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ABSTRACT 

 
NOVEL COST MEASURES FOR ROBUST RECOGNITION 

OF DYNAMIC HAND GESTURES 

 

Ameya Kulkarni, M.S.  

 

The University of Texas at Arlington, 2011 

 

Supervising Professors:  Venkat Devarajan and Vassilis Athitsos 

 Computer vision aided automatic hand gesture recognition system plays a vital role in 

real world human computer interaction applications such as sign language recognition, game 

controls, virtual reality, intelligent home appliances and assistive robotics. In such systems, 

when input with a video sequence, the challenging task is to locate the gesturing hand (spatial 

segmentation) and determine when the gesture starts and ends (temporal segmentation). In this 

thesis, we use a framework which at its principal has a dynamic space time warping (DSTW) 

algorithm to simultaneously localize gesturing hand, to find an optimal alignment in time domain 

between query-model sequences and to compute a matching cost (a measure of how well the 

query sequence matches with the model sequence) for the query-model pair. Within the context 

of DSTW, the thesis proposes few novel cost measures to improve the performance of the 

framework for robust recognition of hand gesture with the help of translation and scale invariant 

feature vectors extracted at each frame of the input video. The performance of the system is 

evaluated in a real world scene with cluttered background and in presence of multiple moving 

skin colored distractors in the background.  
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CHAPTER 1 

INTRODUCTION 

1.1 Hand Gesture Recognition Issues and Applications 

Hand gestures are a natural way to communicate between humans and also for human 

computer interaction. The hand gestures have a principal advantage of being natural, intuitive 

and easy to use over other existing computer interfaces. The automatic hand gesture 

recognition system plays a vital role in real-world applications such as sign language 

recognition, human computer interaction (HCI), gesture based gaming consoles, virtual reality, 

intelligent home appliances and assistive robotics. Television control [1], robotic control [2], 

game consoles [1] and sign language recognition [3] are a few successfully demonstrated 

applications of hand gesture recognition system. Most importantly, the hand gesture recognition 

systems empower computers with an ability to understand hand gestures and respond 

accordingly.  

The usability of hand gesture recognition system directly affects its ability to perform in 

real-world environments. The system should possess a great degree of user friendliness in 

order to be effectively deployed in real-world environment. The system should be able to 

communicate with user without any special or cumbersome devices (such as colored markers 

or gloves [2], full sleeves shirt, wrist bands) and apparatus like remote controls, mouse and 

keyboard.  

The hand gesture recognition system should be robust enough to be able to operate in 

real-world scenes with cluttered backgrounds. Commonly, the hand gesture recognition 

systems use skin detection, motion clues, edges and background subtraction to identify correct 

hand location in each frame. However, it is unreasonable to assume safely that the gesturing 

hand can be located reliably in each frame under the constraints imposed by the real-world 
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scenes. The skin detection would fail to unambiguously locate the gesturing hand in presence of 

skin-colored objects (like face, non-gesturing hand or body part) in the background while the 

motion clues and background subtraction would fail in presence of moving objects (like people 

walking) in the background. It is evident from the figure 1.1(a) and figure 1.1(b) that in presence 

of skin colored and motion distracters the top hand candidate may not be the correct one every 

time. Even when the skin and motion clues are used collectively, hand detection may not be 

reliable in real-world scenes (please refer to figure 1.1(a-b)). 

 

   

(a)  (b) 
Figure 1.1 - Illustrates that the low level hand detection can often fail to provide perfect hand 
detection in presence of moving skin colored distractors. In the examples (a) and (b), the skin 

color and motion were collectively used to identify hand candidates. The hand candidate 
marked with white rectangle is the top detection result which is not the correct one. 

 

A common problem when building robust computer vision system is that the higher level 

modules cannot tolerate inaccuracies of lower level modules. Particularly, in hand gesture 

recognition systems with bottom-up approach, ambiguities or inaccuracies in lower level hand 

detection module can propagate into a higher level recognition module consequently degrading 

overall performance. For a robust hand gesture recognition system it is essential to have a 

higher level recognition module that tolerates ambiguities of lower level hand detection module. 

 Translation, rotation and scale invariance are highly desired properties of a computer 

vision system. With respect to hand gesture recognition systems, as long as the hands are 

clearly visible, it implies that the gesture could occur in any part of the image frame (translation 
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invariance), distance between the camera and user does not matter (scale invariance) and the 

rotations occurring in image plane if any can be tolerated (rotational invariance). This makes the 

system more flexible plus it allows better degree of freedom to the user performing gestures.  

   

(a)  (b) 
Figure 1.2 - Illustrates the sub-gesture problem. In example (a) the digit class “5” is similar to 
digit class “8” and in example (b) the digit class “1” is similar to digit class “4”. Given that the 

sub-gesture relation is not known, the system is likely to do a false detection. 
 

Further, the hand gestures typically occur in a continuous video sequence, as a result 

the hand gesture recognition system should detect gestures within a continuous stream. In 

order to recognize hand gestures continuously the system needs to find on itself the start and 

end of each gesture. This problem is often referred as the temporal segmentation i.e. task to 

detect when the gesture starts and ends. While detecting the hand gestures from a continuous 

stream, it may happen that the gestures (sub-gesture) which appear to the part of another 

longer gesture (super-gesture) could trigger false detection. This is referred to as the sub-

gesture problem. The sub-gesture problem hinders the ability of a hand gesture recognition 

system by interfering with detection of super-gestures and creating false alarms. The figure 1.2, 

describes the sub-gesture problem that occurs between the gesture class “5” and gesture class 

“8” of the palm graffiti digit dataset [4].  

1.2 Contributions 

In this thesis work, to perform continuous recognition of gesture in a video sequence, 

we use the Dynamic Space Time Warping algorithm (DSTW) at the core of the framework. The 
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DSTW algorithm simultaneously localizes gesturing hand (i.e. spatial segmentation), finds an 

optimal alignment in time domain (i.e. warping path, figure 5.2) and calculates a global matching 

cost (i.e. a measure of how well a query sequence matches with a model sequence. Please 

refer to section 5.1 – figure 5.2) between a query-model pair on the basis of a cost measure. In 

order to perform frame by frame matching in time domain, the dynamic space time warping 

(DSTW) in its scope defines two cost functions namely the local cost (figure 5.1) and the 

transition cost (described in section 5.1). The local cost function is a function that can exist 

between a query and model frame presently being matched. The transition cost function is a 

function that can exist between present as well as past query and model frames for a pair of 

query and model frame presently being matched. Conventionally, DSTW implementations use 

the Euclidean distance between a query and a model frame hand coordinates as the local cost 

and leave the optional transition cost unimplemented. In this thesis we propose two novel cost 

measures namely the direction error cost measure and vector error cost measure which when 

implemented as the local cost or the transition cost or in combination of both, within the scope 

of DSTW, achieves better system performance (i.e. recognition accuracy and detection rate) in 

complex real-world environments when using the translation and scale invariant feature vectors. 

The first contribution of this thesis is the proposed direction error cost measure. The 

direction error cost measure when used as the local or the transition cost compares the 

direction of traversal of the input query sequence and model training sequence at each frame 

and computes a matching cost in terms of absolute difference in degrees. The second 

contribution of this thesis is the proposed vector error cost measure. The vector error cost 

measure when implemented as the local or the transition cost compares a set of vectors traced 

by input query sequence at each frame to that of the model training sequence and computes a 

matching cost in terms of Euclidean distance between two vectors. The matching cost returned 

by these cost measures is compared with a fixed threshold and is used to temporally segment 

the gestures in the input video sequence and to identify the class of gesture being performed. 
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Additionally, thesis contributes practically in following two ways: 1) It implements a gesture 

recognition GUI that helps in comparing the matched trajectories of the query and model 

sequence 2) It implements a real-time version of the proposed framework. 

