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ABSTRACT 

 

CLOSED-FORM DEVELOPMENT OF A FAMILY OF HIGHER ORDER 

TETRAHEDRAL ELEMENTS THROUGH 

THE FOURTH ORDER 

 

 

Sara Elizabeth McCaslin, PhD. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Kent Lawrence  

This research is concerned with the development and implementation of a 

family of tetrahedral elements through the fourth order.  The straight-sided tetrahedral 

elements are developed in closed-form.  This work investigates the efficiency of closed-

form implementation of stiffness matrices and error estimators compared to numerical 

implementation.   An additional objective is the compaction of closed-form source-code 

files which require as little storage space as possible, a more pronounced requirement at 

high p-levels. 

For the straight-sided elements through p-level 4, the stiffness matrix, 

equivalent nodal load vectors, and error estimators (based on nodal averaging) are 

developed using closed-form equations obtained through the use of a computer algebra 
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system.  The stiffness matrix and error estimators are also implemented using numerical 

integration so that a timing comparison between the numerical and the closed-form 

approaches could be performed.   

The curved-sided elements, including the stiffness matrix, equivalent nodal load 

vectors, and error estimators are also implemented using Gaussian quadrature only.  A 

test conducted on a model of all curved-sided elements is used to verify that the 

elements are working correctly. 

Results indicate that the closed-form implementation solutions are comparable 

to the numerical solutions.  For all p-levels the closed-form stiffness matrix is more 

efficient by a factor of at least 4 when compared with numerically integrated elements. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

1.1 Historical Background 

Finite element analysis is a powerful engineering tool that analyzes objects by 

breaking them into individual elements and nodes; the objects modeled can range from 

geometrically simple parts to complex systems.  The basic principles of physics and 

engineering are applied to the individual elements and nodes, and the elements are later 

reassembled to provide a solution for the entire structure. 

According to Zienkiewicz [1], the finite element method has two distinct lines 

of ancestry:  discrete engineering systems and mathematical approximations.  The 

earliest discrete approach was known as the stiffness method, and in the early 1900s 

was successfully used for applications such as bridge construction.  In this 

methodology, the structure is viewed as a system of interconnecting components:  

displacements at the ends (nodes) of these components (elements) were assumed to be 

linearly related (by the stiffness of the element) to the forces applied at the ends (nodes).  

If the sum of the forces at each joint is assumed to be zero, equilibrium is preserved; if 

the displacements at the nodes are treated as the unknown, then the system of 

displacements is made continuous.  The resulting system of equations can be used to 

solve for the actual displacements.   
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Matrices were found an efficient tool for representing the systems of equations.  

Relaxation methods and iterative processes were developed to speed the solution, but, 

prior to the advent of computer systems, only a relatively small number of unknowns 

could be solved for.  The construction of bridges, railways, and tall buildings, along 

with the use of reinforced concrete in such applications, provided a further incentive for 

engineers to improve their methodologies for efficient solutions [2]. 

The mathematical approximation used in finite element analysis stems from the 

idea of a continuum; this approach requires the use of partial differential equations, 

rather than a set of discrete equations, to represent the physics involved.  Mathematical 

methods developed included the finite-difference method, trial function, minimization 

of potential energy, the use of weighted residuals, and boundary solution methods. 

The establishment of computer technology has allowed for the efficient and 

accurate solution of extremely complex models.  During World War II, ―secret‖ 

research in the area of relaxation led to the successful solution of 900 simultaneous 

equations, almost quadrupling what was possible before the war.  A large model in 1960 

involved two to three thousand variables; the largest model to date, solved using 

computerized techniques, appears to be a billion plus variables [3]. 

According to Zienkiewicz [1], ―. . . less emphasis is being placed on research 

leading to more economical and efficient methods on computation.‖  Many users of 

finite element analysis are accepting methodologies that are inefficient and unrefined 

simply because computer usage (both in terms of memory and processing power) is far 

cheaper than in the past.  Zienkiewicz goes on to say that ― . . . we should strive to show 
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that more refined calculation is generally preferable to the use of inefficient methods . . 

.‖   

It is possible to solve complex problems using the older methods on new 

computer systems, but there is still a need for more elegant, computationally efficient 

approaches.  It should also be noted that, with improvement in speed and memory 

capabilities of common desktop computers, as well as the widespread availability of 

efficient computer algebra systems, there remain many unexplored areas where finite 

element research can be advanced.   

1.2 Research Objectives 

This project involves the development and implementation of a family of 

straight-sided and curved-sided tetrahedral elements through the fourth order.  The 

research places emphasis on the efficiency of closed-form solutions, made possible by 

modern computer algebra systems, for development of tetrahedral stiffness matrices and 

nodal averaging error estimators.  Research has been pursued in this area for various 

two dimensional elements as well as for isoparametric tetrahedral elements [4, 5, 6]; 

this research focuses on straight-sided elements emplyoing the Szabo and Babuska basis 

hierarchical shape functions [7 ,8] for p-levels 1 through 4, straight-sided, and straight-

sided elements based on isoparametric shape functions for p-level 4 [9].  Both closed-

form straight-sided and numerical curved-sided implementations are considered. 

A straight-sided element, including its stiffness matrix, equivalent nodal load 

vectors, and error estimators (based on nodal averaging), is implemented using closed-

form equations obtained through use of a computer algebra system, but a numerical 
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integration implementation is also be developed to allow for a comparison in efficiency 

between closed-form and numerical approaches.  Both versions are implemented in 

FORTRAN code, tested, and results compared with theoretical values where available. 

Since a significant portion of the computation expense involves the formation of 

the stiffness matrix and error estimator for each element in the model, the major 

outcome of this research involves a time study performed to compare the execution time 

expense of the closed-form implementation of element matrices with that of the 

numerical implementation of element matrices.   

In addition, the equivalent curved-sided elements, including stiffness matrix, 

equivalent nodal load vectors, and error estimators were implemented using Gaussian 

quadrature.  These elements are also implemented in FORTRAN code and tested.   

1.3 Literature Review for Tetrahedral Elements 

The simplest two-dimensional element is the triangle; its three-dimensional 

counterpart is the tetrahedron, whose use has become practically unavoidable in finite 

element modeling because it readily lends itself to the representation of complex 

geometries.  As a more recent example of their use in unusual geometric models, note 

that Dennis et.al. used tetahedral elements when modeling the human head and neck for 

research involving cooling of the human brain to prevent a stroke after onset of cerebral  

ischemia [10].  The first suggestions concerning the use of a tetrahedral element are 

those of Gallagher et al. [11] and Melosh [12] in the early 1960s.  Argyris et. al. [10] 

developed the TET 20 (quadratic strain) and TEA 8 elements in 1968, both possessing 

complete polynomials for the displacement fields and satisfying displacement 
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compatibility.   Pawlak et al. [13] developed a four node tetrahedron with three 

translational and three rotational degrees of freedom in 1991, which proved to be more 

computationally efficient than the ten node tetrahedron, but not as accurate.    

Recent research into the development of improved tetrahedral elements includes 

a low-order tetrahedral element created in 1994 by Key et. al. [14]:  an eight-node 

tetrahedral comprised of a four-node tetrahedral element enriched with four mid-face 

nodal points for use in all-tetrahedral modeling involving wave propagation.  In 1999, 

Kong et. al. [15] developed a new fourth-order tetrahedral element with mass lumping 

for solving the wave equation.  Bittencourt [16] developed fully tensorial and modal 

shape functions for triangles and tetrahedra, which included a tensorial based Gauss-

Jacobi integration procedure.   

1.4 Literature Review for Shape Functions 

Hierarchic families of triangular elements were developed by Katz and Rossow 

[17] and tetrahedral elements were presented by Babuska, Katz, and Szabo, both in 

1979 [7], and revisited later by Szabo and Babuska in 1991 [8].  Main characteristics of 

the hierarchic shape functions include the property that basis functions of level p are a 

subset of the basis functions of level p + 1, forming a hierarchical family, and that they 

are composed of complete polynomials. 

Hierarchical elements can be used in the p-method implementation of finite 

element analysis, where a required level of accuracy is achieved by retaining the same 

mesh but increasing the polynomial level used.  In 1982, Babuska and Szabo found that, 

for quasiuniform meshes, the p-method cannot have a lower rate of convergence than 
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the h-method, and in some cases the p-method can converge twice as fast [18].  An 

summary of the p-method (as well as the h-p method) was provided by Babuska and 

Suri in 1990 [19], which concluded that, although the higher polynomial levels are more 

computationally expensive, the ratio of work to accuracy and engineering accuracy is 

better for the p-method than for the h-method.  

Major modifications to hierarchical shape function bases would include the 

Carnevali basis, implementing orthogonal bases (using  Gram-Schmidt 

orthonormalization ) with better conditioning, which is of interest because conditioning 

can be an issue when the condition number of the stiffness matrix increases 

exponentially with an increase in p-level [20]; this differs from standard hierarchical 

elements with p-level 3 or greater.  In 2001, bases were developed with better sparsity 

and conditioning properties as opposed to ill-conditioning of the Szabo-Babuska basis 

caused by coupling of the volume (bubble) and face shape functions.  The improved 

properties obtained by modifying the Szabo-Babuska basis by orthogonalization, which 

also reduces the condition number [21]. 

The isoparametric tetrahedral element shape functions are well-known for p-

levels 1 through 3, referred to, respectively, as the constant strain tetrahedron, linear 

strain tetrahedron, and quadratic strain tetrahedron [22].  The fourth order element, 

sometimes referred as the cubic strain tetrahedron, is not as well documented, but the 

equations for the development of its shape functions can be found in the paper by 

Argyris introducing the TET 20 (linear strain) element [9]. 
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1.5 Literature Review for Stiffness Matrices 

In the development of the TET 20 and TEA 8 elements, Argyris et al. [9] 

obtained the stiffness matrices using matrix transformations of the modal stiffness.  

Since that time, the use of symbolic processors has allowed for closed-form evaluation 

of the stiffness matrices of tetrahedral elements [5].   

1.5.1  Closed-form Stiffness Matrices 

Tinawi [23] used closed-form integration to obtain the stiffness matrix of non-

hierarchic triangular elements in 1972; Subramanian and Bose [24, 25] developed 

stiffness matrices without the use of numerical approximation for the family of plane 

triangular elements in 1982 and for C0 continuous tetrahedra in 1983.  Closed-form 

expressions for plane hierarchic triangular elements were later investigated by Rathod et 

al. , including a recursive method for curved triangular elements [26].   In 1984, Babu 

and Pinder [27] obtained analytical integration formulae for linear isoparametric 

quadrilateral finite elements, and demonstrated a savings in computational effort when 

compared to Gaussian quadrature. 

Nambiar [28] and Lawrence et al. [29] showed that the implementation of 

closed-form expressions resulted in improved speed compared to Gaussian numerical 

integration for both constant strain and linear strain triangular elements.    

With regard to tetrahedral elements, Shiakolas et al. [4, 5, 6] developed closed-

form expressions for linear and quadratic strain tetrahedral elements using Mathematica 

to produce the closed-form equations in FORTRAN format; the research showed 
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significant time savings when compared to numerical approximation using Gaussian 

quadrature.   

1.5.2  Curved Tetrahedral Elements 

For curved tetrahedral elements, matrix development requires some form of 

numerical integration or processing.  Dey et al. [30] have recently been able to improve 

the efficiency numerical integration of hierarchical curved tetrahedra using integration 

by table look-up; the non-polynomial portions of the integrand are approximated by 

polynomials and a table of precomputed values is developed based on the 

approximating polynomials. 

1.6 Literature Review for Error Estimators 

Discretization errors are defined as the difference between the exact solution 

and the numerical solution, and result from the attempt to represent a continuum by a 

finite number of subdivisions.  The two basic types of discretization error estimates are 

a priori and a posteriori.  A priori estimates are useful for obtaining the worst case in a 

class of solutions of a problem but do not provide information about the actual error.  

Conversely, a posteriori methods use information obtained during the solution process, 

as well as some a priori assumptions concerning the solution.  

Various adaptive strategies exist for refining the model based on the error 

estimation.  The h-method reduces the size of the elements in a mesh when the local 

error indicator is above a previously determined error tolerance; the p-method increases 

the local order of approximation; the r-extension uses a fixed number of nodes which 

are redistributed to areas of high error in the mesh [31]. 
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According to Zienkiewicz, there are essentially two procedures available for a 

posteriori error estimation today:  residual error estimators and recovery based error 

estimators [31].  This research into error estimation was introduced by Babuska and 

Rheinboldt [32] and considered local residuals of the numerical solution, allowing 

estimation of the local errors from a norm, such as the energy norm.  It allowed for 

adaptive refinement to be achieved by first locating the elements with the greatest error 

and subdividing them to improve the accuracy.   

The second approach uses a recovery process to more accurately represent the 

unknowns.  Variations in the recovery based error estimations involve the type of 

procedure used to substitute for the exact solution in the discretization error calculation. 

The recovery based methods were pioneered by Zienkiewicz and Zhu [33], and the 

mathematical basis for the Zienkiewicz-Zhu (ZZ) method was explained by Ainsworth 

et. al. [34].  This method, which is both simple and computationally efficient, is based 

on using a globally smoothed stress distribution to represent the exact solution.  Byrd 

[35] developed a stress nodal averaging estimator that was implemented in ANSYS 

[36].  Other variations include the superconvergent patch recovery method (SPR), also 

developed by Zienkiewicz and Zhu [37], and the recovery by equilibrium in patches as 

developed by Boroomand and Ziekiewicz [38]. 

Note that Carstensen and Funken [39] have proven that the ZZ error indicator 

provides reliable upper and lower bounds for the error and thus has the property of an 

error estimator. 
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Closed-form error estimation has not been a major focus of finite element 

researchers.  However, Nambiar in 1989 [28], Lawrence et. al. in 1991 [29], and 

Shiakolas et. al. in 1992 [4, 6, 40] performed research in this area, and their results have 

been promising in that they show closed-form implementation is more efficient in terms 

of speed when compared to numerical evaluation. 

1.7 Literature Review for Gaussian Cubature 

Fellipa has created a set of Mathematica scripts that implement the most 

commonly used Gauss rules for finite element applications, and these can be used ―as-

is‖ in computer algebra systems or used to generate rule values to be implemented in a 

program [41].  Cools and Rabinowitz produced a thorough bibliography of monomial 

cubature rules in 1993 [42], followed by Part 2 of the series in 1999 [43]. In 2003, 

Cools continued this work with an encyclopedia of cubature formulas available on the 

World Wide Web, which provides recomputed points and weights to either 16 digits or 

32 digits, corrects misprints in the original manuscripts, and also gives access to an 

extensive bibliography [44].    

The theory, development, methodology, and testing involved in this research are 

presented in the chapters that follow.  The element shape functions, and modifications 

required for curved-sided development, are discussed in Chapter 2.  Chapters 3 and 4 

present the closed-form development of the stiffness matrices and error estimators, 

respectively, while briefly outlining the numerical implementations.  Derivations of the 

equivalent nodal load vectors for pressure, shear, and temperature are summarized in 

Chapter 5.  Chapter 6 deals specifically with the compaction algorithm used to reduce 
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the size of the Mathematica produced source code files, and Chapter 7 discusses the 

usage of Mathematica in this research.  Chapter 8 presents the test problems used, while 

Computational results for the test problems, timing comparisons, and compaction are 

discussed in Chapter 9, which ends with conclusions and a discussion of future areas of 

work.  
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CHAPTER 2 

ELEMENT SHAPE FUNCTIONS 

In finite element modeling, tetrahedral elements are the three-dimensional 

counterpart to the two-dimensional triangle in finite element modeling.  The shape of a 

tetrahedral element readily lends itself for use in both simple and complex models, and 

its usage has become very common.  Tetrahedrons also lend themselves readily to 

automatic volume meshing. 

There are different types of tetrahedral elements in practice; in the context of 

closed-form solutions, the work of Shiakolas [4, 5, 6] focused on isoparametric 

tetrahedral elements, but this research focuses on hierarchic tetrahedral elements for 

straight-sided elements [7, 8], and isoparametric fourth order elements [9] for curved-

sided, as well as straight-sided. 

Hierarchic elements differ from isoparametric elements in several ways, 

including their use in the p-version of the finite element method.   In the p-version, the 

mesh is generally held fixed while the polynomial approximation, represented by degree 

p, is increased; in the h-version, for which the isoparametric elements are well adapted, 

the polynomial approximation is held fixed while the mesh is refined.   

Hierarchic elements are also based on a complete set of polynomials, as 

illustrated in Fig. 2.1 by Pascal’s pyramid through p-level 4.  Unlike isoparametric 

elements where all nodal variables represent displacement, hierarchic elements include 
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nodal variables that are based on derivatives of displacement.  The external nodal 

variables are used to enforce global C0 continuity, while the internal nodal variables 

complete the polynomial.  Note that the shape functions used are defined as integrals of 

Legendre polynomials, rather than having a Lagrange basis as do the isoparametric 

elements. 

1
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2
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
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2

 

Figure 2.1  Illustration of the complete polynomials found in p-levels 1 through 4. 

 

Babuska, Szabo, and Katz [7] introduced a family of hierarchic elements, used 

in this research, with the property that polynomial p is a subset of polynomial p + 1; 



 

 14 

thus, the stiffness matrix, equivalent nodal loads, and error estimation terms posses this 

same property.  

This chapter discusses the development of the hierarchic and isoparametric 

shape functions, their implementations using a computer algebra system (abbreviated 

CAS) for both straight-sided elements and curved-sided elements, as well as node 

numbering issues. 

2.1 General Introduction 

The shape functions for tetrahedral elements are described in terms of local 

coordinates, called volume or natural coordinates and indicated by L.  The local 

coordinates are transformed into global coordinates by the mapping illustrated in Fig. 

2.2 below. 

 

 

Figure 2.2  Mapping from global to local coordinates. 
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To map from the local coordinates to global coordinates, the transformation 

shown in Equation 2.2 is used.  Local coordinates Li (i=1, 2, 3, 4) are mapped to global 

coordinates of any point within the element represented {x, y, z} based on the global 

coordinates of the vertices of the tetrahedral element {xi, yi, zi} (i=1, 2, 3, 4). 
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The local coordinates are also known as volume coordinates, note the physical 

nature of the volume coordinate illustrated for L1 shown in Equation 2.3. 

 
1234

234
1

vol

volP
L    (2.3) 

Volume coordinate Li represents ratio of tetrahedral volumes based on an 

arbitrary internal point P inside the tetrahedron.  The value of Li is 1 at vertex i and zero 

on the opposing face.  The sum of the volume coordinates is always 1, which indicates 

that they are not independent.  The relationship in Equation 2.4 is used to eliminate L4 

from Equation 2.2, resulting in Equation 2.5, where xij = xi – xj, yij = yi – yj, zij = zi – zj.  

 321̀4 1 LLLL    (2.4) 
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2.2 Hierarchical Shape Functions 

For the hierarchical-based elements, shape functions as described by Szabo and 

Babuska [9] were used for p-levels 1 through 4.  There are four nodal shape functions 

and three types of modes: edge, face, and internal.  The edge modes are always 

associated with mid-side edge nodes, while the face modes are associated with the 

center of the face; the internal modes, or bubble nodes, are located at the centroid of the 

element. 

 






2 √⅔

1

1

1/√3

2/√3

4
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1

 

Figure 2.3  Standard tetrahedral element. 

 

If a standard tetrahedral element is defined as shown in Fig. 2.3 above, then the 

volume coordinates are as follows: 

 







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 

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
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
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6

1

3

1
1

2
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 







 

8

1

3

3
3L  (2.8) 

 
8

3
4 L  (2.9) 

 14321  LLLL  (2.10) 

There are four nodal shape functions, given as follows: 

 𝜑𝑖
1 = 𝐿𝑖  where i = 1, 2, 3, 4 (2.11) 

The implementation used by Adjerid, Aiffa, and Flaherty [21] was found to be 

the clearest explanation of the development of the remaining shape functions, and is 

reproduced here.  After defining the following two formulas, the remaining shape 

functions can be expressed. 

