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ABSTRACT

SYBIL DEFENSE FOR ONLINE SOCIAL NETWORKS USING PARTIAL

GRAPH INFORMATION

VRITANT NARESH JAIN, M.Sc.

The University of Texas at Arlington, 2011

Supervising Professor: Dr. Matthew Wright

Online social networks (OSNs) today are proprietary, in the sense that com-

munication between users requires the users to be part of the same OSN. This raises

privacy issues and reliability concerns among users, and calls for an open, interopera-

ble, and distributed OSN infrastructure that would link different OSNs together. Any

decentralized system is vulnerable to Sybil attacks, in which an attacker claims mul-

tiple identities called Sybils, to overwhelm the OSNs and defeat standard techniques

used to protect against attacks such as message spam. The state of the art defense

against these attacks is SybilInfer, which utilizes the fast mixing property of social

networks to distinguish between Sybil nodes and honest nodes. SybilInfer, however,

assumes a centralized system with a complete view of the social network. In this

thesis, we investigate the effectiveness of applying SybilInfer on open and decentral-

ized networks, and we propose improvements that would make SybilInfer deployable

in such a scenario. These improvements facilitate a user of one OSN to listen to

messages from other users of another OSN without the fear of spam due to a Sybil

attack. We show that the proposed improvements greatly reduce the number of Sybil
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nodes misclassified as honest users and make SybilInfer more accurate in classifying

members of other OSNs.
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CHAPTER 1

INTRODUCTION

Well known micropublishing networks today are proprietary in the sense that

communication between users requires the users to be part of the same network. This

raises privacy issues and reliability concerns among users, and calls for an open, inter-

operable, and distributed infrastructure that would link different networks together.

However, such a decentralized system is said to be under a Sybil attack where an

attacker claims multiple identities to compromise a large fraction of nodes in the sys-

tem. The malicious identities introduced by the attacker are called Sybil identities.

Systems that depend on assumptions that at least a fraction of the identities in the

system are honest are particularly vulnerable to such attacks, as the attacker is able

to out vote the honest users by introducing enough Sybil identities in the system [2].

Some examples of such systems are Byzantine fault tolerant systems [3], reputations

systems [4], online voting systems, etc.

A Sybil defense protocol can be classified as either centralized or de-centralized.

A centralized system requires a trusted central authority that verifies whether an iden-

tity is honest or Sybil on behalf of the users. Some of the popular centralized Sybil

defense protocols include IP address binding, where the centralized authority binds

each identity to an IP address, binding an identity with government issued identifica-

tion or an e-mail address, to distinguish between honest identities and Sybil identities

as it is too difficult for an attacker to forge such identification [5]. Such a protocol can

be discouraging to users due to privacy concerns and concerns about system failure
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due to high traffic, and can also prove to be a single point of failure for the system

when the trusted authority is compromised [2]. In a decentralized Sybil defense pro-

tocol, on the other hand, the lack of a centralized authority makes it easier for an

attacker to claim an unlimited number of Sybil identities, especially in the absence

of an efficient Sybil defense protocol.

In this thesis we study the defense against Sybil attack on an Online Social

Network (OSN). An OSN is a social networking application which enables users to

communicate with each other. Facebook, Twitter, Google Plus, and Ping are among

the popular OSNs today. To defend social networks from Sybil attacks researchers

have proposed several Sybil defense protocols like Sybilguard [2], Sybillimit [6], Sybil-

Infer [7], etc. We investigate the efficiency of a Vanilla SybilInfer (an unmodified

SybilInfer protocol) on distributed OSNs simulated over the FETHR protocol. We

then propose three improvements over a Vanilla SybilInfer that customize SybilInfer

for practical use over OSNs and verify the customized SybilInfers improvement in

accuracy of results over simulated scale free networks and real world networks.

In the following chapters, we study the practical implementation of a state

of the art Sybil defense protocol, on distributed social networks. In Chapter 2, we

look into several Sybil defense protocols that are built on an assumptions that Social

networks are fast mixing [2]. We discuss two protocols which are frameworks for

decentralized OSNs, Mr.Privacy and FETHR and the need for a decentralized OSN.

