
CLOSED-FORM DEVELOPMENT OF A FAMILY OF HIGHER ORDER

TETRAHEDRAL ELEMENTS THROUGH

THE FOURTH ORDER

by

SARA ELIZABETH MCCASLIN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2008

 ii

(This page must have a 2 inch top margin.)

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to Dr. Lawrence for always

responding to my questions and concerns quickly, and with patience. It has been a

pleasure to work with him and learn from him. Dr. Shiakolas has provided warnings

regarding problem areas in this research, and has always been willing to answer

questions regarding his own work, for which I thank him. I would also like to thank Dr.

Nomura for his advice regarding Mathematica, as well as guidance in how to access

necessary applications through the UT Arlington network servers. Dr. Wang, Dr. Chan,

and Dr. Dennis have provided helpful comments, criticisms, and guidance, which has

challenged me and improved the quality of my research.

 Dr. Lindsay Wells taught me how to debug programs while I was a senior at the

University of Texas at Tyler; this skill has been a vital part of my education, and I wish

to thank him.

 I owe an incredible debt of gratitude to my mother, Lura McCaslin, who has

held me up with her prayers, moral support, and refusal to allow me to feel sorry for

myself. She has invested many hours in my education (whether driving me back and

forth to class or listening to my endless worrying), and saying ―Thank you‖ will never

be enough.

 April 18, 2008

 iii

(This page must have a 2 inch top margin.)

ABSTRACT

CLOSED-FORM DEVELOPMENT OF A FAMILY OF HIGHER ORDER

TETRAHEDRAL ELEMENTS THROUGH

THE FOURTH ORDER

Sara Elizabeth McCaslin, PhD.

The University of Texas at Arlington, 2008

Supervising Professor: Kent Lawrence

This research is concerned with the development and implementation of a

family of tetrahedral elements through the fourth order. The straight-sided tetrahedral

elements are developed in closed-form. This work investigates the efficiency of closed-

form implementation of stiffness matrices and error estimators compared to numerical

implementation. An additional objective is the compaction of closed-form source-code

files which require as little storage space as possible, a more pronounced requirement at

high p-levels.

For the straight-sided elements through p-level 4, the stiffness matrix,

equivalent nodal load vectors, and error estimators (based on nodal averaging) are

developed using closed-form equations obtained through the use of a computer algebra

 iv

system. The stiffness matrix and error estimators are also implemented using numerical

integration so that a timing comparison between the numerical and the closed-form

approaches could be performed.

The curved-sided elements, including the stiffness matrix, equivalent nodal load

vectors, and error estimators are also implemented using Gaussian quadrature only. A

test conducted on a model of all curved-sided elements is used to verify that the

elements are working correctly.

Results indicate that the closed-form implementation solutions are comparable

to the numerical solutions. For all p-levels the closed-form stiffness matrix is more

efficient by a factor of at least 4 when compared with numerically integrated elements.

 v

(This page must have a 2 inch top margin.)

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS ... x

LIST OF TABLES ... xiii

LIST OF SYMBOLS ... xv

Chapter Page

 1. INTRODUCTION AND BACKGROUND .. 1

 1.1 Historical Background ... 1

 1.2 Research Objectives ... 3

 1.3 Literature Review for Tetrahedral Elements ... 4

 1.4 Literature Review for Shape Functions ... 5

 1.5 Literature Review for Stiffness Matrices ... 7

 1.5.1 Closed-form Stiffness Matrices .. 7

 1.5.2 Curved Tetrahedral Elements ... 8

 1.6 Literature Review for Error Estimators ... 8

 1.7 Literature Review for Gaussian Cubature ... 10

 2. ELEMENT SHAPE FUNCTIONS ... 12

 2.1 General Introduction ... 14

 vi

 2.2 Hierarchical Shape Functions .. 16

 2.3 Isoparametric Shape Functions .. 22

 2.4 Summary of Curved-sided Modifications ... 24

 2.5 Local Node Numbering Issues ... 29

 3. STIFFNESS MATRICES .. 34

 3.1 Derivation and Manipulation of the Stiffness Matrix 34

 3.2 Closed-form Implementation ... 43

 3.3 Curved-sided Elements .. 43

 3.4 Numerical Implementation .. 45

 4. ERROR ESTIMATION ... 47

 4.1 Equation Development .. 48

 4.2 Stresses for Error Estimation ... 48

 4.3 Closed-form Implementation ... 52

 4.3.1 Term 1 of the Error Estimator .. 52

 4.3.2 Term 2 of the Error Estimator .. 53

 4.3.3 Term 3 of the Error Estimator .. 54

 4.4 Numerical Integration Implementation .. 54

 4.5 Measurements of Error .. 56

 5. EQUIVALENT NODAL LOAD VECTORS ... 58

 5.1 Equivalent Temperature ... 58

 5.2 Applied Pressure or Shear ... 60

 5.3 Modifications for Curved-sided Elements ... 62

 vii

 6. SOURCE CODE COMPACTION .. 64

 6.1 Production of Source Code Files ... 65

 6.2 Compaction Implementation ... 65

 6.3 Simple Compaction Example .. 68

 6.4 Compacted Code Verification ... 69

 6.5 Code Formatting Issues ... 69

 7. COMPUTER ALGEBRA SYSTEM USAGE .. 71

 7.1 Major Features Used ... 71

 7.2 Areas of Implementation ... 73

 8. TEST AND VERIFICATION PROBLEMS ... 76

 8.1 Straight-sided Elements ... 76

 8.1.1 Element Patch Test ... 76

 8.1.2 Axial Loading Test ... 77

 8.1.3 Bending Test ... 78

 8.1.4 Torsional Test ... 80

 8.1.5 Uniform Temperature Load .. 82

 8.1.6 Stress Concentration Factor Test .. 82

 8.2 Curved-sided Elements .. 84

 8.2.1 Straight-sided Verification Test .. 84

 8.2.2 Thick-walled Cylinder Test .. 85

 9. RESULTS AND CONCLUSIONS ... 88

 9.1 Straight-sided Elements ... 88

 viii

 9.1.1 Element Patch Test ... 88

 9.1.2 Axial Loading Test ... 89

 9.1.3 Bending Test ... 91

 9.1.4 Torsional Test ... 95

 9.1.5 Uniform Temperature Load .. 99

 9.1.6 Stress Concentration Factor Test .. 99

 9.2 Curved-sided Elements .. 103

 9.2.1 Straight-sided Verification Test .. 103

 9.2.2 Thick-walled Cylinder Test .. 103

 9.3 Compaction Results ... 104

 9.4 Closed-form and Numerical Timing Comparisons 107

 9.5 Conclusions and Summary .. 108

 9.6 Recommendations for Future Work ... 109

Appendix

 A. P-LEVEL 4 STIFFNESS GENERATION ... 111

 B. ISOPARAMETRIC FOURTH ORDER CLOSED-FORM

 ERROR ESTIMATION .. 116

 C. P-LEVEL 3 NUMERICAL ERROR ESTIMATION 126

 D. P-LEVEL 1 EQUIVALENT NODAL TEMPARATURE LOAD 133

 E. P-LEVEL 1 EQUIVALENT NODAL PRESSURE/SHEAR LOAD 136

 F. DETAILED COMPACTION RESULTS FOR

 HIGHER ORDER ELEMENTS .. 138

REFERENCES .. 140

 ix

BIOGRAPHICAL INFORMATION... 149

 x

LIST OF ILLUSTRATIONS

Figure Page

 2.1 Illustration of the complete polynomials found in

 p-levels 1 through 4. .. 13

 2.2 Mapping from global to local coordinates .. 14

 2.3 Standard tetrahedral element. .. 16

 2.4 P-levels 1 and 2 with node ordering.. 20

 2.5 P-levels 3 and 4 with node ordering.. 20

 2.6 Distorted tetrahedral element mapped to curvilinear coordinates. 25

 2.7 Illustration of a conic surface. ... 29

 2.8 Coordinates of a node on a curved surface ... 29

 2.9 Illustration of the sensitivity of shape functions

to edge directionality ... 30

 2.10 Two faces with a shared edge but with different edge orientations. 32

 2.11 Same faces with edge and nodes swapped to ensure that

the shared edge is based on the same edge orientation. 32

 4.1 Stress interpolation illustration for p-level 3 and 4 .. 51

 5.1 Illustration for derivation of a direction cosine vector

 applied to face n1, n2, and n3 ... 61

 8.1 Geometry, boundary conditions, and loading

 used for the patch test ... 77

 8.2 Geometry, boundary conditions, and loading

 used for the axial loading test .. 78

 xi

 8.3 Geometry, boundary conditions, and loading

 used for the beam bending test .. 79

 8.4 Example of how an equivalent moment

 is applied to simulate torsion ... 80

 8.5 Geometry, boundary conditions, and loading

 used for the torsional load test... 81

 8.6 Geometry, boundary conditions, and loading

 used for the stress concentration factor test .. 83

 8.7 Geometry, boundary conditions, and loading

 used for the curved-element verification test .. 84

 8.8 Geometry, boundary conditions, and loading for

 thick-walled cylinder test .. 86

 9.1 Geometry, boundary conditions, and loading used

 for the patch test .. 89

 9.2 Geometry, boundary conditions, and loading

 used for the axial loading test .. 90

 9.3 Geometry, boundary conditions, and loading

 used for the beam bending test .. 91

 9.4 Displacement and stress for beam bending

using closed-form implementation. ... 92

 9.5 Displacement and stress for beam bending

 using numerical implementation ... 93

 9.6. Strain energy and global error results, numerical

 and closed-form, for beam bending... 94

 9.7 Typical mesh used for the torsional loading test ... 96

 9.8 Charts showing the shear stress and strain energy

 for the torsional problem ... 97

 xii

 9.9 Geometry, boundary conditions, and loading

 used for the stress concentration factor test .. 99

 9.10 Typical plate with a hole mesh using 449 elements .. 100

 9.11 Closed-form strain energy results for plate with a hole problem. 101

 9.12 Closed-form stress results for plate with a hole problem 101

 9.13 Points at which the stress and displacement values

 were checked for the cylinder problem ... 104

 xiii

LIST OF TABLES

Table Page

 2.1 Summary of Hierarchical Shape Functions for P-Level 1 19

 2.2 Summary of Additional Hierarchical Shape

Functions for P-Level 2 ... 20

 2.3 Summary of Additional Hierarchical Shape

Functions for P-Level 3 ... 21

 2.4 Summary of Additional Hierarchical Shape

Functions for P-Level 4 ... 21

 2.5 Summary of Shape Functions, Positions, and Nodal Assignments

 for 4
th

 Order Isoparametric Elements .. 23

 4.1 Linear Strain Tetrahedral Element Shape Functions....................................... 49

 4.2 Quadratic Strain Tetrahedral Element Shape Functions 50

 8.1 Summary of Theoretical Values for

 Thick-walled Cylinder Problem. ... 87

 9.1 Summary of Axial Loading Results. ... 90

 9.2 Summary of Closed-form Bending Results .. 95

 9.3 Summary of Closed-form Results for

the Torsional Beam Problem. .. 98

 9.4 Summary of Closed-form Results for

the Plate with a Hole Problem. .. 102

 9.5 Summary of Mid-thickness Results for

 Thick-Walled Cylinder Problem. .. 104

 xiv

 9.6 Summary of Compaction Results for Hierarchical

 Straight-Sided Elements. ... 105

 9.7 Required Memory for Higher Order Elements. .. 107

 9.8 Timing Results for Straight-sided Elements. .. 108

 xv

LIST OF SYMBOLS

Subscripts

c curved-sided

e element

m magnitude

r radial

s straight-sided

v vector

 tangential

Nomenclature

a, b inner and outer radii of a cylinder, respectively

A area

Af area of a face

[A] matrix of constants used in strain vector representation

[B] strain displacement matrix

Cij entry in the inverse coefficient matrix

[C] coefficient matrix

[D] elasticity matrix

 xvi

e error estimate

ei error estimate for element i

E modulus of elasticity

F applied force

[g] used in closed-form stiffness development

G shear modulus

[G] geometry and material dependent matrix

h height of a beam

I moment of inertia

[I] identity matrix

[J] Jacobian matrix

k torsional stiffness constant

[K] stiffness matrix

[N] shape function matrix

[N’] shape function matrix

[P] used in closed-form stiffness and error estimation development

{r} equivalent nodal load vector

[R] used in closed-form stiffness and error estimation development

L length of a beam

Li volume coordinate

M moment

 xvii

p polynomial order

Pi i
th

Legendre polynomial

r radius

S surface

T torque

u strain energy

ui strain energy for element i

u, v, w displacements

U strain energy

V volume

𝑉 𝑖𝑗 vector from node i to node j

𝑉𝑢
 normalized unit vector

wi weight for Gaussian or Gauss-Lobatto numerical integration

w width of a beam

x, y, z global coordinates

Greek Symbols

 coefficient of thermal expansion

[] used in closed-form stiffness development

 permissible global error

 displacement

 xviii

ui displacement of node i in the u direction

T temperature difference

m mean permissible error

{ } strain vector

  applied load vector

 global error

 domain of integration

𝜑𝑖
𝑗
 i

th
shape function for p-level j

 Poisson’s ratio

 stress

 𝜎 stress vector obtained from the finite element solution

{𝜎∗} smoothed stress vector

 𝜎∗ nodally averaged stress vector

 shear stress

, ,  local coordinates on a standard tetrahedral

 1

(This page must have a 2 inch top margin. The first page of each chapter must have a 2 inch top margin.)

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Historical Background

Finite element analysis is a powerful engineering tool that analyzes objects by

breaking them into individual elements and nodes; the objects modeled can range from

geometrically simple parts to complex systems. The basic principles of physics and

engineering are applied to the individual elements and nodes, and the elements are later

reassembled to provide a solution for the entire structure.

According to Zienkiewicz [1], the finite element method has two distinct lines

of ancestry: discrete engineering systems and mathematical approximations. The

earliest discrete approach was known as the stiffness method, and in the early 1900s

was successfully used for applications such as bridge construction. In this

methodology, the structure is viewed as a system of interconnecting components:

displacements at the ends (nodes) of these components (elements) were assumed to be

linearly related (by the stiffness of the element) to the forces applied at the ends (nodes).

If the sum of the forces at each joint is assumed to be zero, equilibrium is preserved; if

the displacements at the nodes are treated as the unknown, then the system of

displacements is made continuous. The resulting system of equations can be used to

solve for the actual displacements.

 2

Matrices were found an efficient tool for representing the systems of equations.

Relaxation methods and iterative processes were developed to speed the solution, but,

prior to the advent of computer systems, only a relatively small number of unknowns

could be solved for. The construction of bridges, railways, and tall buildings, along

with the use of reinforced concrete in such applications, provided a further incentive for

engineers to improve their methodologies for efficient solutions [2].

The mathematical approximation used in finite element analysis stems from the

idea of a continuum; this approach requires the use of partial differential equations,

rather than a set of discrete equations, to represent the physics involved. Mathematical

methods developed included the finite-difference method, trial function, minimization

of potential energy, the use of weighted residuals, and boundary solution methods.

The establishment of computer technology has allowed for the efficient and

accurate solution of extremely complex models. During World War II, ―secret‖

research in the area of relaxation led to the successful solution of 900 simultaneous

equations, almost quadrupling what was possible before the war. A large model in 1960

involved two to three thousand variables; the largest model to date, solved using

computerized techniques, appears to be a billion plus variables [3].

