sampling algorithm called 

“EKF-NN-GAS” for complex field estimation using RBF Neural Networks 

based parametric classification, EKF based parameter estimation and a sampling 

strategy based on Greedy Search Heuristics.   

The first component of the algorithm is a multi-scale algorithm for wide-

area sampling, which involves unsupervised parametric classification of 

complex high-spatial complex fields using RBF-NN.  

The second component results in further parameter estimate 

improvements by spot measurements in an EKF-based adaptive sampling 

scheme. A Joint-EKF structure uses field measurement information to improve 

robot localization, even in the absence of other location measurements.  
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The third component is a greedy heuristic strategy with fast convergence 

leading to considerably less field reconstruction time and number of samples.  

Finally, we formulate a multi-robot parallel adaptive sampling algorithm 

for distribution of computations and communication, and efficient partitioning 

of sampling area.  

Some of the results presented in this Thesis have also been published in 

several other publications [31-32, 82, 153-155]. 

1.3 Organization of the dissertation 

Chapter 2 summarizes prior research in robotic sensor deployment for sampling 

missions. Two classes of sampling processes are described: the first one is based on 

estimating parameters of an assumed processes model; and the second one is non-

parametric, in which the field model is either not known or not used. Several steps in 

parametric density estimation are described, including clustering, parametric 

approximation and parameter estimation. Several examples from literature of parametric 

and non-parametric fields and their sampling using robots are discussed. A survey of 

robot localization schemes is also presented, including: a survey of absolute and relative 

localization schemes, sensor fusion for mapping and navigation, simultaneous 

localization and mapping (SLAM), and multi-robot localization.  

Chapter 3 presents the mathematical formulation of the proposed Adaptive 

Sampling algorithm for parameterized fields. It starts with the qualitative and 

quantitative definition of an Adaptive Sampling problem for a single robotic vehicle 
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considering the models and uncertainties involved. A Joint-EKF formulation is 

presented for combining robot location states and field parameters in a single estimator. 

Several field cases are considered, starting from simple field and vehicle assumptions 

and working our way to more complex examples. At first, we assumed that a parametric 

field measurement depends linearly on unknown field parameters, but non-linearly on 

robot position. Linear least squares is used to find the estimated field parameters in a 

closed-form. In the second case, a linear Kalman Filter is used to solve the same 

problem and the results are compared to the first case. In the third case, a robot model 

was introduced and uncertainties in both the vehicle and location measurements were 

considered. A Joint Extended Kalman Filter (EKF) was used to estimate both the field 

parameters and the robot location states. In the fourth case, we assumed that absolute 

location measurement is not available and we estimated the field parameters and 

location states by field measurements only. And in the last case, the field was 

parameterized by Radial Bases Function (RBF) Neural Networks with Gaussian 

activation. The error covariance of the unknown field parameters was used as an 

information measure to direct the robots to sample locations minimizing the uncertainty 

in the knowledge of the field. The performance of different sampling strategies such as 

Raster scanning, Random Sampling, Adaptive Sampling and Greedy Adaptive 

Sampling are compared.  

Chapter 4 presents a multi-scale, multi-rate adaptive sampling algorithm and its 

application to mapping of forest fires. Two existing semi-empirical parametric models 
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were used to describe the spread of forest fires, and the parameterization of the forest 

fire field was done by interpreting remote-sensing images.  We formulate an EKF-based 

adaptive sampling algorithm for spatio-temporal distributions, and applied it to mapping 

of forest fires. Finally, we discuss potential field path planning for robots navigating 

through the estimated fire field as a natural extension of sampling. 

Chapter 5 presents detailed simulation results to support our conclusions, using 

parametric fields of increasing complexity. We present simulation results for linear-in-

parameter fields without and with considering uncertainty in localization of the robots. 

We then present simulations results for single Gaussian fields with and without 

considering uncertainty in localization of the robots. The final section in Chapter 4 

discusses the simulation of complex spatio-temporal forest fire fields, and their 

parameterization using RBF Neural Networks. Simulation results are included for 

stationary and time-varying forest fire fields, and potential field based approach for path 

planning. 

Chapter 6 presents experimental results of sampling with robotic hardware. We 

describe the multi-robot testbed at the ARRI’s DIAL (Distributed Intelligence and 

Autonomy Lab) used to validate the AS algorithms. For linear field distributions, 

printed color on the lab floor was measured using color sensors mounted on small in-

door robots. For time-varying non-linear distributions, a camera-projector system was 

employed. The ARRI-Bot robots are inexpensive Wireless Sensor Network units built at 

DIAL, equipped with Javelin-stamp microcontroller, color sensor, cricket transceiver 



 

 
 

16 

 

 

 

 

and dead-reckoning location estimation capabilities. In addition to relative localization 

using optical encoders, absolute robot localization using the over-head camera and 

triangulation was implemented. Several simulation cases from Chapter 3 were 

experimentally validated. Results indicate that the proposed Greedy Adaptive Sampling 

(GAS) works much better than other alternatives in terms of number of samples and the 

time it takes to reconstruct the field. 

Chapter 7 introduces multi-robot sampling based on existing approaches of 

centralized, decentralized [57-59] and partially centralized federated filter [56]. We then 

present the formulation of a distributed federated Kalman filter for multi-robot adaptive 

sampling. This includes explanation of the scheme for efficient partitioning of the 

sampling area using fuzzy c-means clustering and Centroidal Voronoi Tesselation 

(CVT) diagrams. We then discuss the advantages of our approach in terms of reduction 

in computations and communication overhead, and the proposed decomposition of the 

filter via three categories of parameters which are unique, common or out-of-the-range 

of a particular robot’s sampling area. Finally, simulation and experimental results of 

sampling with multiple robots using a centralized filter are presented. 

Chapter 8 concludes the dissertation and discusses future work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

This chapter discusses background work related to the deployment of mobile 

robots for sampling. Section 2.1 presents different sampling strategies. Section 2.2 

describes the density estimation by sampling and sensor fusion. Sections 2.3 and 2.4 

explain existing approaches for sampling using static and mobile sensor nodes, 

respectively. Parametric and non-parametric solutions to the sampling problem are also 

discussed. Section 2.5 presents the existing approaches for reducing the localization 

error in mobile robots while sampling. 

2.1 Sampling 

The idea of sampling comes from Statistics where only a small set of 

measurements are available and they are used to estimate the characteristics of a 

population. Thompson [138] discusses several ways to select few samples from a large 

dataset. When considering sequential estimation of a field distribution, the simplest 

method is to randomly select samples for every measurement with each item in the 

population having equal probability for being chosen irrespective of the field. In other 

words, each sampling point is selected independently from all other sampling points as 

shown in figure 2.1 (a).  Another approach is Cluster or Stratified Sampling, in 
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which the sampling area is classified into homogenous clusters. Such classified stratas 

can be overlapping or non-overlapping. The formation of strata requires prior 

information about the field of interest. In practice a combination of these approaches is 

used, for example a simple Random Sampling (figure 2.1 (a)) or Stratified Random 

Sampling (figure 2.1 (b)). Another sampling approach is Systematic Sampling (Uniform 

Grid-size Sampling), which involves dividing the sampling area into equal sized grids. 

Examples of these approaches are Systematic Raster-scan Sampling (figure (2.1 (c)) and 

Systematic Random Sampling (figure 2.1 (d)). In Adaptive Sampling, sampling locations 

are selected in real-time, based on the information that is gained by past sampling. In 

this thesis, an Adaptive Sampling algorithm for complex parametric fields is proposed 

and its advantages over random or raster non-adaptive sampling are highlighted. 

 
Figure 2.1 Sampling Strategies: (a) simple random sampling, (b) stratified random 

sampling, (c) systematic raster-scan sampling, (d) systematic random sampling 

[138] 
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2.2 Sampling for density estimation 

One purpose for sampling a space-time field is density estimation, e.g. the 

construction of a field estimate of how a certain parameter varies in space and time 

based on observed data. Data analysis can be performed by assuming either a 

parametric or a non-parametric distribution. Parametric formulations assume a 

functional form of the probability density function (PDF), while non-parametric 

solutions don’t assume any particular distribution in advance. In the parametric case, 

given a density )/(. θf , such as a two-parameter Normal family ),( 2σµN , where 

),( 2σµθ = , the emphasis is on obtaining the better estimator θ̂  of θ , and the error 

criteria can be the { } [ ]2ˆˆ θθθ −= EMSE . In the non-parametric case, the emphasis is 

directly on obtaining a good estimate (.)f̂  of the entire density function (.)f , and the 

error criteria can be { } [ ]2)(ˆ)()(ˆ θθθ ffEfMSE −= . 

There are two types of information for density estimation: apriori information 

and empirical information. Apriori information is the knowledge that was already there 

before a given observation became available. The combination of prior knowledge and 

empirical knowledge leads to aposteriori information. Parametric description of 

distributions can be either a physical model of the system, or a black or grey box model 

acquired by clustering the apriori data, and then fitting a linear or non-linear model to it. 

Non-parametric formulations can also involve clustering. The concepts of clustering, 

parametric approximation and parameter estimation are introduced in this section in the 

context of using apriori data for clustering and system identification to acquire a 



 

 

 

20 

parametric description and, therefore improve the parameter estimates when empirical 

knowledge is available. 

2.2.1 Clustering 

Clustering is the process of organizing a set of data into groups in such a way 

that observations within a group are more similar to each other than they are to 

observations belonging to a different cluster. Clustering can be done either by 

supervised or by unsupervised learning of the data. Examples of clustering are 

hierarchical clustering, k-means clustering, and mixture of Gaussians clustering, etc. 

the details of which can be found in the literature [84]. Two examples of k-means 

clustering and fuzzy c-means clustering are relevant to this thesis and are further 

covered in this section. 

2.2.1.1 K-means clustering 

K-means clustering is one of the simplest unsupervised learning algorithms for 

clustering discussed in detail in the literature [45]. The objective is to classify a given 

set of data into k clusters where each cluster has a centroid c. There are three ways to 

select centroid locations: randomly, at fixed distances, or at locations where significant 

data is present. Once the centroid locations are selected, the next step is to assign each 

of the available data to the nearest centroid. When all the data is assigned, the locations 

of centroids are recalculated. The procedure is repeated until the centroids no longer 

move. The objective function which is minimized for recalculating the centroid is: 
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where N  is the number of Gaussian centers, K  is the number of clusters and jc  is the 

centroid of the cluster j . 

2.2.1.2 Fuzzy c-means clustering 

The fuzzy clustering approach was introduced by Bezdek [51]. When compared 

to k-means clustering, fuzzy clustering allows one piece of data to belong to 2 or more 

clusters. Each Gaussian center belongs to a cluster to some degree which is defined by 

membership grade by a value u  between 0 and 1. The algorithm involves the 

minimization of the cost function: 

  ∑∑
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where N  is the number of Gaussian centers, C  is the number of clusters, iju  is the 

degree of membership of center ix  in cluster j , jc  is the centroid of the cluster j  and 

m  is a real number greater than 1. The member function and cluster centroids are 

iteratively optimized by the following equations: 
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This iteration stops when { } ε<−+ )()1(max k

ij

k

ijij uu , where ε  is the termination 

criteria, and k  is the number of iterations.  
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2.2.2 Parametric approximation 

Parametric approximation is a curve-fitting problem the objective of which is to 

use the apriori information about a non-parametric field to approximate it with a 

parametric field. Methods for parametric approximation are well described by Nelles 

[45] and are some of the ones used in this work are covered below.  

2.2.2.1 Linear and polynomial approximations 

The simplest of parametric approximation is linear for the fields whose non-

linear characteristic is weak. For example: 

∑
=

=+++=
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i

iipp uauauauaaF
0

22110
ˆ L with 10 =u  ,    (2.4) 

where ia  are the slope values in the direction of iu , and 0a  is the ordinate value at 

0=u . Equation (2.4) can be consolidated in vector form through a parameter vector: 

[ ]T
paaaA L10

ˆ = .        (2.5) 

For non-linear fields a polynomial approximation can be considered, which is a 

straightforward extension of a linear model. The higher the degree of the polynomial, 

the more flexible the model is. For instance, a 3-dimensional polynomial of degree 2 is 

given by:  

2

39328
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27316215
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Equations (2.5) and (2.4) represents static fields for which the values of these 

parameters stay the same. But time-varying fields can also be modeled through time-

dependent parameters. 
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2.2.2.2 Neural Network approximation 

A general formulation of parametric approximation is an artificial neural 

network. Instead of assuming a linear or polynomial basis, a neural network assumes a 

general non-linear basis function )(nl

iθ  organized in multiple of layers. The most 

common neural network architectures are MLP (Multi-Layer Perceptrons), and RBF 

(Radial Basis Functions) networks. Both MLPs and RBFs are universal approximators, 

e.g. they can approximate any smooth function [45]. The universal approximation 

capability is an important property which will be used in this thesis to approximate 

complex fields. Although MLP has its own advantages in terms of accuracy, its hidden 

layers are either log or tanh, which are global activation functions. It may be good to 

approximate a complex field with parameters of log function layer, but it is difficult to 

distribute computations with global activation functions because the information is not 

locally contained. In contrast, RBFs activation is local, which is advantageous in 

sequential robotic sampling, because samples have an effect on neighboring Gaussians 

only. This is further elaborated in Chapter 7. In short, in RBF networks, the parameters 

of the hidden layers have a more appropriate sampling interpretation than MLP.  

An RBF network consists of three types of parameters: 

• Output layer weights, ia , are linear parameters. They determine the height of 

the basis functions and the offset value. 

• Centers, ijc , are nonlinear parameters of the hidden layer neurons. They 

determine the positions of the basis functions. 
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• Standard deviations, iσ , are also nonlinear parameters of the hidden layer 

neurons. They determine the width of the basis functions. 

Radial basis functions exhibit good approximation properties of their own. Any 

continuous function can be approximated with RBF neural network according to 

Universal Approximation Theorem:  

Let ℜ→ℜ 0:
m

G  be an integrable bounded function such that G  is continuous 

and ∫
ℜ

≠
0

0)(
m

dxxG . Let Gℑ  denote the family of RBF networks consisting of functions: 

ℜ→ℜ 0:
m

F  represented by:  
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where ℜ∈> ii a,0σ  and 0m

ic ℜ∈ for Ni ,,2,1 L= . The universal approximation 

theorem for RBF networks can then be stated as: 

For any continuous input-output mapping function )(xf  there is an RBF 

network with a set of centers ic  and width iσ  where Ni ,,2,1 L=  such that the input-

output mapping function )(xF  realized by the RBF network is close to )(xf  in the pL -

norm, ],1[ ∞∈p .[52] 

For training a RBF neural network, different strategies exist. In the simplest 

case, the hidden layer of the network is not optimized, which means that there is no 

optimal learning strategy for iic σ, . But there are several strategies for placing the 

center locations before learning of other parameters begins. One such strategy is the 
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random center placement, which is considered a reasonable initialization method for 

some of the advanced learning schemes [45]. A straightforward improvement of random 

selection of centers is the application of clustering techniques discussed in previous 

section. The greatest advantage of using this approach is that the centers are selected 

according to the training data distribution in input space. Therefore, more RBFs are 

placed in regions where data is dense, and few RBFs are placed in regions where data is 

sparse.  

The universal approximation theorem is valid even for a constant σ  for all 

neurons, but there are heuristic methods to calculate standard deviations for training the 

RBF network. The most common is the k-nearest neighbor rule, which assigns each 

RBF a standard deviation based on average distance between its center and the center of 

the k nearest neighbor RBFs. Finally, the weights of the output layer can be computed 

using least squares. The clustering and LS algorithms are both very fast, even for 

relatively complex fields. 

2.2.3 Parameter estimation 

Parameter estimation problems involve finding the best value for parameters of 

a process based on noisy measurements. Least squares estimation is the most common 

criteria used for batch as well as sequential estimation problems. For recursive 

estimation problems, an initial estimate and uncertainty (error covariance) is assumed. 

As noisy measurements become available sequentially, the parameter estimates, as well 

as the estimation error covariance are updated. The Kalman filter is a fundamental 

estimation tool, which uses the dynamical description of the system along with 
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recursive least squares estimation for processing measurements. Robot location states 

and field parameters estimation using Kalman filters is covered in great detail in the 

next chapter. 

2.3 Sampling for static Wireless Sensor Network (WSN) 

Wireless networks of spatially distributed sensors provide an attractive approach 

to spatially monitor the environment. The obvious advantage of using static nodes 

compared to mobile robots is that there are no localization errors due to navigation. 

However, using higher densities of sensors provides more measurements, higher 

resolution and better accuracy, at the expense of more communication and processing. 

Several deployment schemes for static nodes have been recently proposed to reduce 

communication and energy consumption. For the simplest scenario of field estimation, 

sensors are deployed at the centers of uniformly-space square grids [77]. Based on the 

initial information about the field to be mapped, the sensors could be deployed more 

densely in the high-variance areas and far apart in the areas with small variation [15]. 

Usually the objective is to minimize the energy consumption and communications by 

activating only a fraction of sensors for measurements and communication while 

maintaining high-accuracy. However, this kind of approach cannot be used to monitor 

wide areas. Also, a sparse density of placement of static nodes reduces the accuracy of 

the estimate.  

Other related problems for static sensor network are coverage and connectivity 

[16]. The coverage problem is defined as the maximization of the total area covered by 

the sensors, while connectivity is the requirement that every sensor should be able to 



 

 

 

27 

communicate with every other sensor. There are many applications of coverage and 

connectivity for applications such as target tracking, search and rescue, etc. 

Static nodes are also widely used in applications involving navigation and 

controlling of mobile robots, environmental monitoring, disaster and rescue work and 

healthcare, etc. When used for tracking mobile targets, static sensors act as anchor 

nodes with known position and help the mobile robots localize. 

2.4 Robotic sensor deployment for sampling 

Mobile robots are being increasingly used on land, underwater, and in air, as 

sensor carrying agents to perform sampling missions, such as searching for harmful 

biological and chemical agents, search and rescue in disaster areas, and environmental 

mapping and monitoring. A multitude of research groups have published results on 

sampling using mobile robots for chemical plume source localization, mine-detection, 

ocean sampling, forest mapping, etc [4, 8, 15, 17, 38, 41, 73, 74, 76, 97-99].  

One of the problem most commonly discussed in mobile WSNs are team 

objectives for exploration and mapping in an unknown environment. Sensor 

deployment for sampling can be considered a variant of the exploration and mapping 

problem. The aim in mapping and exploration is to build a global map of the 

environment by sequentially visiting each location with one or more robots, whereas in 

information-aware sampling the aim is choosing the best locations that minimize the 

uncertainty of the field estimate. In exploration for building a global map it is 

impractical to have the robots take measurements at all locations.  
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When using mobile robots for sampling missions, accurate localization is 

needed, because the uncertainty in localization affects the estimate of the spatio-

temporal field. Even though mobility introduces additional degree of complexity for 

navigation and localization, it allows the repositioning of on-board sensors, thus 

expanding the coverage and operational lifetime of the sensor network. For instance, 

Howard et .al. [16] discusses the mobile robotic sensor deployment using potential 

fields for maximization of area covered by the network. In addition to coverage, the 

problem of distributed field variable estimation by inverse modeling of the 

measurements has been addressed for oceanography and meteorology [149]. Popa et. al. 

[33] proposes using a potential field framework to control the behavior of the mobile 

sensor nodes by combining classical robotic team concepts (obstacle avoidance, goal 

attainment flight formation, environment mapping and coverage) with traditional sensor 

network concepts (node energy minimization, optimal data rate and congestion control, 

routing in ad-hoc networks). 

In the end, the performance of any deployment scheme for sampling will also 

depend on the type of field distribution, and its representation. 

2.4.1 Parametric field representation   

Parametric representation is a model-based method in which parameters of a 

process model is estimated using techniques such as the Kalman Filter, Least Squares 

Estimation or other optimization schemes. 

Christopoulos and Roumeliotis [4] present an approach for estimating the 

parameters of diffusion equation that describes the propagation of an instantaneously 
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released gas. This is accomplished by first building a model considering factors such as 

the diffusion phenomena of the chemical, wind direction and speed, turbulence, etc. The 

selection of the set of locations where chemical concentration measurements should be 

recorded is performed in real-time with the objective of maximizing the accuracy of the 

parameter estimates and reducing the time to convergence of this estimation problem. 

The selection of sequence of locations where the measurements are recorded is based on 

the minimization of the uncertainty of the estimated parameter which is represented by 

the trace of the error covariance of parameters estimates. 

Cannell and Stilwell [3] present two approaches for adaptive sampling of 

underwater processes using AUVs. The first one assumes a parametric model, while the 

second one uses an information theoretic approach. For the parametric approach, two 

methods for estimating the unknown parameters of the process model are considered. 