In Chapter 3, we describe an algorithm built over the Barabasi - Albert Model [8]

for generating scale free networks. We use each generated networks to simulate a

FETHR server as a model OSN and simulate our network model as independent

but interconnected FETHR servers to investigate the defense against a Sybil attack
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on decentralized OSNs. Chapter 4 studies the effect of using an out of the box

SybilInfer protocol [7], which is set up on the network generated in Chapter 3. We

also propose modifications to the protocol to adapt it for practical implementation on

social networks, which are later verified in Chapter 5. Finally, Chapter 6 summarizes

the proposed modifications to the SybilInfer protocol for better adaptation on open,

decentralized micropublishing networks.
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CHAPTER 2

BACKGROUND

In this chapter we discuss social networks and the need for open social networks.

We then survey a specific class of Sybil defense protocols and their effectiveness in

defense against a Sybil attack on social networks.

2.1 Social Networks

A social network can be simply defined as a network of inter-personal relation-

ships between people. A social network graph (SNG) is a graph representation of

a social network in which nodes represent users and the edges represent established

trust relations between these users. An Online Social Network (OSN) is a social net-

working application which enables users to communicate with each other. Facebook,

Twitter, Google Plus, and Ping are among the popular OSNs today. A common

feature among these OSNs is a centralized authority that is responsible to provide

services to users of that particular network. The centralized authority is also respon-

sible to maintain the privacy of the users, as per the privacy policies agreed to by

the user and the centralized authority. These privacy policies vary from OSN to OSN

and are a key issue that users consider to decide among the various applications [9].

The services offered by the networks also differ to a large extent and might influence

a user to choose one network over another.
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Table 2.1. Registered users in OSNs (Aug, 2011). Reproduced from [1].

Online Social Network Registered Users

Facebook 750,000,000
Qzone 481,000,000
Twitter 200,000,000
RenRen 170,000,000

Vkontakte 135,000,000
MySpace 125,000,000
Badoo 122,000,000
Orkut 120,000,000
Bebo 117,000,000

Linkedin 100,000,000
Viadeo 35,000,000

Google+ 20,000,000
Foursquare 10,000,000
Friendfeed 2,000,000

2.1.1 Need for open micropublishing social applications

Table 2.1, reproduced from Vincenzo Cosenza’s Social Media Statistics [1],

shows the approximate number of registered users in the most popular OSNs to-

day. As seen in the table, while Facebook clearly has the most number or registered

users, it does not distinctively dominate the social networking market, as evidenced

by the comparable popularity of so many websites. The lack of a clear leader can

be attributed to the fact that different users prefer different features and/or privacy

settings. Facebook’s privacy concerns [10] and Twitter’s fail whale, a symbol of its

frequent system failures [11] are perhaps as well known as the OSNs themselves. As a

result, there is no clear choice of the best OSN. In China, about a dozen micro-blogging

websites like ‘Weibo’ were until recently [12] the only open platform to discuss sensi-

tive political issues and other public affairs [13]. Thus, while these OSNs are popular,

there is no clear leader among them. The issues with these social applications are
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twofold: they are proprietary and centralized. For instance, to communicate with a

Twitter user, and create a social link in the Twitter system (by following another

user) and sending Twitter messages (tweets). Also, a centralized approach implies

a central point of failure as if the centralized authority is compromised, the entire

system which relies on that authority is also compromised. As more number of users

join the service, it can also lead to frequent crashes that Twitter is infamous for [11],

to add to the woe of users already cencerned about their privacy.

2.1.2 Open micropublishing social applications

A micropublishing social application is an OSN where users publish their posts

and subscribe to other user’s post. A micropublishing social application is called

open if a user registered on that OSN can commumicate with other users registered

on other open OSNs. In this section we give two examples of open micropublishing

social applications, SocialBar and BIRDFEEDER. SocialBar is powered by Fischer

et al.’s proposed system called Mr. Privacy [14], a social application framework based

on the Simple Mail Transfer Protocol(SMTP) and Internet Message Access Protocol

(IMAP), which are standard emailing protocols. This email-based framework allows

for data to be owned by users and improves system scalability. The framework allows

OSNs to share rich content, music playlists, GPS locations, etc. through emails. Nei-

ther the users nor the OSN designers have to be concerned with bootstrapping the

underlying protocols.

Sandler and Wallach have proposed an open decentralized micropublishing ser-

vice called Featherweight Entangled Timelines via HTTP Requests (FETHR) [15].

FETHR provides for a robust and decentralized framework built over HTTP, with no
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intent to replace Twitter or other OSNs, but to overcome the limitations of Twitter,

by facilitating users to choose their service providers. The clients interact with the

usual HTTP GET and POST requests for communication. The protocol however, has

several critical issues to be addressed, like group communication, allowing for sharing

of rich content and privacy.

