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ABSTRACT 

 

NUMERICAL MODELING OF MICROWAVE EMISSION FROM 

IRREGULAR LAYER 

 

Luis Manuel Camacho-Velazquez, PhD. 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Saibun Tjuatja 

A numerical approach to model the microwave emission from an irregular layer is 

developed.  The phase matrix of the layer components as well as the emission characteristics are 

estimated using a numerical approach, namely the Finite-Difference Time-Domain (FDTD) 

method.  The phase matrix is then integrated into a layer model that accounts for the scattering 

between the layer and ground, using the radiative transfer theory.  The effects of interface 

roughness on emission are incorporated into the model through the surface phase matrices, 

which are computed using the Integral Equation Model (IEM). 

The validity of the phase matrices computation is tested against theoretical models.  

Similarly, the numerical model is validated by comparing its results with field measurements.  

For this purpose the components of the irregular layer are chosen to be corn stalks, represented 

by vertical dielectric cylinders.  The bottom half-space bottom is chosen to be soil with rough 

surface.  The microwave emission model predictions are then compared to those field 

measurements, showing a good agreement. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Remote sensing 

The term “microwave remote sensing” encompasses the physics of radiowave 

propagation in and interaction with material media, including surface scattering, volume 

scattering and emission in the microwave region.  Sensors used in microwave remote sensing 

are divided into two groups according to their modes of operation: active sensors are those that 

provide their own source of illumination and therefore contain a transmitter and a receiver, 

while passive sensors are simply receivers that measure the radiation emanating from the scene 

under observation. 

In passive microwave remote sensing radiation is measured (emission, reflection, 

polarization).  From these measurements, parameters such as temperature, radiation, soil 

moisture, sea surface salinity, and sea surface winds are inferred.  Active sensors are also 

sensitive to such parameters, but active instruments are typically much larger, require larger 

antennas, and use more power.  Some applications of microwaves to remote sensing, such as 

scattering and emission from agricultural soil, snow and atmosphere are given in [1]. 

Models have been developed to characterize the emission from soil to interpret the 

observed relations between radiometer observations and soil parameters [2].  In fact, extensive 

research has been carried out to estimate the emission from bare surfaces [3-5].  However, the 

emission from soils is in many cases affected by a vegetation layer, which attenuates the soil 

emission and adds its own contribution to the land surface emission.  In order to account for it, 
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models have been developed that incorporate the effect of vegetation on soil’s microwave 

emission [6].  The problem of electromagnetic scattering by vegetation has received much 

attention in recent years, particularly with the deployment of air and satellite-born Synthetic 

Aperture Radar (SAR) instruments.  It is therefore especially important to have dependable 

models to characterize the electromagnetic behavior of vegetation. 

Numerous research works have been published to document the merits of the proposed 

models and many more have reported the results of experimental observations; however, many 

unresolved questions remain about the nature of the wave-target interaction process, both in the 

canopy volume and between the canopy elements and the underlying soil surface.  For the most 

part, the applicability of a given model to a given target type is evaluated by comparing the 

model-calculated scattering coefficient or brightness temperature to the corresponding measured 

values.  The model is based on certain assumptions and is a function of a set of electromagnetic 

and physical parameters of the target, from which many are difficult to measure and are, 

therefore, selected such that the fit between the model and observations are optimized. 

In general, scattering consists of both surface scattering due to the boundary 

discontinuities and volume scattering due to inhomogeneities in the medium.  Hence, the 

modeling of scattering requires an appropriate combination of surface-scattering and volume-

scattering methods.  In volume scattering, two general approaches have been used: the wave 

approach and the intensity approach, also referred to as radiative transfer approach [7, 8].  The 

wave approach relies on Maxwell’s equations and can be rigorously formulated.  However, to 

obtain useful, practical results, some approximations must be made.  When the volume-

scattering problem is formulated in terms of the averaged power or intensity based on the 

radiative transfer principle [8-10], strong dielectric fluctuations and certain types of multiple 

scattering can be included. 
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Surface scattering from a rough surface has been studied extensively [3, 4].  The 

problem of scattering from rough surfaces has been studied using low frequency (Small 

Perturbation Method -- SPM) and high frequency (Kirchhoff) approximations.  For rough 

surfaces with different scales of roughness, two-scale models combining the two 

aforementioned approximations were used.  However, a rough surface in reality may have a 

continuous scale of roughness and may not follow a two-scale model.  As the scattering 

elements of rough surfaces present a complex geometry and are randomly distributed, their 

electromagnetic scattering involves complex interactions.  The Integral Equation Method (IEM) 

[11] combines the two approximations together and can be used to model surfaces with arbitrary 

roughness scales. 

 

1.2 Microwave frequency range for emission from soil 

It has been found that the microwave frequency range that works best for soil moisture 

monitoring is 1-2 GHz (L-band) because at this frequency range (a) the atmosphere is in effect 

transparent, (b) vegetation is semi-transparent, hence, allowing observations of the surface, and 

(c) the microwave measurement is strongly dependent on soil moisture.  Additionally, because 

of the long electromagnetic wavelength of the incident wave (21 cm for a 1.4 GHz wave); the 

surface roughness effects are small.  In principle, vegetation effects are also small, but they 

cannot be neglected if the observation angle is large and/or the vegetation cover is thick or 

dense.  Hence, most of the measurements as well as model predictions are carried out in that 

frequency range; however, uncertainties related to surface roughness and the absorption, 

scattering, and emission by vegetation must be resolved before soil moisture retrieval 

algorithms can be applied with known and acceptable accuracy using satellite observations. 
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1.3 Classification of approaches to model emission and scattering from vegetation canopies 

In the microwave region, most vegetation canopies are considered inhomogeneous 

media, and in some cases, anisotropic also.  Generally, efforts to model the radar backscattering 

and radiometric emission from vegetation follow one of two basic approaches.  In the first 

approach, the canopy is treated as a continuous random medium with an average dielectric 

constant aε  and a fluctuating component ( )zyxf ,,ε , which, in the general case, may be 

formulated as a tensor.  When modeled using the second approach, the canopy is treated as the 

sum of discrete elements each characterized by a scattering phase function that relates the 

directional distribution of energy scattered by the element to the energy incident upon it. 

Models to compute the emission are mainly classified in the following groups: (a) 

simple model, where vegetation is treated as a purely absorbing layer and is incorporated into an 

attenuation parameter; (b) parametric models, which rely on vegetation parameters; and (c) 

physical models. 

 

1.4 Current work 

To get a better understanding of microwave emission from vegetation, measurements at 

2.7 and 5.1 GHz for row crops have been performed using a metallic screen under the 

vegetation layer so that the emission from the soil is not considered [12]. 

A model based on radiative transfer theory was used at high-frequencies (10 and 37 

GHz) to evaluate the effects of single-plant constituents on the total emission from crops.  The 

effects were evaluated by means of measurements carried out on plants in natural conditions 

and after sequential cuts of fruits, leaves, and stems.  The analyzed crops had vertical stems 

[13]. 
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In a program consisting of numerous field and aircraft experiments, it was determined 

that a 21-cm wavelength radiometer was the best single sensor for soil moisture research [14]. 

Furthermore, in order to assess the effect of man-made vegetation canopies, a field-

approach two-dimensional model was developed to explain wave propagation through such 

canopies.  The model was found to provide excellent agreement with the experimental results, 

although a 3D model has to be developed [15]. 

Using the Ulaby and El-Rayes model, a study of the vegetation effects on the 

microwave emission from soils was performed to estimate the absorption loss and optical depth 

of plant canopies for frequencies ranging from 1 to 40 GHz [16]. 

A study to quantify the sensitivities of soil moisture retrieved using an L-band single-

polarization algorithm to three land surface parameters for corn and soybean sites was carried 

out [17]. 

Many retrieval approaches are based on the τ - ω  model [18].  The τ - ω  model has 

been found to be accurate at L-band.  It relies on two vegetation parameters: the optical depth 

(τ ), which parameterizes the attenuation effects; and the single-scattering albedo (ω ), which 

parameterizes the scattering effects within the canopy.  Hence, a characterization of the 

dependence of vegetation model parameters on crop structure, incidence angle and polarization 

at L-band for several crop types using the τ -ω  model was carried out [19]. 

Several backscatter and emission models of corn canopies for soil moisture retrieval, in 

general assume a uniform distribution of leaves and stalks, and hence treat the canopy as a 

uniform layer.  The model parameters are optimized to yield good agreement with experimental 

data when data is restricted to a particular observation angle and polarization.  However, 

azimuthal angle dependence of emission by the canopy is not considered by these models.  

Therefore, a simulation study was performed at L-band to analyze the effect of structural 
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features of vegetation canopies on brightness temperature.  The simulations were performed on 

quasi-periodic corn canopies consisting of only stalks.  It was shown that at low angles of 

incidence the effect the canopy row structure is reduced and the canopy looks similar a uniform 

canopy.  At higher angles of incidence the effect of canopy structure on emission is observed 

through the azimuthal dependence of the canopy emission.  In order to simplify the analysis, the 

underlying ground is assumed to be a perfect conduction (PEC) plane to eliminate emission by 

the ground [20]. 

With respect to physical models, a microwave radiometry model for a vegetation 

canopy was developed by Karam [21].  The model is based on an iterative solution of the 

radiative transfer equations.  In the model, finite-length dielectric cylinders were used to 

represent some vegetation components.  The scattering amplitude tensors for finite length 

cylinders were calculated through estimating the inner field with its corresponding inside 

infinite cylinders having similar radial properties.  In this regard, a validation of both surface- 

and volume-current models for electromagnetic scattering from finite-length dielectric cylinders 

was carried out [22].  These approaches require the length of the cylinder to be much larger than 

its diameter. 

A discrete model to evaluate vegetation effect in passive microwave soil moisture 

retrieval was given in [23].  In this model, vegetation canopy consisted of discrete scatters such 

as leaves, stems, branches with various sizes and orientations.  A Matrix Doubling algorithm 

was used for the vegetation layer, so the multiple scattering within the canopy could be 

accounted for.  The surface scattering was modeled by the IEM algorithm.  Preliminary results 

showed that the emission from soil is dominant; the vegetation mainly acts as an absorption 

layer. 
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A comparison between theory and experiment of radiometric measurements over bare 

field and covered with grass, soybean, corn, and alfalfa made with 1.4- and 5-GHz microwave 

radiometers was carried out [24].  The measured results were compared with radiative transfer 

theory treating the vegetated fields as a two-layer random medium.  It was found that the 

presence of a vegetation cover generally gives a higher brightness temperature than that 

expected from a bare soil. 

A major component of the emission from vegetation-covered soil is the emission 

coming from the surface.  A key factor that affects the surface emission is the surface 

roughness.  For example, using land surface process/radiobrightness (LSP/R) model for prairie 

grassland the L-band brightness predicted appeared to be lower than expected.  A crucial reason 

for the underestimation was that the surface was assumed to be smooth.  In [25] the surface 

roughness effects were included by means of the IEM model.  Furthermore, another parameter 

to be included in simulations is the vegetation volumetric fraction.  An analysis about the effect 

of the variation of this parameter, in addition to surface roughness, was given in [26].  A more 

comprehensive analysis of other models for vegetation has been described in [3]. 

 

1.5 Approach used in study 

All phenomena involving electromagnetic fields can be mathematically described by 

applying Maxwell's equations.  Unfortunately, solving these equations analytically is often very 

difficult, and certain approximations have to be introduced to obtain a practical solution.  One 

option to circumvent this issue is the use of other analysis techniques.  Some of these techniques 

are the numerical methods, which are used to perform a simulation of electromagnetic wave 

propagation in different media [27].  The obtained results using numerical methods are accurate 

to within the tolerance that can be arbitrarily preset, and the simulated objects can be of any 
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shape and size, limited only by the available computational resources.  For those reasons, 

numerical methods represent very attractive tools for modeling and analysis of various 

electromagnetic problems.  For this purpose, in this research the Finite-Difference Time-

Domain Method (FDTD) is used, which solves Maxwell’s equations [28, 29].  The FDTD 

method has proven to be an effective technique of calculating the interaction of electromagnetic 

waves with bodies of different material, and complex, hence realistic geometries [30, 31].  

Numerical methods did not gain much importance until recently because of the lengthy 

computational time and enormous amount of memory required to get solutions; but now, with 

the current powerful computational resources, numerical methods are becoming the primary 

methods to observe electromagnetic wave propagation, scattering and penetration. 

In this study, the vegetation layer is represented as an inhomogeneous layer, on top of a 

homogeneous half space, representing the soil.  On top of the inhomogeneous layer, another 

homogeneous half space is present, representing air.  Therefore, a key component of this 

research is to characterize the scattering and emission properties of the inhomogeneous layer. 

In [32] a 3D-FDTD algorithm was developed and used to compute the emissivity of 

finite-size cylindrical-shape objects, though it can be used for any arbitrary-shape object.  A 

similar approach is also used in this research to attain not only the emission properties of the 

layer components under study, but also the scattering characteristics.  An indirect method is 

used to analyze a passive emission problem by simulating an active scattering problem, in 

which a numerical method is used to simulate the interaction of a plane wave and the object.  