The first method is related to mapping algorithms where the unknown parameters in an 

assumed measurement model are states of a Kalman Filter. In the second method, non-

linear least squares are used to estimate the parameters. 

2.4.2 Non-parametric field representation 

A number of strategies for non-parametric adaptive sampling can also be found 

in the literature. A solution for non-parametric ocean sampling is proposed in [15] based 

on classification of the sampling area. The area is divided into non-uniform size grids 

and the size of the grid is selected based on the local variance of the distribution. Hence 

the areas with high variance have small size grids and the areas with small variance 
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have large size grids, which is important for thoroughly sampling the areas with more 

variation and just taking a few samples in more uniform areas.  

In some cases, information theoretic approaches are utilized, which process data 

via sequential classification and tracking phases. During the classification phase, 

measurements are collected in the assumed ambient flow, and an empirical distribution 

is formed. This distribution represents the measurements taken outside the process. As 

new measurements are taken, updated empirical distributions are computed and 

compared to the assumed ambient distribution using the Minimum Description Length 

(MDL) test. This test utilizes the Kullback-Leibler Divergence, which does not require 

any explicit defined process model. It characterizes the boundary of a closed 

Divergence, also known as Relative Entropy, to determine if two distributions are 

different in a statistically significant manner. This result is then used as a test for 

identifying data that is statistically different from the ambient distribution. This 

information theoretic approach has been applied to ocean sampling and prediction [34]. 

Another non-parametric approach is cognitive or rule-based in order to 

adaptively select sample locations in real-time based on current and past samples to 

ensure that a field source is localized. This scheme does not involve formation of any 

distribution, but it is used to find distribution maxima. This non-parametric approach is 

used very widely in chemical plume tracing on land and in water [8], odor sensing, 

mine detection [76], etc. 

Chemical source localization is usually a gradient climbing problem with 

disturbances caused by wind, gas diffusion and turbulence from the obstacles and the 



 

 

 

31 

environment. A lot of research has been done in the area of odor source localization, 

land-mine detection, etc. using both parametric and non-parametric approaches. Non-

parametric approaches involve taking appropriate samples in a recursive fashion in 

order to find the source. In practice, such approaches generally involve three phases: 

detecting the plume, tracking the chemical towards its source and finally locating the 

source. Some source localization algorithms are biologically inspired because insects 

and most other animals are very apt at sensing odors in order to find food, locating 

mates or communicate. The applications for source localization using robots are in 

locating harmful biological and chemical agents, avalanche and earthquake victims, 

landmine detection, etc. It would be difficult for humans to find chemical sources 

because of presence of poisonous gases, nuclear radiation or any other hazardous 

conditions. 

Chemotaxis and Anemotaxis are the most common techniques used for 

estimating chemical distributions. Chemotaxis relies on the local gradient of the 

chemical agent concentration while Anemotaxis based approaches require that the agent 

move in the upwind direction. The robots used for source localization are equipped with 

anemometric sensors and gas sensors, and in some cases with vision. Several algorithms 

such as step-by-step, zigzag, active sampling can be found in the literature [17, 38, 74, 

97-99]. 

Another similar application of non-parametric sampling is mine detection using 

demining robots. The sensors used are metal detectors, IR detectors and chemical 

sensors. Literature on mine detection using robots can be found in [76]. 
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2.5 Robot localization 

Knowing the location of a robotic vehicle is a fundamental problem in order to 

navigate autonomously and perform useful tasks. Irrespective of whether the vehicle is 

aerial, under-water or a ground vehicle, it is crucial for the robots to get a good estimate 

of their location. Measurements of robot localization can be categorized into relative 

and absolute location measurements. 

2.5.1 Relative measurement 

Relative localization relies on the on-board inertial sensors of the robot, such as 

encoders, gyroscopes or accelerometers. This technique is also called “dead-reckoning”, 

and uses the kinematic model and odometric data to compute position and orientation 

for the robot. The advantage of odometry is that it is self-contained, and hence always 

available. The disadvantage is that there is unbounded accumulation of errors [80, 109-

114]. 

There are two types of errors in relative location measurement: (i) systematic 

errors, and (ii) non-systematic errors. Systematic errors are due to errors in the robot 

model parameters. For wheeled robots, the sources of systematic errors could be 

unequal wheel diameters, uncertainty about effective wheel-base, limited encoder 

resolution, misalignment of wheels, limited encoder sampling rate, etc. Non-systematic 

errors are due to the surroundings of the robots such as uneven floors, unexpected 

object, fast-turning, over-acceleration, etc. As this problem is fundamental in robotics, 

many researchers have tried to improve odometric errors. Borenstein and Feng [80, 112] 

present a calibration technique called UMB-Mark test to calibrate the systematic errors 
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of a mobile robot with differential drive. Martinelli [79, 80] proposes a method to 

estimate both systematic and non-systematic errors for synchronous drives. 

2.5.2 Absolute measurement 

Relative localization is prone to errors in the calculation of robot’s location. To 

overcome this problem, absolute localization can be performed using GPS, landmarks 

or maps. The landmark could be an active beacon or passive landmarks (natural or 

artificial). The advantage of absolute measurement is that the location is independent of 

previous location estimates and hence there is no accumulation of errors with time or 

distance traveled. One of the drawbacks of these measurements is that they are not 

always available. For example, for AUVs performing ocean sampling, GPS information 

is only available when the vehicles rise to the surface. 

2.5.2.1 Artificial Landmarks (Beacon based localization) 

Landmarks are features in the environment that a robot can detect. These 

landmarks could be active or passive. Active landmarks are the ones that actively 

transmit signals (radio, sonar, etc) that can be received by the receiver on the robot. 

Robots then can triangulate or trilaterate to estimate their location, if distance is 

available from several active beacons. Localization using GPS uses the same idea by 

using satellite landmarks. Active landmarks are usually artificially placed at known 

location. These kinds of localization algorithms where some of the nodes knows their 

location is called ‘anchor-based localization’ and the nodes with known location are 

called ‘anchor nodes’ [143]. The ‘incremental algorithms’ usually start with a set of 3 or 

4 nodes with assigned coordinates. Then they repeatedly add appropriate nodes to this 
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set by calculating the node’s coordinates using the measured distances to previous 

nodes with already computed coordinates. In ‘concurrent algorithms’ all the nodes 

calculate and refine their coordinates in parallel. 

The main type of signals used by beacon based localization systems are infrared 

laser, ultrasound and millimeter wave radar. 

2.5.2.2 Natural Landmarks (apriori map based localization) 

Landmarks could also be naturally existing objects in a structured environment 

or it could be artificially placed objects with particular shapes. Many artificial landmark 

positioning systems are based on computer vision. In addition bar-coded reflectors are 

also used laser scanners or sonar sensor. The important issues in passive landmark 

based localization are: 

� Landmark based localization requires good initial estimates of robot 

location. In the absence of such estimate, a time-consuming search 

process to form an association between different objects [68-69]. 

� Localization accuracy depends on the distance and angle between the 

robot and the landmark. Hence line-of-sight is an important issue. 

� A database of the landmarks their location needs to be maintained. 

� Ambient conditions also affect the accuracy.  

Tanaka et. al. [66] discusses the robot’s localization with incomplete maps in 

non-stationary environments which is done by detecting changes in the environment. 
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2.5.2.3 Map building 

In map building, a robot that is completely localized uses its sensors to build a 

map of the environment. This could be map matching problem, involving establishing a 

correspondence between a current local map and a stored global map. Mapping is 

achieved by capturing images and then performing “feature extraction”. 

2.5.3 Sensor fusion 

There is no single sensor measurement that can adequately capture all relevant 

features of a real environment. To overcome this problem most localization algorithms 

combine data from different sensors. This multi-sensor fusion is based on probabilistic 

approaches such as Bayesian estimation, or the use of the Kalman Filter (KF). KF 

provides an optimal unbiased estimate, and its predictor-corrector structure works very 

well for combining reading from different sensors at different rates. Fusion algorithms 

combine relative measurement from encoders and absolute measurement from beacons 

which are usually available at different rates [102, 106]. 

This kind of location estimation approaches relies on a model of the vehicle and 

the sensor. The estimate is updated each time a new measurement is taken, and the 

vehicle location is corrected using a prediction of its position based on control inputs. 

Roumeliotis and Bekey [63] and Roumeliotis and Sukhatme [67] present a 

general EKF formulation for the fusion of relative and absolute position measurement 

for improving the localization. In [62, 64], the approach is validated for the fusion of 

dead-reckoning and ultrasonic measurement. Mourikis and Roumeliotis [66] propose a 

scheme for using the relative distance measurement and correlating the estimates to 
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improve the overall state estimate. They fuse dead-reckoning location estimates with 

relative distances between the two robots when the location of both needs to be 

estimated.  Multi-robot localization using relative observations is discussed in [37, 66]. 

2.5.4 Simultaneous Localization and Mapping (SLAM) 

Simultaneous localization and mapping is currently one of the most important 

goals of autonomous robots navigation. Solving this problem will allow robotic sensor 

nodes to be deployed easily with very little initial preparation. The problem of 

localizing robotic vehicles in a previously unexplored environment is addressed by 

using the vehicle location to build the map of the environment and simultaneously using 

the map to localize the vehicle. 

A comprehensive survey on the solution of SLAM problems is given in [68-69]. 

Early work in SLAM assumed that the world could be modeled as a set of simple 

discrete landmarks. However, in more complex and unstructured environments this 

assumption does not hold. More realistic solutions to SLAM problems include: 

� Delayed mapping- involving accumulating information and permitting delayed 

decision making. Deferred data facilitate reliable data association. 

� Partial observability- including bearing-only SLAM e.g. with a camera, or 

range-only SLAM e.g. with sonar sensors.  

� Unstructured or dynamic environment- involves detecting and removing the 

landmarks that are moving. 

� 3D SLAM- Increased complexity compared to 2D case. 
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� Multi-Robot SLAM or Cooperative SLAM- Different robots act as landmarks for 

each other. One scheme to avoid complexity is that only one robot moves at a 

time and other remains stationary and act as landmarks for other robots. After 

some time they can swap their roles.  

2.5.5 Multi-robot localization 

Collaborative multi-robot localization schemes rely on using robots as 

landmarks for one another. The key idea is to combine localization through internal 

sensors (such as encoders) with measurements from the neighboring robots, in order to 

improve localization. The earliest approach presented for multi-robot localization 

assumed that only one robot move at one time while the rest of the team forms an 

equilateral triangle of localized beacons [81]. After some time the robots swap roles. 

For this kind of approach, only one robot can move at a time, and robots must maintain 

contact either through vision or sonar sensing. Other approaches are presented in [120-

128], in which sensor data from multiple robots is combined in a single Kalman Filter to 

estimate the position of each robot in the team. Several research groups have also 

formulated how a centralized KF can be divided into N separate KFs, one for each 

robot, in order to to allow distributed processing: 

� None of the Robot has absolute positioning information. By measuring the 

relative locations, multiple robots can improve their position tracking 

accuracy, but they are not able to bound the overall uncertainty.  

o Dead-Reckoning: No exchange of information causes the error to 

grow drastically. 
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o Continuous relative position measurement: the rate at which 

positioning uncertainty grows is considerably lower. 

o Intermittent relative position measurement: positioning errors are 

reduced even if the robots exchange position information 

intermittently. 

� One of the robots has absolute positioning information. The system is 

observable if communication takes place. 

o Continuous communication between the robots: positioning error is 

bounded for all robots. 

o No communication between the robots: rhe robot which does not 

have absolute position information will just rely on DR and the 

location estimates will eventually diverge. 

� One of the robots remains stationary. One of the robots remains stationary, 

while the others move in the same area and measures their relative locations 

with respect to the standing on. Even though no absolute positioning 

information is available to any of the robots in the group the system is 

observable. 

In this Chapter, we presented prior work in sensor fusion and localization for 

density estimation of space-time fields using mobile robots. The approaches are based 

on physical models, parametric and non-parametric feature-based inference, and 

cognitive-based models. Different methods for localization of mobile nodes and related 

errors were also summarized, because of their relevance to robotic sampling problems.  
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CHAPTER 3 

ADAPTIVE SAMPLING OF PARAMETRIC FIELDS 

 

This chapter focuses on the mathematical formulation of AS problem for 

parameterized fields, including models, uncertainties, and sampling criteria. Section 3.1 

gives both a qualitative and quantitative definition for the Adaptive Sampling problem. 

Section 3.2 presents the EKF formulation of the AS problem with a single mobile 

sensor node. Section 3.3 discusses the parameterization of non- parametric fields using 

RBF Neural Networks. Finally section 3.4 discusses sampling strategies such as Raster 

Scanning, Random Sampling, Adaptive Sampling and Greedy AS. 

3.1 Adaptive Sampling problem 

Mobile robots are being used on land, underwater, and in air, as sensor carrying 

agents to perform sampling missions, such as searching for harmful biological and 

chemical agents, search and rescue in disaster areas, and environmental mapping and 

monitoring. Sampling can be simply defined as a set of elements drawn from and 

analyzed to estimate the characteristics of a population. In adaptive sampling, 

strategies continuously adapt in response to real-time environmental measurements 

without human intervention. Once such scenario involves the 
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deployment of multiple underwater vehicles for the environmental monitoring of large 

bodies of water, such as oceans, harbors, lakes, rivers and estuaries [3, 8, 34]. Predictive 

models and maps can be created by repeated measurements of physical characteristics, 

such as water temperature, dissolved oxygen, current strength and direction, or 

bathymetry. However, because the sampling volume could be large, only limited 

measurements are available. Intuitively, a deliberate sampling strategy based on models 

will be more efficient than just a random sampling strategy.  

Popa and Sanderson [34] described a combined multi-agent AS problem 

coupling uncertainty in localization as well as in the sensor measurements to achieve 

effective adaptive sampling using a solar AUV (Autonomous Underwater Vehicle), 

considering very simple, linear field models. Localization uncertainties are relevant to 

the sampling problem since position estimates for underwater robots are often 

inaccurate due to navigational errors from dead-reckoning.  In this thesis we expand and 

extend this parametric approach to include much more complex fields and heuristics 

with much better sampling performance. Unlike non-parametric sampling methods, 

such as [15], our approach requires a parametric field description of the sampled field. 

Qualitatively, a multi-agent AS problem for spatio-temporal fields can be posed 

as follows:  

We wish to describe an unknown nonlinear spatio-temporal field variable via a 

parametric approximation ),,( tXAZZ =  depending on an unknown parameter vector 

A, position vector X, and time t. The field is recovered by using N robotic vehicles, 

sampling the field with localization and sensing uncertainty. We wish to: 
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•  Decide what sampling locations nkNiX
i

k ≤≤≤≤ 1,1,  should be                 

chosen such that the uncertainty in estimating the unknown parameter vector is 

minimized, and, 

• Additional secondary objectives such as the number of samples, sampling 

duration, energy, etc., are minimized. 

• Distribute the computational and communication load, and the sampling space 

among N robots in an efficient manner. 

3.2 Basic EKF formulation 

To pose the AS problem in a quantitative way, an information measure and 

uncertainty model needs to be selected. We use the Extended Kalman Filter where the 

state transition and measurement equations during sampling can be described through 

non-linear mappings (functions h, m, f & g) as follows: 

Robotic sensor nodes state dynamics: 
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i
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Field parameter dynamics:                                  
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where kA  is a vector of unknown coefficients describing the field with noise covariance 

matrix k

T

kk QE 2][ =αα , and kU2  is the uncontrollable (but measurable) “field evolution 
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vector”. This parameter is a slow-varying correction factor in the field parameters, 

assuming that infrequent, low resolution measurements of the entire field are available. 

Robot position output measurement: 

i

k

i

k

i

k XfY ξ+= )( ,         (3.3) 

where the output noise covariance is i

k

Ti

k

i

k RE 1])([ =ξξ . 

Distributed field variable measurement model: 
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where i

kZ  is the field variable with measurement noise covariance i

k
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Robot input measurement: 
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~
,          (3.5)  

where i

kU1

~
 is the measured control input with measurement noise covariance 

i

k

Ti

k

i

k RE 3])([ =ββ . i

kU1  is the output caused by the control input i

kU1

~
. 

Field evolution factor measurement: 

kkk UU η+= 22

~
,          (3.6)  

where kU2

~
 is the measured field parameter evolution using high-spatial and low-rate 

measurement with measurement noise covariance k

T

kk RE 4][ =ηη . kU2  is the actual 

change in the parameter value since the last estimate. 

For the single mobile agent i sampling the field, the EKF overall state vector is 

),,( k

i

k AX  and the system and measurement models are thus summarized as: 
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Using the standard nonlinear, discrete EKF formulation [23], the time and 

measurement update equations are given by: 
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where the state is the combined position of all the robots and the field parameter vector 

[ ]TAX , kP  is the state covariance, and the process and measurement error 

covariances are given by: 
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By using a norm of the state covariance as information measure, the adaptive 

sampling algorithm moves the vehicle i from i

kX  to i

kX 1+  such that the following p-

norm of the covariance matrix is minimized over the search space Θ : 
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 The above formulation applies to both single as well as multiple robotic sensor 

agents on a spatio-temporal field with location and field parameter measurements 

available at the same rate. In past work, several cases were considered by Sreenath et. 

al. [140-141] to estimate the parameters of stationary field using least squares and the 

Kalman Filter with single robot, as detailed below: 

3.2.1 Least-squares estimation for linear-in-parameters field 

If the dynamics of the robot is ignored, and if  we assume that the parametric 

field measurement Z depends linearly on the unknown parameter vector A, but non-

linearly on position vector X, then a closed-form solution on the unknown parameters 

can be obtained, subject to the condition that there is no process and position 

measurement noise. After n scalar measurements nZZ ,...,1  are taken at location 

vectors nXX ,...,1 , the field equations can be used to find the least squares solution: 
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where [ ]TmaaaA L10= is the parameter vector, and mggg ,,, 21 L  are nonlinear 

basis functions of the field. Equation (3.11) can be written in matrix format as: 
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where nM is a mn× matrix.  The least-square solution of equation (3.12) is simply:  
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where +
nM  is the Moore-Penrose inverse of nM . Moreover, the pseudo-inverse has a 

closed-form solution given by: 
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leading to a parameter estimate closed-form: 

( ) ( )( ) ( )

( )

( )

( )

∑∑
=

−

=



































































=
n

j

jm

jij

jm

ji

n

j

jmjin

Xg

XgZ

Xg

XgXgXgA
1

1

1

11

1ˆ

M

M

M

M

LL .          (3.15) 

Assuming that the robot locations are known without uncertainty, the covariance 

matrix of nÂ  can be related directly to the constant measurement uncertainty as: 
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An Adaptive Sampling algorithm should then move the robot from nX  to 1+nX  

such that the p-norm of the covariance matrix is minimized over the search space Θ : 
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Θ∈∀≤= + XXmXmPXm nnpnn ),()(,)( 1 .                                                   (3.18) 

3.2.2 Kalman filter estimation for linear-in-parameters field with no uncertainty 

in localization 

 

Like in the previous case, if the parametric form of a measurement field is 

known, as might be the case, for example, with a bottom profile or systematic variations 

in temperature or salinity, the field estimation can be integrated with localization in 

order to improve the estimation process.  The assumption that the field distribution is 

linear in its parameters allows computing a closed-form solution for the information 

measure used by the sampling algorithm, as we saw in the previous section. The same 

result can be recovered using the Kalman Filter. After n measurements taken at location 

iX , the field model depends linearly on m-dimensional parameter coefficients 

mjjaA ≤≤= 1)(  via position-dependent functions as in equations (3.11) and (3.12). 

If the robot dynamics and localization uncertainty are ignored, the state is 

simply the parameter vector, and KF equations can be written simply as: 
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The error covariance matrix from the KF is used to decide where to sample 

next.  Because of the simple state update equation, the KF equation can be reduced to: 
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The error covariance is similar to the least squares solution in (3.14) and (3.15), 

and can be directly calculated by the following formula: 
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3.2.3 Simple Kalman Filter estimation for linear field with uncertainty in 

localization 

 

In this case, in addition to the parameter state equation update kk AA =+1 , the 

vehicle dynamics must also taken into account. In the simple case when the vehicle 

motion can be represented by a single particle equation with uncertainty: 

kkkk wUXX ++=+1 , and assuming that we use dead-reckoning for localization, and 

that the function )( kXg is linear, the KF equations become: 
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where DR

kX  is the dead-reckoning estimate for the robot position computed after a 

command vector −
ku  is applied to the robot to cause a predicted position change 

equivalent to ku , and  
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are the white noise covariances of the state and output.  

The linear Kalman Filter equations become: 
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If on the other hand the robot dynamics or the field is nonlinear in parameters or 

in the robot state, equation (3.24) will become a Non-Linear Kalman Filter (EKF). 

