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ABSTRACT

SECURE DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

WEI ZHANG, Ph.D.

The University of Texas at Arlington, 2008

Supervising Professor: Sajal K. Das

Recent advances in micro-electro-mechanical systems (MEMS) technology and

wireless communications technologies have enabled the deployment of wireless sensor

networks (WSNs) in a plethora of applications, ranging widely from military surveillance

to civilian applications. To protect the networks from different kinds of attacks, security

in wireless sensor networks plays a crucial role and has received increased attention espe-

cially in the applications deployed in hostile environments, such as battlefield monitoring

and home security. While extensive efforts have been devoted toward securing conven-

tional networks, the stringent resource constraints, such as energy, communication and

computation capability, etc., have often prevented their direct adoptions.

As the goal of a sensor network is to gather sensory data from the deployed sensor

nodes, in-network processing, or aggregation, is often adopted for energy efficiency. How

to guarantee the security of aggregation is an intriguing challenge. In this dissertation,

we propose a novel framework for secure data aggregation in WSNs, which includes two

approaches i) a watermark based approach for the aggregation supportive authentication

and ii) a trust model based approach for securing data aggregation.

We first propose an end-to-end authentication scheme based on digital watermark-

ing, a proven technique notably in the multimedia domain. The key idea is to visualize
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the sensory data gathered from the whole network at a certain time snapshot as an im-

age, in which every sensor node is viewed as a pixel with its sensory reading representing

the pixel intensity. Under this mapping, the authentication information is modulated

as a watermark and superposed on the sensory data at the sensor nodes. The water-

marked data then can be aggregated by the intermediate nodes without any enroute

checking. Upon reception of the sensory data, the data sink is able to authenticate

the data by validating the watermark. This approach realizes aggregation-survivable,

end-to-end authentication and hence provides an effective way against false data sent

by outsider attacks. Furthermore, we extend the watermarking scheme so that it can

not only perform authentication, but also give a quantitative assessment on the sensory

data’s quality in terms of distortion. By performing experimental studies on a public

sensory data set, some observations are made about the relation of distortion between

the watermark and the raw sensory data.

The second approach aims to secure data aggregation and quantify the uncertainty

in the aggregate results in the presence of compromised nodes (insider attacks). Instead

of solely relying on cryptographic techniques, our proposed scheme solves the problem by

utilizing multiple and yet closely coupled techniques to secure data aggregation against

false data injection. Specifically, by examining every sensory data against each other,

the redundancy in the gathered information is exploited to evaluate the trustworthiness

of each individual sensor node. This trustworthiness is quantified as each node’s repu-

tation and serves as an input to a classification algorithm with the goal to detect any

compromised nodes. Moreover, every aggregate result is associated with an opinion to

represent the degree of belief, a measure of uncertainty, in the aggregate result. As mul-

tiple results and their corresponding opinions are disseminated and assembled through

the routes to the sink, these opinions will be consolidated and propagated based on

vi



Josang’s belief model so that the uncertainty inherent in the sensory data and aggregate

results in the whole WSN can be reasoned about.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks have been emerging recently and the applications range

widely. A distributed sensor network is usually composed of a large number of self-

organized sensor nodes and one or more base stations. Each sensor node is equipped

with a microprocessor for data processing, radio chip for wireless communication and

sensor board for sensing some physical phonomania, such as temperature, light, humid-

ity, accelerometer, etc. Depending on the specific task, sensor nodes are often deployed

into some sensing field so that they can collaborate with each other and form a wireless

network. The base stations act as gateways that connect the sensor network to the

outside network.

In this chapter, we give an introduction to wireless sensor networks and the security

issues in them. Specifically, Section 1.1 overviews the typical sensor nodes and lists the

characteristics in wireless sensor networks. Section 1.2 addresses security issues and

challenges in wireless sensor networks. We introduce our contribution in Section 1.3.

The organization of this dissertation is listed in Section 1.4.

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) are sprinting toward wide deployment in a

plethora of applications, ranging widely from military surveillance to civilian applica-

tions [14, 2, 1]. One common task for WSNs is gathering information and sending it

back to the base stations for further processing.

The rapid development of Micro Electro Mechanical Systems (MEMS) and wire-

less communication technologies have advanced sensor nodes’ design. As a result, the

1
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capabilities of each sensor node in terms of computation, communication and memory

storage have been significantly improved. Table 1.1 shows the hardware evolution for

some typical sensor nodes.

Table 1.1. Typical Sensor Node

Berkeley Mote SUN
Sensor node type MICA2 MICAZ SUNSPOT
Microprocessor ATMega 128L ATMega 128L ARM920T

8MHz, 8-bit 8MHz, 8-bit 180 MHz 32-bit
Battery 2X AA batteries 2X AA batteries 3.7V lithium-ion battery

Memory Flash memory 128K 128K 4M
RAM 4K 4K 512K

Radio Radio frequency 315/433/868/916 MHz 2.4 GHz 2.4GHz
Data rate 38.4Kbaud 250 kbps 1.5 Mbps

Despite the computation capability and communication bandwidth get enhanced

as shown in Table 1.1, the battery powered, low-cost sensor nodes are still pretty resource

constrained compared with other wireless mobile devices, such as PDA, smart phone

and laptop, etc. Furthermore, as the battery technology has not advanced as fast as

computer technology, the longevity of the battery determines the lifetime of WSNs since

it is infeasible to replace the batteries for all the sensor nodes.

Besides the stringent resource constraints, there are usually some other character-

istics in WSNs.

Application-specific: Unlike general purpose computer systems, WSNs are usu-

ally designed as an information gathering platform to report the monitoring tar-

gets/environment for some specific applications.

High node density: Each sensor node is not reliable and prone to failure due to

either physical damage or malfunction. To provide fault tolerance, sensor networks

are usually densely deployed. As pointed out in [20], a typical sensor network may

contain thousands of nodes, with certain cases up to 20 nodes/m3.
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In-network processing: In WSNs, messages may be transmitted by multicast

or flooding. Intermediate nodes need to access and modify a message into a more

compact message before relaying further. Therefore, in-network processing, or ag-

gregation, is an effective approach to reduce redundant messages and save energy.

In general, there are mainly two ways for aggregation to reduce the amount of

traffic load. The first one is to compress the gathered sensory data before forward-

ing it based on some compression algorithms. The second one is to extract only

some interesting information from the gathered data to response some queries, e.g.,

average, sum, etc.

Lack topology knowledge: A common approach to deploy WSNs is randomly

scattering from an airplane. So, the topology knowledge is not available until

after deployment. In addition, due to the mobility of sensor nodes or failures, the

topology of a sensor network may change very frequently.

All these characteristics bring up some new design issues.

1. Since energy consumption is critical to the sensor network longevity, to maxi-

mize the lifetime, any algorithms and protocols should be energy efficient.

2. Depending on the specific requirements for various tasks, application-aware

algorithms and protocols are desirable to adapt to different applications.

3. Due to the high node density, reducing redundancy is indispensable to remove

the redundancy that exists in the information gathered from the sensor nodes that

are physical proximately to each other.

4. Dynamic topology management is essential to maintain the coverage and con-

nectivity, which is a prerequisite for routing algorithms.

5. High node density also brings scalability concerns. All the algorithms and

protocols should be scalable, especially for the sensor networks composed of a

number of sensor nodes deployed in a large geographical region.
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6. Security is a major concern for all sensor network applications, especially

for those deployed in unattended or hostile environments. Limited resource, in-

network processing along with other particularities complicate the security frame-

work construction.

1.2 Security in Wireless Sensor Networks

Among the above issues, this research work focuses on security in wireless sensor

networks since it is essential to many applications. Particularly, how to secure in-network

processing (aggregation) against different kinds of attacks is our main research objective.

1.2.1 Common Attacks in Wireless Sensor Networks

Considering a wireless sensor network deployed in an unattended environment, due

to lacking of physical protections, the network is vulnerable to various kinds of attacks.

In particularly,

Eavesdropping: As in any other wireless communications, eavesdropping is easier

in wireless medium than wired line networks. In WSNs, an adversary can access

private information by monitoring transmissions between sensor nodes.

If eavesdropping is passive, only confidentiality is compromised. Using proper

encryption on the messages can avoid this kind of attack. However active attacks,

including participation or even jamming, could exacerbate the vulnerabilities.

Compromising node: In a hostile environment, either by physically capturing

or spreading malicious code, the sensor nodes are subject to compromise. Once a

node gets compromised, all the information even key information stored in it might

be exposed to the attacker. Compared with the outsider attack where an attack

can only access the transmission channel, the compromised nodes can launch an

insider attack by using the secret cryptographical keys.
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Node insertion: An attacker might “add” a node to the system and inject data

as a legal node. Authentication could be used against this kind of attack, but

not for all cases. A typical attack is called “Sybil” attack [24], under which,

a single node can present multiple identities to control a substantial fraction of

the whole network. It depreciates the effectiveness of the schemes that rely on

network redundancy and also threatens the geographic routing protocols since the

coordinate location information is very important for efficiently routing.

Besides, by exploiting each layer’s vulnerabilities in the network protocol stack,

an adversary could launch a broad category of DOS attacks that can diminish or nullify

WSNs capacity to perform its expected functions [70].

1.2.2 Security Goals and Challenges

In order to defend against the attacks, a lot of work has been conducted. In

general, for any security mechanism, it should be capable to defend against different

attacks to achieve the following security goals.

Confidentiality or privacy: Ensure that only authorized parties can access the

data. That is, keep the information from disclosure to unauthorized parties.

Integrity: Ensure that only authorized parties can modify the data and the data

is not altered during transmission.

Authentication: Ensure that the data is really sent by the claimed sender instead

of fabricated by someone else.

Availability: Ensure that the data is reliably delivered and robust to denial of

service attacks.

Freshness: Ensure that the data is current and fresh (i.e. is not replayed by an

adversary).

However, the limited resources along with the characteristics listed in Section 1.1

pose new challenges in security design [11].
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First, although some public key cryptosystems, which used to be too energy ex-

pensive for WSNs in a general perception, have been exploited in recent research works

[37, 66, 65, 34], resource constraints are still one main concern in sensor work design.

Considering the multiple tasks (sensing, data processing, transfering/forwarding) per-

formed for each sensor node and the fact that the pace of battery lifetime improvement

is much slower than that of microelectronic chips, resource limitation remains as the

bottleneck preventing directly adopting the security mechanisms from conventional net-

works.

Second, compared with the sensor nodes, the base station has more resources in

terms of power, computation and storage capacity. As a result, the base station is usually

treated as a trusted source and thus most of the complicated security related processing

is done in base stations. The over-reliance on base stations may cause single-point failure

once the attacks are launched on them.

Third, one type of the most popular key establishment and management schemes

in WSNs is key pre-distribution, which means the key information is distributed (stored

into ROM) among all sensor nodes before deployment. However, lack of deployment

configuration knowledge causes some problems for these schemes. Theoretically, only

those nodes that are neighbors need to share pairwise keys between each other. However,

this would be infeasible without knowing which nodes will be neighbors in the network.

As a result, the number of keys stored in each sensor node becomes an important factor

to trade off between the efficiency and security for most key management schemes.

Last but not least, although in-network processing/aggregation is an effective ap-

proach to reduce the redundant messages and save energy, it requires a trust relationship

beyond that in the traditional end-to-end security mechanisms. The access and mod-

ification on the content of messages by the intermediate nodes brings some security

concerns in both integrity and confidentiality.
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In light of this, this thesis proposes several schemes which aim to secure in-network

processing against various attacks in sensor networks.

1.3 Contribution of This Dissertation

This research work has been motivated by the observation that for any densely

deployed sensor network, high redundancy exists in the gathered information from the

sensor nodes that are close to each other. For example, for some physically proximate

sensor nodes that are monitoring some environment, e.g. temperature, it is most likely

that their sensory data are very similar. To this end, we exploited the redundancy and

designed schemes to secure different kinds of aggregation processing against both insider

and outsider attacks. Figure 1.1 shows the overview of our work.Aggregation AttacksCompression based InsiderOutsiderQuery basedWatermarking based authentication Trust based purgeWatermarking based data quality assessment
Figure 1.1. Overview of the proposed work.

To defend against outsider attacks for compression based aggregation, we novelly

propose using digital watermarking to realize end-to-end authentication by visualizing

the sensor network as an image. Thanks to the redundancy, the watermark can be
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embedded into the original sensory data. Unlike the conventional MAC (Message Au-

thentication Code) based approaches which requires not only complex pairwise key man-

agement, but also frequent hop-by-hop checking, the property of robustness watermark

provides a nice feature such that even if the gathered sensory data has been distorted

due to compression, the scheme is still able to have the capacity for authentication.

Another attractive part of watermarking based authentication lies in the fact that it fits

the asymmetric energy consumption requirement in wireless sensor networks. For the

resource constraint sensor nodes, a simple operation (addition) is enough to embed the

watermark information. While the heavy computation related to watermark detection

is performed at the base station, which has unlimited resource.

In addition to authentication, digital watermarking is further employed to estimate

the quality of sensory data. By abstracting the path via which the sensory data go

through to the base station as an unknown channel, the noise which is contributed by

both aggregation and possible attacks will lead to the distortion between the original

sensory data and those received by the base station. In this dissertation, we proposed

different distortion metrics to evaluate the data quality. By calculating the watermark

distortion between the original and received one, we performed some experimental study

to investigate the distortion relation between watermark, watermarked data and raw

sensory data.

To secure query based aggregation against insider attacks, we propose a trust based

framework. Observing the fact that sensor nodes are subject to capture in an unattended

or hostile environment, node compromise may lead to insider attacks. Under which, all

the secret information is reveal to the adversary. Our proposed framework can identify

and purge the false data sent by the compromised nodes and quantify the uncertainty

in the aggregate results. Since the traditional cryptography based schemes fail to work

under the insider attacks, we uniquely utilize multiple and yet closely coupled techniques
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to solve this problem. In this scheme, statistics is extracted from the highly correlated

sensory data and further processed to serve as a metric, called reputation, to evaluate

the trustworthiness of each sensor node. By comparing the reputation of each sensor

node, the compromised nodes can be identified and their data will be blocked. Moreover,

this trustworthiness is collaborated with Josang’s trust model [44, 46, 45], so that the

uncertainty existing in the aggregation results can be quantified and propagated along

the path to the data sink.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows.

In Chapter 2, we overview the general security design paradigms in the literature.

Chapter 3 delivers the primary concepts and techniques that our work is based on, which

include compression-based aggregation, digital watermarking, Josang’s belief model and

the sensor network model. Chapter 4 proposes a watermark based approach for authen-

tication. We show how the redundancy is exploited to embed the spatial watermark

into the physical approximate nodes and derive the detection formula for authentica-

tion in a simplified case. Some design issues for real-world applications are discussed as

well. In addition to the spatial domain watermark which relies on the network’s physical

topology, we also develop a temporal domain watermark algorithm applied to each in-

dividual sensor node. The simulation shows the results from both spatial and temporal

watermark schemes. The experimental study presents the results from a public sensory

data set. Chapter 5 describes the motivation to extend the watermarking scheme for

data quality assessment and performs experimental study on the same public data set.

Chapter 6 describes a trust based framework to secure data aggregation. It begins with

an overview of the whole framework and then gives a detailed description of each com-
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ponent in the framework. Simulation results are also presented. Chapter 7 concludes

this dissertation with future research directions.



CHAPTER 2

SECURITY IN WIRELESS SENSOR NETWORKS – RELATED WORKS

Although wireless sensor networks can be deployed in a variety of scenarios, secu-

rity is an important issue to ensure the network works properly, especially in a hostile or

unattended environment, such as battlefield monitoring and home security applications.

For those applications which are subject to malicious attacks, an effective and efficient

security mechanism plays a critical role to fulfill the task.

This chapter overviews the security schemes in the literature. Section 2.1 discusses

the general security defense strategy in the context of network cross-layer design. Section

2.2 details the existing secure aggregation schemes. Some other security work that is

related to aggregation is also presented. Section 2.3 summarizes this chapter.

2.1 Cross-layer Design and Security Defense

In order to effectively defend against various attacks, instead of applying them as

a patch, security issues should be taken into account at the beginning of network design.

By merging closely-correlated protocols and utilizing the synergy between the various

layers, cross-layer design paradigm is usually employed in WSNs to maximize the overall

network performance [51, 49]. Fig. 2.1 lists the protocol layers of typical WSNs and the

countermeasures to the possible attacks that might be launched in each layer.

At the physical layer, the most common attack is jamming, which interferes the

WSNs with the same RF that the network is using. The standard defense against

jamming is spread-spectrum communication so that the jammers have to either follow

the precise hopping sequence or jam a wide section of the band to launch the attack [70].

11
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WSNs protocol stack

Physical layer

MAC

Infrastructure
establishment

Network layer

Application layer

Countermeasures

Spread-spectrum

Key establishment and management

Secure location information,
time synchronization

Secure routing

Secure aggregation

Intrusion detection

A
uthentication

Figure 2.1. WSNs protocol stack and the security defenses.

At the MAC layer, in order to setup a secure and authenticated communication link

between two sensor nodes, encryption key based cryptograph is a typical defense against

eavesdropping. Besides, after the deployment, the infrastructure must be established for

the collaborative work. In particular, time synchronization and location information are

two central factors to many applications. As a result, how to secure such information is

vital to those applications.

At the networking layer, although routing is one of the most developed areas, many

routing protocols have not been designed with security as a goal and they are vulnerable

to different attacks [48]. Secure routing to ensure the reliable message forwarding is still

an open problem.

At the application layer, no matter what kind of application is running, in-network

processing is a common approach for energy savings. However, this operation brings

security concerns especially under node-capture attack.
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Additionally, WSNs are susceptible to various forms of intrusion, particularly,

node-capture attack which causes node compromise. A compromised node is likely to

reveal all its secret information to the attacker, including the secret keys. Therefore,

an attacker can circumvent the purely cryptography based mechanisms and disrupt

the WSNs normal operations. How to detect these compromised nodes is an challenge

and needs collaborative work from different layers. In addition, authentication is an

indispensable security service.

Among all these topics listed in Fig. 2.1, some have been extensively investigated

while others are still in infant stage. The following sections will survey the related

mechanisms in a top-down approach with a focus on securing aggregation.

2.2 Security Related Work

2.2.1 Secure Aggregation

With the fast development of aggregation techniques, how to secure data aggre-

gation has attracted more and more attention. As a result, a lot of work has been

conducted through different approaches to achieve this goal. In order to defend against

false data injection from outsider attacks, authentication is a crucial step. Thanks to the

simple computation and short size, message authentication code (MAC) is prevalently

used in WSNs for authentication purpose. Basically, with original message data and

a secret key as input, MAC is generated by a one-way hash function. Since the MAC

value protects both a message’s integrity as well as its authenticity, it plays a key role

for securing aggregation in WSNs.

The first work that addresses the security problem in aggregation is proposed by Hu

and Evans [35]. They present a secure aggregation protocol to detect misbehaving sensor

nodes by exploiting two main ideas: delayed aggregation and delayed authentication.

Instead of aggregating the messages at the immediate next hop, the messages are directly
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forwarded over the first hop to the second hop, where the aggregation is performed.

By postponing the aggregation to one more hop away, it guarantees the integrity for

networks where two consecutive nodes are not compromised. The delayed authentication

enables authentication keys to be symmetric keys. It adopts the µTESLA protocol

[57] which achieves asymmetry from clock synchronization and delayed key disclosure.

Essentially, a sender attaches the MAC of a message using a secret key (say, Ki+1) only

known to the node itself. When an intermediate node receives this message, it stores it

since it cannot verify the MAC without knowing the key. After some time is elapsed,

the sender will reveal the key. Then, the intermediate node can compute a one-way

hash function F , where Ki = F (Ki+1) (K0 is securely informed by the base station).