Contrary to the limitations with respect to the geometry of the body in other approaches [33], in 

this study an object of arbitrary shape could be analyzed. 

The scattering properties of the object are also obtained and used to generate the phase 

matrix, which relates the scattered intensities to the incident intensities.  The phase matrix is 
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then integrated into a radiative transfer model, involving the inhomogeneous layer, and the 

homogenous half spaces mentioned above. 

The organization of this dissertation is as follows: Chapter 2 offers a description of the 

radiative transfer theory.  The construction of surface scattering matrices using the Integral 

Equation Method is also given.  Radiative transfer equations do not have closed-form solutions; 

an iterative process is used to get the solutions which provide some insight into the mechanics 

of scattering.  Hence, radiative transfer theory sets up an iterative integral equation to compute 

the emissivity from the layer.  This process of setting up the equation for iterative solution is 

given also in Chapter 2.  A description of the numerical technique to be used, namely, the 

FDTD method is given in Chapter 3.  A validation of the accuracy of the computational 

approach used to perform the simulation is given in Chapter 4.  This validation is carried out by 

comparing the results obtained using the FDTD approach with analytical solutions as well as 

published results.  Also, the numerical computation of emissivity from finite-size objects is 

given in Chapter 4.  Chapter 5 gives the numerical approach to generate the phase matrix, and 

the approach used to integrate the phase matrix into a layer model.  The model is then validated 

by comparing its predictions with field measurements.  The contribution of this work and 

suggestions for future work related to this dissertation are discussed in Chapter 6. 
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CHAPTER 2 

RADIATIVE TRANSFER FORMULATION 

 

The basic development and formulation of radiative transfer theory is provided by 

Chandrasekhar [34].  Several researchers have contributed to this theory [5, 35].  For ease of 

reference a brief discussion of this model is given here.  The classical derivation of the radiative 

transfer theory is based on the amount of radiant energy, transported across the medium, 

expressed in terms of specific intensity υI .  The specific intensity is defined in terms of amount 

of power dP  flowing along the r̂  direction within the solid angle Ωd  through an elementary 

area dA  in a frequency interval ( υυυ d+, ) as follows:  

 υαυ dddArIdP Ω= ))(cosˆ(  (2.1) 

 

where α  is the angle between the outward normal â  to dA  and the unit vector r̂  as shown in 

Figure 2.1. 

 

 

Figure 2.1  Geometry for specific intensity and the change in intensity I . 
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The dimension of υI  is 112 −−−
HzsrWm .  It is convenient to consider the intensity I  at 

frequency υ , therefore υυ drIrI )ˆ)ˆ( (= .  Hence, the power at a single frequency can be written 

as  

 Ω= ddArIdP ))(cosˆ( α  (2.2) 

 

The equation of transfer governs the variation of intensities in a medium that absorbs, 

emits and scatters radiation.  Within the medium, consider a cylindrical volume of unit cross 

section and length dl  as shown in Figure 2.1.  Energy balance requires that the change in 

intensity I  propagating through the cylindrical volume along the distance dl  is due to 

absorption loss, scattering loss, thermal emission and scattering in the direction of propagation, 

i.e., 

 dlJdlJdlIdlIdI ssaasa κκκκ ++−−=  (2.3) 

 

where aκ  and sκ  are the volume absorption and volume scattering coefficients, respectively.  

The first two terms on the right hand side of (2.3) represent, respectively, absorption loss and 

loss due to scattering away from the direction of propagation, and aJ  and sJ  are the emission 

source function and the scattering source function representing the energy scattered into the 

direction of propagation.  Equation (2.3) is the radiative transfer equation where sJ  is given by 

  d d sin),(),;,(
4

1
),(

2

0 0

φθθφθφθφθ
π

φθ
ππ

∫ ∫= IPJ sssss  (2.4) 

 

where ),;,( φθφθ ssP  is the phase function accounting for scattering within the medium. 
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2.1 Stokes parameters 

Light gets polarized on scattering; therefore exact treatment of polarized radiation is 

required.  To describe a polarized beam generally four parameters should be specified, which 

will give the intensity, the degree of polarization, the plane of polarization, and the ellipticity of 

the radiation at each point and in any given direction [34].  However, it is difficult to include 

such diverse quantities as intensity, a ratio, an angle, and a pure number in any symmetrical way 

in formulating the equations of transfer.  In radiative transfer theory, the Stokes parameters are 

used to describe the partially polarized electromagnetic waves. 

Consider an elliptically polarized monochromatic plane wave 

 )exp()ˆˆ( tjrkjhEvEE hv ω−⋅+=
rrr

 (2.5) 

 

propagating through a differential solid angle Ωd  in a medium with intrinsic impedance η .  

The vertical and horizontal polarization states are represented by v̂  and ĥ  unit vectors, and 

vertically and horizontally polarized incident field components are denoted by vE  and hE , 

respectively.  The modified Stokes parameters vI , hI , U , and V  in the dimension of intensity 

are defined as 

 η
2

vv EdI =Ω  (2.6) 

 η
2

hh EdI =Ω  (2.7) 

 ( ) η*Re2 hv EEdU =Ω  (2.8) 

 ( ) η*Im2 hvEEdV =Ω  (2.9) 

 

In (2.6) to (2.9) the symbol ⋅  denotes a time average.  These four Stokes parameters 

have the same dimensions and hence are more convenient to use than amplitude and phase, 
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which have different dimensions.  It has been shown that the amplitude, phase, and polarization 

state of any elliptically polarized wave can be completely characterized by these parameters [8].  

Due to the additivity of the average power of independent waves, the Stokes parameters are 

additive only for incoherent waves. 

 

2.2 Phase function and phase matrix 

Scattering is the interaction between electromagnetic wave and the medium.  This 

interaction can be characterized in terms of its scattering properties, i.e., scattering cross 

sections, or its thermal emission spectrum.  During scattering the medium takes energy from the 

incident wave and reradiates depending upon the ratio of scatter size to the wavelength of the 

incident wave.  The phase function gives the rate at which the energy is scattered per unit solid 

angle in a given direction to the average energy in all directions [34].  In addition to the angular 

distribution of the scattered radiation at microwave frequencies, the scattering and emission 

from natural surfaces are largely determined by the surface roughness and the inhomogeneous 

profile of the dielectric constant, temperature and the volume scattering property.  In the remote 

sensing of soil moisture at microwave frequencies, the non-uniform moisture and temperature 

profiles in the near-surface region and the rough surface play a dominant role.  The effect of 

subsurface volume scattering plays a secondary role because of high absorption due to soil 

moistures. 

Phase matrix is a quantity that relates the corresponding Stokes vectors of the scattered 

wave and the incident wave.  Since the characteristics of the surface scattering and the volume 

scattering are different, the phase matrices defined for these two cases will also be different.  

For surface scattering, the incident wave excites surface currents on the surface that reradiate 

the scattered wave.  So, the quantities used are generally normalized by the illuminated area.  
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While for volume scattering, the sources of re-radiation are volume currents, and then the 

quantities are normalized by the volume of the particle. 

 

2.2.1 Phase matrix of rough surfaces 

To relate the scattered intensity to the incident intensity, consider a plane wave 

illuminating a rough surface area A  [3].  The relation between the vertically and horizontally 

polarized scattered field components s
vE , s

hE  and those of the incident field components i
vE , i

hE  

is 

 















=








i
h

i
v

hhhv

vhvv
jkR
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 (2. 10) 

 

where pqS ( horvqp =, ) is the scattering amplitude in meters, R  is the distance from the center 

of the illuminated area to the point of observation, and k  is the wave number.  The scattering 

coefficient 
0
pqσ  is defined as 

 
)4/(||

||
22

2

0

REA

E

i
q

s
p

pq
π

σ
><

=  (2.11) 

 

The matrix equation relates the scattered intensities s
I  to the incident intensities i

I  

through the dimensionless quantity referred to as phase matrix P , 

 Ω= dPII
is

π4

1
 (2.12) 

 

The components of i
I  are the Stokes parameters defined by (2.6) to (2.9) for the 

incident plane wave.  The components of the scattered intensity s
I  are also Stokes parameters 

but are defined for spherical waves.  To sum up all possible incident intensities from all 
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directions contributing to s
I  along a given direction, (2.12) is integrated over all solid angles, 

i.e., 

 Ω= ∫ dPII
is

π
π

4
4

1
 (2.13) 

 

Here s
I , i

I  are column vectors whose components are the Stokes parameters.  The 

detailed contents of the phase matrix are summarized below 

 ( ) ssAMP θσθπ coscos4 0==  (2.14) 

 

where the Stokes matrix M has been provided by Ishimaru [8], 
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The theory for construction of the phase matrix for an inhomogeneous medium has 

been developed for some time already [5, 7, 36].  Several factors are considered to generate the 

phase matrix like size, shape, orientation, volumetric density, etc.  The approach used to 

generate the phase matrix in this study will be given in Chapter 5. 

 

2.3 Radiative transfer equation 

The radiative transfer equation for partially polarized waves in a discrete 

inhomogeneous medium should include both scattering and absorbing characteristic in the 

differential equation and can be written as [5] 

 ∫ +Ω+−=
π

κ
π

κ
κ

4
4

aae
e

e JdIPI
dl

dI
 (2.15) 

or 
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 ∫ +Ω+−=
π

κ
π

κ
κ

4
4

aas
s

e JdIPI
dl

dI
 (2.16) 

 

Most of the studies to date have dealt with the special case of spherical particles.  For 

these particles, or for non-spherical particles with random orientations, eκ  and sκ  reduce to 

scalars [37].  If this is so, it is convenient to convert the independent variable in (2.15) or (2.16) 

to optical thickness τ .  Then, (2.15) and (2.16) reduce respectively to 

 ∫ −+Ω+−=
π

ω
πτ

4

)1(
4

1
ae JdIPI

d

dI
 (2.17) 

and 

 ∫ −+Ω+−=
π

ω
π

ω

τ
4

)1(
4

as JdIPI
d

dI
 (2.18) 

 

where ∫= dleκτ  and ω  is the albedo, which is the ratio of sκ  to eκ .  It may be helpful to note 

that se PP ω= .  The radiative transfer equation is formulated on the basis of energy balance.  

Thus, the phase changes of the scattered wave and its cross-correlation term are ignored in the 

solution of the transfer equation.  Although the radiative transfer approach cannot account for 

phase effects in multiple scattering calculations, it does include phase effect in the phase 

function calculation and it accounts for higher order multiple scattering more effectively than 

the wave approach.  It is assumed that there is no correlation between fields; hence addition of 

intensities is considered instead of addition of fields.  In the radiative transfer formulation, the 

phase matrix characterizes the coupling of intensities in any direction due to scattering, and the 

extinction matrix describes the attenuation of specific intensity due to absorption and scattering. 
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2.4 Scattering from an inhomogeneous layer with irregular boundaries 

For bounded media, scattering or reflection may occur at the boundary.  Both incident 

and scattered intensities are needed in the boundary conditions.  Therefore, it is necessary to 

split the intensity matrix into upward +
I and downward −

I components and rewrite the transfer 

equation as two equations. 

Consider the problem of a plane wave in air incident upon an inhomogeneous layer 

above the ground surface.  The geometry of the scattering problem is depicted in Figure 2.2.  

The inhomogeneous layer is assumed to have such characteristics that the upward intensity +
I  

and the downward intensity −
I  satisfy the radiative transfer equation. 

 

Figure 2.2  Scattering from an inhomogeneous layer above a homogeneous half space. 

 

Upon re-writing (2.18) in terms of these intensities, the equations can be expressed as 

 φµφµφφµµκ
π

φµκφµµ
π

ddzIPzIzI
dz

d
ssssssssesss ),,(),,(

4

1
),,(),,(

2

0

1

0

+++

∫ ∫ −+−=   

 φµφµφφµµκ
π

π

ddzIP ssss ),,(),,(
4

1
2

0

1

0

−

∫ ∫ −−+  (2.19) 
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π
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π
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 φµφµφφµµκ
π

π

ddzIP ssss ),,(),,(
4

1
2

0

1

0

−

∫ ∫ −−−−  (2.20) 

 

where θµ cos= ; ss θµ cos= ; +
I , −

I  are column vectors containing the four modified Stokes 

parameters and sP  is the phase matrix. 

The explicit form of the phase matrices for the IEM model is given in next sections.  

The transfer equations given by (2.19) and (2.20) can be solved by using a numerical technique. 

 

2.5 Emission model for an inhomogeneous layer 

Consider the emission problem of an inhomogeneous irregular layer above a 

homogeneous half space (Figure 2.2).  The incoherent source term is represented by the emitted 

intensity e
I  due to the layer temperature profile T .  The incoherent source term in (2.17), e

I , is 

included. e
I  is given by 

 T
K

JI ra
e ε

λ
ω

2
)1( =−=  (2.21) 

 

where K  is the Boltzmann constant, λ  is the operating wavelength in the free space, and rε  is 

the relative permittivity of the layer. 