According to Zienkiewicz [1], ―. . . less emphasis is being placed on research

leading to more economical and efficient methods on computation.‖ Many users of

finite element analysis are accepting methodologies that are inefficient and unrefined

simply because computer usage (both in terms of memory and processing power) is far

cheaper than in the past. Zienkiewicz goes on to say that ― . . . we should strive to show

 3

that more refined calculation is generally preferable to the use of inefficient methods . .

.‖

It is possible to solve complex problems using the older methods on new

computer systems, but there is still a need for more elegant, computationally efficient

approaches. It should also be noted that, with improvement in speed and memory

capabilities of common desktop computers, as well as the widespread availability of

efficient computer algebra systems, there remain many unexplored areas where finite

element research can be advanced.

1.2 Research Objectives

This project involves the development and implementation of a family of

straight-sided and curved-sided tetrahedral elements through the fourth order. The

research places emphasis on the efficiency of closed-form solutions, made possible by

modern computer algebra systems, for development of tetrahedral stiffness matrices and

nodal averaging error estimators. Research has been pursued in this area for various

two dimensional elements as well as for isoparametric tetrahedral elements [4, 5, 6];

this research focuses on straight-sided elements emplyoing the Szabo and Babuska basis

hierarchical shape functions [7 ,8] for p-levels 1 through 4, straight-sided, and straight-

sided elements based on isoparametric shape functions for p-level 4 [9]. Both closed-

form straight-sided and numerical curved-sided implementations are considered.

A straight-sided element, including its stiffness matrix, equivalent nodal load

vectors, and error estimators (based on nodal averaging), is implemented using closed-

form equations obtained through use of a computer algebra system, but a numerical

 4

integration implementation is also be developed to allow for a comparison in efficiency

between closed-form and numerical approaches. Both versions are implemented in

FORTRAN code, tested, and results compared with theoretical values where available.

Since a significant portion of the computation expense involves the formation of

the stiffness matrix and error estimator for each element in the model, the major

outcome of this research involves a time study performed to compare the execution time

expense of the closed-form implementation of element matrices with that of the

numerical implementation of element matrices.

In addition, the equivalent curved-sided elements, including stiffness matrix,

equivalent nodal load vectors, and error estimators were implemented using Gaussian

quadrature. These elements are also implemented in FORTRAN code and tested.

1.3 Literature Review for Tetrahedral Elements

The simplest two-dimensional element is the triangle; its three-dimensional

counterpart is the tetrahedron, whose use has become practically unavoidable in finite

element modeling because it readily lends itself to the representation of complex

geometries. As a more recent example of their use in unusual geometric models, note

that Dennis et.al. used tetahedral elements when modeling the human head and neck for

research involving cooling of the human brain to prevent a stroke after onset of cerebral

ischemia [10]. The first suggestions concerning the use of a tetrahedral element are

those of Gallagher et al. [11] and Melosh [12] in the early 1960s. Argyris et. al. [10]

developed the TET 20 (quadratic strain) and TEA 8 elements in 1968, both possessing

complete polynomials for the displacement fields and satisfying displacement

 5

compatibility. Pawlak et al. [13] developed a four node tetrahedron with three

translational and three rotational degrees of freedom in 1991, which proved to be more

computationally efficient than the ten node tetrahedron, but not as accurate.

Recent research into the development of improved tetrahedral elements includes

a low-order tetrahedral element created in 1994 by Key et. al. [14]: an eight-node

tetrahedral comprised of a four-node tetrahedral element enriched with four mid-face

nodal points for use in all-tetrahedral modeling involving wave propagation. In 1999,

Kong et. al. [15] developed a new fourth-order tetrahedral element with mass lumping

for solving the wave equation. Bittencourt [16] developed fully tensorial and modal

shape functions for triangles and tetrahedra, which included a tensorial based Gauss-

Jacobi integration procedure.

1.4 Literature Review for Shape Functions

Hierarchic families of triangular elements were developed by Katz and Rossow

[17] and tetrahedral elements were presented by Babuska, Katz, and Szabo, both in

1979 [7], and revisited later by Szabo and Babuska in 1991 [8]. Main characteristics of

the hierarchic shape functions include the property that basis functions of level p are a

subset of the basis functions of level p + 1, forming a hierarchical family, and that they

are composed of complete polynomials.

Hierarchical elements can be used in the p-method implementation of finite

element analysis, where a required level of accuracy is achieved by retaining the same

mesh but increasing the polynomial level used. In 1982, Babuska and Szabo found that,

for quasiuniform meshes, the p-method cannot have a lower rate of convergence than

 6

the h-method, and in some cases the p-method can converge twice as fast [18]. An

summary of the p-method (as well as the h-p method) was provided by Babuska and

Suri in 1990 [19], which concluded that, although the higher polynomial levels are more

computationally expensive, the ratio of work to accuracy and engineering accuracy is

better for the p-method than for the h-method.

Major modifications to hierarchical shape function bases would include the

Carnevali basis, implementing orthogonal bases (using Gram-Schmidt

orthonormalization) with better conditioning, which is of interest because conditioning

can be an issue when the condition number of the stiffness matrix increases

exponentially with an increase in p-level [20]; this differs from standard hierarchical

elements with p-level 3 or greater. In 2001, bases were developed with better sparsity

and conditioning properties as opposed to ill-conditioning of the Szabo-Babuska basis

caused by coupling of the volume (bubble) and face shape functions. The improved

properties obtained by modifying the Szabo-Babuska basis by orthogonalization, which

also reduces the condition number [21].

The isoparametric tetrahedral element shape functions are well-known for p-

levels 1 through 3, referred to, respectively, as the constant strain tetrahedron, linear

strain tetrahedron, and quadratic strain tetrahedron [22]. The fourth order element,

sometimes referred as the cubic strain tetrahedron, is not as well documented, but the

equations for the development of its shape functions can be found in the paper by

Argyris introducing the TET 20 (linear strain) element [9].

 7

1.5 Literature Review for Stiffness Matrices

In the development of the TET 20 and TEA 8 elements, Argyris et al. [9]

obtained the stiffness matrices using matrix transformations of the modal stiffness.

Since that time, the use of symbolic processors has allowed for closed-form evaluation

of the stiffness matrices of tetrahedral elements [5].

1.5.1 Closed-form Stiffness Matrices

Tinawi [23] used closed-form integration to obtain the stiffness matrix of non-

hierarchic triangular elements in 1972; Subramanian and Bose [24, 25] developed

stiffness matrices without the use of numerical approximation for the family of plane

triangular elements in 1982 and for C0 continuous tetrahedra in 1983. Closed-form

expressions for plane hierarchic triangular elements were later investigated by Rathod et

al. , including a recursive method for curved triangular elements [26]. In 1984, Babu

and Pinder [27] obtained analytical integration formulae for linear isoparametric

quadrilateral finite elements, and demonstrated a savings in computational effort when

compared to Gaussian quadrature.

Nambiar [28] and Lawrence et al. [29] showed that the implementation of

closed-form expressions resulted in improved speed compared to Gaussian numerical

integration for both constant strain and linear strain triangular elements.

With regard to tetrahedral elements, Shiakolas et al. [4, 5, 6] developed closed-

form expressions for linear and quadratic strain tetrahedral elements using Mathematica

to produce the closed-form equations in FORTRAN format; the research showed

 8

significant time savings when compared to numerical approximation using Gaussian

quadrature.

1.5.2 Curved Tetrahedral Elements

For curved tetrahedral elements, matrix development requires some form of

numerical integration or processing. Dey et al. [30] have recently been able to improve

the efficiency numerical integration of hierarchical curved tetrahedra using integration

by table look-up; the non-polynomial portions of the integrand are approximated by

polynomials and a table of precomputed values is developed based on the

approximating polynomials.

1.6 Literature Review for Error Estimators

Discretization errors are defined as the difference between the exact solution

and the numerical solution, and result from the attempt to represent a continuum by a

finite number of subdivisions. The two basic types of discretization error estimates are

a priori and a posteriori. A priori estimates are useful for obtaining the worst case in a

class of solutions of a problem but do not provide information about the actual error.

Conversely, a posteriori methods use information obtained during the solution process,

as well as some a priori assumptions concerning the solution.

Various adaptive strategies exist for refining the model based on the error

estimation. The h-method reduces the size of the elements in a mesh when the local

error indicator is above a previously determined error tolerance; the p-method increases

the local order of approximation; the r-extension uses a fixed number of nodes which

are redistributed to areas of high error in the mesh [31].

 9

According to Zienkiewicz, there are essentially two procedures available for a

posteriori error estimation today: residual error estimators and recovery based error

estimators [31]. This research into error estimation was introduced by Babuska and

Rheinboldt [32] and considered local residuals of the numerical solution, allowing

estimation of the local errors from a norm, such as the energy norm. It allowed for

adaptive refinement to be achieved by first locating the elements with the greatest error

and subdividing them to improve the accuracy.

The second approach uses a recovery process to more accurately represent the

unknowns. Variations in the recovery based error estimations involve the type of

procedure used to substitute for the exact solution in the discretization error calculation.

The recovery based methods were pioneered by Zienkiewicz and Zhu [33], and the

mathematical basis for the Zienkiewicz-Zhu (ZZ) method was explained by Ainsworth

et. al. [34]. This method, which is both simple and computationally efficient, is based

on using a globally smoothed stress distribution to represent the exact solution. Byrd

[35] developed a stress nodal averaging estimator that was implemented in ANSYS

[36]. Other variations include the superconvergent patch recovery method (SPR), also

developed by Zienkiewicz and Zhu [37], and the recovery by equilibrium in patches as

developed by Boroomand and Ziekiewicz [38].

Note that Carstensen and Funken [39] have proven that the ZZ error indicator

provides reliable upper and lower bounds for the error and thus has the property of an

error estimator.

 10

Closed-form error estimation has not been a major focus of finite element

researchers. However, Nambiar in 1989 [28], Lawrence et. al. in 1991 [29], and

Shiakolas et. al. in 1992 [4, 6, 40] performed research in this area, and their results have

been promising in that they show closed-form implementation is more efficient in terms

of speed when compared to numerical evaluation.

1.7 Literature Review for Gaussian Cubature

Fellipa has created a set of Mathematica scripts that implement the most

commonly used Gauss rules for finite element applications, and these can be used ―as-

is‖ in computer algebra systems or used to generate rule values to be implemented in a

program [41]. Cools and Rabinowitz produced a thorough bibliography of monomial

cubature rules in 1993 [42], followed by Part 2 of the series in 1999 [43]. In 2003,

Cools continued this work with an encyclopedia of cubature formulas available on the

World Wide Web, which provides recomputed points and weights to either 16 digits or

32 digits, corrects misprints in the original manuscripts, and also gives access to an

extensive bibliography [44].

The theory, development, methodology, and testing involved in this research are

presented in the chapters that follow. The element shape functions, and modifications

required for curved-sided development, are discussed in Chapter 2. Chapters 3 and 4

present the closed-form development of the stiffness matrices and error estimators,

respectively, while briefly outlining the numerical implementations. Derivations of the

equivalent nodal load vectors for pressure, shear, and temperature are summarized in

Chapter 5. Chapter 6 deals specifically with the compaction algorithm used to reduce

 11

the size of the Mathematica produced source code files, and Chapter 7 discusses the

usage of Mathematica in this research. Chapter 8 presents the test problems used, while

Computational results for the test problems, timing comparisons, and compaction are

discussed in Chapter 9, which ends with conclusions and a discussion of future areas of

work.

 12

CHAPTER 2

ELEMENT SHAPE FUNCTIONS

In finite element modeling, tetrahedral elements are the three-dimensional

counterpart to the two-dimensional triangle in finite element modeling. The shape of a

tetrahedral element readily lends itself for use in both simple and complex models, and

its usage has become very common. Tetrahedrons also lend themselves readily to

automatic volume meshing.

There are different types of tetrahedral elements in practice; in the context of

closed-form solutions, the work of Shiakolas [4, 5, 6] focused on isoparametric

tetrahedral elements, but this research focuses on hierarchic tetrahedral elements for

straight-sided elements [7, 8], and isoparametric fourth order elements [9] for curved-

sided, as well as straight-sided.

Hierarchic elements differ from isoparametric elements in several ways,

including their use in the p-version of the finite element method. In the p-version, the

mesh is generally held fixed while the polynomial approximation, represented by degree

p, is increased; in the h-version, for which the isoparametric elements are well adapted,

the polynomial approximation is held fixed while the mesh is refined.

Hierarchic elements are also based on a complete set of polynomials, as

illustrated in Fig. 2.1 by Pascal’s pyramid through p-level 4. Unlike isoparametric

elements where all nodal variables represent displacement, hierarchic elements include

 13

nodal variables that are based on derivatives of displacement. The external nodal

variables are used to enforce global C0 continuity, while the internal nodal variables

complete the polynomial. Note that the shape functions used are defined as integrals of

Legendre polynomials, rather than having a Lagrange basis as do the isoparametric

elements.

1









2



2

2

3

4

2

2

3

22

3



3

4

2

2
3

4

2

2

3
22

3

3

22

3



2

2

2

Figure 2.1 Illustration of the complete polynomials found in p-levels 1 through 4.

Babuska, Szabo, and Katz [7] introduced a family of hierarchic elements, used

in this research, with the property that polynomial p is a subset of polynomial p + 1;

 14

thus, the stiffness matrix, equivalent nodal loads, and error estimation terms posses this

same property.

This chapter discusses the development of the hierarchic and isoparametric

shape functions, their implementations using a computer algebra system (abbreviated

CAS) for both straight-sided elements and curved-sided elements, as well as node

numbering issues.

2.1 General Introduction

The shape functions for tetrahedral elements are described in terms of local

coordinates, called volume or natural coordinates and indicated by L. The local

coordinates are transformed into global coordinates by the mapping illustrated in Fig.

2.2 below.

Figure 2.2 Mapping from global to local coordinates.

X

Y

Z

1

2

4

3

L3

L2

L1

1

2

3

4

 15

To map from the local coordinates to global coordinates, the transformation

shown in Equation 2.2 is used. Local coordinates Li (i=1, 2, 3, 4) are mapped to global

coordinates of any point within the element represented {x, y, z} based on the global

coordinates of the vertices of the tetrahedral element {xi, yi, zi} (i=1, 2, 3, 4).





































































4

3

2

1

4321

4321

4321

11111 L

L

L

L

zzzz

yyyy

xxxx

z

y

x

 (2.2)

The local coordinates are also known as volume coordinates, note the physical

nature of the volume coordinate illustrated for L1 shown in Equation 2.3.

1234

234
1

vol

volP
L  (2.3)

Volume coordinate Li represents ratio of tetrahedral volumes based on an

arbitrary internal point P inside the tetrahedron. The value of Li is 1 at vertex i and zero

on the opposing face. The sum of the volume coordinates is always 1, which indicates

that they are not independent. The relationship in Equation 2.4 is used to eliminate L4

from Equation 2.2, resulting in Equation 2.5, where xij = xi – xj, yij = yi – yj, zij = zi – zj.