        







 xxxxxxxxxPi 157063

8

1
33035

8

1
35

2

1
13

2

1
1 352432  

 (2.12) 

 ℇ𝑘 𝑡1, 𝑡2 =
−8 4𝑘+2

𝑘 𝑘+1 
𝑃𝑖

′ 𝑡2 − 𝑡1  (2.13) 

 ℱ𝑟1,𝑟2
 𝑡1, 𝑡2, 𝑡3 = 𝑃𝑟1

 𝑡2 − 𝑡1 𝑃𝑟2
 2𝑡3 − 1  (2.14) 

 ℬ𝑟1,𝑟2,𝑟3
 𝑡1, 𝑡2, 𝑡3, 𝑡4 = 𝑃𝑟1

 𝑡2 − 𝑡1 𝑃𝑟2
 2𝑡3 − 1 𝑃𝑟3

 2𝑡4 − 1  (2.15) 

There are 6 (p-1) edge modes on each edge Ej, for j = 1, 2, 3, . . . , 6, located at 

the midpoint of the edge.  These edge modes are given by the equation below.  Note 

that, for implementation in this research, the values of  j1 and j2 are first calculated and 

then sorted in ascending order.  For example, suppose the results were 4 and 1, 
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respectively:  in actual implementation, they would be sorted so that they would be 1 

and 4 for j1 and j2.  

 𝜑𝑖
2 = 𝐿𝑗1𝐿𝑗2ℇ𝑘 𝐿𝑗1 , 𝐿𝑗2    (2.16) 

 where k = 1, 2, . . . , p – 1,  

 j1 =  
1 + 𝑗 𝑚𝑜𝑑 3, 1 ≤ 𝑗 ≤ 3
1 + 𝑗 𝑚𝑜𝑑 4, 4 ≤ 𝑗 ≤ 6

 , and  j2 =  
1 + (𝑗 + 1) 𝑚𝑜𝑑 3, 1 ≤ 𝑗 ≤ 3
4, 4 ≤ 𝑗 ≤ 6

  

There are 4 (p-1) (p-2) / 2 face modes, each located in the centroid of face Fj, j = 

1, 2, 3, 4.  These modes are given in Equation 2.13 below.  Note that after j1, j2, and j3 

are calculated, this triplet of values is then sorted.  For example, suppose the results 

were 1, 4, and 3, respectively:  in actual implementation, they would be sorted so that 

they would be 1, 3 and 4 for j1, j2, and j3.  

 𝜑𝑖
3 = 𝐿𝑗1𝐿𝑗2𝐿𝑗3ℱ𝑟1,𝑟2

 𝐿𝑗1, 𝐿𝑗2 , 𝐿𝑗3  (2.17) 

 where j = 1, 2, 3, 4 

 j1 = 1 + j mod 4, j2 = 1 + j1 mod 4, and j3 = 1 + j2 mod 4 

 k = 3, 4, . . . , p and r1 + r2 = k - 3 

For the region modes (or bubble nodes), there are (p–1)(p–2)(p–3)/6 modes 

located at the centroid of the element.  Their existence starts in p-level 4, where there is 

one such mode.  The equation for this bubble mode is given as follows, for p-level 4 

only. 

 𝜑𝑖
4 = 𝐿1𝐿2𝐿3𝐿4ℬ𝑟1,𝑟2,𝑟3

 𝐿1, 𝐿2 , 𝐿3, 𝐿4   (2.18) 

 where k = 4, 5, . . . , p and r1 + r2 + r3 = k - 4  
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The shape functions through p-level 4 were derived and implemented in 

Mathematica
©
 for use in both the closed-form and numerical solution codes.  

Observation of the output verified the nested nature of these shape functions, i.e., p-

level 2 contains all the shape functions of p-level 1, and p-level 3 contains all the shape 

functions found in p-level 2.  This helped to serve as verification that the shape function 

calculations were working as expected.  

Only the nodal shape functions represent displacement:  all other shape 

functions (edge, face, and bubble modes) represent derivatives of displacement, rather 

than displacement.  Table 2.1 shows the node numbering, shape function, and 

displacement representation for each node in p-levels 1 (please reference Figure 2.2 to 

determine the position of nodes 1 – 4).  Tables 2.2, 2.3, and 2.4 show the additional 

nodes found in each p-level. 

The nodal numbering indicated in the tables is illustrated on a tetrahedral 

element in Figs. 2.4 and 2.5 for p-levels 1 through 4.  Note that the edge nodes are all 

located at the middle of the edge, and the face nodes are all located at the middle of the 

element face. 

 

Table 2.1 Summary of Hierarchical Shape Functions for P-level 1. 

P-level 1 

Shape functions 

Type Position Node # Variable type 

L1 Vertex Node 1 1 Displacement 

L2  Node 2 2  

L3  Node 3 3  

L4  Node 4 4  
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Table 2.2 Summary of Additional Hierarchical Shape Functions for P-level 2. 

 

P-level 2 

Shape functions 

Type Position Node # Variable type 

-4 6 L2 L3 Edge Edge 2 3 5 2
nd

 derivative 

-4 6 L1L3  Edge 1 3 6  

-4 6 L1 L2  Edge 1 2 7  

-4 6 L1 L4  Edge 1 4 8  

-4 6 L2 L4  Edge 2 4 9  

-4 6 L3 L4  Edge 3 4 10  

 

 

 

  
 

Figure 2.4 P-levels 1 and 2 with node ordering. 

 

  
 

Figure 2.5 P-levels 3 and 4 with node ordering. 
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Table 2.3 Summary of Additional Hierarchical Shape Functions for P-level 3. 

P-level 3 

Shape functions 

Type Position Node # Variable type 

4 10  L2L3( L2 -  L3) Edge Edge 2 3 11 3
rd

 derivative 

4 10  L1L3( L1 -  L3)  Edge 1 3 12  

4 10  L1L2( L1 -  L2)  Edge 1 2 13  

4 10  L1L4( L4 -  L1)  Edge 1 4 14  

4 10  L2L4( L4 -  L2)  Edge 2 4 15  

4 10  L3L4( L4 -  L3)  Edge 3 4 16  

L2 L3 L4 Face Face 2 3 4 17  

L1 L3 L4  Face 1 3 4 18  

L1 L2 L4  Face 1 2 4 19  

L1 L2 L3  Face 1 2 3 20  

 

 

Table 2.4 Summary of Additional Hierarchical Shape Functions for P-level 4. 

P-level 4 

Shape functions 

Type Position Node # Variable type 

- 14 /3 L2 L3 (15( L2- L3)
2
-3) Edge Edge 2 3 21 4

th
 derivative 

- 14 /3 L2 L3 (15( L2- L3)
2
-3)  Edge 1 3 22  

- 14 /3 L1 L2 (15( L1- L2)
2
-3)  Edge 1 2 23  

- 14 /3 L1 L4 (15( L1- L4)
2
-3)  Edge 1 4 24  

- 14 /3 L2 L4 (15( L2- L4)
2
-3)  Edge 2 4 25  

- 14 /3 L3 L4 (15( L3- L4)
2
-3)  Edge 3 4 26  

L2 L3 L4( L2 -  L3) Face Face 2 3 4 27  

L3 L4 L1( L1 -  L3)  Face 1 3 4 28  

L4 L1 L2( L1 -  L2)  Face 1 2 4 29  

L1 L2 L3( L2 -  L1)  Face 1 2 3 30  

-L2 L3 L4(2 L4 -  1)  Face 2 3 4 31  

L3 L4 L1(2 L1 -  1)  Face 1 3 4 32  

L4 L1 L2(2 L4 -  1)  Face 1 2 4 33  

L1 L2 L3(2 L3  -  1)  Face 1 2 3 34  

L1 L2 L3 L4 Bubble Centroid 35  

 

 

 

2.3 Isoparametric Shape Functions 
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Shiakolas [4, 5] developed closed-form isoparametric tetrahedrons for p-levels 1 

through 3.  That work is here extended by considering the fourth order isoparametric 

tetrahedron. The fourth order isoparametric tetrahedral shape function is not commonly 

documented in the literature, although Argyris et. al. [9] provided an interpolation 

scheme for direct determination of modal functions. Like the fourth order hierarchical 

elements, each element has four corner nodes, three nodes per edge, three nodes per 

face, and one internal node.   

For a fourth order element (p = 4), Eqns. 2.19 through 2.23 below can be used to 

derive all 35 shape functions [9]. 

 𝑖 + 𝑗 + 𝑔 + 𝑕 = 𝑝 (2.19) 

 
1
𝑘 = 𝑖

𝑝 , 
2
𝑘 =

𝑗
𝑝 , 

3
𝑘 =

𝑔
𝑝 , 

4
𝑘 = 𝑕

𝑝  (2.20)

 𝜔𝑘 = 𝑓1
𝑖𝑓2

𝑗
𝑓3

𝑔
𝑓4

𝑕  (2.21) 

 𝑓𝑣
𝑙 = 𝑐𝑣

𝑙   
𝑣
− 

𝑣
𝐿 𝑙−1

𝐿=0  (2.22) 

 
𝑣
𝐿 = 𝐿

𝑝, 𝑐𝑣
𝑙 =

𝑝𝑙

𝑙!
  (2.23) 

Using the above formulation, a summary of each type of shape functions 

included in the fourth order is provided below in Eqns. 2.24 – 2.28, while the thirty-five 

shape functions, their positions in the master element, and nodal assignment is 

summarized in Table 2.5. 

The shape functions for the corner nodes are given by Eq. 2.24. 
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Table 2.5  Summary of Shape Functions, Positions, and Nodal Assignments for 4
th

 

Order Isoparametric Elements 
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 𝜑𝑖
1 = 32

3  𝐿𝑖 −
3

4
  𝐿𝑖 −

1

2
  𝐿𝑖 −

1

4
 𝐿𝑖  where i = 1, 2, 3, 4 (2.24) 

Edge modes consist of three nodes per edge:  one in the middle, and nodes ¼ 

distance from each endpoint.  Edge mode functions for the nodes ¼ edge length from 

corner node i are shown in Eq. 2.25. 

 𝜑𝑖
2 = 128

3  𝐿𝑖 −
1

2
  𝐿𝑖 −

1

4
 𝐿𝑖𝐿𝑗  (2.25) 

Edge mode functions for mid-edge nodes between corners i and j are found in 

Eq. 2.26. 

 𝜑𝑖
2 = 64  𝐿𝑖 −

1

4
  𝐿𝑗 −

1

4
 𝐿𝑖𝐿𝑗  (2.26) 

There are three nodes per face, with each node near a vertex.  Face mode 

functions nearest vertex i on a face composed of i, j, and k are found in Eq. 2.27. 

 𝜑𝑖
3 = 128  𝐿𝑖 −

1

4
 𝐿𝑖𝐿𝑗𝐿𝑘  (2.27) 

There is one internal mode located at the centroid of the element.  Its equation is 

given below. 

 𝜑𝑖
4 = 256𝐿1𝐿2𝐿3𝐿4 (2.28) 

Table 2.5 summarizes the shape functions, node assignments, and positions for 

the fourth order isoparametric tetrahedral element. 

2.4 Summary of Curved-sided Modifications 

For curved-sided elements, the distorted global Cartesian coordinates are 

mapped to curvilinear coordinates, as shown in Fig. 2.5.  These curvilinear coordinates 

allow the distorted tetrahedral element to be represented by an undistorted parent 

element.  The local curvilinear coordinates as defined as follows in Eqns. 2.29 – 2.32.  
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With any integration limits involved appropriately modified, the shape functions 

developed in this section can be modified for curvilinear applications by an appropriate 

substitution of variables [22].   

  = L1 (2.29) 

  = L2 (2.30) 

  = L3 (2.31) 

 1-  -  -  = L4 (2.32) 

 

 

Figure 2.6 Distorted tetrahedral element mapped to curvilinear coordinates. 

 

The process of mathematically converting the distorted element into the 

curvilinear element is known as ―mapping,‖ and requires conversion from the global 
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coordinates x, y, z to the local coordinates , , .  This transformation requires the 

calculation of the Jacobian between the local and global coordinates.  If 𝑓 ,,   

represents a function defined in terms of the local coordinate system, use of the chain 

rule gives the following. 

 
𝜕𝑓  

𝜕
=

𝜕𝑓  

𝜕𝑥
×

𝜕𝑥  

𝜕
+

𝜕𝑓  

𝜕𝑦
×

𝜕𝑦 

𝜕
+

𝜕𝑓  

𝜕𝑧
×

𝜕𝑧  

𝜕
  (2.23) 

If f represents nodal displacement u, v, and w (all dependent on the shape 

functions), then the Jacobian matrix  𝐽𝑐  of the transformation of function f can be 

obtained as follows 

 

 
 
 

 
 

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕 
 
 

 
 

𝑓 =  𝐽𝑐 

 
 
 

 
 

𝜕
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𝜕

𝜕𝑦

𝜕

𝜕𝑧 
 
 

 
 

𝑓 =

 
 
 
 
 
𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕 
 
 
 
 

 
 
 

 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧 
 
 

 
 

𝑓 (2.24) 

Because x, y, and z can be obtained from the shape functions in the form shown 

below, the partial derivatives found in the Jacobian matrix can be obtained using Eq. 

2.26 [22].  Note that 𝑁𝑖
′  is the shape function, in terms of the local coordinates, 

associated with the ith node, 𝑥𝑖  is the x-coordinate of the ith node, and n is the number 

of nodes per element. 

 𝑥 =  𝑁𝑖
′𝑥𝑖

𝑛
𝑖=1 , 𝑦 =  𝑁𝑖

′𝑦𝑖
𝑛
𝑖=1 ,  𝑧 =  𝑁𝑖

′𝑧𝑖
𝑛
𝑖=1  (2.25) 

 
𝜕𝑥

𝜕
=  

𝜕𝑁𝑖
′

𝜕
𝑥𝑖

𝑛
𝑖=1   (2.26) 

This allows the Jacobian matrix to take the form shown below [22]. 
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 𝐽𝑐 =
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  (2.27) 

Defining finite element properties, such as stiffness and equivalent nodal loads, 

can be represented in the form shown below, where the matrix  𝐻  is dependent on the 

shape functions  𝑁  defined with respect to the global coordinates, and the integration is 

performed over the volume (in the case of error estimation and stiffness matrices) or 

over the area (in the case of equivalent nodal loads).   

   𝐻 
𝑉

𝑑𝑣 (2.28) 

To transform the variables to local coordinates, the determinant of the Jacobian 

matrix is used as illustrated below for the volume of an element. 

 𝑑𝑥 𝑑𝑦 𝑑𝑧 =  𝑑𝑒𝑡 𝐽𝑐  𝑑 𝑑 𝑑 (2.29) 

Integrals for tetrahedral elements then take the following form, where the 

integration is carried out over the parent region, the undistorted form of the element 

[22]. 

     𝐻  ,,   𝑑 𝑑 𝑑
1−−

0

1−

0

1

0
 (2.30) 

When curved elements are used, the model is first built using all straight-sided 

elements.  Nodes located on curved edges or surfaces are moved to the appropriate 

coordinates after the straight-sided model has been completed.  The following 

methodology for moving the nodes to curved edges and faces follows the 
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implementation discussed by Muthukrishnan in his dissertation [45].  The coordinates 

are determined by first assuming that the curved surface can be represented by a conic 

surface, whose axis lies along the z-axis of the model, and whose surface can be defined 

by two radii and the endpoints of the cone.  This is illustrated in Fig. 2.7, and the 

formula is given in Eq. 2.31 below where the symbols correspond to illustration 

referenced. 

 𝑅𝑐 = 𝑅2 +  
𝑧 − 𝑧2

𝑧1 − 𝑧2
   𝑅1 − 𝑅2  (2.31) 

After the value of 𝑅𝑐  is known, the coordinates of the new node position can be 

obtained using geometry, as shown in Fig. 2.8.  The required equations are shown 

below, and the variables again correspond to illustration referenced.  These 

relationships are valid for moving both edge nodes and face nodes. 

 𝑅𝑠 =  𝑥𝑠
2 + 𝑦𝑠

2 (2.32) 

 𝑥𝑐 =
𝑅𝑐

𝑅𝑠
 𝑥𝑠 (2.33) 

 𝑦𝑐 =
𝑅𝑐

𝑅𝑠
 𝑦𝑠 (2.34) 

 The curved-sided elements were implemented using the fourth order 

isoparametric implementation only.  During the course of research, it was found that the 

hierarchic shape functions selected do not lend themselves to the type of curved 

implementation described above. 
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Figure 2.7 Illustration of a conic surface. 

 

 

Figure 2.8 Coordinates of a node on a curved surface. 
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 One of the problematic issues discovered during initial testing involved the 
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Rc 

nc 

ns 

yc 

xc 

ys 

xs 

x 

y 

 

z1 
z2 z 

R1 

Rc 

R2 



 

 30 

directionality based on local node numbering.  It is possible for shape functions on 

shared edges with opposite directionality to cancel each other out, as illustrated along an 

edge in Fig. 2.8 (courtesy Dr. Shiakolas in private communication).  If the element on 

the left has edge directionality 2-3, and the element on the right has edge directionality 

3-2, the shape functions could cancel each other out and produce erroneous results. 

As a further illustration, the face of a tetrahedral element will be considered.   

Fig. 2.9 shows elements A and B which share a common edge:  local nodes 2 and 3 for 

both elements (A2 and A3, with B2 and B3).  The edge orientations are in opposite 

directions, and, as discussed the effects of shape functions for these edges may cancel 

each other out during calculations such as stiffness or error estimation. 

 

 

Figure 2.9 Illustration of the sensitivity of same shape functions to edge directionality.   

The same issue arose in the work of Xin, Pinching, and Flaherty [46] during 

implementation of hierarchical simplicial elements in FEMLAB.  They referred to the 

problem as maintaining ―interelement continuity of the basis,‖ and their solution to this 

problem was modified and found to be sufficient for the test problems used in 

connection with hierarchical elements. 
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1. Sort corner nodes by node number in ascending order, not taking into account 

their position in the coordinate system. 

2. Define all edges in sorted pairs by node number. 

3. Define all faces in sorted triplets by node number. 

4. If, when calculating the volume of an element, that volume is found to be less 

than zero, swap local nodes 2 and 3 and mark that element as a ―swapped‖ 

element. 

 

If nodes 2 and 3 are the only nodes that can be out of order, then the only edge 

and faces that could be shared but have differing orientations would be edge 2-3 and 

faces that include edge 2-3.  The orientation of all edges except 2-3, and all faces 

without edge 2-3, will match for all elements sharing them.   If the order of these locals 

nodes is swapped during preprocessing, that element is marked as a ―swapped‖ element; 

calculations such as the stiffness, stress, or error estimation for that element will be 

based on shape functions where the order of local nodes 2 and 3 have been reversed for 

edges and faces.  Figures 2.10 and 2.11 illustrates how this solution works. 

Xin et. al. [46] found that several approaches existed in the literature which 

indicated that the most straightforward approach is to produce shape functions based on 

permutations, but that method was not compatible with their FEM implementation, nor 

is it compatible with the assembly of the stiffness matrix and error estimation 

implementation used in this research. 
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Figure 2.10 Two faces with a shared edge but with different edge orientations. 
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Figure 2.11 Same faces with edge and nodes swapped to ensure that the shared edge is 

based on the same edge orientation. 
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For isoparametric, similar issues were resolved by making node 1 the node with 

the smallest y-coordinate, node 4 the node with the largest z-coordinate.  Nodes 2 and 3 

are swapped as needed to preserve positive volume for the element. 

Chapter 3 presents the development of the closed-form stiffness matrices, and 

also discusses their numerical implementation.  
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CHAPTER 3 

STIFFNESS MATRICES 

One of the major objectives of the derivation that follows is to find an 

expression for the stiffness matrix [K] that can be efficiently implemented in closed-

form, not just for numerical quadrature.  If the expression for the stiffness matrix can be 

broken into matrices, and some of those matrices can be calculated once for each type 

of element or once for each element, the closed-form implementation will see an 

increase in efficiency.  Many of the equations that follow will be manipulated with this 

purpose in view, and follows closely the derivation provided by Shiakolas [4].  Note 

that this derivation is applicable for both hierarchical and isoparametric straight-sided 

elements. 