The authenticity is verified when the output of the function using the new received Ki+1

matches the original hash chain. Fig. 2.2 illustrates how it works.

P1 P2 P3 P7P6P5P4

K0 K1 K2 K3 K4 timeOne way key chain: 
Ki = F(Ki+1)
Packet encrypted with key 
corresponding to time interval

Figure 2.2. Illustration of delayed authentication.

From this example, it shows that a security scheme should have some desirable

features. First, the intermediate nodes (aggregators) should be able to purge the false

data injected by attackers and detect any compromised nodes upon collecting the sensory

data. Second, while the aggregators are allowed to access and modify the data, in order to

ensure integrity and confidentiality, it is mandatory to prevent them from impersonating

other nodes or forging the aggregate results. In general, secure aggregation schemes can

be classified into two categories: probabilistic or deterministic

By employing different statistics, the probabilistic algorithms can assure the aggre-

gation results with a certain probability. Przydatek et al. propose an aggregate-commit-
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prove framework, called “SIA” [60], that allows an aggregator to accept data with high

probability if the aggregate result is within a desired bound or reject the result if it is

outside the bound. By constructing random sampling mechanisms and interactive proof,

this scheme proposes protocols to securely compute aggregation functions including me-

dian, min/max, counting and average. By probabilistic grouping the network into a tree

topology and applying Grubbs’ testing to detect outliers, Yang et al. propose SDAP [71],

a Secure Hop-by-hop Data Aggregation protocol based on the principles of divide-and-

conquer and commit-and-attest. By collecting evidences from multiple witness sensor

nodes, the data aggregation results can also be assured via statistical analysis [25].

Besides the probabilistic algorithms, there are a number of deterministic schemes

in the literature as well. Some of them have a predefined threshold so that when the

number of malicious nodes is below that threshold, the false data injected by the mali-

cious nodes can be successfully removed from the aggregation results. For example, [77]

has a threshold of t while [35] and [42] can only handle a single malicious node.

In [77], an interleaved hop-by-hop authentication scheme is proposed to filter the

injected false data. This scheme focuses on event-driven applications (non-numerical

data, e.g. false alarm) and guarantees that the base station will detect any injected false

data packets when no more than a certain threshold number(t) of nodes are compro-

mised. First, this scheme defines the associated nodes of a node as the nodes that are

(t + 1) hops far from it in both directions (uplink and downlink). After the network

initialization, each sensor node will try to find its associated nodes (called association

discovery). When an event is triggered, nodes in a cluster (size of t) collaboratively

generate a report on this event. Each of the nodes computes two MACs over this event,

one using a key shared with the base station and the other using pairwise keys shared

with its upper associated node. A cluster head will collect the endorsements from all its
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cluster nodes as well as itself, synthesize a final report by combining all endorsements

and transmit it to its uplink (toward the BS) neighbor (called report endorsement).

Upon a node on the path receiving a report, it verifies the authenticity by checking

the MAC attached by its lower associated node. If the verification succeeds, it removes

that MAC and attaches its own MAC based on a pairwise key shared with its own upper

associated node (called en-route filter). When the report finally reaches the base station,

the base station verifies the report. If it detects that t+1 nodes have endorsed the report

correctly, it accepts the report or discards it otherwise (called base station verification).

In this way, every report generated by a node is authenticated by a node t + 1 hops

away, that is, the report is authenticated in an interleaved hop-by-hop fashion.

Another deterministic, MAC-based authentication scheme, named statistical en-

route filtering mechanism (SEF) is proposed in [72]. Before deployment, each sensor

node is installed a small number of keys drawn from the global key pool. As a result,

each node has a certain probability to possess one of the keys that some other nodes

possess. After deployment, once a stimulus appears, multiple detecting nodes first elect

a Center-of-Stimulus (CoS). By summarizing the results, the CoS generates a report on

behalf of the group and broadcasts it to all detecting nodes. Each detecting node checks

the consistency of the report with its own result and generates a MAC for the report

using one of its stored keys if the report passes the check. The CoS collects all the MACs

and attaches them to the report before forwarding.

When a node on the route receives a report, if it has any key that is used to

generate the MACs in the report, it will check the corresponding MAC carried in the

report and drops it if they do not match. Otherwise, it passes the report to the next

hop. So, as the report is forwarded, each node along the way verifies the correctness of

the MACs probabilistically. When the report reaches the sink, the sink which possesses
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all the keys, will check the correctness of every MAC and eliminates any remaining false

reports that elude en-route filtering.

In addition, some similar works [75, 12] also rely on MAC checking to secure

data aggregation. In [75], by exploiting a Hill Climbing approach to disseminate the

authentication keys, the proposed scheme can handle the dynamic topology of sensor

networks. Furthermore, by applying privacy homomorphisms (either public or sym-

metric keys), some schemes can also perform security checks without any aggregators

involved [10, 28].

Other than based on MAC, there is another deterministic scheme which combines

cryptography with tools from other domains (economics and statistics). S. Ganeriwal

et al. propose a reputation-based framework for sensor networks (RFSN) where nodes

maintain reputation for other nodes and use it to evaluate their trustworthiness [27].

This framework employs a Bayesian formulation, specifically, Beta reputation system for

reputation representation, updates and integration. A community of trustworthy sensor

nodes is formed at runtime based on the behavior of these nodes. This reputation-based

framework provides a general approach for not only aggregation (checking outliers), but

also routing.

However, while focusing on data aggregation operations, the way that a node

updates its neighbor’s reputation in [27] is only based on whether or not the latter’s

data is an outlier, by directly comparing its own reading with its neighbor’s. Obviously,

such outlier detection is a coarse evaluation and furthermore, a compromised node may

intentionally manipulate the false data that do not deviate dramatically from the real

measurement and hence cannot be ruled out as an outlier. In such cases, this scheme

cannot work well.

In summary, each type of the above schemes has some strength and limitations. For

the probabilistic type algorithms [60, 71, 25], in order to abstract the statistic properties
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or evidence from other nodes, they usually introduce linear or sub-liner communication

overhead between the aggregators and the base station. The energy consumed for com-

munication may be too costly in the resource constrained sensor networks WSNs. On

the other hand, deterministic schemes often rely on MAC or privacy homomorphisms.

Due to the pairwise key property, MAC based schemes [77, 72, 12, 75] need to perform

in a hop-by-hop fashion which is not energy efficient due to the frequent MAC checking.

While privacy homomorphisms [10, 28] render end-to-end encryption in such a way that

the intermediate aggregators can perform aggregation directly on the encrypted data,

it can only apply to some query based aggregation functions, e.g, sum, average, etc.

Depending on the criteria, secure aggregation schemes can be classified into different

categories. Fig. 2.3 illustrates a taxonomy for classification.

Secure data aggregation in WSNs

Security basis

HomomorphismMAC Reputation

Decision outcome

Probabilistic Deterministic

Application type

Event-driven
Continuous or 

On-demand

Figure 2.3. Secure aggregation schemes in WSNs, a taxonomy.

2.2.2 Secure Routing

The in-network processing characteristic of sensor networks requires that interme-

diate nodes have access to data complicates the routing protocols design. Once one of

these intermediate nodes is compromised, it can eavesdrop and even modify the data,

and thus threatens the entire network. So, the routing protocols in sensor network should

provide not only reliable delivery, but also security services especially for integrity and



19

authentication. At the same time, a secure routing protocols should be robust against

different attacks such as denial of service, compromised nodes, etc.

The routing security issues in WSNs are first discussed in [48]. This work sum-

marizes attacks against the current proposed routing protocols and discusses counter-

measures and design considerations for secure routing protocols. The attacks can be

classified into two categories: trying to manipulate user data directly or trying to affect

the underlying routing topology.

For any routing protocols, wormhole is one of the most dangerous attacks. In

a wormhole attack, a packet received by an adversary is tunneled to another point in

the network and replayed from that point. Depending on the adversary’s behavior, the

packet could be discarded or selectively forwarded or modified. In [36], a mechanism,

called packet leashes is proposed to detect and defend against the wormhole attack. A

leash is any information that is added to a packet designed to restrict the packet’s maxi-

mum allowed transmission distance. Specifically, two leashes are defined. A geographical

leash ensures that the recipient of the packet is within a ceratin distance from the sender

and a temporal leash ensures that the packet has an upper bound on its lifetime, which

restricts the maximum travel distance. By checking if the packet travels further than

the leash allows, either type of the leash can prevent the wormhole attack.

Another work, INSENS (INtrusion-tolerant routing protocol for wireless SEnsor

NetworkS) aims to improve the routing robustness so that a single compromised node

can only disrupt a localized portion of the network and cannot cause widespread damage

in the entire sensor network [21]. It can provide protection against two classes of attacks:

DOS attacks and routing attacks that propagate false routing information throughout

the network. The routing is based on an asymmetric architecture composed of a base

station and sensors. Each node shares a secret key only with the base station, and

not with any other nodes. To prevent DOS attacks, individual nodes are not allowed
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to broadcast to the entire network and a broadcast message from the base station is

authenticated to prevent sensor nodes from spoofing the base station. To prevent false

routing data, controlling information must be authenticated. To combat the compro-

mised nodes, redundant, disjoint multipath routing is built into INSENS so that even

if an intruder breaks down a single node or path, secondary paths exist to forward the

packets to the correct destination. Specifically, to facilitate communication between

sensor nodes and a base station, INSENS constructs forwarding tables at each node in

three rounds. In the first round, the base station floods a request message to all the

reachable sensor nodes in which, one-way sequence and keyed MAC algorithm is used to

defend against intrusions. In the second round, sensor nodes send their local topology

information using a feedback message to the base station in which, after verification,

the messages that reach the base station are guaranteed to be correct and secure from

tampering. In the third round, the base station computes the forwarding tables for

each sensor node based on the information received in the second round and sends them

to the respective nodes using a routing update message. In this way, the base station

can collect all the connectivity information and authenticate it. All these heavy-duty

computations are performed at the base stations to reduce computation at the senor

nodes.

2.2.3 Secure Location Information

Location information in WSN is sensitive information since it is the prerequisite

for geographic routing. Therefore, it is subject to attacks. There are two directions in

secure location information. One focuses on how to compute the sensor nodes position

correctly even under different attacks. The other concentrates on how to verify the

sensor nodes’ location declaration.

In order to be able to compute the location even in the presence of malicious ad-

versaries, a cryptographic-based scheme, SeRLoc (Secure Range-independent Location),
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is proposed in [39]. In SeRLoc, based on the directional antennas, each locator transmits

different beacons at each antenna sector containing its coordinates and the angles of the

antenna boundary lines with respect to a common global axis. According to the beacon

information, the sensors can determine their location by collecting the beacons from all

locators they can hear and executing some algorithm. To protect the localization infor-

mation, security mechanisms are integrated into the scheme. First, a global symmetric

key is shared between sensors and locators. Besides, every sensor shares a symmetric

pairwise key with every locator so that the beacons from each locator can be authenti-

cated to prevent impersonation. The analysis shows SeRLoc is robust with respect to

several attacks including wormhole attack, sybil attack and compromised sensors. How-

ever, one of this scheme’s limitation is that it assumes locators are always trusted and

cannot be compromised by an adversary.

Observing the fact that cryptography based schemes cannot work when some sen-

sor nodes get compromised, Liu et al. propose an attack-resistant location estimation

scheme which can survive malicious attacks even if the attacks bypass authentication

[41]. Two approaches are presented to deal with the malicious attacks. The first is

based on minimum mean square estimation (MMSE) and uses the mean square error as

an indicator to identify and remove malicious location references. The second method,

voting-based location estimation, quantizes the deployment field into a grid of cells and

has each location reference “vote” on the cells in which the node may reside. Both lo-

cation estimation techniques can tolerate attacks against range-based location discovery

even if some compromised sensor nodes exist.

Instead of directly securing the location computation by a node, an alternative

approach is to verify a device’s position, that is, if the node is in the region that it

claims. A common approach is based on a distance bounding technique. For instance,

by using a time-bounded challenge-response protocol, Brands and Chaum [8] propose an
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algorithm, by which the verifying party can determine a practical upper-bound on the

physical distance to a proving party and thus defend against man-in-the-middle attacks

(mafia frauds).

2.2.4 Key Establishment and Management

Key establishment and management is an important security primitive and plays

a pivotal role in other security services. However, how to set up secret keys between the

sensor nodes in WSNs is nontrivial due to the limited resource in sensor nodes.

One of the most typical key management techniques in WSNs is key pre-distribution,

which means that the secret keys are installed in sensor nodes before deployment. Es-

chenauer and Gligor propose a probabilistic key pre-distribution scheme [26]. Specifi-

cally, before deployment, each sensor node is installed a ring of keys which are randomly

picked from a large key pool. Upon deployment and network initialization, shared-key

discovery is performed for the nodes to find out if they share a key with their neighbors.

One design issue in this work is how to choose the proper size for both key ring and key

pool so that every pair of sensor nodes can establish a secret key with high probability.

After the probabilistic key sharing scheme for WSNs was introduced, some other

works based on it are proposed as improvements. For example, Chan et al. generalize

this scheme and propose the q-composite random key pre-distribution scheme, where

any two nodes have at least q common keys to setup a pairwise key [11]. Liu and

Ning also extend the basic scheme by combining the Blundos polynomial-based key

pre-distribution protocol and key pool idea [40].
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2.3 Summary

Security becomes a central concern to various wireless sensor network applications,

while the special features in WSNs challenge the traditional security approaches that

are widely used in wirelined and wireless networks.

Taking the severe resource constraints into account, a lot of work has been con-

ducted to provide various secure services in wireless sensor networks, such as key man-

agement, routing, etc. Particulary, as an efficient way to save energy, in-network pro-

cessing/aggregation invalidates the conventional end-to-end security schemes and conse-

quently, some research work has been proposed to secure in-network processing against

false data injection and other related attacks. However, each scheme has some drawback

and therefore, how to secure data aggregation, especially in the presence of compromised

nodes still needs further investigation.



CHAPTER 3

PRELIMINARY CONCEPTS

In order to effectively secure different types of aggregation functions against both

outsider and insider attacks, we have employed various techniques. In this chapter, we

give a brief introduction to these techniques. Section 3.1 describes the general aggrega-

tion approaches as well as the model adopted in our proposed watermarking schemes.

In Section 3.2, we introduce the basis of digital watermarking. In Section 3.3, we discuss

Josang’s belief model, which our trust framework is based on. Section 3.4 presents the

sensor network model and key assumptions we consider in this work. To analyze energy

consumption, we introduce an energy model in Section 3.5. Section 3.6 summarizes this

chapter.

3.1 In-network Processing/Aggregation

Due to the fact that each sensor node is inherently unreliable, sensor networks are

typically deployed with high density. In order to reduce the communication load, two

types of aggregation: query and compression, are developed in WSNs to save energy

and hence lengthen the life time of WSNs. The goal of query is only to extract the

summarized interest information to transmit while the objective of compression is to

reduce the transmission cost for each sensor node, but keep the speciality of all the

sensory information at the same time.

In many WSN applications, the data sink usually sends out a message to query

some information, e.g. the average value within an area. Instead of each sensor node

sending its sensory data directly to the data sink, some intermediate nodes will gather

the data and perform the corresponding aggregation before forwarding the aggregate

24
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results to the data sink. For example, Madden et al. propose an aggregation service,

called TAG [52]. After building a routing tree that ensures to deliver requests to all

nodes in a network without any duplications, users can send SQL-like queries from a

base station. Along the data sent by sensors flows back to the base station, aggregation

functions are performed. In addition, many researchers have also proposed different

schemes to compute aggregation efficiently and effectively [53, 54, 76, 56, 63].

In addition to query based aggregation, the compression based schemes are usually

rooted in information theory. A classical example is a framework called distributed

source coding using syndromes (DISCUS) [59]. By combining signal processing(source

coding), communications (coding theory) and estimation theory, this scheme successfully

removes the spatial redundancy and thus compresses sensor data from individual nodes

with minimal intersensor communication. Recently, several schemes have been proposed

to compress the sensory data using wavelets [15, 68, 69].

In our work, watermarking based scheme is proposed to secure compression based

aggregation. However, unlike DISCUS, instead of compression on each individual sensor

node, we consider that the high redundancy in WSNs renders an aggregator to perform

some compression algorithm on all the collected data before forwarding them to the base

station, where the corresponding inverse algorithm is executed to retain the specifics of

the data. In general, to increase the compression ratio, lossy compression algorithms are

often adopted. For a lossy compression scheme, there are usually three steps involved,

as shown in Fig. 3.1 [17].

Figure 3.1. General block diagram of lossy compression schemes.
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Usually, an object (e.g. uncompressed data) is first divided into a number of non-

overlapping blocks. Then, a transform operation, such as Discrete Cosine Transform

(DCT) or Discrete Wavelet Transform (DWT), is applied to each block to transform

the data into the frequency domain. The coefficients of different frequencies are further

quantized based on certain metrics. Finally, these quantized coefficients, most of which

are zero, are encoded by entropy coding with the smallest number of bits.

Here, we cite the following example from [61] for illustration purpose.124  125  122  120  122  119  117  118121  121  120  119  119  120  120  118126  124  123  122  121  121  120  120124  124  125  125  126  125  124  124127  127  128  129  130  128  127  125143  142  143  142  140  139  139  139150  148  152  152  152  152  150  151156  159  158  155  158  158  157  156
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Figure 3.2. An example illustrating the lossy compression (JPEG): a) Original image
block, b) DCT coefficients, c) Quantization table, d) Quantizer labels .

Fig. 3.2(a) is an 8 ∗ 8 block from the Sena image. After subtracting 128 from each

pixel so that the value of the pixel varies between −128 and 127, DCT is performed

and the DCT coefficients are shown in Fig. 3.2(b). Then, the coefficients are quantized

according to the quantization table 3.2(c). For each transform coefficient θij and the

corresponding element in the quantization table Qij, the quantized value, called a label,

is calculated as: b θij

Qij
+ 0.5c, as shown in Fig. 3.2(d). For the quantizer labels in Fig.

3.2(d), the Huffman codes can be used for encoding. Assuming that the Huffman code

for the DC coefficient is 2 bits long, representing this 8 ∗ 8 block only needs an average

of 21
64

bits per pixel.

In this dissertation, we adopt this compression method as one of the aggregation

functions to reduce the amount of traffic load. Specifically, once an intermediate node

(aggregator) collects the sensory data reported by the individual nodes at a certain time,
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it visualizes the whole data as a frame of image snapshot taken at that moment. This

frame is divided into some small blocks, in each of which DCT is performed. Slightly

different from the above example, the DCT coefficients are then quantized through K-

largest coding, where only the K-largest coefficients in each block are kept while the rest

are discarded [23]. Finally, the quantized coefficients are encoded using the Huffman

codes.

3.2 Digital Watermarking

Digital watermarking technology has been widely adopted to protect copyright

ownership of multimedia [5, 17]. The key idea is to hide certain information about the

multimedia material within that material itself.

As illustrated in Fig. 3.3, a generic watermarking system is usually composed of

two components: an embedder and a detector [17]. The embedder takes three inputs:

1) messages that are encoded as the watermark; 2) cover data that are used to embed

the watermark; and 3) key that is optional for enforcing secure watermark generation.

As an embedder’s output, the watermarked data is distributed. When it is presented as

the detector’s input, with the key information (depending on whether employed), the

detector can determine whether a watermark exists and decode it.

Watermark

embedder

Cover data

Watermark

( Key )

Watermark

detector

( Key )

Detected watermark
Watermarked data

Figure 3.3. Generic watermarking system.