The intensity vectors consist of a vertically and a horizontally polarized component, i.e. 

only the first two Stokes parameters.  Also, the layer temperature profile T  is assumed 

independent of azimuthal angles. 

The first point above is the consequence of the incoherent nature of natural emission 

which causes the third and the fourth Stokes parameters to vanish.  This is because cross 

polarization of vertical and horizontal emission components is zero.  The second point allows to 
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replace the elements of the phase matrix by their zeroth-order Fourier components in both the 

transfer equations and the associated boundary conditions. 

 

2.6 Formulation of surface scattering matrices using the Integral Equation method 

An appropriate description of the surface is required for all surface modeling.  Two 

principal parameters characterize the surface: the standard deviation of height and correlation 

length which describe the degrees of vertical and horizontal roughness. 

The problem of scattering from rough surfaces has been studied using low frequency 

(Small Perturbation Method, SPM) and high frequency (Kirchhoff) approximations.  For rough 

surfaces with different scales of roughness, two-scale models combining the above two 

approximations were used.  But, real rough surface may have a continuous scale of roughness 

and may not follow a two-scale model.  On the other hand, as the scattering elements of rough 

surfaces present a complex geometry and are randomly distributed, their electromagnetic 

scattering involves complex interactions.  The Integral Equation Method (IEM) combines the 

two approximations together and can be used to model surfaces with arbitrary roughness scales.  

At low frequencies, IEM reduces to the first-order SPM and at high frequencies; it reduces to 

the Kirchhoff term [3]. 

The IEM model was first developed to describe electromagnetic wave scattering for a 

randomly rough, perfectly conducting surface [38], and later, for a randomly rough dielectric 

surface [11].  The first complete version of the IEM model was developed and proposed by 

Fung [11], based on a more rigorous solution of a pair of integral equations governing the 

surface current.  In this model, a simplifying assumption was made on the spectral form of the 

Green’s function by ignoring the phase term.  In particular, it was argued that the absolute value 

of the difference in the surface heights at two surface points appearing in the phase of the 
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Green’s function can be ignored [39].  This argument was arrived at by noting that a) if the two 

points are close together, the difference in heights should be small for a continuous surface and 

b) if the two surface points are far apart, there should be a negligible amount of correlation 

between the two points and hence will not contribute significantly to the scattered power. 

In IEM, for a given incident plane wave defined using i
E
r

 and i
H
r

, the tangential E
r

 

and H
r

 fields on the interface between two media are found by solving Electric Integral Field 

Equation (EFIE) and Magnetic Integral Field Equation (MFIE).  Then, using the Stratton-Chu 

Radiation Integral, the far zone fields using the tangential fields at the dielectric interface is 

found.  Once expressions for the scattered E
r

 and H
r

 fields have been derived, the average 

scattered power in a given direction is found by averaging the field quantities over various 

realizations of the rough surface where the realizations themselves are picked from various 

probability distributions of the surface.  Most of the approximations made in the derivation are 

related to making the field quantities as independent of the local coordinates as possible. 

The single backscattering coefficients from the IEM model are given by 

 ∑
∞
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with 
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z
n
pp kFkFkkfkI +−+−= σ  (2.23) 

 

where pp  denotes the polarization state and 
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In the above equations, iθ  is the angle of incidence, hR  and vR  are the horizontally 

and vertically polarized Fresnel reflection coefficients; sε  and Tµ  are the relative permittivity 

and permeability of the surface; σ  is the standard deviation of the surface height; k  is the wave 

number; ( )iz kk θcos= ; ( )ix kk θsin= ; and n
W  is the Fourier transform of the nth  power of a 

known surface correlation function which can be calculated by 

 ( ) ( )∫
∞

=
0

0)( ξξξξρ dKJKW
nn  (2.28) 

 

where ρ  is the surface correlation and 0J  is the Bessel function to the zeroth order. 

More details about derivation are given in [3, 36].  In the above expression, ppf  is the 

Kirchoff’s field coefficient and ppF  is the complementary field coefficient.  The expression for 

the scattering coefficient involves a series and roughly the number of terms required for 

convergence is given by [3] 

 432 )(47.1)(488.9)(71.15)(96.1647.1 σσσσ kkkkn −−+−= +  (2.29) 

 

where )( σk  is the normalized standard deviation of the surface roughness.  The construction of 

bistatic single-scatter scattering and transmission phase coefficient phase matrix is also given in 

detail in [36]. 
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CHAPTER 3 

FINITE-DIFFERENCE TIME-DOMAIN METHOD 

 

All phenomena involving electromagnetic fields can be mathematically described by 

applying Maxwell's equations.  Unfortunately, solving these equations analytically is often very 

difficult, and certain approximations have to be introduced to obtain a practical solution.  

Solutions to these equations have a long history, and a large variety of methods have been 

developed.  The most satisfactory solution is the mathematically exact one.  Analytical methods 

used for obtaining such solutions are: separation of variables, series expansion, conformal 

mapping and integral methods.  However, these methods can be used only in the analysis of 

very specific field problems.  In many practical situations, the complexity of the problem is 

simply too large for it to be solved analytically.  In this case other analysis techniques need to 

be considered, such as numerical, graphical and experimental methods.  Usually experimental 

solutions are very expensive, and graphical ones are not accurate enough.  On the other hand, 

numerical methods are relatively inexpensive, and the obtained results are accurate to within the 

tolerance that can be arbitrarily preset.  For those reasons, numerical methods represent very 

attractive tools for modeling and analysis of various electromagnetic problems.  The Finite 

Difference Time-Domain (FDTD) method is a widely used computational technique for 

providing accurate full-wave analysis of electromagnetic phenomena. 
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3.1 Introduction to the Finite Difference Time-Domain (FDTD) method 

The Finite-Difference Time-Domain Method (FDTD) is a Maxwell’s equations solver 

[28, 29].  It has proven to be an effective technique of calculating the interaction of 

electromagnetic waves with bodies of different material, and complex geometries [31].  Also, 

FDTD is considered to be one of the most popular and robust means to implement engineering 

electromagnetics models [30]. 

In this chapter, the foundation of FDTD electromagnetic field analysis, the algorithm 

introduced by Kane Yee [29] is given.  Yee chose a geometry for spatially sampling the electric 

and magnetic field vector components, which robustly represent both the differential and 

integral forms of Maxwell’s equations.  The description given here follows closely the one 

given in [40]. 

 

3.2 Maxwell’s equations in three dimensions 

Assume a region of space that has no electric or magnetic current sources, but may 

have materials that absorb electric or magnetic field energy.  In this situation, the time-

dependent Maxwell’s equations are given in differential and integral form by 

 

Faraday’s law: 

 ME
t

B rr
r

−×−∇=
∂

∂
 (3.1) 

 ∫∫∫∫∫ ⋅−⋅−=⋅
∂
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Ampere’s law: 

 JH
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∂
 (3.3) 
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 ∫∫∫∫∫ ⋅−⋅=⋅
∂

∂

ALA

AdJLdHAdD
t

rrrrrr
 (3.4) 

Gauss’ law for the electric field: 

 0=⋅∇ D
r

 (3.5) 

 0=⋅∫∫
A

AdD
rr

 (3.6) 

Gauss’ law for the magnetic field: 

 0=⋅∇ B
r

 (3.7) 

 0=⋅∫∫
A

AdB
rr

 (3.8) 

 

In linear, isotropic, nondispersive materials, to relate D
r

 to E
r

 and B
r

 to H
r

 the 

following expressions can be used: 

 EED r

rrr

0εεε ==                HHB r

rrr

0µµµ ==  (3.9) 

 

The sources J
r

 and M
r

 can act as independent sources of E
r

- and H
r

-field energy, 

sourceJ
r

 and sourceM
r

.  Materials with isotropic, nondispersive electric and magnetic losses that 

attenuate E
r

- and H
r

-fields via conversion to heat energy can be involved.  This yields 

 EJJ source

rrr
σ+=                HMM source

rrr
ρ ′+=  (3.10) 

 

where σ  and ρ ′  are electric conductivity (Siemens/meter) and the equivalent magnetic loss 

(ohms/meter), respectively. 

By substituting (3.9) and (3.10) into (3.1) and (3.3), the Maxwell’s curl equations in 

linear, isotropic, nondispersive, lossy materials are given by: 
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 ( )EJH
t
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 (3.12) 

 

The vector components of the curl operators of (3.11) and (3.12) in Cartesian 

coordinates are represented by the following system of six coupled scalar equations: 
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The system of six coupled partial differential equations of (3.13) to (3.18) forms the 

basis of FDTD numerical algorithm for electromagnetic wave interactions with general three-

dimensional objects.  The FDTD algorithm need not explicitly enforce the Gauss’ law relations 

indicating zero free electric and magnetic charge, (3.5) to (3.8); because these relations are 

theoretically a direct consequence of the curl equations.  Nevertheless, the FDTD space lattice 

must be structured so that the Gauss’ law relations are implicit in the positions of the E
r

 and H
r

 

components, and in the numerical space-derivative operations upon these components that 

model the action of the curl operator. 
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3.3 The Yee algorithm 

Yee originated a set of finite-difference equations for the time-dependent Maxwell’s 

curl equations system of (3.13) and (3.18) for the lossless materials case 0=′ρ  and 0=σ  [29]. 

The Yee algorithm solves for both electric and magnetic fields in time and space using 

the coupled Maxwell’s curl equations, instead of solving for the electric field alone (or the 

magnetic field alone) with a wave equation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1  Positions of field components. The E
r

-components are in the middle of edges and 

the H
r

-components are in the center of the faces. 

 

The Yee algorithm centers its E
r

 and H
r

 components in three-dimensional space so 

that every E
r

 component is surrounded by four circulating H
r

 components, and every H
r

 

component is surrounded by four circulating E
r

 components (Fig. 3.1). 
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This provides a simple picture of three-dimensional space being filled by an interlinked 

array of Faraday’s law and Ampere’s law contours.  It is possible to identify Yee E
r

 

components associated with displacement current flux linking H
r

 loops, as well as H
r

 

components associated with magnetic flux linking E
r

 loops.  Actually, the Yee algorithm 

simultaneously simulates the pointwise differential form and the macroscopic integral form of 

Maxwell’s equations.  Another features of the Yee space lattice are :  a) the finite-difference 

expressions for the space derivatives used in the curl operators are central-difference in nature 

and second-order accurate; b) continuity of tangential E
r

 and H
r

 is naturally maintained across 

an interface of dissimilar materials if the interface is parallel to one of the lattice coordinate 

axes.  For this case, there is no need to specially enforce field boundary conditions at the 

interface.  At the beginning of the problem, the material permittivity and permeability at each 

field component location is specified.  This yields a stepped or “staircase” approximation of the 

surface and internal geometry of the structure, with a space resolution set by the size of the 

lattice unit cell; and c) the location of the E
r

 and H
r

 components in the Yee space lattice and 

the central- difference operations on these components implicitly enforce the two Gauss’ law 

relations.  Consequently, the Yee mesh is divergence-free with respect to its E
r

 and H
r

 fields in 

the absence of free electric and magnetic charge. 

The Yee algorithm also centers its E
r

 and H
r

 components in time, in what is termed as 

a leapfrog arrangement (Fig. 3.2).  All of the E
r

 computations in the modeled space are 

completed and stored in memory for a particular time point using previously stored H
r

 data.  

Afterward, all of the H
r

 computations in the space are completed and stored in memory using 

the E
r

 data just computed.  The cycle starts again with the recomputation of the E
r

 components 

based on the recently obtained H
r

.  This process carries on until time-stepping is concluded. 
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Figure 3.2  Leapfrog time integration. 

 

 

3.4 Finite differences and notation 

In [29] Yee introduced the notation shown in table 3.1 for space points and functions of 

space and time in a uniform, rectangular lattice. 

Table 3.1 Location of the different fields in the Yee cell 
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The lattice space increments in the x , y , and z  coordinate directions are denoted by 

x∆ , y∆ , and z∆  respectively; and i , j , and k  are integers.  Hence, any function u  of space 

and time evaluated at a discrete point in the grid and at a discrete point in time is denoted as 

 
n

kjiutnzkyjxiu ,,),,,( =∆∆∆∆  (3.19) 

 

where t∆  is the time increment, assumed uniform over the observation interval, and n  is an 

integer. 

Yee made use of centered finite-difference expressions for the space and time 

derivatives that are both simply programmed and second-order accurate in the space and time 

increments.  A expression for the first partial space derivative of u  in the x -direction, evaluated 

at the fixed time tntn ∆=  is given by: 
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A 21±  increment in the i  subscript ( x -coordinate) of u  denotes a space finite- 

difference over ( )21± x∆ .  A second-order accurate central differencing is used.  Data for the 

central differences are taken to the right and left of the observation point by only 2/x∆ , rather 

than a full x∆ . 