1.3 Thesis Overview 

The remainder of the thesis is organized as follows. The chapter 2 compares and 

contrasts the various approaches proposed to overcome the challenges in the field of 

continuous dynamic hand gesture recognition along with the key advantages of the framework 

used in this work. The chapter 3 describes an overview of the framework. The chapter 4 

describes the detection and feature extraction in detail. The chapter 5 explains the core of the 

framework that is the DSTW algorithm and how it is applied to match a continuous input video 

with a segmented model sequence. The chapter 6 explains in detail the proposed cost 

measures, their calculations and their implementation in the DSTW algorithm. The chapter 7 

enlists the set of rules implied by the inter-model competition algorithm to temporally segment 

the gestures in an input video sequence. The chapter 8 tabulates the performed experiments 

and obtained results followed by the chapter 9 which discusses the outcomes and summarizes 

conclusions. 
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CHAPTER 2 

RELATED WORK 

In many hand gesture recognition systems (e.g. [3], [5]) information flows bottom-up. 

When input with a video sequence, the lower level analysis module performs the task spatial 

segmentation (i.e. the task to extracts important parameters such as hand pose, hand shape 

model and motion features) and/or the temporal segmentation (i.e. the task to determine where 

the gesture starts and ends). In such bottom-up framework, recognition will fail if the results of 

hand detection and/or temporal segmentation are incorrect (e.g. [5] – [12])). Despite the 

advancements in hand detection [13], [14] and tracking [15] – [19], the hand detection can be 

inaccurate in many real-world settings due to factors like change in environmental brightness, 

poor image quality, low video resolution, temporary departure of the gesturing hand from the 

scene and background clutter (such as moving skin colored objects in background).  

In this thesis, we use a framework similar to the one proposed by Alon et al. [20]. The 

framework neither suffers the drawbacks of the bottom-up approach nor does it require spatial 

and temporal segmentation to be performed as preprocessing. The framework sustains even if, 

instead of a perfect hand location, a relatively short list of hand candidates encompassing at 

least one correct hand location is presented at every input frame of the video sequence. 

Further, within the framework, the information flows in both the bottom-up as well as the top-

down direction. In the bottom-up direction, multiple hand candidates are short listed using a 

lower level hand detection module and their features are fed into a higher level recognition 

module. In the top-down direction, the higher level recognition module uses information from the 

training sequences to select an optimal sequence among the exponentially possible many 

sequences of hand locations. The optimal sequence completes the task of lower level hand 

detection module by localizing gesturing hand at every input frame. Moreover, the higher level 
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recognition module also completes the task of temporal segmentation. The framework allows a 

use of relatively simple and efficient skin and motion based hand detector which can be 

implemented in a few lines of code. 

Some alternative approaches, instead of hand detection, use a set of global image 

features to recognize hand gestures. For example, motion energy images proposed by Bobick 

et al. [21], a set of diverse global features (such as thresholded intensity images, difference 

images, motion history and skin color images) proposed by Dreuw et al. [22], 3D shapes 

extracted from identified motion areas within a frame proposed by Gorelick et al. [23] and 

histogram of pair wise distances of edge pixels proposed by Nayak et al. [24]. The key limitation 

of these approaches is that the approaches are not designed to provide immunity to the noise 

introduced in presence of moving skin colored distractions in the background. Further, Ke et al 

[25] propose modeling actions as rigid 3D patterns and extracting action features using 3D 

extensions of the well-known 2D rectangle filter [26]. But the method was not demonstrated in 

presence of skin-motion distracters which can severely affect features extracted from the 

actions. In contrast, the framework has been demonstrated in [20] to work well in presence of 

the skin-motion distracters. 

The framework implements the translation and scale invariance proposed by Stefan et 

al. [27]. It has been observed that, in front of a camera, if a user moves to the left or to the right, 

the hands and face move equally to the left or to the right. And when a user moves towards or 

away from the camera the hands and face are scaled accordingly. The key idea in order to 

implement translation and scale invariance is to reliably locate the face of the user to extract its 

center location and size. This technique is based on the assumption that it is easy to detect face 

reliably than the hands. Mature, publicly-available real-time face detection systems have been 

available for several years [28], [29]; whereas reliable hand detection remains an active 

research topic, with state-of-the-art systems being too slow for interactive applications [30].  

Based on the center of the face, hand coordinates at each frame are translated so as to make 
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the center of the face the origin of the new coordinate system and further the coordinates are 

scaled in order to make diagonal of the face a unit length. Thus the newly calculated hand 

coordinates are inherently translation and scale invariant. It should be noted that the technique 

does not address rotational invariance (i.e. rotations occurring in an image plane). We assume 

that the person performing gesture is sitting and facing the camera in the up-front position, and 

hence the problem of image plane rotation should not arise. 

 The framework at its core uses the Dynamic Space Time Warping (DSTW) algorithm 

proposed by Alon et al. [31] which is an extension of Dynamic Time Warping (DTW) originally 

designed to recognize spoken words for small vocabulary [32, 33].  The DTW algorithm has 

been applied successfully to recognize a small vocabulary of gestures [6, 7]. The DTW 

algorithm essentially aligns two sequences (i.e. the query sequence and model sequence) in 

time domain and computes a matching cost between the two sequences. This matching cost 

can further be used to classify a closest matching model sequence to a presented query 

sequence. More efficient variants of the DTW algorithm are proposed in [34, 35] which improve 

over the quadratic time complexity of the basic algorithm.  The DTW assumes that the feature 

vector can be reliably extracted at each query frame and thus limits its ability to be used in a 

situation where multiple hypotheses resulting in multiple feature vectors are extracted at each 

frame and the correct one is not known. In contrast, DSTW is designed to accommodate 

multiple hypotheses of hand locations at each query frame.  

In multiple hypothesis tracking (e.g., [36]) multiple hypotheses are associated with 

multiple observations. Each observation corresponds to a different object with a different model. 

In contrast, the framework selects a single consistent hypothesis among multiple distinct 

observations (detections), only one of which is correct. The CONDENSATION-based method in 

principle can be applied to the problem of tracking and gesture recognition [37]. But the method 

requires large number of hypotheses to be propagated at each frame; which in turn yields 

slower system performance as a result limiting its usage for real-time systems. Additionally, the 
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framework used here does not need any knowledge of the observation density and propagation 

density for each state of each class model whereas it is required in the CONDENSATION 

technique described in [37]. 

In the Hidden Markov Model (HMM) framework [38], Sato and Kobayashi extended the 

Viterbi algorithm to accommodate multiple candidate observations at each query frame; the 

optimal state sequence is constrained to pass through the most likely candidate at every time 

step. HMMs have found wider application for problems with large vocabulary (of words or 

gestures) primarily due to their ability to probabilistically encode the variability of the training 

data. However, DSTW can still be more suitable in some applications especially because of the 

fact that it is simple and needs no training.  Furthermore, proposed approach differs from [38] in 

that it incorporates translation and scale invariance, and is evaluated in a more challenging 

setting (users are wearing short sleeved shirts and at least one to three people moving in the 

background).  