3.2.4 Kalman filter estimation for linear-in-parameters field with location 

measurement unavailable 

In previous cases it is assumed that both the sensor node position measurement 

)( kY  and field variable measurement )( kZ  to estimate parameter states )( kA  and 

position states )( kX .  In this case we assume that the node position output is not present 

and we rely on field variable measurements alone, but we allow for the field to be linear 

in parameters but nonlinear in the location state. Localization uncertainties are 

especially relevant in GPS-denied environments, but they can also be present in 

situations where local visual information is unavailable (for instance due to thick 

smoke), and GPS data rates are slow.  
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Here model parameter estimation for the field variable is integrated with 

estimation of the uncertainty in the mobile robot localization and the overall covariance 

of the estimate is used for sampling.  This way localization uncertainty can be reduced 

by building accurate models of distributed fields and vice versa. For instance, if a robot 

is sampling an unknown field, but its location is accurately known, a distributed 

parameter field model can be constructed by taking repeated field samples. Later on, 

this field model can be used to reduce the localization error. 

In the case of an m-dimensional linear-in-parameters field distribution, 
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where kA is the parameter vector and  is a nonlinear basis 1g  for the field, the non-linear 

EKF equations can be written as: 
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where, 
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The nonlinear Kalman Filter update equations become: 
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3.2.5 Extended Kalman Filter estimation for a field represented by Radial Basis 

Function (RBF) neural network  

We now consider sampling problems for distributed fields with increased 

complexity, including nonlinearities in both the parameters and locations. In this case, 

we can use Gaussian (or radial) basis functions. Hence, the field is represented by a 

neural network having radial bases (i.e. RBF), with a Gaussian activation function. The 

use of such model is motivated by ability to approximate complex non-linear parametric 

fields by the Universal Approximation Theorem. Modeling of complex forest fires by 

RBF-NN is considered in great detail in Chapter 4, but here a general framework is 

shown. The measurement model is given by: 
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The Neural Network, as well as the corresponding EKF equations can now be 

summarized as shown in Figure 3.1.  
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Figure 3.1 A radial basis neuro-EKF to represent a non-linear field and estimate the 

field parameters and robot location states. 

3.3 RBF neural network for parameterization 

As explained in Chapter 2, parametric approximations of complex fields can be 

achieved using artificial neural networks. Apriori information of the field is used to 

approximate the continuous field with an RBF neural network according to the 

universal approximation theorem. The inputs (states) and outputs (field measurements) 

are used to train the neural network. Training is done at a lower rate in a multi-rate EKF 

estimation process (e.g. of sampling with robots). Using the training algorithm, the 

network adjusts its weights so that the error between the actual and desired response is 

minimized.  
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RBF is a two-layer network. The hidden layer has radial (Gaussian) bases while 

the output layer is linear. Both layers have biases, and the output of the network is 

simply:  
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where X  is the field location, P
X ℜ∈ , where P is the dimension of the field e.g. two or 

three dimensional distribution. It is desired to learn parameters Nwww ...,,, 10 , centers 

Nccc ...,,, 21  and the spread parameter Nsss ...,,, 21  of the network. The spread parameters 

are the measure of the variance of the Gaussians. The hidden and output layer of the 

RBF network can be optimized separately by a hybrid algorithm, the “self-organized 

selection of centers” [14, 45, 83]. This algorithm uses k-means clustering for placing the 

Gaussian centers, heuristic r-nearest neighbors rule for width optimization, and LMS 

for estimating the peak value.  

A supervised or random approach for the selection of centers will be less useful 

in this case when compared to the self-organized approach because the former schemes 

ignore the non-uniformities in the distribution which will give less accurate results. On 

the other hand, k-means clustering adjust the centers using “minimum distance 

Euclidean distance” criteria, ensuring that there are more Gaussians overlapping in 

high-variance areas. This results in thorough sampling in high-variance areas due to the 
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presence of more parameters dominating in those areas when “minimum error 

covariance” criterion is used to seek optimal sampling locations. 

The parameters of the output layer are learned using a LMS algorithm. A hybrid 

algorithm is also necessary because the hidden layer evolve slowly compared to the 

linear layer. The selection of spread parameters is crucial. The spread parameters are the 

measure of the variance of the Gaussians. As there is no optimal scheme to find the 

spread factor especially in the case of non-uniform distributions, and several fixed and 

variable width heuristic methods have been proposed in the past [53]. Considering the 

fact that all the approaches are sub-optimal, a fixed width can be assumed while training 

as it is corrected by the EKF when high-resolution measurements are taken. In this case 

the larger spread is, the smoother the function approximation. Too large a spread means 

a lot of neurons are required to fit a fast-changing function. Too small a spread means 

many neurons are required to fit a smooth function. Therefore, the accuracy of the 

initial estimated field depends on resolution of apriori data, number of neurons used and 

the spread factor. As shown in figure 3.2 & 3.3, input-output data is used for training 

the RBF neural network which gives an initial estimate of weights in linear layer, non-

linear layer and the center of Gaussians. These initial estimates are later used as initial 

conditions for the parameterized EKF-based sampling algorithm. 
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Figure 3.2 RBF NN architecture with p  inputs ),,,( 21 puuu L and one output y . 

 

 
Figure 3.3 Block diagram of inverse modeling for parameter estimation when 

input to NN are locations ),( yx and field T  
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3.4 Sampling strategies: where to sample 

3.4.1 Global search AS 

In the absence of model and measurement uncertainties in localization and field 

parameters, the sampling task would be a deterministic case and all the sample locations 

)1(, NiX i ≤≤  will provide same information about the unknown X and A. Hence there 

would be no difference in random, row-by-row or adaptive sampling. But in the 

presence of uncertainties discussed, the error covariance (uncertainty) of states can be 

used to decide the next best sampling location. The error covariance of the parameter 

states is the measure of uncertainty of the parameters. High value of error covariance 

indicates higher uncertainty and lower value indicate lower uncertainty.  

Adaptive sampling location calculates the anticipated error covariance of all the 

candidates’ location and selects the one which gives minimum value. The minimization 

in the error covariance of a parameter is achieved by sampling along the extreme 

(boundary) values of the parameter. A summary of different ways to pick the next 

sampling location is shown in Figure 3.4. 

It will be shown later (Chapters 5, 6) through numerous simulation and 

experimental results that Adaptive Sampling (e.g. equation (3.18)) requires considerably 

fewer samples than just Raster Scanning or Random Sampling, because AS minimizes 

the uncertainty in unknown parameters. However, one drawback of using this standard 

approach of AS is that it is computationally complex, because it calculates the 

anticipated error covariance of the locations in the entire search space. To overcome this 
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drawback, a heuristic greedy AS is used to indirectly incorporate the time-to-move for 

the robot and reduce complexity.  

 
 

    
(d)   (e) 

Figure 3.4 (a) Adaptive sampling with uniform grid size, (b) Greedy AS with 

uniform grid size and uniform step size, (c) Raster scanning, (d) Adaptive Cluster 

Sampling, (e) Non-uniform grid size sampling 

3.4.2 Heuristic Greedy AS 

If the sampling area is large, the optimal sampling position could far away from 

current robot location, and it will not be a efficient in minimize the sampling time. A 

heuristic greedy approach is adopted instead, where the next sampling location is 

searched within the vicinity of the currently sampled location. The advantage is that the 

robot covers less distance which saves time and number of samples. Also it reduces the 

complexity of the algorithm because only the anticipated error covariance of sampling 

neighboring locations is calculated. The Heuristic Greedy AS algorithm helps to answer 

the following question:  
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Given a parametric field variable ),( XAZZ =  depending on an unknown 

parameter vector A and position vector X, and a robotic vehicle/sensor node navigating 

the field with localization uncertainty, what sampling locations iX  (where Ni ≤≤1 ),  

in the immediate vicinity of the current sampling location should be chosen such that a 

trade-off between the uncertainty in estimating the unknown parameter vector and the 

sampling distance is minimized. 

3.4.3 Multi-step Greedy AS 

There are three different cases for choosing the step size, or horizon in greedy 

AS: 

� Look 1-step ahead and move 1-step ahead (single step)  

� Look k-steps ahead and move k-step ahead 

� Look k-step ahead and move 1-step ahead 

The first case is the simplest one, and involves minimum computations, but 

since the search space is restricted, it might lead the robot to end up in areas providing 

limited information about the field. To avoid this, the “look k-step ahead and move k-

step ahead” approach can be adopted with increasing values of k. But the disadvantage 

of this approach is that it generates a path based on current information about the 

parameter estimates which are constantly improving. Therefore, the third case ensures 

that the robot reevaluates sampling location k-steps ahead after each motion command.  

3.4.4 Cluster Adaptive Sampling 

For a sampling scheme to be efficient, it should consider more samples in 

regions with large variations compared to regions with small variations. A solution for 
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non-parametric ocean sampling in [15] requires the adaptive sampling criteria to take 

more samples in high-variance area and fewer samples in low-variance areas by having 

a non-uniform size grid formed using Centroidal Voronoi Tesselation (CVT) diagram as 

shown in figure 3.4 (e). The grid size depends on the local variance of the field. 

For parametric fields, more densely sampling non-uniform areas is achieved by 

placing the centers of the Gaussians while training the RBF such that there are more 

Gaussians in high-variance areas, as illustrated in figure 3.4 (d). Hence, the adaptive 

sampling criteria automatically direct the robots to sample thoroughly in dense areas. 

Typically, a complex field is represented by numerous of parameters but only a 

specific set of parameters are dominant in specific regions, which for Gaussian fields is 

generally within the σ−1  circle. As it will be shown in the simulations of Chapter 4, the 

uncertainty in parameters of a Gaussian is most reduced by sampling within this circle. 

Therefore, taking the 2-norm of error covariance of those parameters whose σ−1  circle 

includes the next candidate sampling location is a good choice. And it can also be 

assumed that the candidate sampling location will provide estimates only for few 

neighboring parameters. This approximation also helps in distributing the computations 

among multiple robots which will be discussed in Chapter 7. 

In summary, this Chapter introduced the use of the EKF for sampling of 

parametric fields, discussed how to incorporate measurement and robot location 

uncertainty, discussed the use of RBF Neural Networks to approximate complex fields, 

and the heuristics that can be used to reduce the computational complexity of the search 

necessary to select sampling locations for the robots. 
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CHAPTER 4 

ADAPTIVE SAMPLIMG ALGORITHM APPLIED TO FOREST FIRE 

MAPPING 

 

The chapter is organized as follows: in section 4.1 the two parametric models  

used to describe the spread of forest fires are presented, section 4.2 discusses the 

parameterization of the field by interpreting remote-sensing images,  section 4.3 

presents the formulation for EKF-based adaptive sampling algorithm for spatio-

temporal distributions and the multi-scale algorithm for mapping of forest fires using 

adaptive sampling, and section 4.4 discusses potential fields based path planning for 

robots navigating through the estimated fire field. 

4.1 Parametric description of forest fire spread 

The physics of the fire behavior, its spread, and immediate effects have been 

studied extensively [5, 9, 18, 36]. Fuel, weather and topography are the key 

considerations in the spreading of fire. Most common are the semi-empirical fire 

modeling that uses Rothermel’s equation for calculation of local rate of fire spread [9, 

36], Huygen’s principle for modeling the shape of fire front [9, 36], and the use of 

discrete-event cellular automata models [19, 24, 28, 42]. Furthermore, neural network 

and other classification schemes have been used for some time for supervised 

classification of remote sensing data, especially in applications of urban planning and 
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atmospheric modeling, for instance, in order to classify the area as water, forest, 

wetlands, lakes, etc [24]. Since the fire spread phenomena is too complex to understand, 

and the effect of each and every variable is difficult to predict, a neural network can be 

used as a “black box” for measuring the influence of the independent variables. For 

instance, representing the fire spread as a parametric time-varying sum of several 

Gaussians makes for an attractive approximation. 

In this thesis, complex forest fires distributions are modeled through the use of 

RBF (Radial Basis Function) Neural Networks. RBF parametric models resulting from 

a low-resolution satellite image, for instance, serve as good low-resolution initial 

approximations for the fire field. When combined with a high-resolution adaptive 

sampling strategy, the errors introduced by low-resolution sampling and training are 

reduced. Sampling is done heuristically by mobile robots (agents) that search in the 

vicinity of the current location for future sampling locations minimizing field parameter 

uncertainty. This results in a quick, high-resolution reconstruction of the field at the end 

of the sampling process. Furthermore, the parametric description of the field can be 

used along with the robot dynamic model to reduce the localization uncertainty of the 

agents. This may not be needed in scenarios where GPS measurements are available, 

but it is critical in GPS-denied environments, such as underwater or inside buildings. 

The validity and performance of the sampling algorithm is tested here with 

increasingly complex fire spread scenarios. First, a simple time-varying elliptical forest 

fire spread model is considered that has been fitted to empirical data. This model 

considers a decreasing intensity Gaussian distribution from the head of fire to the fire 
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tail. The model is accurate at the beginning of the fire spread, and less accurate as time 

goes on. In later sections of the Chapter, we consider more realistic fire spread models 

simulated by cellular automata (CA), using discrete rules to decide the burning of 

certain cells based on conditions at neighboring cells. A low-resolution satellite image 

is used to approximate this field by a RBF neural network training algorithm that also 

acts as a classifier. The objective of the classification is to introduce more neurons in 

high-variance areas of the field, and fewer neurons in low-variance areas. Training of 

the neural net is only needed infrequently, and it need not be very accurate.  

In addition to sampling and reconstruction of the fire field, it is sometimes 

necessary to direct the robots or human personnel through this field and avoid 

dangerous locations, e.g. “hot zones”. This type of navigation can be accomplished 

using Potential Fields [11], and the estimated fire field model itself can serve as the 

navigation potential. Extensive research has been done in the area of path planning 

using potential fields for robotic vehicles [22]. Obstacle avoidance or goal attainment 

schemes often use penalty functions to bend feasible paths around obstacles as it was 

introduced by Krogh [21] and Khatib [20]. As the fire intensity field is generated via 

sampling, we can use it to generate fire-safe trajectories to and from rescue locations for 

fire-fighter human crews. 

The sampling and navigation algorithms presented in this Chapter will be 

validated in Chapter 5 using extensive realistic, time-varying forest fire simulation 

models. In Chapter 6, using a camera-projector system and mobile wireless robot nodes, 

ARRI-Bots, the algorithms will also be validated experimentally with relative ease.  
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 The fire spreading phenomenon is highly complex, and existing mathematical 

models of its spread require extensive computing resources. Regenerating time-varying 

fire spread models might be adequate to run in batch mode, but they are difficult to use 

in real-time fire-fighting scenarios. However, these models help in understanding the 

influence of different factors on fire propagation without the need for an analytical 

solution.  

 Existing fire spread models are divided into three classes: empirical, semi-

empirical and physical models. Using semi-empirical models is particularly interesting 

for our sampling approach because they use empirical measurements in addition to a 

physical description of the forest, hence providing a parametric space-time distributed 

field whose parameters can be estimated by adaptive sampling. By contrast, physical 

models are too simplistic, while empirical models involve too many parameters for the 

EKF. The most common fire modeling approaches include semi-empirical models using 

Rothermel’s equation for calculation of local rate of fire spread, Huygen’s principle for 

modeling the shape of fire front and Discrete-Event Cellular Automata (CA) models. 

Several powerful software applications such as FARSITE, FireGIS, Fire!, SPREAD, etc 

are available to demonstrate the fire spread . 

 Many factors influence fire behavior, with fuels, weather and topography being 

the primary factors. Parametric models have been empirically fitted to observe data 

using four primary inputs: fuel type, fuel moisture, wind and slope. Second-order 

variables such as temperature, humidity, shading and shelter operate through one of the 

four primary inputs. The effect of the primary inputs is described below: 



 

 

 

63 

� Slope: fire can spread significantly faster up a slope than on level terrain in the 

same fuels. In many cases topographic maps are very helpful for understanding 

the fire spread. 

� Wind: wind speed and direction are the most critical factors required for 

predicting fire behavior.  

� Fuel: fuel types are lumped together into different models. Fuel loading, fuel 

depth, fuel particle density, head content of fuel, moisture of extinction and 

surface area to volume ratio are the factors used to further describe it. 

� Fuel moisture: fuel moisture is an expression of the amount of water in the fuel 

component. It determines both fire intensity and the heat required to bring the 

fuel ahead of spreading fire up to the ignition temperature. 

4.1.1 Simple elliptical fire-spread model   

Given homogenous fuel and weather conditions, and assuming a constant, 

moderate wind, a fire growing from an ignition point is initially close to an elliptical 

shape. Strong winds or steep slopes can elongate the shape, but it remains consistent 

until fuels or wind change. The spread distance is the product of projection time and the 

rate of spread. 

The most common simulation model for forest fires growth from point sources 

uses the Huygens’ principle, which considers the elliptical nature of fire growth with 

),( ba  as the minor and major axes respectively and ),( ss yx  as the distance from the 

center of the fire ellipse to the fire source. Figure 4.1 depicts the elliptical spread of a 

fire starting at an ignition point. Since this function is a constrained Gaussian, it will 
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later be used as a Radial Basis Function (RBF) function with constraints. For a typical 

case the dimensions of the elliptical axis can be calculated by the following equations 

[9, 36]: 
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where R is the fire spread rate in ft/min, LB is the length to breadth ratio, HB is the 

head to back ratio, and U is the wind speed. 

 
Figure 4.1 Elliptical Fire growth model represented by an elliptically constrained 

RBF function. 

The variable which will later need to be mapped is the temperature of the fire 

field, a Gaussian distribution only defined in an elliptical region. It is further assumed 

that the maximum fire temperature I , variance σ  and 0y are time invariant, while the 

firehead ( ))(),( 00 tytx  location is proportional to the fire spread rate which in turn is 
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proportional to the wind speed. If Cty =)(0  (e.g. fire spreads horizontally), then the fire 

intensity is given by: 

 
Figure 4.2 Four fire ellipses originated at different points and with different 

spread rate, peak intensity and variance. The head of fire is the mean of the 

Gaussian distribution 
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where 

)()()(0 tctbxtx s ++=  .        (4.3) 

If wind is blowing at an angleφ  to the x-axis, the new parametric equation of 

ellipse can be derived by a rotation around the fire source ),( ss yx  by angleφ . In this 

case in equation (4.2) becomes: 
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where T
Rφ  is a 2x2 rotation by angle φ , and 

[ ] [ ] [ ]sssooonewnewnew yxXyxXyxX === ,, .        (4.5) 

4.1.2 Complex Cellular Automata (CA) based discrete event model   

The Huygens fire-spread model is quite simple, but it is quite reasonable for 

short intervals of time after ignition. Because it assumes uniform, continuous fuel, 

uniform wind velocity throughout the burning area and flat terrain, the model becomes 

inaccurate if the fire spreads over large distances. Cellular Automata (CA) are very 

good for modeling and simulating complex dynamical systems whose evolution 

depends on the state of the current cell, neighboring cells, wind, slope and fuel. This 

scheme can also recover the Huygens fire spread model discussed in previous section at 

a cellular level. The fire spread region is divided into cells, as shown in figure 4.3, and 

the fire propagates from cell to cell governed by discrete-event rules which iterate the 

temperature at the next sample time as a function of the temperature of its cell 

neighbors, and of several local fire parameters. The transition rules can be written as: 

),,,,....,,( 4,,1,,,

1

, fuelslopewindTTTfT
k

ji

k

ji

k

ji

k

ji =+ ,     (4.6) 

where k

jiT ,  are temperatures of the current cell and its neighbors. 
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Figure 4.3 CA model inputs, outputs and transition rules 

 

Each cell is considered to be in one of the following four states (inactive, 

unburned, burning and burned) as shown in figure 4.4. The fire starts from a hotspot in 

an elliptical shape in the sense that each burning cell generates an ellipse with focus on 

the cell center. Depending on fuel type, moisture, slope, wind and the state of the 

surrounding cells, each may have different rate of increase of temperature )(α , 

maximum temperature )( maxT , ignition temperature )( ignitionT , rate of temperature 

decay )(β , time threshold for switching to unburned state )( thresht and ignition 

time )( ignitiont .  

The following set of equations govern the temperature variation with respect to 

time, as suggested by [42]: 
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Figure 4.4 Cell temperature variations with respect to time 

The rules can be simply defined as: 

� A cell remains in inactive state until it is outside the burning ellipse. The 

state switches to unburned state when one of its neighbors starts burning. 

� Once the cell switches from inactive state to unburned state, its 

temperature starts to rise at a rate of α , which depends on the fuel 

availability, wind and terrain. 