 321̀4 1 LLLL  (2.4)





































































110001

3

2

1

4342414

4342414

4342414

L

L

L

zzzz

yyyy

xxxx

z

y

x

 (2.5)

 16

2.2 Hierarchical Shape Functions

For the hierarchical-based elements, shape functions as described by Szabo and

Babuska [9] were used for p-levels 1 through 4. There are four nodal shape functions

and three types of modes: edge, face, and internal. The edge modes are always

associated with mid-side edge nodes, while the face modes are associated with the

center of the face; the internal modes, or bubble nodes, are located at the centroid of the

element.






2 √⅔

1

1

1/√3

2/√3

4

2

3

1

Figure 2.3 Standard tetrahedral element.

If a standard tetrahedral element is defined as shown in Fig. 2.3 above, then the

volume coordinates are as follows:

 







 

6

1

3

1
1

2

1
1L (2.6)

 







 

6

1

3

1
1

2

1
2L (2.7)

 17

 







 

8

1

3

3
3L (2.8)

 
8

3
4 L (2.9)

 14321  LLLL (2.10)

There are four nodal shape functions, given as follows:

 𝜑𝑖
1 = 𝐿𝑖 where i = 1, 2, 3, 4 (2.11)

The implementation used by Adjerid, Aiffa, and Flaherty [21] was found to be

the clearest explanation of the development of the remaining shape functions, and is

reproduced here. After defining the following two formulas, the remaining shape

functions can be expressed.

        







 xxxxxxxxxPi 157063

8

1
33035

8

1
35

2

1
13

2

1
1 352432

 (2.12)

 ℇ𝑘 𝑡1, 𝑡2 =
−8 4𝑘+2

𝑘 𝑘+1
𝑃𝑖

′ 𝑡2 − 𝑡1 (2.13)

 ℱ𝑟1,𝑟2
 𝑡1, 𝑡2, 𝑡3 = 𝑃𝑟1

 𝑡2 − 𝑡1 𝑃𝑟2
 2𝑡3 − 1 (2.14)

 ℬ𝑟1,𝑟2,𝑟3
 𝑡1, 𝑡2, 𝑡3, 𝑡4 = 𝑃𝑟1

 𝑡2 − 𝑡1 𝑃𝑟2
 2𝑡3 − 1 𝑃𝑟3

 2𝑡4 − 1 (2.15)

There are 6 (p-1) edge modes on each edge Ej, for j = 1, 2, 3, . . . , 6, located at

the midpoint of the edge. These edge modes are given by the equation below. Note

that, for implementation in this research, the values of j1 and j2 are first calculated and

then sorted in ascending order. For example, suppose the results were 4 and 1,

 18

respectively: in actual implementation, they would be sorted so that they would be 1

and 4 for j1 and j2.

 𝜑𝑖
2 = 𝐿𝑗1𝐿𝑗2ℇ𝑘 𝐿𝑗1 , 𝐿𝑗2 (2.16)

 where k = 1, 2, . . . , p – 1,

 j1 =
1 + 𝑗 𝑚𝑜𝑑 3, 1 ≤ 𝑗 ≤ 3
1 + 𝑗 𝑚𝑜𝑑 4, 4 ≤ 𝑗 ≤ 6

 , and j2 =
1 + (𝑗 + 1) 𝑚𝑜𝑑 3, 1 ≤ 𝑗 ≤ 3
4, 4 ≤ 𝑗 ≤ 6

There are 4 (p-1) (p-2) / 2 face modes, each located in the centroid of face Fj, j =

1, 2, 3, 4. These modes are given in Equation 2.13 below. Note that after j1, j2, and j3

are calculated, this triplet of values is then sorted. For example, suppose the results

were 1, 4, and 3, respectively: in actual implementation, they would be sorted so that

they would be 1, 3 and 4 for j1, j2, and j3.

 𝜑𝑖
3 = 𝐿𝑗1𝐿𝑗2𝐿𝑗3ℱ𝑟1,𝑟2

 𝐿𝑗1, 𝐿𝑗2 , 𝐿𝑗3 (2.17)

 where j = 1, 2, 3, 4

 j1 = 1 + j mod 4, j2 = 1 + j1 mod 4, and j3 = 1 + j2 mod 4

 k = 3, 4, . . . , p and r1 + r2 = k - 3

For the region modes (or bubble nodes), there are (p–1)(p–2)(p–3)/6 modes

located at the centroid of the element. Their existence starts in p-level 4, where there is

one such mode. The equation for this bubble mode is given as follows, for p-level 4

only.

 𝜑𝑖
4 = 𝐿1𝐿2𝐿3𝐿4ℬ𝑟1,𝑟2,𝑟3

 𝐿1, 𝐿2 , 𝐿3, 𝐿4 (2.18)

 where k = 4, 5, . . . , p and r1 + r2 + r3 = k - 4

 19

The shape functions through p-level 4 were derived and implemented in

Mathematica
©
 for use in both the closed-form and numerical solution codes.

Observation of the output verified the nested nature of these shape functions, i.e., p-

level 2 contains all the shape functions of p-level 1, and p-level 3 contains all the shape

functions found in p-level 2. This helped to serve as verification that the shape function

calculations were working as expected.

Only the nodal shape functions represent displacement: all other shape

functions (edge, face, and bubble modes) represent derivatives of displacement, rather

than displacement. Table 2.1 shows the node numbering, shape function, and

displacement representation for each node in p-levels 1 (please reference Figure 2.2 to

determine the position of nodes 1 – 4). Tables 2.2, 2.3, and 2.4 show the additional

nodes found in each p-level.

The nodal numbering indicated in the tables is illustrated on a tetrahedral

element in Figs. 2.4 and 2.5 for p-levels 1 through 4. Note that the edge nodes are all

located at the middle of the edge, and the face nodes are all located at the middle of the

element face.

Table 2.1 Summary of Hierarchical Shape Functions for P-level 1.

P-level 1

Shape functions

Type Position Node # Variable type

L1 Vertex Node 1 1 Displacement

L2 Node 2 2

L3 Node 3 3

L4 Node 4 4

 20

Table 2.2 Summary of Additional Hierarchical Shape Functions for P-level 2.

P-level 2

Shape functions

Type Position Node # Variable type

-4 6 L2 L3 Edge Edge 2 3 5 2
nd

 derivative

-4 6 L1L3 Edge 1 3 6

-4 6 L1 L2 Edge 1 2 7

-4 6 L1 L4 Edge 1 4 8

-4 6 L2 L4 Edge 2 4 9

-4 6 L3 L4 Edge 3 4 10

Figure 2.4 P-levels 1 and 2 with node ordering.

Figure 2.5 P-levels 3 and 4 with node ordering.

4

2 3

1

4

2 3

1

7

9

5

10

8

6

4

2 3

1

7,13

9,15

5,11

10,16

8,14

6,12

17
18

19

20

4

2 3

1

7,13,23

9,15,25

5,11,21

10,16,26

8,14,24

6,12,22

17,27,

31
18,28,

32
19,29,

33
20,30,

34

35

 21

Table 2.3 Summary of Additional Hierarchical Shape Functions for P-level 3.

P-level 3

Shape functions

Type Position Node # Variable type

4 10 L2L3(L2 - L3) Edge Edge 2 3 11 3
rd

 derivative

4 10 L1L3(L1 - L3) Edge 1 3 12

4 10 L1L2(L1 - L2) Edge 1 2 13

4 10 L1L4(L4 - L1) Edge 1 4 14

4 10 L2L4(L4 - L2) Edge 2 4 15

4 10 L3L4(L4 - L3) Edge 3 4 16

L2 L3 L4 Face Face 2 3 4 17

L1 L3 L4 Face 1 3 4 18

L1 L2 L4 Face 1 2 4 19

L1 L2 L3 Face 1 2 3 20

Table 2.4 Summary of Additional Hierarchical Shape Functions for P-level 4.

P-level 4

Shape functions

Type Position Node # Variable type

- 14 /3 L2 L3 (15(L2- L3)
2
-3) Edge Edge 2 3 21 4

th
 derivative

- 14 /3 L2 L3 (15(L2- L3)
2
-3) Edge 1 3 22

- 14 /3 L1 L2 (15(L1- L2)
2
-3) Edge 1 2 23

- 14 /3 L1 L4 (15(L1- L4)
2
-3) Edge 1 4 24

- 14 /3 L2 L4 (15(L2- L4)
2
-3) Edge 2 4 25

- 14 /3 L3 L4 (15(L3- L4)
2
-3) Edge 3 4 26

L2 L3 L4(L2 - L3) Face Face 2 3 4 27

L3 L4 L1(L1 - L3) Face 1 3 4 28

L4 L1 L2(L1 - L2) Face 1 2 4 29

L1 L2 L3(L2 - L1) Face 1 2 3 30

-L2 L3 L4(2 L4 - 1) Face 2 3 4 31

L3 L4 L1(2 L1 - 1) Face 1 3 4 32

L4 L1 L2(2 L4 - 1) Face 1 2 4 33

L1 L2 L3(2 L3 - 1) Face 1 2 3 34

L1 L2 L3 L4 Bubble Centroid 35

2.3 Isoparametric Shape Functions

 22

Shiakolas [4, 5] developed closed-form isoparametric tetrahedrons for p-levels 1

through 3. That work is here extended by considering the fourth order isoparametric

tetrahedron. The fourth order isoparametric tetrahedral shape function is not commonly

documented in the literature, although Argyris et. al. [9] provided an interpolation

scheme for direct determination of modal functions. Like the fourth order hierarchical

elements, each element has four corner nodes, three nodes per edge, three nodes per

face, and one internal node.

For a fourth order element (p = 4), Eqns. 2.19 through 2.23 below can be used to

derive all 35 shape functions [9].

 𝑖 + 𝑗 + 𝑔 + 𝑕 = 𝑝 (2.19)

 
1
𝑘 = 𝑖

𝑝 , 
2
𝑘 =

𝑗
𝑝 , 

3
𝑘 =

𝑔
𝑝 , 

4
𝑘 = 𝑕

𝑝 (2.20)

 𝜔𝑘 = 𝑓1
𝑖𝑓2

𝑗
𝑓3

𝑔
𝑓4

𝑕 (2.21)

 𝑓𝑣
𝑙 = 𝑐𝑣

𝑙 
𝑣
− 

𝑣
𝐿 𝑙−1

𝐿=0 (2.22)

 
𝑣
𝐿 = 𝐿

𝑝, 𝑐𝑣
𝑙 =

𝑝𝑙

𝑙!
 (2.23)

Using the above formulation, a summary of each type of shape functions

included in the fourth order is provided below in Eqns. 2.24 – 2.28, while the thirty-five

shape functions, their positions in the master element, and nodal assignment is

summarized in Table 2.5.

The shape functions for the corner nodes are given by Eq. 2.24.

 23

Table 2.5 Summary of Shape Functions, Positions, and Nodal Assignments for 4
th

Order Isoparametric Elements

 24

 𝜑𝑖
1 = 32

3 𝐿𝑖 −
3

4
 𝐿𝑖 −

1

2
 𝐿𝑖 −

1

4
 𝐿𝑖 where i = 1, 2, 3, 4 (2.24)

Edge modes consist of three nodes per edge: one in the middle, and nodes ¼

distance from each endpoint. Edge mode functions for the nodes ¼ edge length from

corner node i are shown in Eq. 2.25.

 𝜑𝑖
2 = 128

3 𝐿𝑖 −
1

2
 𝐿𝑖 −

1

4
 𝐿𝑖𝐿𝑗 (2.25)

Edge mode functions for mid-edge nodes between corners i and j are found in

Eq. 2.26.

 𝜑𝑖
2 = 64 𝐿𝑖 −

1

4
 𝐿𝑗 −

1

4
 𝐿𝑖𝐿𝑗 (2.26)

There are three nodes per face, with each node near a vertex. Face mode

functions nearest vertex i on a face composed of i, j, and k are found in Eq. 2.27.

 𝜑𝑖
3 = 128 𝐿𝑖 −

1

4
 𝐿𝑖𝐿𝑗𝐿𝑘 (2.27)

There is one internal mode located at the centroid of the element. Its equation is

given below.

 𝜑𝑖
4 = 256𝐿1𝐿2𝐿3𝐿4 (2.28)

Table 2.5 summarizes the shape functions, node assignments, and positions for

the fourth order isoparametric tetrahedral element.

2.4 Summary of Curved-sided Modifications

For curved-sided elements, the distorted global Cartesian coordinates are

mapped to curvilinear coordinates, as shown in Fig. 2.5. These curvilinear coordinates

allow the distorted tetrahedral element to be represented by an undistorted parent

element. The local curvilinear coordinates as defined as follows in Eqns. 2.29 – 2.32.

 25

With any integration limits involved appropriately modified, the shape functions

developed in this section can be modified for curvilinear applications by an appropriate

substitution of variables [22].

  = L1 (2.29)

  = L2 (2.30)

  = L3 (2.31)

 1-  -  -  = L4 (2.32)

Figure 2.6 Distorted tetrahedral element mapped to curvilinear coordinates.

The process of mathematically converting the distorted element into the

curvilinear element is known as ―mapping,‖ and requires conversion from the global

x

y

z







Global

Coordinates

Local

Coordinates

 26

coordinates x, y, z to the local coordinates , , . This transformation requires the

calculation of the Jacobian between the local and global coordinates. If 𝑓 ,, 

represents a function defined in terms of the local coordinate system, use of the chain

rule gives the following.

𝜕𝑓

𝜕
=

𝜕𝑓

𝜕𝑥
×

𝜕𝑥

𝜕
+

𝜕𝑓

𝜕𝑦
×

𝜕𝑦

𝜕
+

𝜕𝑓

𝜕𝑧
×

𝜕𝑧

𝜕
 (2.23)

If f represents nodal displacement u, v, and w (all dependent on the shape

functions), then the Jacobian matrix 𝐽𝑐 of the transformation of function f can be

obtained as follows

𝜕

𝜕

𝜕

𝜕

𝜕

𝜕

𝑓 = 𝐽𝑐

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑓 =

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑓 (2.24)

Because x, y, and z can be obtained from the shape functions in the form shown

below, the partial derivatives found in the Jacobian matrix can be obtained using Eq.

2.26 [22]. Note that 𝑁𝑖
′ is the shape function, in terms of the local coordinates,

associated with the ith node, 𝑥𝑖 is the x-coordinate of the ith node, and n is the number

of nodes per element.

 𝑥 = 𝑁𝑖
′𝑥𝑖

𝑛
𝑖=1 , 𝑦 = 𝑁𝑖

′𝑦𝑖
𝑛
𝑖=1 , 𝑧 = 𝑁𝑖

′𝑧𝑖
𝑛
𝑖=1 (2.25)

𝜕𝑥

𝜕
=

𝜕𝑁𝑖
′

𝜕
𝑥𝑖

𝑛
𝑖=1 (2.26)

This allows the Jacobian matrix to take the form shown below [22].