Embedding the watermark into the cover data usually can be carried out in either

the spatial domain or the frequency domain. In the former, the watermark is directly
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superposed on each pixel, while in the latter, after transforming the material (e.g. image

etc.) to the frequency domain, a watermark is embedded in the frequency coefficients.

The watermark detection schemes can be categorized to two classes: informed

detection, where the original cover data is accessible; and blind detection, where the

original cover data is not required. The type of watermark can be fragile, robust and

semi-fragile. Fragile watermarks will become invalid after even the slightest changes to

the cover data. Robust watermarks can survive moderate to severe distortion on the

cover data while semi-fragile watermark is in between [17].

Following the block diagram in Fig.3.3, we design our watermarking scheme while

taking the special requirements from WSNs into consideration. When applying water-

marking in WSNs, it is desirable that each sensor node embeds part of the watermark in

its original sensory data, therefore, the watermark is carried out in the spatial domain.

Since the sensory data is not available at the sink beforehand, blind detection is a must.

At the same time, the lossy nature of wireless environment, and legitimate distortion

due to in-network processing prevents the use of fragile watermarks.

Therefore, in our scheme, we adopt spatial domain, robustness and blind detection

based watermarkings.

3.3 Josang’s Belief Model

For the WSNs deployed in an unattended environment, there may be some factors

that are unknown, therefore, it is necessary to manage the uncertainty.

In this work, we employ Josang’s belief model to reason about uncertainty. Es-

sentially, instead of just treating a proposition as true or false, this model introduces a

concept, called opinion, to represent degrees of belief or disbelief as well as uncertainty

in case both belief and disbief are lacking [45]. In particular, the opinion is defined as

follows.
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Definition 1. An opinion, ω = (b, d, u, a), is a quadruple where the components re-

spectively correspond to belief, disbelief, uncertainty, and relative atomicity in the same

order, such that a, b, d, u ∈ [0, 1] and b + d + u = 1.

The relative atomicity a is used for computing an opinion’s probability expectation,

E(ω), as

O = E(ω) = b + au.

Thus, a determines the amount of uncertainty u that contributes to E(ω).

Besides this definition, subjective logic including conjunction, disjunction, nega-

tion, recommendation and consensus, etc., is also defined in this model to manage the

opinion’s propagation [44]. Among them, discounting is an operator defined to regulate

the trust transitivity along a serial path.

Definition 2. Let A and B be two agents where ωA
B = (bA

B, dA
B, uA

B, aA
B) is A′s opinion

about B′s advice, and let x be a proposition where ωB
x = (bB

x , dB
x , uB

x , aB
x ) is B′s opinion

about x expressed in an advice to A. Then, ωAB
x ≡ ωA

B ⊗ ωB
x is called the discounting

of ωB
x by ωA

B expressing A′s opinion about x as a result of B′s advice to A. Here,

ωAB
x = (bAB

x , dAB
x , uAB

x , aAB
x ) is defined such that:

bAB
x = bA

B ∗ bB
x

dAB
x = bA

B ∗ dB
x

uAB
x = dA

B + uA
B + bA

B ∗ uB
x

aAB
x = aB

x

A simple explanation of the definition is that if A trusts B with some degree, and

B trusts x with a different degree, then discounting quantifies how much A can trust

x. Intuitively, if B trusts x with high confidence and so does A to B, then A will also
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trust x with high confidence. However, if A is uncertain about B, then, it should be

uncertain about x regardless of B′s opinion to x. The definition also shows that along

the trust transitivity, the belief part in the opinion always decreases while the uncertain

part increases.

3.4 Sensor Network Model and Assumptions

In this work, we consider a sensor network composed of high densely deployed

sensor nodes. As illustrated in Fig. 3.4, all the sensor nodes are organized into a hier-

archal cluster architecture by some underlying schemes, such as [29, 3, 73]. The clusters

are non-overlapping and within each of them, there is a cluster head that can perform

aggregation on all the nodes (called cluster members) belonging to its cluster. Each

cluster member has bidirectional communication capability and can directly communi-

cate with its cluster head. In addition, some sensor nodes are assigned as gateways to

connect cluster heads together and forward their aggregate results to the data sink. The

gateways also have the same sensing capability as all cluster members.

Figure 3.4. A wireless sensor network.
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The main objective of the sensor networks is to monitor some physical environ-

ment, e.g., temperature, humidity, etc. Each time a cluster head collects all the sensory

data and performs aggregation is called a sampling epoch.

In summary, the sensor networks of interest in our work are characterized by the

following assumptions.

First, the sensor network is static, which means after the nodes are deployed,

they remain in their positions so there is no mobility in the networks. In the network

initializing phase, there exist some cluster formation algorithms [29, 3, 73] that can

partition the network into clusters.

Second, the sensor network has high density which obtains K-coverage. That is,

for any position in a monitoring area, there are at least K sensors. Although the goal of

our interested sensor networks is for long term monitoring some physical environment,

the high density would render some event-driven applications. For example, when there

is a fire, the sensed temperature data from all the nodes that are close to fire shall

sharply increase. Therefore, due to the high density of WSNs, the sensory data from

those sensor nodes that are physical proximately to each other must be highly correlated.

Third, for the physical environment monitored by a sensor network, significant

changes do not occur frequently. In other words, the environment change smoothly

at most of time. In addition, unless for some event-driven applications, there is no

intensively change in the monitored environment in a small area.

Fourth, we assume that all the sensor nodes are loosely synchronized and they

report their sensory data to the cluster heads either periodically or on demand.

Fifth, every sensor node is aware of its one-hop neighbors and has a pairwise key

with each neighbor which is used in MAC to prevent impersonation.
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3.5 Energy Consumption Model

In order to analyze the energy consumption in this work, we adopt the communi-

cation and sensing energy models in [7].

Specifically, the sensing energy can be computed as Psen = α1 ∗ re, where, α1 is a

constant representing the energy to sense a bit and re is the sensing rate in bit/sec. For

communication, the power dissipated for a sensor node sn1 to transmit a packet of len

in length to node sn2 dis away is:

Ptx(sn1, sn2, dis, len) = (α2 + α3 ∗ dis(sn1, sn2)
n) ∗ re ∗ len.

For receiving, the power is:

Prv(sn1, sn2, len) = α4 ∗ re ∗ len, where α2, . . . α4 are constant parameters.

For simplicity, when the transmission between sn1 and sn2 is within one hop, we

set the dis in Ptx as 1.

3.6 Summary

We elaborate the preliminaries in this chapter. For in-network processing and

aggregation, we adopt the lossy compression algorithm to compress the amount of gath-

ered data at the intermediate nodes. Considering the characteristics of WSNs, spatial

domain, robust digital watermarking with blind detection is employed for our work.

Josang’s belief model is the basis of our trust based framework to secure aggregation

and manage the uncertainty.



CHAPTER 4

AGGREGATION SUPPORTIVE AUTHENTICATION:
A WATERMARKING BASED APPROACH

For most wireless sensor network applications, the main task is collecting infor-

mation to the base station, through which, some decisions may be made. With the goal

to secure information aggregation, one essential approach is authentication. That is,

the base station should be able to verify the gathered information is really sent by the

claimed sensor nodes. Therefore, authentication is an effective way to defend against

false data injection by outsider attacks.

As mentioned in Chapter 2, the most common technique for authentication in

WSNs is using MAC. The benefit of MAC is that it is simple to compute and the overhead

introduced by attaching MAC in each packet is trivial. However, the high frequency of

MAC checking on enroute forwarding, associated with complicated peer-to-peer key

management schemes, often dramatically increases the overall system complexity. In

addition, when there are multiple compromised intermediate nodes, these schemes are

subject to failure.

Motivated thereby, in this chapter, we propose an authentication scheme for WSNs

that renders end-to-end checking (sensor-to-sink) capability without relying on any in-

termediate nodes, while still compatible with in-network aggregation.

Our scheme is based on digital watermarking, a proven technique notably in the

multimedia domain. The key idea is to visualize the sensory data gathered from the

whole network at a certain time snapshot as an image, in which every sensor node

is viewed as a pixel with its sensory reading representing the pixel’s intensity. As a

result, digital watermarking can be applied to this “sensory data image”. Specifically,

33
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we adopt direct spread spectrum sequence (DSSS) based watermarking to balance energy

consumption in the network with asymmetric resources. With a simple mathematical

operation (addition), each sensor node can embed part of the whole watermark into its

sensory data, while leaving the heavy computation load from watermark detection at the

sink. At the same time, the robustness of DSSS technology enables our scheme to survive

a certain degree of distortion and thus naturally supports in-network aggregation. Once

the aggregated and watermarked data reaches the sink, the sink is able to verify the

existence of the watermark and hence the authenticity of the data.

In the following sections, Section 4.1 gives an overview of the proposed scheme.

Section 4.2 details how to generate and embed the watermark into a network. Section 4.3

addresses how to detect the watermark after aggregation. Some watermark design issues

are discussed in Section 4.4. Section 4.5 extends the watermark into temporal domain.

The simulation results are provided in Section 4.6. The field experiment results obtained

from a public data set are presented in Section 4.7. We conclude this chapter in Section

4.8.

4.1 Scheme Overview

For conventional watermarking, the whole image is available for the embedder to

manipulate the watermarks. Unfortunately, this does not hold in WSNs since a single

sensor node may only know its own data while lacking a global view of the “sensory data

image”. Therefore, the watermark in our scheme is embedded in a distributed fashion

by each node.

Our solution is illustrated in Fig. 4.1. In this scheme, each sensor node is assigned

a small (compared to the sensory data), i.i.d. random value as its watermark. This

random value is then added to the sensory reading before sending to the cluster head.

Once the cluster head receives the data, it compresses them and routes them to the
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sink. With the knowledge of the random value added at each sensor node, the sink can

calculate the inner product of this random sequence composed of random values with

the received sensory data. By evaluating the obtained value to determine the presence

of the watermark, the sink will be able to authenticate the sensory data and pinpoint

whether and where illegitimate modification has occurred.

sensor nodes

cluster head

data sink

original sensing data

20 21 21 20    18 22 19 23

21 24 24 21    20 24 21 19

25 28 24 23    23 25 26 30

28 26 25 23    28 25 28 32  

transmitted watermarked data

22 25 22 22    20 23 20 19

20 22 19 18    21 22 19 22

21 24 27 21    23 25 26 30

23 25 21 24    26 23 24 34  

   compressed data

22 0 -4  0    24  0  0  0

0   0  0  0    -11 6  0  0

0   0  0  0    0   0  0  0

4   0  0  0    0   0  0  0

watermark embedding

In-net processing: compression

watermark detection:

watermark (+1,-1,-1,+1) exist??

         restored data

23 20 19 23    20 21 21 25

20 25 23 22    22 20 22 17

22 29 20 20    21 24 28 29

26 24 23 21    29 23 25 34  

Figure 4.1. Illustration of the watermarking scheme.

As shown in Fig. 4.1, based on the assigned watermark, each sensor node will

report a modified sensory reading. This watermarked data will then be compressed at

the cluster head. While the watermark may be distorted during this process, the sink

can still validate the presence of the watermark and hence authenticate the data.

Essentially, our scheme employs the principle of DSSS : while each sensor node

only modifies its data by an invisible value, adding up a large number of the squares

of these values will give a significant gain. On the other hand, without knowing the
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embedded values, the modifications will appear to be noise and go undetectable to an

attacker.

Next, we will describe the watermark embedding and detection scheme in detail.

4.2 Watermark Generation and Embedding

Our work is inspired by [64, 31], both of which map watermarking into modulation

schemes in the conventional communication system. Under such mapping, an image is

approximated as a continuous, two-dimensional, band-limited channel, where the original

unmodified image is treated as noise with high power while the low power signal is the

watermark. The essence is spread spectrum [58]: i.e., the signal is spread across a wide

range of frequencies so that the signal power is ultra low at a particular frequency.

The low signal-to-noise ratio reduces the chance that an attacker detects the signal

(watermark), thus, enforcing security; while at the same time, the wide frequency of the

signal carrier augments robustness to compression. Since even a compression operation

may remove a fraction of the signal from the whole frequency bands, most of the signal

should still remain due to the fact that the signal energy resides in all frequency bands.

In order to directly add the spreading sequence (watermark) at each individual sensor

node in the spatial domain, DSSS is employed in our work.

Let (x, y) be the 2-D coordinate representing the position of a sensor node. With-

out confusion, we also simply use (x, y) to denote the corresponding sensor node. Let

S denote the set of all sensor nodes. To embed L bits [b1, b2, · · · , bL], (bi ∈ {−1, 1}, i ∈
[1, L]) as watermark into the sensory data, the sink first divides the sensor nodes into L

non-overlapping subsets, S = {S1,S2, . . . ,SL}, such at Si ∩ Sj = ∅, ∀i 6= j, i, j ∈ [1, L].

That is, for each single watermark bit bi, it is spread into its corresponding subset Si.

For each Si, the sink will generate a binary, pseudorandom variable s(x, y) ∈
{−1, 1} for each node. Notice that this random s(x, y) is indexed to each node and hence
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each subset Si contains a pseudorandom sequence {s(x, y)|(x, y) ∈ Si}. In addition, the

sink will generate a random value α(x, y) for each node to denotes the maximal allowable

distortion toward the sensory reading. α(x, y) equals to the amplitude of the watermark

for node (x, y) and how to determine its value will be discussed in Section 4.4.1.3. Thus

the watermark for sensor node (x, y) ∈ Si is defined as

w(x, y) = biα(x, y)s(x, y).

We assume that this value can be securely assigned to sensor node (x, y). This can be

achieved through secure broadcast or unicast, like in [57] for sample solution.

Given w(x, y) and sensory data o(x, y), sensor node (x, y) will simply report

d(x, y) = w(x, y) + o(x, y)

as its watermarked sensory data.

Fig. 4.2 illustrates how the watermark is embedded in each individual sensor node.

Suppose we have two watermark bits, b1 = 1 and b2 = −1, to be embedded. So, the 8

sensor nodes n1, n2, . . . , n8 are divided into two subsets, S1 and S2, where n1, . . . , n4 ∈ S1

and n5, . . . , n8 ∈ S2. All the nodes in the same subset are designated the same bit (b1

or b2) so that the watermark is applied to all sensory data. Within each subset, a

pseudorandom binary variable s and random variable α is assigned to each individual

node. As an example, for sensor node n1, its s and α is +1 and 2, respectively. As a

result, n1’s watermark is (+1) ∗ 2 ∗ (+1) = 2. After adding this to its original sensory

data which is 20, n1 reports 22 as its watermarked data to its cluster head.

For ease of later mathematical manipulation, we rephrase the above description

with a few new symbols to fit it in communication terms. While using the 2 − D
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αααα αααα

n1

n3 n8

n6

n7

n5

n4

n2

S1

b1: +1

sequence s: {+1, +1, -1, -1}

random     {2, 4, 1, 2}

S2

b2: -1

sequence s: {-1, -1, +1, +1}

random    {1, 2, 5, 3}

20                22
(+1, +1, 2)

21                25
(+1, +1, 4)

21                20
(+1, -1, 1)

24                22
(+1, -1, 2)

21                22
(-1, -1, 1)

24                19
(-1, +1, 5)

20                22
(-1, -1, 2)

21                18
(-1, +1, 3)

sensor node

original sensing data watermarked  transmitted data

ααααsecret bit bi
random variable

pseudorandom sequence s

Figure 4.2. Watermark embedding in individual sensor node.

coordinate (x, y) to represent a particular sensor node, (X, Y ) is a set of sensor nodes.

Let φi be the random sequence assigned to subset Si, where

φi(X, Y ) =





α(X,Y )s(X,Y ), (X,Y ) ⊆ Si

0, otherwise

(4.1)

We call φi a modulation pulse used to modulate one watermark bit and {φi} should be

orthogonal with each other, i.e.,

< φi, φj >=
∑
x,y

φi(x, y)φj(x, y) = ||φi||2δij = ||φj||2δij

δij =





1, i = j

0, i 6= j

.

Here, ||φi||2 can be considered as the average power of φi and is determined by α(X, Y ).
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When each sensor node modifies its data to embed the watermark as described

above, the complete watermark w of the whole image composed of all nodes can be

expressed as,

w(X, Y ) =
L∑

i=1

biφi(X, Y ), (4.2)

where bi ∈ {−1, 1} is the watermark bit and (X,Y ) is the set of all sensor nodes.

Fig. 4.3 demonstrates the network-wise watermark embedding process. It can be

seen that dividing the sensors into non-overlapping subsets guarantees the orthogonality

of the modulation pulses. The whole watermark in the network is the superposition of

all the bits modulated by each pulse. Since each sensor just changes its data by a small

amount, the overall modification on the sensing filed will not skew the modeling process

at the data sink.  −− 00
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Figure 4.3. Network-wise watermarking.

4.3 Watermark Detection

After compression at the cluster head, the watermarked data will be routed to the

sink. There, the data is projected on each modulation pulse φi to obtain the correlation

coefficients. By deriving the statistical characteristics of the correlation coefficients, the

watermark detection process can be formulated as a binary hypothesis test performed at

the data sink. The presence of the watermark indicates the authenticity of the sensory

data while absence of watermark will alarm possible attacks.
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We consider a network in which L watermark bits are embedded. Let dQ, oQ and

wQ represent the restored watermarked data, sensing data and watermark after com-

pression/quantization respectively. Given the correlation coefficient of one watermark

bit i is ri and the variance is σ, the watermark detection condition is derived in the

following lemma.

Lemma 4.3.1. The watermark detection formula is given as:

L∑
i=1

biri ≷ erfc−1(PF )σ
√

L, (4.3)

where, erfc, called complementary error function, is defined as erfc(x) = 2√
π

∫∞
x

e−t2 dt.

Given a fixed false alarm probability PF , if the left side is bigger than the right side, the

sink will consider watermark present, otherwise, watermark is not present.

Proof. The correlation coefficients is calculated as

ri =< dQ, φi >=< wQ, φi > + < oQ, φi > + < e, φi > .

As dQ = (o + w)Q 6= oQ + wQ, e represents the non-linear quantization error

introduced by compression, which can be approximated as i.i.d. random variables.

Due to the randomness of modulation pulses, < oQ, φi >, < wQ, φi > and < e, φi >

can be considered as random variables. According to the central limit theorem, the sum

of such random variables ri should follow Gaussian distribution. Moreover, with multiple

pulses modulating multiple watermark bits, all the correlation coefficients form a jointly

Gaussian distribution. A general Gaussian problem of hypothesis test on correlation

coefficients is formulated as [4]




H1 : R = W + N, watermark present

H0 : R = N, watermark not present

.

In above, the vectors R,W, and N are defined as:

correlation coefficients vector: R = [r1, r2, . . . ...rL]T ,
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watermark vector: W = [b1φ
Q
1 φ1, b2φ

Q
2 φ2, . . . bLφQ

LφL]T ,

noise vector N = [(oQ + e)φ1, (o
Q + e)φ2, . . . , (o

Q + e)φL]T .

For the statistical characteristics of each correlation coefficient ri, the first-order

and second-order moments of ri can be derived as [30]

E[ri|H1] ' bi

∑L
i=1 ||φQ · φi||

L
= bi

∑
αQα

L
= bi ∗ xi, (4.4)

where xi =
∑

αQα/L for all ri, i ∈ [1, L]. And

V ar[ri|H1] = σ2 =

∑
(oQ)2α2

L
+

(αQ)2α2

L
(E[s4]− 1). (4.5)

Similarly, the characteristics of correlation coefficients without watermark can be

derived as

E[ri|H0] = 0, and V ar(ri|H0]) = σ2
0 =

∑
(oQ)2α2

L
.