� The cell starts burning after it reaches the ignition temperature. The 

combustion duration and rate of temperature decay β  depends on fuel, 

wind and terrain. 
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Figure 4.5 Fire at time t = 2, 3, 4 & 5 minutes shown in (a), (b), (c) and (d) 

respectively 
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Figure 4.6 Fire at time t = 20, 40, 60 & 80 minutes shown in (a), (b), (c) and (d) 

respectively 

Figure 4.5 shows a MATLAB simulation of a fire generated from the hot spot at 

(244,127) using CA at time instants t = 2, 3, 4 and 5 minutes. The number of pixels for 

the fire field was 300300×=× yx . The fire is circular in shape because slope variation 

and wind direction are not considered. But because of the different fuel present in each 

cell the temperature is different and keeps increasing. Figure 4.6 shows the fire at time t 

= 20, 40, 60 & 80 minutes in figures (a), (b), (c) & (d) after some time elapsed and most 

of the area with significant fuel content is burning. In Chapter 5, these fire field models 

will be sampled and reconstructed using the algorithms discussed in Chapter 3. 
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4.2 Neural network for parameterization 

Digital remote sensing images of forests can be acquired from field-based, 

airborne, and satellite platforms. Imagery from each platform can provide a data set 

with which forest analysis and modeling can be performed. Airborne images typically 

offer greatly enhanced spatial and spectral resolution over  satellite images. In addition, 

airborne images provide greater control over capturing images only from specific areas 

of interest and at different altitudes. In section 3.3, we discussed the parameterization of 

complex time varying fields which is applied here to a fire spread model using RBF 

neural nets. We assume that low-resolution images are available from overhead imagery 

at infrequent time intervals. 

In the case of fire distribution, an exact nonlinear model description is 

unattainable due to the high level of complexity. Instead, a parameterized 

approximation of the field is used, which is acquired by means of a neural network. In 

order to obtain an initial approximation of the field, a neural network is trained with a 

low-resolution “fire field image”. Training is done at lower rates in this EKF estimation 

process (e.g. of sampling with robots). The network is presented with training pairs, 

which in our case are temperatures at different locations taken from a low-resolution 

infra-red image. Therefore, we roughly approximate the complex spatio-temporal field 

with a sum-of-Gaussian parametric field by means of the Universal Approximation 

Theorem. 
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4.3 EKF Adaptive Sampling of spatio-temporal distributions using mobile 

agents 

The presented nonlinear EKF approach is an efficient framework for combining 

the uncertainty in robot localization with errors in field sensor measurements. State-

measurement minimization of the EKF covariance matrix norm is used to achieve 

effective adaptive sampling using a variety of mobile robotic platforms including 

underwater and in-door vehicles. Localization uncertainties are especially relevant in 

GPS-denied environments, but they can also be relevant to fire fields in situations where 

local visual information is unavailable (for instance due to thick smoke), and GPS data 

rates are slow. Time-varying complex models are considered here stemming from 

realistic fire-spreading simulations of the previous sections.  

Model parameter estimation for the field variable (fire temperature) is integrated 

with estimation of the uncertainty in the mobile robot localization and the overall 

estimate covariance is used for sampling.  This way, localization uncertainty can be 

reduced by building accurate models of distributed fields and vice versa. For instance, if 

a robot is sampling an unknown field, but its location is accurately known, a distributed 

parameter field model can be constructed by taking repeated field samples. Later on, 

this field model can be used to reduce the localization error of the robot. 

The multi-agent AS problem considered can be described as follows: 

 

 



 

 

 

73 

 

Assumptions: 

i) A nonlinear spatio-temporal field variable is described via a parametric 

approximation Z=Z(A, X, t) depending on an unknown parameter vector A, position 

vector X, and time t. 

ii) N robotic vehicles (agents) sample the field with localization and sensing 

uncertainty in order to obtain higher resolution estimates of the field, and also to 

improve their own location estimates. 

iii) The number of field parameters (M) and their initial guess is based on a 

hypothesis originating from prior knowledge of the field consistent with a low-

resolution image of the entire field. 

In this section,  the mapping of a slow time-varying complex forest fire field is 

considered, with measurements performed at different rates. For sampling slow-varying 

fields, the time update is performed at a slower rate compared to the measurement 

update. The time update (Equation 3.8) is performed at a sampling rate of dT  by high-

spatial infra-red imaging with an uncertainty represented by the process covariance 

noise TdQ . The field evolution is measured by the difference )
~~

( 1 TdTd UU −+  between 

these consecutive measurements. High rate field measurement updates are then done by 

robotic sampling, with uncertainty represented by covariance noise kR2 .  

Assuming that the th
i robot location i

kY  is measured using some absolute 

localization scheme such as GPS, and if, for simplicity, we ignore the robot dynamics 
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and localization uncertainty, we can write the state and output equations as: 
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Therefore, the EKF equations become: 
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where, kkTdk RRQQ 21, == + . 

4.3.1 Formulation for elliptically constrained single Gaussian time-varying field 

In this section, a time-varying field is assumed where the input kU 2  depends on 

the measured velocity of spread (wind velocity). The Kalman Filter equations are used 

to estimate the peak intensity, variance and mean of the time-varying forest fire field. 

Using equation, the fire model equation can be written as: 
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where 1+∆ kt  is the time from sample k  to 1+k , 0x  is a continuous function which is 

sampled at time 110 ,..., +kttt , and r  is a time-varying function describing the velocity of 

spread, and 1+kr   is the velocity of spread  r  for )1( +k th sample.  

The state estimates are updated using equation (4.10). The measurement 

equations are given by equations (4.11) and (4.12) with noise covariance 

).,0(~ 11 RNv The time and measurement update equations are given by: 
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and 
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4.3.2 Formulation of the general multi-scale algorithm EKF-NN-GAS for fire 

fields 

In previous sections we considered different cases of increasing complexity, in 

which a robots sample a parameterized field distribution. In a practical scenario, 

measurements will be arriving from different sensors, at different dimensional and time 

scales, and must all be fused into the EKF filter. We propose the following sampling 

algorithm to negotiate the increased complexity of mapping the fire field: 

Algorithm EKF-NN-GAS  (multi-scale, multi-rate adaptive sampling) 

Step 1 (Setup): Give the environmental parameters and rules for fire spread as 

input to the CA model as shown in figure 4.8. This will generate a 2-D temperature field 

),,( tyxT  which has a dimension of mm×  at time t . In practice, this step is omitted, 

and replaced by the actual spread of the fire. Go to step 2. 

Step 2 (Initialization): Divide the field into square size grid of nn× , 

,mn < and average values in each grid. This gives a low-resolution version of the actual 

field of size nmnm // × , illustrated in figure 4.8. In practice this low-resolution 

temperature distribution is acquired by an infra-red image taken from an airborne 

platform. Go to step 3. 

Step 3 (Training): Train the RBF neural network using this low-resolution 

temperature data. In the training algorithm, the number of neurons and smoothness 

factor are specified. The number of neurons depends on the complexity of the field so 

that the error is minimized within an acceptable threshold. This gives the parameterized 

version of the field with N  neurons and each neuron has parameters 0,, xa σ  and 0y  
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representing this RBF field. The error in the actual field and the initial estimate using 

neural network also gives a guess for initial error covariance P  in later EKF steps. Go to 

step 4. 

Step 4 (High rate sampling): Spot measurement robots sample locations in a 

grid of size pp× , (where mnp <≤ ) based on a Greedy Adaptive Sampling criterion 

to minimize the error covariance. The EKF framework shown in figure 4.8 is used to 

correct the estimates as the subsequent measurements are available one by one. The 

robot location is calculated by GPS measurement, via dead-reckoning, or relative 

position measurements. Localization uncertainty is ignored in the simulation results of 

the next Chapter, but should be considered along with the robot dynamical model. The 

EKF sampling rate, T  should be as fast as sensory measurements from robots are 

available. Repeat Step 4 until new low resolution updates of the entire field are 

available, else go to step 5. 

Step 5 (Low rate sampling): Because of the time varying nature of the field, a 

low resolution update of the field is performed at a sampling rate dT , and the evolution 

of the parameters is updated by comparing the low resolution field distribution at time 

1+dT  and dT . This involves repeating step 3 by retraining the neural network at time 

1+dT  and updating the parameters since the last training at time dT . The low rate 

parameter update )
~~

( 1 TdTd UU −+ , and its uncertainty Q , are given as inputs to the EKF 

block for high rate sampling update shown in figure 4.8. Low rate sampling is 

performed at a very low rate (approximately every 5 minutes for the simulation 



 

 

 

78 

examples we considered), compared to the high rate of sampling (which takes several 

sensor measurements every minute for the simulation examples). This scheme gives a 

better estimate of the time-varying field than if it was not included in the parameter time 

update. Go to step 4. 

Since the sampling robot dynamics is ignored here for the sake of simplicity, the 

parameter estimation model is simply: 

[ ]
),0(~

000101111

QN

yxayxabAA
T

kNNNNkkk

α

ασσα +=+=+ K
.(4.13) 

Moreover, if the field is time-varying the field parameters propagate as: 

α+−+= ++ )
~~

( 11 TdTdkk UUAA  ,                   (4.14) 

where 1+kA  is the field parameters update when thk )1( +  sample is taken (step 4) and 

)
~~

( 1 TdTd UU −+  is the field parameters propagation obtained by performing step 5. The 

measurement model is: 
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while the low rate sampling update equations are given by:  
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(ˆˆ
 .                (4.16) 

Step 5 does not reset the previous state estimates, but calculates the evolution of 

parameters )
~~

( 1 TdTd UU −+  based on the difference between current and past field images 

added to the old parameter estimate kÂ  to predict a new estimate −
+1

ˆ
kA . 
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Finally, equations similar to (4.12) can be used in the EKF sampling update. 

Figure 4.8 shows a block diagram for algorithm EKF-NN-GAS.  Its full update 

equations are given by the following block equations: 
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Figure 4.7 Change in spatial resolutions for multi-scale sampling 

 

 
Figure 4.8 Block diagram for temporal field model identification and parameter 

estimation 

4.4 Potential field to aid navigation through fire field using mobile agents 

The estimated fire field intensity distribution can be used as a repulsive potential 

to keep the fire fighters away from dangerous areas in the field and show them safe 

paths towards important destinations. Potential field methods create a vector field 

representing a navigational path based on a potential function. The sampled field 
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variable intensity can be used to plan collision-free paths around the fire “obstacles”. 

Given a scalar potential function )(XU  where ),( yxX = , that depends on the rescuer 

position and the field intensity at that point, one can calculate forces governing the 

rescuer motion based on the gradient of the scalar potential field: 

 
Figure 4.9 The attractive forces on point iX  towards the goal goalX  and repulsive 

forces from the obstacles 
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 .                  (4.18) 

The following forces can be considered in the potential field: 

� Attractive forces towards goals:  
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� Repulsive forces from obstacles which are fire ellipses 
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where λ  is the positive scaling factor, )(Xρ  is the Euclidean distance from X  to the 

center of ellipse, r  is the number of elliptical components close to current location and 

kI is the fire intensity at the point on ellipse at shortest distance from X . The trajectory 

can then be updated using a depth-first planning algorithm, which constructs a path as 

the product of successive segments starting at the initial configuration iX : 

piii FXX
rrr

δ+=+1 ,                  (4.22) 

where  iX  and  1+iX  be the origin and end extremities of the th
i  segment in the path.

 In summary, this Chapter discusses the application of the Adaptive Sampling 

algorithm to the mapping of forest fires. In addition to the basic approach discussed in 

Chapter 3, we also offer a complete framework encapsulated in the Algorithm EKF-

NN-GAS, which combines sensor measurements from different scales, rates and 

accuracies to map the time-varying spread of forest fires  

 Finally, we need to briefly discuss issues related to the convergence of the 

proposed algorithms. Since we are using the Extended Kalman Filter, any estimation 

scheme that utilizes it must be initialized sufficiently close to the actual field. Overhead 

satellite imagery of the field provides a reasonable initial estimate, but the absolute 

algorithm convergence cannot be guaranteed, as widely discussed in the literature [152]. 

In addition, the use of Heuristic Search methods in the algorithm can also lead to the 

presence of local minima . We can avoid such minima by restricting the search space so 

that we do not re-visit already sampled points, but such heuristics may not always work 

for time-varying fields. While studying convergence conditions for our algorithms was 
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beyond the scope of our thesis, simulation results presented in the next sections indicate 

that the algorithms converge in numerous instances. The algorithms of Chapters 3 and 4 

will be simulated and experimentally validated in subsequent Chapters of the thesis.  
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CHAPTER 5 

SIMULATION RESULTS 

 

This Chapter focuses on simulation results with Adaptive Sampling for 

parametric fields of increasing complexity, in order to validate the formulations 

presented in previous Chapters. Section 5.1 presents simulation results for linear-in-

parameter field first without considering uncertainty in localization and then 

considering uncertainty in localization of the robots. Section 5.2 discusses simulations 

results for a single Gaussian field without considering uncertainty in localization and 

then considering uncertainty in localization of the robots. Section 5.3 presents the 

simulation results for parameterization of complex space-time fields using the neural 

network.   Finally, section 5.4 discusses simulations of complex, stationary and time-

varying spatio-temporal forest fire fields, and potential field based approach for path 

planning for fire fighters. 

5.1 Linear parametric field 

5.1.1 Kalman filter estimation for the linear-in-parameters field without 

considering uncertainty in localization 

For the algorithm described in section 3.2.2, consider a stationary linear field, 

with two spatial variables (x,y), and three unknown parameters to be estimated. The 

field model is simply defined as:  

cybxaZ ++= .          (5.1) 
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For simplicity, assume that we wish to recover the parameters by sampling with 

a robot with no localization uncertainty. The process, measurement models, and update 

equations are given by: 

• System Model: [ ]Tkk cbaAA ==+1  .      (5.2) 

• Measurement Model: [ ] kkkkkk vAyxvAHz ++=+= 1~ .  (5.3) 

• Model and measurement uncertainties: 

            ( )000 ,~),,0(~,0 PxNxRNvQ k= . 

• Effect of System Dynamics: kkkk PPAA == −
+

−
+ 11 ,ˆˆ .    (5.4) 

• Effect of Measurement: 
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 .          (5.5) 

We simulate the sampling process in MATLAB assuming the following 

numerical values: 

• Actual parameters -  [ ] [ ]7.02.010=cba  

• Initial parameter estimates -  [ ]111  

• Parameters to estimate - [ ]cbaA =  

• Initial Error covariances - 




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=

1000

0100

0010

P  

• Model error covariance -  0=Q  

• Measurement error covariance -  1=R  
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• Convergence Criteria = 7.0ˆ
1 <− +kAA  

The sampling area is divided into grid sizes of 5 and 10 units and we assume 

that only the center of the grid is sampled. For the greedy adaptive sampling heuristic, 

we pick a horizon size equal to 2, to limit the search for the next appropriate sampling 

location, as depicted in Figure 5.1. 

Grid Size .

 

 

Horizon Size 

=> 2 grids

x0 100

0

100

y

 
Figure 5.1 Grid size and horizon size are shown for sampling a linear parametric 

field 

In this very simple case, there are three parameters to estimate and the AS 

algorithm looks for the next sampling location which minimizes the 2-norm of the error 

covariance matrix of these three parameters. If we wish to focus on minimizing the 

uncertainty of a specific parameter, instead of the 2-norm aggregate, the next sampling 

location would be the point which minimizes the error covariance of that particular 

parameter only. In our simulation, a grid size of 5 is chosen, and therefore a maximum 

horizon size of 19 will cover the entire field. Simulations results are plotted in figures 

5.2-5.6 for a global search AS. These plots are organized to include a snapshot of the 
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first few samples (top left), many samples (top right), the plots of error covariance, the 

parameter estimate, and values of error in parameter estimates with respect to number of 

samples (bottom left), and the plots of error in parameter estimates and error 

covariances with respect to the distance travelled (bottom right).  

  
 

  
Figure 5.2 Sampling points when error covariance of a  is minimized which takes 38 

samples and a total distance of 1417 is covered 

 

Figure 5.2 shows the results when the information measure of the algorithm is 

the error covariance of a  estimates only. We observe that the maximum information 

about parameter a  is achieved by first sampling the extreme ),( yx  locations. The plots 

show that parameter a  converges faster i.e. within 5 samples is this case. Results in 

Figure 5.3 indicate that the maximum information about parameter b  is achieved by 
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sampling along x-axis, first starting at the extreme locations. Similarly, Figure 5.4 

shows that the maximum information about parameter c  is achieved by sampling along 

y-axis first starting at the extreme locations. And, in the last case, when the 2-norm of 

error covariance of all parameter estimates is used as information measure, the AS 

algorithm produces the combined effect to select appropriate locations. In all cases, we 

also computed the combined distance traveled by the sampling agent, displayed it in the 

captions, and summarized it in Table 5.1. 

  
 

  
Figure 5.3 Sampling points when error covariance of b  is minimized which takes 68 

samples and a total distance of 5458 is covered 



 

 

 

89 

  
 

  
Figure 5.4 Sampling points when error covariance of c  is minimized which takes 68 

samples and a total distance of 5458 is covered 

 

An interesting observation emerges from examining Table 5.1 – namely that 

minimizing the error covariance of parameters b and c requires more distance and 

number of samples to achieve the same convergence threshold. This is due to the fact 

that sampling along extreme x and y axes by minimizing uncertainty in b and c does not 

provide enough information about rest of the parameters. This can also be observed in 

Figure 5.3, where minimization of uncertainty in b causes a and c to converge very 

slowly compared to case in figure 5.2, where minimization of uncertainty in a causes b 

and c converge at significantly faster rate within 5 samples.  
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Figure 5.5 Sampling points when 2-norm of error covariance matrix P  is minimized 

which takes 34 samples and a total distance of 1445 is covered 

 

 

Table 5.1 Comparison of GAS and AS for number of samples and distance 

when error covariances of different parameters are minimized 

 

Minimizing  

Error  

Covariance 

No. of 

Samples 
Distance 

)(aP  38 1417 

)(bP  68 5458 

)(cP  68 5458 

Adaptive 

Sampling 

(Grid Size=5, 

Horizon Size=19) P  34 1445 

)(aP  64 412 

)(bP  128 720 

)(cP  128 720 

Greedy 

Adaptive Sampling 

(Grid Size=5, 

Horizon Size=1) P  64 396 
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           (a)                (b) 

 

  
            (c)               (d) 

Figure 5.6 For GAS (a) the error covariance of a is minimized, (b) the error covariance 

of b is minimized, (c) the error covariance of c is minimized, (d) the 2-norm error 

covariance matrix P is minimized 

Next, we run the AS algorithm with a smaller horizon size of 2, as shown in the 

sampling sequences of Figure 5.6. And, in Figures 5.7 to 5.9, a comparison is shown for 

sampling with a grid size of 5 and 10 for raster scanning (RS), adaptive sampling AS 

(e.g. a horizon of 19), greedy adaptive sampling (GAS) (e.g. a horizon of 2). In Figure 

5.7 it is apparent that for RS increasing the grid size reduces the number of samples 

required to meet the convergence criterion. The number of samples per row is smaller 

and hence more rows are scanned by covering more area on x-axis. Figure 5.9 shows a 

comparison of simulations with grid sizes 5 and 10 for GAS. A larger grid size of 10 
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gives better results because it covers more area with fewer samples, while the field does 

not have local variance because it is linear. 

It is summarized in Table 5.2, and apparent from Figure 5.8, that changing the 

grid size does not reduce the number of samples and distance for AS because the next 

best sampling point is searched in the entire area. Moreover, in some cases increasing 

the grid size increases the number of samples and the distance to convergence because 

the data set becomes smaller. 

In summary, these simple simulation results reveal that the field discretization 

grid, the information measure, and the horizon size greatly impacts the route taken by 

the robot to accomplish sampling missions. The sampling behavior can be intuitively 

understood, and shows that GAS requires a much smaller sampling distance than RS, 

while AS offers the least number of samples at the cost of the greatest travel distance. 

This observation is still valid for all simulation and experimental results presented in the 

Thesis. 

Table 5.2 Comparison of RS, GAS and AS for number of samples and distance 

when different grid size and horizon size are considered for sampling a linear field 

 Grid Size 
Horizon  

Size 

No of 

Samples 
Distance 

5 - 113 560 
Raster Scan 

10 - 78 770 

5 19 27 1124 
Adaptive Sampling 

10 9 21 1205 

5 1 62 386 
Greedy Adaptive Sampling 

10 1 28 336 
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Figure 5.7 Simulation results for raster scan when grid size of 5 and 10 are considered 
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(a)          (b) 

Figure 5.8 Simulation results for adaptive sampling with: (a) grid size 5 and horizon 

size 19, (b) grid size 10 and horizon size 9 
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(a)          (b) 

Figure 5.9 Simulation results for greedy adaptive sampling with: (a) grid size 5 and 

horizon size 1, (b) grid size 10 and horizon size 1 
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5.2 Gaussian parametric field 

5.2.1 Estimating parameters for a single Gaussian field 

We now consider sampling of a stationary nonlinear field represented by a 

Gaussian with four unknown parameters, the center, amplitude, and variance 

[ ]00 yxaA σ= . This distribution is represented by the equation: 







 −+−
−=

2

2

0

2

0

2

)()(
exp.