 27

 𝐽𝑐 =

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

=

𝜕𝑁𝑖
′

𝜕
𝑥𝑖

𝑛
𝑖=1

𝜕𝑁𝑖
′

𝜕
𝑦𝑖

𝑛
𝑖=1

𝜕𝑁𝑖
′

𝜕
𝑧𝑖

𝑛
𝑖=1

𝜕𝑁𝑖

′

𝜕
𝑥𝑖

𝑛
𝑖=1

𝜕𝑁𝑖
′

𝜕
𝑦𝑖

𝑛
𝑖=1

𝜕𝑁𝑖
′

𝜕
𝑧𝑖

𝑛
𝑖=1

𝜕𝑁𝑖

′

𝜕
𝑥𝑖

𝑛
𝑖=1

𝜕𝑁𝑖
′

𝜕
𝑦𝑖

𝑛
𝑖=1

𝜕𝑁𝑖
′

𝜕
𝑧𝑖

𝑛
𝑖=1

 (2.27)

Defining finite element properties, such as stiffness and equivalent nodal loads,

can be represented in the form shown below, where the matrix 𝐻 is dependent on the

shape functions 𝑁 defined with respect to the global coordinates, and the integration is

performed over the volume (in the case of error estimation and stiffness matrices) or

over the area (in the case of equivalent nodal loads).

 𝐻
𝑉

𝑑𝑣 (2.28)

To transform the variables to local coordinates, the determinant of the Jacobian

matrix is used as illustrated below for the volume of an element.

 𝑑𝑥 𝑑𝑦 𝑑𝑧 = 𝑑𝑒𝑡 𝐽𝑐 𝑑 𝑑 𝑑 (2.29)

Integrals for tetrahedral elements then take the following form, where the

integration is carried out over the parent region, the undistorted form of the element

[22].

 𝐻 ,,  𝑑 𝑑 𝑑
1−−

0

1−

0

1

0
 (2.30)

When curved elements are used, the model is first built using all straight-sided

elements. Nodes located on curved edges or surfaces are moved to the appropriate

coordinates after the straight-sided model has been completed. The following

methodology for moving the nodes to curved edges and faces follows the

 28

implementation discussed by Muthukrishnan in his dissertation [45]. The coordinates

are determined by first assuming that the curved surface can be represented by a conic

surface, whose axis lies along the z-axis of the model, and whose surface can be defined

by two radii and the endpoints of the cone. This is illustrated in Fig. 2.7, and the

formula is given in Eq. 2.31 below where the symbols correspond to illustration

referenced.

 𝑅𝑐 = 𝑅2 +
𝑧 − 𝑧2

𝑧1 − 𝑧2
 𝑅1 − 𝑅2 (2.31)

After the value of 𝑅𝑐 is known, the coordinates of the new node position can be

obtained using geometry, as shown in Fig. 2.8. The required equations are shown

below, and the variables again correspond to illustration referenced. These

relationships are valid for moving both edge nodes and face nodes.

 𝑅𝑠 = 𝑥𝑠
2 + 𝑦𝑠

2 (2.32)

 𝑥𝑐 =
𝑅𝑐

𝑅𝑠
 𝑥𝑠 (2.33)

 𝑦𝑐 =
𝑅𝑐

𝑅𝑠
 𝑦𝑠 (2.34)

 The curved-sided elements were implemented using the fourth order

isoparametric implementation only. During the course of research, it was found that the

hierarchic shape functions selected do not lend themselves to the type of curved

implementation described above.

 29

Figure 2.7 Illustration of a conic surface.

Figure 2.8 Coordinates of a node on a curved surface.

2.5 Local Node Numbering Issues

 One of the problematic issues discovered during initial testing involved the

sensitivity of the higher order shape functions of p-levels 3 and 4 to edge and face

Rc

nc

ns

yc

xc

ys

xs

x

y

z1
z2 z

R1

Rc

R2

 30

directionality based on local node numbering. It is possible for shape functions on

shared edges with opposite directionality to cancel each other out, as illustrated along an

edge in Fig. 2.8 (courtesy Dr. Shiakolas in private communication). If the element on

the left has edge directionality 2-3, and the element on the right has edge directionality

3-2, the shape functions could cancel each other out and produce erroneous results.

As a further illustration, the face of a tetrahedral element will be considered.

Fig. 2.9 shows elements A and B which share a common edge: local nodes 2 and 3 for

both elements (A2 and A3, with B2 and B3). The edge orientations are in opposite

directions, and, as discussed the effects of shape functions for these edges may cancel

each other out during calculations such as stiffness or error estimation.

Figure 2.9 Illustration of the sensitivity of same shape functions to edge directionality.

The same issue arose in the work of Xin, Pinching, and Flaherty [46] during

implementation of hierarchical simplicial elements in FEMLAB. They referred to the

problem as maintaining ―interelement continuity of the basis,‖ and their solution to this

problem was modified and found to be sufficient for the test problems used in

connection with hierarchical elements.

Local

Node 2

Local

Node 3

Local

Node 2

Local

Node 3

 31

1. Sort corner nodes by node number in ascending order, not taking into account

their position in the coordinate system.

2. Define all edges in sorted pairs by node number.

3. Define all faces in sorted triplets by node number.

4. If, when calculating the volume of an element, that volume is found to be less

than zero, swap local nodes 2 and 3 and mark that element as a ―swapped‖

element.

If nodes 2 and 3 are the only nodes that can be out of order, then the only edge

and faces that could be shared but have differing orientations would be edge 2-3 and

faces that include edge 2-3. The orientation of all edges except 2-3, and all faces

without edge 2-3, will match for all elements sharing them. If the order of these locals

nodes is swapped during preprocessing, that element is marked as a ―swapped‖ element;

calculations such as the stiffness, stress, or error estimation for that element will be

based on shape functions where the order of local nodes 2 and 3 have been reversed for

edges and faces. Figures 2.10 and 2.11 illustrates how this solution works.

Xin et. al. [46] found that several approaches existed in the literature which

indicated that the most straightforward approach is to produce shape functions based on

permutations, but that method was not compatible with their FEM implementation, nor

is it compatible with the assembly of the stiffness matrix and error estimation

implementation used in this research.

 32

Figure 2.10 Two faces with a shared edge but with different edge orientations.

Face A

Fa
ce

 B

A1 A2

A3

B3

B1

B2

Figure 2.11 Same faces with edge and nodes swapped to ensure that the shared edge is

based on the same edge orientation.

Face A

Fa
ce

 B

A1 A2

A3

B2

B1

B3

 33

For isoparametric, similar issues were resolved by making node 1 the node with

the smallest y-coordinate, node 4 the node with the largest z-coordinate. Nodes 2 and 3

are swapped as needed to preserve positive volume for the element.

Chapter 3 presents the development of the closed-form stiffness matrices, and

also discusses their numerical implementation.

 34

CHAPTER 3

STIFFNESS MATRICES

One of the major objectives of the derivation that follows is to find an

expression for the stiffness matrix [K] that can be efficiently implemented in closed-

form, not just for numerical quadrature. If the expression for the stiffness matrix can be

broken into matrices, and some of those matrices can be calculated once for each type

of element or once for each element, the closed-form implementation will see an

increase in efficiency. Many of the equations that follow will be manipulated with this

purpose in view, and follows closely the derivation provided by Shiakolas [4]. Note

that this derivation is applicable for both hierarchical and isoparametric straight-sided

elements.

3.1 Derivation and Manipulation of the Stiffness Matrix

The shape functions for the tetrahedral element are described in terms of a local

coordinate system, whose coordinates, indicated by L, are called volume or natural

coordinates. The equation below is used to obtain the global coordinates of any point in

the element. Li represents the local volume coordinates and xi, yi, and zi represent the

global Cartesian coordinates of the vertices of the tetrahedron.

 35





































































4

3

2

1

4321

4321

4321

11111 L

L

L

L

zzzz

yyyy

xxxx

z

y

x

 (3.1)

Because the sum of the volume coordinates will always be one, it is possible to

eliminate L4: 3214 1 LLLL  . Substitution of L4 into Equation 3.1 results in the

following equation, where xij = xi – xj, yij = yi – yj, and zij = zi – zj .





































































110001

3

2

1

4342414

4342414

4342414

L

L

L

zzzz

yyyy

xxxx

z

y

x

 (3.2)

The volume coordinates (L1, L2, L3, L4) are functions of the coordinates of the

corner nodes of the element. They are obtained from the inversion of Equation 3.2

above, which yields Equation 3.3. This also results in the expressions of the form

shown in Equation 3.4, where x, y, and z represent the global Cartesian coordinates of

any point in the tetrahedron.
















































































































1110001 44434241

34333231

24232221

14131211

1

4342414

4342414

4342414

3

2

1

z

y

x

CCCC

CCCC

CCCC

CCCC

z

y

x

zzzz

yyyy

xxxx

L

L

L

 (3.3)

   JCzCyCxCL iiiii /4321  (3.4)

Note that Cik represents the entry at (i,k) in the inverse coefficient matrix (see

Equation 3.3 above) and J is the determinant of the Jacobian representing a

transformation from Cartesian to volume coordinates, and is equal to 6 x volume.

 36

The element shape functions and nodal displacements of an element are used to

determine the displacement of any point in the element, as shown in Equation 3.5 for

displacement in the x-direction. Variable Ni is the shape function for node i and ui is

the global displacement of node i in the x-direction. Similar expressions are used to

find the displacements in the y- and z- directions, using v and w, respectively.

 i

nodes

i

i uNu 



1

 (3.5)

Equation 3.6 is used to find the displacement of any point in the element in all

directions (not just one node in a particular direction). In this expression, [I3] is an

identity matrix of order 3, nodes represents the total number of nodes in the element,

[N] is the element shape function, and u1 would represent the displacement of node 1

in the x-direction.

 
 
 

      


















































nodes

nodes

nodes

nodes

w

v

u

w

v

u

NININI

zyxw

zyxv

zyxu














1

1

1

32313

,,

,,

,,

 (3.6)

The equation below shows an example how Equation 3.6 can be used to

determine global displacement by looking at the x-displacement, represented by

u(x,y,z).

 nodesnodes uNuNuNu   2211 (3.7)

 37

This allows the calculation of global displacement as a function of nodal

displacement and element shape functions. The next step is to look at the strain vector,

which, for a three-dimensional domain, can be represented by Equation 3.8. Note that u,

v, and w are displacements in the x, y, and z directions, respectively.

  
T

x

w

z

u

z

v

y

w

x

v

y

u

z

w

y

v

x

u















































 (3.8)

The strain displacement matrix [Bi], based on the definition of strain shown

above, is given in Equation 3.9, and is applicable for any node i. Note that [Bi] is a

differential operator matrix that operates on global displacements u, v, and w, not on

local displacements. The strain displacement matrix [B] for an entire element is shown

in Equation 3.10, where nodes represents the total number of nodes in the element; it is

a function of the strain displacement matrices for each node in the element, and its

dimensions are 6 x (3 x nodes).

  











































































z

u

x

w

z

v

y

w

y

u

x

v
z

w

y

v
x

u

Bi

0

0

0

00

00

00

 (3.9)

    nodesBBBB 21 (3.10)

 38

The strain vector of Equation 3.8 can be represented in an alternate form. If

u
zyx

u

T

zyx




















,,, represents the partial derivates of u with respect to x, y, and z,

and matrix [A] is comprised of constants, the strain vector representation takes on the

shortened form shown in Equation 3.11, where the matrix of constants is named [A].

 
T

z

w

y

w

x

w

z

v

y

v

x

v

z

u

y

u

x

u









































































001000100

010100000

000001010

100000000

000010000

000000001



  












































zyx

zyx

zyx

u

u

u

,,

,,

,,

,

,

,

001000100

010100000

000001010

100000000

000010000

000000001



   



















zyx

zyx

zyx

w

v

u

A

,,

,,

,,

,

,

,


 (3.11)

It is now necessary to determine the relationship between {u,x,y,z v,x,y,z w,x,y,z}
T

and the derivatives with respect to the volume coordinates L1, L2, and L3.

For the x-direction, the chain rule gives Equation 3.12 below.

 39

x

L

L

u

x

L

L

u

x

L

L

u

x

u

































 3

3

2

2

1

1

 (3.12)

Implementation of the chain rule for the other derivatives provides the following

equations.

     

     

     

 
 
  


























































































3

2

1

3
3

2
3

1
3

3
3

2
3

1
3

3
3

2
3

1
3

,,

,,

,,

,

,

,

,

,

,

L

T

L

T

L

T

zyx

zyx

zyx

wvu

wvu

wvu

z

L
I

z

L
I

z

L
I

y

L
I

y

L
I

y

L
I

x

L
I

x

L
I

x

L
I

w

v

u

 (3.13)

   g

w

v

u

zyx

zyx

zyx


















,,

,,

,,

,

,

,

 (3.14)

Therefore, [] can be represented as shown in Equation 3.15, and {g} is shown

in Equation 3.16. Note that an expression such as  1,L

T
wvu refers to the vector

formed by the partials of u, v, and w with respect to L1.

  

     

     

      


























































z

L
I

z

L
I

z

L
I

y

L
I

y

L
I

y

L
I

x

L
I

x

L
I

x

L
I

3
3

2
3

1
3

3
3

2
3

1
3

3
3

2
3

1
3

 (3.15)

  
 
 
  


















3

2

1

,

,

,

L

T

L

T

L

T

wvu

wvu

wvu

g (3.16)

 40

The partial derivatives of the volume coordinates can be obtained from Equation

3.4 and are shown in Equations 3.17 – 3.19, where Cik represents the entry at (i,k) in the

inverse coefficient matrix (see Equation 3.3).

J

C

x

L ii 1



,

J

C

y

L ii 2



,

J

C

z

L ii 3



 (3.17 – 3.19)

Recall that |J| is equal to six times the volume of the element. The above

equations indicate that the [] matrix in Equation 3.15 is constant for each element

since it depends only on the coordinates of the nodes of the element (see Equation 3.3).

It can easily be implemented in closed form, and is calculated once for each element.

The next step is to determine the derivatives of the displacements with respect

to the volume coordinates. This results in Equations 3.20 – 3.22 for displacement in the

x-direction, and similar formulations for the y- and z-directions.

i

nodes

i

i u
L

N

L

u











1 11

,
i

nodes

i

i u
L

N

L

u











1 22

,
i

nodes

i

i u
L

N

L

u











1 33

 (3.20 – 3.22)

When expanded for all directions, the derivatives of the displacements with

respect to volume coordinates result in the formula below.

 
 
 

 
 
 

  uR

w

v

u

N

N

N

wvu

wvu

wvu

L

L

L

L

T

L

T

L

T

~

,

,

,

,

,

,

3

2

1

3

2

1



























































 (3.23)

The [R] matrix will be the same for each element type because it is a function of

the polynomial order of the element, and its dimensions are 9 x (3·nodes). It needs to be

calculated only once for any element type.

 41

If the element stiffness matrix is implemented using local volume coordinates

instead of global Cartesian coordinates, the strain energy for an element is written as

shown in Equation 3.24 below, where Ue is the element strain energy, {} is the strain

vector, [D] is the elasticity matrix, and  is the domain of integration.

           
 vol

TT

e dzdydxDdDU 
2

1

2

1
 (3.24)

Note that the elasticity matrix [D] is represented as shown below [22].

  
 

  

 
 

 
 

 
 










































































12

21

0
12

21

00
12

21

0001

000
1

1

000
11

1

211

1

sym

E
D (3.25)

The equation for strain energy, based on substitution of the strain vector as the

product of the strain displacement matrix [B] times the nodal displacement vector {u},

is shown in the following equations, where the domain integration  is the volume of

the element.