Gesture spotting is a challenging task of recognizing gestures in a continuous stream 

when the temporal segmentation is not known. Various approaches [39–53] have been 

proposed in the literature for gesture spotting. The approaches proposed in [39-44] count on 

perfect hand detection, consequently, limiting their use in presence of moving distracters in 

background. These approaches can be broadly categorized into two major categories, 1) direct 

approaches 2) indirect approaches. In direct approaches the temporal segmentation is usually 

followed by recognition (i.e. task of determining gesture class). The direct approaches first 

compute low-level motion parameters such as velocity, acceleration, and trajectory curvature 

(Kang et al. [45]) or mid-level motion parameters such as human activity (Kahol et al. [46]), and 

then identify gesture boundaries based on an abrupt changes in these parameters. These direct 

approaches require non-gesturing intervals in between the gestures which cannot be satisfied in 

case of continuous recognition of digit gestures.  
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In indirect approaches the temporal segmentation is interweaved with the recognition 

module, and the gesture boundaries are detected when a recognition likelihood score satisfies a 

fixed or adaptive threshold condition. Most of the indirect approaches [39, 40, 42] use extended 

dynamic programming algorithms designed to deal with temporally isolated gestures e.g. 

Dynamic Time Warping (DTW) [47], [48], Continuous Dynamic Programming (CDP) (Oka [42]), 

various forms of Hidden Markov Models (HMMs) [10], [17], [54], [40], [49]–[51], and most 

recently, Conditional Random Fields [52], [53]. The framework used in this work is based on the 

indirect approach proposed by Alon et al. [20] and unlikely of the other approaches does not 

require hand to be unambiguously located in each frame of the video sequence. 

Once a gesture sequence is spotted (i.e. temporally segmented), various approaches 

have been proposed to identify the best matching model sequence in order to determine the 

class of the spotted gesture. These approaches include a set of peak finding rules (Morguet and 

Lang [41]), spotting rules (Yoon et al. [43]), and the user interaction model (Zhu et al. [44]). The 

framework used in this work on the other hand uses an intermodal competition algorithm to 

classify the gesture class. Unlikely the other approaches the inter-model competition algorithm 

takes a vote amongst the nearest N neighbors to decide the gesture class.  

Another practically occurring problem is sub-gesture problem. Many a times a gesture 

(sub-gesture) which appears to be a part of another longer gesture (super-gesture) can cause 

false alarms and interfere with the detection of the longer gesture (super-gesture). In order to 

address this issue the two strategies have been proposed by Lee and Kim [40]. 1) Introduce a 

maximum length non-gesture pattern 2) Use a procedure to detect user’s intention to complete 

a gesture, such as freezing hand for a while or moving hand out of camera view. The first 

strategy needs a tuning of special parameter while the second limits the naturalness of the 

interface. To overcome these limitations we use the sub-gesture reasoning approach proposed 

by Alon et al [20] except that the sub-gesture relations are manually defined considering small 

size of the gesture classes in the dataset.   



 

 

 11 

The unified framework approach originally proposed by Alon et al. [20] is the most 

related to the method described in this work but we differ in the implementation of the 

framework on following two key points. 1) We add the translation and scale invariance proposed 

by Stefan et al. [27] to make the framework more robust. 2) We use novel cost measures 

proposed in this work in the implementation of the DSTW algorithm to improve detection rates 

of the framework in the translation and scale invariant setup. Since our primary aim is to 

evaluate performance of the proposed cost measures, we optionally choose not to implement 

the pruning technique proposed in [20]. Considering the small number of gesture classes, we 

manually define the sub-gesture relations in contrast to the sub-gesture learning approach 

proposed in [20]. The proposed cost measures significantly improve the detection accuracy of 

the framework when tested on a hard digit dataset (described in section 8.1). Further, the inter 

model competition algorithm proposed in [20] selects only the best gesture candidate at every 

input frame while we present a more generalized version that uses the voting amongst N 

nearest neighbors to determine candidate gesture class. 
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CHAPTER 3 

SYSTEM OVERVIEW 

In hand gesture recognition applications, the type of gestures used for recognition 

depends upon the type of application e.g. Sign Language Recognition uses gestures from sign 

language, TV control application uses up-down, left-right gestures. In our experiments, where 

primary aim is to design a general HCI system, we use a digit dataset consisting of 10 different 

classes of gestures corresponding to the numerical digits 0-9 [20]. All the gestures are 

performed in front of a 2D camera. For each gesture class the dataset contains several training 

examples (i.e. model sequences). In order to simplify the task of annotating hand locations 

manually, training examples are captured with users wearing full sleeved shirts and using 

colored gloves. An automatic annotation module is deployed to extract a single hand location 

per frame from training examples. Further, the start and end frames of each of the model 

gesture are manually annotated. As long as the end user recognition system does not use 

visual aids like colored gloves, full sleeved shirt and known start-end frames; there should be no 

harm in using colored gloves and other clues to aid an automated hand position annotation 

module. The digit dataset have two different types of test datasets, namely the “easy” and the 

“hard” dataset. We use the hard dataset in our experiments. Every hard dataset video sequence 

has ten different numerical gesture (0-9) performed in a continuous manner.  The users are 

wearing short sleeved shirts and there is at least one person moving in the background. Please 

refer to the subsection 8.1 for the details and examples of the digit dataset. 

 For test examples (query sequences), the hand detection module extracts   (up to 25) 

hand candidates in each frame with the help of skin-motion cues. Hand detection is based on a 

simple assumption that the gesturing hand is the moving skin-colored object in the input video 

scene. Skin-motion cues when used collectively lessen the possibility of skin-colored non-
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moving and non-skin-colored moving objects being falsely detected as hands. The type of skin-

motion based hand detector used is easy to implement and efficient. Every short listed hand 

candidate is represented by the bounding box of size 40x40. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 – System flowchart. Solid lines indicate flow during continuous recognition. Dotted 
boxes and arrow represent offline training modules and offline flow respectively. 
 

At the start of each video sequence a face bounding box is extracted using Viola-Jones 

[29] type face detector. Based on center of face and its size, the hand locations are translated 

and scaled as described in section 4.3. For each of the translation invariant and scale 

independent hand location, location features (center x and y coordinate) are extracted. Thus a 

2D feature vector is extracted from every hand candidate. Since we extract    hand candidates 

per frame, we get   feature vectors per frame. 

The feature vectors at every frame are fed to Continuous Dynamic Space Time 

Warping module. The dynamic space time warping module matches a query video sequence 
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with model sequences and updates matching cost corresponding to each of the model gesture 

candidates at every frame.  

At every input frame, the inter-model competition module analyzes the matching costs 

updated by the continuous DSTW module and makes certain observations. Based on the 

observation of current and/or several previous frames it decides whether a gesture has been 

performed recently or not. If a gesture was performed, then the module determines the class of 

the gesture based on nearest neighbor retrieval technique. With the help of manually defined 

sub-gesture relations and certain rules described in section 7.2, the inter-model competition 

module resolves sub-gesture recognition problem. E.g. it decides whether the gesture 

performed by the user belongs to class “5” or the user is in the process of performing gesture 

that belongs to class “8” (Figure 1.2).  
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CHAPTER 4 

DETECTION AND FEATURE EXTRACTION 

4.1 Detection (Query Sequences) 

One of the important advantages of DSTW is that it accommodates multiple hypotheses 

for the hand location in each frame. This property of DSTW makes it easier to design a fairly 

simple and efficient hand detection module combining mainly two visual cues skin color and 

motion. The hand detector presented here has been designed with an assumption that the 

moving skin colored object in a query video sequence corresponds to parts of gesturing hand. 