With the statistical characteristics of the correlation coefficients under both H1

and H0 available, we can perform hypothesis test. Let m1 and m0 be the mean vectors

under hypotheses H1 and H0 respectively, that is, mj = E[R|Hj], (j = 0, 1). And the

covariance matrices are [4]:

Cj = E[(R−mj)(R−mj)
T |Hj], (j = 0, 1).

To simplify the analysis, the pseudorandom sequence s is chosen to meet E[s4] = 1

so that the covariance matrices C1 and C0 are the same. Then the logarithm likelihood

ratio test is

1

2
(R−m0)

TC−1(R−m0)− 1

2
(R−m1)

TC−1(R−m1) ≷ γ (4.6)

Because the correlation coefficients ri are uncorrelated with each other, the cross-

covariance is negligible compared to the covariance. Therefore, the covariance matrix

can be approximated as C = σ2I. After some mathematical manipulations, the sufficient

statistic T(R) is:

T(R) =
1

σ2
(m1 −m0)

TR ≷ γ′ (4.7)
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According to the Neyman-Pearson criterion [4], for a fixed false alarm probability

PF , we can derive the threshold for a watermark to be detected.

Specifically, based on the definition of PF :

PF (T(R)|H0) = erfc(
T(R)−mT√

Var[T(R)]
)

we can get

T(R) = erfc−1(PF )
√

Var[T(R)] + mT (4.8)

T(R) is a linear combination of Gaussian random variables, so it is also a Gaussian

random variable. We have

mT = E[T(R)|H0] = 0 (4.9)

and

Var[T(R)|H0] = (m1 −m0)
TC−1(m1 −m0) (4.10)

Substituting Equ. (4.9) and (4.10) into (4.8), and combining Equ. (4.5) and (4.7),

we get the watermark detection condition as

L∑
i=1

biri ≷ erfc−1(PF )σ
√

L (4.11)

That is, for a given false alarm probability PF , the watermark is present when the

left side is bigger than the right side. Otherwise, watermark is not present.

4.4 Watermark Design Discussion

The scheme described above follows the general DSSS based watermarking prin-

ciple and the given example is also considered as a basic scenario. In this section, we

address several watermark design issues in detail and propose some solutions to the

practical challenges when applying the watermarking scheme in WSNs.
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4.4.1 Watermark Modulation Pulse

The essence of DSSS based watermarking schemes lies in that the watermark

information is intentionally spread over a larger frequency band so that it is difficult for

the attackers to detect it. Hence, the watermark modulation pulse, which is employed

in order to spread the watermark information, plays an important role in the watermark

design. In Section 4.2, a watermark modulation pulse, φi, is defined as the product of a

pseudorandom sequence S and the maximal distortion factor α. Here, we discuss some

options to choose modulation pulses and how they can affect the detection performance.

4.4.1.1 Modulation pulse pattern

As shown in Equ. (4.1), each modulation pulse φi has one zero part and one

non-zero part. If the non-zero part in all φi is the same to each other, it is called “tiled

version spread” scheme [64]. Otherwise, if the non-zero part in each φi is different with

each other, it is called “non-tiled” spread. Please note that since the location of the

non-zero portion in each φi is different in tiled spread, the φi are still orthogonal to each

other.

The most intuitive benefit from “tiled spread” is easy management, especially when

the number of watermark bits is large. A single pseudorandom sequence for all subsets

can significantly reduce the overhead introduced by pseudorandom sequence generation.

Moreover, with the same modulation pulse, all the correlation coefficients should be

same under the ideal situation where there is no compression error and the sensory data

is not related to the modulation pulses. Even taking compression into account, it is

most likely that the variance of the correlation coefficients (Equ. (4.5)) is much smaller

than that of the non-tiled spread case. Therefore, the bell-shaped distribution curve of

the correlation coefficients ri is much narrower than the non-tiled spread case. From the

detection point of view, this will improve the detection accuracy.
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However, although tiled spread leverages watermarking detection, it is more vul-

nerable to attacks. For non-tiled spread, it is effectively a one-time pad from an outsider’s

viewpoint. On the contrary, the tiled spread is just like a periodical signal. The privacy

of the modulation pules is completely compromised as soon as an adversary discloses one

period of the signal. Therefore, there is a tradeoff between the variance of the correlation

coefficients (and hence, the detection accuracy) and the uncertainty of the modulation

pulse, or the security of the scheme.

4.4.1.2 Maximal distortion factor

Apart from the modulation pulse pattern, the maximal distortion factor α, which

is defined in the modulation pulse, may also affect the detection probability. During

the watermark generation phase, α(x, y) is assigned to each individual sensor node to

represent the maximal allowable distortion on a sensory reading.

In the conventional image watermarking domain, the maximal distortion factor

is determined by the Human Visual System (HVS) to meet the minimum quality of

perception. However, there is no such constraint in a sensor network. As long as α’s

value does not exceed some desirable range (the ways to determine it will be discussed

in the next section), there is more freedom in design.

Essentially, α equals to the watermark amplitude, which in turn determines the

watermark power. Assuming the watermark power has been determined, we can apply

different types of distributions to generate α. Naturally, the two most commonly used

distributions, Gaussian and Uniform distributions, are considered here.

Let N (µ, σ) and U [a, b] represent Gaussian and Uniform distributions, respec-

tively. The statistics of these two distributions are summarized in Table 4.1.

In general, in order to embed the same number of watermark bits in the network, it

requires that the power of the watermark should be the same for these two distributions.



45

Table 4.1. Statistics of Gaussian and Uniform distribution

Statistical
characteristic

Gaussian
distribution
N (µ, σ)

Uniform
distribution
U [a, b]

Mean µ a+b
2

Variance σ2 (b−a)2

12

Power µ2 + σ2 (b2+a2+ab)
3

Although there are many combinations that can meet this requirement, the simplest way

to achieve it is to set µ = (a + b)/2 and σ = (b− a)/2
√

3.

However, although the watermark amplitudes which follow two different distri-

butions have the same power, it does not guarantee the same detection performance.

Conceptually, embedding the two kinds of watermarks can be treated as adding Gaussian

and Uniform noise into the original sensory data. Moreover, apart from the watermark

power, there are other uncertain factors in the watermarked data, such as the correlation

of the watermark amplitude and original sensory data, and the power spectral density of

these two distributions, etc. When performing DCT on the watermarked data that has

different watermark amplitude distribution, all these uncertain factors may cause differ-

ent frequency coefficients (and hence different distribution of the quantized/compressed

frequency coefficients). As a result, the detection performance could be varied even when

the watermark amplitude powers are the same.

4.4.1.3 Watermark amplitude consideration

Generally speaking, by increasing the watermark amplitude, more watermark bits

can be embedded into the network and thus enhance security. For a network that embeds

L information bits, there are M = 2L combinations for a brute force attack to determine

the actually embedded bits. Intuitively, the more secret bits embedded in a network, the
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more secure the network becomes. However, a network cannot embed arbitrarily large

watermarks due to the watermark amplitude constraints.

Intuitively, two factors affect the watermark amplitude: security constraints and

system accuracy requirement. The former factor assures that an adversary cannot infer

the watermark when it overhears the watermarked data and the latter one guarantees

that the embedded watermark does not compromise the applications’ desired data ac-

curacy.

i) Security constraints

For the attackers who know that the sensory data has been watermarked, the

security constraints will prevent the attackers from deriving the embedded watermark

even if they are monitoring the same environment. Let us consider that an adversary with

the same sensing capability as the legitimate ones is close to some sensor nodes. If the

watermark amplitude is too large, the adversary can derive the watermark by comparing

the watermarked data with a certain reasonable guess of the true sensory data, based

on its own reading. Moreover, if an adversary can eavesdrop on all the packets from

different sensor nodes around itself, it can first average all the watermarked data and

then compare every data with the average to trace the watermark.

To overcome these vulnerabilities, the watermarked data should be disguised as

“regular data” so that an adversary cannot easily conjecture from its own readings. In

other words, compared with the original (unwatermarked) data, the watermark should

look like a “reasonable” sensory error. Towards this end, we construct a secure magni-

tude bound ∆s within which the watermark is undetectable by attackers.

Obviously, ∆s may vary from one application to another. Here, we adopt a general

sensing model [55] to derive the watermark bound from the security viewpoint. Let os
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be the received signal by sensor s from the radiating source op located at p. Then, the

relation between the received signal and the original source is denoted by

os = se(s, p)op + e (4.12)

where e is the noise and se(s, p) is the sensibility.

Equ. (4.12) shows that for two nodes at different locations (x1, y1) and (x2, y2),

two factors cause their readings to be different: measurement error (e) and sensibility

(se) attenuation introduced by the distance between (x1, y1) and (x2, y2). Therefore,

we can estimate the magnitude of each factor and combine them to obtain the security

watermark bound ∆s.

The measurement error e is inherited in each sampling and determined by sensors’

sensing capabilities. Due to the measurement error, for the same monitoring environ-

ment, the repeated readings from a single sensor or a single reading from multiple sensors

at the same location may be different. For most of the monitoring environment, e.g. tem-

perature, etc, the distribution of measurement error for all nodes in homogeneous WSNs

can be assumed to follow a Gaussian distribution: e ∼ N (0, σ2
sm

). σ2
sm

can be estimated

from sensor manufacturer’s specifications and adjusted by field measurements. To sim-

ulate the measurement error and exploit it as the watermark, the sink shall generate N

random variables following the Gaussian distribution N (0, σ2
sm

) and assign each to one

sensor with the magnitude, ∆sm .

In addition, since sensors’ sensing capabilities diminish with distance, the distance

factor could also be used to hide the watermark. Depending on the distance between

each sensor and the sensing point, different sensors may have various readings. So, we

can utilize it to increase the watermark magnitude. Considering that we know the sens-

ing field area A and the total number of deployed sensor nodes Z, then the density of

the network is given by A/Z. If we assume that the homogenous sensors are uniformly

deployed such that each sensor is located at the center of a square grid, then the average
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distance between each node can be approximated as
√

A/Z. Therefore, some measure-

ments may be taken in order to estimate the sensibility attenuation over a distance of
√

A/Z and calculate the error ∆sdis
introduced by sensibility attenuation.

Combining the above two factors together, the watermark amplitude should be:

∆s ≤ ∆sm +∆sdis
. Under this condition, the watermarked data shall remain “consistent”

with the normal sensory data – even by the judgment from an adversary who has its

own measurements of the same environment.

ii) System accuracy requirement

∆s defines the average watermark amplitude under security constraints. Besides,

the application-dependent accuracy requirement also restricts the watermark amplitude.

Although, from the watermark detection point of view, the original sensory data

is considered as noise, its value cannot be distorted too much by the watermark since it

is the true demand of WSNs applications. Therefore, the original data amplitude should

dominate both before and after compression to produce the desirable accuracy. Assum-

ing ∆a to be the network’s total tolerable error, three main error sources contribute to

∆a: measurement error (∆m), watermark error (∆wa) and distortion error (∆c). So,

∆a =
√

∆2
m + ∆2

wa + ∆2
c . Among them, the measurement error ∆m, which equals to

∆sm , has been discussed before. Watermark error ∆wa introduced by the embedded

watermark is determined by the watermark amplitude. Distortion error ∆c comes from

lossy compression. Therefore, according to the network accuracy requirement, the wa-

termark amplitude should be: ∆wa =
√

∆2
a −∆2

m −∆2
c .

Combining both security and accuracy requirements, the final watermark ampli-

tude ∆m should be

∆m = min(∆s, ∆wa). (4.13)

∆m indicates the average watermark amplitude that can be embedded in sensor nodes.

Based on this value, a set of random numbers that follow a certain distribution (e.g.
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Gaussian or Uniform as discussed in Section 4.4.1.2) can be generated, each of which

could be assigned to one sensor node as the α(x, y) in Equ. (4.1).

Once the ∆m value is available, the number of watermark bits that can be embed-

ded in the network can be derived.

In our watermarking scheme, from the detection standpoint, the watermark is

the true signal while the sensory data can be viewed as noise. According to Shannon’s

channel capacity theory, the upper bound on the number of watermark bits L for a given

network can be calculated by: L = C log2(1 + SNR), where C is the total available

bandwidth and SNR is the ratio of signal to noise power [62, 64]. By changing the log

base from 2 to e and applying series expansion, the above equation can be simplified as

[78]:

L/C ≈ 1.433 ∗ SNR. (4.14)

In practice, we can first monitor the environment for a while to obtain an estimate

of the sensory data. Based on it and the known watermark amplitude (∆m) and variance

(σ2
m), SNR can be approximated and hence the number of watermark bits in the network.

4.4.2 Block Formulation for Irregular Sensor Deployment

Until now, we have assumed regular deployment of sensor nodes in a grid topology.

Under this assumption, data compression can be relatively easy as the sensory data nat-

urally forms a regular image pattern. However, if sensor nodes are irregularly deployed

in a random fashion, the cluster head must divide the nodes to equal size blocks before

compression.

We remark that the block formulation here is implemented by each cluster head

for compression purpose. So it is not related to the subset division in Section 4.2, which

is performed by the sink to spread watermark bits. Notice that one subset may span
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two or more clusters and depending on the density, it is also possible that there is more

than one subset within one cluster.

In order to divide the sensor nodes into blocks of size m, a system parameter,

we develop a 2D tree based partition algorithm. Our 2D tree based approach, which

is essentially similar with the KD-tree concept [6], utilizes both x- and y- coordinates

alternately to partition the node set. For each partition, it generates either a block of

size m or an almost balanced binary tree. Therefore, the physically proximate nodes are

likely assigned into a same block. Since the statistical properties do not substantially

differ in adjacent nodes, such partition benefits the compression ratio.

Generally, given the cluster members’ locations and the total number of sensors

within one cluster, the cluster head first determines the number of blocks n based on

block size m. If the total number of sensor nodes is not a multiple of block size, the

cluster head will add “padding nodes” by duplicating certain randomly chosen nodes.

Then, depending on the parity of the number of blocks, the cluster head bisects the

nodes (even number blocks case) or “pre-divides” m nodes (odd number blocks case)

with a Fig. 4.4.

Formally, given a set of nodes P (including the padding nodes) and the block size

m, the cluster head first sorts x- and y- coordinate values for all nodes. If the number of

blocks n is odd, the algorithm first splits the set P with a vertical line l on x-coordinate

into two parts, Pleft and Pright. The resulting Pleft includes m leftmost nodes and Pright

includes the rest nodes. This operation is termed “pre-division”. The vertical splitting

line is stored at the cluster head and Pleft is stored in the left subtree and Pright is kept

in the right subtree.

If the number of nodes in Pright is greater than the block size m, Pright is further

split into two subsets of roughly the same size by a horizontal line: the nodes above or

on the line are stored in the left subtree of Pright and the points below it are stored in the
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WSNPartion (P , depth, m, n)

Input: A set of nodes P (including pads), current depth depth, block size m,

and number of blocks needs to be partitioned n.

Output: A binary tree storing P .

Begin

If number of blocks n is odd then /* pre-divide */

If depth is even then

Split P into two subsets with a vertical line l.

Let P1 be the set of left of l including the m leftmost points in P .

Let P2 be the set of right of l including the rest.

End

Else

Split P into two subsets with a horizontal line l.

Let P1 be the set of left of l including the m topmost points in P .

Let P2 be the set of right of l including the rest.

End

vleft � P1

vright � WSNPartion(P2, depth + 1, m, n− 1)

End

Else /* bipartition */

If depth is even then

Split P into two subsets with a vertical line l through the median x-coordinate of the points in P .

Let P1 be the set of points to the left of l or on l, and P2 be the set of points to the right of l.

End

Else

Split P into two subsets with a horizontal line l through the median y-coordinate of the points in P .

Let P1 be the set of points above l or on l, and P2 be the set of points below l respectively.

End

vleft � WSNPartion (P1, depth + 1, m, n/2)

vright � WSNPartion (P2, depth + 1, m, n/2)

End

Create a node v storing l, make vleft the left child of v and make vright the right child of v

Return v;

End-Algorithm

Figure 4.4. Partition algorithm.

right subtree of Pright. Similarly, for each resulting subtree, depending on whether the

remaining number of block is odd or even, each subtree either performs ”pre-division”

or split with a vertical line into two roughly equal size subsets. This procedure will then

be repeated until each subtree has exactly m nodes.
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Fig. 4.5 illustrates how the partition is performed and the corresponding binary

tree. For ease of illustration, m is set to 2, i.e., each block shall have two nodes.
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Figure 4.5. Partition the network into blocks.

After the partitioning terminates, the blocks composed of sensor nodes have been

formed. During the runtime, if some node gets dysfunctional due to either out of battery

or other reasons, the cluster head will average all its neighbors’ readings as a padding

value.

4.4.3 Remnant Check

We claim that the presence of watermark is only necessary but not a sufficient con-

dition for authentication. An example of undetectable attack would be simply enlarging

all the sensory data by multiplication, which causes the reinforcement on the water-
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Table 4.2. Energy Consumption for each type of sensor nodes

Communication Computation Sensing
CM 1) Prv(CM, BS, 1) //watermark secret info. sent by BS 1) watermark embedding: Psen

2) Ptx(CM, CH, 1, 1) //report sensory data to CM a single addition operation
CH 1) m ∗ Prx(CH, CM, 1) //sensory data 1) compress sensory data

2) Ptx(CH, GW, 1, m′) //forward compressed data to gateway
GW 1) n ∗ Prv(CH, GW, m′) //receive compressed data from cluster head

2) n ∗ Ptx(GW, GWnext, m′) //forward the compressed data
CH: cluster head; GW: gateway; CM: cluster member.

mark (note: an adversary is unlike to reduce the sensory data since it will automatically

decrease the watermark).

To detect this attack, a “remnant check” is performed after the hypothesis test

claiming the presence of a watermark. Generally speaking, after extracting the water-

mark from the restored data to obtain the “remnant”, the sink shall project it again on

each modulation pulse. Presence of apparent correlation and repetitive detection of the

watermark will indicate such attack has been launched.

4.4.4 Energy Consumption

Essentially, watermarking based authentication scheme fits well into the resource

limited sensor networks. Based on the energy models described in Chapter 3.5, Table

4.2 summarizes the energy consumption for each type of sensor nodes.

Considering a network composed of n clusters and in each of which, there are m

sensor nodes as cluster member. For each cluster member, it receives the watermark in-

formation and at the same time, it periodically sends its sensory data to its cluster head.

The cluster head receives all data from its members and performs compression. After

compress, it will forward the compact data size of m′(m′ ¿ m) to the gateway. There,

the gateway, in turn, forwards the message to next hop. In addition to communication

cost, compression performed at cluster head also contributes to energy consumption.

For the applications with and without compression, we compare the energy con-

sumed within one cluster. Without loss of generality, we assume that the length of a
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single sensory data is 1. When there is no compression, for the cluster head, the energy

cost is, c1 = m ∗ Prv(CM, CH, 1) + m ∗ Ptx(CH,GW, 1). With compression, the energy

cost at the cluster head is, c2 = m ∗ Prv(CM,CH, 1) + cd + Ptx(CH, GW,m′), where,

cd is the computation cost and m′ is the quantized transform coefficients. Hence, the

energy saving by compression is c1 − c2 = m ∗ Ptx(CH, GW, 1)− Ptx(CH, GW,m′)− cd.

Assuming that for without compression case, the cluster head concatenates all sensory

data before forwarding, then we have c1 − c2 = Ptx(CH, GW, (m−m′))− cd. It can be

seen that the actual compression ratio will determine the amount of energy saved for

compression based aggregation. Some experiment [18] shows that with both DCT and

DWT, 30% of energy and 80− 95% bandwidth can be saved for multi-hop networks.