Since they are decentralized, open approaches like FETHR and Mr. Privacy are

vulnerable to Sybil attacks and require a reliable and robust Sybil defense protocol

that can be practically implemented as well.

2.2 Sybil Defense

We now go through a brief history of Sybil defense literature. First we discuss

Doucer’s paper on Sybil attacks [16] and summarize a survey on Sybil defense by

Levine et al. [5], then describe in brief the workings of three Sybil defense protocols,

Sybilguard [2], Sybillimit [6], and SybilInfer [7]. Finally we study how these proto-

cols compare against each other through Vishwanath and Post’s analysis of social

network-based Sybil defenses [17].

2.2.1 Early Sybil defenses

Douceur [16], in their1 paper termed what was known previously as pseudo-

spoofing [18], a Sybil Attack. The author proves that a Sybil attack is always possible

unless the identities of the system coordinate with some assumptions of resource par-

1The use of plural pronoun for the number of authors here is ironic similar to Douceur’s use in

The Sybil Attack [16].
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ity [16]. The paper also outlines a few limitations of Sybil defense protocols that still

hold true, in that even when an attacker is restrained strictly in terms of resources;

it will always be able to counterfeit a constant number of forged identities (Sybils).

The paper outlines the need for concurrent verification of all identities to prevent the

attacker from forging an unbounded number of identities. The author was the first to

term such identities as Sybil idenities and to point out the threat of a Sybil attack.

The author shows that a sufficient number of attackers may result in an unbounded

number of Sybil identities, thereby compromising the entire system.

Levine et al. [5] have classified about 90 papers in Sybil defense literature into 11

categories. According to the authors, a majority of these papers either offer no solu-

tion [19, 20, 21, 22, 23, 24] or suggest the use of trusted certification [25, 26, 27, 28, 29]

with a central authority that would certifiy a user as honest. Fifteen papers offer the

solution of resource testing [30, 26, 31, 32, 33], designed on the assumption that Sybil

identities are limited to the attackers’ resources and peers can challenge the comput-

ing or storage ability of users to ascertain which users are honest. Checks are carried

out to determine if a group of identities carry fewer resources than they would if they

were honest and independent. A few papers [34, 28, 35, 36, 37] propose regular and

periodic resource tests on all identities, thereby making it costlier for the attacker

to introduce Sybil identities. Other solution categories include using trusted devices

[38, 39], where a special hardware device would ensure unique identities by making

it costlier for the attacker to create Sybil identities, and building Reputation systems

[40] , in which the user’s reputation is based on her reputation graph, which is con-

structed from on the user’s interactions with other users and is dynamic in nature.

These approaches are either inefficient or not specific to the use of Online Social Net-
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works for defense against a Sybil attack.

The state of the art Sybil defense protocols are based on the assumption that

social networks are fast mixing, A graph is said to be Fast mixing if a random walk

on it approaches the stationary distribution very quickly [41]. It means that while

Sybilguard was the first protocol to use the fast mixing property of social networks for

defense against Sybil attacks, Yu et al. first prove that social networks are indeed fast

mixing and propose an optimal Sybil defense protocol, Sybillimit [6]. Since a social

network graph (SNG) is Fast mixing it means that nodes in a SNG are usually well

connected and removal of few trust relations between honest users would not result in

disconnections of a large number of honest users, as there is a high probablility that

there exist mutliple paths between any two nodes. Under a Sybil attack, however, a

large number of Sybil identities are connected to the social network graph through few

trust relations between a real identity (honest user) and an attacker. Such relations

are called attack edges. Removal of an attack edge would result in disconnection of

a large number of Sybil identities. The set of edges which’s removal might result in

disconnection of a significant number of identities in a social network graph are called

as quotient cuts. The problem of detecting Sybil identities is now reduced to finding

such quotient cuts. Unfortunately, this problem is NP-hard to solve [2] .

Yu et al. [2] propose SybilGuard, the first in a series of Sybil defense protocols

that make a Sybil attack independent of the number of Sybil identities introduced.

These Sybil defense mechanisms are among the protocols that assume that social net-

works are usually fast mixing, but a Sybil attack results in quotient cuts as an attacker

is limited in its ability to form sufficient trust relations with honest users of a network.