 

 

Figure 4.1 – Input video sequence frame 
 

The skin detector, for every pixel in a frame, computes a skin likelihood score. The skin 

detector uses a Bayesian probabilistic absolute RGB histogram lookup technique learned from 

samples of skin and non-skin windows similar to one referred in [55]. The probability of a pixel 

(R, G, B) being skin is given by  (    |   )   (   |    )     (    )    (   )  as per the 

Bay’s rule. The   (   ) is given by the formula  (   )   (   |    )   (    )   (    )  

 (   |        )  while, the value of  (    ) has been set to 0.5 based on empirical findings 

(though it is high, results are good). In this formula the  (   |    ) and  (   |        )  is 

learned from the skin and non-skin samples respectively. The figure 4.1 shows an input frame 
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from a query video sequence while the figure 4.2 shows image with skin likelihood scores. The 

skin detector output is coarser because of the fact that the a coarser histogram is built in a 

32x32x32 color space due to practical limitations instead of the 256x256x256 color space. It 

should be noted that the skin color detection is efficient as it only requires histogram look up at 

every pixel. 

 

Figure 4.2 – Skin likelihood score image. The figure shows the skin likelihood score image for 
the input frame in the figure 4.1. 

 

The motion detector, for every pixel in a frame, computes the motion score based on 

differencing the current and previous frame. The motion detector first converts 24-bit RGB 

frames to 32-bit gray-scale images and then computes an absolute difference in intensities at 

each pixel (i.e. motion score). The motion detector for every input frame  , computes a motion 

score image, programmatically calculated by following equation     =    (        (      )  

       (        ))  where, the operator         computes a 32-bit gray scale image from the 

input 24-bit RGB frame and the    is the motion score image. The motion detector is efficient as 

it only requires simple operation like subtraction per pixel. The figure 4.3 shows image with 

motion scores obtained by taking absolute difference between the frame shown in figure 4.1 

and a previous frame. 
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Figure 4.3 – Motion score image. The figure shows image obtained by differencing the 
input video sequence frame in figure 4.1 and its previous frame. 

 

 

Figure 4.4 – Skin-motion image. The figure shows image obtained after pixel-wise multiplication 
of the skin likelihood score image and motion score image for the frame shown in figure 4.1. 

 

Further the skin and motion score at every pixel is multiplied to obtain an image with 

hand likelihood scores. The figure 4.4 shows a skin-motion image obtained by multiplying the 

skin and motion colors. This image is filtered with the help of a Gaussian kernel to find the top   

sub windows each of size 40x40 at each frame. The figure 4.5 shows Gaussian filtered image 

and figure 4.6 shows top five hand candidates extracted from the an input frame shown in figure 

4.1. We make sure that no two hand candidate sub-windows include the center of each other. 

By doing this, we eliminate those sub-windows which are centered over same region. 
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Figure 4.5 – Illustrates a Gaussian filtered image for image shown in figure 4.4. 
 

Another important advantage of the kind of hand detector used here is that it does not 

use connected component analysis. In related works like [54], the centroid of largest connected 

component is considered to be the center of hand location. When the gestures are performed 

by the users wearing short sleeves, a large part arm or overlapping skin colored object can be 

detected in the connected component and influences the location of centroid, making the hand 

detector unreliable. In contrast the hand detector presented here generates multiple sub-

windows which may occupy different parts of the same connected component. It has been 

observed that the gesturing hand is typically covered by one or more of these sub-windows 

(Please refer to figure 4.6). 

 

Figure 4.6 – Displays top five hand candidates detected from the input video sequence 
frame shown in figure 4.1 

 
 



 

 

 19 

4.2 Feature Extraction (Query Sequences) 

In this way, for every input sequence frame   of the query sequence we find   hand 

candidates. For every hand candidate   in frame  , a 2D feature vector     is extracted. 

    (       ) and the position (   ) is the center of the     sub-window. 

4.3 Normalization 

Further, in order to achieve translation and scale invariance we extract top face window 

at the start of each video sequence. The face detector used is a Viola-Jones type rapid object 

detector [29]. The face detector extracts a single face window corresponding to largest face 

area. This makes sure that the face closest to camera (which we assume, to be corresponding 

to the performing user) is picked up. From the face window, we extract center coordinates of the 

window (       ) and its diagonal length in pixels    . The feature vector is translated such that 

the (       ) is the center of the new coordinate system and then scaled to make the face 

diagonal length     correspond to unit length. The normalized feature vector 

    (
       

   
  

       

   
) is calculated and fed to the DSTW module. 

 

 

Figure 4.7 – Hand detection in model sequences with user wearing colored gloves and 
using full sleeved shirt. 
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4.4 Detection and Feature Extraction (Model Sequences) 

For model sequences in the digit dataset, the user is wearing colored gloves and full 

sleeved shirts. Hence, we assume that we know the location of gesturing hand and extract only 

one sub-window at each frame. A feature vector is extracted from this sub-window and then 

normalized in the same fashion as explained above. The only difference is that we use a 

different technique to extract hand location. Instead of skin detector we use a specific color 

detector optimized to work with specific colored glove. At every frame   of model sequence, we 

extract only one feature vector    (     ) and the position (     ) represents coordinates of 

the center of hand sub-window. Use of additional constraints like colored glove is often 

desirable while for the offline model learning phase as it gives an opportunity to build 

comprehensive model database and at the same time simplifies the construction of accurate 

class models. As long as the special gloves or other markers are not used in performing query 

sequences, they do not affect the naturalness and comfort of the end user. Figure 4.7 shows 

detected hand candidate in a training sequence frame. 
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CHAPTER 5 

DYNAMIC SPACE TIME WARPING 

The Dynamic Space Time Warping algorithm originally described in [31] is an extension 

of Dynamic Time Warping algorithm (described in [35]) to handle the multiple candidate 

detection in each frame. The DSTW algorithm performs the important job of spatiotemporal 

matching (i.e. not only it finds out hand locations at each frame but also align the sequences in 

time domain). For a pair of query and model sequence to be matched, the DSTW aligns query 

and model sequence frames, localizes location of the gesturing hand in each query frame and 

at the same time finds out optimal matching cost between the pair. This query-to-model 

matching cost is further used to classify the nearest neighbor from the dataset of model 

sequences. In this section, at first we describe how DSTW can be used to align two temporally 

segmented video sequences against each other and then we explain how the DSTW can be 

adapted to the case of continuous video sequence in order to perform the temporal 

segmentation.  

5.1 Matching a Query Sequence to a Model Sequence 

 This subsection explains how the DSTW matches query and model sequence provided 

the temporal segmentation is known. Let   (           ) be a model sequence of 

length   frames in which each    is a feature vector. Since we assume we know temporal 

segmentation (i.e. we know where the gesture starts and ends) the query sequence   consists 

of known finite feature vectors. Let   (           ) be a query sequence of length   frames in 

which each    is a feature vector. In the DSTW algorithm, each feature vector consists of 

multiple hypotheses of the hand location, each of those different hypotheses defines a different 

feature vector. In our experiments the feature vector    is a set of feature vectors    
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           (   ) , where each    , for               , is a candidate feature vector.   is the 

number of feature vectors extracted in each frame. Though we assume   to be fixed in our 

experiments, principally it can vary from frame to frame. A warping path   defines an alignment 

between the model sequence   and a query sequence  .              , 

where,     (   )         . Each of    (     ) is a triple which specifies the 

relationship between model feature vector    matched with query feature vector    . The    and 

  of the    represents the temporal dimensions while the   represents spatial dimension. The 

warping path is generally subjected to several constraints (adapted from [35] to fit the DSTW 

framework): 

1) Boundary conditions:    (     ) and      (          ). This condition requires 

the warping path to start by matching the first and last frame of the query and model 

sequence to each other. But there is no restriction on the   and   , which can take any 

value between   to    . 

2) Temporal continuity: Given    (     ) then      (        ), where      

  and       . This restricts the allowable steps in the warping path to adjacent cells 

along the two temporal dimensions.  