σ
yyxx

aZ  .       (5.6) 

5.2.1.1 Minimization of uncertainty in single parameter 

Four sampling routes are shown in figures 5.10-5.13 in which the sampling 

criterion seeks to minimize uncertainties in estimates of individual parameters. The 

numerical assumptions for simulation were: 

• Actual parameters -  [ ] [ ]60402010000 =yxa σ  

• Initial parameters -  [ ] [ ]65451510500 =yxa σ  

• Model error covariance -  0=Q  

• Measurement error covariance -  1=R  
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Figure 5.10 Sampling locations for minimizing the uncertainty in a  for adaptive 

sampling when grid size 20 (top) and Greedy adaptive sampling with grid size 1 

(bottom). Initial estimate for a  is 105 and initial error covariance of 10 
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Figure 5.11 Sampling locations for minimizing the uncertainty in σ  for adaptive 

sampling with grid size 20 (top), and Greedy adaptive sampling with grid size 1 

(bottom) when initial estimate for σ  is 15 and initial error covariance of 10 
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Figure 5.12 Sampling locations for minimizing the uncertainty in 0x  for adaptive 

sampling with grid size 20 (top) and Greedy adaptive sampling with grid size 1 

(bottom) when initial estimate for 0x  is 45 and initial error covariance of 10 
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Figure 5.13 Sampling locations for minimizing the uncertainty in 0y  for adaptive 

sampling with grid size 20 (top) and Greedy adaptive sampling with grid size 1 

(bottom) when initial estimate for 0y  is 65 and initial error covariance of 10 
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 We can observe that minimizing the error covariance of a , while disregarding 

the uncertainty in other parameters, leads to samples being taken at the current estimate 

of ),( 00 yx  and in its neighborhood. Similarly, minimizing the uncertainty in 00 ,, yxσ  

reslts in samples taken around ),( 00 σσ ±± yx , ),( 00 yx σ± and ),( 00 σ±yx  

respectively. This idea is illustrated in figure 5.14. 

Minimize the 

uncertainty in x0

Minimize the 

uncertainty in s

Minimize the 

uncertainty in y0

Minimize the 

uncertainty in a

 
Figure 5.14 Applying minimum error covariance criterion for different parameters 

results in specific areas of the Gaussian to be sampled 

5.2.1.2 Minimization of uncertainty in multiple parameters 

It is apparent that a single scalar value cannot capture all the aspects of the error 

covariance matrix. For cases involving combined uncertainty of several parameters, 

information measures that can be considered include the 2-norm, inf-norm, trace or log-

determinant of the error covariance matrix, as discussed in [49]. The 2-norm of error 
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covariance is a popular choice, however, most of these measures lead to parameter 

convergence as illustrated in Figures 5.15-5.19. The Log-det(P) measure can take 

negative values. Inf-norm(P) minimizes the uncertainty of the parameter which has the 

maximum uncertainty, and, as a result oscillations can be seen before the estimates 

converge to final values. These oscillations can also cause the EKF filter to diverge due 

to operating in non-linear regions. Trace(P), although it shows convergence, might not 

be appropriate because it doesn’t consider the cross correlation terms of P.  The 

following numerical assumptions were used for initial uncertainty: 

• Initial parameter estimate vector - [ ]65452595 , and 

• Initial error covariance - 
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Figure 5.15 GAS (grid size 1) results for 20 samples with 2-norm of error covariance 

criterion 
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Figure 5.16 Adaptive sampling results for 20 samples with 2-norm of error covariance 

criterion 
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Figure 5.17 Adaptive sampling results for 20 samples with ∞ -norm error covariance 

criterion 
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Figure 5.18 Adaptive sampling results for 20 samples with Trace of error covariance 

criterion 

 



 

 

 

107 

 

 

 
Figure 5.19 Adaptive sampling results for 20 samples with log-det of error covariance 

criterion 

We conclude that the choice of covariance matrix norm will affect the 

performance of the sampling algorithm. In the absence of any prior information about 

the field, the 2-norm is an appropriate choice.  
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5.2.1.3 Effect of sampling grid size 

We also investigated the effect of changing grid sizes for the sampling 

simulations. We used the following numerical assumptions: 

• Actual parameters -  [ ] [ ]60405010000 =yxa σ , 

• Initial parameter estimates -  [ ]75354080 , 

• Initial error covariance -  











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





=

10000

01000

00100

00010

P , 

• Model error covariance -  0=Q , 

• Measurement error covariance -  1=R  

• Convergence Criteria - 5.2ˆ
1 <− +kAA  

Table 5.3 Comparison of RS, GAS and AS for number of samples and distance 

when different grid size and horizon size are considered for sampling a Gaussian field 

 Grid Size 
Horizon  

Size 

No. of 

Samples 
Distance 

5 - 205 1020 
Raster Scan 

10 - 96 950 

5 19 24 1022 
Adaptive Sampling 

10 9 34 1835 

5 1 68 430 
Greedy Adaptive Sampling 

10 1 44 496 

 

Simulation results are shown in Figures 5.20 and 5.21 for raster scan with 

different grid sizes the plots for individual parameter estimates, error covariance of 

individual parameters, error in individual parameter estimates, error in individual error 

covariance, 2-norm of parameter estimates, and 2-norm of error covariance of 
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parameters. We notice that in both cases parameters a  and 0x  converge slowly because 

the minimizing the uncertainty of a  involve sampling near the Gaussian peak, and of 

0x by sampling along x-axis. However, raster scanning in this case is performed by 

sampling along y-axis, and therefore convergence will take a while. With a grid size of 

10 instead of 5, fewer samples are required because in fewer samples most of the area 

will be covered. The results are tabulated in Table 5.3. As in the previous sections, GAS 

leads to a much smaller sampling distance, while AS requires the least number of 

samples. 
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Figure 5.20 Raster scanning of a Gaussian field with grid size 5 which takes 205 

samples and a distance of 1020 
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Figure 5.21 Raster scanning of a Gaussian field with grid size 10 which takes 96 

samples and a distance of 950 
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Figure 5.22 Adaptive sampling of a Gaussian field with grid size 5 and horizon size 19 
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Figure 5.23 Adaptive sampling of a Gaussian field with grid size 10 and horizon size 9 
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Figure 5.24 Greedy adaptive sampling of a Gaussian field with grid size 5 and horizon 

size 1 
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Figure 5.25 Greedy adaptive sampling of a Gaussian field with grid size 10 and horizon 

size 1 
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5.2.2 Estimating parameters of single Gaussian field and robot location states 

by field measurements only 

We now consider the case of sampling a stationary Gaussian field with four 

unknown parameters defined by equation (5.6) with a differential drive robot. Both 

location states for the robot [ ]kkk yxX =  and field parameters [ ]00 yxaA σ=   

need to be estimated. The kinematic model for the robot will be discussed later, in 

Chapter 6, and is shown in Figure 6.6. The robot is equipped with wheel encoders that 

are used to estimate its position, however, the source of error in robot localization is the 

difference in wheel radii between the actual and the nominal robot models as discussed 

in section 6.1.3. Therefore, during simulation the robot ended up at locations different 

from where it thinks it is based on its dead-reckoning model. The robot kinematic 

model now included in the Joint EKF as described in equations (6.2), and the following 

numerical assumptions were used in the simulation: 

• Actual field parameters -  [ ] [ ]60405010000 =yxa σ , 

• Initial parameter estimates - [ ]55453080 , 

• Final parameters estimate - [ ]57425099 , 

• States to estimate -  [ ]yxyxa 00σ , 

• Initial error covariances    

• 100,100,100,100,100,100 00000000 ====== yxyxa
PPPPPP σ  

• Model error covariances -  1,1,0,0,0,0 00 ====== yxyxa QQQQQQ σ  

• Measurement error covariance -  1=R  
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• The robot wheel radii are different:  05.1,1 == rl rr . 

•  
Figure 5.26 The actual field (left), and the initial estimate (right) 

 

 
Figure 5.27 The actual field with points sampled using GAS (left), the 

reconstructed field after 100 samples (right) 
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Figure 5.28 Error between true, dead-reckoning and estimated robot locations 

 

Figures 5.26 and 5.27 show the actual Gaussian field, the initial estimate, the 

path taken by the robot during sampling, and the reconstructed field after 100 samples 

of GAS. Figure 5.28 plots the 2 norm of the error between the actual robot position 

(based on the actual wheel radii), the dead-reckoning estimate (based on incorrect 

values in the model), and the robot location estimate as computed by the joint EKF. It 

can be observed from the Figure 5.28 that initially the dead-reckoning error (in blue) is 

small but it grows as time passes. Also, initially the estimated location based on field 

measurements is not very good (in red). However, while the dead reckoning error keeps 

accumulating, the robot localization error stays bounded with increasing number of 

samples because as more samples are taken the algorithm has better knowledge of the 

field, and this helps localize the robot. A windowed average for the parameter estimates 
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is taken every 20 samples, and the trends are shown by solid horizontal lines in Figures 

5.29-5.31. 

 
Figure 5.29 Convergence of field parameters to actual values 

 

 
Figure 5.30 Error in actual and estimated parameter values 
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Figure 5.31 Error covariance of location states and field parameters 

5.3 Simulations for forest fire mapping 

In this section, increasingly realistic fire spread models are used to assess the 

effectiveness of the sampling algorithm presented in Chapter 4, by comparing it to a 

basic raster scanning sampling approach. Also the performance of the multi-rate EKF 

scheme to estimate the time-varying fire field model is also investigated by simulation. 

First, sampling results on a single Huygen’s spread model are presented. We then 

consider the case of a field represented by a sum of five Gaussians with slow spreading 

over time, and finally, the case of a time-varying CA fire spread complex model. In all 

simulations, sampling is performed with a single robotic vehicle.  For multiple vehicles, 

the EKF computations can be distributed among robots as discussed in Chapter 7. The 

model of the robots is ignored in order to focus on quantifying the accuracy of field 

estimation. 
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5.3.1 Elliptically constrained single Gaussian time-varying forest fire field 

Simulations are performed to estimate four fire field parameters given in 

equation (4.10)-(4.12) for a single ellipse. The numerical simulation model assumed a 

forest area of 1 sq. mile, in which multiple robots take fire intensity measurements (or 

some measure of temperature) and estimate the desired parameters. The location of 

firehead 0x  is time-varying. The fire can spread at arbitrary rates, but in this simulation, 

the case of a slow sinusoidal fire spread rate was considered as an example: 

)
60

2
cos(

60

2
tr

ππ
=& .                                            (5.7) 

Other choices of rate spread will not affect the rate of convergence as long as 

the spread model is known, and the rate of spread is much smaller than the speed of 

sampling. As a result of the fire spread rate in equation (5.7), 0x  will be sinusoidal with 

respect to time and space, as shown in Figure 5.32, while the other fire field parameters 

are stationary. A comparison sampling simulation was conducted between sampling 

using raster scanning and heuristic greedy adaptive sampling. For GAS, the algorithm 

looks for the next best sampling location in a circle of 50 ft radius around the currently 

sampled location as shown in figure 5.32. Raster scanning does a row-by-row scanning. 

Table 5.4 summarizes the sampling results of Greedy AS and Raster Scanning 

when sampling performed for 60 minutes. We assumed that the robot navigation speed 

was 30 ft/min, that the robot sampling and processing time are neglected,  

while 1.0,0 1 == RQ . 
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Figure 5.32 Elliptical fire spread with greedy adaptive sampling algorithm which 

looks for the appropriate location on the elliptical fire 

Results indicate that GAS leads to faster convergence, and requires considerably 

less numbers of sampling points than RS or AS. In Table 5.4, the 2-norm of the error 

covariance kP is 7.3 for GAS, and 44.2 for Raster Scanning after 60 minutes of 

sampling. If sampling continues further, raster scanning takes almost 6 times more time 

than GAS to converge to same parameter estimate values. We also observed that the 

error covariance decreases very slowly for raster scanning, and it will require almost the 

entire sampling area to reduce the parameter estimate uncertainty. Raster scanning 

performs even worse when sampling is being conducted in an area where the parameter 

of interest does not vary significantly.  
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(a) 

 
(b) 

Figure 5.33 Actual (red) and estimated (blue) fire field parameters 0,, xI σ and 0y  

and versus time when sampling operation is performed for 60 minutes using 

greedy approach (a) & raster scanning (b) 

 

 

 

 



 

 

 

124 

 

 

Table 5.4 Comparison of Raster Scan and Greedy AS for sampling of 

elliptically constrained single Gaussian time-varying field 

  0A  kA  
0Â  kÂ  0P  kP  

I  80 80 90 79.4 10 0.7 

σ  400 400 410 401.1 20 4.9 

0x  2700 2760 2720 2759.7 50 3.8 

Greedy 

AS 

(k=49) 

0y  1000 1000 1020 1001.2 50 3.8 

I  80 80 90 85.7 10 2.4 

σ  400 400 410 397.9 20 5.1 

0x  2700 2760 2720 2765.5 50 21.8 

Raster 

Scan 

(k=68) 

0y  1000 1000 1020 1024.8 50 38.1 

 

5.3.2 RBF-NN parameterization using low-resolution information 

Radial bases neural network using “newrb” is available in Neural Network 

toolbox of MATLAB. “newrb” creates a two-layer network, with the first layer 

containing “radbas” neurons and the second, “purelin” neurons. In this section, we 

make use of this Toolbox to simulate the sampling process of a slightly more complex 

field than a single Gaussian. 

In Figure 5.34 (a), a simple field is presented where a sum of 5 Gaussians field 

is approximated by a RBF neural network with 5 neurons, while in Figure 5.34 (b) a 

more complex field is displayed. A low-resolution version of the original fields is 

acquired by averaging points in a square such that only a small percentage of the total 

numbers of points are used for training the neural network. The number of neurons and 
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the spread factor are chosen such that the ‘normalized SSE’ between low-resolution of 

the actual field and the estimated field is kept below an acceptable threshold of 1.  

As discussed in Chapter 2, the neural network learning algorithm doesn’t train 

for spread parameters. Although some heuristic algorithms exist to select different 

values for spread factor, we are assuming a constant spread value. For our simulations, 

p=300, a typical case a grid size is nxn  = 20x20, spread factor is 30 with 5 neurons are 

assumed as shown in figure 5.34 (top). The 2-norm of error between actual and initial 

estimated field is 38.7 and error extrema are -144 and 204. 

A similar scheme is used to approximate the complex field, which is generated 

using CA discussed in Chapter 4. Since the field is more complex, more neurons are 

required for a good approximation. At a particular time, a low-resolution version of 

field is taken by averaging on a grid size of 20x20 and passed through RBF NN training 

for 20 neurons and spread factor of 40. The training using the hybrid algorithm only 

takes 2-3 seconds for 60 neurons neural network. Hence, the training time is much 

smaller than the speed of field evolution. 
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Figure 5.34 Sum-of-five Gaussian fire field approximation using 5 RBF neurons 

(top), Complex field approximation using 20 neurons and a grid size of 20x20 

(bottom) 
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Figure 5.35 Illustration of the presence of more overlapping Gaussians in areas of 

large variance for thorough sampling 

Figure 5.35 also illustrates the use of self-organized selection of centers 

classification algorithm used for selection of centers while training the neural network. 

The objective of the classification is to introduce more neurons in high-variance areas 

of the field, and fewer neurons in low-variance areas. Figure 5.35 shows a sum of 30 

Gaussians approximated with a 30 neuron RBF neural network. 

The plots shown in Figure 5.36 are the 2-norm of relative error of all the points 

between the actual fire field and the field estimated by the neural network. The 

estimated field is achieved by considering lower resolutions of the actual field with grid 

sizes of nxn  = 5x5, 10x10 and 20x20. In Figure 5.36 (a) a 5x5 size grid is considered, 

hence the error in smaller compared to Figure 5.36 (b) where a 10x10 size grid is 

considered. An increase in the number of neurons decreases the error but after a while, 

the error doesn’t reduce any further. For a spread factor of 40 and 60 the error stays the 

same even if more than 40 neurons are considered. Figure 5.36 (c) illustrates the 

obvious fact that taking smaller size grid (indicating a higher resolution) increases the 

accuracy of initial estimate with same number of neurons. As the number of neurons 
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increases, the initial estimate gets better. This is valid until the neural network becomes 

over-trained. Figure 5.36 (d) shows the error in approximating a sum-of-five Gaussians 

field with RBF NN with different number of neurons when a 20x20 size grid and 

different spread factors are considered. Increase in the spread factor decreases the error 

as the number of neurons increase but leads to saturation as shown in Figure 5.36 (d) 

where the error for spread factor of 80 is higher compared to 60. Simulations are 

performed to estimate the 21 parameters of the field represented by a sum of five 

Gaussians. The system is parameterized using NN as explained in Chapter 3 and the 

sampling results are shown in Figure 5.36.  

 
Figure 5.36 Effect of number of neurons, spread factor and number of training 

points on the error in estimate 
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In our simulations, additional numerical assumptions for uncertainties were as 

follows: 

1,0

4,4,10,50,200 0000

8

000

==

===== −

RQ

PPPPP yxab σ
                 (5.8) 

 
Figure 5.37 Actual image of California 2007 fires taken from a NASA satellite 

(top), RGB intensity map (bottom left), and RBF-NN approximation with 300 

neurons (bottom right) 

Figure 5.37 shows the NN approximate when an actual fire field satellite image 

was used to train the neural network. For a complex continuous field, the following 

heuristic value for the spread factor was used to improve the NN training error: 
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N

xy
s = , where s is the spread parameter, x and y are maximum values of coordinates,  

and N is the number of neurons. 

5.3.3 Sum-of-Gaussians stationary field 

A comparison simulation of GAS and Raster Scan sampling was carried out for 

the sum of 5 Gaussians nonlinear field. The sampling area was divided into square grids 

and several search horizons were considered. For Greedy sampling, a grid size of n = 5, 

p = 5, and horizon size of 5 square grids were assumed. The simulation stopped when 

the 2-norm error between the actual and estimated fields reduces below 15. It is 

depicted in Figures 5.38 & 5.39 (f) that at the start of sampling represented by ‘black’ 

circles with center and radius )ˆ,ˆ,ˆ( 111 +++ kkk yx σ , coincides with the ‘red’ circles with 

center and radius )ˆ,ˆ,ˆ( 000 σyx , but start chasing the ‘blue’ circles which have center and 

radius ),,( σyx , as the sampling continues. Simulation results for raster scan sampling 

are shown in Figure 5.38, where it took 170 samples to achieve the norm of error in the 

original and estimated field less than 15, while the 2-norm of error covariance reduced 

from 229.5 to 10.72. Simulation results for GAS are shown in Figure 5.39, where 

sampling required 41 points to achieve the norm of error in the original and estimated 

field less than 15, and the 2-norm of error covariance to reduce from 229.5 to 2.04. A 

comparison between initial and final errors is shown in Figures 5.38 & 5.39 (h) and (i).  

Table 5.5 clearly indicates the Greedy AS performs much better than Raster 

Scan in terms of sampling distance (time) as well as number of samples. Also it is 

apparent in Figures 5.38 & 5.39 that the norm of error between the original and 
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estimated fields, as well as the norm of state error covariances decrease faster in the 

case of GAS. 

 
Figure 5.38 Simulation results with raster scanning sampling for sum of Gaussians 

stationary field 
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Figure 5.39 Simulation results with GAS for sum of Gaussians stationary field 

 

Table 5.5 Comparison of Raster Scan and Greedy AS for sum of Gaussians field 

 Greedy AS Raster Scan 

Distance 2175 3400 

No. of samples 41 170 

Initial 2-norm of error in 

actual and estimated field 
38.7 38.7 

Final 2-norm of error in 

actual and estimated field 
14.97 14.26 

Initial 2-norm of error 

covariance 
229.5 229.5 

final 2-norm of error 

covariance 
2.04 10.72 
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Figure 5.40 Distance covered for Greedy AS (left) and Raster scanning (right) 

 

  
Figure 5.41 Location of Gaussian centers initial and after sampling is done 

 

  
Figure 5.42 Sampling points for GAS (left) and Raster Scanning (right) 

 



 

 

 

134 

  
Figure 5.43 2-norm of Error Covariance for GAS (left) and Raster scanning (right) 

 

  
Figure 5.44 2-norm of error in original and estimated field 

  

5.3.4 Sum-of-Gaussians time-varying field 

Here we make the sum of 5 Gaussians to vary slowly, and we re-run our 

sampling algorithms. Depending on the anticipated variation of the field parameters 

based on the CA model and NN inverse model, the inputs kkuB  will vary, but this 

variation is available to the EKF estimator according to Equation (4.16).  