3.1 Derivation and Manipulation of the Stiffness Matrix 

The shape functions for the tetrahedral element are described in terms of a local 

coordinate system, whose coordinates, indicated by L, are called volume or natural 

coordinates.  The equation below is used to obtain the global coordinates of any point in 

the element.  Li represents the local volume coordinates and xi, yi, and zi represent the 

global Cartesian coordinates of the vertices of the tetrahedron.   
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 (3.1) 

Because the sum of the volume coordinates will always be one, it is possible to 

eliminate L4:  3214 1 LLLL  .  Substitution of L4 into Equation 3.1 results in the 

following equation, where xij = xi – xj, yij = yi – yj, and zij = zi – zj . 
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 (3.2) 

The volume coordinates (L1, L2, L3, L4) are functions of the coordinates of the 

corner nodes of the element.  They are obtained from the inversion of Equation 3.2 

above, which yields Equation 3.3.   This also results in the expressions of the form 

shown in Equation 3.4, where x, y, and z represent the global Cartesian coordinates of 

any point in the tetrahedron. 
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 (3.3) 

   JCzCyCxCL iiiii /4321   (3.4) 

Note that Cik represents the entry at (i,k) in the inverse coefficient matrix (see 

Equation 3.3 above) and J  is the determinant of the Jacobian representing a 

transformation from Cartesian to volume coordinates, and is equal to 6 x volume.  
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The element shape functions and nodal displacements of an element are used to 

determine the displacement of any point in the element, as shown in Equation 3.5 for 

displacement in the x-direction.  Variable Ni is the shape function for node i and ui is 

the global displacement of node i in the x-direction.  Similar expressions are used to 

find the displacements in the y- and z- directions, using v and w, respectively. 

 i

nodes

i

i uNu 



1

 (3.5) 

Equation 3.6 is used to find the displacement of any point in the element in all 

directions (not just one node in a particular direction). In this expression, [I3] is an 

identity matrix of order 3, nodes represents the total number of nodes in the element, 

[N] is the element shape function, and u1 would represent the displacement of node 1 

in the x-direction. 
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 (3.6) 

The equation below shows an example how Equation 3.6 can be used to 

determine global displacement by looking at the x-displacement, represented by 

u(x,y,z). 

 nodesnodes uNuNuNu   2211  (3.7) 
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This allows the calculation of global displacement as a function of nodal 

displacement and element shape functions.  The next step is to look at the strain vector, 

which, for a three-dimensional domain, can be represented by Equation 3.8. Note that u, 

v, and w are displacements in the x, y, and z directions, respectively. 
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The strain displacement matrix [Bi], based on the definition of strain shown 

above, is given in Equation 3.9, and is applicable for any node i.  Note that [Bi] is a 

differential operator matrix that operates on global displacements u, v, and w, not on 

local displacements.  The strain displacement matrix [B] for an entire element is shown 

in Equation 3.10, where nodes represents the total number of nodes in the element;  it is 

a function of the strain displacement matrices for each node in the element, and its 

dimensions are 6 x (3 x nodes). 
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    nodesBBBB 21  (3.10) 
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The strain vector of Equation 3.8 can be represented in an alternate form.  If  

u
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,,, represents the partial derivates of u with respect to x, y, and z, 

and matrix [A] is comprised of constants, the strain vector representation takes on the 

shortened form shown in Equation 3.11, where the matrix of constants is named [A]. 
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It is now necessary to determine the relationship between {u,x,y,z  v,x,y,z  w,x,y,z}
T
 

and the derivatives with respect to the volume coordinates L1, L2, and L3. 

For the x-direction, the chain rule gives Equation 3.12 below. 
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Implementation of the chain rule for the other derivatives provides the following 

equations. 
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Therefore, [] can be represented as shown in Equation 3.15, and {g} is shown 

in Equation 3.16.  Note that an expression such as  1,L

T
wvu refers to the vector 

formed by the partials of u, v, and w with respect to L1. 
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The partial derivatives of the volume coordinates can be obtained from Equation 

3.4 and are shown in Equations 3.17 – 3.19, where Cik represents the entry at (i,k) in the 

inverse coefficient matrix (see Equation 3.3). 
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Recall that |J| is equal to six times the volume of the element.  The above 

equations indicate that the [] matrix in Equation 3.15 is constant for each element 

since it depends only on the coordinates of the nodes of the element (see Equation 3.3).  

It can easily be implemented in closed form, and is calculated once for each element. 

The next step is to determine the derivatives of the displacements with respect 

to the volume coordinates.  This results in Equations 3.20 – 3.22 for displacement in the 

x-direction, and similar formulations for the y- and z-directions. 
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  (3.20 – 3.22) 

When expanded for all directions, the derivatives of the displacements with 

respect to volume coordinates result in the formula below. 
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 (3.23) 

The [R] matrix will be the same for each element type because it is a function of 

the polynomial order of the element, and its dimensions are 9 x (3·nodes).  It needs to be 

calculated only once for any element type. 
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If the element stiffness matrix is implemented using local volume coordinates 

instead of global Cartesian coordinates, the strain energy for an element is written as 

shown in Equation 3.24 below, where Ue is the element strain energy, {} is the strain 

vector, [D] is the elasticity matrix, and  is the domain of integration. 

           
 vol

TT

e dzdydxDdDU 
2

1

2

1
 (3.24) 

Note that the elasticity matrix [D] is represented as shown below [22]. 
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The equation for strain energy, based on substitution of the strain vector as the 

product of the strain displacement matrix [B] times the nodal displacement vector {u}, 

is shown in the following equations, where the domain integration  is the volume of 

the element. 

            


duBDuBU
T

e 
2

1
 (3.26) 
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Expressing the strain energy in terms of the element stiffness matrix, [Ke], 

results in Equation 3.28.  This formulation will aid in determining the element stiffness 

matrix. 

     uKuU e

T

e 
2

1
  (3.28) 

When Equation 3.27 and Equation 3.28 are compared, it is readily seen that the 

element stiffness matrix can be represented as shown in Equation 3.29. 

            


dBDBK
T

e
 (3.29) 

Based on the formulations developed, the strain matrix can be manipulated into 

the form shown in Equation 3.31, where [P] = [A] []. 

              uRAgAuB ~~    (3.30) 

      uRP ~   (3.31) 

This means that the strain displacement matrix [B] can be calculated as the 

product     RPB  .  Since the [P] matrix is a function of the [A] matrix (comprised of 

all constants) and the [] matrix (which depends on the nodal coordinates of the 

element vertices and is constant for each element) [P] only needs to be calculated once 

for each element.  Note that the dimensions for [P] are always 6 x 9. 

These manipulated formulations can now be substituted into the equation for the 

element stiffness matrix [Ke]. 

           321 dLdLdLJRPDPRK
TT

vol

e    (3.32) 
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If [G] is defined as [G] = [P]
T 

[D] [P], it will be geometry and material 

dependent, needing to be calculated only once for each element and results in a 9x9 

symmetric matrix of constants.  Substitution of [G] into Equation 3.32 results in the 

final form of the stiffness matrix, shown in Equation 3.33. 

        321 dLdLdLJRGRK
T

vol

e    (3.33) 

3.2 Closed-Form Implementation 

For closed-form calculations, the integration indicated in Equation 3.33 was 

accomplished using the formula below [22], where the domain of integration is the 

volume of the element, a, b, c, and d represent the powers to which the natural 

coordinates have been raised, and V is the volume of the element. 

  𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝐿4

𝑑𝑑𝐿1𝑑𝐿2𝑑𝐿3𝑑𝐿2𝑑𝐿4 =  𝑎! 𝑏! 𝑐! 𝑑!
 𝑎 + 𝑏 + 𝑐 + 𝑑 + 3 !  6𝑉  

  (3.34) 

3.3 Curved-sided Elements 

Curved-sided elements are defined in terms of local coordinates (, , ).  These 

local coordinates represent the undistorted element; in the local coordinate system, the 

element has straight sides.  The global coordinate system is defined in terms of the 

Cartesian coordinates (x, y, z); in the global coordinate system, the element is distorted, 

and thus has curved sides. 

The steps to obtain the stiffness matrix (as well as equivalent nodal loads, 

stresses, and error estimation) involve several steps and two transformations.  In the 

previous sections, the stiffness matrix was derived in terms of the global coordinates.  
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The first step is to define the shape functions [N] (global coordinates) as [N’] (in terms 

of the local coordinates).  If we define the local coordinates in terms of the volume 

coordinates as shown in Equation 3.35, the local coordinates an be easily substituted 

into the shape functions. 

 𝐿1 = , 𝐿2 = , 𝐿3 = , 𝐿4 = 1 − −  −   (3.35) 

The same procedure outlined previously in this chapter was used to calculate the 

stiffness matrix for curved elements. Modifications to the formulations are outlined 

below. 

The    matrix of Eq. 3.15 is modified to relate the derivatives of the global 

displacements u, v, w with respect to the local coordinates , , , forming the 

curvilinear matrix  c .  Each entry ij is the ijth entry in the inverse Jacobian matrix 

 𝐽𝑐 , which means that the determinant of the Jacobian matrix is present in the 

denominator of each entry in this matrix. 
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The  R  matrix of Eq. 3.23 is modified so that it relates the derivatives of the 

global displacements with respect to the local coordinates , , , forming the  cR  

matrix, where  'N represents the shape functions in terms of the local coordinates. 
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The curved element stiffness matrix then takes on the following form, based on 

Eqns. 2.29, 2.30, and 3.32.  Note that  𝑃𝑐 =  𝐴  c . 

  𝐾𝑒𝑐  =     𝑅𝑐 
𝑇1−−

0

1−

0

1

0
 𝑃𝑐 

𝑇 𝐷  𝑃𝑐  𝑅𝑐 𝑑𝑒𝑡 𝐽𝑐  𝑑 𝑑 𝑑 (3.38) 

If, as in the case of Eq. 3.33,  [Gc] is defined as [Gc] = [Pc]
T
[D] [Pc], the matrix 

[Gc] is be geometry and material dependent, needing to be calculated only once for each 

curved element, as in the case of straight sided elements.  Substitution of [Gc] into 

Equation 3.33 results in the final form of the curved stiffness matrix, shown in Equation 

3.39. 

  𝐾𝑒𝑐  =     𝑅𝑐 
𝑇1−−

0

1−

0

1

0
 𝐺𝑐  𝑅𝑐 𝑑𝑒𝑡 𝐽𝑐  𝑑 𝑑 𝑑 (3.39) 

Because of the presence of the determinant of the curved Jacobian in the 

denominator of the integrand, numerical integration is required, as discussed in the next 

section. 

3.4 Numerical Integration Implementation 

For straight-sided elements, Gaussian cubature was used.  Fellipa’s summary of 

FEM integration rules [41] and the work of Gellert and Harboud [47] is the source for 

the Gauss points used, implemented according to Equation 3.40 below.  In the equation, 

nGauss is the number of Gauss points used, wi is the weight for that Gauss point, 𝐹 𝜑𝑖  

is the value of the integrand at Gauss point i.   

  𝐹 𝜑 𝑑 = 𝑣𝑜𝑙 ×  𝑤𝑖
𝑛𝐺𝑎𝑢𝑠𝑠
𝑖=1

𝐹 𝜑𝑖  (3.40) 

Gauss points used are as follows:  p-level 1, 1 point; p-level 2, 8 points; p-level 

3, 14 points; p-level 4, 20 points.  The least number of points required for accuracy 
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were used.  This was determined by first implementing more Gauss points than needed, 

then reducing the number of Gauss points used until the results were no longer 

acceptable.   

Chapter 4 presents both the closed-form and numerical error estimators, and 

ends with a discussion of measures of error. 
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CHAPTER 4 

ERROR ESTIMATION 

 

This research uses the Zienkiewicz-Zhu error estimator [33] with nodal 

averaging as developed by Byrd [35] in his dissertation, and implemented by ANSYS 

[36].  The theory behind this method is as follows:  interelement displacement 

continuity is guaranteed for C0 continuous elements, such as hierarchical elements or 

isoparametric elements, but continuity of either stress or strain is not guaranteed.  This 

implies that if a node is shared by two elements, it will most likely have two different 

stress (or strain) values.  A reasonable assumption would be that the actual stress (or 

strain) at this node lies somewhere between the two values. 

It follows that discontinuities in either stress or strain could provide an estimate 

of the error in the finite element solution.  Since the exact solution is not known, an 

improved estimate of the stress or strain distribution could be obtained by nodal 

smoothing, and the smoothing must be performed separately for each material region of 

the element [48].  For this research, the error estimation is based on the stresses. 
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4.1 Equation Development 

If  𝑒𝑖 
2 represents the error in the energy norm in element i, it can be calculated as 

shown in Equation 4.1, where [C] is the compliance matrix, 𝑒𝜎  is the error of the 

stresses, and  is the domain of the element. 

  𝑒𝑖 
2 =  𝑒𝜎

𝑇


 𝐶 𝑒𝜎𝑑 (4.1) 

The error of the stresses is based on Equation 4.2, where 𝜎∗represents the 

nodally averaged stresses and 𝜎  represents the stresses based on the finite element 

solution. 

 𝑒𝜎 = 𝜎∗ − 𝜎  (4.2) 

Substitution of Equation 4.1 into 4.2 results in the expression shown in Equation 

4.3, and expanded in Equation 4.4. 

  𝑒𝑖 
2 =   𝜎∗ − 𝜎  𝑇


 𝐶  𝜎∗ − 𝜎  𝑑 (4.3)

  𝑒𝑖 
2 =  𝜎∗𝑇


 𝐶 𝜎∗𝑑− 2  𝜎∗𝑇


 𝐶 𝜎 𝑑 +  𝜎 𝑇


 𝐶 𝜎 𝑑 (4.4) 

The first and last terms of Equation 4.4 are equal to two times the strain energy 

as estimated by the smoothed solution and two times the strain energy obtained by the 

finite element solution, respectively. 

4.2 Stresses for Error Estimation 

The smoothed stresses 𝜎∗ are interpolated over the mesh, on an element by 

element basis, based on the averaged nodal stresses, represented by 𝜎∗   .  These 

smoothed stresses are obtained using Equation 4.5, where N represents the shape 

function matrix used for interpolation. 
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 𝜎∗ =

 
 
 
 
 
 
𝑁 0 0
0 𝑁 0
0 0 𝑁

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑁 0 0
0 𝑁 0
0 0 𝑁 

 
 
 
 
 

 𝜎∗    (4.5) 

Because not all element nodes are displacement nodes [7], the hierarchical 

shape functions did not produce correct results when used for the interpolation.  The 

solution to this problem was to use isoparametric shape functions for the smoothed 

stresses.  In higher order elements, the shape functions used for interpolating stresses do 

not have to be the same as those used to produce the stiffness matrix. 

For p-level 2, linear strain tetrahedral shape functions are used; for p-levels 3 

and 4, quadratic strain shape functions are used.  The linear strain and quadratic strain 

shape functions are summarized in Tables 4.1 and 4.2, as found in Zienkiewicz [22].  

For the fourth order isoparametric element, the same shape functions used to obtain 

stiffness were also used for smoothing. 

 

Table 4.1 Linear Strain Tetrahedral Element Shape Functions. 

Node Type Shape Function  Node Type Shape Function 

1 Vertex 2L1
2
-L1  6 Edge 13 4L1L3 

2 Vertex 2L2
2
-L2  7 Edge 12 4L1L2 

3 Vertex 2L3
2
-L3  8 Edge 14 4L1L4 

4 Vertex 2L4
2
-L4  9 Edge 24 4L2L4 

5 Edge 23 4L2L3  10 Edge 34 4L3L4 
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Table 4.2 Quadratic Strain Tetrahedral Element Shape Functions 

Node Type Shape Function Node Type Shape Function 

1 Vertex  3𝐿1 − 1  3𝐿1 − 2 
𝐿1

2
  

11 Edge 23  9𝐿2𝐿3  3𝐿3 − 1 /2 

2 Vertex  3𝐿2 − 1  3𝐿2 − 2 
𝐿2

2
  12 Edge 13  9𝐿1𝐿3  3𝐿3 − 1 /2 

3 Vertex  3𝐿2 − 1  3𝐿3 − 2 
𝐿3

2
  13 Edge 12  9𝐿1𝐿2  3𝐿2 − 1 /2 

4 Vertex  3𝐿4 − 1  3𝐿4 − 2 
𝐿4

2
  14 Edge 14  9𝐿1𝐿4  3𝐿4 − 1 /2 

5 Edge 23  9𝐿2𝐿3  3𝐿2 − 1 /2 15 Edge 24  9𝐿2𝐿4  3𝐿4 − 1 /2 

6 Edge 13  9𝐿1𝐿3  3𝐿1 − 1 /2 16 Edge 34  9𝐿2𝐿4  3𝐿4 − 1 /2 

7 Edge 12  9𝐿1𝐿2  3𝐿1 − 1 /2 17 Face 234 27𝐿2𝐿3𝐿4 

8 Edge 14  9𝐿1𝐿4  3𝐿1 − 1 /2 18 Face 134 27𝐿1𝐿3𝐿4 

9 Edge 24  9𝐿2𝐿4  3𝐿2 − 1 /2 19 Face 124 27𝐿1𝐿2𝐿4 

10 Edge 34  9𝐿2𝐿4  3𝐿3 − 1 /2 20 Face 123 27𝐿1𝐿2𝐿3 

 

 

Before the isoparametric shape functions can be used with p-levels 3 and 4, the 

averaged nodal stresses have to be obtained at the isoparametric node points along the 

edge, as opposed to the hierarchical node points.   

All hierarchical edge nodes are located at the midpoint of the edge, and all 

hierarchical face nodes are located at the midpoint of the face.  For isoparametric 

elements, if there is one face node, it is at the midpoint; if there are three face nodes, 

they are evenly distributed on the face of the element; if there is one edge node, it lies at 
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the midpoint of the edge; if there are three edge nodes, they are evenly distributed along 

the edge.   

For p-level 4, the corresponding cubic strain tetrahedron can not be used 

because there were not enough known hierarchical stresses to allow for interpolation, 

thus a p-level 3 error estimation was used for terms 1 and 2 of the error estimator; this 

issue is illustrated in Fig. 4.1.  This method did not produce satisfactory error estimates, 

and was found unsuitable for the fourth order hierarchic tetrahedral element. 

 

Figure 4.1 Stress interpolation illustration for p-level 3 and 4. 

 

The finite element stress vector,  𝜎  , is derived from elasticity matrix  𝐷  and 

the strain vector  𝜖 . 

  𝜎  =  𝐷  𝜖  (4.6) 

X X 

X X X 

X – Isoparametric Node Point 

O – Hierarchic Node Point 

[] – Edge end point 

O 

O 

P-level 3 and Quadratic Strain 

Tetrahedron 

P-level 4 and Cubic Strain 

Tetrahedron 

[] 

[] 

[] 

[] 
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Recalling the expression of  𝜖  in Equation 3.31, the following equation for the 

finite element stress vector is obtained.  

  𝜎  =  𝐷  𝑃  𝑅  𝛿𝑢   (4.7) 

Note that  𝑃  𝑅 =   𝐵 , and  𝛿𝑢   represents the displacement vector. 

 

For curved-sided elements, shape functions based on local coordinates , ,  

were used in the above equations.  In the case of Eq. 4.6,  𝑃𝑐  and  𝑅𝑐  were 

implemented, as in the case of the stiffness matrix.  See Eqn. 3.37 for details on the 

formulation of  𝑅𝑐 . 

  𝜎  =  𝐷  𝑃𝑐  𝑅𝑐  𝛿𝑢   (4.8) 

 

4.3 Closed-form Implementation 

The closed-form implementation deals with each term in Equation 4.4 

separately.  The manipulation and implementation of these terms will be discussed in 

the following sections. 

4.3.1  Term 1 of the Error Estimator 

Term 1 (Term1) of the error estimator is shown in Equation 4.9 below, where 𝜎∗  

represents the nodally averaged stresses, and [C] is the element compliance matrix. 

 𝑇𝑒𝑟𝑚1 =  𝜎∗𝑇


 𝐶 𝜎∗𝑑 (4.9) 

Recalling the expression of 𝜎∗ found in Equation 4.5, the form of Term1 can be 

expanded as shown. 

 𝑇𝑒𝑟𝑚1 =    𝑁 𝜎 ∗ 𝑇


 𝐶   𝑁 𝜎 ∗ 𝑑 (4.10) 
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This expression can be further simplified by recalling that the nodal averaged 

stress vector can be taken outside the integral because it is not a function of the volume 

coordinates.  Equation 4.11 shows the form of Term1 that was implemented in closed-

form using Mathematica. 

 𝑇𝑒𝑟𝑚1 = 𝜎 ∗𝑇    𝑁 𝑇


 𝐶  𝑁 𝑑 𝜎 ∗ (4.11) 

4.3.2  Term 2 of the Error Estimator     

Term 2 (Term2) of the error estimator is repeated in Equation 4.12 below, 

where 𝜎∗ represents the nodally averaged stresses, 𝜎  represents the finite element 

stresses, and [C] is the element compliance matrix. 

 𝑇𝑒𝑟𝑚2 =  𝜎∗𝑇


 𝐶 𝜎 𝑑 (4.12) 

Substituting for the nodally averaged stresses in Equation 4.5 and the finite 

element stresses in Equation 4.6, the following expression is obtained.  Recall that [D] 

is the elasticity matrix, [B] is the strain displacement matrix, and  𝛿𝑢   represents the 

displacement vector. 