3) Temporal monotonicity: Given    (     ) then      (        ), where        

and       . This ensures that the warping path sequence increases monotonically in 

the two temporal dimensions. 

Input: A sequence of model feature vectors            and a sequence of sets of query 

feature vectors    {         }          

Output: A global matching cost       and an optimal warping path    (  
          

 ) 

                

    &     

                

         (     )          (     ) 
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The continuity and monotonicity is required in temporal dimensions but there exists no 

such restriction for the spatial dimension; the warping path can jump from any of the spatial 

candidates    to any other spatial candidate   . The transition cost (     ) is used to evaluate the 

cost that can be incurred by a warping path while transitioning from candidate    at frame     to 

candidate   at frame  . The set  (     ) is a set of all possible values of      that satisfies the 

warping path constraint  (  )   (     )  ( (     ) (       )                )       

      . In addition to the transition cost a local cost       and an initialization cost          are 

used to evaluate the similarities that exist between the model feature vector    and query feature 

vector    . In this thesis we have proposed a few new cost measures and implemented these 

cost measures as the transition cost or the local cost or in combination of both. In all experiments 

the initialization cost is the Euclidean distance between vector    and    . In an experiments 

involving direction error cost being used as the transition cost the initialization cost is suitably 

scaled when adding to direction error cost. The chapter 6 details the proposed cost measures 

and their implementation along with the calculations. The matching cost       for the warping 

   (  
 )   (    

 ) can be found out as      (  )   ∑      (  
 )   

    .  The matching cost is a 

measure of how well the query sequence matches the model sequence. For dataset with multiple 

gesture classes, the matching cost between the query sequence and each class model can be 

compared to decide which model provides the closest match. The warping    further provides a 

candidate hand location at every query frame that optimizes the matching between the query 

sequence and the model. 

5.2 Matching a Query Video to a Model Sequence 

This subsection explains how the query-model sequence matching as described in 

subsection 5.1 can be extended to the case of continuous video sequence where the temporal 

segmentation is not known (i.e. unknown start and end frames). Let   (       ) be the video 

sequence frames where we need to detect gestures. We call   as a query sequence, and from 
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each of the frames    we extract a set    of   feature vectors.               . Each of these 

feature vectors correspond to the hand candidate region extracted at each frame. Let   

(         ) be a model sequence of length   frames in which each    is a feature vector. To 

this model sequence we add a state     such that local cost between model feature vector    

and query feature vector     is zero (i.e.      (      ) = 0. Now the boundary conditions require 

warping path to start by matching the dummy model state    with the first frame     of the query 

(i.e.    (     )) and by matching the end frame of the query with end frame of the model (i.e. 

   (      )). The matching cost       of the warping path   (        )   (        ) is 

defined as      ( )   ∑         (  )
        ( )        (  )

 
    where  (  )   (     )    

( (     ) (       )                )             . 

 

 

Figure 5.1 – Visualizes local and transition cost functions. The figure shows the local 
cost function      (      ) that exists between a model sequence state    and a query sequence 

state    . For the basic method described the local cost function is the Euclidean distance 

between hand co-ordinates of the model and query sequence state. 
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Figure 5.2 Graphical representation of the dynamic space time warping algorithm and warping path. The model sequence   is being 

matched with a query sequence  . The blue arrows shown in the figure shows various warping Paths. The red arrow shown in the figure 
corresponds to the optimal warping path    for the query and model pair being matched. The   and   are the temporal dimension and the 

  corresponds to the spatial dimension. The global matching cost       is the matching cost of the optimal warping path. 
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For solving the above recursion the dynamic programming can be implemented 

effectively using a 3D table, indexed by (     ). Every time the system observes new input 

frame    , the dynamic programming algorithm needs to compute a 2D part of the table that 

corresponds to frame  , storing at every cell (     ) the        (      ), for         

&         and a predecessor  (        ) which correspond to the minimum cost among 

all        (      ). The predecessor can be used to back track the warping path    

(  
 )   (  

 ). 

Since we do not know where the gesture ends, we make an assumption that the 

gesture ends at current input frame   and thus at every input frame    we evaluate whether the 

gesture ends or not. The conditions for temporal continuity and monotonicity remain unchanged. 

The algorithm remains essentially the same except we now add an intermodal competition 

module, which, based on matching cost       makes a decision if the gesture ends at the 

current frame   or not. This inter-model competition module is explained in chapter 7 of the 

thesis. Additionally, in the case of continuous video sequence apart from important information 

such as matching cost and optimal hand candidate at each input sequence frame the warping 

path (under the hypothesis that a gesture has been just performed) specifies optimal temporal 

segmentation of the gesture. 
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CHAPTER 6 

NOVEL COST MEASURES 

The DSTW algorithm essentially finds out the warping path between the given input 

query sequence and known model sequence. The optimal warping path specifies important 

information such as the matching cost between the query and model sequence, optimal spatial 

segmentation (i.e. optimized hand candidates at each frame) and optimal temporal 

segmentation. The optimal warping path returned by DSTW algorithm depends upon the cost 

measure used while matching query and model feature vectors. The unified framework 

proposed in [20] uses Mahalanobis distance between the model state    and feature vector     

as the local cost. The implementation in work by [27] uses sum of Euclidean distance of position 

and motion vectors between the model state    and feature vector     as the local cost while 

simply ignores transition cost. In this thesis work, we propose two novel cost measures namely 

the direction error measure and vector error measure which can be implemented as the local or 

transition cost within the scope of DSTW and evaluate their performance separately. The 

proposed cost measures have demonstrated improved recognition accuracies when used with 

translation and scale invariant (i.e. normalized) feature vectors when compared to the basic 

Euclidean cost measure. It should be noted that the direction error and vector error cost 

measures need the knowledge of only one past query and model sequence state.  

6.1 Direction Error Cost Measure 

The direction error method compares the direction traced by past and current, model 

and query sequence states. The direction error cost measure can be implemented as the local 

as well as the transition cost measure. When the direction traced by first and current model 

sequence state is compared against the direction traced by first and current query sequence 

state, the direction error can be implemented as a local cost function. We call this type of 
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implementation as first-to-current frame direction error as local cost explained in subsection 

6.1.1. When the direction traced by immediate previous and current model sequence state is 

compared with the direction traced by immediate previous and current query sequence state, 

the direction error needs to be implemented as the transition cost function. We call this type of 

implementation as previous-to-current frame direction error as transition cost explained in detail 

in subsection 6.1.2. 

6.1.1 First-to-Current Frame Direction Error as Local Cost     

The error between the direction traced by the first model sequence state    

          and current model state              and the direction traced by first query 

sequence state               and current query sequence state                 can be 

calculated as follows: 

              (                                 ) 

 
   

 
    (     (

      

      
)        (

      

      
))   

       [ 
   

 
    (     (

      

      
)        (

      

      
)) ]                      

It should be noted that the first query sequence feature vector (   ) has been selected 

to minimize the Euclidean distance between query feature vectors   (     ) and model feature 

vector   . The direction error method returns the error cost in degrees and in order to match 

this cost the initialization cost it scaled appropriately. While calculating the direction error cost in 

degrees we ensure the cyclical nature of angle. 

The figure 6.1 depicts how the direction error technique when used as the local cost matches 

the query and model sequence states. The figure on the left hand side shows the model 

sequence states corresponding to each of the model sequence frames while the figure on the 

right shows query sequence states to be matched. The arrows shown in red color corresponds 

to the direction traced by the current and first model sequence frames while the arrows in blue 

corresponds to the direction traced by the current and first query sequence frames. The local 
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cost between a model state        and a query state        can simply be calculated by taking 

the absolute difference between the directions traced by the model sequence state    and the 

query sequence state   . E.g. the direction error between the model sequence state    and 

query sequence state    is simply the error between direction traced by    and    

(i.e.      (     )     (         (     )           (     )). 