Comparing with the regular compression based aggregation, the energy consump-

tion introduced by the proposed scheme comes from two parts: the base station’s dis-

tributing watermark information to each cluster member and the watermark embedding

by each cluster member. Since the watermark information is assigned to each cluster

member at the initialization phase, it is a one-time communication cost for each cluster

member. To embed a watermark, each cluster member just directly adds the water-

mark on the sensory data, which is energy efficient. Assuming that the base station has

unlimited resource, the heavy workload for watermark detection does not bring energy

concern into the network.

4.5 Extension to Temporal Domain Watermark

In our proposed watermarking scheme, the watermark is embedded in all sensory

data gathered from different sensor nodes at a particular time point. Since the sensor

nodes are located network-wide, we can call it a spatial domain watermarking scheme.

For the watermark detection, the hypothesis test is performed on the correlation coeffi-

cients vector. When the watermark is claimed absent, the authenticity of the data from
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all the nodes is challenged. In other words, no particular node can be identified as being

suspicious.

In order to pinpoint any particular malicious node, we can extend such spatial wa-

termarking into the temporal domain. Compared with the spatial watermark where one

watermark bit is spread among multiple sensor nodes at different locations, a temporal

watermark bit is spread in the time domain by each single node. In other words, each

sensor node itself carries one watermark bit which is spread along its different sampling

epoch. Therefore, for a sensor network composed of N nodes, there would be a total of

N watermark bits that can be embedded in it. Specifically, for every sensor node, the

sink will generate a binary pseudorandom sequence S with a length of T . Then every

bit in S is assigned to a different sampling round of this node.

Fig. 4.6 illustrates the different watermark embedding processes. Extending the

example in Fig. 4.3, here, we consider the data gathered from 4 continuous sampling

rounds (t1, . . . , t4). For the spatial watermarks, the watermark is added to each indi-

vidual sensor node in every sampling round. While for the temporal watermarks, the

watermark is only added to node n1’s data from different sampling rounds.

When the sensory data is reported to the sink by a sensor node, the sink needs to

store the data until it collects a full sequence of data of length T from this node. After

gathering all the data, the sink can calculate the correlation and determine whether or

not the watermark is present. In this way, the sink is able to authenticate every single

sensor node in the network.

Theoretically, the principle of temporal watermark detection is the same as the

spatial watermark case, both of which are based on hypothesis test on the correlation

coefficient. However, since the sink needs to verify each sensor node that carries one

watermark bit, the watermark detection process should be performed in a bit-by-bit

style.
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Figure 4.6. Watermark embedding: spatial vs. temporal watermark.

To detect one watermark bit bi, the correlation coefficient is first calculated as

before:

ri =< dQ, φi >=< wQ, φi > + < oQ, φi > + < e, φi > .

Based on the discussion in Section 4.3, we know that ri should follow a Gaussian

distribution N (µ, σ), where

µ =
N ∗∑T αQα

N

and

σ =

√
N ∗∑T (xQ2) ∗ α2

N

Comparing these formulae with Equations (4.4) and (4.5) where a total of L bits

are spread among the whole network of size N , each temporal watermark bit is spread

over T sampling rounds, where there are a total of N watermark bits in this temporal

watermark scheme.
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With the above µ and σ, z-test [4] can be performed on such a Gaussian distri-

bution. Let z = ri−µ

σ
√

T
. Then, the standardized z should follow the standard Gaussian

distribution N (0, 1).

For the data sink to perform authentication for one sensor node i, it first needs to

collect a full sequence length of data from node i. Then, ri, µi and σi can be calculated

according to the above formulae. After normalization, the sink will compare the output

z with a threshold derived from the false alarm probability and determine whether or not

the watermark carried by node i is present. Thus, the temporal watermarking scheme

is able to authenticate each sensor node.

Although the temporal watermarking can achieve authentication for every indi-

vidual node, an obvious drawback is that the sink has to collect and store a full sequence

length of data before performing authentication. When the modulation pulse is long,

a significant delay is introduced for the authentication procedure. Therefore, there ex-

ists a tradeoff between the length of the modulation pulse and the detection time: i.e.,

the longer the modulation pulse, the more spread the gain is and longer the delay for

watermark detection.

To overcome the delay due to the long modulation pulse for temporal watermark-

ing, it would be beneficial to combine temporal and spatial watermarking together. For

example, the sink may bind several nodes into a group and assign them one modulation

pulse. Since the number of nodes in one group may be less than the pulse length, the

sink needs to collect several sampling rounds until it obtains the full length data. As-

suming there are m nodes in one group and the length of a modulation pulse is T , then

the detection delay is reduced from T sampling rounds to T/m.

Intuitively, there are two extreme cases. For the basic spatial watermark scheme

described in the previous section, where all the N nodes in the network are in one group,

the detection process has the coarsest resolution in locating the problematic area but,
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at the same time, has the quickest detection time. On the other hand, when there is

only one node in a group (m = 1), a temporal watermark scheme is able to pinpoint any

single malicious node while requiring the longest time for detection.

In summary, by introducing time as an extra dimension, the watermarking scheme

can scrutinize the nodes at a finer granularity at the price of longer detection time.

4.6 Simulation Study

In this section, we evaluate the performance of the proposed scheme. First, we

investigate the watermark detection probabilities with different network sizes and com-

pression ratios. Then, we compare the detection probabilities under different combina-

tions of spread patterns and maximal distortion factor distributions. Furthermore, we

test the proposed scheme’s performance under attacks from both spatial and frequency

domain. The performance of temporal watermarking is provided at the end of this

section.

4.6.1 Simulation Setup

To focus on the attacks’ effects on watermark, we follow the general compression

process and assume that the irregular deployed sensor nodes have been formed into

blocks using the partition algorithm described in Section 4.4.2. Specifically, the cluster

size and block size is the same, which equals to 64. Within each cluster, the cluster head

first performs 8 ∗ 8 DCT. Unless otherwise specified, there are totally 4096 sensor nodes

in the whole network, so there are totally 64 blocks/clusters in the network. The default

compression ratio is 90%, that is, in one block/cluster, the 7 largest DCT coefficients

including the DC component are kept and others are set to zero.

For the whole network, a random variable following Gaussian distributionN (20, 4)

is generated and assigned to each sensor nodes as its realtime sensory data. Within one
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cluster, one watermark bit is spread by a pseudorandom modulation pulse generated

by Hadamard code. Therefore, 64 watermark bits in total are embedded in the whole

network. The allowable distortion toward the sensory reading (α) follows Gaussian

distribution N (3.5, 1). Referring to Equ. 4.1, we employ “tiled version spread” scheme

[64] which means that the same pseudorandom sequence is used for all φi while the non-

zero portion’s location is different for each φi. A data sink samples 2000 rounds during

each simulation and each simulation is repeated 5 times. In the all test cases, the fixed

false alarm probability PF in Equ. (4.11) is set to 0.1%.

4.6.2 Effects of Network Size and Compression Rate

In this section, we investigate the performance of the proposed watermark based

scheme when there is no attack. Two factors are considered here: network size and

compression rate. Specifically, per each network size, a watermark is embedded to the

whole sensory data. Then, the watermark detection probability is calculated for different

compression ratio.

Figure 4.7. Effects of network size and compression rate.
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In Fig. 4.7, the detection probability is the probability that the proposed scheme

authenticates the data properly. It can be seen that in general, the bigger the network

size is, the higher detection probability. That is because with the network size increas-

ing, there are more watermark bits that can be embedded. Therefore, the statistical

characteristic of the general Gaussian problem can be more precisely represented, which

in turn improves the hypothesis test’s accuracy.

The compression rate in the figure is the ratio of the DCT coefficients set to zero

to the total number of DCT coefficients in one block. Since the higher compression rate

will introduce more data distortion, the detection probability drops as the compression

rate increases.

This simulation result verifies that the watermark in this scheme is robust to

compression, which is a prerequisite for our aggregation-supportive, end-to-end authen-

tication approach. As shown in the figure, for the network size of 64 ∗ 64 and with the

compression rate of 90%, the scheme is still able to fully detect the watermark.

4.6.3 Modulation Pulse and Maximal Distortion Factor Distribution

Section 4.4 discusses the different choices for watermark modulation pulse design.

Here, we examine the detection performance under different cases.

First, the modulation pulse pattern can be either “tiled” or “non-tiled” spread.

For the tiled spread, the modulation pulses in each non-overlapping subset are the same.

Whereas, for the non-tiled spread, each subset has a different modulation pulse.

Two different distributions, Gaussian and Uniform distributions, that are used

to define the maximal distortion factor are tested here. For comparison purposes, we

choose the distributions with the same mean value while the watermark power may be

different. Table 4.3 and 4.4 shows the results.

The results show that for the same distribution, tiled-spread pulse has higher de-

tection probability. The reason for this is that the statistics of the correlation coefficients
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Table 4.3. Modulation pulse vs. detection probability: Gaussian distribution

Modulation
pulse

Power of
pulse

SNR (%)
Detection
prob. (%):
tiled spread

Detection
prob. (%):
non-tiled
spread

N (3, 1) 10 2.4 12.9 6.05
N (3.1, 1) 10.61 2.6 41.9 31.8
N (3.25, 1) 11.56 2.8 93.2 89.6
N (3.5, 1) 13.25 3.2 100 100

Table 4.4. Modulation pulse vs. detection probability: Uniform distribution

Modulation
pulse

Power of
pulse

SNR (%)
Detection
prob. (%):
tiled spread

Detection
prob. (%):
non-tiled
spread

U [2, 4] 9.33 2.2 17.0 0.85
U [2.1, 4.1] 9.94 2.4 46.7 18.1
U [2.25, 4.25] 10.86 2.6 96 90.35
U [2.5, 4.5] 12.58 3.0 100 100

is more convergent than the non-tiled case. For the different distributions with the same

mean value, say U [2, 4] vs. N (3, 1), the Uniform distribution watermark amplitude

with tiled-spread has better detection performance even when its signal power is a bit

smaller than the Gaussian distribution. Thus, it indicates that the Uniform distribution

watermark amplitude is more robust to compression for tiled-spread modulation pulse.

However, for the non-tiled spread, the detection probability seems more random.

4.6.4 Attacks in Spatial Domain

An attack may be launched during the transmission from the sensor nodes to their

cluster head. For this kind of attack, an attacker directly modifies the sensory data.

Since the ultimate goal of our applications is modeling the whole sensing field which

requires that the cluster head to report all the data after compression. As a result, just
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modifying any particular sensing data does not result in an effective attack. Instead, an

attacker may aim to alter as many nodes as possible.

4.6.4.1 False distribution imposition on all sensor nodes

To disturb correctly modeling the whole sensing field, instead of counterfeiting a

single sensory data, an attacker could impose certain false distributions upon the sensory

data to deceive the sink. Here, two most common distributions, Gaussian and Uniform

distribution, with different parameters are examined. To simulate such attack, a total of

the network size random variables that follow either Gaussian or Uniform distribution

are first generated. Then, each of these random number is added to one watermarked

data so that this false distribution is superimposed on the whole watermarked data.

Fig. 4.8 shows the detection probabilities under different bogus distributions. In

which, the bogus Gaussian distribution is with different mean values and a fixed standard

deviation of 4, e.g. N (2, 4),N (3, 4), . . . ,N (10, 4).

Figure 4.8. Bogus Gaussian distribution.
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It can be seen that the scheme is able to correctly detection the attack when the

mean value of the bogus Gaussian distribution is bigger than 4. In fact, for the bogus

distribution with mean value of 3, the scheme is most likely to detect it (> 90%).

Fig. 4.8 also shows the detection probabilities under a Uniform bogus distribution

with different mean values and fixed range of 4 (with an exception for the case with

mean value of 2). That is, U [1, 3],U [1, 5],U [2, 6], . . . ,U [8, 12].

Compared to Gaussian distribution, with the same mean value, the detection

probability in this case is much lower. For example, for the mean value of 2, the de-

tection probability is 0.1 for Uniform attack while 0.6 for Gaussian. That is because

unlike the Gaussian distribution where most forged data is close to the mean value, the

false data (within some range) in this case is uniformly distributed among the sensory

data, this randomness has weak “pattern” from the watermark decoder’s point of view

and contributes to the lower detection probability. However, as the mean value of the

Uniform distribution increase to 5, this scheme is capable of detecting the attack with

zero miss probability.

Theoretically, when mapping the DSSS based watermarking into conventional com-

munication system, the watermark is the useful signal information while the sensory date

is considered as noise. Therefore, based on Shannon channel capacity theorem, the sig-

nal to noise ratio (SNR), is a key factor that determines the amplitude of watermark (α)

and the number of watermark bits that can be embedded in the network. As discussed in

4.4, the original sensory data could be monitored for some time after initial deployment

and based on that, the amplitude of watermark will be derived. That is, the watermark

implicitly embeds some sensory data information. When an attack is launched, a false

distribution imposed by an attacker would introduce more noise, hence, the net effect

is that SNR is reduced. The more power of a false distribution is, the more decrease
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in SNR, in turn, the more likely a watermark vanishes. Therefore, the attack detection

probability increases along with the mean of false distribution rises.

4.6.4.2 False distribution imposition on part of sensor nodes

In addition to disguising a bogus distribution onto a whole network, the bogus

distribution may be just imposed to some sensor nodes. Fig. 4.9 shows the detection

probability when a bogus Gaussian distribution N (5, 4) is imposed on the different

numbers of random selected nodes.

Figure 4.9. Bogus Gaussian distribution on random selected nodes.

Fig. 4.9 indicates that the detection probability exceeds 0.7 when there are 20%

of total nodes whose data get modified. When the number of attacked nodes reaches

to 30%, the likelihood of detection is a very high (> 0.97). As mentioned before, the

sensory data from any single node is not main interest for data modeling, the scheme fits

the requirement since when a moderate number of nodes (e.g. 20 − 30%) get compro-
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mised, the proposed scheme can successfully detect it by authenticating the embedded

watermark.

4.6.4.3 Remnant check

Besides camouflaging another distribution on the sensory data, an attacker may

also alter all the sensory to a certain extent. Although this kind of attack would be rare

and not sensible in the multimedia domain, it could be an easy but disastrous threat in

WSNs. “Remnant check” described in Section 4.4.3 can effectively defend such attack.

Here, the performance under both possible scenarios (increasing or decreasing the

sensory data value) is evaluated.

(a) (b)

Figure 4.10. Remnant check: a) Increase sensory data, b) Decrease sensory data .

In Fig. 4.10(a), the x-axis is the modified data amplitude on a scale of the original

sensory data. It can be seen that the scheme is not very sensitive for detection when the

degree of change is not severe, e.g., when the modified data is less than 1.4 times the

original one for the increase case (Fig. 4.10(a)), or larger than 0.75 times the original

for decrease case (Fig. 4.10(b)). However, with an aggravating degree of the alteration,

the correlation between the remnant data and the watermark becomes stronger. Thus,
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our scheme can quickly detect it so that the detection probability approaches 1.0 for the

other cases. In a nutshell, our scheme works well when an attacker considerably alters

the sensing data.

4.6.5 Attacks in Frequency Domain

Upon aggregation/compression, the sensory data is transformed into frequency

domain by the cluster head and the quantized coefficients are transferred to the sink.

Therefore, a compromised cluster head or any intermediate nodes that are along the path

between the cluster head to the sink may modify the transform coefficients to launch an

attack.

4.6.5.1 Forgery of coefficient values

Similar to the spatial domain, the value of the transform coefficients could be

counterfeited. Fig. 4.11 shows the change of the detection probability with changing

values of the quantized transform coefficients.

(a) (b)

Figure 4.11. Frequency coefficients attack: a) Increase, b) Decrease .
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Fig. 4.11 shows that the detection probability under frequency attack is very close

to the cases in the remnant check (Fig. 4.10). That is because that DCT is a linear

operation, that is, DCT (a ∗X) = a ∗DCT (X). Therefore, the net effect on coefficients

modification is essentially the same as that in the spatial domain which leads to the

detection probability is consistent with that in Section 4.6.4.3

4.6.5.2 Non-zero coefficients position switch

Instead of changing the values, a compromised cluster head may switch the posi-

tions of nonzero coefficients with zero ones after quantization. The simulation results

indicate that our scheme can detect such attack with 100% of detection probability

without any missing occurs.

4.6.6 Node Failure

Apart from these above attacks, another issue for aggregation is node failure, either

due to physical damage or battery depletion. This case can be handled in two ways: the

value of the failed node is set to zero or is averaged by the values of its neighbors.

Since node failure is unavoidable in WSNs, when the total fault nodes are minority

in the network, the network is still considered workable. However, when the majority of

nodes have failed, the gathered information is not of much value for modeling.

The watermark detection probability under different percentages of failed nodes

is shown in Fig. 4.12. In Fig. 4.12, “zero” means to leave the failed node’s reading as

zero while “average” means to average the sensory readings from the failed node’s four

neighbors (up, down, left, right) as its reading.

The results in Fig. 4.12 meet the above requirements. It shows that when the

percentage of node failure reaches 15%, the gathered data will fail the watermark based

authentication scheme. The rationale behind this is that, from the data sink’s point of

view, it is the cluster head that modifies the data source, thus breaking the watermark.
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Figure 4.12. Node failure.

Moreover, compared with the “average”, the “zero” case is easier to detect when there

are a small number of failed nodes in the network.

4.6.7 Temporal Watermark

In this section, we investigate temporal watermark performance. Specifically, in

one cluster composed of 64 sensor nodes, each of which carries one watermark bit. For

every watermark bit, it is spread by a pseudorandom sequence with length of 64 so that

the sink needs to collect and store up to 64 sampling rounds’ samples to detect each

watermark bit. All the 64 samples at a particular sampling round are compressed with

compression rate of 90% (7-largest coding). That is, compression is performed in spatial

domain while watermark is embedded in temporal domain. Here, we employ bit by bit

detection scheme discussed in Section 4.5.

The simulated sensory data is the same as in the previous section, which follows

N (20, 4). The different watermarking modulation pulses and the corresponding detec-

tion probability is show in Table 4.5 and 4.6



69

Table 4.5. Watermark pulse vs. detection probability: normal distribution

Modulation
pulse

Power of
pulse

SNR (%)
Detection
prob. (%)

N (3.5, 4) 16.25 3.9 30.3
N (4, 4) 20 4.8 50.6
N (4.5, 4) 24.25 5.8 70.6
N (5, 4) 29 7.0 86.3
N (5.5, 4) 34.25 8.2 92.2
N (6, 4) 40 9.6 97.8

Table 4.6. Watermark pulse vs. detection probability: Uniform distribution

Modulation
pulse

Power of
pulse

SNR (%)
Detection
prob. (%)

U [2, 5] 13 3.0 13.1
U [2, 6] 17.3 4.0 49.7
U [2, 7] 22.3 5.4 79.4
U [2, 8] 28 6.7 91.9
U [2, 9] 34.3 8.25 97.5
U [2, 10] 41.3 9.9 99.1

The results indicate that when the watermark power reaches around 7% of the

original sensory data, the watermark can be detected with a high probability. How-

ever, unlike the results in Section 4.6.3, the watermark with Gaussian distribution has

higher detection probability here. A possible reason is that the original sensory data is

simulated following the Gaussian distribution N (20, 4) in spatial domain. Nevertheless,

the watermark is embedded in the temporal domain. For the time line viewpoint, the

distribution of a node is different from that in spatial domain (SNR here is a rough esti-

mation), like the example shown in Fig. 4.6. Therefore, the distribution of the original

signal that carries the watermark contributes the detection probability difference.
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4.7 Field Experiments Study

To further evaluate the performance of the proposed watermarking scheme, the

sensory data from real world field experiments [79] is tested. In the Intel Berkeley

research lab, 54 Mica2Dot sensors with weather boards were deployed to collect times-

tamped topology information, along with humidity, temperature, light and voltage values

periodically.