 𝑇𝑒𝑟𝑚2 =    𝑁 𝜎 ∗ 𝑇


 𝐶  𝐷  𝐵  𝛿𝑢  𝑑 (4.13) 

This expression can be simplified by taking  𝛿𝑢    and 𝜎 ∗ outside the integral 

because they are not dependent on the volume coordinates.  The form shown in 4.12 

was implemented in Mathematica to obtain a closed-form expression. 

 𝑇𝑒𝑟𝑚2 = 𝜎 ∗𝑇    𝑁 𝑇


 𝐵 𝑑  𝛿𝑢   (4.14) 
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4.3.3  Term 3 of the Error Estimator    

Term 3 (Term3) of the error estimator is shown below, where 𝜎  represents the 

finite element stresses, and [C] is the element compliance matrix. 

 𝑇𝑒𝑟𝑚3 =  𝜎 𝑇


 𝐶 𝜎 𝑑 (4.15) 

Substituting for the finite element stresses in Equation 4.6, the following 

expression is obtained.  Recall again that [D] is the elasticity matrix, [B] is the strain 

displacement matrix, and  𝛿𝑢   represents the displacement vector. 

 𝑇𝑒𝑟𝑚3 =    𝐵  𝛿𝑢   𝑇


 𝐶   𝐵  𝛿𝑢   𝑑 (4.16) 

It is known that [B] = [P][R], and thus can be substituted into Equation 4.16. 

 𝑇𝑒𝑟𝑚3 =    𝐷  𝑃  𝑅  𝛿𝑢   𝑇


 𝐶   𝐷  𝑃  𝑅  𝛿𝑢   𝑑 (4.17)  

Rearranging some terms, and taking the displacement vector outside the 

integral, another expression is obtained. 

 𝑇𝑒𝑟𝑚3 =  𝛿𝑢  𝑇    𝑅 𝑇


 𝑃 𝑇 𝐷 𝑇 𝐶  𝐷  𝑃  𝑅 𝑑  𝛿𝑢   (4.18) 

If [G] is again defined as [G] = [P]
T
[D] [P], another form of Term3 can be 

obtained by combining the middle matrices as shown in Equation 4.17. 

 𝑇𝑒𝑟𝑚3 =  𝛿𝑢  𝑇    𝑅 𝑇


 𝐺  𝑅 𝑑  𝛿𝑢   (4.19) 

This is the form of Term3 implemented in Mathematica to obtain the closed-

form solution expressions. 

4.4 Numerical Integration Implementation 

The numerical implementation of the error estimator is performed in accordance 

with Eq. 4.3 (reproduced below), which is applicable to both curved-sided and straight 
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sided elements, and involves integration of the difference between 𝜎∗ and 𝜎  over each 

element. 

  𝑒𝑖 
2 =   𝜎∗ − 𝜎  𝑇


 𝐶  𝜎∗ − 𝜎  𝑑 (4.3) 

Fellipa’s summary of FEM integration rules was the source for the Gauss points 

used [41], according to Equation 4.20 below.  In the equation, nGauss is the number of 

Gauss points used, wi is the weight for that Gauss point, 𝐹 𝜑𝑖  is the value of the 

integrand at Gauss point i.   

  𝐹 𝜑 𝑑 = 𝑣𝑜𝑙 ×  𝑤𝑖
𝑛𝐺𝑎𝑢𝑠𝑠
𝑖=1

𝐹 𝜑𝑖  (4.20) 

The least number of points required for accuracy were used.  The Gauss points 

used are as follows:  p-level 1, 1 point; p-level 2, 14 points; p-level 3, 24 points; p-level 

4, 24 points. 

For the curved-sided isoparametric fourth order elements, 4-4-6 Gauss-Lobatto 

points were used as described by Peano [49].  The expression used is shown below in 

Eq. 4.21, where n represents the number of Gauss points for i and j, and the number of 

Lobatto points for k, 𝑊𝐺  is the associated weight for Gauss points i and j, respectively, 

𝑊𝐺  is the associated weight for Lobatto point k, and 
𝑖
,

𝑗
, 

𝑘
 represent the two Gauss 

points i and j and the Lobatto point k, respectively.  Note that 𝐿1 = 1

4
 1 −   1 −  , 

𝐿2 = 1

4
 1 +   1 −  , and 𝐿3 = 1

4
 1 +   1 +  . 

 𝐹 𝐿1, 𝐿2, 𝐿3 𝑑𝐿1𝑑𝐿2𝑑𝐿3 =  𝑊𝑗
𝐺𝑛

𝑖,𝑗 ,𝑘=1 𝑊𝑗
𝐺𝑊𝑖

𝐿  
1 − 

𝑘
2

32
  


𝐹  

𝑖
,

𝑗
, 

𝑘
  

  (4.21) 
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4.5 Measurements of Error 

The global error for the model can be calculated according to Equation 4.22, 

after the error estimate for each element has been evaluated [22].  The variable nel 

represents the number of elements in the model and  𝑒𝑖 
2 represents the error in the 

energy norm in element i. 

  𝑒 2 =   𝑒𝑖 
𝑛𝑒𝑙
𝑖=1

2
 (4.22) 

The total finite element energy norm is given by the equation below, where  

 𝑢 𝑖 
2 is the strain energy of element i, equal to ½ of the third term of the error 

estimator. 

  𝑢  2 =   𝑢 𝑖 
𝑛𝑒𝑙
𝑖=1

2
 (4.23) 

To obtain the total strain energy of the model, Eq. 4.24 is used, where the sum is 

taken of the sum of total error energy norm  𝑒 2 and the finite element energy norm, 

 𝑢  2.  Finally, the total (global) error of a model is estimated as the ratio between the 

total error energy norm,  𝑒 2, and the total strain energy of the model,  𝑢 2  22 . 

  𝑢 2 =  𝑒 2 +  𝑢  2 (4.24) 

  =
 𝑒 

 𝑢   (4.25) 

If a specified maximum mean permissible error   needs to be achieved, a mean 

permissible error that exceeds the value would indicate that the next p-level should be 

utilized for this model.  Once available p-levels have been exhausted, the model should 

be remeshed and the process started again at p-level 1.  The mean permissible error is 

calculated as shown below in Eq. 4.26 [22].   
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 𝑒𝑚 =   
 𝑢 2

𝑛𝑒𝑙
  (4.26) 

Note that the finite element solution seeks to minimize the strain energy of the 

error, and is thus a logical measure of the overall quality of the solution, but a small 

error in the energy norm does not necessarily imply a small error in other quantities of 

interest, such as displacement or stress concentration. 

Chapter 5 presents the development of the equivalent nodal loads for pressure, 

shear, and temperature for both straight-sided and curved-sided elements. 
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CHAPTER 5 

EQUIVALENT NODAL LOAD VECTORS 

 

Equivalent nodal load vectors refer to the discretization of applied surface loads, 

such as pressure, shear, or temperature.  This discretization involves correctly allocating 

the loads to element nodal points.  Pressure loads are assumed perpendicular to the 

element face, shear loads are assumed parallel to the element face, and the temperature 

change of an element is calculated as the average of the vertex temperatures. 

The discussion of methodology that follows for temperature, pressure, and shear 

is closely based on the derivation and approach used by Shiakolas [4].  Pressure, shear, 

and temperature equivalent nodal load vectors will be derived, and both closed-form 

implementation used for straight-sided elements, and numerical implementation used 

for curved-sided elements, will be discussed. 

5.1 Equivalent Temperature 

If an elastic body is unconstrained, a temperature change results in expansion or 

contraction.  Temperature changes from a preset datum are treated as an initial strain; 

this strain must be allocated to the element nodes, resulting into an equivalent nodal 

temperature load.  [4, 50].  Equation 5.1 below shows the equivalent nodal temperature 

load vector, where [B] is the strain displacement matrix, [D] is the elasticity matrix, 𝜀0 
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is the initial strain due to the temperature load, and  represents the domain of 

integration [50]. 

  𝑟 𝑇𝑒𝑚𝑝 =   𝐵 𝑇 𝐷 𝜀0
𝑑 (5.1) 

The initial strain is a function of α, the coefficient of thermal expansion, and ΔT, 

the average of the vertex temperatures.  If we assume an isotropic material, the initial 

strain takes on the following form. 

 𝜀0 = 𝛼∆𝑇{1,1,1,0,0,0}𝑇 (5.2) 

Substituting Equation 5.2 into Equation 5.1, noting that the domain of 

integration is over the whole element (thus its volume), and taking all non-volume 

coordinate dependent terms out of the integral, the expression for the equivalent nodal 

temperature load is expressed as follows. 

  𝑟 𝑇𝑒𝑚𝑝 =    𝐵 𝑇
𝑉𝑜𝑙

𝑑𝑉𝑜𝑙  𝐷 𝛼∆𝑇{1,1,1,0,0,0}𝑇 (5.3) 

Recall that [B] = [P][R], and thus the integrand is expressed as the volume 

coordinates raised to various powers and evaluated according to Equation 3.34, 

reproduced below. 

  𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝐿4

𝑑𝑑𝐿1𝑑𝐿2𝑑𝐿3𝑑𝐿2𝑑𝐿4 =  𝑎! 𝑏! 𝑐! 𝑑!
 𝑎 + 𝑏 + 𝑐 + 𝑑 + 3 !  6𝑉  

  (3.34) 

As with the stiffness matrix and error estimation terms, the temperature loads, 

when solved symbolically, also exhibit nested terms for hierarchical elements. For 

example, the hierarchical p-level 4 equivalent nodal load vector includes the terms of 

the p-level 3 equivalent nodal load vector.  This is not true of isoparametric elements. 
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Numerical implementation, used for the curved elements, involves the use of 

Gaussian quadrature to evaluate the integral of Equation 5.3. 

5.2 Applied Pressure or Shear 

The equivalent nodal load vector for surface loads such as pressure and shear is 

given in Equation 5.4 below, where [N] represents the shape function matrix,  𝛷  is the 

applied load, and the domain of integration is the surface to which the load is applied 

(the area of the tetrahedral face).  [50] 

  𝑟 =  

𝑟𝑥
𝑟𝑦
𝑟𝑧

 =   𝑁 𝑇 𝛷 
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑑𝑆 (5.4) 

The shape function matrix used in Equation 5.4 is expressed as follows, where 

[I] is a 3x3 identity matrix and Ni is the shape function for node i, and nodes is the 

number of nodes in the element. 

  𝑁 =   𝐼 𝑁1,  𝐼 𝑁2, ⋯ ,  𝐼 𝑁𝑛𝑜𝑑𝑒𝑠   (5.5) 

To use Equation 5.4, the applied load  𝛷  is expressed as 𝛷𝑣, the direction 

cosine vector, and 𝛷𝑚 , the magnitude of the applied pressure or shear load.   

  𝑟 =   𝑁 𝑇 𝛷𝑣 𝛷𝑚𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑑𝑆 =    𝑁 𝑇

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑑𝑆  𝛷𝑣 𝛷𝑚  (5.6) 

Note that the direction cosine vector and magnitude are taken outside the 

integral, and the resulting integrand consists of volume coordinates raised to various 

powers.  In closed-form, Equation 5.6 is integrated using Equation 5.7 [22]. 

  𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝑑𝐿1𝑑𝐿2𝑑𝐿3 =  𝑎! 𝑏! 𝑐! 𝑑!

 𝑎 + 𝑏 + 𝑐 + 2 !  2𝐴 (5.7) 
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Note that pressure loads act normal to the face, thus load magnitude, the face to 

which the pressure is applied (or node opposite to the face), and whether it is 

compressive or tensile is the only information required for calculating pressure loads.  

Shear loads will require the load magnitude and the face where the shear acts, as well as 

the direction cosine vector.    

The following discussion deals with the direction cosine vector, and comes from 

the work of Shiakolas [4]. 

 

Figure 5.1 Illustration for derivation of a direction cosine vector applied to face  

n1, n2, and n3. 

 

Figure 5.1 shows an applied pressure load on a face composed of local nodes n1, 

n2, and n3.  Note vector  𝑉   perpendicular to the face.  If vectors  𝑉  𝑖𝑗  are defined as 

vectors from node j to node i, then the normalized unit vector 𝑉𝑢
     can be calculated as 

follows. 

𝑉  𝑛4𝑛1
 

𝑉   

𝑛4 

𝑛1 

𝑛2 

𝑛3 
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 𝑉  = 𝑉  𝑛1𝑛2
× 𝑉  𝑛1𝑛3

 (5.8) 

 𝑉𝑢
    = 𝑉  

 𝑉   
  (5.9) 

To determine if the resulting vector is pointing towards the face or away from the face, 

the dot product between 𝑉𝑢
     and  𝑉  𝑛4𝑛1

 can be taken.  If it is greater than or equal to zero, 

the vectors point in the same direction and 𝑉𝑢
     is directed away from the loaded face; 

otherwise, 𝑉𝑢
     is directed towards the loaded face. 

The applied load  𝛷  can now be expressed in terms of as 𝑉𝑢
    , as shown below. 

  𝛷 =  𝑉   𝑉𝑢
     (5.10) 

Finally, the area of the loaded face can be obtained by taking magnitude of the 

cross product of any two vectors of the face. 

 𝐴𝑓 =
1

2
 𝑉  𝑛1𝑛2

× 𝑉  𝑛1𝑛3
  (5.11) 

 5.3 Modifications for Curved-sided Elements 

Modifications required to implement the expressions in this chapter include 

recognizing that the domain of integration, , is now the area of the curved face, rather 

than a planar face.  The application of the load is assumed to be on the curved face. 

Vector dA is assumed normal to the curved surface, represented by Eq. 5.12 

below [22], where 
𝜕𝑥

𝜕
, and similar expressions, are evaluated according to Eq. 2.6. 
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 𝑑𝐴 =

 
 
 

 
 

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕 
 
 

 
 

×

 
 
 

 
 

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕 
 
 

 
 

𝑑 𝑑 (5.12) 

 

 𝑑𝐴 =  

𝑑𝐴𝑥𝑦

𝑑𝐴𝑦𝑧

𝑑𝐴𝑧𝑥

 =   

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

 −  

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝜕

  

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

  

𝑇

𝑑 𝑑 (5.13) 

 

 

Numerical integration is required, and is performed based on the following 

representation for curvilinear elements, where  𝐻  ,   is the integrand in terms of the 

local coordinate system. 

    𝐻  ,  𝑑 𝑑
1−

0

1

0
 (5.14) 

For curved-sided elements, Equation 5.14 is integrated using Gaussian 

quadrature according to Equation 5.15 [41], where nGauss represents the number of 

Gauss points used, wi is the weight at Gauss point i, and 𝐹 𝜑𝑖  is the value of the 

integrand at Gauss point i.   

  𝐹 𝜑 𝑑𝑆 = 𝐴𝑟𝑒𝑎 ×  𝑤𝑖
𝑛𝐺𝑎𝑢𝑠𝑠
𝑖=1𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹 𝜑𝑖  (5.15) 

Seventy-nine Gauss points were found sufficient for the curved-sided fourth 

order isoparametric element implementation. 

Discussed in the following chapter is the source code compaction algorithm, 

including a discussion of its implementation, verification, and a simple example of how 

it works.  
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CHAPTER 6 

SOURCE CODE COMPACTION 

 

Mathematica 12
©

 is used to produce the closed-form source code files (as 

discussed in the next chapter), drawing on both its mathematical features and its ability 

to convert expressions to a Fortran compatible format.  One of the major hindrances in 

developing closed-form expressions for p-level 3 and greater is the length of the 

expressions, and the resulting size of the source code files containing these expressions.   

Source code files produced for this research grew large for hierarchical p-levels 

3 and 4, and many of the expressions were excessively long, spreading over more than 

one hundred lines.  Because these expressions often contained repeated terms, a unique 

variable name could be substituted for repeated terms in a source code file, thus size of 

the file would be reduced, and by deduction it can be assumed that the processing time 

would also be reduced.   

For the p-level 4 isoparametric element, the Mathematica output for some 

source code files involved expressions of such length that they exceeded the line 

continuation limits for standard Fortran compilers.  Compaction was a definite necessity 

for these files to get the source code into a form for implementation. 
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This chapter describes the compaction program written to take advantage of 

repeated terms and reduce the size of the source code.  It is based on the concept of 

developing a ―dictionary‖ for a specific code unit and replacing the actual terms with 

references to the dictionary.  This process is often used to compact electronic 

transmission of messages [51]. 

Sample results of compaction will also be discussed. 

6.1 Production of Source Code Files 

As mentioned, Mathematica scripts are prepared to produce as much of the code 

as possible, including both closed-form and numerical implementations.  Expressions 

are generally factored based on common variables shared by the expressions in a source 

code file, such as nodal stress or displacement components, and thus many terms in a 

source code file can be placed in parentheses.  This made it easier to detect possible 

repeated terms when compaction was performed.  Note that each type of source code 

file (error estimator terms, stiffness, centroidal stresses, etc.)  generally required some 

study of the resulting expressions in order to determine a good variable to perform such 

grouping upon.  Details of how this was accomplished can be found in Chapter 7. 

6.2 Compaction Implementation 

The compaction program views each expression as a combination of characters 

and digits, or in what most programming languages refer to as a string.  Visual Basic 

2005 was chosen as the language for this program because of its string manipulation 

capabilities and its ability to handle strings that are 2 GB in size [52], thus allowing the 

each expression to be manipulated without concern as to its length. 
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The general algorithm for the compaction process is as follows: 

 

 

1. Perform an initial scan of the source code file  

a. Replace any instances of Sqrt with an appropriate variable name and add 

the Sqrt terms to the dictionary 

b. Replace any instances of terms such as sx1**2 with the equivalent 

sx1*sx1  

c. Note that both actions will reduce calculation time when implemented in 

Fortran 

d. Save the new source code file to temp.txt 

2. Scan temp.txt for terms that appear within parentheses 

a. If a term already exists, the counter for how many times it has appeared 

will be incremented 

b. If a term does not exist, it will be added to the end of the dictionary and 

the counter for how many times it has appeared will be initialized to 1 

c. No changes are made to temp.txt 

3. Rewind the file temp.txt 

4. Create the new compacted source code file 

a. Begin the source code file with a list of variable names  set equal to the 

terms they represent 

b. Only terms that appear more than twice in the source code file (or at least 

once in the case of Sqrt) are included in this list 

5. For each line in temp.txt 
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a. For each term in the dictionary 

i. Check to see if that term appears in the line 

ii. If a term appears and its counter indicates that it has been used in 

the original source code file at least twice, replace that term in the 

expression with the appropriate variable name 

b. After all possible substitutions have been made, the modified expression 

contained in this line is written to the compacted source code file 

 

This scanning portion of this algorithm requires that the program be able to 

identify certain tokens (including the assignment operator ―=‖, a call to the Sqrt 

function of Fortran, the exponentiation operator ―**‖ used in Fortran), differentiate 

between a negative sign and a minus sign, be able to match parentheses, and recognize 

and extract a term as identified by the presence of opening and closing parentheses 

without being preceded by Sqrt.   

This program was written to abstractly view the stream of characters comprising 

an expression; it performs no mathematical operations in order to reduce the expression 

size, using instead fundamental concepts of string manipulation and comparison.  The 

compaction program requires minimal knowledge of what the actual expressions 

represent and what mathematical operations are taking place. 

Note that various permutations of terms such as sx1*u1, sx1**2, and tx1*sx1 

were investigated for substitution also, but it was found that the algorithm above 

provided the best compaction for the majority of the files.  
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6.3 Simple Compaction Example 

Below is an example of a line from a non-compacted source code file as it 

would appear with white space removed. 

 t3el11=sx1*(c11*u1+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4)+sx2*(c11*u1 

$+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4)+sx3*(c11*u1+c12*u2+c13*u3-c11 

$*u4-c12*u4-c13*u4)+sx4*(c11*u1+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4) 

Here is the variable that Compactor determined could be substituted into this 

term. 

      q0=(c11*u1+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4) 

Next, the same line is shown in the compacted file with the above substitution 

made. 

      t3el11=sx1*q0+sx2*q0+sx3*q0+sx4*q0 

The expression is much smaller, and thus requires less space on disk to store the 

source code file, and also means a smaller executable.  Note that this compaction 

routine provides benefits beyond smaller source code fields.    

In terms of run-time efficiency, the term associated with q0 needs to be 

calculated only once.  If this represents a calculation performed four times per element, 

now performed only once, and suppose there were 500 elements in the model, then 500 

x (4 - 1) = 1,500 unnecessary calculations have been eliminated by compacting this one 

line of code.   