 

  

Figure 6.1 – Shows the model sequence states (on left) being matched with the query sequence 
states (on right) for the direction error cost measure used as the local cost. 

 

6.1.2 Previous-to-Current Frame Direction Error as Transition Cost 

The error between the direction traced by the previous model sequence state      

          and current model state              and the direction traced by previous query 

sequence state  (   )                 and current query sequence state                 

can be calculated as follows: 

              (                                     ) 
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Figure 6.2 – Shows the model sequence states (on left) being matched with the query sequence 
states (on right) for the direction error cost measure used as the transition cost. 

 

The figure 6.2 depicts the how the direction error technique when used as the transition 

cost matches the query and model sequences. The figure on the left hand side shows the 

model sequence states corresponding to each of the model sequence frames while the figure 

on the right shows query sequence states to be matched. The arrows shown in red color 

corresponds to the direction traced by the previous and current model sequence frames while 

the arrows in blue corresponds to the direction traced by the previous and current query 

sequence frames. The transition cost between a model state        and a query state        can 

simply be calculated by taking the absolute difference between the directions traced by the 

model sequence state           and the query sequence state           . E.g. the direction 

error between the model sequence state    and query sequence state    is calculated as 

following:      (     )     (         (     )           (     )).  

6.2 Vector Error Cost Measure 

The vector error method finds out the error between the vector traced by the past and 

current model sequence state and query sequence state. The vector error cost measure can be 
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implemented as the local as well as the transition cost measure. When the vector traced by the 

first and current model sequence state is compared against the vector traced by first and 

current query sequence feature vector, the vector error can be implemented as a local cost 

function. We call this type of implementation as first-to-current frame vector error as local cost 

and is explained in subsection 6.2.1. When the vector traced by the immediate previous and 

current model sequence state is compared against the vector traced by immediate previous and 

current query sequence feature vector, the vector error can be implemented as a transition cost 

function. We call this type of implementation as previous-to-current frame vector error as 

transition cost and is explained in subsection 6.2.2.  

6.2.1 First-to-Current Frame Vector Error as Local Cost 

The error between the vector traced by the first model sequence state              

and current model state              and the vector traced by first query sequence state 

              and current query sequence state                 can be calculated as 

follows: 

     (                                 )

 √( (       )  (         ) )
 
 ( (       )  (         ) )

 
 

It should be noted that the first query sequence feature vector (   ) has been selected 

to minimize the Euclidean distance between query feature vectors   (     ) and model feature 

vector   .  

The figure 6.3 depicts the how the vector error technique when used as the local cost 

matches the query and model sequences. The figure on the left hand side shows the model 

sequence states corresponding to each of the model sequence frames while the figure on the 

right shows query sequence states to be matched. The arrows shown in red color corresponds 

to the vector traced by the current and first model sequence frames while the arrows in blue 

corresponds to the vector traced by the current and first query sequence frames. The local cost 
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between a model state        and a query state        can simply be calculated by finding the 

Euclidean distance between the vectors traced by the model sequence state    and the query 

sequence state   . E.g. the vector error between the model sequence state    and query 

sequence state    is calculated as       (     )            (      (     )       (   

  )).  

 

 

Figure 6.3 – Shows the model sequence states (on left) being matched with the query sequence 
states (on right) for the vector error cost measure used as the local cost. 

 

 

6.2.2 Previous-to-Current Frame Vector Error as Transition Cost 

The error between the vector traced by the previous model sequence state      

          and current model state              and the vector traced by previous query 

sequence state  (   )                 and current query sequence state                 

can be calculated as follows: 

     (                                     )

  √( (         )  (           ) )
 
 ( (         )  (           ) )
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Figure 6.4 – Shows the model sequence states (on left) being matched with the query sequence 
states (on right) for the vector error cost measure used as the transition cost. 

 

The figure 6.4 depicts the how the vector error technique when used as the transition 

cost matches the query and model sequence states. The figure on the left hand side shows the 

model sequence states corresponding to each of the model sequence frames while the figure 

on the right shows query sequence states to be matched. The arrows shown in red color 

corresponds to the vectors between the previous and current model sequence frames while the 

arrows in blue corresponds to the vectors between the previous and current query sequence 

frames. The transition cost between a model state        and a query state        can simply be 

calculated by taking the Euclidean distance between the vectors between the model sequence 

state           and the query sequence state           . E.g. the vector error between the 

model sequence state    and query sequence state    is calculated as following:      (     ) 

=           (      (     )        (     )).
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CHAPTER 7 

INTER-MODEL COMPETITION AND SUB-GESTURE RELATIONS 

The inter-model competition algorithm decides whether a gesture has been just 

performed or not. In order to determine if a gesture has been performed or not, the inter-model 

competition algorithm compares the matching cost returned by the model gestures at each 

frame. At this stage the knowledge of sub-gesture relations is required. Sub-gesture relations 

play an active part in deciding if a gesture has ended and in determining the gesture class of the 

gesture. The sub-gesture relations solves the sub-gesture problem discussed in section 1.1 

(figure 1.2). 

7.1 Sub-gesture Relations 

 The inter-model competition algorithm requires knowledge of the sub-gesture 

relationships between the gestures. The sub-gesture relationships can be manually specified 

typically when sub-gesture relations are obvious and number of gesture classes is less. 

However, if the sub-gesture relations are less obvious, an automated learning method 

described in [56] can be used. A gesture    can be a sub-gesture of another gesture    if   is 

similar to a part of    under the similarity model of the matching algorithm. Figure 1.2 explains 

the sub-gesture problem occurring between the digit gesture “5” and digit gesture “8”. The 

manually defined sub-gesture relations for the digit dataset are tabulated in table 8.3. 

7.2 Inter-model Competition 

The inter-model competition algorithm at every input frame, decides if a gesture ends at 

the current input frame   or not. If a gesture ends at current input frame   then the inter-model 

competition algorithm finds out the closest matching model gesture candidate. At every input 

frame the inter-model competition algorithm is invoked once. When invoked, the inter-model 

competition algorithm firstly updates a list of selected model candidates at every frame and 
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based on certain set of rules, it decides from the list (of selected model candidates), which of 

the model candidate gesture actually corresponds to the gesture performed by the user in the 

input video sequence. 

Before the first input video sequence frame is observed a list     of selected model 

candidates is initialized to be empty. At every input frame, the continuous DSTW module 

updates the matching costs corresponding to all model sequence candidates. The inter-model 

competition algorithm then scans the matching cost of each model gesture candidate and if the 

matching cost (normalized over path length) is below a certain fixed threshold then the model 

gesture candidate is appended to another list     . The list    is initialized to be empty at each 

frame. For every selected candidate   in the list   , important parameters such as start frame   , 

end frame   (i.e. current frame), path length   , matching cost   and gesture class   are 

recorded. The nearest   neighbor candidates (i.e. candidates with least matching cost) from the 

list    vote to determine the class of the gesture being performed at the current frame  . When 

using sub-gesture relations: if the candidate    is a sub-gesture of another candidate     or vice 

versa, then the sub-gesture candidate votes for the class of the super-gesture candidate. Once 

the gesture class is determined, a candidate belonging to recognized gesture class    with 

minimum matching cost    is appended to the list   .  