            


duBDuBU
T

e 
2

1
 (3.26)

            udBDBuU
TT

e  












 


2

1
 (3.27)

 42

Expressing the strain energy in terms of the element stiffness matrix, [Ke],

results in Equation 3.28. This formulation will aid in determining the element stiffness

matrix.

     uKuU e

T

e 
2

1
 (3.28)

When Equation 3.27 and Equation 3.28 are compared, it is readily seen that the

element stiffness matrix can be represented as shown in Equation 3.29.

            


dBDBK
T

e
 (3.29)

Based on the formulations developed, the strain matrix can be manipulated into

the form shown in Equation 3.31, where [P] = [A] [].

              uRAgAuB ~~   (3.30)

      uRP ~  (3.31)

This means that the strain displacement matrix [B] can be calculated as the

product     RPB  . Since the [P] matrix is a function of the [A] matrix (comprised of

all constants) and the [] matrix (which depends on the nodal coordinates of the

element vertices and is constant for each element) [P] only needs to be calculated once

for each element. Note that the dimensions for [P] are always 6 x 9.

These manipulated formulations can now be substituted into the equation for the

element stiffness matrix [Ke].

           321 dLdLdLJRPDPRK
TT

vol

e   (3.32)

 43

If [G] is defined as [G] = [P]
T

[D] [P], it will be geometry and material

dependent, needing to be calculated only once for each element and results in a 9x9

symmetric matrix of constants. Substitution of [G] into Equation 3.32 results in the

final form of the stiffness matrix, shown in Equation 3.33.

        321 dLdLdLJRGRK
T

vol

e   (3.33)

3.2 Closed-Form Implementation

For closed-form calculations, the integration indicated in Equation 3.33 was

accomplished using the formula below [22], where the domain of integration is the

volume of the element, a, b, c, and d represent the powers to which the natural

coordinates have been raised, and V is the volume of the element.

 𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝐿4

𝑑𝑑𝐿1𝑑𝐿2𝑑𝐿3𝑑𝐿2𝑑𝐿4 = 𝑎! 𝑏! 𝑐! 𝑑!
 𝑎 + 𝑏 + 𝑐 + 𝑑 + 3 ! 6𝑉

 (3.34)

3.3 Curved-sided Elements

Curved-sided elements are defined in terms of local coordinates (, , ). These

local coordinates represent the undistorted element; in the local coordinate system, the

element has straight sides. The global coordinate system is defined in terms of the

Cartesian coordinates (x, y, z); in the global coordinate system, the element is distorted,

and thus has curved sides.

The steps to obtain the stiffness matrix (as well as equivalent nodal loads,

stresses, and error estimation) involve several steps and two transformations. In the

previous sections, the stiffness matrix was derived in terms of the global coordinates.

 44

The first step is to define the shape functions [N] (global coordinates) as [N’] (in terms

of the local coordinates). If we define the local coordinates in terms of the volume

coordinates as shown in Equation 3.35, the local coordinates an be easily substituted

into the shape functions.

 𝐿1 = , 𝐿2 = , 𝐿3 = , 𝐿4 = 1 − −  −  (3.35)

The same procedure outlined previously in this chapter was used to calculate the

stiffness matrix for curved elements. Modifications to the formulations are outlined

below.

The   matrix of Eq. 3.15 is modified to relate the derivatives of the global

displacements u, v, w with respect to the local coordinates , , , forming the

curvilinear matrix  c . Each entry ij is the ijth entry in the inverse Jacobian matrix

 𝐽𝑐 , which means that the determinant of the Jacobian matrix is present in the

denominator of each entry in this matrix.

  
     
     
      
























333323313

233223213

133123113

III

III

III

c (3.36)

The  R matrix of Eq. 3.23 is modified so that it relates the derivatives of the

global displacements with respect to the local coordinates , , , forming the  cR

matrix, where  'N represents the shape functions in terms of the local coordinates.

  
 
 
  
























,

,

,

'

'

'

N

N

N

Rc
 (3.37)

 45

The curved element stiffness matrix then takes on the following form, based on

Eqns. 2.29, 2.30, and 3.32. Note that 𝑃𝑐 = 𝐴  c .

 𝐾𝑒𝑐 = 𝑅𝑐
𝑇1−−

0

1−

0

1

0
 𝑃𝑐

𝑇 𝐷 𝑃𝑐 𝑅𝑐 𝑑𝑒𝑡 𝐽𝑐 𝑑 𝑑 𝑑 (3.38)

If, as in the case of Eq. 3.33, [Gc] is defined as [Gc] = [Pc]
T
[D] [Pc], the matrix

[Gc] is be geometry and material dependent, needing to be calculated only once for each

curved element, as in the case of straight sided elements. Substitution of [Gc] into

Equation 3.33 results in the final form of the curved stiffness matrix, shown in Equation

3.39.

 𝐾𝑒𝑐 = 𝑅𝑐
𝑇1−−

0

1−

0

1

0
 𝐺𝑐 𝑅𝑐 𝑑𝑒𝑡 𝐽𝑐 𝑑 𝑑 𝑑 (3.39)

Because of the presence of the determinant of the curved Jacobian in the

denominator of the integrand, numerical integration is required, as discussed in the next

section.

3.4 Numerical Integration Implementation

For straight-sided elements, Gaussian cubature was used. Fellipa’s summary of

FEM integration rules [41] and the work of Gellert and Harboud [47] is the source for

the Gauss points used, implemented according to Equation 3.40 below. In the equation,

nGauss is the number of Gauss points used, wi is the weight for that Gauss point, 𝐹 𝜑𝑖

is the value of the integrand at Gauss point i.

 𝐹 𝜑 𝑑 = 𝑣𝑜𝑙 × 𝑤𝑖
𝑛𝐺𝑎𝑢𝑠𝑠
𝑖=1

𝐹 𝜑𝑖 (3.40)

Gauss points used are as follows: p-level 1, 1 point; p-level 2, 8 points; p-level

3, 14 points; p-level 4, 20 points. The least number of points required for accuracy

 46

were used. This was determined by first implementing more Gauss points than needed,

then reducing the number of Gauss points used until the results were no longer

acceptable.

Chapter 4 presents both the closed-form and numerical error estimators, and

ends with a discussion of measures of error.

 47

CHAPTER 4

ERROR ESTIMATION

This research uses the Zienkiewicz-Zhu error estimator [33] with nodal

averaging as developed by Byrd [35] in his dissertation, and implemented by ANSYS

[36]. The theory behind this method is as follows: interelement displacement

continuity is guaranteed for C0 continuous elements, such as hierarchical elements or

isoparametric elements, but continuity of either stress or strain is not guaranteed. This

implies that if a node is shared by two elements, it will most likely have two different

stress (or strain) values. A reasonable assumption would be that the actual stress (or

strain) at this node lies somewhere between the two values.

It follows that discontinuities in either stress or strain could provide an estimate

of the error in the finite element solution. Since the exact solution is not known, an

improved estimate of the stress or strain distribution could be obtained by nodal

smoothing, and the smoothing must be performed separately for each material region of

the element [48]. For this research, the error estimation is based on the stresses.

 48

4.1 Equation Development

If 𝑒𝑖
2 represents the error in the energy norm in element i, it can be calculated as

shown in Equation 4.1, where [C] is the compliance matrix, 𝑒𝜎 is the error of the

stresses, and  is the domain of the element.

 𝑒𝑖
2 = 𝑒𝜎

𝑇


 𝐶 𝑒𝜎𝑑 (4.1)

The error of the stresses is based on Equation 4.2, where 𝜎∗represents the

nodally averaged stresses and 𝜎 represents the stresses based on the finite element

solution.

 𝑒𝜎 = 𝜎∗ − 𝜎 (4.2)

Substitution of Equation 4.1 into 4.2 results in the expression shown in Equation

4.3, and expanded in Equation 4.4.

 𝑒𝑖
2 = 𝜎∗ − 𝜎 𝑇


 𝐶 𝜎∗ − 𝜎 𝑑 (4.3)

 𝑒𝑖
2 = 𝜎∗𝑇


 𝐶 𝜎∗𝑑− 2 𝜎∗𝑇


 𝐶 𝜎 𝑑 + 𝜎 𝑇


 𝐶 𝜎 𝑑 (4.4)

The first and last terms of Equation 4.4 are equal to two times the strain energy

as estimated by the smoothed solution and two times the strain energy obtained by the

finite element solution, respectively.

4.2 Stresses for Error Estimation

The smoothed stresses 𝜎∗ are interpolated over the mesh, on an element by

element basis, based on the averaged nodal stresses, represented by 𝜎∗ . These

smoothed stresses are obtained using Equation 4.5, where N represents the shape

function matrix used for interpolation.

 49

 𝜎∗ =

𝑁 0 0
0 𝑁 0
0 0 𝑁

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑁 0 0
0 𝑁 0
0 0 𝑁

 𝜎∗ (4.5)

Because not all element nodes are displacement nodes [7], the hierarchical

shape functions did not produce correct results when used for the interpolation. The

solution to this problem was to use isoparametric shape functions for the smoothed

stresses. In higher order elements, the shape functions used for interpolating stresses do

not have to be the same as those used to produce the stiffness matrix.

For p-level 2, linear strain tetrahedral shape functions are used; for p-levels 3

and 4, quadratic strain shape functions are used. The linear strain and quadratic strain

shape functions are summarized in Tables 4.1 and 4.2, as found in Zienkiewicz [22].

For the fourth order isoparametric element, the same shape functions used to obtain

stiffness were also used for smoothing.

Table 4.1 Linear Strain Tetrahedral Element Shape Functions.

Node Type Shape Function Node Type Shape Function

1 Vertex 2L1
2
-L1 6 Edge 13 4L1L3

2 Vertex 2L2
2
-L2 7 Edge 12 4L1L2

3 Vertex 2L3
2
-L3 8 Edge 14 4L1L4

4 Vertex 2L4
2
-L4 9 Edge 24 4L2L4

5 Edge 23 4L2L3 10 Edge 34 4L3L4

 50

Table 4.2 Quadratic Strain Tetrahedral Element Shape Functions

Node Type Shape Function Node Type Shape Function

1 Vertex 3𝐿1 − 1 3𝐿1 − 2
𝐿1

2

11 Edge 23 9𝐿2𝐿3 3𝐿3 − 1 /2

2 Vertex 3𝐿2 − 1 3𝐿2 − 2
𝐿2

2
 12 Edge 13 9𝐿1𝐿3 3𝐿3 − 1 /2

3 Vertex 3𝐿2 − 1 3𝐿3 − 2
𝐿3

2
 13 Edge 12 9𝐿1𝐿2 3𝐿2 − 1 /2

4 Vertex 3𝐿4 − 1 3𝐿4 − 2
𝐿4

2
 14 Edge 14 9𝐿1𝐿4 3𝐿4 − 1 /2

5 Edge 23 9𝐿2𝐿3 3𝐿2 − 1 /2 15 Edge 24 9𝐿2𝐿4 3𝐿4 − 1 /2

6 Edge 13 9𝐿1𝐿3 3𝐿1 − 1 /2 16 Edge 34 9𝐿2𝐿4 3𝐿4 − 1 /2

7 Edge 12 9𝐿1𝐿2 3𝐿1 − 1 /2 17 Face 234 27𝐿2𝐿3𝐿4

8 Edge 14 9𝐿1𝐿4 3𝐿1 − 1 /2 18 Face 134 27𝐿1𝐿3𝐿4

9 Edge 24 9𝐿2𝐿4 3𝐿2 − 1 /2 19 Face 124 27𝐿1𝐿2𝐿4

10 Edge 34 9𝐿2𝐿4 3𝐿3 − 1 /2 20 Face 123 27𝐿1𝐿2𝐿3

Before the isoparametric shape functions can be used with p-levels 3 and 4, the

averaged nodal stresses have to be obtained at the isoparametric node points along the

edge, as opposed to the hierarchical node points.

All hierarchical edge nodes are located at the midpoint of the edge, and all

hierarchical face nodes are located at the midpoint of the face. For isoparametric

elements, if there is one face node, it is at the midpoint; if there are three face nodes,

they are evenly distributed on the face of the element; if there is one edge node, it lies at

 51

the midpoint of the edge; if there are three edge nodes, they are evenly distributed along

the edge.

For p-level 4, the corresponding cubic strain tetrahedron can not be used

because there were not enough known hierarchical stresses to allow for interpolation,

thus a p-level 3 error estimation was used for terms 1 and 2 of the error estimator; this

issue is illustrated in Fig. 4.1. This method did not produce satisfactory error estimates,

and was found unsuitable for the fourth order hierarchic tetrahedral element.

Figure 4.1 Stress interpolation illustration for p-level 3 and 4.

The finite element stress vector, 𝜎 , is derived from elasticity matrix 𝐷 and

the strain vector 𝜖 .

 𝜎 = 𝐷 𝜖 (4.6)

X X

X X X

X – Isoparametric Node Point

O – Hierarchic Node Point

[] – Edge end point

O

O

P-level 3 and Quadratic Strain

Tetrahedron

P-level 4 and Cubic Strain

Tetrahedron

[]

[]

[]

[]

 52

Recalling the expression of 𝜖 in Equation 3.31, the following equation for the

finite element stress vector is obtained.

 𝜎 = 𝐷 𝑃 𝑅 𝛿𝑢 (4.7)

Note that 𝑃 𝑅 = 𝐵 , and 𝛿𝑢 represents the displacement vector.

For curved-sided elements, shape functions based on local coordinates , , 

were used in the above equations. In the case of Eq. 4.6, 𝑃𝑐 and 𝑅𝑐 were

implemented, as in the case of the stiffness matrix. See Eqn. 3.37 for details on the

formulation of 𝑅𝑐 .

 𝜎 = 𝐷 𝑃𝑐 𝑅𝑐 𝛿𝑢 (4.8)

4.3 Closed-form Implementation

The closed-form implementation deals with each term in Equation 4.4

separately. The manipulation and implementation of these terms will be discussed in

the following sections.

4.3.1 Term 1 of the Error Estimator

Term 1 (Term1) of the error estimator is shown in Equation 4.9 below, where 𝜎∗

represents the nodally averaged stresses, and [C] is the element compliance matrix.

 𝑇𝑒𝑟𝑚1 = 𝜎∗𝑇


 𝐶 𝜎∗𝑑 (4.9)

Recalling the expression of 𝜎∗ found in Equation 4.5, the form of Term1 can be

expanded as shown.

 𝑇𝑒𝑟𝑚1 = 𝑁 𝜎 ∗ 𝑇


 𝐶 𝑁 𝜎 ∗ 𝑑 (4.10)

 53

This expression can be further simplified by recalling that the nodal averaged

stress vector can be taken outside the integral because it is not a function of the volume

coordinates. Equation 4.11 shows the form of Term1 that was implemented in closed-

form using Mathematica.

 𝑇𝑒𝑟𝑚1 = 𝜎 ∗𝑇 𝑁 𝑇


 𝐶 𝑁 𝑑 𝜎 ∗ (4.11)

4.3.2 Term 2 of the Error Estimator

Term 2 (Term2) of the error estimator is repeated in Equation 4.12 below,

where 𝜎∗ represents the nodally averaged stresses, 𝜎 represents the finite element

stresses, and [C] is the element compliance matrix.