This notation is chosen to interleave E
r

 and H
r

 components in the space lattice at 

intervals of 2/x∆ .  The difference of two adjacent E
r

 components, separated by x∆  and 

located ( ) x∆± 21  on either side of an H
r

 component, would be used to provide a numerical 

approximation for xE ∂∂ /
r

 to permit stepping the H
r

 component in time.  For the sake of 

completeness, it should be added that a numerical approximation analogous to (3.20) for yu ∂∂ /  
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or zu ∂∂ /  can be written simply by incrementing the j  or k  subscript of u  by ( ) y∆± 2/1  or 

( ) z∆± 2/1 , respectively. 

The expression for the first time partial derivative of u , evaluated at the fixed space 

point ( )kji ,, , follows by analogy: 

 ( ) ( )[ ]2
2

1

,,
2

1

,,
,,, tO

t

uu
tnzkyjxi

t

u
n

kji

n

kji
∆+

∆

−
=∆∆∆∆

∂

∂
−+

 (3.21) 

 

Now the 21±  increment is in the n  superscript (time coordinate) of u , denoting a 

time finite- difference over ( ) t∆± 2/1 .  This notation was chosen to interleave the E
r

 and H
r

 

components in time at intervals of ( ) t∆2/1  for purposes of implementing a leapfrog algorithm. 

 

3.5 Finite differences expressions for Maxwell’s equations in three dimensions 

The ideas and notation shown above are applied to achieve a numerical approximation 

of the Maxwell’s curl equations in three dimensions given by (3.13) to (3.18).  The xE  field-

component is given by (3.16): 

 ( )







+−

∂

∂
−

∂

∂
=

∂

∂
xsource

yzx EJ
z

H

y

H

t

E
x

σ
ε

1
  

 

Consider a typical substitution of central differences for the time and space derivatives 

in (3.16), for example, at 
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All field quantities in the right hand side are evaluated at time-step n , including the 

electric field xE  appearing due to the material conductivity σ .  Since xE  values at time-step n  

are not assumed to be stored in the computer’s memory (only the previous values of xE  at time-

step 
2

1
−n  are assumed to be in memory), some way to estimate such terms is needed.  One 

way is using what is called a semi-implicit approximation: 
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The xE  values at time-step n  are assumed to be simply the arithmetic average of the 

stored values of xE  at time-step 
2

1
−n , and the yet-to-be-computed new values of xE  at time-

step 
2

1
+n .  By substitution of (3.23) into (3.22) after multiplying both sides by t∆ , the 

following is obtained 
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Both sides are divided by 
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The semi-implicit assumption of (3.23) yields numerically stable and accurate results 

for values of σ  from zero to infinity [31].  The term of this type introduced on the right-hand 

side of (3.24) can be grouped with a like term on the left-hand side and then solved explicitly. 

Similarly, finite-difference expressions based on Yee’s algorithm for the yE  and zE  

field components, given by Maxwell’s equations (3.17) and (3.18) respectively, can be derived.  

The time-stepping expressions for the yE  and zE  are then 
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Likewise, finite-difference equations for (3.13) to (3.15) to time-step xH , yH  and zH  

can be derived, using a semi-implicit procedure analogous to (3.23).  A magnetic loss term is 

represented by Hρ ′  on the right-hand side of each equation.  This yields three equations having 

a form similar to that of the E
r

 equations.  Hence, the following time-stepping expression for 

the xH  component located at the upper right corner of the unit cell can be obtained: 
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Similarly, the time-stepping expressions for the yH  and zH  components, located at the 

upper front corner and the right front corner of the unit cell, respectively, can be represented as: 
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and 
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 (3.31) 

 

respectively. 

In conclusion, with the system of finite-difference expressions given by (3.26)-(3.31), 

the new value of an electromagnetic field vector component at any lattice point depends only on 

its previous value, the previous values of the components of the other field vector at adjacent 

points, and the known electric and magnetic current sources. 
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Figure 3.3  Staircased sphere in cubical Yee cells. 

 

For illustrations purposes of a discretized object, in Figure 3.3 a sphere is approximated 

using cubical Yee cells, with the staircasing of the sphere surface shown clearly. 
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CHAPTER 4 

NUMERICAL COMPUTATION OF EMISSION FROM FINITE-SIZE OBJECTS 

 

4.1 Emission theory 

It is well known that all matter radiates electromagnetic energy [41].  The radiation is a 

consequence of the interaction between the atoms and the molecules in the material.  A material 

also may absorb and/or reflect energy incident upon it.  When in thermodynamic equilibrium 

with its environment, a material absorbs and radiates energy at the same rate.  A blackbody is 

defined as an ideal material that absorbs all of the incident radiation, reflecting none.  Since 

energy absorbed by a material would increase its temperature if no energy were emitted, a 

perfect absorber is also a perfect emitter.  The blackbody radiation spectrum is given by 

Planck’s radiation law, which was formulated in the basis of the quantum theory of matter.  This 

spectrum is used as a reference against which the radiation spectra of real bodies at the same 

physical temperature are compared.  The spectral, polarization, and angular variations of the 

radiation emitted, absorbed, and scattered by a medium are governed by the geometrical 

configuration of the surface and interior of the medium, and by the spatial distributions of its 

dielectric and temperature. 

Radiometry is the measurement of electromagnetic radiation.  A microwave radiometer 

is a highly sensitive receiver capable of measuring low levels of microwave radiation.  When a 

scene, such as terrain, is observed by a microwave radiometer, the radiation received by the 

antenna is partly due to self-emission by the scene and partly due to reflected radiation 

originating from the surroundings, such as the atmosphere.  Through proper choice of the 
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radiometer parameters (wavelength, polarization, and viewing angle), it is sometimes possible 

to establish useful relations between magnitude of the energy received by the radiometer and 

specific terrestrial or atmospheric parameters of interest.  For example, observations of bare soil 

surfaces have shown that the radiometric response of the 20-30 cm wavelength range is 

influenced strongly by the soil moisture content [42].  Such dependence can be used over large 

areas to remotely map soil moisture content, an important physical parameter in many 

hydrological, agricultural, and meteorological applications. 

The science of microwave radiometry is also referred as passive microwave remote 

sensing, in contrast to radar, which is known as active microwave remote sensing.  Numerous 

investigations have been conducted to evaluate the use of passive microwave sensors for 

meteorological, hydrological, oceanographic, and military applications. 

 
 

Figure 4.1  The brightness temperature of an object is related to its physical temperature by its 

emissivity. 

 

Every object with a physical temperature above absolute zero radiates energy. The 

amount of energy radiated is usually represented by an equivalent temperature BT , better known 

as brightness temperature (Fig. 4.1), and it is defined as 

 ( ) ( ) PB TpepT ,,,, φθφθ =  (4.1) 

 

where: 
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PT : Physical temperature 

( )pe ,,φθ : Emissivity 

φθ , : Elevation and azimuth angles 

p : Polarization (v,h) 

 

Hence, when analyzing the radiation from a finite-size object, a parameter to consider 

is the emissivity, which is the ratio of energy radiated by a particular material to energy radiated 

by a black body. 

This chapter presents a method to numerically compute the emissivity from a finite size 

object.  In [43] the significance of the equation obtained for the generalized Kirchhoff’s law for 

a finite-size anisotropic medium is the fact that it relates the thermal emission from the original 

object to the absorption cross section of the “complementary” object, therefore relating a 

passive emission problem to an active scattering problem.  Hence, although the purpose is to 

model the emission from an object, a numerical method can be used to simulate the interaction 

of a plane wave and the object and hence find the absorption and scattering properties of the 

object. 

Before the emissivity of a finite-size object was computed, several tests were conducted 

in order to establish the accuracy of the FDTD approach to compute the scattered 

electromagnetic fields.  The tests consisted of comparing the FDTD results with analytical 

results as well as published results using a different numerical method. 

 

4.2 Validation of FDTD results by comparison with analytical results using Mie series solutions 

One of the tests was the comparison of scattered fields of a dielectric sphere.  A sphere 

is used because the scattered fields from a sphere due to a plane wave incidence have analytical 
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solutions.  The solutions are usually called Mie series solutions.  Therefore, a plane wave 

impinging on a sphere was simulated in the FDTD approach, as shown in Fig. 4.2.  The 

parameters of the sphere are given in table 4.1, where λ0 is the wavelength of the incident wave 

in free space.  Table 4.2 shows the parameters of the incident plane wave as well as the 

scattered fields.  The term range refers to the distance, from the center of the sphere, at which 

the scattered fields values were computed. 

 

 

 

 

 

 

 

 

Figure 4.2 Configuration for simulation of plane wave impinging on a dielectric sphere. 

 

Table 4.1 Parameters of object used in FDTD simulation of plane wave impinging 

on dielectric sphere. 

Parameter Value 

Relative permittivity 3.15  

Conductivity S/m 0.02921  

Radius ) (0.1167 mm 1 0λ  
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Table 4.2 Parameters of incident plane wave and scattered field. 

Parameter Value 

Polarization Vertical 

Incident field elevation angle o07.89=iθ  

Incident field azimuth angle o0.0=iφ  

Scattered field azimuth angle o79.1=sφ  

Frequency GHz35  

Range )(0.2809 mm 2.407996 0λ  from 

center of sphere 

 

Figure 4.3 shows the values of both E
r

 and H
r

 fields, computed with FDTD approach 

and Mie series solutions.  The values of the components of H
r

 are normalized by incH
r

.  A 

good agreement can be observed. 

 



 

 42

 

90 100 110 120 130 140 150 160 170 180
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

θs (deg)

|E
θ
| 
(V

/m
)

FDTD

Mie

90 100 110 120 130 140 150 160 170 180
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ
s (deg)

|H
θ
| 
(1

0
-4

 A
/m

)

FDTD

Mie

 

90 100 110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

3

3.5

4

θ
s (deg)

|E
φ| 

(1
0

-4
 V

/m
)

FDTD

Mie

90 100 110 120 130 140 150 160 170 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

θ
s (deg)

|H
φ| 

(A
/m

)

FDTD

Mie

 
                                        (a)                                         (b) 

Figure 4.3 Comparison of scattered field values obtained by using FDTD and Mie series  

solution.  (a) θE  and φE , (b) θH  and φH  (normalized to incH
r

). 

 

4.3 Validation of FDTD results by comparison with method of moments (MoM) results 

Although an exact analytical solution for the scattering from finite-length cylinders 

does not exist, numerical methods can indeed provide accurate results.  The study of the 

scattering behavior of a dielectric cylinder is relevant in this study because several vegetation 

components can be represented by them.  In microwave remote sensing, a vegetation canopy 

can be considered as a multilayered medium above a half space representing the ground.  Each 

layer can be modeled as an ensemble of individual dielectric objects of different type, size, and 
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orientation [3].  Among the most common components in a vegetated medium are cylindrical 

structures, such as stems, branches, trunks, needles and stalks [44, 45].  The cylinders are 

generally circular, homogeneous, and lossy. 

While the numerical treatment of the problem of scattering from a finite cylinder has 

generally been limited to the method of moments [46], the FDTD method is suitable for 

problems involving inhomogeneous cylinders. 

In this section it is carried out a comparison of the normalized bistatic coefficient of 

finite-size cylinder using two numerical methods: the FDTD approach and the method of 

moments (MoM).  For this purpose, the results published in [47] are used. 

For the comparison, consider a finitely-long circular dielectric cylinder of radius a  and 

length L , with permittivity 0εεε c=  and permeability 0µµ = , located in free space.  Here, 0ε  

and 0µ  are the free space permittivity and permeability, respectively, and εεε ′′′ −= jc  is the 

(complex) relative permittivity of the cylinder.  A rectangular coordinate system ( zyx ,, ) is 

defined with its origin in the center of the cylinder, and the z-axis coincident with the cylinder 

axis, as illustrated in Figure 4.4. 

Assuming an angular frequency fπω 2=
 

( f
 

being the frequency), and time 

dependence of the form 
tje ω
 for all electromagnetic quantities, the cylinder is considered to be 

illuminated by a uniform plane wave given by 

 ( )( ) .,,ˆ
ˆ

0 vhqeqrE
rkjk

i
i i == ⋅−

rr
 (4.2) 

 

where 000 µεω=k  is the free space wavenumber, and 

 iiiiii zyxk θφθφθ cosˆsinsinˆcossinˆˆ −−−=  (4.3) 
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is the propagation vector of the incident wave from the direction ( ii φθ , ).  Unit vectors, such as 

x̂  or 
ik̂ , are denoted by symbols with hats on them. 

A scattered wave is considered in the direction ( ss φθ , ) with propagation vector 

 zyxk ssssss
ˆcosˆsinsinˆcossinˆ θφθφθ ++=  (4.4) 

 

 
 

Figure 4.4. Geometry used to compute scattering from a cylinder.  Figure reproduced from [47]. 