These environment parameters are sampled every 31 seconds and the data log

includes 2.3 million readings. Due to the unreliability of the sensors, some sampling

data are zero, and some are obvious outliers. In order to avoid such interference and

reduce the amount collected data, the raw data is pre-processed as follows before input

into the watermark scheme.

First, since there are only 54 sensor nodes, to form a sensory image with a regular

size of 8 ∗ 8, we randomly pick 10 nodes and duplicate the corresponding data as the

patch. In addition, for each type of data (e.g. temperature, humidity, light, etc.)

collected between February 28th to April 5th, 2004, we accumulate the data gathered

within one hour and average them as one sample. In other words, each value represents

an average of an hour’s samples. For each type of data, the following range where the

data concentrate most is considered for aggregation.

� Temperature: [17, 30];

� Humidity: [30, 45];

� Light: [500, 1000].

4.7.1 Experiment Results

Depending on the average amplitude of the sensory data, the watermark following

Gaussian distribution with various mean values is embedded into the raw sensory data.

The watermark detection probability vs. compression ratio on different type of data is
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shown in the following figures. It can been seen that in general, the stronger a watermark

signal is, the higher probability that the watermark can be detected.

(a) (b)

Figure 4.13. Histogram and watermark detection probability of temperature: a) His-
togram, b) Watermark detection probability vs. compression ratio .

Fig. 4.13 shows the temperature sensory data case. Fig. 4.13(a) illustrates the his-

togram of the sensory data whose values fall into [17, 30]. The temperature distribution

has a rough bell shape with mean of 22.01 and the variance of 8.04. For the water-

mark detection probability shown in Fig. 4.13(b), it can be seen that for watermark of

N (3, 1), the detection probability is above 90% for all cases, even when the compression

ratio is up to 95%. Regardless of the watermark types (e.g., N (1, 1), N (2, 1), etc.),

the detection probability is similar for compression ratio from 5% to 70%. While the

detection probability has a significant drop when the compression ratio reaches 90%.

Fig. 4.14 shows the humidity sensory data case. Unlike the temperature sensory

data which has a bell shape, the histogram of humidity data in Fig. 4.14(a) shows

the sensory data more concentrate on the boundary instead of the center. Although

the histogram of the sensory data is different, the watermark detection probability of

humidity data is similar as temperature data case (Fig. 4.14(b)): until the compression
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(a) (b)

Figure 4.14. Histogram and watermark detection probability of humidity: a) Histogram,
b) Watermark detection probability vs. compression ratio .

ratio is up to 90%, the detection probability is almost constant under each type of

watermark.

For light sensory data, the variance is much larger than for both temperature and

humidity data (1533.3 versus 8.04 and 19.98, respectively) and the data is following a

roughly uniform distribution in trend, as shown in Fig. 4.15(a). For watermark de-

tection (Fig. 4.15(b)), when the compression ratio is less than 50%, all the detection

probabilities are above 0.9. However, with the compression ratio increasing, the detec-

tion probability dramatically reduces. For example, for the watermark of N (30, 1), the

detection probability is only around 0.24 when the compression ratio is 95%. Compared

with the data distribution with small variance (e.g. temperature and humidity), the

DCT coefficients in the high frequency band contain richer information than those in

the small variance cases. Therefore, the information loss is also large after quantization,

which leads to the detection probability’s significant drop.
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(a) (b)

Figure 4.15. Histogram and watermark detection probability of light: a) Histogram, b)
Watermark detection probability vs. compression ratio .

4.8 Summary

In this chapter, we propose a watermarking based authentication scheme for wire-

less sensor networks. The distinct advantage of the proposed scheme is to achieve end-

to-end authentication where the sink can directly validate the sensory data from the

sources. At the same time, the approach provides natural support for in-network pro-

cessing as it is robust to the distortion introduced therein. Our design is, in particular,

suitable for applications in a resource limited environment, as the watermarking embed-

ding process is simple and highly energy efficient. By combining spatial and temporal

watermarking together, we can further tune the detection time and the detection reso-

lution. Both the simulation results and field experiment study verify that the proposed

scheme can achieve compression survival authentication.



CHAPTER 5

WATERMARK BASED DATA QUALITY ASSESSMENT –
EXPERIMENTAL STUDY

5.1 Digital Watermarking Based Data Quality Assessment

Chapter 4 employs watermarking for authentication, in this chapter, we extend

the watermarking technique to assess the quality of the sensory data and perform some

primary experimental study. Section 5.2 addresses the motivation of the work. Section

5.3 provides the problem description and defines distortion metrics. The experiment

results are presented in Section 5.4. The chapter is concluded in Section 5.5.

5.2 Motivation

The watermark based scheme proposed in Chapter 4 realizes end-to-end authen-

tication in WSNs. Though it is aggregation supportive, this approach has some limita-

tions.

First, the hypothesis test on watermark detection is based on statistics that re-

quires at least a certain amount of samples to ensure the accuracy. When the size of

sample set is small, the statistical characteristics of the correlation coefficients calculated

in Equ. (4.4) and (4.5) may be biased. Moreover, for hypothesis test, the watermark

detection condition in Equ. (4.11) is dependent on a pre-defined false alarm probability,

PF . That is, the watermark based authentication scheme is a probabilistic approach.

Depending on PF , even if the data is authenticated, there is a small chance that the

data has been illegally modified. That is, there is no 100 percentage guarantee for the

correctness of authentication.

74
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Second, authentication is essentially a binary statement, which means that it pro-

vides no information other than “yes” or “no”. However, for the base station that has

knowledge of both the original and restored watermarks, in addition to authentication,

it can conduct some more compound analysis as well. Particularly, when an attack is

launched which causes authentication failure, it is desirable if the base station would be

able to obtain some information by examining the watermarks.

Toward this end, we extend the watermark based authentication scheme in order

to provide some richer information of the sensory data. Defining the distortion between

the original and restored sensory data as the data quality metric, we’d like to evaluate

the data quality with the help of watermark. By exploiting the distortion between the

original and restored watermarks, we investigate the feasibility to utilize watermark for

data quality assessment.

5.3 Problem Description

The essential idea for sensory data quality assessment is that when the water-

marked sensory data undergoes the in-network processing/aggregation, the same oper-

ation will be performed on both watermark and the original sensory data. If we ab-

stract the aggregation as a noisy channel which causes distortion after the signal passing

through, we’d like to investigate how to estimate the distortion on the original sensory

data by calculation the difference between the original watermark and the distorted one,

both of which are available at the base station.

Basically, suppose X and Y representing the original sensory data and watermark,

and X ′ and Y ′ is the distorted (restored) sensory data and watermark, receptively. Let

∆(Y, Y ′) be the distortion between the original watermark and the restored one (after

aggregation), our goal is to investigate the relation between ∆(Y, Y ′) and ∆(X,X ′) or

∆((X + Y ), (X + Y )′).
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In the above discussion, ∆(·) is a general metric for distortion. Depending on

the applications, there are various ways to define the distortion. Here, we consider two

distortion metrics in our work: mean squared error and Kullback-Leibler(KL) distance.

Specifically, let d1, d2, . . . , dn represent the original data(e.g, sensory data, water-

mark, etc), d′1, d
′
2, . . . , d

′
n represent the corresponding restored data, then, Mean Squared

Error(MSE) is defined as:

MSE =

∑i=n
i=1 (di − d′i)

2

n

.

In a network, MSE can be used to evaluated the average distortion of each indi-

vidual sensor node. On the other hand, instead of a single node, for a network where the

distribution of the whole sensory data is the main focus, KL-distance is a suitable metric

to measure the distance between the original and restored data distribution. According

to information theory [16], KL-distance between two probability mass functions p(x)

and q(x) is defined as:

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

.

5.4 Experiment Study

Based on the above distortion metrics, we employ the same data set as in Section

4.7 (after pre-processing) to examine the distortion relation between the watermarked

data, watermark and the original sensory data.

In general, the distortion (both MSE and KL-distance) is compared between the

raw data(watermark, watermarked and original sensory data) and the corresponding re-

stored data after aggregation/compression. To restore the watermark, we first perform



77

DCT on the original watermark. Upon receiving the transform coefficients of the wa-

termarked data, for those that are zeros after quantization, we replace the watermark’s

transform coefficients in the same position with zeros. Then the restored watermark

is obtained by the inverse DCT. For the restored sensory data, it can be retrieved by

subtracting the restored watermark from the restored watermarked data.

5.4.1 Experiment Results

5.4.1.1 Temperature data

Fig. 5.1− 5.6 show the results from temperature data.

Figure 5.1. MSE, watermark N (1, 1).

Fig. 5.1 illustrates the distortion of the three pairs of data (watermark, water-

marked and original sensory data) in terms of MSE. In this case, the watermark follows

the Gaussian distribution, N (1, 1), and the compression ratio ranges from 5% to 95%.

It can be seen that with the compression ratio increasing, MSE becomes larger. Before
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the compression ratio reaches 70%, the MSEs of the three pairs are similar. However,

when the compression ratio is greater than 70%, the MSE of watermarked data is much

larger than the MSEs of the watermark and sensory data. Moreover, the MSEs of all the

three pairs have a significant jump when the compression ratio is beyond 70%, which

matches the considerable drop in the watermark detection probability in Fig. 4.13(b).

Figure 5.2. KL-distance, watermark N (1, 1).

With the same watermark of N (1, 1), Fig. 5.2 shows the distortion in terms of

KL-distance. Unlike MSE, where the watermarked data has the largest distortion when

the compression ratio is greater than 70%, the original sensory data always has the

largest KL-distance for all compression ratios. This indicates that MSE and KL-distance

are two orthogonal distortion metrics. For the watermark and watermarked data, the

distribution distortion (KL-distance) only come from the quantization. On the other

hand, since both restored watermarked data and watermark are distorted, the restored

sensory data which is retrieved by extracting the restored watermark from the restored
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watermarked data will accumulate the distortion. Although the difference between the

original and restored sensory data from an individual sensor node is small(such as the

MSE of the sensory data is fairly small in Fig. 5.1), the aggregate may contribute

an apparent difference on the distribution. In addition, the quantization is a non-linear

operation, that is, (X+Y )′ = X ′+Y ′+Qe, where, Qe is the quantization error. However,

in the above estimation, quantization error is omitted since the restored sensory data is

obtained by directly subtracting the restored watermark from the restored watermarked

data. This accumulated quantization error also contributes to the large KL-distance in

the original sensory data.

Figure 5.3. MSE, watermark N (2, 1).

Fig. 5.3 and Fig. 5.4 show the distortion when the watermark follows Gaussian

N (2, 1). Compared with watermark of N (1, 1), the MSE of watermark of N (2, 1) in-

creases. For example, while the MSEs of watermark and sensory data at compression

ratio of 95% do not rise much: from less than 1.5 to less than 2.0, the MSE of water-
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Figure 5.4. KL-distance, watermark N (2, 1).

marked data at compression ratio of 95% increases from 2.8 to 3.5. On the other hand,

KL-distance for both types of watermark does not show significant change.

Similarly as the watermark following Gaussian N (3, 1), the MSE reaches 4.5 at

compression ratio of 95%. The KL-distance also slightly builds up to 3.9. In addition, at

compression ratio of 95%, the difference of KL-distance between watermark and sensory

data gets enlarged as well.

5.4.1.2 Humidity data

Fig. 5.7− 5.9 show the results from the humidity data set.

We can see that MSE distortion of the humidity data set is pretty similar to

that of temperature data set. In general, after the compression ratio is beyond 70%,

the distortion increases sharply. Moreover, the more watermark power is, the larger

distortion is observed. However, for the same watermark signal which follows Gaussian

N (3, 1), at the same compression ratio, the MSE of humidity data is larger than that
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Figure 5.5. MSE, watermark N (3, 1).

of temperature data. For example, at compression ratio of 95%, the MSE of humidity

data is 7.5, while the temperature case is 4.5. Referring to Fig. 4.13(a) and Fig.

4.14(a), it indicates that the difference in both the value and distribution between the

raw temperature and humidity sensory data contributes to the MSEs discrepancy.

For the distortion in terms of KL-distance, the original raw sensory data is still the

largest, except for the case of watermark N (4, 1) at compression ratio of 95%. Compared

with the temperature data case where the watermarked distortion is very close to that

of watermark, the KL-distance in humidity data is more separated from each other.

5.5 Summary

Besides authentication, watermarking can be further employed for data quality

assessment. In this chapter, we show that the distortion of watermark provides a con-

structive measure to estimate the distortion between the original and the restored data

(both raw sensory data and the watermarked data). For the two distortion metrics: MSE
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Figure 5.6. KL-distance, watermark N (3, 1).

and KL-distance, while the MSE is more sensitive to the watermark’s signal power, the

KL-distance can provide information on the distortion of the whole data distribution.

In general, the MSE of sensory data is more close to that of the watermark data; while

the watermarked data and watermark is similar in term of KL-distance.
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(a) (b)

Figure 5.7. Distortion: watermark N (2, 1), a) MSE, b) KL-distance .

(a) (b)

Figure 5.8. Distortion: watermark N (3, 1), a) MSE, b) KL-distance .

(a) (b)

Figure 5.9. Distortion: watermark N (4, 1), a) MSE, b) KL-distance .



CHAPTER 6

TRUST BASED FRAMEWORK FOR SECURE DATA AGGREGATION

The watermarking based schemes discussed in Chapter 4 and 5 focus on defending

the compression based aggregation against outsider attacks. In this chapter, we develop

a framework that can detect insider attacks launched by the compromised nodes and

further block false data to secure query based aggregation.

For wireless sensor networks that work in an unattended or hostile environment,

sensor nodes are subject to physical capture or sophisticated analysis, which results in

complete node compromise. Once a node gets compromised, all the node’s secret infor-

mation including secret keys is revealed. As a result, the adversary can launch an insider

attack. This kind of attack is extremely hazardous since all the conventional crypto-

graphic techniques which are typified by encryption/decryption become ineffective.

By evaluating each sensor node’s trustworthiness, we propose a trust based frame-

work that can block the data sent by the compromised nodes to achieve securing aggre-

gation. At the same time, this proposed framework can also quantify the uncertainty in

the aggregate results.

In this chapter, we first introduce the threat model in Section 6.1. Section 6.2

overviews the proposed framework. Section 6.3 details the operations of each component

in the framework. Simulation results are presented in Section 6.4. Some framework

design issues are discussed in Section 6.5. We conclude this chapter in Section 6.6.

6.1 Threat Model

We assume that once a sensor node gets compromised, either by physical capture

or malicious code spreading, all the secret information including the keys is disclosed

84
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to the adversary. So the adversary gains full control of the compromised node and can

inject any data to disturb the normal network while circumventing the cryptography

approaches aimed at guaranteeing data integrity or secrecy. To launch an attack, an

adversary may manipulate the compromised node to send data dramatically different

from the true values or “looks good” data that are not apparently deviated from the true

values. While the latter case may not have a destructive effect on a particular aggregate

result, it is more dangerous since it can bypass the outlier detection and gradually diverge

the network’s long term operations.

We further assume that any nodes could get compromised, including cluster mem-

bers, cluster heads and gateways.

6.2 Framework Overview

Instead of solely relying on cryptographic techniques, the proposed scheme uniquely

utilizes multiple and yet closely coupled techniques: trust model and information the-

ory, to prevent the compromised nodes interfering aggregation process and meanwhile,

reason about the uncertainty existing in the aggregate results.

Considering a sensor network with a topology as illustrated in Fig. 3.4, after

forming clusters and assigning different roles to all the sensor nodes by some clustering

algorithms such as [29, 3, 73], each cluster member begins to report the sensory data

to its corresponding cluster head which in turn performs aggregation. The sensory data

should be protected by a MAC using the pairwise key shared between them.

Each cluster member is associated with a reputation to represent its trustwor-

thiness from the cluster head’s viewpoint. Upon gathering the data, the cluster head

first classifies its members into different groups based on their reputation. Referring to

the classification result, the cluster head computes aggregate results and updates each

member’s reputation by comparing the member’s reported sensory data with the aggre-
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gate result and further formulates an opinion [44, 46, 45], to express its degree of belief

regarding this result.

Combining its opinion along with the aggregate result as a report, the cluster

head then forwards this report to the gateway. The gateway further re-evaluates (called

opinion discount) the report based on this cluster head’s reputation before forwarding

it to the sink. At the same time, all the cluster members can overhear the reports sent

by either cluster head or gateway so that they can evaluate and maintain reputations of

the cluster head and gateway according to their own judgement.

This way, each node earns a reputation based on its behavior. Cluster heads

can check cluster members’ reputation to detect the compromised ones and the cluster

members can use the reputation to elect a new cluster head/gateway. Meanwhile, the

opinion associated with each aggregate result acts as a quantitative representation of

the uncertainty distributing throughout the network. An abstract architecture of the

framework is shown in Fig. 6.1. Fig. 6.2 summarizes the operations of each component.

clustercluster member sensory data sensorydatacluster headgateway BSbase station re-evaluated report X1, X2 opinion: report  X1report  X2opinion: 1

1

CH
Xωωωω opinion: 2

2

CH
Xωωωω

CH1 CH2GW
C1 C2

opinion: GW
CH2

ωωωωGW
CH1

ωωωω

Figure 6.1. Abstract architecture of the framework.
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update gateway’s reputationupdate cluster head’s reputation

transmitoverhear
Figure 6.2. Main operations of each component.

In summary, due to the fact that there exists redundancy in the information gath-

ered from physically proximate sensor nodes, by examining every sensory data against

each other, the redundancy is exploited to evaluate the trustworthiness of each individ-

ual sensor node. This trustworthiness is quantified as each node’s reputation, and in

turn serves as an input of a classification algorithm with aim to block the false data sent

by the compromised nodes. Moreover, by using opinion to represent the degree of belief

in the aggregate results and manage its propagation, the uncertainty inherent in the

sensory data and aggregate results in the whole WSN is captured and reasoned with.

In the remainder of this paper, we consider the most common aggregation function,

average calculation for numerical data, as an example. In [67], the author points out

that the average calculation is insecure since an attacker can completely control the

result by just changing any single node’s data. We show that the average calculation in

our framework can be successfully secured even in the presence of multiple compromised

nodes.

Next, we describe the operations of the cluster head, gateway and cluster member

in detail.
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6.3 Components in Framework

There are three components in the framework: cluster head, gateway and cluster

member. A sensor node may be assigned to any of them at one time.

6.3.1 Cluster Head

To focus on the cluster head’s functionalities, here we assume the clusters have

been formed. As shown in Fig. 6.2, a cluster head’s responsibilities include sampling the

sensor data and excluding outliers, maintaining cluster members’ reputations, classifying

the nodes based on reputation, calculating aggregation result, forming its opinion about

the result, and reporting the result along with opinion to the gateways.

After collecting the sensory data, the cluster head first excludes outlier, value that

is far from others, since it can significantly alter the aggregate result. To exclude outliers

while without knowing the true value, the cluster head shall compare each data point

with the median of these samples because the median is more robust [67]. A sample

value significantly deviating from the median will be deemed an outlier and expelled

from aggregation.

6.3.1.1 Reputation computation and updating

Our reputation definition is inspired by the fact that high density is one of the main

characteristics for a majority of WSNs. As pointed out in [20], a typical sensor network

may contain thousands of nodes, with certain cases up to 20 nodes/m3. Benefiting from

this, a cluster head can extract the statistical characteristics from the sampled data and

exploit them to evaluate each member’s reputation.

When multiple cluster members in one cluster are sensing a physical environment

independently, due to the hight density, each node can be considered as sensing a mean

value of the same sensing area. According to the central limit theorem, the sensory data
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from any particular sampling round will approximately follow a Gaussian distribution:

N (µ, σ), where µ is mean and σ is the standard deviation. Once certain nodes get

compromised, the compromised nodes will send forged data to distort the Gaussian

distribution. A cluster head shall expose this difference and based on this, quantify a

node’s reputation.