 By replacing all instances of Sqrt with an appropriate variable name, the 

program will run more efficiently because it will need to evaluate these terms once per 
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sub procedure call, rather than multiple times in a sub procedure.    Even for p-levels for 

which file size is not an issue, an increase in efficiency during run-time is beneficial. 

6.4 Compacted Code Verification 

It is vitally important that the compacted source code file calculations produce 

the same numerical results as the non-compacted calculations.  To verify that 

compaction does not change the nature of the calculations, a basic check was run using 

an original source code file to calculate a value, followed by a compacted source code 

file.  Both files produced identical results to at least eight decimal places, and possibly 

more.   

Further testing was performed after the compacted source code files were 

implemented in the finite element program.  For example, concerns arose over 

displacement results that could have been due to errors in the compacted stiffness 

source code.  To check this, a non-compacted version of the stiffness calculation was 

placed in the finite element program, and the exact same results for displacement were 

produced for a representative test case. 

6.5 Code Formatting Issues 

Mathematica has the capability of producing output in Fortran format, but it is 

extremely difficult with Mathematica 12 to obtain that output in fixed-format Fortran 

77.  Recall that Fortran 77 fixed-formatting reserves column 1 for marking a comment, 

columns 1 – 5 for statement labels, column 6 as the position for a line-continuation 

character, and columns 7 – 72 for the actual Fortran statement.  The Mathematica 
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produced source code required conversion to fixed-format Fortran, which also involved 

splitting the extremely long lines using line continuation characters. 

For purposes of the compaction program, Fortran 77 fixed-format was not an 

issue, thus each expression appears on its own line of ―unlimited‖ length prior to 

compaction. Such formatting is not appropriate, however, for use as Fortran source code 

because of line-length limitations. 

  To convert a file (usually subsequent to compaction) to the appropriate Fortran 

formatting, a program was written in Visual Basic to read each line of code from a 

compacted source code file (or an original Mathematica output source code file), 

remove all whitespace, and reformat that line such that it meets fixed-format 

requirements and uses.   

Note that limits on the number of line continuation characters used made it 

advisable to remove all whitespace from the source code files prior to reformatting.  

Removal of white-space also reduced source code file size, since each blank space is 

treated as a character requiring 1-byte of storage space.  Note that, if a file was to be 

compacted, this program was used subsequent to compaction. 

Chapter 7 provides a brief discussion of the usage of computer algebra systems 

in this research, including major features of Mathematica that were implemented as 

well as various areas of this research where those features were used. 
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CHAPTER 7 

COMPUTER ALGEBRA SYSTEM USAGE 

 

Extensive use of Mathematica 12
©

 was made in the development and 

implementation of the family of elements used in this research.  The proper use of a 

computer algebra system reduces the likelihood of simple mathematical errors that can 

devastate problem solutions, minimizes mistakes that programmers can make while 

typing in long expressions, and allow for manipulation of equations that is simply not 

feasible by hand in a time-efficient manner, such as the p-level 4 shape function 

development.  Once the correct syntax and usage of Mathematica is understood 

properly, it allows for better quality code to be produced in a shorter time with less 

debugging necessary. 

7.1 Major Features Used 

Various feature of Mathematica were implemented in the scripts used for this 

research.  These features included matrix manipulation, expansion of polynomial 

products [52], and the subsequent usage of transformation rules [53] to implement 

symbolic integration such as reproduced below, for integration over an element volume. 

  𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝐿4

𝑑𝑑𝑥𝑑𝑦𝑑𝑧 =
𝑎!𝑏!𝑐!𝑑!

 𝑎+𝑏+𝑐+𝑑+3 !
6𝑉 (3.34) 
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Mathematica integration commands were not used because all integrations 

performed took the form of Eq. 3.34 above. 

The Visual Basic compaction program discussed in Chapter 6 looks for repeated 

terms found in parentheses; these terms were mainly extracted using the Mathematica 

command Collect, which collects terms involving the same power of user-selected 

variables [54].  This process would not have been feasible by hand and was necessary 

for compaction.  It also allowed for experimentation to determine which set of variables 

to ―Collect‖ on in order to achieve improved compaction. 

Note that by thus pre-conditioning the source code files in Mathematica so that 

many terms were grouped in parentheses, the compaction code could be written 

abstractly and there was no need to spend excessive time implementing code in Visual 

Basic to do what Mathematica could do in a few short commands and with far less 

likelihood of error.  Compaction could be performed by viewing the expressions as 

streams of characters, rather than be concerned with the mathematical operations being 

performed.   

Possibly the most important feature exploited in this work was the ability of 

Mathematica to reformat mathematical expressions to match Fortran programming 

syntax, then being able to write these expressions out to a text file [55].  This capability 

allows the computer algebra system to take care of the complex matrix, algebraic, and 

symbolic manipulation, as well as differentiation, and then reproduce the resulting 

expressions in a form that can easily be placed into an existing program structure.  By 
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removing the programmer from the ―translation‖ process, the possibility of mistakes in 

the expressions is reduced and the resulting code is likely more reliable. 

7.2 Areas of Implementation 

The first use of Mathematica scripts in this research was in obtaining the correct 

form of the p-level 2 through 4 hierarchic shape functions, and especially in developing 

the non-documented p-level 4 isoparametric shape functions [9].  While p-levels 1 and 2 

can easily be obtained by hand, high-order elements are more complicated and difficult 

to keep in the correct order when developing by hand. 

The equivalent nodal loads, including pressure, shear, and temperature, were 

developed for both straight-sided and curved-sided implementation.  The results for 

pressure loads provided a good check of the shape function development (i.e., if the 

loaded face is assumed opposite of node 4, then you do not expect to see loads either on 

node 4 or faces and edges with node 4 at one end). 

Obviously, Mathematica scripts were used to produce the closed-form solutions 

for stiffness and the error estimator for the straight-sided tetrahedral elements; 

Appendix A contains an example of a script used to obtain the stiffness matrix while 

Appendices B and C contain an example for the closed-form error estimator and 

numerical error estimator, respectively.  A sample script used to determine closed-form 

temperature loads is in Appendix D, while equivalent nodal pressure/shear loads can be 

found in Appendix E.   

Expressions used in the straight-sided numerical development, such as the [B] 

matrix, 𝜎∗, 𝜎 , and centroidal stresses, were also produced using Mathematica, although 
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for lower p-levels they could possibly be produced by hand.  Appendix D contains a 

Mathematica script used for the numerical implementation. 

Mathematica was also used extensively for the curved-sided development.  The 

Jacobian matrices, inverses, and determinants, were obtained by making extensive use 

dummy variables to reduce expression complexity.  This was followed by development 

of the stiffness matrices, equivalent nodal loads, [B] matrix, 𝜎∗, 𝜎 , and centroidal 

stresses.  Examples of these scripts can be found in Appendix E. 

Numerical values for Gauss quadrature rules based on the compilation by 

Felippa [41] were obtained by utilizing the Mathematica scripts developed in his 

research.  His script for tetrahedral Gauss points was added to a script to produce a 

separate Fortran 77 fixed-format source code file for each tetrahedral rule set, with 

values for the points and weights calculated by Mathematica, then hard-coded into a set 

of if-elseif statements.  This allowed implementation of the Gauss rules with no 

calculation of Gauss points required during program execution, and eliminated the 

possibility of incorrectly typing in the value of a Gauss point or a weight as read from a 

table (also note that Cools [44] discovered that not all tables of Gauss points in the 

literature are 100% accurate, and as a result he recalculated Gauss points used in his 

encyclopedia of cubature). 

 Usage of Mathematica in this instance also made possible simple ―copy and 

paste‖ into a source code file with little if any further modification required.  The source 

code files produced made it easier to experiment with how many Gauss points were 

required to achieve convergence for various p-level numerical implementations. 
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Chapter 8 presents the various test and verification problems for both the 

straight-sided elements and the curve-sided elements.  Geometries, loadings, boundary 

conditions, and theoretical results, including formulas used, are discussed in detail. 
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CHAPTER 8 

TEST AND VERIFICATION PROBLEMS 

 

This chapter discusses the test problems used on the elements developed, 

including both straight-sided and curved-sided, closed-form and numerical.  The test 

problems were chosen because they posses well-documented solutions.  Note that all 

beam  problems have a length-height ratio of 10-1 to ensure slender beam behavior, and 

all problems use E = 10
7
 psi and  = 0.33 

8.1 Straight-sided Elements 

The testing of straight-sided elements began with the patch test to verify that the 

elements can represent a constant state of strain, followed by test problems that 

involved axial loading, bending, torsional loading, and stress concentration factors.   

8.1.1  Element Patch Test     

The patch test was performed to verify that all four p-levels could accurately 

represent a state of constant strain.  Following the procedure outlined by Hughes [57] 

for the ―engineering version‖ of the patch test, a model of a unit cube was created with 

boundary conditions and loading as shown in Fig. 8.1.  The boundary conditions are as 

follows:  1 represents displacement in x, 2 represents displacement in y, and 3 represents 
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displacement in z; thus, a boundary condition of 123 represents displacement constraints 

in all three directions. 

 

Figure 8.1 Geometry, boundary conditions, and loading used for the patch test. 

 

A uniform pressure loading of 1000 psi was applied to a 1 in. x 1 in. x 1 in. 

geometry.  The mesh was formulated so that all tetrahedral elements met at a common 

point in the center of the cube; in order to pass the patch test, the stress solution at this 

common point must be equal to the applied stress.   

8.1.2  Axial Loading Test     

The next test applied to the straight-sided elements was an axially loaded 

slender cantilever beam with a uniform pressure of 4000 psi applied to the free end of 

the beam.  The boundary conditions and geometry are shown in Figure 8.2. 
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Figure 8.2  Geometry, boundary conditions, and loading used for the axial loading test. 

 

The boundary conditions used, combined with the uniform axial loading, result 

in a constant stress problem.  The error estimator should be equal to zero, and the 

calculated stresses at each node in the z-direction should equal the applied loading, with 

all other stresses equal to zero.  Theoretical solutions for constant strain problems such 

as this give the following results:  tip = 0.004 inches and strain energy U = 8 in-lbs.   

8.1.3  Bending Test     

The next test applied to the straight-sided elements was a cantilever beam with a 

shear load applied to the end, as shown in Fig. 8.3.  Boundary conditions were applied 

to restrain the beam on the x-y plane.  The beam has an applied uniform shear load of 

400 lbs.   
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Figure 8.3 Geometry, boundary conditions, and loading used for the beam bending test. 

The transverse displacement distribution for this problem is third order in x, and 

the stress distribution is second order in y.  According to the theory of elasticity [58] 

and elementary beam theory (for an estimate of stress) [59], the tip displacement and 

strain energy are given by the equations below, where F is the applied force, L is the 

length of the beam, E is the modulus of elasticity, M is the internal moment, G is the 

shear modulus, I is the moment of inertia, w is the width of the beam, and h is the height 

of the beam.  Substitution of material properties and geometry used in this model results 

in 𝛿𝑡𝑖𝑝 = 0.1613 in, 𝑈 = 32.0 in-lbs and 𝑚𝑎𝑥 = 12,000 psi. 

 𝛿𝑡𝑖𝑝 = 𝐹𝐿3

3𝐸𝐼 + 6𝐹𝐿
5𝐺𝑤𝑕  (8.1) 

 𝑈 = 𝐹2𝐿3

6𝐸𝐼 + 3𝐹𝐿2

5𝐺𝑤𝑕  (8.2) 
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 𝑧 𝑚𝑎𝑥 =
−𝑀 𝑕 2  

𝐼
  (8.3) 

Note that the bending stress was computed in the middle of the beam length in 

order to avoid the effects of the fixed end constraints. 

8.1.4  Torsional Test     

The final test applied to the cantilever beam models involves torsional loading 

of a cantilever beam. A torque was applied to the end of the beam using two shear loads 

applied at the centroids of the free end element faces, as was done by Shiakolas [4].  

This method is illustrated in Fig. 8.4, while Figure 8.5 shows the geometry and 

boundary conditions used.  The beam has applied shear loads of 1950 lbs separated by 

0.333 in. for an equivalent torque of 325 in-lbs.   

 

Figure 8.4 Example of how an equivalent moment is applied to simulate torsion. 

 

While the equivalent nodal load vector generated the desired shear loads, it also 

produced undesired tensile loads which increased the strain energy in the model.  The 

theoretical torsional strain energy 𝑈𝑡𝑜𝑟  can be calculated using the equation that follows 

[59], where T is the applied torque, L is the length of the beam, G is the shear modulus, 

k is the torsional stiffness constant, and a is one-half the width of the beam.  The 
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calculated strain energy was found to be 0.999 in-lbs for an equivalent torque of 325 in-

lbs. 

 𝑈𝑡𝑜𝑟 = 𝑇𝐿2

2𝐺𝑘 = 𝑇𝐿2

2𝐺 2.25𝑎4   (8.4) 

 
Figure 8.5 Geometry, boundary conditions, and loading used for the torsional load test. 

The maximum shear stress (away from the wall) 𝜏𝐴  can be estimated using the 

simplified formula below [59] where T is the equivalent torque, w is the width of the 

beam, and A is located at the bottom outermost fiber along the center of the beam.   

 𝜏𝐴 = 0.601 𝑇
 0.5𝑤3   (8.5) 

Note that the theory of elasticity behind Eqns. 8.4 and 8.5 assumes the 

application of a pure torsional load and an equal and opposing moment present at the 

fixed end of the beam, not a fixed end beam with a torque simulated by equivalent 

Z 

X 

Y 

10 

1 

1 

23 

3 

13 

123 

Torsional 

Load 



 

 82 

moments.  It is expected that the finite element results will thus differ slightly from the 

theoretical results. 

8.1.5  Uniform Temperature Load     

In order to verify the stress recovery and equivalent nodal temperature loads, a 

uniform temperature load was applied to a cantilever beam with geometry and boundary 

conditions as shown in Fig. 8.2.  This results in a problem with no stress, because the 

beam is allowed to expand in all directions, and thus all stresses should be zero.   

 A temperature difference ∆𝑇 of 100F was used with α = 1.0
-6

 /F. The 

theoretical displacement can be calculated as follows, where α is the coefficient of 

thermal expansion, L is the length of the beam, and ∆𝑇 is the temperature difference 

[59].  For this model, given the material properties and temperature difference 

discussed, the tip displacement should be 0.01 in.   

 𝛿𝑡𝑖𝑝 = 𝛼𝐿∆𝑇 (8.6) 

If identical boundary conditions are added to the free end of Fig. 8.2, the beam 

will be constrained at both ends.  This results in a problem with no displacement along 

the z-axis, but constant compressive stress along the z-axis. This stress is calculated 

according to the equation below, and results in -1,000 psi.   

 𝜎 = 𝛼𝐸∆𝑇 (8.7) 

8.1.6  Stress Concentration Factor Test     

The final test applied to the straight-sided elements involved a thin plate with a 

hole subjected to a uniform pressure load, creating a stress concentration.  Because of 

the symmetry of both loading and geometry, only one-quarter of the model was used.  
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Boundary conditions and the pressure loading are illustrated in Fig. 8.6.  The stress 

concentration factor at point A in the figure and the displacement along the loaded edge 

were used for evaluation.   

For this test problem, the applied uniform pressure load was 100 psi.  According 

to Roark’s Stress and Strain [60], the stress concentration factor should be 2.16 for this 

geometry and loading. 

 

 

Figure 8.6 Geometry, boundary conditions, and loading used for the stress concentration 

factor test. 
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8.2 Curved-sided Elements 

The testing of curved-sided elements began with a straight-sided verification 

problem, followed by an internally pressurized thick-walled cylinder.  The cylinder 

problem was specifically chosen because of its well-documented theoretical solution.   

8.2.1  Straight-sided Verification Test     

A closed-form, straight-sided element is a subset of the curved element, 

provided the edge and face nodes have been correctly placed.  The first test applied to 

the curved-sided elements was the axially loaded beam, as shown again in Fig. 8.7 

below. 

 

Figure 8.7 Geometry, boundary conditions, and loading used for the verification test. 
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Material properties, boundary conditions, pressure loadings, etc. were the same 

as used for the straight-sided element test (see Section 8.1.2).  If the curved-sided 

elements are working correctly, the same results should be produced when this model is 

solved using the curved-sided element implementation. 

This test served a further purpose in allowing for verification of pressure 

calculations as well as the number of Gauss points used for the numerical pressure 

implementation.  If the calculated nodal loads are evaluated for both the straight-sided 

and the curved-sided implementation using the same geometry and mesh, the calculated 

values should be the same. 

8.2.2  Thick-walled Cylinder Test     

The next test applied to the curved-sided elements was a thick-walled cylinder 

problem with an internal pressure load, for which a theoretical solution is readily 

available.  When a is the inner radius, b is the outer radius, E is the modulus of 

elasticity,  is Poisson’s ratio, pi is the internal pressure, t is the thickness, and r is the 

radius of interest, and a is the displacement at the inner surface.  Eqns. 8.8 – 8.8 

represent displacement, strain energy, radial stress, and hoop stress, respectively [59]. 

 𝛿 =
𝑎2𝑝𝑖

𝐸 𝑏2 − 𝑎2    1 −  +  1 +  𝑏2

𝑟2   (8.8) 

 𝑈𝑒 = 𝜋𝑎𝑡𝛿𝑎𝑝𝑖 4  (8.9) 

 

 𝜎𝑟 =
𝑎2𝑝𝑖

 𝑏2 − 𝑎2   1 − 𝑏2

𝑟2   (8.10) 
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 𝜎𝜃 =
𝑎2𝑝𝑖

 𝑏2 − 𝑎2   1 + 𝑏2

𝑟2   (8.11) 

 

 

A uniform pressure loading of 20,000 psi was applied to the inner surface, with 

an inner radius of 2 in., an outer radius of 10 in., and a thickness of 1 in.  Note that only 

one quarter of cylindrical cross section was used to take advantage of the symmetry of 

the problem, as shown in Fig. 8.8. 

 

 

 

Figure 8.8  Geometry, boundary conditions, and loading for thick-walled cylinder test. 

 

For the given properties, loading, and geometry, the theoretical values for the 

inner surface and the outer surface of the cylinder, as show in Table 8.1, are obtained.   
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Table 8.1 Summary of Theoretical Values for Thick-walled Cylinder Problem 

  

(x10
-3

 in) 

r 

(psi) 

 

(psi) 

Strain 

Energy 

Theoretical 

Results 

   177.6 

r = a 5.65 -20,000 21,667  

r = b 1.67 0 1,667  

 

 

Computed results for the test problems discussed are presented in the next 

chapter, along with summaries of compaction results and timing results, conclusions, 

and suggested areas for future work. 
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CHAPTER 9 

RESULTS AND CONCLUSIONS 

 

This chapter summarizes the results of testing the family of elements developed.  

Results are summarized for models with straight-sided elements and models comprised 

of curved-sided elements.  The timing comparison between closed-form and numerical 

implementations is also discussed, as well as results from the code compaction process. 

9.1 Straight-sided Elements 

The testing of straight-sided elements began with the patch test, to verify that 

the elements can represent a constant state of strain.  That was followed with test 

problems that involved axial loading, bending loading, torsional loading of a slender 

beam, and geometries with curved surfaces.  All of the test problems had the same 

material properties:  E = 10
7
 psi,   = 0.33.  Also note that all beam problems involve a 

length to width ratio of 10 to 1. 

9.1.1  Element Patch Test     

The patch test, using the geometry and boundary conditions found in Fig. 9,1 

was performed to verify that all elements could accurately represent a state of constant 

strain.  A uniform pressure loading of 1000 psi was applied to a 1 in. x 1 in. x 1 in. 

geometry.  The mesh was formulated so that all tetrahedral elements met at a common 
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point in the center of the cube; in order to pass the patch test, the solution at this 

common point must be exact, and the stresses must be exact within each element.  All 

four p-level hierarchical elements and the fourth order isoparametric element passed the 

patch test. 

 

Figure 9.1 Geometry, boundary conditions, and loading used for the patch test. 

 

9.1.2  Axial Loading Test     

The next test problem using straight-sided elements was an axially loaded 

slender cantilever beam with a uniform pressure of 4000 psi at the free end of the beam.  

See Fig. 9.2 for an illustration of the geometry and boundary conditions. 
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Figure 9.2  Geometry, boundary conditions, and loading used for the axial loading test. 

 

The boundary conditions used, combined with the uniform axial loading, result 

in a constant stress problem.  The results for all four p-levels and for the fourth order 

isoparametric implementation, using a 12 element beam model, matched theory for 

constant strain problems:  tip = 0.004 inches, strain energy U = 8 in-lbs, and error 

estimate was zero for all elements.   