The numerical values for simulation uncertainties were as follows: 
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Figure 5.45 Actual and initial estimated field from NN for Sum of Gaussians 

time-varying field 
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Figure 5.46 Actual and estimated field after 50 samples for Sum of Gaussians 

time-varying field 

 

 
Figure 5.47 Actual and estimated field after 99 samples for Sum of Gaussians 

time-varying field 
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Figure 5.48 Actual and estimated field after 199 samples for Sum of Gaussians 

time-varying field 
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Figure 5.49 (a) 2-norm of error covariance, (b) Increase in error covariance when time 

update occurs and reduces again when measurements are taken, and (c) 2-norm of error 

in actual and estimated field 

Figure 5.45 shows the original field and the initial NN approximate by taking 

only 4% samples from the original data. The error between the original and initial 

estimate is also shown in this figure. 1-σ Gaussian circles of initial and estimate 

coincide with one another, and they are different from the actual Gaussian centers 

shown in blue color.  

Since the field is slow-varying, we assume that the time update is available 

slower than the rate at which measurements are taken. In other words, robots take 

sensor measurements faster than the update in parameters available from remote sensing 
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measurement. When there is time update, the error covariance of the states goes higher 

but keeps on reducing again when measurements are taken. This observation is 

illustrated in Figure 5.49. 

5.3.5 Complex RBF time-varying field 

In this section, the complexity of the fire field model increases again by 

considering a slow time varying field generated using the Cellular Automata model 

presented in Chapter 4. As the sampling algorithm uses an Extended Kalman Filter, the 

observability of the parameters (algorithm convergence) will depend on the initial 

conditions. The initial error covariance is selected depending on the error in actual field 

and the initial estimated field, which in-turn depends on the percentage of data from the 

actual field which is used for training the neural network, number of neurons and spread 

parameter. In our simulation models, the following parameters were chosen: the 

field is defined in a mxm  = 300x300 area, and an average of values in a nxn  = 30x30 

grid is used for training the neural network. 40 neurons are used, with a spread 

parameter of 30. These parameters can vary as the complexity of the field varies and the 

goal of sampling is to minimize the sum of squares error. The numerical values for 

uncertainties in our model were: 

1
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 Figure 5.50 shows simulation results for GAS illustrating (a) actual field 

generated using CA, (b) initial approximate with 40 neuron RBF-NN and spread factor 
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of 30 when grid size of n=30 is used for low-resolution sampling,  (c) reconstructed 

field after 168 samples with GAS heuristic sampling approach when grid size of p=5 is 

used for high-resolution sampling, (d) sum-of-square Error (SSE) in actual and 

estimated field which drops faster compared raster scanning, (e) sampled points, (f) red 

and black circles indicate initial and estimated Gaussian locations respectively, (g) 2-

norm of error covariance of parameter estimates, which drops faster compared raster 

scanning, (h) error in actual and initial estimate, and (i) error in actual and final estimate 

after 168 samples. 

Figure 5.51 shows simulation results for raster scan sampling illustrating (a) 

actual field generated using CA, (b) initial approximate with 40 neuron RBF-NN and 

spread factor of 30 when grid size of n=30 is used for low-resolution sampling,  (c) 

reconstructed field after 951 samples with raster scanning when grid size of p=10 is 

used for high-resolution sampling, (d) sum-of-square Error (SSE) in actual and 

estimated field, (e) sampled points, (f) red and black circles indicate initial and 

estimated Gaussian locations respectively, (g) 2-norm of error covariance of parameter 

estimates, (h) error in actual and initial estimate, and (i) error in actual and final 

estimate after 951 samples. 
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Figure 5.50 Simulation Results for GAS for complex time-varying field 
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Figure 5.51 Simulation Results for Raster scan sampling for complex time-

varying field 

 

Table 5.6 Comparison of Raster Scan and Greedy AS for complex time-varying 

field 

 Greedy AS Raster Scan 

Distance 3380 19020 

No. of samples 168 951 

Initial 2-norm of error in 

actual and estimated field 
58.07 58.07 

Final 2-norm of error in 

actual and estimated field 
23.95 27.49 

Initial 2-norm of error 

covariance 
632.5 632.5 

final 2-norm of error 

covariance 
43.23 33.62 
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Figure 5.51 shows the raster scanning simulation results when sampling in 

performed row-by-row in a grid size of pxp  = 20x20. Figure 5.50 shows the GAS 

sampling simulation results when a grid size of p = 5 and a horizon size of 20 are 

considered. Grid size is an important parameter. A very large grid size will not reduce 

the error significantly, even if the whole area is scanned, because thorough sampling is 

required in high-variance areas. As the robot start sampling with given initial estimates 

and uncertainties, the uncertainty of the parameters does not decrease until the robot 

reaches the area where those parameters have a significant influence. In other words, 

the uncertainty of the Gaussian is most reduced when sampling is performed within a 

few variance values away from its center. 

A comparison of GAS and Raster Scanning is summarized in Table 5.6. We 

notice that since raster scan performs a row-by-row scanning, it takes a longer time and 

many more samples than GAS. The simulation stops when 2-norm of error in actual and 

estimated field reduces below a threshold. It can be seen from Figures 5.50 & 5.51 that 

SSE (sum of squares error) between the actual and the estimated field, as well as the 2-

norm of state error covariances decrease faster in case of GAS. 

5.3.6 Potential fields for safe trajectory generation 

Simulations were also performed to generate fire-safe paths through the 

estimated field, as shown in Figure 5.52, as presented in Section 4.4. In our simulations, 

we assumed that 4 fire ellipses are ignited simultaneously, and that 4 robots are 

simultaneously sampling in designated areas. Every robot runs a separate EKF based 

AS algorithm to estimate the parameters of its local fire field. Fire field data is then 
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aggregated in a central processing location, which is also responsible for on-line fire-

safe trajectory generation. The trajectory is dynamically updated from iX  to goalX  

every time the field parameters estimate updates.  In a practical implementation 

scenario, a human firefighter can carry a wireless device receiving estimates from the 

robots in order to generate a collision-free path around fire obstacles towards the goals 

using equations (4.19) & (4.20). Assuming the human crew is at location 

)2000,2000(=iX  and needs to go to rescue location )4500,2500(=goalX , the path is 

divided into 50 segments and repulsive forces from each of these virtual obstacles, and 

attractive force towards the goal is calculated. The numerical coefficients used in the 

simulation are: 01.0,10,1 6 === δλξ . The trajectory is updated using this suitable 

δ and net force pF
r

value using equation (4.21), and a fire-safe trajectory is generated. 

 
Figure 5.52 Estimated fire ellipses and dynamically generated path using potential fields 

for the human firefighter to go from iX  to rescue location goalX  

In this Chapter were presented extensive simulation results to validate the 

algorithms proposed in Chapters 3 and 4. We progressively increased the complexity of 

the field distribution from simple spatial-stationary fields represented by only a few 
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parameters, to a fairly complex spatio-temporal field represented with a RBF-NN and 

hundreds of parameters. In each case, convincing evidence was presented to support the 

conclusion that the EKF-based adaptive sampling algorithms using the GAS heuristic 

and a RBF-NN approximation perform more efficiently than a simple raster scan, and 

that the robot uncertainty can be reduced by sampling.  
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

This Chapter discusses experimental sampling results obtained using a mobile 

wireless testbed located at ARRI’s DIAL (Distributed Intelligence and Autonomy Lab). 

It includes a brief description of the ARRI-Bot hardware, its localization and 

navigation, distributed parametric field and its sensing and finally experimental results 

validating the proposed adaptive sampling algorithms.  

6.1 Description of testbed 

Team members at the Distributed Intelligence and Autonomy Lab (DIAL) at 

UTA’s Automation & Robotics Research Institute (ARRI) validated the algorithms 

proposed in Chapter 3 on mobile wireless sensor nodes (MWSN). These nodes can be 

thought of as robotic platforms delivering a sensor pack to a location of interest in order 

to take samples, and transmit sensor information via radio signals through a wireless 

network. A first version of the sampling setup is shown in Figure 6.1. In it, an 

inexpensive wide-angle overhead camera system is used to estimate the true robot 

location as an in-door GPS, and is used to compare it with the estimated robot location 

via the EKF. 
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Figure 6.1 Illustration of the experimental setup being used to validate the AS 

algorithm 

 

6.1.1 Color field 

Within this initial testbed, a simple linear field was printed on the lab floor. The 

field was physically distributed over a search space of 3.15 m x 2.25m. The camera at a 

height of 10.5 m encompasses the entire area in its field of view. Three separate linear 

field models, one for each primary color (RGB), are used to generate a color field, with 

numerical values: 

ybxbbBygxggGyrxrrR 210210210 ,, ++=++=++=  ,    (6.1) 

0.001,0.00078,0.10.0018,

,0.0002,00.00048,,0.0012,0.2307

2102

10210

−=−===

==−===

bbbg

ggrrr
 

The sampling mission is for mobile robots equipped with a color sensor to 

recover the unknown (to the robot) field coefficients by sampling.  
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6.1.2 ARRI-Bots 

ARRI-Bots are inexpensive MWSN units built at DIAL that are depicted in the 

schematic diagram in Figures 6.2-6.3. The ARRIBot energy harvester consists of a solar 

panel and associated electronics for outdoor operation and a piezoelectric energy 

harvester that augments an on-board Ni-CAD battery pack. 

  
Figure 6.2 Inexpensive ARRI-Bots V-1 (left) and V-2 (right) 

 

 
Figure 6.3 Schematic diagram of the ARRI-Bot V-2 
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The subsystems of the ARRI-Bot include: 

(i) Mechanical subsystem, consisting of an aluminum frame chassis, a 

differential drive and a front omni-directional wheel. 

(ii) On-board sensor systems, consisting of wheel encoders for dead-reckoning 

localization, ultrasonic rangefinders for obstacle detection, and a color sensor for 

detecting color printed on the lab floor.  

(iii) Wireless sensor node, consisting of a Parallax Transceiver (for ARRI-Bot 

V-1) or a Cricket® processor/radio module (for ARRI-Bot V-2), operating in the 433 

MHz frequency band. Each Mote is equipped with a default sensor pack (light, 

temperature, etc). The Cricket unit carries ultrasonic transducers for range finding and is 

used for both communication and localization.  

(iv) ARRI-Bot electronics, consisting of a custom-made PCB board containing 

Javelin stamp CPU, and glue electronics for interfacing to all the sensor and wireless 

subsystems. In addition, the electronics board contains power management and energy 

harvesting circuitry. 

(v) The ARRI-Bot power system, consisting of a Ni-MH battery pack, a solar 

panel for out-door recharging and operation, and a piezoelectric cantilever array for 

battery augmentation. 

The intelligence of ARRI-Bot to carry out various maneuvers is regulated by 

on- board processing unit, a Javelin Stamp micro-controller. The motivation behind 

using a simple Javelin Stamp was to demonstrate that our AS algorithms can be 

implemented on a cost effective, and not very powerful computing platform. Cost-
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effectiveness considerations are important for deploying large numbers of simple robot 

nodes to sample the environment. For the work presented in this Thesis, our original 

goal was only partially accomplished, since the EKF field calculations were performed 

on a base-station PC running MATLAB. However, at the time this dissertation was 

written, many inexpensive mobile robot units, with more powerful processors have 

become available on the market, and they have a similar price target as the ARRI-Bot 

V-2. In the future, the AS algorithms should be validated on such hardware, but it is 

clear that the results can only improve beyond the results presented here. 

ARRI-Bot maneuvers are accomplished by means of easy, structured and object 

oriented Java based programming. Further detail about the design of the ARRI-bot can 

be found in the MS thesis of DIAL team members Sreenath [141] and Ghadigaonkar 

[142]. Figure 6.4 shows a screen capture of the Javelin programming interface 

environment, while Figure 6.5 depicts the list of simple wireless commands used to 

position the ARRI-Bots. 
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Figure 6.4 Snapshot of Javelin Stamp IDE 

 

 
Figure 6.5 Simple robot commands for ARRI-Bot 
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6.1.3 Robot model and dead-reckoning location estimation 

A differential kinematic robot model with uncertainty in wheel radii and 

unequal wheel base was used in conjunction with a dead-reckoning localization 

algorithm. In our simulations presented in Chapter 5, a systematic error is injected into 

the system to account for navigational errors that arise due to inaccuracies in 

construction and mechanical assembly, ad depicted in Figure 6.6. 

 

 

 
Figure 6.6 Differential-drive mobile robot with uncertainty in wheel radii and axle 

length 

The robot runs an onboard position estimator using encoder data and nominal 

physical dimensions (lengths, wheel radii, etc) by dead-reckoning. The states of the 

robot are the position and orientation [ ]TyxX θ= . A discrete time position 

estimator using the encoder counts RL φφ ∆∆ ,  is shown in equation (6.2). turndrv KK ,  are 

the actuator drive constants for either actuator in terms of distance, turn per drive count: 
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To implement (6.2), a series of Monte-Carlo experiments were performed to 

find the constants mK  and tK  in equations (6.3) and (6.4). The ARRI-Bot is a non-

holonomic robot. DIAL team member Talati [156] considered path planning navigation 

algorithms for this robot, but his planner was not used in our work. Instead, we used a 

“quasi-holonomic” path planner to validate the AS algorithms. With this planner, 

navigating the wheeled mobile robot from ),( kk yx  to ),( 11 ++ kk yx  involves a turn (e.g. 

pointing the robot to the target) and a move (e.g. moving the robot in a straight line to 

the target). Both of these commands involve simple ),( mt φφ ∆∆  encoder turns. 

6.1.3.1 Servo Motors & Optical Encoder 

Futaba S148 RC servo motors are used on ARRI-bots. The servo module has a 

built in motor, gearbox and the controlling electronics. The direction and speed of the 

motors is controlled through PWM pulses generated by a PIC 12F508 micro-controller. 
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Figure 6.7 RC servo motors PWM signals [139] 

 

The pulse width determines the direction and speed of the motor, as shown in 

Figure 6.7. In order for the robot to move straight, the speed of both motors should be 

identical. For negotiating a turn in place maneuver, the speed of both motors should be 

equal, but in opposite directions. Ideally, a pulse width of 1.5 ms stops the motors, and 

similarly, a pulse width of 1.2 ms should run both motors at the same speed. However, 

due to the low cost of the hardware, after continuous use, the motors start drifting. An 

auto-calibration code was written to apply different PWM signals to both wheels and 

check for the time it takes for the motors to reach certain distance. The program then 

compares the two times to adjust appropriate PWM widths for both motors. This 

procedure is illustrated in Figure 6.8. Furthermore, the Javelin-Stamp performs only 
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fixed-point calculations for localization while navigating, making the implementation of 

closed-loop control and KF estimation more difficult to program. 

Wheel encoders (WW-01) from Nubotics were mounted on the servos to 

measure the angular displacement of the motors. In comparison to the old encoders 

600EN-128-CBL on the first generation ARRI-Bot V-1, the WW-01 units are easy to 

mount, can be directly interfaced with the processor and are less expensive. Highly 

precise maneuverability of resolution less than 3 mm was achieved through the use of 

the servo motors and optical encoders. The list below summarizes some of the 

specifications for the ARRI-Bot V-2 hardware: 

� Encoder Resolution = 64 pulses per rotation 

� Wheel Diameter = 2.75 inches 

� Wheel Circumference = 8.639 inches 

� Distance traveled in one rotation ~ 21.9 cm 

� Resolution Achieved ~ 3mm  

By amplifying the encoder resolution to 128 pulses per rotation, a small motion 

up to 1.7 mm can be captured. 
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Figure 6.8 Left and right wheels motor calibration 
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Figure 6.9 Differential drive robot’s navigation from ),(),( iikk yxyx =  to 

),(),( 11 ffkk yxyx =++  

 

In order to navigate with the differential drive ARRI-Bot, a simple point and 

turn maneuver was implemented, as depicted in Figure 6.9. This maneuver consists of a 

“turn in place” and point to target, and a “forward move” to the target. To achieve 

left/right turn in place, the robot states evolve according to: 
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where tK  is the angle turn per encoder count (left and right encoder counts are equal in 

magnitude but with opposite sign), tφ∆  is change in encoder counts andδ  is the in 

angle turned. 

Similarly, to accomplish a ”forward” move, the robot states evolve according to: 
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where mK  is the distance covered per encoder count (left and right encoder counts are 

the same). 

6.1.3.2 Accuracy measure of DR location 

The UMBmark test [80, 112], which is a bi-directional square path test, was 

performed for measuring the dead-reckoning error of the ARRI-Bot. The results are 

shown in Figure 6.10 and they clearly indicate that the true robot position deviates more 

from the desired path than the dead-reckoning position.  The former involve both 

systematic as well non-systematic influences, while later can only capture systematic 

errors. 
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Figure 6.10 Results of UMBMark (square path) test for measuring dead-reckoning 

error. Box of 32x32 square inches along which robot navigates in clockwise (top) 

and counter-clockwise (bottom) direction 
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6.1.3.3 Fixed-point calculations 

Since the Javelin stamp processor doesn’t support floating point operations, a 

fixed-point math library was written to perform 32-bit addition, subtraction 

multiplication, division and trigonometric operations. This makes the implementation of 

calculation such as (6.3) and (6.4) possible. However, in the experimental results 

reported in the next section, the AS EKF field estimation calculations run in MATLAB 

on the ARRI-Bot base-station and not on the robot.  

6.1.4 Color sensor measurement 

ARRI-Bot first and second generations are equipped with a TAOS TCS230 

color sensor used to validate the adaptive sampling algorithm based on the color 

measurement obtained from a linear parametric field, printed color field on the floor. 

The color sensor module is comprised of a color detector including a RGB sensor chip, 

white LED illuminator and a collimator lens (Figure 6.11). It has an array of photo 

detectors each with a red, green, or blue filter or no filter (clear). The filters are 

distributed evenly throughout the array to eliminate location bias among the colors. 

 
Figure 6.11 TAOS Color Sensor 
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 The proportion of R, G, and B at a sampled point varies from 0 to 255, which 

are then normalized to values between 0 and 1. A series of Monte Carlo experiments 

were performed to find the repeatability, accuracy and resolution errors of color sensor 

measurement at different locations on the printed color field with slightly varying 

ambient light to decide for appropriate value of measurement error covariance R. These 

steps were taken also to minimize the discrepancy in the printed color field. A 

reasonable error of 10% was reached in all experiments for RGB measurement values. 

6.1.5 Absolute localization using over-head camera  

The overhead camera system serves as a positioning system with low sampling 

rate in order to correct dead-reckoning navigation errors. Unlike the dead-reckoning 

error, localization using vision doesn’t grow with time.  

Robot localization using vision is a simple object recognition problem for the 

lab floor image. MATLAB Image Acquisition & Image Processing toolboxes running 

on a base-station computer are used to process the camera images to get correct robots’ 

position and orientation (“surrogate GPS”). The orientation of the robots can be 

estimated by using the robot triangular shape, and calculating properties such as the 

centroid, major axis, minor axis and area of the object, and finding the farthest point 

from the centroid that lies on the object. A rectangular grid array was used to correct the 

wide-angle lens distortion, and a GUI shown in Figure 6.12 was used for manual 

wireless control of the rovers, as well as field estimation calculations and display. The 

characteristics of the image processing algorithm for our testebed were: 

� Image Resolution=3.64 pixels/inch 
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� Accuracy of robot localization (~1”,~1”,<5°) 

� Repeatability of robot localization (<0.1”,<0.1”,<1°) 

The following image processing steps are taken after the subtracted image is 

acquired using a custom MATLAB code written for localizing ARRI-Bots: 

� ‘Filling’ to convert the robots pixels to solid objects. 

� ‘Boundary Tracing’ for the objects. 

� Ignoring objects other than the robot objects by reading 

‘MajorAxisLength’, ‘MinorAxisLength’ and ‘Area’ of the objects. 

� Calculate the ‘Centroid’ of the objects. 

� Finding the farthest point on the robot object from the centroid 

� Finding the robots orientations based on the line joining the centroid and 

the farthest point. 

� Acquire the position and orientation of the robot in pixel co-ordinates 

system. 

� Convert the position and orientation in pixel coordinate system to world 

coordinate system by incorporating the grid distortion factors. 