For the Gaussian distribution, empirical theory [22] shows that about 68% of the

samples falling within one standard deviation of the mean, i.e., between µ−σ and µ+σ.

Therefore, when there is no compromised node and all nodes have similar capability

and are in the same environment, each node’s data has the same probability (0.68)

of falling within the above range for a particular sampling round. Additionally, if the

sampling is independent between each sampling round, in the long run, the probability

of one nodes’ data falling within the above range (please note that the range may not

be the same between different sampling rounds) should also be 0.68. We term this ideal

node frequency distribution which in fact is Bernoulli distribution with probability of

0.68. However, in the real world, the frequency distribution of each sensor node may

not be exactly the same as above, especially for those compromised ones who constantly

report false data. We term the actual frequency of a node’s data falling into the above

range actual node frequency. Setting the ideal node frequency distribution as a criterion

to evaluate a nodes’ actual behavior, the difference between the ideal node frequency

distribution and actual node frequency distribution can be measured by a distance. The

shorter the distance, the more trustworthy a node is and vice versa. Naturally, the

distance can be used to evaluate a node’s reputation.

Toward this end, we introduce Kullback-Leibler (KL) distance, or relative entropy

[16] as a gauge to quantify the distance between these two frequency distributions and

further convert it into a reputation measurement metric. Let Π = {0, 1}, where 0

represents that the data falls out of the range and 1 otherwise. Consider two distributions
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s and t on Π. Let p, q (p, q ∈ [0, 1]) represent the probability of the data falling within

the range for s and t, respectively, thus is, s(0) = 1 − p, s(1) = p, and t(0) = 1 − q,

t(1) = q. Then, the KL-distance is defined as

D(s||t) = (1− p) log(
1− p

1− q
) + p log(

p

q
). (6.1)

Here, we adopt logarithms of base 2 following [16].

Applying the above definition to our work, for a cluster head, each node’s ideal

node frequency distribution is known as Bernoulli distribution with probability of 0.68.

The actual node frequency distribution can be learned through the accumulated sampling

rounds, e.g., by counting the occurrence of data falling within the range up to now. Since

an outlier can significantly affect the mean value, in real applications, one outlier incident

may be counted as multiple times out of range for punishment.

As discussed before, the KL-distance of legitimate nodes should be shorter than

that of compromised nodes. Therefore, the KL-distance is an excellent indicator of a

node’s trustworthiness. But to use the KL-distance as a reputation metric, the reputa-

tion value should be inversely proportional to this distance. Besides, to act as a weighting

factor, the value should range between [0,1]. For this purpose, let D be the KL-distance,

the reputation is defined as 1
1+
√

D
. Notice that this definition can also smooth severe

oscillations at the beginning of the reputation setup phase since the square root function

is less sensitive to sudden change in values.

As an example, considering two sensors sn1 and sn2 in one cluster composed of

multiple nodes, sn′1s actual node frequency after some sampling round, say t1, is f t1
sn1

=

0.65. According to Equ. (6.1), the KL-distance between its actual frequency and ideal

frequency at time t1 is: D(f t1
sn1
||f t1

ideal) = 0.0029. Thus its reputation is r(snt1
1 ) = 0.949.

While for sn2, f t1
sn2

= 0.63, so, D(f t1
sn2
||f t1

ideal) = 0.0081 and r(snt1
2 ) = 0.918. After

some time t2, f t2
sn1

= 0.68 and f t2
sn2

= 0.30. So at this moment, D(f t2
sn1
||f t2

ideal) = 0,

r(snt2
1 ) = 1.0. And D(f t2

sn2
||f t2

ideal) = 0.436, r(snt2
2 ) = 0.602.



91

The example demonstrates that the closer a node’s actual frequency is to the ideal

frequency, the higher a reputation it gains and vice versa. Besides, the reputation is

updated with time so that it can dynamically reflect a node’s behavior. Therefore, the

KL-distance fulfills the requirement for gauging a node’s trustworthiness.

6.3.1.2 Reputation classification and aggregation

After calculating reputation for each sensor node, a cluster head jointly examines

nodes’ reputations and determines if any compromised nodes are present.

The simplest way to identify the compromised nodes based on reputation is to

predefine a threshold [27, 9]. Once a node’s reputation falls below the threshold, it

is considered compromised. However, this mechanism may not be workable well in

WSNs since determining the threshold to guarantee effective detection lacks theoretical

guidelines. Moreover, a fixed threshold cannot adapt to the dynamics in the system.

Depending on the compromised nodes’ behavior, sometimes even a legitimate node’s

reputation may get “polluted” such that its reputation is not as high as expected even

though it is still fairly better than the compromised ones.

To overcome the above limitations, we empower cluster heads to isolate the com-

promised nodes dynamically while not solely relying on a fixed reputation value. Specif-

ically, unsupervised classification, the K-Means partition algorithm [43], is employed for

reputation classification. The basic idea of the algorithm is to partition a data set into

K disjoint groups to minimize the sum-of-squares criterion.

However, for the K-Means algorithm, K is a prior knowledge yet unavailable to

WSNs. Since the reputation is built up according to the nodes’ runtime behaviors,

it is impractical to predict a group number K in our work. For example, upon the

deployment time, all sensor nodes work properly, so there should be only one group

(K = 1). Later on, some nodes get compromised and their reputation drops, then
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the nodes shall be divided to two groups (compromised and legitimate) to reflect the

change. Furthermore, the compromised nodes may even behave differently and get

various reputations. For instance, compared with the legitimate nodes whose reputation

is above 0.9, some compromised nodes’ reputation may be around 0.7 while others around

0.4. In this case, still sticking to two groups would lead to the compromised nodes with

reputation of 0.7 in the same group with the legitimate ones. To avoid this, we need

to dynamically determine the group number based on sensors’ runtime reputations. To

implement this, we apply the K-Means algorithm iteratively, increasing K by one each

time. Once the difference between the mean reputations in any two groups at the

(K+1)th iteration is less than a threshold, called differenceRep, the iteration stops and

the reputations are classified into K groups. By this way, the nodes can be dynamically

classified into different groups based on their realtime reputations. As the example in

Section 6.3.1.1, assuming differenceRep = 0.2, at time t2, sn1 and sn2 (reputations are

1.0 and 0.6, respectively) will be classified into two groups even though they are in the

same one group at time t1 (reputations are 0.95 and 0.92, respectively). The algorithm

is described in Fig. 6.3.

Although differenceRep still serves as a threshold, it differentiates from the tradi-

tional reputation schemes in that this threshold is completely independent of the absolute

reputation values while focusing on the relative difference between the reputations. It

is more flexible and robust, especially when the legitimate nodes’ reputation is belittled

by the compromised ones.

After the nodes are classified into different groups based on their reputations, the

cluster head can isolate the compromised ones. Since the reputation is built on statistics

which most nodes follow, all legitimate nodes shall have high reputation as long as they

dominate in the aggregation. On the contrary, regardless of how many patterns the
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ReputationClassification(){
stopCondition = false;
clusterNum = 1;
while !stopCondition do

centroids1[ ] = K-Means(clusterNum);
clusterNum ++;
centroids2[ ] = K-Means(clusterNum);
if centroid1[i] and centroid2[j] are close enough, e.g. ≤ differenceRep then

stopCondition = true;
end

end
set centroids1[ ] as the mean of each cluster;
}
K-Means(clusterNum){
select clusterNum of data as the initial cluster centroids;
repeat

assign each data to the cluster that has the closest centroid;
recompute each cluster centroid;

until no change in each centroid ;
return centroid[ ];
}

Figure 6.3. Reputation classification.

compromised nodes may exert, it only affects the number of groups, they cannot earn

high reputation since their misbehavior contradicts the statistics rule.

6.3.1.3 Aggregation calculation

Referring to the reputation classification outcome, the cluster head can calculate

the aggregate result. This result is very important since it is not only the aggregate

result to be forwarded, but also the metric to evaluate a member’s reputation. In our

solution, the cluster head will collect the data sent by the cluster members from the

highest reputation group and calculate the average as well as the standard deviation

as its aggregate result for this sampling epoch. By only considering the data from

highest reputation group, the aggregate results are immune to the influence from the

compromised nodes with low reputations.
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6.3.1.4 Opinion formulation

With nodes’ reputations and aggregate result available, the cluster head will form

its opinion about the result to represent its belief in the result.

Given the mean x and standard deviation σ from the highest reputation data set,

the cluster head collects the cluster members whose readings fall within one standard

deviation of the mean (x−σ, x+σ) and treats those nodes as trustworthy members since

their data are close to the mean value (considered as the true value) for this aggregate

epoch. Those nodes whose data fall outside the above range constitute the uncertain

members since it is inevitable that sometimes the data from the legitimate nodes may also

fall out of that range. To form the opinion, we set the normalized average reputation

of trustworthy members as the belief part of opinion, and the normalized uncertain

members’ average reputation as the uncertainty part of the opinion. The ratio of the

number of uncertain members vs. total committed cluster members is defined as relative

atomicity.

Formally, for an aggregate result X, the cluster head CH forms its opinion regard-

ing the result ωCH
X = {bCH , dCH , uCH , aCH} as follows.

bCH : normalized average reputation of the nodes whose data falls within one standard

deviation of the mean;

uCH : normalized average reputation of the nodes out of the above range;

aCH : ratio of the number of nodes in uncertainty to the number of nodes in uncertainty

and belief altogether.

As no outlier is counted in the report, the disbelief dA is set to zero. The expec-

tation of a cluster head’s opinion about the aggregate result X is

OCH
X = E(ωCH

X ) = bCH + aCH ∗ uCH , (bCH + uCH = 1). (6.2)
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Extending the example in Section 6.3.1.1, suppose that there are 32 cluster mem-

bers in cluster C1. For an aggregate result X1 from a particular aggregate epoch, there

are 22 sensor nodes whose data falls within the range and their average reputation is

0.98. The remaing 10 members have an average reputation of 0.90. So CH1’s opin-

ion about result X1 is: bCH1 = 0.52, uCH1 = 0.48, dCH1 = 0, aCH1 = 0.31. That is,

ωCH1
X1

= (0.52, 0, 0.48, 0.31).

Applying Equ. (6.2), OCH1
X1

= E(ωCH1) = 0.67.

This opinion quantitatively represents the cluster head’s trust toward its aggregate

result X1. Meanwhile, assume that in another cluster C2 with the same size, there are

25 sensors whose data are within range with average reputation of 0.98 and the average

reputation for the rest nodes is 0.60. Similarly, CH2’s the opinion about the result is:

ωCH2
X2

= (0.62, 0, 0.38, 0.22) and OCH2
X2

= 0.70.

Generally speaking, the larger percentage that cluster members’ data are close to

the mean value and the higher reputations for those nodes, the more a cluster head

trusts its result.

6.3.1.5 Aggregation reports forwarding

Once obtaining the aggregate result and the opinion, the cluster head sends them

together as its report to the gateway. Besides, the cluster head periodically broadcasts

its reputation list so that all the cluster members and the gateway are aware of others

nodes’ reputations. This broadcast has two purposes. First, since all the related nodes

are aware of their own reputation, a cluster head cannot arbitrarily change the report

for detrimental purpose. Second, this reputation information will help the cluster head

or gateway reselection due to either security reason or to balance energy consumption.

In summary of a cluster head’s operations, the concept of opinion in Josang’s

belief model is tailored to the statistical perception from an information theoretic view-
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point. By exploiting the statistical characteristics in the gathered data and using the

KL-distance as a metric, the cluster head assigns and updates the cluster members’ rep-

utation according to their accumulated behavior. To guarantee the fidelity of aggregate

results, the cluster head relies on the members in the highest reputation group and con-

siders others as suspicious ones. For the opinion formulation, the cluster head believes

the members whose data are close to the true value while identifies the rest as uncertain

members.

6.3.2 Gateway

As mentioned in the beginning of Section 6.2, the gateways link cluster heads

together and provide the whole network connectivity. The cluster heads along with

gateways and their connections form the backbone of the network. For each individual

gateway, upon receiving the reports from the cluster heads, it re-evaluates the reports

based on its own observations before forwarding.

6.3.2.1 Opinion formulation

Like a cluster head giving its opinion about the aggregate result, the gateway also

maintains its opinion about each cluster head to indicate its belief in the cluster head.

The opinion can also be considered as the cluster head’s reputation from the gateway’s

viewpoint.

Since the gateway has the same sensibility as other nodes, it can evaluate a cluster

head’s reputation by examining this aggregate report based on its own sensory reading

and other cluster heads’ aggregate reports. In general, for the environment considered

in our work, such as temperature and humidity, etc, a common characteristic is that it

usually changes smoothly. That is, in a small region, the gradient of the sensory data

sent by different cluster heads should be very similar. When a gateway receives the

aggregate reports, it first calculates the gradient for each pair of the reports. Besides,
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it also computes the gradient between each report and its own readings. If all the

gradients match with each other within a certain range, all cluster heads are considered

as “honest”; otherwise, the cluster head will vote for the majority. That means if

a cluster head’s report leads to the corresponding gradient to be consistent with the

majority of calculated gradients, this cluster head is considered as “honest”. Otherwise,

it is “dishonest” for this sampling epoch.

Let kGW
CH be the number of events that the cluster head’s result is honest as observed

by the gateway GW, and lGW
CH be the contrary. The gateway’s opinion about a cluster

head CH, ωGW
CH = (bGW

CH , dGW
CH , uGW

CH , aGW
CH ) is given as:

bGW
CH =

kGW
CH

kGW
CH +lGW

CH +2
, dGW

CH =
lGW
CH

kGW
CH +lGW

CH +2
, uGW

CH = 2
kGW

CH +lGW
CH +2

The judgement on the cluster head’s behave is a binary event, so the relative

atomicity aGW
CH = 0.5.

Assume that upon the 100th sampling epoch, a gateway observes 97 “honest”

events from cluster head CH1, thus ωGW
CH1

= (0.951, 0.029, 0.02, 0.5), and OGW
CH1

= 0.827.

Similarly, cluster head CH2 has 60 “honest” events, then ωGW
CH2

= (0.59, 0.39, 0.02, 0.5),

and OGW
CH2

= 0.6.

The gateway updates the cluster head’ reputations upon receiving the results, and

further consolidates them based on the cluster head’s reputation as well as the cluster

head’s opinion about the result.

6.3.2.2 Belief discounting

With its opinions about cluster heads, when receiving their reports, the gateway

can form the opinion about the result by discounting the cluster head’s opinion with

its own opinion toward the cluster head. The intuitive explanation for this is that if

the cluster head believes the report with high confidence and the gateway believes the

cluster head with high confidence, then the gateway will also believe the cluster head’s
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report with high confidence. However, if the gateway is uncertain about the cluster

head, it is also uncertain about the cluster head’s report regardless of the cluster head’s

opinion. By following this rule, the opinions can be properly managed and propagated

along the transitive path.

Using the subjective logic defined in Josang’s belief model, the discounting oper-

ator of the gateway on the cluster head’s report is described below.

Let X be a result, ωCH
X = (bCH

X , dCH
X , uCH

X , aCH
X ) and ωGW

CH = (bGW
CH , dGW

CH , uGW
CH , aGW

CH )

is cluster head CH’s opinion about X and gateway’s GW opinion about this cluster

head, respectively. Then,

ωGW CH
X = (bGW CH

X , dGW CH
X , uGW CH

X , aGW CH
X ) is called the discounting of ωCH

X by ωGW
CH ,

where

bGW CH
X = bGW

CH ∗ bCH
X , dGW CH

X = bGW
CH ∗ dCH

X ,

uGW CH
X = dGW

CH + uGW
CH + bGW

CH ∗ uCH
X , aGW CH

X = aCH
X .

This expresses the gateway’s opinion about the cluster head CH ’s report X as a

result of observing CH’s behavior. The expectation of the opinion is

OGW CH
X = E(ωGW CH

X ) = bGW CH
X + aGW CH

X ∗ uGW CH
X . (6.3)

Extending our example in Section 6.3.1.4 and 6.3.2.1, at the 100th sampling epoch,

the gateway’s opinion about cluster head CH1 is ωGW
CH1

= (0.951, 0.029, 0.02, 0.5) and

CH1’s opinion about the result, ωCH1
X = (0.52, 0, 0.48, 0.31). Then we have ωGW CH1

X =

(0.49, 0, 0.51, 0.31), and OGW CH1
X = 0.65. Similarly, ωGW

CH2
= (0.59, 0.39, 0.02, 0.5), and

ωCH2
X = (0.62, 0, 0.38, 0.22). Consequently, ωGW CH2

X = (0.37, 0, 0.63, 0.22), and OGW CH2
X =

0.51.

It can be seen that along the transitive path, the belief portion in opinion decreases

due to the increase in the uncertainty along the transitive path.
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In summary, by applying subjective logic defined in the Josang’s model, the opin-

ions which quantify the uncertainty in the aggregation results can be appropriately

propagated throughout the network.

6.3.3 Cluster Member

The regular sensor nodes sense the environment and report the data to their clus-

ter head. When the cluster head sends out a report, the sensor nodes can overhear it

and update the cluster head’s reputation by counting the numbers of “honest” events,

according to their own readings. Upon receiving the reputation list periodically broad-

casted by their cluster head, the sensor nodes check the reputation consistency to prevent

bad mouthing attacks [27]. For example, if a node’s data accords to the report most of

the time, while its reputation is very low, this might indicate the cluster head tries to

launch a bad mouthing attack.

6.4 Simulation Study

There are a lot of well-known attacks that could be launched in WSNs. Here, we

focus on those that send bogus data into the network aiming at disrupting the normal

operations. We present a set of simulations to evaluate the performance of the proposed

framework. Our objectives are multifold. First, we study the effectiveness of the KL-

distance serving as a reputation metric to identify the compromised nodes. Second, we

verify the correctness of forming the opinion about the aggregate results. Third, we

investigate the resilience of the aggregate results to the compromised nodes. Finally, we

examine the robustness of our scheme under various numbers of compromised nodes and

different behavior patterns.
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6.4.1 Simulation Environment and Scenarios

We assume that the network is already organized into clusters and within one

cluster, there are 32 sensor nodes indexed from 0 to 31. For a sensor node, a ran-

dom variable following the Gaussian distribution N (20, 2) is generated to simulate each

sensor’s realtime reading. A cluster head samples 3000 rounds during the experiment.

Four factors are considered for the attacks: 1) the data value sent by the com-

promised nodes; 2) the time duration of sending false data by the compromised nodes;

3) the total number of compromised nodes in one aggregating set; and 4) the behavior

patterns of the compromised nodes.

For the first two factors, we further examine two alternative scenarios. Specifically,

the data value sent by the compromised nodes could be either obviously false or tricky

such that it can not be treated as an outlier. The time duration that the compromised

nodes send the false data could be either continuous or intermittent. Table 6.1 sum-

marizes the combination of the first two factors with fixed 10% of compromised nodes

(node 0 to 3). In the table, “tricky” false data is around 18 or 22 (µ ∓ σ), “obvious”

false data is around 14 or 26 (µ∓ 3σ).

Table 6.1. Test Cases

Test Case No. Malicious Time Duration(%) False Data Type
Case 1 0 N/A
Case 2 100 obvious
Case 3 100 tricky
Case 4 66 obvious
Case 5 66 tricky

6.4.2 KL-distance Based Reputation

Fig. 6.4 shows sensor nodes’ reputation of all the cases at the end of the experi-

ment. The X-axis denotes the nodes IDs.
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Figure 6.4. Reputations of sensor nodes.