 𝑇𝑒𝑟𝑚2 = 𝜎∗𝑇


 𝐶 𝜎 𝑑 (4.12)

Substituting for the nodally averaged stresses in Equation 4.5 and the finite

element stresses in Equation 4.6, the following expression is obtained. Recall that [D]

is the elasticity matrix, [B] is the strain displacement matrix, and 𝛿𝑢 represents the

displacement vector.

 𝑇𝑒𝑟𝑚2 = 𝑁 𝜎 ∗ 𝑇


 𝐶 𝐷 𝐵 𝛿𝑢 𝑑 (4.13)

This expression can be simplified by taking 𝛿𝑢 and 𝜎 ∗ outside the integral

because they are not dependent on the volume coordinates. The form shown in 4.12

was implemented in Mathematica to obtain a closed-form expression.

 𝑇𝑒𝑟𝑚2 = 𝜎 ∗𝑇 𝑁 𝑇


 𝐵 𝑑 𝛿𝑢 (4.14)

 54

4.3.3 Term 3 of the Error Estimator

Term 3 (Term3) of the error estimator is shown below, where 𝜎 represents the

finite element stresses, and [C] is the element compliance matrix.

 𝑇𝑒𝑟𝑚3 = 𝜎 𝑇


 𝐶 𝜎 𝑑 (4.15)

Substituting for the finite element stresses in Equation 4.6, the following

expression is obtained. Recall again that [D] is the elasticity matrix, [B] is the strain

displacement matrix, and 𝛿𝑢 represents the displacement vector.

 𝑇𝑒𝑟𝑚3 = 𝐵 𝛿𝑢 𝑇


 𝐶 𝐵 𝛿𝑢 𝑑 (4.16)

It is known that [B] = [P][R], and thus can be substituted into Equation 4.16.

 𝑇𝑒𝑟𝑚3 = 𝐷 𝑃 𝑅 𝛿𝑢 𝑇


 𝐶 𝐷 𝑃 𝑅 𝛿𝑢 𝑑 (4.17)

Rearranging some terms, and taking the displacement vector outside the

integral, another expression is obtained.

 𝑇𝑒𝑟𝑚3 = 𝛿𝑢 𝑇 𝑅 𝑇


 𝑃 𝑇 𝐷 𝑇 𝐶 𝐷 𝑃 𝑅 𝑑 𝛿𝑢 (4.18)

If [G] is again defined as [G] = [P]
T
[D] [P], another form of Term3 can be

obtained by combining the middle matrices as shown in Equation 4.17.

 𝑇𝑒𝑟𝑚3 = 𝛿𝑢 𝑇 𝑅 𝑇


 𝐺 𝑅 𝑑 𝛿𝑢 (4.19)

This is the form of Term3 implemented in Mathematica to obtain the closed-

form solution expressions.

4.4 Numerical Integration Implementation

The numerical implementation of the error estimator is performed in accordance

with Eq. 4.3 (reproduced below), which is applicable to both curved-sided and straight

 55

sided elements, and involves integration of the difference between 𝜎∗ and 𝜎 over each

element.

 𝑒𝑖
2 = 𝜎∗ − 𝜎 𝑇


 𝐶 𝜎∗ − 𝜎 𝑑 (4.3)

Fellipa’s summary of FEM integration rules was the source for the Gauss points

used [41], according to Equation 4.20 below. In the equation, nGauss is the number of

Gauss points used, wi is the weight for that Gauss point, 𝐹 𝜑𝑖 is the value of the

integrand at Gauss point i.

 𝐹 𝜑 𝑑 = 𝑣𝑜𝑙 × 𝑤𝑖
𝑛𝐺𝑎𝑢𝑠𝑠
𝑖=1

𝐹 𝜑𝑖 (4.20)

The least number of points required for accuracy were used. The Gauss points

used are as follows: p-level 1, 1 point; p-level 2, 14 points; p-level 3, 24 points; p-level

4, 24 points.

For the curved-sided isoparametric fourth order elements, 4-4-6 Gauss-Lobatto

points were used as described by Peano [49]. The expression used is shown below in

Eq. 4.21, where n represents the number of Gauss points for i and j, and the number of

Lobatto points for k, 𝑊𝐺 is the associated weight for Gauss points i and j, respectively,

𝑊𝐺 is the associated weight for Lobatto point k, and 
𝑖
,

𝑗
, 

𝑘
 represent the two Gauss

points i and j and the Lobatto point k, respectively. Note that 𝐿1 = 1

4
 1 −  1 −  ,

𝐿2 = 1

4
 1 +  1 −  , and 𝐿3 = 1

4
 1 +  1 +  .

 𝐹 𝐿1, 𝐿2, 𝐿3 𝑑𝐿1𝑑𝐿2𝑑𝐿3 = 𝑊𝑗
𝐺𝑛

𝑖,𝑗 ,𝑘=1 𝑊𝑗
𝐺𝑊𝑖

𝐿
1 − 

𝑘
2

32


𝐹 

𝑖
,

𝑗
, 

𝑘

 (4.21)

 56

4.5 Measurements of Error

The global error for the model can be calculated according to Equation 4.22,

after the error estimate for each element has been evaluated [22]. The variable nel

represents the number of elements in the model and 𝑒𝑖
2 represents the error in the

energy norm in element i.

 𝑒 2 = 𝑒𝑖
𝑛𝑒𝑙
𝑖=1

2
 (4.22)

The total finite element energy norm is given by the equation below, where

 𝑢 𝑖
2 is the strain energy of element i, equal to ½ of the third term of the error

estimator.

 𝑢 2 = 𝑢 𝑖
𝑛𝑒𝑙
𝑖=1

2
 (4.23)

To obtain the total strain energy of the model, Eq. 4.24 is used, where the sum is

taken of the sum of total error energy norm 𝑒 2 and the finite element energy norm,

 𝑢 2. Finally, the total (global) error of a model is estimated as the ratio between the

total error energy norm, 𝑒 2, and the total strain energy of the model, 𝑢 2 22 .

 𝑢 2 = 𝑒 2 + 𝑢 2 (4.24)

  =
 𝑒

 𝑢 (4.25)

If a specified maximum mean permissible error  needs to be achieved, a mean

permissible error that exceeds the value would indicate that the next p-level should be

utilized for this model. Once available p-levels have been exhausted, the model should

be remeshed and the process started again at p-level 1. The mean permissible error is

calculated as shown below in Eq. 4.26 [22].

 57

 𝑒𝑚 = 
 𝑢 2

𝑛𝑒𝑙
 (4.26)

Note that the finite element solution seeks to minimize the strain energy of the

error, and is thus a logical measure of the overall quality of the solution, but a small

error in the energy norm does not necessarily imply a small error in other quantities of

interest, such as displacement or stress concentration.

Chapter 5 presents the development of the equivalent nodal loads for pressure,

shear, and temperature for both straight-sided and curved-sided elements.

 58

CHAPTER 5

EQUIVALENT NODAL LOAD VECTORS

Equivalent nodal load vectors refer to the discretization of applied surface loads,

such as pressure, shear, or temperature. This discretization involves correctly allocating

the loads to element nodal points. Pressure loads are assumed perpendicular to the

element face, shear loads are assumed parallel to the element face, and the temperature

change of an element is calculated as the average of the vertex temperatures.

The discussion of methodology that follows for temperature, pressure, and shear

is closely based on the derivation and approach used by Shiakolas [4]. Pressure, shear,

and temperature equivalent nodal load vectors will be derived, and both closed-form

implementation used for straight-sided elements, and numerical implementation used

for curved-sided elements, will be discussed.

5.1 Equivalent Temperature

If an elastic body is unconstrained, a temperature change results in expansion or

contraction. Temperature changes from a preset datum are treated as an initial strain;

this strain must be allocated to the element nodes, resulting into an equivalent nodal

temperature load. [4, 50]. Equation 5.1 below shows the equivalent nodal temperature

load vector, where [B] is the strain displacement matrix, [D] is the elasticity matrix, 𝜀0

 59

is the initial strain due to the temperature load, and  represents the domain of

integration [50].

 𝑟 𝑇𝑒𝑚𝑝 = 𝐵 𝑇 𝐷 𝜀0
𝑑 (5.1)

The initial strain is a function of α, the coefficient of thermal expansion, and ΔT,

the average of the vertex temperatures. If we assume an isotropic material, the initial

strain takes on the following form.

 𝜀0 = 𝛼∆𝑇{1,1,1,0,0,0}𝑇 (5.2)

Substituting Equation 5.2 into Equation 5.1, noting that the domain of

integration is over the whole element (thus its volume), and taking all non-volume

coordinate dependent terms out of the integral, the expression for the equivalent nodal

temperature load is expressed as follows.

 𝑟 𝑇𝑒𝑚𝑝 = 𝐵 𝑇
𝑉𝑜𝑙

𝑑𝑉𝑜𝑙 𝐷 𝛼∆𝑇{1,1,1,0,0,0}𝑇 (5.3)

Recall that [B] = [P][R], and thus the integrand is expressed as the volume

coordinates raised to various powers and evaluated according to Equation 3.34,

reproduced below.

 𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝐿4

𝑑𝑑𝐿1𝑑𝐿2𝑑𝐿3𝑑𝐿2𝑑𝐿4 = 𝑎! 𝑏! 𝑐! 𝑑!
 𝑎 + 𝑏 + 𝑐 + 𝑑 + 3 ! 6𝑉

 (3.34)

As with the stiffness matrix and error estimation terms, the temperature loads,

when solved symbolically, also exhibit nested terms for hierarchical elements. For

example, the hierarchical p-level 4 equivalent nodal load vector includes the terms of

the p-level 3 equivalent nodal load vector. This is not true of isoparametric elements.

 60

Numerical implementation, used for the curved elements, involves the use of

Gaussian quadrature to evaluate the integral of Equation 5.3.

5.2 Applied Pressure or Shear

The equivalent nodal load vector for surface loads such as pressure and shear is

given in Equation 5.4 below, where [N] represents the shape function matrix, 𝛷 is the

applied load, and the domain of integration is the surface to which the load is applied

(the area of the tetrahedral face). [50]

 𝑟 =

𝑟𝑥
𝑟𝑦
𝑟𝑧

 = 𝑁 𝑇 𝛷
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑑𝑆 (5.4)

The shape function matrix used in Equation 5.4 is expressed as follows, where

[I] is a 3x3 identity matrix and Ni is the shape function for node i, and nodes is the

number of nodes in the element.

 𝑁 = 𝐼 𝑁1, 𝐼 𝑁2, ⋯ , 𝐼 𝑁𝑛𝑜𝑑𝑒𝑠 (5.5)

To use Equation 5.4, the applied load 𝛷 is expressed as 𝛷𝑣, the direction

cosine vector, and 𝛷𝑚 , the magnitude of the applied pressure or shear load.

 𝑟 = 𝑁 𝑇 𝛷𝑣 𝛷𝑚𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑑𝑆 = 𝑁 𝑇

𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑑𝑆 𝛷𝑣 𝛷𝑚 (5.6)

Note that the direction cosine vector and magnitude are taken outside the

integral, and the resulting integrand consists of volume coordinates raised to various

powers. In closed-form, Equation 5.6 is integrated using Equation 5.7 [22].

 𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝑑𝐿1𝑑𝐿2𝑑𝐿3 = 𝑎! 𝑏! 𝑐! 𝑑!

 𝑎 + 𝑏 + 𝑐 + 2 ! 2𝐴 (5.7)

 61

Note that pressure loads act normal to the face, thus load magnitude, the face to

which the pressure is applied (or node opposite to the face), and whether it is

compressive or tensile is the only information required for calculating pressure loads.

Shear loads will require the load magnitude and the face where the shear acts, as well as

the direction cosine vector.

The following discussion deals with the direction cosine vector, and comes from

the work of Shiakolas [4].

Figure 5.1 Illustration for derivation of a direction cosine vector applied to face

n1, n2, and n3.

Figure 5.1 shows an applied pressure load on a face composed of local nodes n1,

n2, and n3. Note vector 𝑉 perpendicular to the face. If vectors 𝑉 𝑖𝑗 are defined as

vectors from node j to node i, then the normalized unit vector 𝑉𝑢
 can be calculated as

follows.

𝑉 𝑛4𝑛1

𝑉

𝑛4

𝑛1

𝑛2

𝑛3

 62

 𝑉 = 𝑉 𝑛1𝑛2
× 𝑉 𝑛1𝑛3

 (5.8)

 𝑉𝑢
 = 𝑉

 𝑉
 (5.9)

To determine if the resulting vector is pointing towards the face or away from the face,

the dot product between 𝑉𝑢
 and 𝑉 𝑛4𝑛1

 can be taken. If it is greater than or equal to zero,

the vectors point in the same direction and 𝑉𝑢
 is directed away from the loaded face;

otherwise, 𝑉𝑢
 is directed towards the loaded face.

The applied load 𝛷 can now be expressed in terms of as 𝑉𝑢
 , as shown below.

 𝛷 = 𝑉 𝑉𝑢
 (5.10)

Finally, the area of the loaded face can be obtained by taking magnitude of the

cross product of any two vectors of the face.

 𝐴𝑓 =
1

2
 𝑉 𝑛1𝑛2

× 𝑉 𝑛1𝑛3
 (5.11)

 5.3 Modifications for Curved-sided Elements

Modifications required to implement the expressions in this chapter include

recognizing that the domain of integration, , is now the area of the curved face, rather

than a planar face. The application of the load is assumed to be on the curved face.

Vector dA is assumed normal to the curved surface, represented by Eq. 5.12

below [22], where
𝜕𝑥

𝜕
, and similar expressions, are evaluated according to Eq. 2.6.

 63

 𝑑𝐴 =

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

×

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝑑 𝑑 (5.12)

 𝑑𝐴 =

𝑑𝐴𝑥𝑦

𝑑𝐴𝑦𝑧

𝑑𝐴𝑧𝑥

 =

𝜕𝑦

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝜕

 −

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑥

𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝜕𝑦

𝜕

𝑇

𝑑 𝑑 (5.13)

Numerical integration is required, and is performed based on the following

representation for curvilinear elements, where 𝐻 , is the integrand in terms of the

local coordinate system.

 𝐻 , 𝑑 𝑑
1−

0

1

0
 (5.14)

For curved-sided elements, Equation 5.14 is integrated using Gaussian

quadrature according to Equation 5.15 [41], where nGauss represents the number of

Gauss points used, wi is the weight at Gauss point i, and 𝐹 𝜑𝑖 is the value of the

integrand at Gauss point i.

 𝐹 𝜑 𝑑𝑆 = 𝐴𝑟𝑒𝑎 × 𝑤𝑖
𝑛𝐺𝑎𝑢𝑠𝑠
𝑖=1𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹 𝜑𝑖 (5.15)

Seventy-nine Gauss points were found sufficient for the curved-sided fourth

order isoparametric element implementation.

Discussed in the following chapter is the source code compaction algorithm,

including a discussion of its implementation, verification, and a simple example of how

it works.

 64

CHAPTER 6

SOURCE CODE COMPACTION

Mathematica 12
©

 is used to produce the closed-form source code files (as

discussed in the next chapter), drawing on both its mathematical features and its ability

to convert expressions to a Fortran compatible format. One of the major hindrances in

developing closed-form expressions for p-level 3 and greater is the length of the

expressions, and the resulting size of the source code files containing these expressions.