 

Table 9.1 Summary of Axial Loading Results. 

 Hierarchical Isoparametric 

P-level 1 2 3 4 4 

tip (in.) 0.004 0.004 0.004 0.004 0.004 

Stress (psi) 4000 4000 4000 4000 4000 

Strain Energy (lb. – in.) 8.00 8.00 8.00 8.00 8.00 

 

 

Z 

X 

Y 

10 

1 

1 

23 

3 

13 

123 

Pressure 
Load 



 

 91 

9.1.3  Bending Test     

The next test problem for the straight-sided elements was cantilever beam with a 

shear load applied to the free end, with boundary conditions that restrained motion at 

the other end of the beam.  The uniform shear load was of 400 lbs, applied as shown in 

Fig. 9.3. 

 
Figure 9.3 Geometry, boundary conditions, and loading used for the beam bending test. 

 

The transverse displacement distribution with length for this problem is third 

order, and the stress distribution through the thickness is second order; it is expected 

that p-level 2 and higher will perform markedly better for this model than p-level 1.  

According to the theory of elasticity [59], the tip displacement, stress, and strain energy 

are 𝛿𝑡𝑖𝑝 = 0.1613 in., 𝜎𝑧 𝑚𝑎𝑥  is 12,000 psi, and 𝑈 = 32.0 in-lbs, as discussed previously.  

Note that the stress value was evaluated at the center of the beam, outer edge.  A 70 

element model was used to obtain the results of testing, as summarized in Figures 9.4 – 

9.6.   
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Figure 9.4 Displacement and stress for beam bending using closed-form 

implementation. 
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Figure 9.5 Displacement and stress for beam bending using numerical 

implementation. 
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Figure 9.6 Strain energy and global error results, numerical and closed-

form, for beam bending. 
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These results show convergence to a reasonable approximation of the tip 

displacement and strain energy with p-level 4 providing the most accurate values for the 

tip displacement.  Also note that the results for closed-form were essentially the same as 

those for numerical implementation. 

Table 9.2 summarizes the closed-form results for displacement, stress, strain 

energy, and error estimates for the hierarchical p-levels, as well as the fourth order 

isoparametric p-level 4.   

 

Table 9.2  Summary of Closed-form Bending Results. 

 Hierarchical Isoparametric 

P-level 1 2 3 4 4 

tip 0.0379 0.158 0.160 0.160 0.159 

Stress (psi) 1010 12,005 12,000 11,999 11,950 

Strain Energy (lb. – in.) 7.58 32.0 32.0 32.0 31.8 

Error Estimate 86% 14% 6.0% -- 1.1% 

 

 

9.1.4  Torsional Test     

The final test applied to the cantilever beam models involved torsional loading 

of a cantilever beam.  Figure 9.7 shows an example of one of the meshes used in testing.  

The beam has an applied shear load of 1950 lbs (for an equivalent torque of 325 in-lbs).    
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The calculated strain energy was found to be 0.999 in-lbs for an applied equivalent 

torque of 325 in-lbs. 

 

Figure 9.7 Typical mesh used for the torsional loading test. 

The mesh used for the torsional loading test had 1899 elements.  The maximum 

shear stress and strain energy results are illustrated in Fig. 9.8.  It is apparent that the 

strain energy values were overestimated, and the theoretical strain energy value thus 

served as a lower bound.  Recall from previous discussion that the theory of elasticity 

formulations assume the application of a pure torsional load, an equal and opposing 

moment present at the fixed end of the beam, and unrestrained warping.  The actual 

model implemented was a fixed end beam with a torque simulated by equivalent 

moments. 
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Figure 9.8 Charts showing the shear stress and strain energy for the torsional problem. 
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For this model, the theoretical strain energy of 0.999 in-lbs. provided a lower 

bound for the calculated strain energy, while the theoretical shear stress appears to 

provide an upper bound for the maximum shear stress. 

Table 9.3 summarizes the results for strain energy and the error in the energy 

norm, including results for the fourth order isoparametric implementation.  The 

isoparametric fourth order results shows error of only 6.32% for values similar to 

hierarchical p-level 4, adding credence to the hierarchical p-level 4 results.  Also note 

how the strain energy converged to 1.10 in-lbs, which is above the lower estimate 

provided by theory.   

  

Table 9.3 Summary of Closed-form Results for the Torsional Beam Problem. 

 Hierarchical Isoparametric 

P-level 1 2 3 4 4 

Strain Energy (lb-in) 0.688 1.07 1.10 1.10 1.10 

Energy Norm Error 

Estimate (lb-in) 

0.43 0.07 0.0014 0.0181 0.0088 

Maximum Shear Stress 

(psi) 

1,010 1,470 1,450 1,561 1,565 

Error Estimate 55% 18% 3.0% -- 6.3% 
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9.1.5  Uniform Temperature Load     

In order to verify the stress recovery and equivalent nodal temperature load, a 

uniform temperature load was applied to a cantilever beam with geometry and boundary 

conditions as used in the axially loaded beam problem.  This results in a problem with 

no stress.  For the model tested, the tip displacement should be 0.01 in.  All four p-

levels gave this result, with stress at all nodes equivalent to zero. 

The second temperature problem involved a beam constrained at both ends, with 

the same temperature difference applied.  All four p-levels responded the same:  no 

displacement along the constrained axis, with a compressive stress of -1,000 psi along 

that axis. 

9.1.6  Stress Concentration Factor Test     

The final test for straight-sided elements is a thin plate with a hole subjected to a 

uniform pressure load, creating a stress concentration at A shown in Fig. 9.9, below.   

 

Figure 9.9  Geometry and boundary conditions, and loading used for the stress 

concentration factor test. 
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For the loadings applied, Roark’s Stress and Strain [60] indicates for this 

geometry and loading a stress concentration factor of 2.16.   

The closed-form results and numerically integrated results were comparable, 

therefore only the closed-form results are presented.  Four models were tested:  53 

elements, 295 elements, 449 elements, and 1350 elements.  Only results for the 1350 

element model are presented.  Note that the models were created in ANSYS and 

modified for use in this research.   

 

Figure 9.10 Typical plate with a hole mesh using 449 elements. 

Figures 9.11 through 9.12 graphically summarize the hierarchical straight-sided, 

closed-form results obtained using the 1350 element model.  Note the convergence of 

the strain energy in Fig. 9.11. 

Luo et. al. [61] noted that the maximum stress will be overestimated for 

problems where straight-sided elements are used to approximate the curved surface at 

the center of the plate, because as the p-level increases a solution is approximated where 

the theoretical stress goes to infinity due to the straight-edges and corners at the curved 

surface.   
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Figure 9.11  Closed-form strain energy results for plate with a hole problem. 

 

Figure 9.12  Closed-form stress results for plate with a hole problem. 
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For this model, the ratio of maximum stress to nominal stress is not expected to 

be the same as the stress concentration factor.  The results do show, however, that the 

elements are behaving as expecting for straight-sided elements approximating a curved 

surface:  the ratio of maximum stress to nominal stress is rising as the p-level is 

increased, as illustrated in Fig. 9.12. 

Table 9.4 summarizes the strain energy, ratio maximum stress to nominal stress, 

error, and displacement of the loaded face for all four hierarchical p-levels and  

isoparametric p-level 4. 

 

Table 9.4 Summary of Closed-form Results for the Plate with a Hole Problem. 

 

 

   

Hierarchical Isoparametric 

P-level 1 2 3 4 4 

Strain Energy (x10
-4

lb-in) 1.39 1.41 1.41 1.41 1.41 

Ratio of Maximum Stress 

to Nominal Stress 

2.08 2.24 2.28 2.32 2.34 

Displacement at the 

Loaded Face (x10
-5

 in) 

2.91 2.89 2.91 2.92 2.90 

Error Estimate 8.5% 2.7% 0.14% -- 3.08% 
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9.2 Curved-sided Elements 

The testing of curved-sided elements began with a straight-sided verification 

problem, followed by an internally pressurized thick-walled cylinder, as discussed in 

the previous chapter.   

9.2.1  Straight-sided Verification Test     

The verification test for the curved-sided elements, using a 12 element model, 

gave results identical to those obtained using straight-sided elements.  The 

displacements, stresses, and strain energy were correct, with no measurable error 

reported. 

9.2.2  Thick-walled Cylinder Test     

The material properties used in the pressurized thick-walled cylinder test were E 

= 10
7 

psi and  = 0.33, with a uniform pressure loading of 20,000 psi, an inner radius of 

2 in., an outer radius of 10 in., and a thickness of 1 in.   

A 20 element model was used, and positions where the stress and displacement 

values were checked are shown in Figure 9.13.  Table 9.5 contains results taken at the 

mid-thickness of the slice compared with the theoretical values at the inner and outer 

surface.  For this set of values, the maximum error in the stresses is 5.86%, and the 

maximum displacement error is less than 1%. 
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Figure 9.13 Points at which the stress and displacement values were checked for the 

cylinder problem. 

 

 

Table 9.5 Summary of Mid-Thickness Results for Thick-walled Cylinder Problem 

 

  
(x10

-3
 in) 

Error r 

(psi) 

Error  

(psi) 

Error 

20 Elements, 1 in. thick 

1 5.69 0.71% -18,829 5.86% 21,690 0.11% 

2 5.69 0.71% -18,829 5.86% 21,671 0.02% 

Theoretical 5.65  -20,000  21,667  

3 1.68 0.59% 93 -- 1,730 3.78% 

4 1.68 0.59% 95 -- 1,738 4.26% 

Theoretical 1.67  0  1,667  

 

 

9.3 Compaction Results 

Table 9.6 summarize the results of compaction and conversion for source code 

files that are required to implement the hierarchical elements.  The initial file sizes are 

for the Mathematica source code files converted to Fortran 77 fixed-format with white 

space removed; the compacted file sizes are for the source code files subsequent to 
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compaction, fixed-format, with white space removed.  Note that the results are 

summarized for hierarchical element for the p-levels 2 through 4, and isoparametric 

fourth order element.  The percent reduction is calculated as shown in Eq. 9.1, where 

Original is the original (un-compacted) file size, and Compacted is the size of the file 

after compaction. 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙  𝑥 100 (9.1) 

 

Table 9.6 Summary of Compaction Results for Hierarchical Straight-sided 

Elements. 

 

  

Max Percent 

Reduction 

Min Percent 

Reduction 

Error Term1 16% 3% 

Error Term2 57% 16% 

Error Term3 57% 51% 

[K] 12% 7% 

[B] 55% 27% 

𝜎∗ 21% 8% 

𝜎  80% 67% 

Centroidal Stress 81% 64% 

 

  

P-level 4 elements, of both the hierarchical and isoparametric type, had large 

file sizes in comparison to lower p-levels.  For example, term 3 of the error estimator 

for p-level 3 is 88.9 Kb (41.8 Kb after compaction), compared to hierarchical p-level 4 

at 368 Kb (160 Kb after compaction) and isoparametric p-level 4 at 271 Kb (163 Kb 

after compaction).  Note that the tables in Appendix F include compaction results for 
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the isoparametric curve-sided implementation, which averaged 62% of the original file 

size.   

Inspection of the actual source code file for Term3 of the isoparametric p-level 

4 element, in uncompacted form, had commands with line continuations in excess of 

100, which cannot be compiled using the Silverfrost Fotran compiler used in this 

research because it is limited to 39 continuation lines.  Term 2, also for the 

isoparametric elements, had several instances of up to 396 continuation lines for one 

command, which cannot be easily implemented in fixed-form source code without some 

form of compaction.  Even more powerful compilers, such as Sun Microsystems F95, 

cannot handle such code without modification:  F95 allows for 999 continuation lines 

for free-form source code, but only 19 for fixed-form and 39 for free-form [62].   

Without compaction, such files are extremely difficult to implement and are 

unwieldy to modify by hand.  Compaction caused the excessively long instructions in 

the Term 2 file to be reduced from 396 continuation lines to a maximum of 52 

continuation lines, which can be easily implemented. 

 Table 9.7 summarizes the original required memory for the higher order 

elements compared to the required memory subsequent to compaction. Note that for p-

level 4 the memory required after compaction is almost half the 1.4 Mb originally 

required. 

Note that compaction was also performed on files used for the numerical 

implementation.  Timing comparisons were performed between straight-sided closed-

form and numerical implementations.  By performing compaction on the numerical 
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source code files, any bias in timing due to the run-time reduced by compaction was 

virtually eliminated. 

 

Table 9.7  Required Memory for Higher Order Elements 

 

Element Type Original 

Memory, Kb 

Compacted 

Memory, Kb 

% of 

Original Size 

Straight-sided Hierarchical  

p-level 3 
817.2 407.97 50% 

Straight-sided Hierarchical  

p-level 4 
1395.1 741.4 53% 

Straight-sided Isoparametric  

p-level 4 
1108.8 813.3 73% 

Curve-sided Isoparametric  

p-level 4 
306.2 190 62% 

 

 

9.4 Closed-form and Numerical Timing Comparisons 

A major objective of this work as the evaluation of potential computation speed 

gains resulting the use of closed-form element expressions as opposed to numerically 

integrated element quantities.  Thus, timing comparisons between the closed-form and 

the numerical integration implementation were performed to determine if the closed-

form implementation is more efficient.  The Fortran programs were built using 

Silverfrost Fortran 95
©

, and the timing for the stiffness matrix and error estimation was 

performed using its TimingAnalysis profiling tool.  This tool allows for accurate 

measurement of CPU time for each subroutine and function in a Fortran program, and, 

before reporting the timing values, removes any overhead timing effects caused by the 
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timing itself.  Inclusive timing values report the time spent in a subroutine as well as all 

other routines it calls [63]. 

The values in Table 9.8 below presents results of timing evaluation based on the 

procedures developed in this work.  Inclusive timing for numerical routines divided by 

inclusive timing for the closed-form routines are given.  For all p-levels, the closed-

form stiffness implementation was found to be more efficient than the numerical 

implementation.  Closed-form error estimation was also found to be more efficient for 

p-levels 3 and 4. 

Speed up ratios for the element stiffness matrix evaluation range from 4 to 76, 

that is, for p-level 1, the closed form element stiffness evaluation is 4 times faster than 

the numerically integrated equivalent.  For the higher order elements, the speed ratio 

increased to 76 because of the larger number of matrix terms involved. 

 

Table 9.8 Timing Results for Straight-sided Elements. 

 Error Estimation Stiffness 

P-Level Num/CF Num/CF 

1 0.75 4 

2 0.74 37 

3 2.9 68 

4 5.9 76 

 

 

9.5 Conclusions and Summary 

Closed-form implementations of straight-sided tetrahedral element stiffness 

matrices were found to have deflection and stress results of high accuracy.  This is to be 
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expected since no quadrature is introduced in the process.  The closed-form stiffness 

matrix calculations were more efficient by a factor of 4 for p = 1 and a factor of 76 for p 

= 4.  For p-levels 3 and 4, closed-form implementations were found to be more efficient 

for error estimation by a factor of up to 5.9. 

The straight-sided isoparametric fourth order closed-form elements performed 

as well, and provided results comparable to the p-level 4 hierarchical elements.  The 

results of testing numerically integrated isoparametric curved elements demonstrated 

the accuracy of this formulation.  Since both the straight-sided and curved-sided 

elements are based on the same shape functions interelement continuity is preserved, 

and thus straight-sided and curved-sided elements can be successfully combined in a 

single model.  Furthermore, the demonstrated efficiency of the closed-form straight-

sided elements combined with the curved-sided elements provides the most 

computationally efficient model for element stiffness evaluation.  This supports earlier 

work [64] and extends its application to hierarchical and fourth order isoparametric 

element formulations. 

The results of compaction demonstrated that the algorithm used allows large 

source code files to be substantially reduced in size.  Benefits include smaller storage 

requirements, smaller executables, and improved execution speed. 

9.6 Recommendations for Future Work 

The use of blending functions for hierarchical curved-sided elements [22], to 

allow for combined straight-sided and curved-sided hierarchical models, would be an 
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advisable extension of the current research and would most likely entail the 

development of a mesh generator tailored specifically for the blending function method.   

Other areas include allowing multiple p-level elements in a single model, 

automated p-refinement, and graphical post-processing capabilities that would allow 

plots of displacements, element errors, and stresses.  Also, an graphical user-interface 

for the pre-processor that allows users to apply loads using ―point-and-click‖ would be 

highly desirable. 

The efficiency of closed-form element formulation has been demonstrated.  A 

natural extension of this work would include consideration of p-levels 5 and greater, for 

either hierarchical or isoparametric elements, to determine if closed-form procedure 

continues to be more efficient and to determine if expression growth can be controlled 

by compaction to produce files of manageable size.  Finally, an improved error 

estimator for p-level 4 and higher hierarchical elements may prove useful. 
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APPENDIX A 

 

 

P-LEVEL 4 STIFFNESS GENERATION 

 
(The reference and title must be centered on  
the page both horizontally and vertically.)
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(* Order of the shape functions *) 

p = 4 

 

i3 = IdentityMatrix[3]; 

A = { 

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0} 

}; 

 

(* ELA will be the D matrix used in Nambiar's Calculations *) 

ELA={ 

{e1, e2, e2, 0, 0, 0}, {e2, e1, e2, 0, 0, 0}, {e2, e2, e1, 0, 0, 0},  

{0, 0, 0, e3, 0, 0}, {0, 0, 0, 0, e3, 0}, {0, 0, 0, 0, 0, e3} 

}; 

 

L4 = 1 - L1 - L2 - L3; 

 

(* Initialize shape function matrix N for 35 nodes *) 

nn = Table[0, {35}]; 

nTot=35 

 

(* 0, 1, 2, . . . *) 

LPoly = {1, x, 1/2 (3 x ^ 2 - 1), 1/2 (5 x ^ 3 - 3 x ), 1/8 (35 x ^ 4 - 30 x ^ 2 + 3), 1/8 (63 

x ^ 5 - 70 x ^ 3 + 15 x) };  

 

Legendre[i_] := LPoly[[i]]; 

 

Ei[i_, t1_, t2_] := - 8 Sqrt[4 i + 2] / (i (i + 1)) (D[Legendre[i+1],x])/.x->(t2 - t1) 

Fi[r1_, r2_, t1_, t2_, t3_] := (Legendre[r1+1]/.x->(t2 - t1))*(Legendre[r2+1]/.x->(2 t3 - 

1)) 

 

Print["Creating vertices"]; 

(* Coordinate system:  eta, zeta, xi *) 

(* Four nodal shape functions, one for each node *) 

nn[[1]] = L1;  nn[[2]] = L2;  nn[[3]] = L3;  nn[[4]] = L4; 

 

(* Edge modes *) 

Print["Creating edge modes"]; 

nn[[5]] = Simplify[L2 L3 Ei[1,L2,L3]]; 

nn[[6]] = Simplify[L1 L3 Ei[1,L1,L3]]; 

nn[[7]] = Simplify[L1 L2 Ei[1,L1,L2]]; 

nn[[8]] = Simplify[L1 L4 Ei[1,L1,L4]]; 

nn[[9]] = Simplify[L2 L4 Ei[1,L2,L4]]; 

nn[[10]] = Simplify[L3 L4 Ei[1,L3,L4]]; 
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nn[[11]] = Simplify[L2 L3 Ei[2,L2,L3]]; 

nn[[12]] = Simplify[L1 L3 Ei[2,L1,L3]]; 

nn[[13]] = Simplify[L1 L2 Ei[2,L1,L2]]; 

nn[[14]] = Simplify[L1 L4 Ei[2,L1,L4]]; 

nn[[15]] = Simplify[L2 L4 Ei[2,L2,L4]]; 

nn[[16]] = Simplify[L3 L4 Ei[2,L3,L4]]; 

 

(* Face modes *) 

nn[[17]] = Simplify[ L2 L3 L4 Fi[0, 0, L2, L3, L4 ]]; 

nn[[18]] = Simplify[ L3 L4 L1 Fi[0, 0, L1, L3, L4 ]]; 

nn[[19]] = Simplify[ L4 L1 L2 Fi[0, 0, L1, L2, L4 ]]; 

nn[[20]] = Simplify[ L1 L2 L3 Fi[0, 0, L1, L2, L3 ]]; 

 

nn[[21]] = Simplify[L2 L3 Ei[3,L2,L3]]; 

nn[[22]] = Simplify[L1 L3 Ei[3,L1,L3]]; 

nn[[23]] = Simplify[L1 L2 Ei[3,L1,L2]]; 

nn[[24]] = Simplify[L1 L4 Ei[3,L1,L4]]; 

nn[[25]] = Simplify[L2 L4 Ei[3,L2,L4]]; 

nn[[26]] = Simplify[L3 L4 Ei[3,L3,L4]]; 