For the base line case (Case 1), since all nodes behave normally, they earn equally

high reputation close to 1. For Case 2, as the compromised nodes 0 to 3 always send

arbitrary data which are usually treated as outliers, they cannot acquire any reputation

during the runtime. Therefore, their reputation remains zero in the end. For Case 3,

with some probability, the “tricky” data may be counted as valid, so these nodes obtain

certain reputation. However, since this probability is pretty small, their reputations are

much lower (around 0.7) than that of legitimate ones. Similarly, the compromised nodes

in Case 4 obtain some reputation as they only send the false data occasionally, so as in

Case 5. Since the false data in Case 5 is closest to the true value (both in terms of value

and time duration), these compromised nodes’ reputation is the highest among Case

2–5. Moreover, as the standard used to evaluate reputation is derived from the data in

the highest reputation group, even the false data is failed to be identified occasionally,

the data will not have effect on the reputation evaluation. So the legitimate nodes in

Case 2–5 gain their reputations as high as those under no attacks.



102

In conclusion, the legitimate nodes in all cases have acquired much higher reputa-

tion regardless of the compromised ones’ behavior and the reputation of the compromised

nodes is proportional to the correctness of the data they send over time. This asserts

that the KL-distance is an effective and accurate metric to detect the compromised

nodes.

6.4.3 Cluster Head’s Opinion
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Figure 6.5. Evolution of opinions.

Fig. 6.5 summarizes a cluster head’s opinion about its results for different test

cases. In which, Case 1 is the baseline case where there is no compromised nodes.

For Case 2, different ratios (10%, 30% and 50%) between the legitimate nodes and

compromised ones are investigated. The figure shows that for all the cases, the opinion’s

value is within a range of 0.645 and 0.67.

Recalling the opinion’s definition given in Section 6.3.1.4, the belief item in an

opinion is a normalized average reputation of the nodes whose data falls within one
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standard deviation of the mean while the uncertain item is a normalized average reputa-

tion of the nodes out of the above range. Theoretically, since the nodes that commit to

aggregation are from the highest reputation groups, in a long run, each node should be

able to earn a reputation similar to others, thanks to their constant honest sensory data.

Ideally, for each opinion, the value of belief item shall be the same as that of uncertain

item, each of which shall be 0.5. Moreover, if the data strictly follows a Gaussian dis-

tribution, then the relative atomicity, which is the percentage of nodes whose data fall

out of one standard deviation of mean, should be 1− 0.682 = 0.318. Therefore, in such

a case, the opinion value should be 0.5+0.5∗ 0.318 = 0.659. However, in the real world,

even for the legitimate nodes, they cannot earn the exactly same reputations, this in

turn introduces a difference between the belief and uncertain item in an opinion. As a

result, the opinions in the simulation results fluctuate within some range. In addition,

where there is no compromised nodes in Case 1, all the nodes shall be in the highest

reputation group, so, the number of nodes committing to aggregation is maximal. On

the contrary, in other cases, the highest reputation group has excluded the compromised

nodes for they cannot maintain as high a reputation as the legitimate ones. Thus, the

number of nodes contributing to aggregation is less than the baseline case. Because of

this, the statistical character (e.g. Gaussion distribution) may be not so significant,

especially with the number of compromised nodes increasing. A net effect from this is

that the relative atomicity would be more fluctuant. This is reflected in Fig. 6.5 in that

the opinion in the baseline case has the smallest variance while the variance increasing

for the other cases.

6.4.4 Aggregate Results

With only the data from the highest reputation group are gathered for aggregation,

the false data has very little chance to sneak into. So the aggregate results are robust

to the false data injection attacks.
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Fig. 6.6 shows the aggregation results of Cases 2, in which, “all” means a cluster

head takes all the data for aggregation; “good” indicates the ideal case that excludes all

compromised nodes in the aggregation; and “cluster” is the result from our dynamical

K-Means classification scheme. The figure indicates the results from our trust model

based framework are consistent with the “good” situation. That testifies aggregation is

robust to false data injection attacks.

6.4.5 Fraction of Compromised Nodes

All the above cases assume that there are 10% of compromised nodes in one aggre-

gating set. Now, we examine the robustness of our framework to different compromise

node ratios in one aggregating set. Fig. 6.7 shows the results for Cases 2 with the

compromised node ratio 30% and 50%, respectively.

It can be seen that the higher compromised nodes ratio, the severer aggregation

results get affected. However, our framework can successfully block the false data sent



105

18.5

19

19.5

20

20.5

21

21.5

22

0 5 10 15 20

D
at

a

Time

all
good

cluster

(a)

18.5

19

19.5

20

20.5

21

21.5

22

0 5 10 15 20

D
at

a

Time

all
good

cluster

(b)

Figure 6.7. Aggregation results: a) Compromised nodes: 30%, b) Compromised nodes:
50% .

by the compromised nodes so that the aggregation results are consistent with the ideal

cases even when half of the nodes get compromised.

6.4.6 Cooperative Compromised Nodes

Until now, the compromised nodes work individually and randomly choose the

time and the false data value. As in Cases 4 and 5, the compromised nodes send the

correct and false data alternatively. However, for a more subtle attack, the compromised

nodes may cooperate and before misbehaving, they may even work properly to earn some

reputation.

In this test, the compromised nodes first behave properly. Later on, with a goal

to affect aggregation in the long run, they delusively send the data that shift the real

data a little bit in each epoch by abusing the reputation they already built up early.

Specifically, at the first 1/3 runtime, all the nodes work properly. Then the compromised

nodes begin sending the same data that is 0.1% larger than the true value each round.

(e.g., 20, 20.001, 20.002,..).

Fig. 6.8 shows the case with 10% of compromised nodes. Fig. 6.8 (a) indicates

that the compromised nodes earn the reputations as high as the others at first. When
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they begin misbehaving (time point 7 on the X-axis), their reputations drop quickly

while that of legitimate nodes still keeps high. The fluctuation in the compromised

nodes’ reputation occurs when their data fall around the tail range where their data

may still be used at a particular sampling epoch. But once their data move away from

that range, they cannot gain reputation any more.

Fig. 6.8 (b) shows that without detecting these compromised nodes, the aggregate

results are suffering from this cooperative attack and report the false value drifting away

from the true value slowly. In our framework, with the compromised nodes’ reputation

decreasing, we can effectively isolate them to keep the aggregate result consistent with

the true value.

Fig. 6.9 shows the case with 30% of compromised nodes. With the number of

compromised nodes increasing, their influence becomes more rigorous. But our frame-

work can correctly identify them as long as the reputation is distinguishable and assure

that the aggregation results are robust to the attack even the compromised nodes are

cooperative. Nevertheless, if the percentage of the compromised nodes keeps increasing

up to 50%, with the previous established reputations, those false data would interfere

the mean value calculation since the large amount of compromised nodes. Therefore,

our framework works when the compromised nodes are not dominant in the network.

6.5 Discussions

The above results show our framework works effectively under different kinds of

attacks. In this section, we discuss some design issues.
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Figure 6.8. 10% of cooperative compromised nodes: a) Evolution of Reputation, b)
Aggregate result .

6.5.1 Security Analysis

Since all the sensor nodes, including cluster members, cluster heads and gateways

may be compromised, here, we analyze the theoretical bound to detect the compromised

members, cluster heads and gateways.

6.5.1.1 Cluster members

To separate the compromised cluster members from the legitimate ones, the K-

Means algorithm is employed for reputation classification. Instead of using an absolute

reputation value as a threshold, the difference of reputation, differenceRep, is used as

a criteria to isolate the compromised nodes from the legitimate ones. However, it is pos-

sible that the classification algorithm mixes the compromised nodes with the legitimate

ones. In such a case, the aggregate results will be “polluted” by the mis-classification.

Here, we derive the reputation’s lower bound from which the K-Means algorithm is able

to correctly classify the nodes.

Theorem 6.5.1. The lower bound of reputation difference for the K-Means classification

algorithm to distinguish the compromised nodes from legitimate ones is: rgmin
− rbmax >
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Figure 6.9. 30% of cooperative compromised nodes: a) Evolution of Reputation, b)
Aggregate result .

∆
|Gi−Gj| , where rgmin

is the (online) minimal reputation for legitimate nodes, rbmax is the

maximal reputation for compromised ones, ∆ is the threshold of the reputation difference

(i.e. differenceRep), Gi and Gj is the percentage of legitimate nodes in group i and j,

respectively.

Proof. Without lose of generality, we assume that at the (K +1)th iteration, the thresh-

old ∆ is reached, so the final result would be that there are K groups. However, in a

particular group, there may be both malicious nodes and legitimate mixed up.

At the (K + 1)th iteration, the average reputation r for group i and j, (i, j <

(K + 1)), is:

ri = 1
Ni

∑Ni

l rl = 1
Ni

(
∑Ni−Mi

l rgl
+

∑Mi

l rbl
)

rj = 1
Nj

∑Nj

l rl = 1
Nj

(
∑Nj−Mj

l rgl
+

∑Mj

l rbl
)

where, Ni and Nj is the total node number in group i and j, Mi and Mj is the total

compromised nodes in group i and j, rg and rb represent the reputation of legitimate

nodes and compromised ones respectively.

From the threshold condition, these two groups will be merged into one, if |ri−rj| ≤
∆, that is
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|
∑Ni−Mi

l rgl
+

∑Mi
l rbl

Ni
−

∑Nj−Mj
l rgl

+
∑Mj

l rbl

Nj
| ≤ ∆ (6.4)

Consider the worst case when all legitimate nodes have the same reputation as

the one with the minimal reputation, while all the compromised nodes have the same

reputation as the one with the maximal reputation, that is, rgi
= rgmin

, rbi
= rbmax

(rgmin
> rbmax). Then Inequation (6.4) becomes

|(Gi −Gj)rgmin
− (Gi −Gj)rbmax| ≤ ∆ , (6.5)

and hence

rgmin
− rbmax ≤

∆

|Gi−Gj| . (6.6)

Therefore, in this worst case, when the difference of the reputation between legit-

imate nodes and compromised ones is less than the right side of Inequation (6.6), the

classification algorithm may classify those into a same group and thus mix legitimate

nodes with the compromised ones.

The above shows that when the reputation difference between legitimate nodes

and compromised ones is less than the right side of Inequation (6.6), the compromised

nodes and legitimate ones may get mixed up by the classification algorithm. Therefore,

in order to correctly classify into different groups, the reputation difference between

them must be larger than the right side of Inequation (6.6).

One thing that needs to be noted is when the percentage of legitimate nodes in the

two groups is the same (Gi = Gj), the right side of Inequation (6.6) would be infinite.

However, this could happen only under the assumption that all legitimate nodes have

the same reputation and so do malicious nodes. In a realistic scenario, as all legitimate

nodes’ reputations can not be exactly the same, nor those of the malicious nodes, so the

above infinite case will not happen.
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This theorem provides the theoretical lower bound for the K- Means algorithm to

distinguish the compromised nodes from the legitimate ones.

6.5.1.2 Cluster head and gateway

To distribute the energy consumption, it is necessary to reselect the cluster head

or gateway after some time. Another reason for reselection is either the cluster head or

the gateway get compromised. Here, we derive the bound when a compromised cluster

head or gateway can be detected.

Consider that a reputation threshold τ is set to determine whether or not a cluster

head (or gateway) is compromised. Suppose a cluster head(or a gateway) is observed

for k honest events and l dishonest events during a total of T sampling epoches. In

order to ensure this node’ reputation is not below the threshold τ to be treated as a

compromised node, its reputation, or its neighbors’ opinion ω toward it, must be beyond

the threshold τ . Therefore, we can derive that k ≥ τ(T +2)−1. That is, if the neighbors

observe the number of honest events for a cluster head or gateway is less than the above

condition, the reselection would be triggered. For the reselection, the processing can

follow the cluster head’s random rotation protocol as described in LEACH [29] while

taking reputation rating into account.

6.5.2 Energy Consumption

The sensor nodes in our framework are assigned with different roles: cluster mem-

ber, cluster head and gateway. To estimate the total energy dissipation, we analyze the

energy consumed by each role. Generally speaking, the energy is consumed by three

main sources: communication, computation and sensing.

Based on the energy models described in Chapter 3.5 , we catalog the operations

for each component and also give the computational complexity for computation con-

sumption. We assume that in one cluster composed of N sensor nodes, there are M
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Table 6.2. Energy Consumption for each component

Communication Computation Sensing
GW 1) M*Prv(GW, CH, 1) //aggregate reports 1) reputation discount: O(M) Psen

2) Ptx(GW, GWnext, 1, 1) //forward to BS 2) combining aggregating results: O(M)
CH 1) N ∗ Prx(CH, CM, 1) //sensory data 1) aggregating of mean and std: O(N)

2) Ptx(CH, GW, 1, N) //reputation list 2) updating CM’s reputation list: O(N)
3) Ptx(CH, GW, 1, 1) //aggregate report 3) reputation classification: O(K ∗N ∗ c)

CM 1) Ptx(CM, CH, 1, 1) //sensory data 1) update CH reputation: O(1) Psen

2) Prv(CM, CH, 1) //aggregate report from CH
CH: cluster head; GW: gateway; CM: cluster member.
K in the 3rd column is the K-means classification and c in is the number of iterations.

(M < N) cluster heads that connect to one gateway in average. Since all the communi-

cation between cluster member to cluster head, and cluster head to gateway is one hop

away, for simplicity, we set the distance between them as one unit. In addition, for the

small packets size, such as a single sensor data or report, the packet’s length is set to 1

for simplification. For the packets that include a set of nodes (e.g. reputation list), the

size of the packets is approximated by the number of nodes in one cluster.

Table 6.2 summaries the energy consumption. It can be seen that the energy

consumption is distributed among the nodes with different roles. For cluster heads

whose computation and communication cost most, no sensing task is assigned to save

energy.

6.5.3 Extension to Routing

Similar to some other reputation based routing protocols in ad-hoc networks [9],

our framework is readily applicable to routing protocols. By explicitly considering the

opinion associated with the aggregate result, we can evaluate the en-route nodes’ trust-

worthiness based on a modified Beta system.

In WSNs, any sensor nodes acting as a router may take two possible actions: drop

the packet or forward it. Let k be the number of forwards by a router and l be the
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number of drops, then the parameters in Beta density function can be expressed by

setting: α = k + 1 and β = l + 1, (k, l ≥ 0). The Beta distribution is defined as:

r = Beta(α, β) =
Γ(k + l + 2)

Γ(k + 1)Γ(l + 1)
pk(1− p)l.

Based on this, we introduce a weighted factor to punish the node that drops the

result that has a high opinion. That is, the Beta distribution becomes: Beta(λk+1, λl+

(1 + O)), where λ is a forgetting factor to give more weight to recent observations than

the older ones [47], and O is the opinion value of the dropped result. The rationale

is manifest: a report with high opinion is more valuable, and it costs more when such

packet gets dropped.

More generally, depending on the nodes tasks in the network, the reputation which

represents a node’s trustworthiness may have different meanings. For a node sensing

environment, the reputation represents the correctness of the data it sends; for a node

on the path from the cluster head to the sink, the reputation represents its reliability

as a router. Regardless of the interpretation of the reputation, once the reputation is

associated with each node, it can serve as an additional metric for network control and

management. Therefore, this framework can be extended to secure not only aggregation,

but also other operations such as clustering and routing, by integrating nodes’ reputation

into the existing criteria for these schemes.

6.5.4 Other Aggregation Functions

In this work, we discuss the most common aggregation function, average. However,

our framework is not limited to average calculation. The central idea is to incorporate

statistical properties extracted from the sensory data into the belief model. Therefore,

our trust-based framework can achieve secure aggregation for other aggregation func-

tions including sum, histograms of data distribution or range queries, etc. Furthermore,

the framework is readily applied to non-numerical data (e.g., event-driven) applications
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as long as we can model the data probability distribution, for example, Binomial distri-

bution, etc.

6.6 Summary

In this chapter, we have proposed a trust based framework for securing information

aggregation in WSNs. By extracting statistical characteristics from gathered data, each

sensor node’s trustworthiness is evaluated using an information theoretic metric. By

employing K-Means, an unsupervised learning algorithm, the compromised nodes can

be isolated from aggregation. Moreover, with the help of Josang’s belief model, the

uncertainty existing in the sensory data and aggregation results is explicitly represented

and quantified. Compared with the conventional schemes that are based on cryptography

schemes, the proposed framework can effectively block the false data in the presence

of multiple compromised nodes that would bypass outlier detection. The extensive

simulation results indicate that our framework can achieve robust aggregation under

various attack patterns with different ratios of compromised nodes and reason about the

uncertainty in the aggregation results.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Summary of Contributions

In this dissertation, we focus on securing data aggregation in wireless sensor net-

works from the following two aspects: 1) outsider attacks and 2) insider attacks.

To block the false data launched by outsider attacks, we propose a watermark-

ing based authentication scheme. By visualizing the sensory data collected at a time

snapshot as an image, we adopt robust watermarking as the basis of our authentication

scheme. The property of robust watermarks enable the authentication even after the

sensory data has undergone some legal modification (e.g. aggregation). The energy con-

sumption in this scheme meets the asymmetric energy requirement for sensor networks.

The practical issues when applying such technique to WSNs are discussed as well. In

addition, some investigation on utilizing watermark for data quality assessment has been

conducted as well.

Although the watermark based schemes can effectively detect the outsider attacks

by authentication, it can not work for insider attacks, where all the secret information

held by sensor nodes is revealed to the adversary. In order to defend against such

attacks, we propose a trust based framework to secure data aggregation in the presence

of compromised nodes. By introducing an information theoretic concept, KL-distance,

as a metric to evaluate each sensor node’s trustworthiness, the compromised nodes can

be isolated from the legitimate ones. Moreover, with the help of Josang’s model, the

uncertainty in the aggregate result can be quantified and reasoned with along the path

from cluster heads to the data sink.

114
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7.2 Future Research Directions

We plan to further investigate the proposed work in the following directions: 1)

developing a unified benchmark for performance comparison among the related work in

the literature; 2) validating the watermarking based authentication scheme with different

types of compression based aggregation functions; 3) constructing an analytical model

on data quality assessment.

Although with the same goal to secure data aggregation in WSNs, the proposals

in this research area have a magnificent diversity. As surveyed in Chapter 2, the concept

of reputation has been widely employed for security purpose. By defining the reputation

in various ways, the metrics used for performance evaluation in the literature are also

quite different. In addition, how to utilize the reputation to fulfill the security task is

application-specific as well. Regardless of the diversity, the ultimate goal of introducing

reputation is to identify, and subsequently, isolate the malicious nodes. Toward this end,

we plan to design a benchmark that can compare the performance among the different

proposed work according to a set of unified metrics. Under the same type of applications

domain, the performance would be evaluated in terms of robustness and effectiveness.

For instance, what kinds of attacks would the schemes be able to defend against? How

accurate would the schemes achieve when applying the reputation as a detective tool,

in terms of the occurrence of false negative and false positive? With such a benchmark

available, performance comparison would make more sense.

To the best of our knowledge, we are the first to propose an end-to-end authentica-

tion approach to secure compression based aggregation functions. Due to the simplicity

of the implementation, we use DCT as an example for performance evaluation. Because

both the watermark embedding and detection procedure are independent of the com-

pression algorithm, theoretically, there is no limitation to extend our proposed scheme

to DWT based compression algorithms or other lossy compression algorithms, thanks to



116

the robustness property of the watermark. But it would be better to verify this in real

world applications.

In Chapter 5, we extend the watermark based authentication schemes to data

quality assessment and provide some primary test results. An in-depth study is necessary

to derive some mathematical models to quantitatively estimate the relation between

watermark distortion and the sensory data or watermarked data distortion. Instead of

only considering distortion, the correlation between watermark and the sensory data

may be also taken into account to establish a more accurate quality assessment model.
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