 

The relative dielectric constant cε  of vegetation structures greatly depends on their 

water content.  Tree trunk and branches are usually drier and therefore have a lower cε  than 

corn stalks.  For comparison purposes only one value for the dielectric constant cε  is used.  The 

value chosen in [47] is 618 jc −=ε , and is consistent with ground data measurements and 

Ulaby’s empirical model [48]. 
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In radar remote sensing, particularly when considering scattering from a layer of 

dielectric objects, the interest lies in the main scattering lobes.  This is a consequence of the 

large number of scatterers in such vegetation media.  Since the contributions from the single 

scatterers are added all together, the relative weight of the scattering from the side lobes 

becomes negligible.  Therefore, when comparing scattering coefficient using different 

numerical methods it is considered acceptable if the two methods agree inside the main 

scattering lobe and does not produce high scattering elsewhere. 

In the following section, the values of the scattering coefficient (scattering cross section 

per unit area) computed by both numerical methods are compared.  In particular, for two 

incident angles ),( ii φθ , the bistatic scattering coefficient over a range of scattering angles 

),( ss φθ  using both methods is determined.  In agreement with the results of [47] the illustration 

of results is limited to the case of scattering in the same plane iφφ =  of the incident wave. 

 
 

Figure 4.5 General scattering pattern of a cylinder.  Figure reproduced from [47]. 
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A cylinder with dimensions chosen consistently with the ground data in [49] and [50] is 

considered.  The general shape of the scattering pattern of a dielectric cylinder is illustrated in 

Figure 4.5.  The amplitude of the scattering has its maximum in a conical region also referred to 

as the scattering cone.  In a section iφφ =  of the scattering pattern there will be two relative 

maxima corresponding to the main scattering cone, one in the forward direction, the other one 

in the specular direction with respect to the cylinder side. 

In the following, the normalized bistatic scattering coefficient )( 2
aπσ  are plotted as a 

function of the scattering angle for a fixed incident angle, in both hh- and vv-polarization. The 

scattering angle sθ  in the plots ranges between 0  and π2 , therefore only the specular lobe at 

is θπθ −=  will be observable. 

The case examined is a cylinder of length 00.10 λ=L  and radius 04.0 λ=a  with 

618 jc −=ε .  For a wavelength cm600 =λ  (or MHzf 500= , in P-band), this corresponds to a 

tree trunk m6  long with a diameter of cm8.4 .  The normalized bistatic scattering coefficient 

)( 2
aπσ  is plotted in Figure 4.6 as a function of the scattering angle sθ  for an incident angle 

o
20=iθ , in both hh- and vv-polarization.  The solid curve represents the FDTD solution, while 

the dashed curve is obtained using the method of moments.  A very good agreement can be 

observed between the two solutions except for vv-polarization at angles sθ  far from the specular 

scattering lobe located at approximately o
160=sθ , and for h-h polarization at o

100=sθ , 

respectively.  When treating remote sensing problems, only the scattering within dB10  of the 

peak value is relevant, therefore we are concerned with achieving a good approximation only in 

the region surrounding the maxima. 
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For some of the difference in the plots, a possible cause would be the fact that in our 

approach 160 evaluation points for sθ  were used, while in [47] 120 points were used.  An 

improvement in the FDTD results is expected by reducing the size of the Yee cell; hence, the 

discretized model of the cylinder would approach more the curvature of the cylinder.  With the 

previous results, it was shown that the FDTD approach used in this study provides accurate 

values for scattered fields in the far-zone for cylinder sizes and dielectric constant similar to 

those used to represent vegetation elements. 
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Figure 4.6  Normalized bistatic scattering coefficient vs. scattering angle for finite dielectric 

cylinder computed with FDTD and MoM.  The parameters of the cylinder are 00.10 λ=L , 

04.0 λ=a , 618 jc −=ε , and incident angle o
20=iθ  (top) and o

80=iθ  (bottom). 
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4.4 Cross sections computation using FDTD and Mie series solutions 

For the analysis conducted in this study, two parameters of interest are the absorption 

and scattering cross sections.  Hence, a final test to be conducted to assess the accuracy of the 

FDTD approach is the comparison of absorption cross section computed using FDTD method 

and Mie series solutions. 

The object under study was also a sphere.  The frequency of analysis was in the range 

0.5 - GHz0.7  (C-band).  The sphere had a physical diameter of cm4  ( 0.6667 - 0 0.9333 λ ).  The 

relative permittivity values are 0.4  and 0.10 .  The conductivity values are 1.0  and 5.0  mS / .  

The Yee cell size was chosen to be mzyx 001.0=∆=∆=∆  ( 0167.0 - 0 0.0233 λ ), m00075.0  

( 0125.0 - 0 0.0175 λ ), and m0005.0  ( 0.0083 - 0 0.0117 λ ) for 0.4=rε , while for 0.10=rε  the 

cell size was m00063.0  ( 0.0083 - 0 0.0117 λ )and m000315.0  ( 0.00525 - 0 0.00735 λ ).  Table 

4.3 shows the parameters used in absorption cross section results comparison.  

 

Table 4.3 Parameters used for comparison de computation of absorption cross section  

of a 4-cm-diameter sphere using analytical solution and FDTD simulations. 

Relative permittivity Conductivity Yee cell size 

0.4=rε  mS /1.0=σ  mx 0010.0=∆  

0.4=rε  mS /1.0=σ  mx 0005.0=∆  

0.10=rε  mS /5.0=σ  mx 000315.0=∆  

0.4=rε  mS /5.0=σ  mx 0010.0=∆  

0.10=rε  mS /1.0=σ  mx 00063.0=∆  

0.10=rε  mS /1.0=σ  mx 000315.0=∆  

 

Figures 4.7 to 4.12 show the comparison of absorption cross section of a 4 - cm -

diameter sphere computed using analytical solutions and the FDTD approach. 
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Figure 4.7  Comparison of absorption cross section of a 4 - cm diameter sphere using analytical 

solution and FDTD simulations.  The properties of the sphere are 0.4=rε  and mS /1.0=σ .  

The Yee cell is mx 001.0=∆  ( )0 0.02330.0167 λ− . 
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Figure 4.8  Comparison of absorption cross section of a 4 - cm  diameter sphere using analytical 

solution and FDTD simulations.  The properties of the sphere are 0.4=rε  and mS /1.0=σ .  

The Yee cell is mx 00050.0=∆  ( )0 0.01170.0083 λ− . 
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Figure 4.9  Comparison of absorption cross section of a 4 - cm  diameter sphere using analytical 

solution and FDTD simulations. The properties of the sphere are 0.10=rε  and mS /5.0=σ   

The Yee cell is mx 000315.0=∆  ( )0 0.007350.00525 λ− . 

 

4.5 5 5.5 6 6.5 7 7.5
-1

0

1

2

3

4

5

6

A
b
s
o
rp

ti
o
n
 C

ro
s
s
 S

e
c
ti
o
n
 (

m
2
) 

x
 1

0
 -

3

Frequency (GHz)

Analytical

FDTD

 
Figure 4.10  Comparison of absorption cross section of a 4 - cm  diameter sphere using 

analytical solution and FDTD simulations.  The properties of the sphere 0.4=rε  and 

mS /5.0=σ .  The Yee cell is mx 001.0=∆  ( )0 0.02330167.0 λ− . 
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Figure 4.11  Comparison of absorption cross section of a 4 - cm  diameter sphere using 

analytical solution and FDTD simulations.  The properties of the sphere are 0.10=rε  and 

mS /1.0=σ .  The Yee cell is mx 00063.0=∆  ( )0 0.01170.0083 λ− . 
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Figure 4.12  Comparison of absorption cross section of a 4 - cm  diameter sphere using 

analytical solution and FDTD simulations.  The properties of the sphere are 0.10=rε  and 

mS /1.0=σ .  The Yee cell is mx 000315.0=∆  ( )0 0.007350.00525 λ− . 
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Figures 4.7 to 4.12 show both that a) the FDTD approach can be used to compute the 

required fields to obtain the absorption cross section, and b) the integration approach used to 

compute the absorption cross section is satisfactory.  In next section more information will be 

given about the integration approach. 

In the range of analysis shown in this section, since the absorption cross section is 

directly proportional to the conductivity the target, as the conductivity is higher, the relative 

numerical error in the FDTD results with respect to the Mie series solution decreases.  Also, as 

expected, as the cell size is reduced, the numerical dispersion is reduced accordingly; hence, 

decreasing the error. 

 

4.5 Computation of emissivity from finite size objects 

4.5.1 Introduction 

All substances at a finite absolute temperature radiate electromagnetic energy.  The 

emphasis in existing emission modeling for passive remote sensing has been on emission from 

extensive-area targets.  This section presents the computation of the emissivity of a finite-size 

object.  In order to integrate the effects of finite-size objects into an extensive area target model, 

it is imperative to have a good understanding of the emission properties of finite-size objects.  

Since the purpose is to use the results of this study in passive remote sensing models, such as 

those described in [3, 5], it is needed to characterize both the emission behavior of the object 

and its scattering properties.  To date, most of the modeling study on objects is for active 

sensing.  With respect to the emissivity, studies in remote sensing modeling reported in 

literature are mainly for random surfaces.  This section focuses on emission modeling for finite-

size object with arbitrary shape.  In [33, 51] analytical expressions are reported to find the 

emission from a body.  A general expression is given for an object with arbitrary shape.  
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However, to obtain practical results, assumptions were made to make the formulation 

mathematically tractable; approximation using canonical object have been used.  In [33, 43, 51] 

the equations to compute the flux of energy emitted into a particular direction of space and with 

a particular polarization is proportional to the absorptivity.  The complexity of the analytical 

relation between the object’s Stokes parameters and its absorption properties is determined by 

the geometry and dielectric properties of the object.  The significance of those equations to 

compute the emission for a finite-size anisotropic medium is the fact that it relates the emission 

from the object to the absorption cross section of the object, therefore relating a passive 

emission problem to an active scattering problem.  Consequently, to model the emission from 

an object, a numerical method can be used to simulate the interaction of an interrogating wave 

and the object, namely an active remote sensing modeling, and hence find the cross sections of 

the object.  Additionally, numerical method allows for modeling of emission from an object of 

arbitrary shape and dielectric value.  The FDTD approach has been shown adequate to perform 

this task [40].  In this study, a 3D-FDTD algorithm was developed and used to simulate a plane 

wave impinging on an object from several angles and polarizations.  Both the absorption and the 

scattering cross sections of an object are obtained to compute the emissivity of an object. 

 

4.5.2 Emission from finite-size objects 

The characteristic as a source of a finite-size object is given by its brightness 

temperature emitted in a specific direction.  When this is emitted by a blackbody, the brightness 

temperature is equal to the physical temperature T  of the body.  The ratio between the 

brightness temperature of the body and that one of a blackbody is the emissivity e .  In this 

section an approach to compute the emissivity from an object is presented.  A similar approach 

is given in [52], however it is valid for an extended surface.  Consider that a wave with 
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polarization state α  is incident on the object in the direction î .  Then the ratio of the total 

scattered power to the sum of scattered and absorbed power in the object, namely the albedo ω , 

is computed as 

 
scaabs

sca

QQ

Q

+
=ω  (4.5) 

 

where sca
Q and abs

Q  are the scattering and absorption cross sections, respectively. 

The absorption cross section is defined as the power dissipated in the object under 

plane wave incidence, divided by the power density of the incident wave [53].  This can be 

calculated by integrating Poynting vector of the total field over a closed surface containing the 

object.  Similarly, in the scattering cross section formulation the total power scattered by the 

object is used.  According to [52] the following expressions can be used to obtain both the 

absorption and scattering cross sections: 
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where HE
rr

,  and ss HE
rr

, are the total and scattered fields respectively. 

The fractional power absorbed by the object is therefore 

 ( ) ( )iia ˆ1ˆ
αα ω−= . (4.8) 
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The quantity ( )ia ˆ
α  is the absorptivity.  The brightness temperature αT  emitted in the 

direction ( )î− , with polarization state α , from an object kept at the temperature T  is given 

then by 

 ( ) ( )TieiT ˆˆ −=− αα . (4.9) 

 

According to Kirchhoff’s law, if the object is in thermal equilibrium, the absorption 

must be equal to the emission, and therefore the emissivity is equal to the absorptivity: 

 ( ) ( )iaie ˆˆ
αα =− . (4.10) 

 

4.5.3 Numerical modeling approach 

According to Eq. (4.5), both the absorption and scattering cross sections of the object 

under analysis are needed.  They will be computed using the FDTD approach.  A plane wave 

incident at various angles is simulated and both the total and scattered electromagnetic fields 

tangential to a virtual surface enclosing the object (Figs. 4.13 and 4.14) are sampled at several 

points to compute the Poynting Vector at those points.  The resulting Poynting vector values are 

then integrated over the enclosing surface to compute the power either leaving or entering the 

surface. 

 



 

 56

 
Figure 4.13  Virtual enclosing surface used for computation of cross sections.  For absorption 

cross section the enclosing surface is generated in the FDTD total field region, while for the 

scattering cross section the enclosing surface is generated in the scattered field region. 