 

(* Face modes *) 

nn[[27]] = Simplify[ L2 L3 L4 Fi[1, 0, L2, L3, L4 ]]; 

nn[[28]] = Simplify[ L3 L4 L1 Fi[1, 0, L1, L3, L4 ]]; 

nn[[29]] = Simplify[ L4 L1 L2 Fi[1, 0, L1, L2, L4 ]]; 

nn[[30]] = Simplify[ L1 L2 L3 Fi[1, 0, L1, L2, L3 ]]; 

nn[[31]] = Simplify[ L2 L3 L4 Fi[0, 1, L2, L3, L4 ]]; 

nn[[32]] = Simplify[ L3 L4 L1 Fi[0, 1, L1, L3, L4 ]]; 

nn[[33]] = Simplify[ L4 L1 L2 Fi[0, 1, L1, L2, L4 ]]; 

nn[[34]] = Simplify[ L1 L2 L3 Fi[0, 1, L1, L2, L3 ]]; 

 

(* Bubble mode *) 

nn[[35]] = L1 L2 L3 L4; 

 

(* From Shiakolas *) 

 

(* Put into appropriate format for use with developed equations *) 

NT = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1]; 

NN = Transpose[NT]; 

NN = Simplify[NN]; 

 

(* Form the R matrix *) 

RL1 = D[NN,L1];RL2 = D[NN,L2];RL3 = D[NN,L3]; 

R = Flatten[{RL1, RL2, RL3}, 1]; 
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R = Simplify[R]; 

Print["Dimensions of R: ", Dimensions[R]]; 

 

(* Generate the P matrix *) 

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]]; 

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]]; 

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]]; 

GAM = Flatten[{g1, g2, g3}, 1]; 

P = A.GAM; 

Clear[g1, g2, g3, A, GAM]; 

Print["Dimensions of P: ", Dimensions[P]]; 

 

(* Generate the G matrix *) 

G = Simplify[Transpose[P].ELA.P]; 

Print["Dimensions of GG: ",Dimensions[G]]; 

(* Create a temp matrix for G *) 

GG = G; 

 

(* Redefine G to avoid expression growth . . . *) 

G = { 

{g11, g12, g13, g14, g15, g16, g17, g18, g19}, 

{g12, g22, g23, g24, g25, g26, g27, g28, g29}, 

{g13, g23, g33, g34, g35, g36, g37, g38, g39}, 

{g14, g24, g34, g44, g45, g46, g47, g48, g49}, 

{g15, g25, g35, g45, g55, g56, g57, g58, g59}, 

{g16, g26, g36, g46, g56, g66, g67, g68, g69}, 

{g17, g27, g37, g47, g57, g67, g77, g78, g79}, 

{g18, g28, g38, g48, g58, g68, g78, g88, g89}, 

{g19, g29, g39, g49, g59, g69, g79, g89, g99} 

}; 

 

(* Define dummy variables and symbolic integration rule *) 

mult = L1^t L2^t L3^t; 

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!}; 

(* Generate the element stiffness matrix *) 

Print["Calculate K"]; 

K = Transpose[R].G.R; 

K = K mult; 

K = Expand[K]; 

Print["Applying rule and setting t = 0"]; 

K = K/.rule; 

K = K/.t->0; 

Print["Simplifying K"]; 

K = Simplify[K]; 
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Print["Dimensions of K: ",Dimensions[K]]; 

 

(* Save the upper triangular part of the stiffness matrix in a file in the FORTRAN 

language syntax *) 

counter=1; 

Print["Writing the Stiffness file . . . : / "]; 

strm=OpenWrite["k4.f90",FormatType->FotranForm, PageWidth->70]; 

str1 = "akqst("; str2 =")=";str3 = ""; 

For[ 

 ii=1, ii<=3*nTot,   

 For[ 

  jj=ii, jj<=3*nTot,  

 

 WriteString[strm,"akqst("<>ToString[counter]<>")=("<>ToString[FortranForm[

K[[ii,jj]]]]<>")*det"<>"\n"]; 

  counter++; 

  jj++ 

        ]; 

 ii++ 

]; 

Close[strm]; 
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APPENDIX B 

 

 

ISOPARAMETRIC FOURTH ORDER CLOSED-FORM ERROR ESTIMATION    
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NQUINITEEORIG.TXT 

 

(* Order of the shape functions *) 

p = 4; 

nTot=35; 

Print["p = ",p]; 

i3 = IdentityMatrix[3]; 

i6 = IdentityMatrix[6]; 

A = { 

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0} 

}; 

 

L4 = 1 - L1 - L2 - L3; 

 

(* Initialize shape function matrix N for 20 nodes *) 

nn = Table[0, {nTot}]; 

 

(* Four nodal shape functions, one for each node *) 

nn[[1]] = 32/3 (L1 - 3/4) (L1 - 1/2) (L1 - 1/4) L1; 

nn[[2]] = 32/3 (L2 - 3/4) (L2 - 1/2) (L2 - 1/4) L2; 

nn[[3]] = 32/3 (L3 - 3/4) (L3 - 1/2) (L3 - 1/4) L3; 

nn[[4]] = 32/3 (L4 - 3/4) (L4 - 1/2) (L4 - 1/4) L4; 

 

(* Edge modes *) 

Print["Creating edge modes"]; 

nn[[5]]  = 128/3 (L1 - 1/2) (L1 - 1/4) L1 L2; 

nn[[6]]  = 128/3 (L2 - 1/2) (L2 - 1/4) L1 L2; 

nn[[7]]  = 64 (L1 - 1/4) (L2 - 1/4) L1 L2; 

nn[[8]]  = 128/3 (L2 - 1/2) (L2 - 1/4) L2 L3; 

nn[[9]]  = 128/3 (L3 - 1/2) (L3 - 1/4) L2 L3; 

nn[[10]] = 64 (L3 - 1/4) (L2 - 1/4) L3 L2; 

nn[[11]] = 128/3 (L1 - 1/2) (L1 - 1/4) L1 L3; 

nn[[12]] = 128/3 (L3 - 1/2) (L3 - 1/4) L1 L3; 

nn[[13]] = 64 (L3 - 1/4) (L1 - 1/4) L3 L1; 

nn[[14]] = 128/3 (L3 - 1/2) (L3 - 1/4) L4 L3; 

nn[[15]] = 128/3 (L4 - 1/2) (L4 - 1/4) L4 L3; 

nn[[16]] = 64 (L3 - 1/4) (L4 - 1/4) L3 L4; 

nn[[17]] = 128/3 (L4 - 1/2) (L4 - 1/4) L4 L1; 

nn[[18]] = 128/3 (L1 - 1/2) (L1 - 1/4) L4 L1; 

nn[[19]] = 64 (L1 - 1/4) (L4 - 1/4) L1 L4; 

nn[[20]] = 128/3 (L4 - 1/2) (L4 - 1/4) L4 L2; 

nn[[21]] = 128/3 (L2 - 1/2) (L2 - 1/4) L4 L2; 

nn[[22]] = 64 (L2 - 1/4) (L4 - 1/4) L2 L4; 
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(* Face modes *) 

Print["Creating face modes"]; 

nn[[23]] = 128 L1 L2 L3 (L1 - 1/4); 

nn[[24]] = 128 L1 L2 L3 (L2 - 1/4); 

nn[[25]] = 128 L1 L2 L3 (L3 - 1/4); 

nn[[26]] = 128 L2 L3 L4 (L2 - 1/4); 

nn[[27]] = 128 L2 L3 L4 (L3 - 1/4); 

nn[[28]] = 128 L2 L3 L4 (L4 - 1/4); 

nn[[29]] = 128 L1 L2 L4 (L1 - 1/4); 

nn[[30]] = 128 L1 L2 L4 (L2 - 1/4); 

nn[[31]] = 128 L1 L2 L4 (L4 - 1/4); 

nn[[32]] = 128 L1 L3 L4 (L1 - 1/4); 

nn[[33]] = 128 L1 L3 L4 (L3 - 1/4); 

nn[[34]] = 128 L1 L3 L4 (L4 - 1/4); 

nn[[35]] = 256 L1 L2 L3 L4; 

 

(* From Shiakolas *) 

 

(* Put into appropriate format for use with developed equations *) 

(* We use i6 because we have six stresses possible per node *) 

NT = Flatten[Table[i6 * nn[[i]], {i,1,nTot}],1]; 

NN = Transpose[NT]; 

 

(* Form the R matrix *) 

NTi = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1]; 

NNi = Transpose[NTi]; 

 

RL1 = D[NNi,L1];RL2 = D[NNi,L2];RL3 = D[NNi,L3]; 

R = Flatten[{RL1, RL2, RL3}, 1]; 

Print["Dimensions of R: ", Dimensions[R]]; 

 

(* Generate the P matrix *) 

Print["Generating GAM"]; 

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]]; 

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]]; 

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]]; 

GAM = Flatten[{g1, g2, g3}, 1]; 

Print["Generating P matrix as A.GAM"]; 

P = A.GAM; 

Print["Dimensions of P: ", Dimensions[P]]; 

(* Note that Transpose[P].ELA.P does provide G as a 9x9 matrix *) 

 

(* We know that B = P R *) 
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B = P.R; 

Print["Dimensions of B: ",Dimensions[B]]; 

 

 

ERRQUINTIC.TXT 

 

(* Modified from Shiakolas research *) 

 

(* com:  compliance matrix, u: nodal displacement vector; sav: nodal averaged stresses 

*) 

com = { { cm11, cm12, cm12, 0, 0, 0}, 

 { cm12, cm11, cm12, 0, 0, 0}, 

 { cm12, cm12, cm11, 0, 0, 0}, 

 { 0, 0, 0, cm13, 0, 0}, 

 { 0, 0, 0, 0, cm13, 0}, 

 { 0, 0, 0, 0, 0, cm13} }; 

 

cmm = {cm11, cm12, cm13 }; 

 

u =  { 

u1, v1, w1, u2, v2, w2, u3, v3, w3, u4, v4, w4, u5, v5, w5,  

u6, v6, w6, u7, v7, w7, u8, v8, w8, u9, v9, w9, u10, v10, w10, 

u11, v11, w11, u12, v12, w12, u13, v13, w13, u14, v14, w14, u15, v15, w15, 

u16, v16, w16, u17, v17, w17, u18, v18, w18, u19, v19, w19, u20, v20, w20, 

u21, v21, w21, u22, v22, w22, u23, v23, w23, u24, v24, w24, u25, v25, w25, 

u26, v26, w26, u27, v27, w27, u28, v28, w28, u29, v29, w29, u30, v30, w30, 

u31, v31, w31, u32, v32, w32, u33, v33, w33, u34, v34, w34, u35, v35, w35} 

 

cc = { {c11, c12, c13}, {c21, c22, c23}, {c31, c32, c33} }; 

 

(* Should be for p = 4,35 *) 

sav = { sx1, sy1, sz1, tx1, ty1, tz1, sx2, sy2, sz2, tx2, ty2, tz2, 

 sx3, sy3, sz3, tx3, ty3, tz3, sx4, sy4, sz4, tx4, ty4, tz4, 

 sx5, sy5, sz5, tx5, ty5, tz5, sx6, sy6, sz6, tx6, ty6, tz6,  

 sx7, sy7, sz7, tx7, ty7, tz7, sx8, sy8, sz8, tx8, ty8, tz8,  

 sx9, sy9, sz9, tx9, ty9, tz9, sx10, sy10, sz10, tx10, ty10, tz10,  

 sx11, sy11, sz11, tx11, ty11, tz11, sx12, sy12, sz12, tx12, ty12, tz12,  

 sx13, sy13, sz13, tx13, ty13, tz13, sx14, sy14, sz14, tx14, ty14, tz14,  

 sx15, sy15, sz15, tx15, ty15, tz15, sx16, sy16, sz16, tx16, ty16, tz16,  

 sx17, sy17, sz17, tx17, ty17, tz17, sx18, sy18, sz18, tx18, ty18, tz18,  

 sx19, sy19, sz19, tx19, ty19, tz19, sx20, sy20, sz20, tx20, ty20, tz20,  

 sx21, sy21, sz21, tx21, ty21, tz21, sx22, sy22, sz22, tx22, ty22, tz22,  

 sx23, sy23, sz23, tx23, ty23, tz23, sx24, sy24, sz24, tx24, ty24, tz24,  

 sx25, sy25, sz25, tx25, ty25, tz25, sx26, sy26, sz26, tx26, ty26, tz26,  
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 sx27, sy27, sz27, tx27, ty27, tz27, sx28, sy28, sz28, tx28, ty28, tz28,  

 sx29, sy29, sz29, tx29, ty29, tz29, sx30, sy30, sz30, tx30, ty30, tz30,  

 sx31, sy31, sz31, tx31, ty31, tz31, sx32, sy32, sz32, tx32, ty32, tz32,  

  sx33, sy33, sz33, tx33, ty33, tz33, sx34, sy34, sz34, tx34, ty34, tz34,   

 sx35, sy35, sz35, tx35, ty35, tz35};  

 

 

(* Read in Mathematica script to obtain shape functions, R, P, and B *) 

<<NQuinticEEorig.txt 

b=B; 

 

(* Define the G matrix *) 

Print["Defining the G matrix . . ."]; 

(* Redefine G to avoid expression growth . . . *) 

(* It appears that G is symmetric *) 

(* We will probably define these values using the gmatrix.f file *) 

G = { 

{g11, g12, g13, g14, g15, g16, g17, g18, g19}, 

{g12, g22, g23, g24, g25, g26, g27, g28, g29}, 

{g13, g23, g33, g34, g35, g36, g37, g38, g39}, 

{g14, g24, g34, g44, g45, g46, g47, g48, g49}, 

{g15, g25, g35, g45, g55, g56, g57, g58, g59}, 

{g16, g26, g36, g46, g56, g66, g67, g68, g69}, 

{g17, g27, g37, g47, g57, g67, g77, g78, g79}, 

{g18, g28, g38, g48, g58, g68, g78, g88, g89}, 

{g19, g29, g39, g49, g59, g69, g79, g89, g99}}; 

 

gVec = {g11, g12, g13, g14, g15, g16, g17, g18, g19, 

g22, g23, g24, g25, g26, g27, g28, g29, 

g33, g34, g35, g36, g37, g38, g39, 

g44, g45, g46, g47, g48, g49, 

g55, g56, g57, g58, g59, 

g66, g67, g68, g69, 

g77, g78, g79, 

g88, g89, 

g99}; 

 

(* Define dummy variables and symbolic integration rule *) 

mult = L1^t L2^t L3^t; 

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!}; 

 

(* Evaluate the error estimator using three terms 

TERM 1: (N.sav)T.COM.(N.sav) 

TERM 2: 2 (N.sav)T.B.u 
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TERM 3: (R.u)T.G.(R.u) *) 

 

strm = OpenWrite["term1_QuinticOrig.f90"]; 

 

(* TERM 1: (N.sav)T.COM.(N.sav) *) 

Print["Working on term 1 . . . "]; 

dum = NN.sav; 

Print["Simplifying dum"]; 

dum = Simplify[dum]; 

Print["term1 = dum.com.dum"]; 

term1 = dum.com.dum; 

 

(* First, expand term1 into individual terms, then collect together those terms that 

involve the same powers of objects matching L1, L2, and L3 *) 

Print["Expand . . ."]; 

term1 = term1 mult; 

term1 = Expand[term1]; 

 

(* Integrate over volume by applying rule, substituting t = 0 *) 

Print["About to integrate term 1 . . . [:|"]; 

term1 = term1/.rule; 

term1 = term1/.t->0; 

 

(* Puts the terms in a sum over a common denominator *) 

Print["Put the terms in a sum over a common denominator"]; 

term1 = Together[term1, Extension->Automatic]; 

 

(* Extract the aforementioned denominator and store in dt1 *) 

Print["Prepare to extract the denominator"]; 

dt1 = Denominator[term1]; 

 

(* Set term1 = dt1 x term1 . . . eliminates denominator in term1, now we just have a 

sum of terms without denominators *) 

Print["Set term1 = dt1 x term . . ."]; 

term1 = dt1 term1; 

 

(* Expand term1, then collect together those terms that involve the same powers of 

onjects matching cm11, cm12, and cm13 *) 

Print["Expand term 1 . . ."]; 

term1 = Collect[Expand[term1], sav]; 

 

(* Coefficent gives the coefficient of cm11 in term1 *) 

Print["Break term1 into parts"]; 

str2 = "term1 ="; 
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Do[  

 tnt = Coefficient[term1, cmm[[i]]]; 

 term1 = Expand[term1 - tnt cmm[[i]]]; 

 

 tnt = Collect[tnt, sav]; 

 str1 = "t1cm1" <> ToString[i] <> "="; 

 

 str1 = "t1cm1" <> ToString[i] <> "="; 

 str2 = str2 <> " t1cm1" <> ToString[i] <> "*cm1" <> ToString[i] <> "+"; 

 WriteString[strm, str1, ToString[FortranForm[tnt]], "\n"], 

{i,1,3}]; 

str2 = str2<> "term1\n"; 

WriteString[strm,str2]; 

str1 = "dt1 ="; 

WriteString[strm, str1, ToString[FortranForm[dt1]], "\n"]; 

WriteString[strm, "term1=term1/dt1","\n"]; 

Print["Finished writing term 1 to the term1_2.f90 file . . ."]; 

Print["End of Term1"]; 

Close[strm]; 

 

 (* Term 2 *) 

 

(* Evaluate the error estimator using three terms 

TERM 1: (N.sav)T.COM.(N.sav) 

TERM 2: 2 (N.sav)T.B.u 

TERM 3: (R.u)T.G.(R.u) *) 

 

strm = OpenWrite["term2_QuinticOrig.f90"]; 

 

(* TERM 2: 2 (N.sav)T.B.u *) 

Print["Working on term 2 . . . "]; 

 

Print["Creating dum1"]; 

dum1 = NN.sav;  

Print["Creating dum2"]; 

dum2 = b.u;  

Print["Creating term2"]; 

term2 = dum1.dum2; 

 

(* Expand term2, then collect together those terms that involve the same powers of 

objects matching L1, L2, L3 *) 

Print["Expand term 2"]; 

term2 = Expand[term2 mult]; 
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(* Puts the terms in a sum over a common denominator *) 

term2 = term2/.rule/.t->0; 

 

Print["Put terms in a sum over a common denominator"]; 

term2 = Together[term2]; 

 

(* Extract the aforementioned denominator and store in dt2 *) 

Print["Extract the denonminator"]; 

dt2 = Denominator[term2]; 

 

(* eliminates denominator in term2, now we just have a sum of terms without 

denominators *) 

Print["Eliminate the denominator in term2"]; 

term2 = dt2 term2; 

Print["Expand term2"]; 

term2 = Expand[term2]; 

Print["Collect term2"]; 

term2 = Collect[term2,{c11, c12, c13, c21, c22, c23, c31, c32, c33}]; 

Print["Break term2 into parts"]; 

str2 = "term2 = 0.0" 

 

Do[  

 Do[ 

 Print["Working on: ", ToString[i], " ", ToString[j]]; 

 tnt = Coefficient[term2, cc[[i,j]]]; 

 term2 = Expand[term2 - tnt cc[[i,j]]]; 

 tnt = Collect[tnt, u ]; 

 str1 = "t2c" <> ToString[i] <> ToString[j] <> " = "; 

 str2 = str2 <> " + t2c" <> ToString[i] <> ToString[j] <> "*c" <> ToString[i] <> 

ToString[j]; 

 WriteString[strm, str1, ToString[FortranForm[tnt]], "\n"], 

 {j,1,3}],  

{i,1,3}]; 

 

WriteString[strm, str2]; 

str1 = "\n"<>"dt2="; 

WriteString[strm, str1, ToString[FortranForm[dt2]], "\n"]; 

WriteString[strm, "term2=term2/dt2","\n"]; 

 

Print["Finished writing term 2 . . ."]; 

 

Close[strm]; 

 

 (* Term 3 *) 
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(* Define dummy variables and symbolic integration rule *) 

mult = L1^t L2^t L3^t; 

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!}; 

 

(* Evaluate the error estimator using three terms 

TERM 1: (N.sav)T.COM.(N.sav) 

TERM 2: 2 (N.sav)T.B.u 

TERM 3: (R.u)T.G.(R.u) *) 

 

strm = OpenWrite["term3_QuinticOrig.f90"]; 

 

(* TERM 3: (R.u)T.G.(R.u) *) 