Source code files produced for this research grew large for hierarchical p-levels

3 and 4, and many of the expressions were excessively long, spreading over more than

one hundred lines. Because these expressions often contained repeated terms, a unique

variable name could be substituted for repeated terms in a source code file, thus size of

the file would be reduced, and by deduction it can be assumed that the processing time

would also be reduced.

For the p-level 4 isoparametric element, the Mathematica output for some

source code files involved expressions of such length that they exceeded the line

continuation limits for standard Fortran compilers. Compaction was a definite necessity

for these files to get the source code into a form for implementation.

 65

This chapter describes the compaction program written to take advantage of

repeated terms and reduce the size of the source code. It is based on the concept of

developing a ―dictionary‖ for a specific code unit and replacing the actual terms with

references to the dictionary. This process is often used to compact electronic

transmission of messages [51].

Sample results of compaction will also be discussed.

6.1 Production of Source Code Files

As mentioned, Mathematica scripts are prepared to produce as much of the code

as possible, including both closed-form and numerical implementations. Expressions

are generally factored based on common variables shared by the expressions in a source

code file, such as nodal stress or displacement components, and thus many terms in a

source code file can be placed in parentheses. This made it easier to detect possible

repeated terms when compaction was performed. Note that each type of source code

file (error estimator terms, stiffness, centroidal stresses, etc.) generally required some

study of the resulting expressions in order to determine a good variable to perform such

grouping upon. Details of how this was accomplished can be found in Chapter 7.

6.2 Compaction Implementation

The compaction program views each expression as a combination of characters

and digits, or in what most programming languages refer to as a string. Visual Basic

2005 was chosen as the language for this program because of its string manipulation

capabilities and its ability to handle strings that are 2 GB in size [52], thus allowing the

each expression to be manipulated without concern as to its length.

 66

The general algorithm for the compaction process is as follows:

1. Perform an initial scan of the source code file

a. Replace any instances of Sqrt with an appropriate variable name and add

the Sqrt terms to the dictionary

b. Replace any instances of terms such as sx1**2 with the equivalent

sx1*sx1

c. Note that both actions will reduce calculation time when implemented in

Fortran

d. Save the new source code file to temp.txt

2. Scan temp.txt for terms that appear within parentheses

a. If a term already exists, the counter for how many times it has appeared

will be incremented

b. If a term does not exist, it will be added to the end of the dictionary and

the counter for how many times it has appeared will be initialized to 1

c. No changes are made to temp.txt

3. Rewind the file temp.txt

4. Create the new compacted source code file

a. Begin the source code file with a list of variable names set equal to the

terms they represent

b. Only terms that appear more than twice in the source code file (or at least

once in the case of Sqrt) are included in this list

5. For each line in temp.txt

 67

a. For each term in the dictionary

i. Check to see if that term appears in the line

ii. If a term appears and its counter indicates that it has been used in

the original source code file at least twice, replace that term in the

expression with the appropriate variable name

b. After all possible substitutions have been made, the modified expression

contained in this line is written to the compacted source code file

This scanning portion of this algorithm requires that the program be able to

identify certain tokens (including the assignment operator ―=‖, a call to the Sqrt

function of Fortran, the exponentiation operator ―**‖ used in Fortran), differentiate

between a negative sign and a minus sign, be able to match parentheses, and recognize

and extract a term as identified by the presence of opening and closing parentheses

without being preceded by Sqrt.

This program was written to abstractly view the stream of characters comprising

an expression; it performs no mathematical operations in order to reduce the expression

size, using instead fundamental concepts of string manipulation and comparison. The

compaction program requires minimal knowledge of what the actual expressions

represent and what mathematical operations are taking place.

Note that various permutations of terms such as sx1*u1, sx1**2, and tx1*sx1

were investigated for substitution also, but it was found that the algorithm above

provided the best compaction for the majority of the files.

 68

6.3 Simple Compaction Example

Below is an example of a line from a non-compacted source code file as it

would appear with white space removed.

 t3el11=sx1*(c11*u1+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4)+sx2*(c11*u1

$+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4)+sx3*(c11*u1+c12*u2+c13*u3-c11

$*u4-c12*u4-c13*u4)+sx4*(c11*u1+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4)

Here is the variable that Compactor determined could be substituted into this

term.

 q0=(c11*u1+c12*u2+c13*u3-c11*u4-c12*u4-c13*u4)

Next, the same line is shown in the compacted file with the above substitution

made.

 t3el11=sx1*q0+sx2*q0+sx3*q0+sx4*q0

The expression is much smaller, and thus requires less space on disk to store the

source code file, and also means a smaller executable. Note that this compaction

routine provides benefits beyond smaller source code fields.

In terms of run-time efficiency, the term associated with q0 needs to be

calculated only once. If this represents a calculation performed four times per element,

now performed only once, and suppose there were 500 elements in the model, then 500

x (4 - 1) = 1,500 unnecessary calculations have been eliminated by compacting this one

line of code.

 By replacing all instances of Sqrt with an appropriate variable name, the

program will run more efficiently because it will need to evaluate these terms once per

 69

sub procedure call, rather than multiple times in a sub procedure. Even for p-levels for

which file size is not an issue, an increase in efficiency during run-time is beneficial.

6.4 Compacted Code Verification

It is vitally important that the compacted source code file calculations produce

the same numerical results as the non-compacted calculations. To verify that

compaction does not change the nature of the calculations, a basic check was run using

an original source code file to calculate a value, followed by a compacted source code

file. Both files produced identical results to at least eight decimal places, and possibly

more.

Further testing was performed after the compacted source code files were

implemented in the finite element program. For example, concerns arose over

displacement results that could have been due to errors in the compacted stiffness

source code. To check this, a non-compacted version of the stiffness calculation was

placed in the finite element program, and the exact same results for displacement were

produced for a representative test case.

6.5 Code Formatting Issues

Mathematica has the capability of producing output in Fortran format, but it is

extremely difficult with Mathematica 12 to obtain that output in fixed-format Fortran

77. Recall that Fortran 77 fixed-formatting reserves column 1 for marking a comment,

columns 1 – 5 for statement labels, column 6 as the position for a line-continuation

character, and columns 7 – 72 for the actual Fortran statement. The Mathematica

 70

produced source code required conversion to fixed-format Fortran, which also involved

splitting the extremely long lines using line continuation characters.

For purposes of the compaction program, Fortran 77 fixed-format was not an

issue, thus each expression appears on its own line of ―unlimited‖ length prior to

compaction. Such formatting is not appropriate, however, for use as Fortran source code

because of line-length limitations.

 To convert a file (usually subsequent to compaction) to the appropriate Fortran

formatting, a program was written in Visual Basic to read each line of code from a

compacted source code file (or an original Mathematica output source code file),

remove all whitespace, and reformat that line such that it meets fixed-format

requirements and uses.

Note that limits on the number of line continuation characters used made it

advisable to remove all whitespace from the source code files prior to reformatting.

Removal of white-space also reduced source code file size, since each blank space is

treated as a character requiring 1-byte of storage space. Note that, if a file was to be

compacted, this program was used subsequent to compaction.

Chapter 7 provides a brief discussion of the usage of computer algebra systems

in this research, including major features of Mathematica that were implemented as

well as various areas of this research where those features were used.

 71

CHAPTER 7

COMPUTER ALGEBRA SYSTEM USAGE

Extensive use of Mathematica 12
©

 was made in the development and

implementation of the family of elements used in this research. The proper use of a

computer algebra system reduces the likelihood of simple mathematical errors that can

devastate problem solutions, minimizes mistakes that programmers can make while

typing in long expressions, and allow for manipulation of equations that is simply not

feasible by hand in a time-efficient manner, such as the p-level 4 shape function

development. Once the correct syntax and usage of Mathematica is understood

properly, it allows for better quality code to be produced in a shorter time with less

debugging necessary.

7.1 Major Features Used

Various feature of Mathematica were implemented in the scripts used for this

research. These features included matrix manipulation, expansion of polynomial

products [52], and the subsequent usage of transformation rules [53] to implement

symbolic integration such as reproduced below, for integration over an element volume.

 𝐿1
𝑎𝐿2

𝑏𝐿3
𝑐 𝐿4

𝑑𝑑𝑥𝑑𝑦𝑑𝑧 =
𝑎!𝑏!𝑐!𝑑!

 𝑎+𝑏+𝑐+𝑑+3 !
6𝑉 (3.34)

 72

Mathematica integration commands were not used because all integrations

performed took the form of Eq. 3.34 above.

The Visual Basic compaction program discussed in Chapter 6 looks for repeated

terms found in parentheses; these terms were mainly extracted using the Mathematica

command Collect, which collects terms involving the same power of user-selected

variables [54]. This process would not have been feasible by hand and was necessary

for compaction. It also allowed for experimentation to determine which set of variables

to ―Collect‖ on in order to achieve improved compaction.

Note that by thus pre-conditioning the source code files in Mathematica so that

many terms were grouped in parentheses, the compaction code could be written

abstractly and there was no need to spend excessive time implementing code in Visual

Basic to do what Mathematica could do in a few short commands and with far less

likelihood of error. Compaction could be performed by viewing the expressions as

streams of characters, rather than be concerned with the mathematical operations being

performed.

Possibly the most important feature exploited in this work was the ability of

Mathematica to reformat mathematical expressions to match Fortran programming

syntax, then being able to write these expressions out to a text file [55]. This capability

allows the computer algebra system to take care of the complex matrix, algebraic, and

symbolic manipulation, as well as differentiation, and then reproduce the resulting

expressions in a form that can easily be placed into an existing program structure. By

 73

removing the programmer from the ―translation‖ process, the possibility of mistakes in

the expressions is reduced and the resulting code is likely more reliable.

7.2 Areas of Implementation

The first use of Mathematica scripts in this research was in obtaining the correct

form of the p-level 2 through 4 hierarchic shape functions, and especially in developing

the non-documented p-level 4 isoparametric shape functions [9]. While p-levels 1 and 2

can easily be obtained by hand, high-order elements are more complicated and difficult

to keep in the correct order when developing by hand.

The equivalent nodal loads, including pressure, shear, and temperature, were

developed for both straight-sided and curved-sided implementation. The results for

pressure loads provided a good check of the shape function development (i.e., if the

loaded face is assumed opposite of node 4, then you do not expect to see loads either on

node 4 or faces and edges with node 4 at one end).

Obviously, Mathematica scripts were used to produce the closed-form solutions

for stiffness and the error estimator for the straight-sided tetrahedral elements;

Appendix A contains an example of a script used to obtain the stiffness matrix while

Appendices B and C contain an example for the closed-form error estimator and

numerical error estimator, respectively. A sample script used to determine closed-form

temperature loads is in Appendix D, while equivalent nodal pressure/shear loads can be

found in Appendix E.

Expressions used in the straight-sided numerical development, such as the [B]

matrix, 𝜎∗, 𝜎 , and centroidal stresses, were also produced using Mathematica, although

 74

for lower p-levels they could possibly be produced by hand. Appendix D contains a

Mathematica script used for the numerical implementation.

Mathematica was also used extensively for the curved-sided development. The

Jacobian matrices, inverses, and determinants, were obtained by making extensive use

dummy variables to reduce expression complexity. This was followed by development

of the stiffness matrices, equivalent nodal loads, [B] matrix, 𝜎∗, 𝜎 , and centroidal

stresses. Examples of these scripts can be found in Appendix E.

Numerical values for Gauss quadrature rules based on the compilation by

Felippa [41] were obtained by utilizing the Mathematica scripts developed in his

research. His script for tetrahedral Gauss points was added to a script to produce a

separate Fortran 77 fixed-format source code file for each tetrahedral rule set, with

values for the points and weights calculated by Mathematica, then hard-coded into a set

of if-elseif statements. This allowed implementation of the Gauss rules with no

calculation of Gauss points required during program execution, and eliminated the

possibility of incorrectly typing in the value of a Gauss point or a weight as read from a

table (also note that Cools [44] discovered that not all tables of Gauss points in the

literature are 100% accurate, and as a result he recalculated Gauss points used in his

encyclopedia of cubature).

 Usage of Mathematica in this instance also made possible simple ―copy and

paste‖ into a source code file with little if any further modification required. The source

code files produced made it easier to experiment with how many Gauss points were

required to achieve convergence for various p-level numerical implementations.

 75

Chapter 8 presents the various test and verification problems for both the

straight-sided elements and the curve-sided elements. Geometries, loadings, boundary

conditions, and theoretical results, including formulas used, are discussed in detail.

 76

CHAPTER 8

TEST AND VERIFICATION PROBLEMS

This chapter discusses the test problems used on the elements developed,

including both straight-sided and curved-sided, closed-form and numerical. The test

problems were chosen because they posses well-documented solutions. Note that all

beam problems have a length-height ratio of 10-1 to ensure slender beam behavior, and

all problems use E = 10
7
 psi and  = 0.33

8.1 Straight-sided Elements

The testing of straight-sided elements began with the patch test to verify that the

elements can represent a constant state of strain, followed by test problems that

involved axial loading, bending, torsional loading, and stress concentration factors.

8.1.1 Element Patch Test

The patch test was performed to verify that all four p-levels could accurately

represent a state of constant strain. Following the procedure outlined by Hughes [57]

for the ―engineering version‖ of the patch test, a model of a unit cube was created with

boundary conditions and loading as shown in Fig. 8.1. The boundary conditions are as

follows: 1 represents displacement in x, 2 represents displacement in y, and 3 represents

 77

displacement in z; thus, a boundary condition of 123 represents displacement constraints

in all three directions.

Figure 8.1 Geometry, boundary conditions, and loading used for the patch test.

A uniform pressure loading of 1000 psi was applied to a 1 in. x 1 in. x 1 in.

geometry. The mesh was formulated so that all tetrahedral elements met at a common

point in the center of the cube; in order to pass the patch test, the stress solution at this

common point must be equal to the applied stress.

8.1.2 Axial Loading Test

The next test applied to the straight-sided elements was an axially loaded

slender cantilever beam with a uniform pressure of 4000 psi applied to the free end of

the beam. The boundary conditions and geometry are shown in Figure 8.2.

Y

Z

X

1

1

1

13

3 23

123

Pressure

Load

 78

Figure 8.2 Geometry, boundary conditions, and loading used for the axial loading test.

The boundary conditions used, combined with the uniform axial loading, result

in a constant stress problem. The error estimator should be equal to zero, and the

calculated stresses at each node in the z-direction should equal the applied loading, with

all other stresses equal to zero. Theoretical solutions for constant strain problems such

as this give the following results: tip = 0.004 inches and strain energy U = 8 in-lbs.

8.1.3 Bending Test

The next test applied to the straight-sided elements was a cantilever beam with a

shear load applied to the end, as shown in Fig. 8.3. Boundary conditions were applied

to restrain the beam on the x-y plane. The beam has an applied uniform shear load of

400 lbs.

Z

X

Y

10

1

1

23

3

13

123

Pressure

Load

 79

Figure 8.3 Geometry, boundary conditions, and loading used for the beam bending test.