 

 

Figure 4.14  Virtual enclosing surface used for computation of cross sections using the Gaussian 

quadrature technique.  For absorption cross section the enclosing surface uses the FDTD total 

field values, while for the scattering cross section the enclosing surface uses the scattered fields 

by subtracting the incident field from the total field. 

 

The sampling of the required electromagnetic fields was performed in two ways: (a) 

using a virtual enclosing cube (Fig. 4.13), and (b) using sampling points according to the 

Gaussian quadrature technique (Fig. 4.14).  The former approach simplifies the sampling since 

Enclosing 

surface 

Sampling 

points 
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only the tangential components at each of the faces are recorded.  Since the surface was a cube, 

the required computational space could be reduced.  The later approach requires both all 

rectangular components to be recorded and more computational memory; however it provides a 

more precise integration. 

In the first approach, the enclosing area is formed by differential patches.  The values 

of the E
r

 and H
r

 fields at the center of the patches are required.  However, due to the nature of 

the FDTD algorithm, the fields are computed at shifted positions with respect to each other in 

the grid.  To circumvent this problem, once the patches forming the enclosing surface were 

defined, the values of the E
r

 and H
r

 fields at the center of them were obtained by performing a 

tri-linear interpolation and then sampled.  The interpolated values for E
r

 and H
r

 were assumed 

to be constant in the complete patch area. 

To compute the absorption cross section the equation 
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was used.  Due to the FDTD discretization, the numerator was replaced by the following 

approximation: 

 { }∑
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n

nn aHEP
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*
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2

1 vv
. (4.11) 

 

where N  is the total number of patches and ssa ∆×∆=∆ , being s∆  the length of each patch 

side, equal to the length of the FDTD cell.  The incident power density was computed 

analytically as: 
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η2

2

inc

i

E
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r

= . (4.12) 

 

where incE
v

 and η  are the incident field and the intrinsic impedance of free space, respectively. 

 

4.5.4 Numerical computation of emissivity of lossless objects 

Before computing and analyzing the emissivity from several targets, the emissivity 

from lossless targets is computed.  The purpose is to assess the method to compute the 

emissivity with an a priori known result.  Since the loss is zero, then the absorptivity and hence 

the emissivity must be zero too. 

The first analysis was conducted on a cylinder with diameter and height equal to 0λ .  

Although the emissivity was reduced by reducing the cell size, hence by increasing the number 

of points per wavelength for the simulation, the emissivity with respect to incident angle 

showed inconsistency due to resonance.  Therefore, it was concluded that cylinder with 

dimensions the same as the wavelength should be avoided due to resonance problems. 

For a GHz5  incident wave, the relative dimension of the cylinder ( 0
6

5
λ=d  and 

0
6

5
λ=h ) with respect to 0λ  was smaller, therefore the resonance was avoided.  Figure 4.15 

shows that the emissivity with respect to incident angle approaches to a zero value as the 

number of points per wavelength is increased.  Likewise, the trend of the curve representing the 

emissivity value tends to be flat.  The peak at o
45  is due to numerical dispersion. 
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Figure 4.15  Emissivity of lossless cylinder with respect to incident angle, when varying the cell 

size s∆  from m00075.0  to m00125.0 . The dimensions of the cylinder are: diameter = m05.0  

and height = m05.0 . The dielectric properties are 0.4=rε  and mS /0=σ . The frequency of 

analysis is GHz5 . The polarization is vertical. 

 

Figures 4.16 and 4.17 shows the emissivity of a cylinder with dimensions 08.0 λ=d  and 

08.0 λ=h  for GHz6  and GHz5  incident waves, respectively.  As in previous case, the 

emissivity shows both a tendency to approach the correct value as the number of points per 

wavelength is increased; and a peak at o
45  due to numerical dispersion. 
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Figure 4.16  Emissivity of lossless cylinder with respect to incident angle, when varying the cell 

size from s∆  from m0005.0  to m0010.0 . The dimensions of the cylinder are: diameter = 

m04.0  and height = m04.0 . The dielectric properties are 0.4=rε  and mS /0=σ . The 

frequency of analysis is GHz6 . The polarization is vertical. 
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Figure 4.17  Emissivity of lossless cylinder with respect to incident angle, when varying the cell 

size from s∆  from m0005.0  to m0010.0 . The dimensions of the cylinder are: diameter = 

m04.0  and height = m04.0 . The dielectric properties are 0.4=rε  and mS /0=σ . The 

frequency of analysis is GHz5 . The polarization is vertical. 

 

Additionally, the performance of the FDTD integration approach was assessed by 

computing the emissivity of a perfect-electric-conductor (PEC) object.  In case of a PEC object 

all energy is scattered.  Therefore, the absorptivity, and hence emissivity is zero. 

For simplicity to represent the conducting object in the computational space, a perfect 

electric conductor (PEC) cube was used.  This way, the PEC model was applied by setting the 

electric field tangent to the object surfaces to be zero. 
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Figure 4.18  Emissivity of PEC cube with respect to incident angle, when varying the cell size 

from s∆  from m0005.0  to m0010.0 . The dimensions of the cube are: side = m04.0 . The 

frequency of analysis is GHz6 . The polarization is vertical. 

 

Figures 4.18 and 4.19 show that for incident frequencies of GHz6  and GHz5 , as 

expected, the emissivity tends to approach zero as the number of points per wavelength is 

increased.  The effect of the numerical dispersion is also visible.  However, contrary to previous 

cases, the incident wave does not travel through the PEC object, therefore the effect is less at 

o
45  when compared with o

0  and 
o

90  incidence. 
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Figure 4.19  Emissivity of PEC cube with respect to incident angle, when varying the cell size 

from s∆  from m0005.0  to m0010.0 . The dimensions of the cube are: side = m04.0 . The 

frequency of analysis is GHz5 . The polarization is vertical. 

 

4.5.5 Numerical computation of emissivity of lossy dielectric objects 

The FDTD approach presented can be used to obtain the emissivity of objects with 

arbitrary shape.  In this section, the emissivity calculations are presented for several finite-size 

objects. A relative permittivity 0.4=rε , and values for conductivity σ  ranging from 1.0  to 

mS5.0  were used.  The frequency of analysis was in the mid-range of C band ( GHz6 ). 

The emissivity is generally a function of both θ  and ϕ , angles defined as shown in 

Figure 4.21.  However, since the objects presented in this section have symmetry around the 

axis of rotation, in this case z-axis, the emissivity values are independent of ϕ , hence all results 

are shown only as a function of θ .  Both the vertical and horizontal polarizations are considered 

in the FDTD simulations.  The incident plane wave was a modulated Gaussian pulse with 
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central frequency at GHz6 .  To represent the FDTD space a regular grid with a cell size of 

mm1  was used. 

 

4.5.6 Results and analysis 

Figure 4.20 shows that the emissivity from a spherical object, due to its symmetry, is 

only a function of dielectric properties.  For the permittivity values under analysis, the 

emissivity is higher for high conductivity (loss), hence, a higher contrast.  The results obtained 

from the sphere are a good reference to analyze and understand the results from other 

geometrical shapes.  Although small, the FDTD-computed emissivity showed some variation 

with respect to angle of observation.  This was a consequence of the numerical dispersion due to 

the discretization of the computational space.  This variation reduces as the size of the grid cell 

is reduced. 

 
 

Figure 4.20  Emissivity at GHz6  for a sphere ( 0λ=r ) with 0.4=rε  and mS /5.0,1.0=σ . 
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Figure 4.21  Geometry used for FDTD simulation of plane wave impinging 

on landmine-like object ( 04.2 λ=d  and 08.0 λ=h ). 
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Figure 4.22  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,2.0,15.0,125.0,1.0=σ , for vertical polarization.  Dimensions of the cylinder are 

)12(4.2 0 cmd λ=  and )4(8.0 0 cmh λ= . 

 

Figure 4.22 shows the emissivity from the landmine-like object for vertical 

polarization.  For the permittivity analyzed, it can be observed that for low conductivity the 
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emissivity shows more variation with respect to the observation angle, having a peak value at 

about 50°.  As the conductivity is increased, the emissivity tends to be more uniform with 

respect to the observation angle.  Figure 4.23 shows the emissivity from the landmine-like 

object for horizontal polarization.  Similarly to previous case, it can be observed that for low 

conductivity the emissivity shows more variation with respect to the observation angle, having 

also a peak value at about 50°.  As the conductivity is increased, the emissivity tends to be more 

uniform with respect to the observation angle. 
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Figure 4.23  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,1.0=σ , for horizontal polarization.  Dimensions of the cylinder are 

)12(4.2 0 cmd λ=  and )4(8.0 0 cmh λ= . 

 

Regarding the emissivity of the cylinder represented in Fig. 4.24, it can be observed 

that it has also more variation with respect to the observation angle for low conductivity, having 

a minimum at about 30° for both vertical and horizontal polarization (Fig. 4.25 and 4.26).  



 

 67

However, it shows a higher emissivity for horizontal polarization.  Similarly as in the landmine-

like object, the emissivity tends to be more uniform independently of the observation angle 

when the conductivity takes a higher value. 

 

Figure 4.24  Geometry used for FDTD simulation of plane wave impinging 

on cylinder ( )6(2.1 0 cmd λ=  and )18(6.3 0 cmh λ= ). 
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Figure 4.25  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,2.0,15.0,125.0,1.0=σ , for vertical polarization.  Dimensions of the  

cylinder are )6(2.1 0 cmd λ=  and )18(6.3 0 cmh λ= . 
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Figure 4.26  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,1.0=σ , for horizontal polarization.  Dimensions of the cylinder are 

)6(2.1 0 cmd λ=  and )18(6.3 0 cmh λ= . 

 

In order to gain more insight in the behavior of emissivity of finite size objects with 

respect to dimensions and dielectric properties, more objects are tested. In following lines the 

objects as well as the emissivity plots are shown. 
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Figure 4.27  Geometry used for FDTD simulation of plane wave impinging on 

cylinder ( )8(6.1 0 cmd λ=  and )8(6.1 0 cmh λ= ). 
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Figure 4.28  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,2.0,15.0,125.0,1.0=σ , for vertical polarization.  Dimensions of the 

cylinder are )8(6.1 0 cmd λ=  and )8(6.1 0 cmh λ= . 

 

θ 

h 

d 

z 

x 

y 

φ 



 

 70

 

 

 

 

 

 

Figure 4.29  Geometry used for FDTD simulation of plane wave impinging on 

cylinder ( )10(0.2 0 cmd λ=  and )6(2.1 0 cmh λ= ). 
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Figure 4.30  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,2.0,15.0,125.0,1.0=σ , for vertical polarization.  Dimensions of the  

cylinder are )10(0.2 0 cmd λ=  and )6(2.1 0 cmh λ= . 
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Figure 4.31  Geometry used for FDTD simulation of plane wave impinging on 

cylinder ( )6(2.1 0 cmd λ=  and )9(8.1 0 cmh λ= ). 
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Figure 4.32  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,2.0,15.0,125.0,1.0=σ , for vertical polarization.  Dimensions of the 

cylinder are )6(2.1 0 cmd λ=  and )9(8.1 0 cmh λ= . 

 

θ 

h 

d 

z 

x 

y 

φ 



 

 72

 

 

 

 

 

 

 

Figure 4.33  Geometry used for FDTD simulation of plane wave impinging on cylinder 

( )14(8.2 0 cmd λ=  and )2(4.0 0 cmh λ= ). 
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Figure 4.34  Emissivity at GHz6  for a circular cylinder with 0.4=rε  and 

mS /5.0,3.0,2.0,15.0,125.0,1.0=σ , for vertical polarization.  Dimensions of the cylinder are 

)14(8.2 0 cmd λ=  and )2(4.0 0 cmh λ= . 
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The plots show that the increment in the emissivity with respect to the increment in 

conductivity is not linear.  Also, for relatively low values of conductivity the emissivity shows 

noticeable variations with respect to the angle of view.  However, as the conductivity increases, 

the value of the emissivity tends to approach a specific value, independently of the view angle.  

For the cases analyzed in this chapter, the values were around 0.5.  In order to gain an insight in 

the behavior of the scattering and absorption cross sections with respect to the parameters used 

in this study to estimate the emissivity, a qualitative analysis presented by Ishimaru could be 

used [8].  The analysis explains how the scattering and absorption cross sections are related to 

the geometric cross section, wavelength, and dielectric constant of an object.  It states that if the 

size of a particle is much greater than a wavelength, the total cross section tot
Q  approaches 

twice the geometric cross section geo
Q  of the particle as the size increases.  Additionally, the 

total absorbed power, when the particle is very large, cannot be greater than the product of the 

incident power density and the geometrical cross section, given by geo
iQS , and thus the 

absorption cross section abs
Q  approaches a constant somewhat less than the geometric cross 

section.  Using the method developed in Chapter 4 of this study, the emissivity would also be 

constant.  The analysis also states that if the size of the particle is much smaller than a 

wavelength, the scattering cross section sca
Q  is inversely proportional to the fourth power of 

the wavelength and proportional to the square of the volume of the particle; hence, the 

scattering cross section is small.  For this condition, the total cross section would be mostly due 

to the absorption, and hence the emissivity would be high. 