(* Using version from Shiakolas dissertation *) 

 

Print["Creating term3"]; 

dum3 =  R.u; 

term3 = dum3.G.dum3; 

 

(* Expand term3, then collect on L1, L2, and L3 *) 

term3 = term3 mult; 

term3 = Expand[term3]; 

 

(* Integrate term3 by substitution *) 

term3 = term3/.rule; 

term3 = term3/.t->0; 

term3 =Together[term3];  

Print["Extracting denominator"]; 

dt3 = Denominator[term3];  

Print["Eliminating denominator"]; 

term3 = dt3 term3; 

Print["Collecting and Expanding . . . ; )"]; 

term3 = Collect[Expand[term3], gVec]; 

 

Print["Break term3 into parts"]; 

str2 = "term3 = 0.0" 

Do[  

 Do[ 

 Print["Working on: ", ToString[i], " ", ToString[j]]; 

 Print["Determining tnt"]; 

 tnt = Coefficient[term3, G[[i,j]]]; 

 

 term3 = Expand[term3 - tnt G[[i,j]]]; 
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 tnt = Collect[tnt, u]; 

 

 str1 = "t3g" <> ToString[i] <> ToString[j] <> "="; 

 

 str2 = str2 <> " + t3g" <> ToString[i] <> ToString[j] <> "*g" <> ToString[i] <> 

ToString[j]; 

 WriteString[strm, str1, ToString[FortranForm[tnt]]<> "\n"], 

 {j,i,9}],  

{i,1,9}]; 

 

WriteString[strm, str2]; 

WriteString[strm,"\n"]; 

str1 = "dt3="; 

 

WriteString[strm, str1 <> ToString[dt3] <> "\n"]; 

Close[strm]      
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P-LEVEL 3 NUMERICAL ERROR ESTIMATION 
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(* Based on Shiakolas *) 

(* Modified and adapted by SE McCaslin *) 

(* Order of the shape functions *) 

p = 3; 

nTot = 20; 

 

Print["p = ",p]; 

i3 = IdentityMatrix[3]; 

i6 = IdentityMatrix[6]; 

A = { 

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0} 

}; 

 

(* Elasticity matrix *) 

DD = { {ev1, ev2, ev2, 0, 0, 0}, {ev2, ev1, ev2, 0, 0, 0 }, {ev2, ev2, ev1, 0, 0, 0 }, {0, 0, 

0, ev3, 0, 0}, {0, 0, 0, 0, ev3, 0}, {0, 0, 0, 0, 0, ev3} }; 

 

(* Displacement vector *) 

dd = {u1, v1, w1, u2, v2, w2, u3, v3, w3, u4, v4, w4, u5, v5, w5,  

u6, v6, w6, u7, v7, w7, u8, v8, w8, u9, v9, w9, u10, v10, w10, 

u11, v11, w11, u12, v12, w12, u13, v13, w13, u14, v14, w14, u15, v15, w15, 

u16, v16, w16, u17, v17, w17, u18, v18, w18, u19, v19, w19, u20, v20, w20}; 

 

(* Nodal stresses *) 

sav = { sx1, sy1, sz1, tx1, ty1, tz1, sx2, sy2, sz2, tx2, ty2, tz2, 

 sx3, sy3, sz3, tx3, ty3, tz3, sx4, sy4, sz4, tx4, ty4, tz4, 

 sx5, sy5, sz5, tx5, ty5, tz5, sx6, sy6, sz6, tx6, ty6, tz6,  

 sx7, sy7, sz7, tx7, ty7, tz7, sx8, sy8, sz8, tx8, ty8, tz8,  

 sx9, sy9, sz9, tx9, ty9, tz9, sx10, sy10, sz10, tx10, ty10, tz10,  

 sx11, sy11, sz11, tx11, ty11, tz11, sx12, sy12, sz12, tx12, ty12, tz12,  

 sx13, sy13, sz13, tx13, ty13, tz13, sx14, sy14, sz14, tx14, ty14, tz14,  

 sx15, sy15, sz15, tx15, ty15, tz15, sx16, sy16, sz16, tx16, ty16, tz16,  

 sx17, sy17, sz17, tx17, ty17, tz17, sx18, sy18, sz18, tx18, ty18, tz18,  

 sx19, sy19, sz19, tx19, ty19, tz19, sx20, sy20, sz20, tx20, ty20, tz20};  

 

 

(* ELA will be the D matrix used in Nambiar's Calculations *) 

ela={ 

{el11, el12, el13, el14, el15, el16}, 

{el12, el22, el23, el24, el25, el26}, 

{el13, el23, el33, el34, el35, el36}, 

{el14, el24, el34, el44, el45, el46}, 

{el15, el25, el35, el45, el55, el56}, 
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{el16, el26, el36, el46, el56, el66} }; 

 

L4 = 1 - L1 - L2 - L3; 

 

(* Initialize shape function matrix N for 20 nodes *) 

nn = Table[0, {nTot}]; 

 

(* Calculated nodes per edge *) 

nEd = 6*(p-1); 

Print["Edge nodes: ",nEd]; 

(* Face nodes *) 

nFa = 2(p-1)(p-2); 

Print["Face nodes: ",nFa]; 

(* Bubble (centroid) nodes *) 

nBu = (p-1)(p-2)(p-3)/6; 

Print["Bubble nodes: ",nBu]; 

nTot=4+nEd+nFa+nBu; 

Print["Total nodes: ",nTot]; 

 

(* Hierarchic Shape Functions for the Tetrahedral Element *) 

(* AUTHOR:  S.E. McCaslin *) 

 (* REFERENCE: Szabo and Babuska, Finite Element Analysis, pp. 242 - 244 *) 

 

(* phi and Legendre polynomials tested and found to match Szabo and Babuska, p. 103 

*) 

 

(* 0, 1, 2, . . . *) 

LPoly = {1, x, 1/2 (3 x ^ 2 - 1), 1/2 (5 x ^ 3 - 3 x ), 1/8 (35 x ^ 4 - 30 x ^ 2 + 3), 1/8 (63 

x ^ 5 - 70 x ^ 3 + 15 x) };  

 

Legendre[i_] := LPoly[[i]]; 

 

Ei[i_, t1_, t2_] := - 8 Sqrt[4 i + 2] / (i (i + 1)) (D[Legendre[i+1],x])/.x->(t2 - t1) 

Fi[r1_, r2_, t1_, t2_, t3_] := (Legendre[r1+1]/.x->(t2 - t1))*(Legendre[r2+1]/.x->(2 t3 - 

1)) 

 

Print["Creating vertices"]; 

(* Coordinate system:  eta, zeta, xi *) 

(* Four nodal shape functions, one for each node *) 

nn[[1]] = L1;  nn[[2]] = L2;  nn[[3]] = L3;  nn[[4]] = L4; 

 

 

(* Edge modes *) 

Print["Creating edge modes"]; 



 

 129 

nn[[5]] = Simplify[L2 L3 Ei[1,L2,L3]]; 

nn[[6]] = Simplify[L1 L3 Ei[1,L1,L3]]; 

nn[[7]] = Simplify[L1 L2 Ei[1,L1,L2]]; 

nn[[8]] = Simplify[L1 L4 Ei[1,L1,L4]]; 

nn[[9]] = Simplify[L2 L4 Ei[1,L2,L4]]; 

nn[[10]] = Simplify[L3 L4 Ei[1,L3,L4]]; 

 

(* nodes between 2 and 3 *) 

nn[[11]] = Simplify[L2 L3 Ei[2,L2,L3]]; 

nn[[12]] = Simplify[L1 L3 Ei[2,L1,L3]]; 

nn[[13]] = Simplify[L1 L2 Ei[2,L1,L2]]; 

nn[[14]] = Simplify[L1 L4 Ei[2,L1,L4]]; 

nn[[15]] = Simplify[L2 L4 Ei[2,L2,L4]]; 

nn[[16]] = Simplify[L3 L4 Ei[2,L3,L4]]; 

 

(* Face modes *) 

nn[[17]] = Simplify[ L2 L3 L4 Fi[0, 0, L2, L3, L4 ]]; 

nn[[18]] = Simplify[ L3 L4 L1 Fi[0, 0, L1, L3, L4 ]]; 

nn[[19]] = Simplify[ L4 L1 L2 Fi[0, 0, L1, L2, L4 ]]; 

nn[[20]] = Simplify[ L1 L2 L3 Fi[0, 0, L1, L2, L3 ]]; 

(* From Shiakolas *) 

 

 (* Put into appropriate format for use with developed equations *) 

(* We use i6 because we have six stresses possible per node *) 

NT = Flatten[Table[i6 * nn[[i]], {i,1,nTot}],1]; 

NN = Transpose[NT]; 

 

(* Form the R matrix *) 

NTi = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1]; 

NNi = Transpose[NTi]; 

 

RL1 = D[NNi,L1];RL2 = D[NNi,L2];RL3 = D[NNi,L3]; 

R = Flatten[{RL1, RL2, RL3}, 1]; 

Print["Dimensions of R: ", Dimensions[R]]; 

 

(* Generate the P matrix *) 

Print["Generating GAM"]; 

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]]; 

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]]; 

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]]; 

GAM = Flatten[{g1, g2, g3}, 1]; 

Print["Generating P matrix as A.GAM"]; 

P = A.GAM; 

Print["Dimensions of P: ", Dimensions[P]]; 
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(* Note that Transpose[P].ELA.P does provide G as a 9x9 matrix *) 

 

(* We know that B = P R *) 

B = P.R; 

Print["Dimensions of B: ",Dimensions[B]]; 

 

(* Write b matrix to file *) 

strm=OpenWrite["b3SORT.f90"]; 

For[ 

 ii=1, ii<=6,   

 For[ 

  jj=1, jj<=3*nTot,  

  WriteString[strm, "b(" <> ToString[ii] <> "," <> ToString[jj] <> ")=" <> 

ToString[FortranForm[B[[ii,jj]]]] <> "\n"]; 

  jj++ 

        ]; 

 ii++ 

]; 

Close[strm]; 

 

(* Calculate D.B *) 

temp = DD.B; 

str = temp.dd; 

cc = {c11, c12, c13, c21, c22, c23, c31, c32, c33 } 

str = Collect[Expand[str],cc]; 

strm=OpenWrite["str3SORT.f90"]; 

jj = 1; 

For[ 

 jj = 1, jj <= 6, 

 Print[jj]; 

 strng = "str(" <> ToString[jj] <> ")="; 

 Print[string]; 

 For[ 

  ii = 1, ii<=9, 

  strng = strng <> "b" <> ToString[cc[[ii]]] <> "*" <> ToString[cc[[ii]]] 

<> "+"; 

  tnt = Coefficient[str[[jj]], cc[[ii]]]; 

  tnt = Simplify[tnt]; 

  str[[jj]] = Expand[str[[jj]] - tnt cc[[ii]]]; 

  WriteString[strm,"b" <> ToString[cc[[ii]]] <> "=" <> 

ToString[FortranForm[tnt]]"\n"]; 

  ii++ 

 ]; 

 If[jj == 1||jj==2||jj==3, 
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 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "-thermfac\n"], 

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "\n"]]; 

 jj++ 

]; 

Close[strm]; 

 

(* Calculate sigma hat *) 

sigmaHat = DD.P.R.dd; 

sigmaHat = Collect[Expand[sigmaHat],cc]; 

strm=OpenWrite["sHat3SORT.f90"]; 

jj = 1; 

For[ 

 jj = 1, jj <= 6, 

 Print[jj]; 

 strng = "shat(" <> ToString[jj] <> ")="; 

 For[ 

  ii = 1, ii<=9, 

  strng = strng <> "s" <> ToString[jj] <> ToString[cc[[ii]]] <> "*" <> 

ToString[cc[[ii]]] <> "+"; 

  tnt = Coefficient[sigmaHat[[jj]], cc[[ii]]]; 

  tnt = Collect[tnt, {ev1, ev2, ev3}]; 

  sigmaHat[[jj]] = Expand[sigmaHat[[jj]] - tnt cc[[ii]]]; 

  WriteString[strm,"s" <> ToString[jj] <> ToString[cc[[ii]]] <> "=" <> 

ToString[FortranForm[tnt]]"\n"]; 

  ii++ 

 ]; 

 If[jj == 1||jj==2||jj==3, 

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "-thermfac\n"], 

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "\n"]]; 

 jj++ 

]; 

Close[strm]; 

 

(* Re-derive NN such that L4 remains in the shape functions *) 

Clear[L4]; 

 

(* Coordinate system:  eta, zeta, xi *) 

(* Four nodal shape functions, one for each node *) 

nn[[1]] = L1;  nn[[2]] = L2;  nn[[3]] = L3;  nn[[4]] = L4; 

 

(* Edge modes *) 

nn[[5]] = Simplify[L2 L3 Ei[1,L2,L3]]; 

nn[[6]] = Simplify[L1 L3 Ei[1,L3,L1]]; 

nn[[7]] = Simplify[L1 L2 Ei[1,L1,L2]]; 
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nn[[8]] = Simplify[L1 L4 Ei[1,L1,L4]]; 

nn[[9]] = Simplify[L2 L4 Ei[1,L2,L4]]; 

nn[[10]] = Simplify[L3 L4 Ei[1,L3,L4]]; 

nn[[11]] = Simplify[L2 L3 Ei[2,L2,L3]]; 

nn[[12]] = Simplify[L1 L3 Ei[2,L3,L1]]; 

nn[[13]] = Simplify[L1 L2 Ei[2,L1,L2]]; 

nn[[14]] = Simplify[L1 L4 Ei[2,L1,L4]]; 

nn[[15]] = Simplify[L2 L4 Ei[2,L2,L4]]; 

nn[[16]] = Simplify[L3 L4 Ei[2,L3,L4]]; 

 

nn[[17]] = Simplify[ L2 L3 L4 Fi[0, 0, L2, L3, L4 ]]; 

nn[[18]] = Simplify[ L3 L4 L1 Fi[0, 0, L3, L4, L1 ]]; 

nn[[19]] = Simplify[ L4 L1 L2 Fi[0, 0, L4, L1, L2 ]]; 

nn[[20]] = Simplify[ L1 L2 L3 Fi[0, 0, L1, L2, L3 ]]; 

 

(* From Shiakolas *) 

 

(* Put into appropriate format for use with developed equations *) 

(* We use i6 because we have six stresses possible per node *) 

NT = Flatten[Table[i6 * nn[[i]], {i,1,nTot}],1]; 

NN = Transpose[NT]; 

 

(* Calculate sigma* *) 

sstar = NN.sav; 

strm=OpenWrite["sstar3SORT.f90"]; 

jj = 1; 

For[  

 jj = 1, jj <= 6, 

 WriteString[strm,"sstar(" <> ToString[jj] <> ")=" <> 

ToString[FortranForm[Simplify[sstar[[jj]]]]]<>"\n"];  

 jj++ 

]; 

Close[strm]; 
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APPENDIX D 

 

 

P-LEVEL 1 EQUIVALENT NODAL TEMPERATURE LOAD 
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(* Variables defined for symbolic integration *) 

mult = L1^t L2^t L3^t; 

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!}; 

 

i3 = IdentityMatrix[3]; 

  

A = { 

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1}, 

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0} 

}; 

 

L4 = 1 - L1 - L2 - L3; 

nTot = 4; 

 

(* Initialize shape function matrix nn *) 

nn = Table[0, {nTot}]; 

 

(* Coordinate system:  eta, zeta, xi *) 

(* Four nodal shape functions, one for each node *) 

nn[[1]] = L1;  nn[[2]] = L2;  nn[[3]] = L3;  nn[[4]] = L4; 

 

(* From Shiakolas *) 

 

 (* Put into appropriate format for use with developed equations *) 

Print["About to flatten"]; 

NT = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1]; 

Print["About to transpose"]; 

NN = Transpose[NT]; 

 

(* Form the R matrix *) 

RL1 = D[NN,L1];RL2 = D[NN,L2];RL3 = D[NN,L3]; 

R = Flatten[{RL1, RL2, RL3}, 1]; 

Print["Dimensions of R: ", Dimensions[R]]; 

 

(* Generate the P matrix *) 

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]]; 

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]]; 

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]]; 

GAM = Flatten[{g1, g2, g3}, 1]; 

P = A.GAM; 

Clear[g1, g2, g3, A, GAM]; 

 

(* We know that B = P R *) 

B = P.R; 
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Print["Dimensions of B: ",Dimensions[B]]; 

 

(* Define initial strain vector, assume uniform temperature over the element, 

 eo = {a dt, a dt, adt, 0, 0, 0}, where a dt is factored out for ease of calcs *) 

eo = {1, 1, 1, 0, 0, 0}; 

 

ela = { {e1, e2, e2, 0, 0, 0}, {e2, e1, e2, 0, 0, 0}, {e2, e2, e1, 0, 0, 0}, {0, 0, 0, e3, 0, 0}, 

{0, 0, 0, 0, e3, 0}, {0, 0, 0, 0, 0, e3}}; 

 

bt = Transpose[B]; 

f0 = bt.ela; 

f0 = f0.eo; 

f0 = f0 mult; 

f0 = Expand[f0]; 

f0 = f0/.rule; 

f0 = f0/.t->0; 

f0 = Expand[f0]; 

f0 = f0 adt; 

f0 = Expand[f0]; 

 

strm = OpenWrite["temp1.f90"]; 

Do[ WriteString[strm, "tl(" <> ToString[i] <> ")=" <> ToString[FortranForm[f0[[i]]]] 

<> "\n"], {i,3*nTot}]; 

Close[strm];  

  



 

 136 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E 

 

 

P-LEVEL 1 EQUIVALENT NODAL PRESSURE/SHEAR LOAD 
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(* Based on the work of Dr. Shiakolas *) 

 

(* Assume that on the loaded face L4 is 0 *) 

L4 = 0; 

i3 = IdentityMatrix[3]; 

 

nTot = 4; 

 

(* Variables defined for symbolic integration *) 

mult = L1^t L2^t L3^t; 

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+2)!}; 

 

(* Initialize shape function matrix nn *) 

nn = Table[0, {nTot}]; 

 

(* Four nodal shape functions, one for each node *) 

nn[[1]] = L1;  nn[[2]] = L2;  nn[[3]] = L3;  nn[[4]] = L4; 

 

(* Put into appropriate format for use with developed equations *) 

NT = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1]; 

NN = Transpose[NT]; 

 

(* Define the pressure or shear direction cosines *) 

phi = {fx, fy, fz}; 

 

(* Evaluate the equivalent nodal load vector *) 

Print["Evaluating equivalent nodal load vector"]; 

f = phi.NN; 

f = f mult; 

f = Expand[f]; 

f = f/.rule; 

f = f/.t->0; 

f = Collect[f, phi]; 

 

Print["Writing the Equivalent nodal load file . . . : )"]; 

strm=OpenWrite["press1.f90"]; 

Do[ WriteString[strm,"fp(" <> ToString[i] <> ")=" <> ToString[FortranForm[f[[i]]]]<> 

"\n"], {i,3*nTot}]; 

Close[strm]; 
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APPENDIX F 

 

 

DETAILED COMPACTION RESULTS FOR HIGHER ORDER ELEMENTS 
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Comparison of Hierarchical p-level 3 and 4 File Sizes. 

 

Comparison of Isoparametric p-level 4 File Sizes. 

  

File Type Original Size, F77 

Kb 

Compacted, F77 

 Kb 

% of Original Size 

Hierarchical P-level 3  

[B] 20.9 10.3 49% 

[K] 91.3 82.8 91% 

𝜎  34.9 6.97 20% 

𝜎∗ 2.58 2.11 82% 

Centroidal Stress 29.9 5.87 20% 

Term1 16.1 16.5 102% 

Term2 591. 261. 44% 

Term3 88.9 41.8 47% 

Hierarchical P-level 4  

B matrix 53.6 24.1 45% 

[K] 327. 288. 88% 

Centroidal Stress 93.0 15.9 17% 

Term3 368. 160. 43% 

File Type Original Size, F77 

 Kb 

Compacted, F77 

 Kb 

% of Original Size 

Isoparametric P-level 4  

B matrix 79.6 32.9 41% 

[K] 379. 341. 90% 

𝜎  143. 31.9 22% 

𝜎∗ 7.28 7.28 100% 

Centroidal Stress 122. 79.6 65% 

Term1 79.8 80.7 101% 

Term2 257. 149. 58% 

Term3 271. 163. 60% 

Curved Isoparametric P-level 4  

Jacobian 25.2 15.7 62% 

[B] 98.6 58.5 59% 

𝜎  91.6 57.8 63% 

𝜎∗ 90.8 58.0 64% 
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