Thus all the Sybil identities created by the attacker are connected through these lim-
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ited number of trust relations (edges in the SNG) and result in a small set of edges,

detection of which would free the network from Sybil identities. SybilGuard uses ran-

dom walks performed on nodes of the social networks based on pre-determined but

random routing tables that each node has for its neighbors on the network. Yu et al.

first prove that a random walk of length at O(log n) is sufficient to reach a node from

a stationary distribution with probability of least (1− 1/n). Then they show that in

a network of n nodes and g attack edges, the probability of a random walk of length

l having an attack edge is at most (g ∗ l/n). SybilGuard requires each node in the

network to have registry tables and witness tables, where nodes along these random

walks can register their public keys. These public keys are used to verify if a user’s

random walks intersect with at least half the honest user’s random walks, in which

case the user’s public key is accepted and the user is considered honest. SybilGuard

ensures that in a network of n users, at most O(
√

(n) ∗ log(n)) Sybil identities are

accepted with a probability of (1− δ), where δ is a small constant, given the number

of attack edges is not more than o(
√

(n)/log(n)). However, SybilGuard allows a lot

of Sybil nodes to be accepted, and it assumes that social network are fast mixing, but

does not prove the same for the real world [6].

SybilLimit [6] is a near optimal Sybil defense protocol that improves on Sybil-

Guard by reducing the number of Sybil nodes accepted by a factor of O(
√

(n)). It

also provides evidence that social networks are fast mixing based on three real world

social networks, Friendster, LiveJournal and DBLP. Sybillimit consists of two proto-

cols, a secure random route protocol and a verification protocol. The random routing

is similar to SybilGuard except that it performs many walks of shorter length and

stores only tails (the last edge of a walk) instead of the whole path as stored by

SybilGuard. An honest user will classify another user as honest or Sybil based on
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the number of tails that intersect between them. SybilLimit accepts O(log n) Sybil

users, allowing for at most o(n/log n) attack edges.

2.2.2 SybilInfer

Danezis and Mittal propose SybilInfer [7], an approach based on Bayesian in-

ference to identify Sybil nodes. In addition to classifying users as honest or Sybil, the

protocol labels each node with the degree of certainty of it being honest. This proto-

col also relies on random walks performed over the social network, stored as a set of

traces T. A probabilistic model, built using T, describes the probability that T was

generated by a set of honest nodes, X, which gives us the probability P[T/X is Hon-

est]. By applying Bayes theorem, we get P[X is Honest/T], which is the probability

that a certain set of nodes is honest. Thus to label a node as honest or Sybil, we need

to sample subsets of X, generate traces T with respect to X and find P[X is Honest/T].

To label each of nodes as honest or Sybil, instead of considering every possible

subset of nodes for X, any sampling technique can be used iteratively to get accurate

estimates of the degree of certainty of each node being a Sybil. The authors suggest

Metropolis Hastings [42] for this purpose which is a Markov chain Monte Carlo sam-

pler. At the end of a certain number of iterations, we can ascertain the probability

that a node is honest. SybilInfer is very accurate. In a scale free network in which

10% of nodes have trust relations with the adversary, only 5% of the Sybil nodes are

wrongly marked as honest.

The accuracy of SybilInfer does not come without a cost. The protocol relies on

three assumptions: First, it is required that at least one honest node in the network
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is known to be honest to break the symmetry between the sets of honest nodes and

Sybil nodes. Second, it is assumed that social networks are fast mixing; and Finally,

it is necessary for a node to know the complete SNG topology. The former assump-

tions are quite reasonable, but to assume that a node can have the entire networks

information is both impractical given that well known OSNs today have millions of

registered users and can raise several privacy issues (as discussed in Section 2.1.1).

The authors point out that social networks, once mature, are quite stable and non-

dynamic to a large extent [7]. While this may be true, it should be noted that a Sybil

defense system would be needed more often by a user who is new to the network

and does not have stable connections. Also, the space required to store the necessary

SNG information is about 187 GB [7], which makes a decentralized implementation

of the protocol largely impractical. The authors propose more practical alternative

implementation in which every node has partial graph information , probably every

node in a two hop boundary of the user [7]. SybilInfer is then applied on this in-

formation to assign a degree of trust with every user in this two hop boundary (or

neighborhood). For the nodes that do not lie in the honest user’s two hop boundary,

there is a high likelihood that they would like in the two hop boundary of a node

that the honest user has already assigned a degree of trust to. The degree of trust of

these nodes can be formulated based on a function of trust of the intermediate nodes,

which is more formally proposed in Section 4.