Although some understanding can be gained from that analysis, these two opposite 

conditions certainly do not represent the cases presented in this study, since the dimensions of 

the cylinders under study and the incident wavelength are not too different.  Then, the values of 
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the ratio size/wavelength of the objects under analysis would be in the middle range of those 

extreme cases, requiring a more extensive analysis. 

In conclusion, the analysis of emissivity in surfaces and finite size objects in optic 

region has been studied for a long time; however, the emissivity of objects in the microwave 

region is an ongoing research [32, 54, 55].  Hence, more studies are needed in order to establish 

a relationship between emissivity and object properties, such as dimensions, dielectric, as well 

as frequency and polarizations of interrogating waves.  However, at this point, due to both 

intensive and extensive computational resources required, it is left as a topic for future study. 

In summary, in this section a 3D-FDTD algorithm was developed to compute 

emissivity from finite-size objects.  Some tendencies of the emissivity plots with respect to the 

properties of both the object and the interrogating waves can be observed.  The method to 

compute the absorption and scattering cross sections of finite size objects will be integrated into 

a passive remote sensing model given in Chapter 5. 
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CHAPTER 5 

MODELING OF MICROWAVE EMISSION FROM IRREGULAR LAYER 

 

5.1 Introduction 

The numerical modeling of microwave emission from an irregular layer covering a 

homogeneous half space is given; including the scattering mechanisms affecting the emission.  

The scattering behavior of the layer is characterized by the numerically-generated phase 

matrices.  The approach to generate the phase matrices is also given here.  In order to validate 

the phase matrices, both an energy conservation test and comparison with analytical results are 

carried out.  The layer is also characterized by its effective permittivity, which is estimated by a 

linear model.  Finally, the numerical model is validated by comparing model-predicted results 

with field measurements. 

 

5.2 Construction of phase matrix for a circular cylinder 

In order to use the radiative transfer formulation for the inhomogeneous layer, the 

single scattering phase matrix for the scatterers is needed.  The phase matrix is a quantity that 

relates the Stokes vector of the scattered wave to that of the incident wave. 

The values of the scattered fields ss
HE
rr

,  needed for construction of the phase matrix 

are computed at a constant distance R  from the center of the object and at angle ( ϕθ , ).  Figure 

5.1 shows the geometry of the object for computation of the phase matrix. 

Since both vertical and horizontal incidence polarizations are needed, the FDTD 

simulation is executed for the same polar angles but varying the incidence polarization 
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accordingly.  The number of both the incident and scattered angles is chosen according to the 

Gaussian quadrature technique.  At each simulation, the impinging field will have an incidence 

angle ( ii φθ , ).  The fields will be computed and recorded at ( ss θφ , ) at a distance R . 

 

 

Figure 5.1  Geometry of the object for computation of the phase matrix. 

 

In the same simulation the scattered fields at different frequencies can be computed; 

however, currently in our approach this requires that the dielectric properties be constant, which 

is not the case for the dielectric properties of vegetation components.  Therefore, the FDTD 

simulation will be done for single frequency.  This also allows reducing the computation time 

by selecting the parameters of the interrogating wave in such a way that the time-domain 

duration of the incident pulse is short. 

For this purpose a MATLAB® program was develop to generate the coordinates of the 

scattered-field positions.  Since the objects under study show symmetry around one axis ( z ) the 

incident angle will vary only in θ .  These coordinates ( zyx ,, ) input file is read by the FDTD 

program, and the scattered fields are obtained.  Due to the shift in the E
r

 and H
r

 fields’ 

positions in the Yee cell, a trilinear interpolation was performed during the simulation to obtain 

both E
r

 and H
r

fields at the same point.  The output of the program are the scattered fields 
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ss
HE
rr

, .  In the approach, xE
r

, yE
r

, and zE
r

 are normalized by incE
r

 and xH
r

, yH
r

, zH
r

 by 

incH
r

 = ηincE
r

, where η  is the characteristic impedance of the host medium, respectively.  

Since the rectangular components of the E
r

 and H
r

 fields are computed in the FDTD program, 

a coordinate transformation is needed to find the spherical components needed for computation 

of the phase matrix.  For sake of completeness, the R  component is also shown in the 

expression (5.1); however, only the tangential components of the scattered field in the direction 

of propagation are needed, since those are the components needed to compute the power 

density.  The coordinate transformation is given by 
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where A  represents either E  or H . 

For emission problems, the emitted intensities and phase matrices are independent of 

azimuthal angle.  Therefore, only the zeroth-order Fourier components of the intensities and the 

phase matrices expanded with respect to the azimuthal angles are needed. 

The sizes of the intensity vectors and phase matrices used in the radiative transfer 

formulation are dependent upon the number of incidence and scattering angles chosen as well as 

the number of Stokes parameters computed.  However, in natural emission, only the first two 

Stokes parameters, the vertical and horizontal polarizations, are coupled together.  Hence, if N  

polar angles are chosen in accordance with the Gaussian quadrature technique (or any other 

integration technique used for this purpose), the intensity vectors will be N2 -column vectors 

and the phase matrices will have a dimension of NN 22 ×  for each Fourier component.  Figure 

5.2 shows the computational structure of the phase matrix for the first two Stokes Parameters. 
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Figure 5.2  Computational structure of the phase matrix for the first two Stokes parameters. 

 

Following the approach shown in [3] the phase matrices for the first two Stokes 

parameters are computed.  However, in [3] the scatterers are represented by spheres, allowing to 

compute the required scattered fields analytically.  Since no analytical solution exists for the 

scattered fields from finite-size cylinder, in this study the scattered fields are solved using a 

numerical approach.  With the scattered fields components known, all the elements of the phase 

matrix can be computed.  For many applications only like and cross polarizations are of interest; 

for such cases only the first four elements of the phase matrix are needed as 
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where ),( φθκ s  is the effective volume-scattering coefficient ( mNp / ) and on  is the scatter 

number density.  An estimation of ),( φθκ s  is given by 

 ),(),( 0 φθφθκ ss Qn=  (5.3) 
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where )(θsQ  is the scattering cross section of the single component. 

Another important parameter for characterizing an inhomogeneous medium is its 

absorption loss, represented by the volume-absorption coefficient in ( )φθκ ,a , given by  

 ( ) ( )φθφθκ ,, 0 aa Qn=  (5.5) 

 

where ( )φθ ,aQ  is the absorption cross section.  The units of ( )φθκ ,a  are also mNp / . 

 

The total cross section, also known as the extinction cross section, for a particle is 

 ( ) ( ) ( )φθφθφθ ,,, sae QQQ +=  (5.6) 

 

Most of the studies have dealt with the special case of spherical particles.  For these 

particles, or for nonspherical particles with random orientations, eκ  and sκ  reduce to scalars.  

However, for this study none of those conditions are met, because eκ  and sκ  are angle 

dependent, hence they are treated differently.  Both parameters, the scattering and absorption 

cross sections are computed numerically using the approach given in Chapter 4. 

The required fields are to be computed at an average distance from the center of the 

scatterer.  Although the approach proposed here is valid for any arbitrary-shape object, the 

analysis will be focused on cylindrical-shape objects. 

In order to validate the numerical model, by comparing its results with field 

measurements, the components of the irregular layer were chosen to be corn stalks, represented 

by vertical dielectric cylinders.  The bottom half-space bottom was chosen to be soil with rough 

surface. 
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Figure 5.3 shows a general configuration for modeling emission from soil in the 

presence of vegetation components.  The vegetation cover modifies the emission from soil, by 

scattering the soil emission and adding its own emission to the brightness temperature read by a 

radiometer.  The vegetation components are both modeled as dielectric cylinders and assumed 

to be all vertical.  The cylinders are considered to be homogeneous, circular, lossy, and of the 

same length and diameter. 

The ground underlying the slab is represented by a homogeneous, lossy, dielectric half-

space and the interface between the slab and ground is taken to be rough with the standard 

deviation of height σk  and correlation length kL  describing the degrees of vertical and 

horizontal roughness. 

 

 

Figure 5.3  Configuration for modeling of emission from soil in the presence of vertical 

cylindrical vegetation components. Dielectric cylinders are used to model the vegetation 

components. 
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Figure 5.4  Geometry used for FDTD simulation of plane wave impinging on cylinder. 

 

For emission from soil, most of the data available are based on an analysis done at L -

band.  Therefore, in order to compare prediction of the model with field measurements, the 

analysis is done at a frequency of GHz4.1 , at vertical and horizontal polarizations.  Figure 5.4 

illustrates the geometry for the cylinder in the slab used for the FDTD simulation. 

 

5.3 Construction of phase matrix of corn stalks represented by cylinders 

An analysis corresponding to corn stalks represented by vertical cylinders was 

conducted (Figure 5.5).  The analysis was performed at L  band.  The dielectric properties of 

corn stalks were obtained from a study reported in [56]; in which measurements of vegetation 

components at 1- 2 , 5.3 - 5.6 , and 5.7 - 5.8  GHz bands, as a function of moisture content and 

microwave frequency, were performed.  The materials measured included the leaves and stalks 

of corn and wheat.  Dielectric measurements also were made of the liquid included in the 

vegetation material after it was extracted from the vegetation by mechanical means. 
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Figure 5.5  Corn stalks represented by dielectric cylinders. 

 

For the analysis carried out in this study the volumetric moisture content vm  was 

considered to be 5.0 , in order to keep the value of ε ′  relatively low so that the computer 

memory requirement was not high.  The dielectric constant for corn stalk would then be 

1818.25.18 jj +=′′+′=′ εεε . 

Similarly, to keep computer memory requirements manageable, the height of the corn 

stalk was set to be 05.1 λ ( cm30 ), and its diameter was 015.0 λ  ( cm3 ).  A more detailed report 

about stalks dimensions can be found in [57].  The range at which the scattered field was 

computed is obtained from an average distance among scatterers, taking a value of corn fields 

density from [58]. 

With the method shown in Chapter 4, and the dielectric properties taken from [57] and 

dimensions described above, both the absorption and scattering cross sections of the cylinder 

representing a corn stalk were computed (Figure 5.6). 
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Figure 5.6  (a) Absorption and (b) scattering cross sections numerically computed for a 

dielectric cylinder representing a corn stalk. 

 

5.4 Validation of phase matrices for energy conservation 

Before integrating the numerically-computed phase matrix for a finite-size object into 

the layer model, it needs to be validated for energy conservation, which requires that for each 

incident angle ( )ii φθ ,  



 

 84

 ( ) 1sin
4

1
2

0 0

=−∑ ∫ ∫
p

isss
pq ddP

π π

φφθθ
π

 (5.7) 

 

where pqP  denotes the elements of the phase matrix ( )jiP θθ , , and the summation over p  

includes the elements of the first two Stokes parameters ( )hv II ,  [5]. 

 

Assuming o0=iφ  equation (5.7) can be also expressed as 

 ∑ ∫ ∫ =
−p

ss
pq ddP 1

4

1
2

0

1

1

π

φµ
π

 (5.8)  

 

where sµ  is the directional cosine ( sθcos ) for the scattered field. 
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Figure 5.7  Energy conservation test results for numerically-computed  

phase matrices 
*

S . 
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Figure 5.7 shows the energy conservation test results for the numerically-computed 

phase matrix *
S  with respect to the incident angle iθ .  Results show that the energy is 

conserved at each incident angle.  The same results were obtained when testing the phase matrix 

*
T . 

 

5.5 Verification of computation of backward and forward phase matrices 

In order to verify the precision of numerically-computed phase matrices, a comparison 

with analytically-computed phase matrices was carried out.  For this purpose, a configuration as 

shown in Figure 5.10 is used.  The phase matrices describing the scattering and absorption 

behavior of the inhomogeneous layer are assumed to have a behavior like the one from a sphere.  

The parameters used for the comparison are given in Table 5.1. 