The intermodal competition algorithm observes the list    for several frames before it 

makes any decision regarding the spotted gesture. At every frame, the candidates in the list 

   are subjected for edition based on set of rules defined as follows: 1) When using sub-gesture 

relations: If a candidate    is a sub-gesture of candidate     or vice versa, then the sub-gesture 

candidate is replaced by the super-gesture candidate. 2) If start frame of a candidate    

occurred before the end frame of the other candidate    and model gesture candidates    and 

    do not overlap then the candidate with worst matching cost is deleted. 3) If the candidate    

overlaps with candidate     then the one with lower matching cost survives. In other words a 

selected candidate    in the list    is accepted only when all other overlapping candidates have 
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been rejected. Once a gesture has been detected (spotted and recognized), the list    is reset to 

empty. All matching cost tables are cleared and the entire process of gesture detection (i.e. 

spatiotemporal matching) starts again assuming the next input frame to be the first frame of 

next sequence. 
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Figure 7.1 Graphical representation of the model-competition algorithm. 
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CHAPTER 8 

EXPERIMENTS AND RESULTS 

8.1 Digit Dataset 

The proposed cost measures are tested using the digit dataset sequences. The digit 

dataset sequences contain gestures corresponding to ten digit classes (0-9) in the style of Palm 

Graffiti Alphabet [37] as shown in the Figure 8.1(a-f) and Figure 8.2(a-d). The video clips were 

captured using a Unibrain Firewire camera at the rate of 30 frames per second with an image 

resolution of 240x320. The digit dataset contains 30 training (model) video sequences (3 from 

each of the 10 users) each comprising the ten gestures (0-9) performed by users wearing 

colored gloves and 14 test (query) video sequences (2 from each of the 7 users) each 

comprising the ten gestures (0-9) performed by the users wearing short sleeved shirts and with 

distractors in the form of one to three humans (in addition to the gesturing user) moving back 

and forth in the background as shown in Figure 8.3(a-b). The presence of such distractors 

makes these test sequences quite challenging for the methods assuming reliable hand 

localization and methods dependent on global features. This set of test sequences is often 

referred to as the “hard” digit dataset. It should be noted that the test sequences have gestures 

performed sequentially in order 0 to 9. But the system is not cognizant about the order and thus 

makes no difference in terms of recognition accuracy. The model gestures are trained using 

segmented examples, so no information about the preceding digit is available. Also, there are 

no articulatory effect between the gestures as the hand comes back to rest position after every 

digit gesture is performed. All the video sequences in the training dataset as well as the 

manually annotated ground truth files are available at [57]. 
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(a)  (b) 

  

(c)  (d) 

  

(e)  (f) 

Figure 8.1(a-f) – Shows the 0-5 digit gestures of the digit dataset 
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(a)  (b) 

  

(c)  (d) 

Figure 8.2(a-d) – Shows the 6-9 digit gestures of the digit dataset 
 

  

(a)  (b) 

Figure 8.3 (a-b) – Shows the distractors in the “hard” digit dataset present in the form of one to 
three persons moving in the background.  

 
8.2 Detection and Feature Extraction 

At every query sequence frame,   2  hand candidate locations each of size 40x40 

are detected as described in the chapter 4. For every hand candidate a 2D feature vector is 
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extracted and normalized using the method described in the chapter 4. The figure 8.4 (a-b) 

shows top 25 hand candidates extracted from each query sequence frame. 

 

   

(a)  (b) 

Figure 8.4 (a-b) – Shows the extracted top 25 candidates at each frame. 
 

8.3 Experiments – I 

In the first phase of experiments we evaluate the each of the proposed cost measure 

separately. In order to evaluate each cost measure separately for recognition accuracy, it has 

been assumed that the system knows temporal segmentation (i.e. start and end frames of the 

query sequence is known). Each of the test sequence gesture is matched to the model 

sequence using the algorithm described in section 5.1 and the class of the query gesture is 

identified based on a vote taken amongst ten nearest neighbors (10-NN) rule. The figure 8.5(a) 

and 8.5(b) shows a correct and a false match respectively. The figure 8.6 shows a comparison 

graph between the classification accuracy of the various proposed cost measures in 

comparison with the Euclidean cost measure used as local cost (basic cost measure).  
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(a)  (b) 

Figure 8.5 – Illustrates matching of gestures. (a) shows correct gesture match, (b) shows how a 
gesture of class “0” is wrongly matched with gesture of class “6” 

 

Table 8.1 – Enlists recognition accuracies for different cost measures.   is the number of hand 
candidates extracted per frame. The method outlined using a gray colored box and highlighted 

in blue is the baseline method while the rest are proposed methods. 
 

Experiment Initialization cost Local cost 
Transition 

cost 
  

Recognition 
Accuracy (%) 

Basic Euclidean Distance 
Euclidean 
Distance 

X 5 43.57 

1 
constant*Euclidean 

Distance 

Start-to-
current 

direction 
error 

X 7 36.43 

2 
constant*Euclidean 

Distance 
X 

Previous-to-
current 

direction 
error 

3 65.71 

3 Euclidean Distance 
Start-to-
current 

vector error 
X 7 66.43 

4 
Euclidean 
Distance 

X 
Previous-to-

current 
vector error 

25 80.71 

5 Euclidean Distance 
Start-to-
current 

vector error 

Previous-to-
current 

vector error 
14 67.85 

 

The table 8.1 illustrates the recognition accuracy obtained for the hard dataset on 

various proposed and the basic cost measure. The best result was attained for   2 , with a 

detection rate of        ⁄         when the previous-to-current frame vector error is used as 
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the transition cost. The scaling constant used for matching the Euclidean distance initialization 

cost to the direction error cost was set as 100. The mark “X” in the table indicates that the 

corresponding type of cost was not used in that experiment. Additionally, we perform an 

experiment 5 where we try to combine the start-to-current vector error cost measure with the 

Previous-to-current vector error cost measure.  

 

 

Figure 8.6– Shows the comparison graphs for recognition accuracy obtained for proposed cost 
measures. 

 

8.4 Experiments II (a) 

Based on the results obtained in the first phase of experiments, it is evident that the 

previous-to-current frame vector error method when used as the transition cost yields 

significantly better recognition accuracy than the basic as well as other proposed methods. We 

use this cost measure and apply it in a detection framework which neither knows the temporal 

segmentation nor the spatial segmentation. After extracting the feature vectors at each query 

sequence frame as described in chapter 4, the continuous DSTW modules (described in section 

5.2) updates the matching cost tables corresponding to each of the model gesture candidates. 
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The inter-model competition algorithm (described in chapter 7) performs the challenging task of 

temporal segmentation and reports accuracy of the proposed frameworks in terms of detection 

rate (i.e. number of correct detections) and the number of false positives. The correct detection 

is any detection which satisfies following two necessary conditions: 1) The recognized gesture 

class matches with the gesture class in manually annotated ground truth gestures. 2) At least 

half of the detected gesture overlaps with the manually annotated ground truth gesture and vice 

versa, as proposed by Williams [58]. 

Table 8.2 – Tabulates detection rate and false positives for Experiments II (a) – GSwoSR (i.e. 
Gesture Spotting without Sub-gesture Relations). The table also compares the basic Euclidean 
distance as local cost method and proposed Previous-to-current frame vector error as transition 

cost method on continuous recognition of digits. 

 
The table 8.2 illustrates the detection rate and false positives obtained for the hard 

dataset in the experiment II (a) i.e. Gesture spotting without sub-gesture relations. The best 

result without using sub-gesture relations was attained for   2 , with a detection rate of 

     ⁄         and    false positives when using the proposed Previous-to-current vector 

error as the transition cost. The basic Euclidean distance as local cost method in comparison 

attained best detection rate of  2    ⁄  22     at    . 