Viswanath and Post [17], in their analysis of social network-based Sybil defenses,

provide a comparison of SybilGuard, SybilLimit, SybilInfer and SumUp. The authors

treat the algorithms as a black box and compare them to study how they perform on

the same kind of network topology and attacker strategy. The authors [17] intuit that

these Sybil defense systems work by detecting local communities in the social network
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graph. Further, they study the application of community detection algorithms [43]

for Sybil defense. The authors observe that, while the users of a SNG that are tightly

connected to each other are more likely to be ranked higher, different algorithms

rank equally well-connected nodes in a different way. The authors also contribute

to Sybil defense analysis by showing that when there is a crisp boundary between

communities, the nodes in the local community of the trusted node are ranked higher

than the ones in other communities, where there is no crisp boundary.
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CHAPTER 3

NETWORK MODELS

In this Chapter, we describe two network models to study the effect of a Sybil

attack on a social network graph. First, we describe a scale-free model where users

would subscribe to their social network services provider, (FETHR or FETHR-like)

and could interact with any user who could be subscribing to another social network

service provider of choice. Such interoperation could give every user a freedom to

choose the kind of services they like, instead of being tied into with social network

features that do not meet their needs. For example, Facebook has often been criticized

about its privacy issues [44, 10], and Twitter has length limitations per post and other

issues [45]. If a Facebook user could communicate with a Twitter user they would

each be able to use the system that best met their respective needs. Additionally,

this would help distribute users across a range of providers, relaxing server failure

concerns due to excessive traffic [11] and privacy concerns [10]. Our second model

uses three comparable real world social network graphs with simulated connections

between the real SNG’s, to validate our results in the real world.

3.1 Scale-free model

Our scale-free model of a SNG is generated using a three step procedure. First,

the nodes are assigned to sub-networks based on a power law probability. The nodes

are then connected to other nodes in the sub-network in a scale-free manner. Finally,

nodes are connected to nodes in other sub-network to simulate connections between
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sub-networks, also in a scale free manner.

We simulate a hundred sub-networks with a total of 100,000 users, we assign

each user to a network n with the probability (1/n∗n). As a result, we get a hundred

sub-networks with no edges between them yet. An additional user is assigned to

each network representing the servers that would run SybilInfer on its subnetwork.

These servers are called FETHR servers, all of which are connected to each other.

Figure 3.1 shows the probability with which a node would become a member of each

network and Figure 3.2 shows the number of users in each network for one instance

of the assignment.

Figure 3.1. Probability with which nodes are added to each network.

These nodes are then connected to other nodes in the sub-network according

to the Barabasi-Albert model [8] which generates scale-free networks according to

a power law degree distribution. According to the model, a node that has higher

number of connections is more likely to get connected to newer nodes as they are
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Figure 3.2. Number of members in each network.

added to the network. The network begins with m nodes, where m>2, and each node

should should be connected to atleast one other node. Then nodes are added in a

scale free manner to the network. The node is connected to every existing node i in

the sub-network with the probability (Ki / Σj Kj) , where Ki is the degree of the

node i. In real world networks however, the users of several sub-networks would be

connected to users of other sub-networks as well. We simulate connections between

sub-networks with a probability proportional to the degree of nodes as well.

To simulate connections in a sub-network of our scale-free model, we use a

Barabasi-Albert model where the number of initial nodes are 3. To simulate connec-

tions between sub-networks, each node is connected in a scale-free manner to every

node l of every sub-network with a probability proportional to the degree of that

node, as represented by the expression deg(l) / Σm deg(m) . The FETHR servers are

provided with connection information of all the nodes within a n hop boundary of all

the nodes in its sub-network. For our scale-free model, we use n = 2 as proposed in

SybilInfer [7].
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3.2 Real network model

To study the effect of a Sybil attack on real world networks, In addition to

the scale-free model described above, we use a real network model with three social

network graphs with comparable sizes: Geom [46], a collaboration network among

authors with 7343 nodes; Gnutella [47, 48], a peer to peer network with 6301 nodes;

and URV [49], an email network with 1133 nodes. The nodes in these SNGs are

connected to nodes in other SNGs with a probablility proportional to the degree of

the nodes similar to the interconnections between the sub-networks in the scale-free

model.
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CHAPTER 4

SYSTEM MODEL

In this Chapter, we study the security aspects of applying SybilInfer to a clus-

ter of interconnected but independent servers which could implement FETHR or

FETHR-like services for communication.A user subscribing to a FETHR server may

avail services from another user which may be subscribing to the same FETHR server,