Results of image processing with our code are shown in Figures 6.12 and 6.13. 
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Figure 6.12 Grid (top left), Distortion in the grid image (top right), Image 

Segmentation as seen from the MATLAB image (bottom left) and MATLAB GUI 

(bottom right) to determine robot position and orientation 

 

 
Figure 6.13 Steps involved in image processing for robot localization 
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6.1.6 Absolute localization using Cricket beacons   

The most common way to use Cricket® Motes is to deploy actively transmitting 

beacons on walls or ceilings and attach listener to host devices whose location needs to 

be obtained.  In the case of our testbed, the Crickets are mounted vertically on the 

robots as shown in Figure 6.14 and the robot that needs to be localized is in “listener” 

mode. Each beacon periodically broadcasts its space identifier and position coordinates 

on a RF frequency channel which listener within radio range can receive. Each beacons 

also broadcast an ultrasonic pulse at the same time as the RF message. Listeners that 

have line of sight connectivity to the beacon and are within the ultrasonic range receive 

this pulse. Because RF travels about 10
6
 times faster than ultrasound, the listener can 

use the time difference of arrival between the start of the RF message from a beacon 

and the corresponding ultrasonic pulse to infer its distance from the beacon. If the 

listener robot can get this distance from three static nodes with known location it can 

easily triangulate to find its relative location. 
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Figure 6.14 Robot localization from static beacons by triangulation 

 

For an output power of 9 dbm a linear increase in error is observed in the actual 

distance and the measured distance from cricket, which is compensated through a 

simple correction equation: 1150.2.1141.1 −= measuredactual dd , plotted in Figure 6.15. 
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Figure 6.15 Difference in actual distance and measured distance for localization 

by triangulation 

 

6.1.7 Camera-projector system  

In order to test the sampling algorithms for complex, time-varying, non-linear 

fields, the printed color field on the lab floor is no longer appropriate, and instead we 

installed a camera-projector system at DIAL, as shown in Figure 6.16. The hardware 

includes a projector mounted 22 ft high on the ceiling. The projected image size is 124 

x 93 inches and the image resolution is 1024 x 768. The projector is of 3000 ANSI 

lumen brightness so that it can perform satisfactorily in bright light in the lab. The 

projector is connected to the base-station which runs MATLAB to generate any 

complex field that can be projected on the lab floor. 
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Figure 6.16 Testbed with simulated fire field projected on the floor from a 

projector. ARRI-Bots are shown sampling at various locations for estimating field 

parameters. Over-head IR camera is used to aid in localization and for validating 

the accuracy of estimated location 

6.2 Experimental validation of AS algorithms for linear parametric field 

In a first set of experiments, the ARRI-Bot takes color sensor measurements and 

sends it to the base-station computer, which runs adaptive sampling algorithms. The 

algorithm uses the color sensor and dead-reckoning position measurement from the 

ARRI-Bot, and location information from the overhead camera, in order to run the EKF 

estimator. The adaptive sampling algorithm then find the next sampling location based 

on the minimum variance criterion with the 2-norm, as described in Chapter 3. The flow 

chart of the robot operation is shown in Figures 6.17 and 6.18. 
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Figure 6.17 Flow of operations performed on ARRI-Bot 
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Figure 6.18 Flow of EKF-AS algorithm running on the base-station 

6.2.1 KF estimation for linear color field with no uncertainty in localization 

through camera 

Here we present the experimental validation of the case discussed in Section 

(3.2.2), when uncertainty in camera measurement is ignored. In this case, we are 

recovering a linear color field with 9 parameters, therefore 

yXgxXgyXxX ==== )(,)(,, 221121 . The base station runs the adaptive sampling 

algorithm and commands the mobile sensor to sample at a particular location. The 
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mobile sensor navigates to that location by dead reckoning and thus will end up at a 

location different than the commanded one. The process and measurement model and 

updates equations of the sampling algorithm are: 

• System Model: 

[ ]Tkk bbbgggrrrAA 2102102101 ==+      (6.5) 

• Measurement Model: 
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• Effect of Measurement: 
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6.2.1.1 Simulation based on experimental setup 

We first performed a simulation using similar uncertainty values as in the 

experimental setup. We assumed the following true values for the unknown field 

parameters, as they were used to print the lab floor image: 

ybxbbBygxggGyrxrrR 210210210 ,, ++=++=++=      (6.9) 

0.001,0.00078,0.10.0018,

,0.0002,00.00048,,0.0012,0.2307

2102

10210

−=−===

==−===

bbbg

ggrrr
 

In Figures 6.19 and 6.20, a comparison of Raster-Scan sampling and AS is 

presented. The simulation runs until the 2-norm of error in coefficients reduces to small 

values. The simulations also show the convergence of all the parameters to their desired 

value. Initially it was assumed that the robot samples in a grid of 1 sq inch (6.55 cm
2
) 

which leads to a search space of 126 x 90 points for the AS algorithm. In order to 

decrease the run time for the algorithm, the grid size was increased to 91.7 cm
2
, and 

only the center of the cell was considered for sampling. 

By using dead-reckoning, the error in position and orientation for the robot 

increases as the robot travels more distance. Furthermore, the AS simulation results in 

the robot taking long-jumps, thus increasing sampling time. As a result, we also 

compare the results with a simple Greedy adaptive sampling strategy in Figure 6.21. 

This scheme has a 1-step horizon search for the next sampling location. 

The above three algorithms are compared in the Table 6.1 with respect to 

estimation error in the unknown coefficients below 0.2. It can be seen that Greedy 

Adaptive Sampling lies somewhere in between raster scan and simple adaptive 
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sampling in terms of number of samples, but takes the least time to reconstruct the field. 

As expected, the standard Adaptive Sampling algorithm takes the least number of 

samples. At the start of all simulations, the EKF assumes zero values for R, G, and B. 

 
Figure 6.19 Simulation results based on experimental setup for raster scanning of 

a linear field. Simulation stops when norm of error covariance of field parameters 

drops below 0.2. It takes 28 samples when Raster scanning is done 
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Figure 6.20 Adaptive sampling algorithm takes 13 samples but more time to 

reconstruct the field 

 

 
Figure 6.21 Greedy adaptive sampling algorithm is the best trade-off between 

time and number of samples as it takes 20 samples but least time to reconstruct 

the field 
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Table 6.1 Comparison of standard AS, Greedy AS & Raster scanning for linear 

color field (Simulation Results) 

 
 

6.2.1.2 Experimental results 

Experimental results in Figures (6.22)-(6.24) are now presented to confirm that 

the Greedy AS algorithm recovers the color field in minimum time as shown in Table 

6.2. The results illustrate the convergence of the field parameters to values close to 

nominal after successive samples are taken. The rate of convergence of the three 

algorithms can be compared through the speed of convergence for 00 , gr  and 0b . The 

figures also show a camera snapshot of the actual field, estimated field and norm of the 

error in these coefficients that decreases with the number of samples. The reason for the 

slight discrepancy is not color measurement or estimation errors, but differences 

between screen and printer colors on the lab floor. In these experiments, the robot 

localization is obtained through the overhead camera image, as opposed to Dead-

Reckoning. 

Table 6.2 Comparison of standard AS, Greedy AS & Raster scanning for linear 

color field (Experimental Results) 

Algorithms 

No. of 

Samples 

(n) 

2-norm of “error 

in coefficients” 

after ‘n’ samples 

Raster Scan 50 0.378 

Adaptive Sampling 15 0.365 

Greedy AS 30 0.499 
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Figure 6.22 Experimental results for Raster Scan Sampling of linear color field 

shows estimated field after 50 samples 

 

 
Figure 6.23 Experimental results for AS shows estimated field after 15 samples 
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Figure 6.24 Experimental results for GAS shows estimated field after 30 samples 

 

6.2.2 KF estimation for linear color field with uncertainty in localization 

through camera 

In this section, we present experimental validation of the case discussed in 

(3.2.3) ,when uncertainty in camera measurement is added to the model. Hence there 

are now two measurements, namely kY  for localization and kZ for field measurement. 

The EKF equations consist of: 
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• System Model: 
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• Measurement Model: 
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• Effect of System Dynamics: 
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• Effect of Measurement: 
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Through Monte-Carlo experiments, the following uncertainties are determined and 

added to the EKF model: 

(i) Camera accuracy error of zero mean and )2,2,2( "" o  variance, meaning that 

our surrogate GPS measurements are accurate within 2 inches and 2 degrees. 

(ii) Color sensor uncertainty of zero mean and )01.0,01.0,01.0(  variance, 

meaning that the color sensor accuracy is 1% RGB. 

In Figures 6.25 the lines in Cyan color shows the dead-reckoning robot location 

based on the encoder counts. It is observed that the dead-reckoning error increases as 

the distance covered increases. At every sample, a color measurement is taken by the 

robot, and the overhead camera finds the robot location, which is shown in Red color. 

Location information and color sensor information are fused in the EKF model in 



 

 

 

180 

(3.2.3). The estimated robot locations are shown in Black color. After taking 25 

samples, error-covariance in ),,( θyx  drops from )10,10,10( 444  to 

)5078.3,8257.0,8239.0( . The error covariance for the color states drops to:  

 
)10*58.1,10*40.9,0034.0,10*58.1

,10*44.9,0034.0,10*58.1,10*43.9,0034.0(

676

767

−−−

−−−

 

The total norm of error in coefficients after 25 samples is 0.8741. Qualitatively, 

the AS algorithm recovers the printed image on the lab floor very well. 

 
Figure 6.25 Experimental results for GAS when location information from camera 

and color measurement is fused in the EKF. Figure shows the field convergence 

after 25 samples considering the camera uncertainty 
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6.2.3 KF estimation for linear color field with no camera for localization 

In this experimental validation for the case presented in section (3.2.4), only the 

color measurement kZ  is available. In this case, the color sensor measurement is used 

for field estimation as well as for the robot location estimation. In other words, we are 

using the color measurements to aid in the localization of the robot.  The system model 

and update equations are the same as the previous case, but measurement equation are 

now: 

• Measurement Model: 
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• Effect of Measurement: 
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Results indicate that the field parameters converge to values close to the actual 

values for 10 samples, after which the norm of error start to increase rather than 
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decrease, due to the accumulation of dead-reckoning errors. Hence it is a good idea to 

estimate the field for a few samples, then stop the field estimation and switch instead to 

improving the localization using the estimated field. Here the location estimate stays 

close to the dead-reckoning estimate instead of getting closer to the true robot location 

(Figure 6.26). After taking 25 samples, the error-covariance in ),,( θyx  drops from 

)10,10,10( 444  to )9902.0,9856.65,5653.90( . The error covariance for the color states 

drops to:  

 
)10*3830.2,10*4988.1,0066.0,10*1337.4

,10*0633.3,0079.0,10*7066.2,10*7359.1,0058.0(

666

666

−−−

−−−

 

The total norm of error in coefficients after 25 samples is 1.3568. In this case 

again, the AS algorithm again recovers the printed image on the lab floor as shown in 

Figure 6.26. 
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Figure 6.26 Experimental results for GAS with location estimation from color 

sensor measurement when location information from camera is not available.  

Figure shows the field convergence after 25 samples 

6.2.3.1 Simulations showing the effect of field measurement error on 

localization and field estimates 

As expected, since only the field sensor measurement is used for localization, 

the increase in sensor noise adversely affects both the estimation of the field, as well as 

the localization of the robot. 



 

 

 

184 

In Figures 6.27-6.30, the lines in cyan color show the dead-reckoning robot 

location calculated from a differential drive kinematics without using geometric and 

encoder uncertainties. The location estimate based on the color sensor measurement  

EKF is shown in yellow, while the “true” robot position calculated from differential 

drive kinematics with added geometric and encoder uncertainties is plotted in red.  The 

“true” sampling locations correspond to measurements of position using the overhead 

camera. As expected, the dead-reckoning error increases as the robot covers more 

distance. 

By comparing figures 6.27-6.31 it is clear that the location estimate is close to 

the true location for small errors in color sensor measurement. Figure 6.31 shows that 

large discrepancies in both the estimated field and robot position result for large 

measurement uncertainties. 

 
Figure 6.27 Uncertainty of (0.01, 0.01, 0.01) in color sensor measurement: Field 

estimate converges and localization error is very small (after 25 samples) 
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Figure 6.28 Uncertainty of (0.1, 0.1, 0.1) in color sensor measurement: Field 

estimate converges and localization error is very small (after 25 samples) 

 

 
Figure 6.29 Uncertainty of (0.35, 0.35, 0.35) in color sensor measurement: Field 

estimate converges but with a marginal error and localization error is large 
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Figure 6.30 Uncertainty of (0.45, 0.45, 0.45) in color sensor measurement: Field 

estimate diverges and localization error is unacceptable (after 25 samples) 

 

Table 6.3 Effect of sensor measurement error on estimated field parameters 

Sensor 
measurement 

error (R) 

Norm of Error in 
estimated parameters 

(after 25 samples) 

0.01 1.0240 

0.1 1.0316 

0.3 1.0911 

0.35 1.1995 

0.45 1.2462 
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Figure 6.31 Difference between the True and Estimated robot location versus the 

number of samples for different sensor measurement errors 

In this Chapter, experimental results of sampling with simple ARRI-Bot 

wireless mobile robots are presented for sampling of a linear color field. We used a 

single robot in several scenarios related to the type of sensor measurements that are 

available to localize the robot. Different methods to localize the robot were employed, 

including relative localization using optical encoders, and absolute localization using 

Crickets and overhead camera. Results clearly demonstrate that in the absence of 

relative location information, the joint-EKF and the field distribution measurements can 
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help improve the location estimation of the robot beyond dead-reckoning. Furthermore, 

the performance of sampling algorithms AS, GAS and RS is similar to the simulation 

results, with GAS showing the shortest time to recover the color field.  
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CHAPTER 7 

MULTI-ROBOT ADAPTIVE SAMPLING 

 

If the environment is large, it may be impractical for a single robot to navigate 

to many sampling locations, even in the presence of efficient sampling algorithms. 

Using multiple robots, the sampling area can be divided into smaller regions, thus 

reducing the navigation time. Furthermore, since complex fields are represented by 

hundreds of parameters, it is computationally cumbersome for a single robot to compute 

and store all parameter estimates and the uncertainty measures. It also quickly becomes 

unfeasible for individual robots to run a large EKF-AS algorithm, and share large 

covariance matrices wirelessly. Furthermore, with multi-robot sampling, the resources 

can be allocated efficiently if some resources are busy or not available. 

If we somehow can distribute the filter computation among multiple robots, the 

number of computations performed by all the robots will be greater than the processing 

by just one robot doing sampling. However, we expect that the speed of convergence 

and reduction in complexity that will be gained is significant. With a single robot, the 

total field estimation time includes the time necessary for navigation, sensing and 

computations of the estimate (as there is no communication). With multiple robots, the 
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field estimation time includes the time taken for sensing, computation, communication, 

and final fusion to recover the field. We expect that the speed of convergence increases 

using multiple robots simply because of sampling in parallel, and the navigation time 

reduces significantly compared to modest increases in computation, communication, 

and fusion. 

Our proposed parametric adaptive sampling algorithm, EKF-NN-GAS, 

represents a complex field with sum of overlapping Gaussians, which means that each 

sampling instance in a region gains information about the parameters which have 

dominant effect in that region. Therefore, in order to distribute computations, we need 

to fuse the parameter estimates and construct the map of density distribution. 

This problem is similar to reformulating the algorithm from a conventional 

single sensor, single processor system to a multi-sensor, multi-processor system. 

Distributed algorithms have been used before in many applications, and the degree of 

parallelism varies from algorithm to algorithm. Example includes target location 

estimation using several sensors, and fusing the measurement either at the central 

station or at each sensor depending upon the degree of parallelism of the multi-sensor 

fusion algorithm [35]. Another example is formation control for multiple robots [157]. 

As discussed in Chapter 2, decentralized and distributed KF are two different 

problems. In a decentralized algorithm, the filter is full-order, which means that every 

local filter carries partial information about all parameters, and the information is shared 

to reach consensus. The objective of distributed algorithms is to efficiently decompose 

the full-order filter into several reduced-order filters, in order to reduce the 



 

 

 

191 

computational complexity and communication overhead, and hence improve the 

scalability. It can be said that decentralization is the first step towards efficient 

distribution.  Decentralized approaches are good enough for applications involving a 

small number of states such as tracking of objects, etc. But problems such as parametric 

sampling involve hundreds of parameters, and hence distributing the filter is very 

important. 

This Chapter focuses on examining completely and partially centralized, 

decentralized and distributed multi-robot computations, and formulating a sampling 

scheme which is efficient for running the proposed multi-robot adaptive sampling 

algorithm. Section 7.1-7.3 summarizes the existing approach for completely centralized, 

completely decentralized, and partially centralized federated filters respectively. Section 

7.4 presents the distributed federated Kalman filter along with description of 

partitioning of sample space, and the distribution of computations and reduction of 

communication overhead. Finally in Section 7.5 and 7.6 we discuss the simulation and 

experimental results respectively to demonstrate the effectiveness of the distributed AS 

algorithm. 

7.1 Completely centralized filter 

In a completely centralized sampling approach, each robot j  takes sensor 

measurement 1, +kjZ  and transmits it to the central processor, which then calculates 

parameter estimates 1
ˆ

+kA  and error covariances 1+kP . The central processor computes the 

estimated error covariance and parameter estimation using an equation similar to 
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equation (3.7), with the difference that here it fuses multiple measurements from N 

robots: 
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Figure 7.1 Completely centralized AS algorithm 

 

Figure 7.1 illustrates the completely centralized approach, in which all robots 

transmit their sensor measurement to the central filter, which then calculates the field 

estimate using equation (7.1). This type of scheme is simple, as there is little 

communication involved and no redundant computations. But the disadvantage is that 

the sensing robots do not carry any information. Hence, they do not know where to 
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sample next until told to do so by the central processor, which is running a large 

algorithm receiving asynchronous data. 

7.2 Completely decentralized filter 

For a completely decentralized filter implementation, each robot runs the AS 

algorithm, and generates new sampling locations within the vicinity of its current 

position. The robots take new measurements and calculate only partial estimates of the 

field parameters and error covariance. After a few samples, the robots communicate and 

share their field estimate information. The parameter estimate and the error covariance 

are the two terms each robot needs to transmit to others. Each robot assimilates the 

received information using for instance a decentralized EKF scheme similar to [35].  

If a completely decentralized approach considered, then an AS algorithm 

running on each robot carries the information about all the field parameters, and there is 

no data fusion filter. Hence each robot i  can calculate the local field estimate LEkiA ,1,
ˆ

+  

and LEkiP ,1, +  using the following equations: 
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Robot i  acquires the local estimate LEkjA ,1,
ˆ

+ and LEkjP ,1, +  from the other )1( −N  

robots and assimilates it to get the complete information 1, +kiP  and 1,
ˆ

+kiA . The following 

assimilation equation need to run on robot i : 
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Figure 7.2 illustrates the completely decentralized filter in which each robot has 

a local filter to compute local estimates and a global filter for assimilating the estimates 

acquired from other nodes and generate the global field estimate. 

 
Figure 7.2 Completely decentralized AS algorithm 

 

The advantage of this approach is that it does not involve any approximations, 

and there is no dependence on a central filter, at least for computing the local estimate. 

Also the objective of sampling in parallel can be successfully achieved. The 

disadvantage of the algorithm is that it is inefficient in terms of communication and 

computational requirements. The network has to be fully connected and there is 
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excessive communication. This type of algorithm is good for applications such as target 

tracking, because the problem involves estimating only few parameters (such as 

location, speed, etc of the target). Hence, the distribution of computations may not be 

that important if the number of parameters is small. For an adaptive sampling algorithm 

running such that each robot has a designated sampling region, different robots carry 

better information about different parameters. Hence, a loss of information from only a 

few robots will make a significant difference to the field estimation result. This is not 

the case for target tracking, where a loss of information from one or two nodes does not 

significantly impact the accuracy of estimate, if enough nodes can still track the target. 

For an adaptive sampling scenario, if, for example, a field is represented by 100 

parameters, running this decentralized algorithm would require each robot to calculate 

the local estimate of 100 parameters, and to wirelessly transmit an error covariance 

matrix of size 100x100, and a parameter estimate vector of size 100x1 to every other 

robot. Clearly, such a scheme would be very inefficient and not scalable. 

7.3 Partially centralized federated filter 

A tradeoff approach can be adopted for sampling, in which each robot i  takes 

sensor measurements, estimates local error covariances and field parameters, and 

transmits this information to the global filter for assimilation, in a similar fashion to the 

approach proposed in [137]. Each robot runs equation (7.2), but the fusion is done only 

at the fusion filter using equation (7.3).  
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Figure 7.3 Partially centralized federated AS algorithm 

Figures 7.3 illustrate the centralized federated filter in which each robot 

calculate a local estimate and transmits it to the fusion filter, which then computes the 

global field estimate. The advantage of this approach is that there is less communication 

compared to the completely decentralized case. Although none of the robots carries 

complete information about all parameters, this approach will be more efficient than the 

centralized implementation, because adaptive sampling algorithms can run based on the 

knowledge about local parameter estimates. The formulation of the filter can be 

implemented in a general approach by assuming that each robot carries some 

information about all the parameters. For multi-robot sampling performed in such away 

that sampling area for robots is assigned apriori, it is quite reasonable to assume that 

every robot carries information about some parameters and no information about others. 
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This assumption can be used to distribute the filter equations, as described in the 

following section. 