Table 5.1 Parameters used for computation of emission from ground covered with an 

inhomogeneous layer with phase matrices similar to those of a sphere 

Parameter Value 

Scatterer relative permittivity 0.015 .153 jrs +=ε  

Effective permittivity of layer 0.02324 1.477 jrl +=ε  

Permittivity of top half-space 0.00.1 jra +=ε  

Scatterer volume fraction %30=fv  

Scatterer radius mr
3101 −×=  

Slab thickness md 001.0=  

Background relative permittivity 0.00.1 jrb +=ε  

Permittivity of bottom half space 0.00.5 jrg +=ε  

Layer temperature KTL
o293=  

Bottom half space temperature KTB
o293=  

Frequency GHzf 35=  

Parameters of surface (ground) 02.0=σk  

m 102.7284 -4×=σ  

.001=kL  m 101.3642 -3×=L  

Parameters of top boundary 0.50=σk  

m 106.8209 -4×=σ  

.502=kL  m 103.4105 -3×=L  
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The results shown in Figure 5.8 are obtained using phase matrices computed with (a) 

fields computed analytically with Mie solutions; (b) FDTD-computed fields, with the phase 

matrices normalized by constant analytical cross section (FDTD1); and (c) FDTD-computed 

fields, with phase matrices normalized by the corresponding scattering cross section using 
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where sE
r

 and sH
r

 are the scattered electric and magnetic fields, respectively; iS
r

 is the power 

density of the incident wave, and 0S  is the virtual surface enclosing the object. 
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   (b) 

Figure 5.8  Emission from surface with a cover of a layer with phase matrices characterized as 

those of a sphere.  The phase matrices were obtained using Mie-formulation fields, FDTD-

computed fields (phase matrix normalized by analytical scattering cross section – FDTD1), and 

FDTD-computed fields (phase matrix normalized by scattering cross section using method 

described in chapter 4 – FDTD2), (a) V-polarization, and (b) H-polarization. 
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Additionally, although the scattering cross section for a sphere is independent of angle 

and polarization, due to FDTD-related numerical dispersion, the numerically-computed cross 

section depends slightly on incident angle.  Hence, in order to assure energy conservation, in the 

third case the phase matrix is normalized by ( )polQ
incsca

,θ . 

Figure 5.8 shows the model-predicted brightness temperature for both vertical and 

horizontal polarization.  A very good agreement between the results obtained by using the 

analytically-computed and the numerically-computed phase matrices can be observed. 

 

5.6 Emission scattering mechanisms 

The general configuration of a layer between two half spaces is given in Figure 5.9.  

The total emission into a top homogeneous half space (medium 1) is composed of contributions 

from both the emission by an inhomogeneous layer (medium 2) and the emission from a 

homogeneous half-space (medium 3).  Because of the inhomogeneities in the layer and the 

discontinuity at the interfaces between medium 2 and media 1 and 3, respectively; the emissions 

will further undergo multiple scattering processes; which are described in this section.  Since 

the inclusions volume fraction is very low in the layer, and the host medium dielectric 

properties are the same as those of the medium 1, the effective permittivity of medium 2 is very 

close to the permittivity of medium 1; hence, the reflectivity at the top boundary is neglected. 

In order to simplify the analysis, the emission from the inhomogeneous layer is 

decomposed in its upwelling and downwelling components, which are referred to as uu , and 

du , respectively.  The emission from the bottom half-space will be referred to as gu . 
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Additionally, the volume density of the layer is considered to be low; hence, the 

distance between vegetation components is assumed to be large so that only the first order 

scattering is considered. 

 

Figure 5.9  General geometry for modeling of emission from soil in the presence of 

inhomogeneous layer. 

 

 
Figure 5.10  Emission scattering mechanisms for upwelling and downwelling emission from the 

layer and upwelling emission from the bottom half-space. 

 

The multiple scattering mechanisms geometry of the microwave emission problem for 

an inhomogeneous layer (medium 2) with irregular boundaries is shown in Figure 5.10.  The 

media 1 and 3 are assumed to be homogeneous half spaces, and the layer backward and forward 

volume scattering phase matrices are the numerically computed single scattering phase matrix 
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of the layer components, ∗
S  and ∗

T , respectively.  The surface phase matrix 23

~
R  represents the 

effective reflectivity matrix at the interface between media 2 and 3; its computation is given 

below. 

Under local thermodynamic equilibrium, the upwelling and downwelling emitted 

intensities, expressed as brightness temperature, from an elementary layer of optical thickness 

τ∆  at level τ  are given by the Kirchhoff-Planck law [3] 

 ( ) ( ) ττφθωεφθφθτφθτ ∆== − T),(-1),(),;(),;( 1
rdu Uuu  (5.9) 

 

where ( )τT  is the temperature profile of the layer; U  is the diagonal matrix of the cosine of the 

scattered angles, ω  is the single-scattering albedo, rε  is the relative permittivity of the layer, 

and the layer relative permeability rµ  is assumed to be 1.  Both the single-scattering albedo and 

the optical thickness have angle dependency.  Equation (5.9) is used to determine the 

inhomogeneous layer upward and downward emission sources, namely uu and du , respectively.  

The emission from lower inhomogeneous half-space, gu , can be determined using 

 ( )θε gg *T=gu  (5.10) 

 

where gT  and ( )θε g  are the temperature and emissivity of the ground, respectively. 

Figure 5.11 shows the scattering process at the interface between inhomogeneous space 

(medium 2) and homogeneous half-space (medium 3) due to a unit incident intensity.  
∗

S  is the 

medium-2 backward scattering phase matrix for upward incidence.  The surface phase matrix 

23R , to account for the scattering at the lower boundary, is obtained by using the Integral 

Equation Method [11]. 
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Following those scattering processes, the corresponding effective reflectivity phase 

matrix 23

~
R  at the boundary is obtained in the following way: 

 L++++= ∗∗∗∗∗∗
2323232323232323232323

~
RSRSRSRRSRSRRSRRR  (5.11a) 

 ( )∑
∞

=

∗=
0

232323

~

i

i
RSRR  (5.11b) 

 ( ) 1

232323

~ −∗−= RSIRR  (5.11c) 

 

where I  represents the identity matrix. 

 
Figure 5.11  Effective reflectivity matrix from the medium 2 - medium 3 interface. 

 

The effective reflectivity phase matrix can be expressed in terms of its Fourier 

components as: 

 
1

23
*2

2323

~ −






 −= mmmm

RSfmIRR   where 
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π

π
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However, for emission only the zeroth order of the Fourier components is used, hence 
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Once the effective reflectivity matrix is obtained, the general scattering operators are 

given by 

 12QLu =  (5.14) 

 23
*

12

~
RTQLd =  (5.15) 

 *
12TQLg =  (5.16) 

 

Again, considering that only the zeroth order Fourier coefficients are needed, then the 

scattering operators can be expressed as 

 0
120QfLu =  (5.17) 

 0
23

0*0
12

2
0

~
RTQfLd =  (5.18) 

 
0*0

120 TQfLg =  (5.19) 

 

5.7 Determination of effective permittivity of layer 

The inhomogeneous layer is composed of the host (background) medium and the 

inclusions (scatterers).  Therefore, the effective permittivity lε  of the inhomogeneous layer is 

computed using a model given in [5, 16], namely 

 ( )αααα εεεε hiihl v −+=  (5.20) 

 

where hε  and iε  are the host (air) and the inclusion (scatterers) permittivities, respectively; and 

iv  is the inclusion volume fraction.  In the model, α  is a constant.  For 1=α , the preceding 

formula is known as the linear model, for 21=α  as the refractive model (since n=21ε  is the 

refractive index), and for 31=α  as the cubic model.  In this work the linear model is used. 
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The number of inclusions per unit volume is computed using 

 00 vvn i=  (5.21) 

 

where iv  is the inclusions volume fraction and 0v  is the volume of the inclusion. 

 

5.8 Validation of model by comparison with field measurements 

For the most part, the applicability of a given model to a given target type (such as 

vegetation) is evaluated by comparing the model-calculated scattering coefficient or brightness 

temperature to the corresponding measured values.  Hence, once the model was determined and 

its components tested for accuracy, it was validated by comparing its predicted results with field 

measurements.  For this purpose, the measurements of the microwave emission from soil with a 

canopy of corn stalks were used.  The measurement program was carried out at the Agricultural 

Research Center test site in Beltsville, MD.  The radiometric measurements over bare fields as 

well as fields covered with corn, soybean, alfalfa, and grass were reported in [24].  The 

measurements were made with radiometers at GHz4.1  ( L  band) and GHz5  ( C  band) 

frequencies.  For the corn fields, the radiometric measurements were made with incidence 

angles from o0  to o70  in o10  steps. The scanning plane was approximately o45  to the crop row 

direction.  The soil type was a mixture of Elkton silty loam and Elinsboro sandy loam. 

Only those field measurements with parameters similar to the available model-

predicted results were used for the model validation. 

In the field measurements report, the surface is mentioned as smooth; therefore, to 

describe the surface roughness practical parameters were chosen [25, 26] that best fit the 

measurements. 
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For the FDTD computation of the single scattering phase matrices of the corn stalks, 

the stalks were represented by vertical dielectric cylinders.  The simulated physical dimensions 

were height cmh 30= , and diameter cmd 3= ; however, in the field, the corn stalks had a 

height of cmh 10=  and a circular diameter of cmd 3= .  All parameters used for the 

comparison of model-predicted emission and field measurements are given in Table 5.2. 
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Table 5.2 Parameters used for model-predicted emission 

Parameter Value 

Scatterer relative permittivity 0.3473 18.90 jrs +=ε  

Effective relative permittivity of layer 0.0011 1.10 jrl +=ε  

Relative permittivity of top half-space 

(air) 
0.00.1 jra +=ε  

Scatterer volume fraction %1=fv  

Cylinder diameter md 03.0=  

Layer thickness mh 30.0=  

Background relative permittivity 0.00.1 jrb +=ε  

Relative permittivity of ground 8.02.9 jrg +=ε  

Ground temperature KT
o289=  

Layer temperature KT
o289=  

Frequency GHzf 5.1=  ( L -band) 

Parameters of surface (ground) 0.03141=σk  

m .00100=σ  

0.94247=kL  

m .03000=L  
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Figure 5.12  Comparison of model-predicted microwave emission and field measurements 

(ARC) from soil with a cover of corn stalks. 
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Figure 5.12 shows both the predicted brightness temperature and the field 

measurements.  The microwave emission model used to compute the emission from soil with a 

layer of vegetation components provides reasonable good results.  Data for brightness 

temperature for horizontal polarization were not available; therefore, the predicted microwave 

emission for horizontal polarization is given just for completeness. 

It is known that for a given soil moisture content ( %10≥ ) percent by dry weight, the 

presence of the vegetation increases the brightness.  Hence, the higher prediction from the 

model could come from the difference between the height of the cylinder representing the stalks 

( cm30 ) in the simulation and the actual height of the stalks in the field ( cm10 ).  However, 

more analysis should be carried out to characterize with more detail the behavior of the 

brightness temperature with respect to the parameters of the layer. 

Additionally, although not given here, the model-predicted results show: a) the main 

emission contribution comes from the surface (soil); and b) as expected, the contribution from 

the upward layer source is greater than the downward layer source. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary and Conclusions 

A model based on the radiative transfer formulation is presented to predict the 

microwave emission from an irregular layer on top of a homogeneous half space.  A method 

was developed to compute the emissivity from the layer components.  The scattering 

characteristics, given by the phase matrix, of the elements representing the layer components 

were computed using the FDTD approach.  The phase matrix was then integrated into a layer 

model that accounts for the scattering within the layer and the scattering between the vegetation 

layer and ground, using the radiative transfer theory.  The emission and scattering at the 

boundaries were computed using the IEM.  In order to validate the numerical model, by 

comparing its results with field measurements, the components of the irregular layer were 

chosen to be corn stalks, being represented by vertical dielectric cylinders.  The half-space at 

the bottom was chosen to be soil with rough surface.  The microwave emission model 

predictions were then compared to those field measurements, showing a good agreement.  For 

the case analyzed, the main contribution to the microwave emission into the upper half space 

(air) came from the ground.  This study was focused on cylindrical objects, but the methods to 

compute both the emissivity and the phase matrix can be applied to objects of arbitrary shape. 
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6.2 Future work 

More detailed analysis of the relationship between emissivity and properties of finite-

size objects should be carried out, which will require an extensive computational effort.  Also, 

when the model is applied to emission from soil with vegetation cover, further study needs to be 

carried out to take into consideration the attenuating and scattering effects of other vegetation 

components, such as leaves.  The plant geometry is an important factor in the microwave 

emission of vegetation canopy and shall be taken into account in the development of 

sophisticated theoretical/numerical models.  Hence, as the computational power is increased, a 

study using more realistic dimensions of vegetation components should be conducted. 

Furthermore, azimuthal angle dependence of microwave emission by the canopy is not 

considered in the present research.  In natural vegetation covers the distribution of vegetation 

components can be considered to be random; however, in man-made vegetation canopies such 

as orchards, plantations and row crops a semideterministic approach may be needed. 
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APPENDIX A 

LIST OF ABBREVIATIONS 
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FDTD Finite Difference Time Domain Method 

IEM Integral Equation Method 

MoM Method of Moments 

RTT Radiative Transfer Theory 

RTE Radiative Transfer Equation 

MDM Matrix Doubling Method 

SAR Synthetic Aperture Radar 

SPM Small Perturbation Method 

HPC High Performance Computing 

EIFE Electric Integral Field Equation 

MIFE Magnetic Integral Field Equation 

MKS system meter kilogram second system 

3D-FDTD Three-Dimensional Finite Difference Time Domain Method 

BT Brightness Temperature 

LSP/R Land Surface Process/Radiobrightness model 

PEC Perfect electric conductor 
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