or might possibly be subscribing to another FETHR server, or even another open mi-

cropublishing network provider that inter-operates with the FETHR server of the

user that wishes to avail the service. The service could be anything like viewing the

user’s post, querying for posts with a particular hashtag which is a popular search

mechanism in twitter, or even simply looking up a user. In the absence of an effi-

cient Sybil defense protocol, the user might get spammed results from an attacker

posing a multiple identities, and if the attacker’s responses are ranked higher, the

interoperability of the micropublishing networks is compromised. We suggest tweaks

to SybilInfer and in Chapter 5 we show that the proposed tweaks reduce the number

of Sybil identities classified as honest to a large extent.

4.1 Unpredictability of a Vanilla SybilInfer

SybilInfer [7] was primarily designed with the intention that every node trying

to distinguish between honest and Sybil nodes would consider itself as the honest

node required to break the symmetry between honest users and Sybil users. Thus,

SybilInfer assumes that there is at least one honest node in the entire network and

every node runs SybilInfer for itself considering itself as that honest node. However,
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for the model network defined in Chapter 3, implementing SybilInfer at every node

would be highly inefficient for security issues, as it requires the complete social net-

work topology to be known by every node. This raises a lot of privacy issues as some

users would like to keep their trust relations confidential.

Every FETHR server(Chapter 3) provides its nodes with services like publish-

ing and subscribing posts, direct messaging, searching other users, etc. These services

require every node of the network to be associated with a trust factor. Since each

node subscribes to its FETHR server for such services, it is sufficient for the FETHR

server to run the SybilInfer protocol on behalf of each node.

In Chapter 5 we demonstrate the risk of implementing a Vanilla SybilInfer on

the largest sub-network of the scale-free model as described in Chapter 3. The pro-

tocol assigns a trust factor to nodes based on Bayesian inference over a two hop

boundary of all the nodes in the sub-network. The protocol selects a node at random

in the sub-network to be an honest node, which is required to break the symmetry

between honest nodes and Sybil nodes. This honest node is also the initial state

of the sampling algorithm used in SybilInfer to sample honest configurations out of

the graph. We show that SybilInfer in the current form, for such a network, returns

misclassifies users as Sybil in an unpredictable manner, as This is due to its depen-

dance on a single honest node chosen at random. SybilInfer works by partitioning the

sub-network into an honest graph and a Sybil graph. In partuclar, when the honest

node chosen at random is better connected to the Sybil nodes, the trust factor of the

Sybil graph is increased. Thus, there is a need for an improvement in the protocol to

make Sybil detection independent of a single node.

19



4.2 Improvement 1: Change in the initial state of the MCMC Sampler

The FETHR server contains graph information of a two hop boundary of the

entire subnetwork that subscribes to it. To choose a single random node as the initial

state of the sampling algorithm causes the latter samples to be dependent on that

node. To overcome this dependence, we propose to initialize the sampling algorithm

with the entire subnetwork. This way, latter samples are no longer dependant on a

single node, but a new sample is chosen with a probability which is a function of all

the nodes in the sub-network. So even if a new nodes are better connected to the

Sybil graph when compared to the honest graph, they do not influence the chosen

samples as much as when the honest node chosen at random to solely constitute the

initial state is one of those nodes.

4.3 Improvement 2: Using multiple honest nodes

As discussed in the previous section, in addition to sampling subsets of nodes,

SybilInfer [7] uses the honest node to break the symmetry between honest graph and

the Sybil graph, so as to assign trust to the honest graph. We enhance SybilInfer

for use in our setting. Instead of dependence on a single honest node, the FETHR

server could choose K distinct nodes it believes to be honest and run SybilInfer K

times considering each of the K nodes as the honest node to distinguish between the

Sybil sub-graph and honest sub-graph. If any of the K runs classify a node as Sybil,

the node is labeled Sybil. The probability of having a 100% false negatives i.e., every

Sybil node to be classified as honest and the system being compromised, is reduced

to (fpi) ˆ K, where fpi is the ratio of the number of false positives returned by the

protocol to the total number of nodes. The FETHR server could choose the K honest
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users via various methods. It could choose K nodes among the subnetwork that are

best connected to the rest of the subnetwork. Alternatively, it could allow each node

of the sub-network to choose its own K honest users, or choose the K best connected

peers for each user, or just any K friends of a user in the SNG.