7.4 Distributed Federated Kalman Filter (DFKF) 

In this section we describe an algorithm to distribute the computations of the 

field parameter estimates among multiple robots, and we show that the scheme is 

efficient in terms of communication and computation overhead. The sampling area is 

divided, e.g. each robot is responsible for sampling certain regions and sets of 

parameters. A block diagram of the distribution scheme is shown in Figure 7.4. 

Compared to the approach presented in previous section, such a distributed scheme 

involves the transmission and computation of only certain parameters. 

 
Figure 7.4 Distributed federated AS algorithm 
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7.4.1 Partitioning of sampling area 

A method is clearly needed to efficiently divide the sampling area into clusters, 

in order to run a parallel AS algorithm with multiple robots. Fuzzy c-means clustering 

(FCM) has been used in many applications for classification of numerical data [51]. The 

basics of FCM were presented in Chapter 2. Moreover, Centroidal Voronoi Tessellation 

(CVT) diagrams [50], have been recently proposed for forming non-uniform size grids 

to better explore high variance areas for non-parametric distributions [15]. Here a 

scheme is proposed in this thesis to efficiently divide the sampling area for parametric 

distributions using both FCM and CVT. In this approach, the FCM algorithm clusters 

based on estimated location of the center of approximating Gaussians. 

The implementation of the CVT diagram is based on Lloyd’s algorithm [50], 

and uses the centroid locations acquired by fuzzy clustering to fuse all points in discrete 

space that are closest to the centroid as a single group. Mathematically, a point p  on 

the field is part of the cluster r  if: 

rsCscpcp sr ≠=−≤− ,,...1, .        (7.4)       

As a result, more Gaussians will overlap in those areas where there are large 

field variations. The use of fuzzy c-means clustering and the CVT diagram for area 

classification results in regions which have more variations to be as small as it is 

required in order to sample them thoroughly. The area with less variation, though large, 

requires less samples, since it is represented by only a few parameters. The idea is 

illustrated in the simulation of figure 7.5, where we partitioned the sampling space of a 

non-uniform distribution represented by L=100 Gaussians into 8 regions. 
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Figure 7.5 Sampling area with Gaussian field centers partitioning performed in 

two steps using FCM and CVT 

 

 
Figure 7.6 Three categories of parameters (Unique, Common and Uncorrelated) 

can be formed if DFKF approach is used along with partitioning of sampling area 

for each robot 

Individual robots are only interested in the parameters that are either unique to it 

or common with other robots. These parameters fall under three categories of obvious 

significance, referred here as: common, unique, and uncorrelated. Common parameters 

are most crucial to the field estimate, as they exist near the border of the sampling areas. 
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The sampling information from multiple robots contributes to the estimation of 

common parameters. As shown in figure 7.4, only the estimate of common and unique 

parameters that have changed need to be transmitted to the fusion filter. Furthermore, 

the cross-covariance terms of unique states with uncorrelated states can be assumed to 

be zero. Similarly, some of the common states are not correlated with the uncorrelated 

states. 

7.4.2 Distributed computations and communications 

The objective of the work presented in this section is to modify the formulation 

of a completely decentralized federated scheme, in order to reduce communication and 

computational load. This formulation is new because it considers the cross-covariance 

terms of neighboring Gaussians and ignores the ones which are far from each other as a 

tradeoff between accuracy and computational complexity. Accurate DKF is not possible 

in this adaptive sampling problem because local measurement models are not available. 

Furthermore, the use of global measurement models on each node requires the estimate 

of all parameters, which will contradict the motivation behind the implementation of 

DKF. There are other schemes that handle the error covariance terms “very lightly” 

such as Kalman Consensus schemes, which take the average of error covariance of 

parameter estimate in order to implement the DKF with only neighboring nodes 

communication [29]. 

EKF has O( )3n  computational complexity if each sample updates all the S   

parameters of the n-dimensional parametric field. However it can be assumed that a 

single sample affects only neighboring parameters. With this assumption, the algorithm 
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can run in distributed fashion, and sampling nodes computation complexity can be 

reduced. Only the fusion filter’s complexity remains of order O( )3n , because it needs 

to combine information about all the parameters. However, this central field parameter 

fusion process occurs less frequently.  

Table 7.1 Comparison of computational complexity and communication overhead for 

centralized, decentralized, federated and distributed federated filter 

 

Table 7.1 illustrates a comparison of computations and communication 

complexity for centralized, completely decentralized, federated decentralized and 

distributed filter. Let N be the number of sampling robots, m is the number of sensor 

measurements per robot, n is the number of field parameters, and p is the number of 

times robots communicate to share their information.  

For the centralized filter, the sensing robots do not perform any computation. 

Hence, the computational and communication complexity are )( 3NmnO and )(NmO  

respectively.  
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For a completely decentralized filter, the computational complexity to calculate 

the local estimate on each robot is )( 3mnO , and to calculate the global estimate on each 

robot is ))1(( 3pnNO − , after taking estimates from )1( −N  robots at a frequency of p . 

Hence the combined computational complexity becomes ))1(( 33 pnNNNmnO −+ . At 

the same time, the communication complexity is ))1(( 3pnNNO − .  

In order to reduce the communication overhead and computational complexity, 

a federated filter calculates the global estimate on the fusion filter, which reduces the 

computational complexity to )( 33 pnmnO + , and the communication complexity to 

)( 3NpnO .  

Finally, for the proposed distributed version of federated decentralized filter, 

instead of calculating n  states on a single robot, we simply calculate the estimate of 

Nn /  states on a single robot. This approach reduces the computational and 

communication complexity to )/( 323 pnNmnO +  and )/( 23 NpnO , respectively. 

Let’s now assume that the field classification includes a large cluster for a 

continuous field distribution. A large cluster is defined as the one whose parameters are 

independent of parameters outside that cluster. This means that the Gaussians 

representing this large cluster do not overlap with other Gaussians outside the cluster. 

Furthermore, let’s assume that there are L parameters in a large cluster, and that a 

cluster head robot is in-charge of carrying the updated parameters estimates and the 

error covariance of all L parameters.  
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Figure 7.7 Centers of Gaussians that are close to sampling locations kx and 1+kx  

The large cluster will contains smaller clusters. A small cluster is defined as one 

whose parameters are estimated by the same robot for a span of time until the 

tessellation changes. The participant parameters, and hence the shape of a small cluster 

might change after some samples are taken and as the parameter estimates change. 

Parameters of one small cluster can be dependent on parameters of another small cluster 

around it. Furthermore, let’s assume that there are S parameters in or around a particular 

small cluster that are expected to change because of sampling for next few samples by a 

particular robot. Assume M parameters are expected to change by sampling at a 

particular location. In our scheme, instead of computing the error covariance and 

parameter estimate of size S, each sample updates only M parameters. 

Summarizing the clustering parameters, and referring to the diagram in Figure 

7.8, let 

N = Number of sampling robots  

L = Parameters in large cluster 

S = Parameters in or around small cluster 
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M= Parameters that are expected to change by sampling a particular location 

C= Parameters whose estimates have change so far since last update from 

cluster head 

LP =Error covariance of L parameters which includes unique, common and 

uncorrelated parameters 

SP =Error covariance of S parameters which are either unique or common 

MP =Error covariance of M parameters 

CP =Error covariance of C parameters 

LÂ =Estimate of L parameters 

SÂ =Estimate of S parameters 

MÂ =Estimate of M parameters 

CÂ =Estimate of C parameters 

LL AP ˆ,  are carried by the cluster head 

LSCM ⊂⊂⊂  

),( 0,0 LL AXg =sum of L Gaussians 

),( 0,0 SS AXg =sum of S Gaussians 

),( 0,0 MM AXg =sum of M Gaussians 

Sampling in region M, the field measurements are given by: 

1,1,11,1,11,1,11 ),(),(),( ++++++++++ +≈+≈+= kikMkkikSkkikLkk AXgAXgAXgZ ννν   (7.5) 
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where M Gaussians are the ones whose centers are closest to the currently sampled 

location 1, +kiX by robot i , and 
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),( 1,1 ++ kLk AXg  is sum of L Gaussians, but for a particular sampling location it 

will only affect M Gaussians considerably, and to a lesser extent other Gaussians. These 

M Gaussians can be assumed to be the ones close to the currently sampling location. 

The dimension of the matrices is reduced by binary transformation matrices U that act 

as masks over the actual dense EKF matrices. The communication between robots is 

reduced by transmitting only the parameter values that changed since last update, 

instead of transmitting the information about all the parameters every time. The 

transformation matrix is also sent along with the estimates to the fusion filter in order 

for the cluster head to know which parameters have changed since the last update. The 

proposed algorithm consists of the following steps: 
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Figure 7.8 Partially centralized AS algorithm with distributed computations 

Distributed Federated Kalman Filter (DFKF) 

Step 1: At the Cluster head transformation from )ˆ,( ,, kLkL AP to )ˆ,( ,, kSkS AP   

The cluster head evaluates the initial estimate of )ˆ,( ,, kSkS AP  by first generating 

the transformation matrix kLSU , , and transmitting )ˆ,( ,, kSkS AP  to robot 1. The matrix 

T

kSLkLS UU ,, =  is kept in memory by the cluster head for the final assimilation stage. 
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Step 2: Transmit estimate of S parameters )ˆ,( ,, kSkS AP to Robot #1 

Step 3: Take measurement sample and calculate estimate of M parameters 

)ˆ,( 1,1, ++ kMkM AP  via: 
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Step 4: Transformation from )ˆ,( 1,1, ++ kMkM AP to )ˆ,( 1,1, ++ kCkC AP using: 
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Step 5: Transmit estimate of  ),ˆ,( 1,1,1, +++ kCSkCkC UAP  parameters to cluster 

head when requested 

Step 6: At Robot 1: Transformation from )ˆ,( 1,1, ++ kMkM AP to )ˆ,( 1,1, ++ kSkS AP  for 

further sampling. Go to step 3 
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Step 7: At Cluster head: Run the assimilation equations after n steps: 
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where, 
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Let’s now consider an example for the proposed algorithm: 

Assume that there are 10 parameters in a small cluster S, to be calculated by a 

robot. The error covariance kSP ,  and parameter estimate kSA ,  matrices can be written as: 
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Let the sample taken at time )2(),1( ++ kk  and )3( +k  respectively estimate 

the parameters (2,4,7), (3,4,6) and (1,2,4,9). Then, 
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The transformation matrices at these instances will be: 
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The error covariance calculated at instant )2( +k  is: 
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7.5 Simulation results 

7.5.1 Sampling of complex field with centralized AS algorithm using 4 robots 

along with partitioning of sampling area 

A complex fire field of size 124x90 pixels generated using a CA simulation is to 

be reconstructed in parallel by sampling using 4 robots. An initial approximation is 

acquired by training the RBF neural network with 30 neurons with spread factor of 25. 

The numerical covariance assumptions are: 

5,15,01.0

5,5,10,5,5 0000

4

000

===

===== −

pnR

PPPPP yxab σ
              (7.14) 

Figures 7.9 (b) and (c) respectively show the initial field, and final estimated 

field after 172 samples. Figure 7.9(e) indicates the locations where the 4 robots took 

samples, represented by different symbols. It also shows the 4 regions formed using 

fuzzy c-means clustering algorithm and the Voronoi Tessellation Diagram, where 

different robots sample. Regions are updated after every 20 samples. The partitioning 

algorithm is implemented with fcm and voronoi functions of MATLAB. As shown in 

figure 7.9 (d) and (g), the parametric error drops from 47.7 to 14.83, and the non-

parametric error drops from 24.34 to 10.62 by taking 172 samples. The estimate of 120 

parameters of 30 Gaussians are updated using the centralized AS algorithm. 
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The use of 4 robots instead of 1 for sampling also reduces the time for field 

reconstruction from 6.7 to 1.2 minutes (more than 4 times reduction). The reason can be 

understood intuitively, because by sampling using 4 robots not only the number of 

samples per robot reduces, but also navigation time reduces because of a smaller 

sampling area allocated to each robot. 

 
Figure 7.9 Sampling operation divided between 4 robots using GAS algorithm to 

reconstruct the field. The results plotted are after 172 samples 

Table 7.2 illustrates the number of computations and communications involved 

in sampling of complex field represented with 30 Gaussian RBF, using 4 robot, and 

considering a decentralized and distributed federated filter. Since the decentralized filter 

is full-order, it includes estimates of all 120 parameters. The number of computations 

performed on the fusion filter is same for decentralized and distributed filter. The 
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combined computations for distributed filter are 675,840 compared to 8,631,840 for 

decentralized federated filter, e.g. approximately 12 times smaller. Similarly, the 

number of data communicated in case of distributed filter is 15 times smaller compared 

to the decentralized filter. 

Table 7.2 Comparison of decentralized and distributed federated filter for sampling of a 

complex field represented with 30 Gaussian RBF using 4 robots 

 

7.6 Experimental results 

7.6.1 Sampling of linear color field with centralized AS algorithm using 2 robots  

A linear RGB field represented by 9 parameters was considered in the 

experiments of Chapter 6. The same color field was reconstructed using 2 robots with 

an AS algorithm running on the central base-station. A star-network was formed, and 

the base-station runs the adaptive sampling algorithm and communicates with two 

ARRI-Bots. The base-station uses both robots to estimate the field parameters in half 

the time if data packet collisions are not encountered. If the sampling space is 

partitioned apriori, the results shown in Figure 7.10 indicate that the color field is again 

recovered with reasonable accuracy after 30 combined samples. 
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Figure 7.10 Experimental results for GAS with 2 robots showing the estimated 

field after 30 combined samples 

7.6.2 Sampling of complex fire field with centralized AS algorithm using 2 

robots  

Experimental results are shown in figure 7.11 for a complex fire field projected 

in an area of 124x90 square inches. Figure 7.11(a) shows the field that is generated 

using the Cellular Automaton. A low-resolution grid size with n=20 gives 27 (3x3) 

samples for training the neural network. We use 20 neurons and a spread factor of 25 to 

approximate the field with 80 parameters (20x4). Two robots sample the field in parallel 

using the GAS algorithm with grid size p=5 and horizon size 3. 

Figure 7.11 (b) and (c) respectively shows the initial field and final estimated 

field after 118 samples. Figure 7.11(e) indicates the locations by ‘x’ and ‘o’ symbols 

where the 2 robots took samples. As shown in figure 7.11 (d) and (g), the parametric 
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error drops from 37.6 to 13.91, and the non-parametric error drops from 39.05 to 15.86 

by taking 118 samples. This final non-parametric error is close to what we would get if 

we sample data from an actual field assuming a grid size of 5 (which uses 446 samples) 

to train the neural network. The numerical assumptions for uncertainties were: 

01.0
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000

=

===== −

R

PPPPP yxab σ               (7.15) 

The use of 2 robots instead of 1 for sampling also reduces the time for 

reconstruction from 6.7 to 2.6 minutes (which is less than half). This can be understood 

intuitively because not only the number of samples per robot reduces, but also 

navigation time reduces in a smaller sampling area. 

 
Figure 7.11 Experimental results for estimation of a complex field represented by 

20 neurons RBF using 2 robots 
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In summary, in this Chapter we propose a distributed federated filter, and a 

clustering scheme for the distribution of computational and communication load among 

N robots performing sampling missions. Estimates of communication and 

computational load on the robots show that a dramatic reduction can be expected 

compared to a centralized sampling scheme, while a reduced sampling time in excess of 

N times can be expected. Further simulations and experiments are needed to verify the 

efficiency and convergence properties of the distributed filter scheme we propose.
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CHAPTER 8 

CONCLUSION & FUTURE WORK 

 

This dissertation presents a Multi-scale Adaptive Sampling (AS) algorithm 

called “EKF-NN-GAS” for combining measurements from robotic sensors of different 

scales, rates and accuracies to reconstruct complex spatio-temporal fields. Adaptive 

sampling algorithms continuously adapt in response to real-time measurements, and 

direct the robots to locations most likely to yield maximum information about the 

sensed field. It is demonstrated through extensive simulations and experiments that the 

proposed AS algorithm provides field reconstruction in significantly smaller number of 

samples compared to a simple raster scan approach. The sampling time and 

computational complexity of the algorithm also improves by using a local search greedy 

adaptive sampling strategy.  

In addition, the localization uncertainty of the robots is reduced by combining 

the location states and field parameters in a Joint-EKF. In the absence of absolute 

location information such as GPS, inertial localization information from internal sensors 

can still be used for a short while to build a parametric model of the environment. Later, 

the acquired model can be used to reduce the location uncertainty of the robots. The 
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algorithm has been experimentally validated on ARRI-Bots in DIAL Lab (Distributed 

Intelligence and Autonomy Lab) at ARRI.  

Further analysis is needed to evaluate the performance of non-uniform grid size 

sampling and to quantify how they contribute to the objective of collecting more 

samples in dense regions of parametric field representations. Also, the multi-step GAS 

needs investigation in terms of how it improves local searching and to prevent it from 

being trapped in local minima. 

It is demonstrated through extensive simulations that the proposed multi-scale 

sampling approach, along with self-organized clustering and RBF parameterization is 

an efficient way to accomplish wide-area. Furthermore, this RBF parameterization can 

model even the fields with sharp variations by selecting appropriate number of neurons 

and width of the Gaussians using heuristic approaches. 

The multi-scale approach of adaptive sampling was also applied to map the 

forest fires. The proposed algorithm uses a multi-scale, multi-rate approach achieved by 

taking two types of measurements: a low-resolution (high-spatial) satellite measurement 

gives an initial estimate of field parameters, which is further refined by high-resolution 

(low-spatial) sampling. In this thesis, a single measurement of fire field intensity was 

considered, which, in practice, can be captured using thermal imaging equipment. Due 

to time-varying nature of the fire, additional measurements that contribute to the spread 

of fire should also be investigated, such as wind speed and direction, slope, air 

temperature and humidity, etc. Future work should include the implementation of the 

sampling algorithms using multi-scale robots equipped with thermal imaging 
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equipment, topographic mapping, wind, air temperature and other sensors for fire 

monitoring.  

The proposed parametric sampling algorithm in this Thesis uses the standard 

Extended Kalman Filter. In the future, it can be modified to use an Ensemble Kalman 

filter (EnKF) which is suitable for problems with large number of variables. EnKF is 

commonly used in data assimilation algorithms such as weather prediction. EnKF uses 

sample (or mean) covariance of parameters rather than auto and cross covariance of all 

the parameters. This makes the filter simpler and easier to implement. 

Since we used the Extended Kalman Filter, the proposed sampling schemes 

must be initialized sufficiently close to the actual field parameters. Overhead satellite 

imagery of the field provides a reasonable initial estimate, but the absolute algorithm 

convergence cannot be guaranteed, as widely discussed in the literature. In addition, the 

use of Heuristic Search methods in the algorithm can also lead to the presence of local 

minima. We can avoid such minima by restricting the search space so that we do not re-

visit already sampled points, but such heuristics may not always work for time-varying 

fields. While studying convergence conditions for our algorithms was beyond the scope 

of our thesis, future work should investigate these limitations.  

The use of multiple robots for sampling was also investigated in the thesis. It 

was inferred from simulations that the partitioning of the sampling area reduces the 

reconstruction time by a factor greater than the number of robots. Furthermore, a 

distributed multi-robot scheme was proposed for parametric adaptive sampling, 

resulting in reduction in computations and communication overhead. Every robot 
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focuses on certain parameters which are unique to itself, or common between itself and 

other robots. Hence, reaching a consensus only on certain parameters of interest will 

speed up the computational efficiency of the algorithm. If N is the number of robots 

used for sampling, then our approach reduces the number of computations and 

communication per robot by a factor of 3
N , when compared to the decentralized 

approach. 

A completely decentralized and distributed approach for adaptive sampling with 

multiple robots is the best choice. In this case, studying the required information flow 

through the network such that different robots can reach consensus about the desired 

parameters in minimum time, should also be addressed in the future. These aspects 

relate to multi-robot cooperation for AS problems, and include routing, coverage, 

connectivity, congestion control, communication bandwidth, node energy and mission 

planning. 

 Finally, future work should include the implementation of the proposed 

sampling algorithms in conjunction with information, communication, mission and 

energy-aware deployment schemes on low-altitude UAVs for fire mapping. 
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