8.5 Experiments II (b) 

Further we extend the experiments performed in second phase by adding the 

knowledge of sub-gesture relations to the framework. The inter-model competition algorithm 

Results for Experiment II(a) – Gesture Spotting without sub-gesture relations 

 
Basic Euclidean distance as local 

cost method 
Previous-to-current frame vector error 

as transition cost method 

  Detection Rate (%) 
False 

Positives 
Detection Rate (%) False Positives 

1 19.28571 42 30.71429 49 

3 20 60 40.71429 72 

5 21.42857 76 40.71429 64 

7 22.85714 64 44.28571 71 

10 22.85714 69 52.85714 47 

15 21.42857 70 58.57143 52 

20 21.42857 63 59.28571 48 

25 19.28571 79 61.42857 51 
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used in these experiments use manually defined sub-gesture relationships as stated in table 

8.3. We note that the use of sub-gesture relations improve the performance in overall by 

increasing detection accuracy and bringing down the false detections.  

Table 8.3 – Enlists manually defined sub-gesture relations 
 

Sub-gesture class Super-gesture class Sub-gesture class Super-gesture 
class 

1 { 9, 7 } 2 { 7 } 

4 { 5, 8, 9 } 5 { 8 } 

7 { 2 , 3 } 3 { 7 } 

 
The table 8.4 illustrates the detection rate and false positives obtained for the hard 

dataset in the experiment II (b) i.e. Gesture spotting with sub-gesture relations. The best result 

with using sub-gesture relations was attained for   2 , with a detection rate of      ⁄  

       and    false positives when using the proposed Previous-to-current vector error as the 

transition cost. The basic Euclidean distance as local cost method in comparison attained best 

detection rate of      ⁄  2      at     . 

Table 8.4 – Tabulates detection rate and false positives for Experiments II(b) – GSwSR(i.e. 
Gesture Spotting with Sub-gesture Relations). The table also compares the basic Euclidean 

distance as local cost method and proposed Previous-to-current frame vector error as transition 
cost method on continuous recognition of “hard” digit dataset when using the sub-gesture 

relations. 

 

The methods such as [5 – 12] assuming reliable hand localization and [21 – 26] using 

global features have not been demonstrated on the scenes where the presence of distractors is 

Results for Experiment II(b) – Gesture Spotting with sub-gesture relations 

 
Basic Euclidean distance as 

local cost method 
Previous-to-current frame vector 
error as transition cost method 

  Detection Rate (%) 
False 

Positive
s 

Detection Rate 
(%) 

False 
Positives 

1 20 41 32.14286 49 

3 21.42857 59 40.71429 74 

5 25.71429 71 45 74 

7 25 65 46.42857 76 

10 25 72 55.71429 44 

15 26.42857 68 60 42 

20 20.71429 38 63.57143 42 

25 22.14286 73 70.71428 39 
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comparable to the presence of distractors in the hard digit dataset. Further, when we make 

    the basic method reduces to the CDP method of Oka [42]. It is evident from the table 8.4 

that the method proposed here (previous-to-current frame vector error as the transition cost) 

with any     produces significantly higher detection rates. From these results, it can be 

inferred that the DSTW which uses simple hand detector and allows multiple hand candidate at 

each frame, to a great extent, can overcome the challenge posed by presence of distractors in 

the hard dataset. 

 

 

Figure 8.7 – Shows comparison graph between Experiments-I (Gesture Recognition), 
Experiment II (a) (i.e. Gesture Spotting without Sub-gesture Relations) and Experiment II (b) 

(i.e. Gesture Spotting using Sub-gesture Relations). 
 

8.6 Software Implementation 

All the experiments have been performed on a 2.0 GHz dual core processor using 

software implementation in MS VC++ [59].The detection and feature extraction is performed 

with the help of MATLAB [60]. For real-time implementation of the framework the openCV 

library [61] was used for detection and feature extraction. In experiments II (a) and II (b) only 

Experiment I: Known
start and end frames
(Gesture recognition)

Experiment II(a):
Unknown start and

end frames ( Gesture
spotting without

subgesture
reasoning)

Experiment II(b):
Unknown start and

end frames using sub-
gesture relations (i.e.
Gesture spotting with

subgesture
reasoning)

Basic Euclidean distance as local cost 43.60% 22.85% 26.42%

Previous-to-current vector error as
transition cost

80.71% 61.50% 70.71%
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one out of every five input frames were used by the continuous DSTW module for further 

processing. 
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CHAPTER 9 

DISCUSSION, CONCLUSION AND FUTURE WORK 

In this thesis we have presented a few novel cost measures to achieve improved 

recognition accuracy for robust recognition of hand gesture using the translation and scale 

invariant feature vectors in a real world scene with cluttered background and in presence of 

multiple moving skin colored distractors in the background. The DSTW algorithm addresses the 

need to accommodate multiple hand locations per frame instead of assuming prefect hand 

detection. The method does not require low level detection module to perform spatial or 

temporal segmentation. The higher level modules namely the continuous DSTW module and 

inter-model competition module handle the spatial and temporal segmentation; thus avoiding 

the drawbacks of the bottom-up approach. The method incorporates robustness into the 

recognition at no additional computational cost by introducing translation and scale invariance 

into the feature vectors. The system is robust enough to sustain with users performing gestures 

wearing short sleeved shirts and in presence of distractors in the form of one to three persons in 

the background. 

 The use of DSTW algorithm improves the recognition accuracy by a factor of 2   in 

terms of detection accuracy of the vector error as transition cost method as compared to the 

CDP approach proposed by Oka et al. [42] using the basic Euclidean distance as the local cost 

method. The vector error cost measure when implemented as the transition cost outperforms 

other proposed cost measures. It should be noted that the improved accuracy in the case of 

vector error cost measure comes at the computational cost of calculating the transition cost of 

(2   ) previous hand candidates for each of the hand candidate in present frame. The 

computational complexity of the proposed vector error cost measure is  (    ) which higher 
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as compared to the approach proposed by Alon et al [20]  (   ) and CDP proposed by Oka et 

al. [42]  (  ).  

Also the direction error cost measure does not seem to perform well as compared to the 

basic Euclidean distance cost measure when used as the local cost. The important reason for 

this being the nature of the direction error cost measure which does not take into account the 

distance between the hand candidates. E.g. in the figure 9.1 the direction traced by frames 1 

and 6 (i.e. we call          (   )) and direction traced by frames 1 and 8 (i.e. we 

call          (   )) are same. The direction error cost measure cannot differentiate between 

         (   ) and          (   ).  

 

Figure 9.1 – Illustrates limitation of the direction error cost measure. The direction error 
cost measure cannot differentiate between          (   ) and          (   ). 

 

The direction error cost measure can often wrongly match model-query frame with 

distant hand locations. Hence the vector error cost measure was introduced in order to add a 

distance measure to the direction. Despite of the limitations of the direction error cost measure, 

it should be noted that the direction error is inherently translation and scale invariant.  

In order to make the framework more robust a rotational invariance can be introduced 

which will take care of the rotations occurring in the image plane of the user performing gesture. 
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The use of pruning classifiers as proposed by Alon et al. [20], [39] can be used to make the 

framework more efficient in terms of computational complexity. An interesting idea would be to 

learn a classifier by adding several weighted cost measures. Further, the depth color 

information can improve the hand detection (i.e. need of less hand candidate gesture per frame) 

and thus improve the overall performance of the system in terms of the efficiency and accuracy 

[62]. The proposed method can be extended and applied to the American Sign Language 

recognition. Some key features of the method like the ability to perform well in translation and 

scale invariant feature vector as well as the ability to operate in absence of reliable hand 

detection are desirable for building robust sign language recognition systems. 
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