4.4 Improvement 3: Assigning partial trust to nodes

An alternative technique is to assign partial trust to both honest graph and the

Sybil graph instead of a Boolean trust value to the graph which contains the honest

node chosen at random. The trust factor of both the graphs would depend on the

number of nodes in the graph. For example, if the sub-network has s nodes in the

Sybil graph and h nodes in the honest graph, each node in the Sybil is given a partial

weight of s/(s + h) and each node in the honest graph is given a partial weight of

h/(s+h). This way, the SybilInfer protocol is no longer dependant on a single honest

node chosen at random, as we observe in Chapter 5 that s is much smaller when

compared to h. Thus classifying nodes as honest or Sybil after assigning a partially

weighted trust to nodes in every iteration reduces the number of false positives (honest

nodes missclasified as Sybil) and false negatives (Sybil nodes missclassified as honest).

4.5 SybilInfer on smaller networks

This version of SybilInfer is efficient only when the sub-network has sufficient

number of members in this two-hop boundary, as the smaller sub-networks do not

have enough information for Bayesian inference. For those sub-networks that do not

satisfy that condition, we propose two techniques how SybilInfer can be practically
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employed for Sybil defense. One solution can be to increase the hop boundary from

two hops to three or four hops as necessary. Another alternative is due to the unique

feature in SybilInfer which not only classifies a user as honest or Sybil, but also assigns

a percentage of trust to the user. If the percentage of trust is more than 50%, the user

is considered as honest, other wise it is classified as Sybill. In this alternative, the

FETHR server of smaller sub-networks could latch on to a FETHR server of a larger

and trustable sub-network, that has at least one member in the two hop boundary

of the the smaller FETHR server. The smaller FETHR server could piggy back over

the trust factors of a larger Fethserver, where the smaller FETHR server would trust

all users by a fraction P of the % of trust returned by the larger FETHR server’s

SybilInfer after many iterations. The fraction P is the percentage of trust assigned

to the most trusted user in the larger FETHR server by the smaller FETHR server.

However, some sub-networks might require both these schemes, that is, a “% of %

trust” on a three or four hop boundary of the sub-network.
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CHAPTER 5

RESULTS

In this Chapter, we verify that the proposed improvements in Chapter 4 im-

prove the accuracy of SybilInfer in classifying nodes as honest or Sybil. First, we show

that a Vanilla SybilInfer returns a variant number of false positives ( honest nodes

misclassified as Sybil) and false negatives (Sybil nodes missclassified as honest). Then

we prove that changing the initial state of the sampler decreases the number of false

postivies and false negatives considerably. Finally we discuss the effect of assigning a

partial trust to nodes as discussed in 4.5, on both the scale-free model (Section 3.1)

and the real network model (Section 3.2).

Figure 5.1. False positives (EDF) returned by Vanilla SybilInfer.
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Figure 5.2. False negatives (EDF) returned by Vanilla SybilInfer.

Figures 5.1 and 5.2 illustrate the risk of implementing Vanilla SybilInfer, se-

lecting a node at random in a sub-network from the scale-free model described in

Chapter 3 to be an honest node which is also the initial state of the sampling algo-

rithm used in SybilInfer to sample honest configurations out of the graph. The graph

in Figure 5.1 is an emperical distribution function of the number of false positives re-

turned by SybilInfer on a sub-network with the most users (74888) in it. The two hop

boundary of the sub-network used for the simulations in this experiment contained

98,451 out of the total 100,100 users. The Figure 5.2 is an emperical distribution

function plot of the false negatives returned by SybilInfer on the same sub-network.

The figures show that Vanilla SybilInfer returns a variant number of false positives

for such a network, as illustrated by the step function of the graphs indicating that

an unpredictable number of false positives and false negatives are detected. This phe-

nomenon is experienced when the randomly chosen honest node is better connected

to the Sybil nodes than honest nodes. This over dependance on a single is improved
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upon by the proposals as described in Chapter 4.

After changing the initial state of the MCMC sampler, as discussed in Section

4.2, the average number of false positives returned by SybilInfer after thirty runs

is approximately 350, where the total number of nodes in the two-hop boundary is

98451. This means that on an average, 350 (with a standard error of 4.41) honest

users were wrongly classified as Sybil. The probability that the SybilInfer protocol

uses one of the false positive nodes to distinguish between the honest sub-graph and

the Sybil sub-graph in this sub-network is 350/98451. Since this probability is very

low, this is an unlikely event. However, if this unlikely event occurs, all of the Sybil

nodes are accepted as honest, resulting in almost a 100% false negatives. Thus as a

result of using the entire sub-network as the initial state, the number of false positives

and false negatives decreases considerably and number of false positives returned by

the modified SybilInfer protocol is less variant as the samples chosen no longer depend

on a single node chosen at random from the network.

Figures 5.3 and 5.4 show the result of assigning a partial trust to all the sub-

networks. Figure 5.3 is a plot of the number of false postives and Figure 5.4 is a plot

of the number of false negatives returned by SybilInfer [7] on the sub-networks. On

the x-axis are the sub-networks arranged in the decreasing order of their size, and the

y-axis shows the number of false postives (Figure 5.3) or the number of false nega-

tives (Figure 5.4) returned by SybilInfer, along with the number of members in the

sub-networks and the number of members in the two hop boundary of a subnetwork.

As observed from the graphs, the number of false positives increases as the size of the

sub-networks decreases, until it reaches a peak after which it oscillates unpredictably

between maximum false positives and minimum. As the number of members in the
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Figure 5.3. False positives after assigning partial weight.

two hop boundary decrease, the number of members in the two hop boundary are

so less that there is a small chance of the Sybil identities to be connected with any

member in the two-hop boundary. Such sub-networks are not under a Sybil attack

and the number of false positives decreases to minimum. Otherwise, we observe that

a maximum number of nodes are reported as false postive. Also, there is no possi-

bility of the entire system being compromised, since the trust assigned to each node

no longer depends on a single node or a set of nodes, but is an accumulated score of

the partial weights a node accumulates over several iterations. The plots of Figure

5.3 and Figure 5.4 were plotted with partial weight gained by each node after five

iterations of SybilInfer.
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Figure 5.4. False negatives after assigning partial weight.

As seen from Figure 5.3, this verion of SybilInfer is efficient only when the sub-

network has sufficient number of members in its two hop boundary. For the smaller

networks, The number of false positives is reduced to 576 for the above sub-networks

on piggy backing over the largest network as described in Section 4.5, and is reduced

to 462 and 344 when piggy backing over two networks and three networks respec-

tively, upon taking a proportional average of the trust factors of the bigger FETHR

servers.

Figure 5.5 and Figure 5.6 show the number of false positives and false negatives

returned by SybilInfer on the real network model as described in Section ??. As seen

in Figure 5.5, the number of false positives returned by SybilInfer on interoperable real

world networks is inversely proportional to the number of members in the network, but

comparable networks do not need to piggy back on each other. Figure 5.6 shows that
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Figure 5.5. False postives on interoperating real world networks.

the number of false negatives returned is directly proportional to the number of attack

edges used in the attack. As observed, the attacker gets nearly one false negative per

attack edge, which means that for every attack edge, SybilInfer misclassifies only one

Sybil node as honest.
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Figure 5.6. False negatives on interoperating real world networks.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Sybil defenses like SybilInfer are critical to open micropublishing networks built

over protocols like FETHR and Mr. Privacy to prevent spamming from Sybil iden-

tities. In this thesis we explored the application of SybilInfer for defense against a

Sybil attack on distributed networks with partial graph information. We discovered

that Vanilla SybilInfer’s unpredictability in classifying nodes as Sybil or honest. We

propose modifications to SybilInfer, including changing the initial state of the MCMC

sampler in SybilInfer, using multiple honest nodes instead of jsut one and assigning

partial trust to users instead of a boolean trust in every iteration. We showed that in

a network model of interoperable micropublishing networks, initializing the MCMC

sampler with the entire sub-network instead of a single honest node reduces the num-

ber of misclassified nodes. We also showed that assigning a weighted partial trust

to nodes instead of a boolean trust in every interation reduces the chances of the

entire system being compromised. We further propose piggy backing suggestions for

networks which are smaller in size when compared to other networks, and verify the

proposed improvements on real world comparable networks.

Having studied the accuracy of SybilInfer over interoperable social networks,

it would be interesting to compare community detection algorithms with SybilInfer

for defense against Sybil attacks in the distributed scenario. Another interesting

research problem is using interaction graphs instead of relationship graphs among

users for edges on SNGs. If the amount of interaction between two users is used as
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the partial graph information used for Bayesian inference in SybilInfer, The results

seem intuitively more accurate. Whether or not that is true, remains to be validated.

For smaller networks without sufficient graph information, larger hop boundaries need

to be considered to observe the change in accuracy of SybilInfer’s results.
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