The transverse displacement distribution for this problem is third order in x, and

the stress distribution is second order in y. According to the theory of elasticity [58]

and elementary beam theory (for an estimate of stress) [59], the tip displacement and

strain energy are given by the equations below, where F is the applied force, L is the

length of the beam, E is the modulus of elasticity, M is the internal moment, G is the

shear modulus, I is the moment of inertia, w is the width of the beam, and h is the height

of the beam. Substitution of material properties and geometry used in this model results

in 𝛿𝑡𝑖𝑝 = 0.1613 in, 𝑈 = 32.0 in-lbs and 𝑚𝑎𝑥 = 12,000 psi.

 𝛿𝑡𝑖𝑝 = 𝐹𝐿3

3𝐸𝐼 + 6𝐹𝐿
5𝐺𝑤𝑕 (8.1)

 𝑈 = 𝐹2𝐿3

6𝐸𝐼 + 3𝐹𝐿2

5𝐺𝑤𝑕 (8.2)

Z

X

Y

10

1

1

123

123

123

123

Shear

Load

 80

 𝑧 𝑚𝑎𝑥 =
−𝑀 𝑕 2

𝐼
 (8.3)

Note that the bending stress was computed in the middle of the beam length in

order to avoid the effects of the fixed end constraints.

8.1.4 Torsional Test

The final test applied to the cantilever beam models involves torsional loading

of a cantilever beam. A torque was applied to the end of the beam using two shear loads

applied at the centroids of the free end element faces, as was done by Shiakolas [4].

This method is illustrated in Fig. 8.4, while Figure 8.5 shows the geometry and

boundary conditions used. The beam has applied shear loads of 1950 lbs separated by

0.333 in. for an equivalent torque of 325 in-lbs.

Figure 8.4 Example of how an equivalent moment is applied to simulate torsion.

While the equivalent nodal load vector generated the desired shear loads, it also

produced undesired tensile loads which increased the strain energy in the model. The

theoretical torsional strain energy 𝑈𝑡𝑜𝑟 can be calculated using the equation that follows

[59], where T is the applied torque, L is the length of the beam, G is the shear modulus,

k is the torsional stiffness constant, and a is one-half the width of the beam. The

 81

calculated strain energy was found to be 0.999 in-lbs for an equivalent torque of 325 in-

lbs.

 𝑈𝑡𝑜𝑟 = 𝑇𝐿2

2𝐺𝑘 = 𝑇𝐿2

2𝐺 2.25𝑎4 (8.4)

Figure 8.5 Geometry, boundary conditions, and loading used for the torsional load test.

The maximum shear stress (away from the wall) 𝜏𝐴 can be estimated using the

simplified formula below [59] where T is the equivalent torque, w is the width of the

beam, and A is located at the bottom outermost fiber along the center of the beam.

 𝜏𝐴 = 0.601 𝑇
 0.5𝑤3 (8.5)

Note that the theory of elasticity behind Eqns. 8.4 and 8.5 assumes the

application of a pure torsional load and an equal and opposing moment present at the

fixed end of the beam, not a fixed end beam with a torque simulated by equivalent

Z

X

Y

10

1

1

23

3

13

123

Torsional

Load

 82

moments. It is expected that the finite element results will thus differ slightly from the

theoretical results.

8.1.5 Uniform Temperature Load

In order to verify the stress recovery and equivalent nodal temperature loads, a

uniform temperature load was applied to a cantilever beam with geometry and boundary

conditions as shown in Fig. 8.2. This results in a problem with no stress, because the

beam is allowed to expand in all directions, and thus all stresses should be zero.

 A temperature difference ∆𝑇 of 100F was used with α = 1.0
-6

 /F. The

theoretical displacement can be calculated as follows, where α is the coefficient of

thermal expansion, L is the length of the beam, and ∆𝑇 is the temperature difference

[59]. For this model, given the material properties and temperature difference

discussed, the tip displacement should be 0.01 in.

 𝛿𝑡𝑖𝑝 = 𝛼𝐿∆𝑇 (8.6)

If identical boundary conditions are added to the free end of Fig. 8.2, the beam

will be constrained at both ends. This results in a problem with no displacement along

the z-axis, but constant compressive stress along the z-axis. This stress is calculated

according to the equation below, and results in -1,000 psi.

 𝜎 = 𝛼𝐸∆𝑇 (8.7)

8.1.6 Stress Concentration Factor Test

The final test applied to the straight-sided elements involved a thin plate with a

hole subjected to a uniform pressure load, creating a stress concentration. Because of

the symmetry of both loading and geometry, only one-quarter of the model was used.

 83

Boundary conditions and the pressure loading are illustrated in Fig. 8.6. The stress

concentration factor at point A in the figure and the displacement along the loaded edge

were used for evaluation.

For this test problem, the applied uniform pressure load was 100 psi. According

to Roark’s Stress and Strain [60], the stress concentration factor should be 2.16 for this

geometry and loading.

Figure 8.6 Geometry, boundary conditions, and loading used for the stress concentration

factor test.

Y

X

Z

0.5

1.5

0.1

0.5

23

2

A

2

1

23

13

1

13

3

Pressure

Load

R=0.5 in.

W = 4 in.

H = 2 in

in.

 84

8.2 Curved-sided Elements

The testing of curved-sided elements began with a straight-sided verification

problem, followed by an internally pressurized thick-walled cylinder. The cylinder

problem was specifically chosen because of its well-documented theoretical solution.

8.2.1 Straight-sided Verification Test

A closed-form, straight-sided element is a subset of the curved element,

provided the edge and face nodes have been correctly placed. The first test applied to

the curved-sided elements was the axially loaded beam, as shown again in Fig. 8.7

below.

Figure 8.7 Geometry, boundary conditions, and loading used for the verification test.

Z

X

Y

10

1

1

23

3

13

123

Pressure

Load

 85

Material properties, boundary conditions, pressure loadings, etc. were the same

as used for the straight-sided element test (see Section 8.1.2). If the curved-sided

elements are working correctly, the same results should be produced when this model is

solved using the curved-sided element implementation.

This test served a further purpose in allowing for verification of pressure

calculations as well as the number of Gauss points used for the numerical pressure

implementation. If the calculated nodal loads are evaluated for both the straight-sided

and the curved-sided implementation using the same geometry and mesh, the calculated

values should be the same.

8.2.2 Thick-walled Cylinder Test

The next test applied to the curved-sided elements was a thick-walled cylinder

problem with an internal pressure load, for which a theoretical solution is readily

available. When a is the inner radius, b is the outer radius, E is the modulus of

elasticity,  is Poisson’s ratio, pi is the internal pressure, t is the thickness, and r is the

radius of interest, and a is the displacement at the inner surface. Eqns. 8.8 – 8.8

represent displacement, strain energy, radial stress, and hoop stress, respectively [59].

 𝛿 =
𝑎2𝑝𝑖

𝐸 𝑏2 − 𝑎2 1 −  + 1 +  𝑏2

𝑟2 (8.8)

 𝑈𝑒 = 𝜋𝑎𝑡𝛿𝑎𝑝𝑖 4 (8.9)

 𝜎𝑟 =
𝑎2𝑝𝑖

 𝑏2 − 𝑎2 1 − 𝑏2

𝑟2 (8.10)

 86

 𝜎𝜃 =
𝑎2𝑝𝑖

 𝑏2 − 𝑎2 1 + 𝑏2

𝑟2 (8.11)

A uniform pressure loading of 20,000 psi was applied to the inner surface, with

an inner radius of 2 in., an outer radius of 10 in., and a thickness of 1 in. Note that only

one quarter of cylindrical cross section was used to take advantage of the symmetry of

the problem, as shown in Fig. 8.8.

Figure 8.8 Geometry, boundary conditions, and loading for thick-walled cylinder test.

For the given properties, loading, and geometry, the theoretical values for the

inner surface and the outer surface of the cylinder, as show in Table 8.1, are obtained.

b

a

X

Y

Z

1

1

13

13

2

2323

2

 87

Table 8.1 Summary of Theoretical Values for Thick-walled Cylinder Problem

 

(x10
-3

 in)

r

(psi)



(psi)

Strain

Energy

Theoretical

Results

 177.6

r = a 5.65 -20,000 21,667

r = b 1.67 0 1,667

Computed results for the test problems discussed are presented in the next

chapter, along with summaries of compaction results and timing results, conclusions,

and suggested areas for future work.

 88

CHAPTER 9

RESULTS AND CONCLUSIONS

This chapter summarizes the results of testing the family of elements developed.

Results are summarized for models with straight-sided elements and models comprised

of curved-sided elements. The timing comparison between closed-form and numerical

implementations is also discussed, as well as results from the code compaction process.

9.1 Straight-sided Elements

The testing of straight-sided elements began with the patch test, to verify that

the elements can represent a constant state of strain. That was followed with test

problems that involved axial loading, bending loading, torsional loading of a slender

beam, and geometries with curved surfaces. All of the test problems had the same

material properties: E = 10
7
 psi,  = 0.33. Also note that all beam problems involve a

length to width ratio of 10 to 1.

9.1.1 Element Patch Test

The patch test, using the geometry and boundary conditions found in Fig. 9,1

was performed to verify that all elements could accurately represent a state of constant

strain. A uniform pressure loading of 1000 psi was applied to a 1 in. x 1 in. x 1 in.

geometry. The mesh was formulated so that all tetrahedral elements met at a common

 89

point in the center of the cube; in order to pass the patch test, the solution at this

common point must be exact, and the stresses must be exact within each element. All

four p-level hierarchical elements and the fourth order isoparametric element passed the

patch test.

Figure 9.1 Geometry, boundary conditions, and loading used for the patch test.

9.1.2 Axial Loading Test

The next test problem using straight-sided elements was an axially loaded

slender cantilever beam with a uniform pressure of 4000 psi at the free end of the beam.

See Fig. 9.2 for an illustration of the geometry and boundary conditions.

Y

Z

X

1

1

1

13

3 23

123

Pressure

Load

 90

Figure 9.2 Geometry, boundary conditions, and loading used for the axial loading test.

The boundary conditions used, combined with the uniform axial loading, result

in a constant stress problem. The results for all four p-levels and for the fourth order

isoparametric implementation, using a 12 element beam model, matched theory for

constant strain problems: tip = 0.004 inches, strain energy U = 8 in-lbs, and error

estimate was zero for all elements.

Table 9.1 Summary of Axial Loading Results.

 Hierarchical Isoparametric

P-level 1 2 3 4 4

tip (in.) 0.004 0.004 0.004 0.004 0.004

Stress (psi) 4000 4000 4000 4000 4000

Strain Energy (lb. – in.) 8.00 8.00 8.00 8.00 8.00

Z

X

Y

10

1

1

23

3

13

123

Pressure
Load

 91

9.1.3 Bending Test

The next test problem for the straight-sided elements was cantilever beam with a

shear load applied to the free end, with boundary conditions that restrained motion at

the other end of the beam. The uniform shear load was of 400 lbs, applied as shown in

Fig. 9.3.

Figure 9.3 Geometry, boundary conditions, and loading used for the beam bending test.

The transverse displacement distribution with length for this problem is third

order, and the stress distribution through the thickness is second order; it is expected

that p-level 2 and higher will perform markedly better for this model than p-level 1.

According to the theory of elasticity [59], the tip displacement, stress, and strain energy

are 𝛿𝑡𝑖𝑝 = 0.1613 in., 𝜎𝑧 𝑚𝑎𝑥 is 12,000 psi, and 𝑈 = 32.0 in-lbs, as discussed previously.

Note that the stress value was evaluated at the center of the beam, outer edge. A 70

element model was used to obtain the results of testing, as summarized in Figures 9.4 –

9.6.

Z

X

Y

10

1

1

123

123

123

123

Shear

Load

 92

Figure 9.4 Displacement and stress for beam bending using closed-form

implementation.

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

1.80E-01

1 2 3 4

D
is

p
la

ce
m

en
t

p-Level

Tip Displacement - Beam Bending - CF

Tip Displacement, 70 elements

Exact Displacement

0

2000

4000

6000

8000

10000

12000

1 2 3 4

S
tr

es
s

p-Level

Stress - Beam Bending - CF

Mid-Beam Stress, 70 elements

Exact Stress

 93

Figure 9.5 Displacement and stress for beam bending using numerical

implementation.

0.00E+00

2.00E-02

4.00E-02

6.00E-02

8.00E-02

1.00E-01

1.20E-01

1.40E-01

1.60E-01

1.80E-01

1 2 3 4

S
tr

es
s

p-Level

Tip Displacement - Beam Bending - NI

Tip Displacement, 70 elements

Exact Displacement

0

2000

4000

6000

8000

10000

12000

1 2 3 4

S
tr

es
s

p-Level

Stress - Beam Bending - NI

Mid-Beam Stress, 70 elements

Exact Stress

 94

Figure 9.6 Strain energy and global error results, numerical and closed-

form, for beam bending.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4

G
lo

b
a

l
E

rr
o

r

S
tr

a
in

 E
n

er
g

y

p-Level

Strain Energy and Error - Beam Bending - CF

Strain Energy, 70 elements

Exact Strain Energy

Global Error Estimate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

1 2 3 4

G
lo

b
a

l
E

rr
o

r

S
tr

a
in

 E
n

er
g

y

p-Level

Strain Energy and Error - Beam Bending - NI

Strain Energy, 70 elements

Exact Strain Energy

Global Error Estimate

 95

These results show convergence to a reasonable approximation of the tip

displacement and strain energy with p-level 4 providing the most accurate values for the

tip displacement. Also note that the results for closed-form were essentially the same as

those for numerical implementation.

Table 9.2 summarizes the closed-form results for displacement, stress, strain

energy, and error estimates for the hierarchical p-levels, as well as the fourth order

isoparametric p-level 4.

Table 9.2 Summary of Closed-form Bending Results.

 Hierarchical Isoparametric

P-level 1 2 3 4 4

tip 0.0379 0.158 0.160 0.160 0.159

Stress (psi) 1010 12,005 12,000 11,999 11,950

Strain Energy (lb. – in.) 7.58 32.0 32.0 32.0 31.8

Error Estimate 86% 14% 6.0% -- 1.1%

9.1.4 Torsional Test

The final test applied to the cantilever beam models involved torsional loading

of a cantilever beam. Figure 9.7 shows an example of one of the meshes used in testing.

The beam has an applied shear load of 1950 lbs (for an equivalent torque of 325 in-lbs).

 96

The calculated strain energy was found to be 0.999 in-lbs for an applied equivalent

torque of 325 in-lbs.

Figure 9.7 Typical mesh used for the torsional loading test.

The mesh used for the torsional loading test had 1899 elements. The maximum

shear stress and strain energy results are illustrated in Fig. 9.8. It is apparent that the

strain energy values were overestimated, and the theoretical strain energy value thus

served as a lower bound. Recall from previous discussion that the theory of elasticity

formulations assume the application of a pure torsional load, an equal and opposing

moment present at the fixed end of the beam, and unrestrained warping. The actual

model implemented was a fixed end beam with a torque simulated by equivalent

moments.

 97

Figure 9.8 Charts showing the shear stress and strain energy for the torsional problem.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4

S
tr

a
in

 E
n

er
g

y

M
a

x
im

u
m

 S
h

ea
r

S
tr

es
s

p-Level

Shear Stress and Strain Energy -- Torsional Loading - CF

Maximum Shear Stress, 1899 elements

Strain energy, 1899 elements

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4

S
tr

a
in

 E
n

er
g

y

M
a

x
im

u
m

 S
h

ea
r

S
tr

es
s

p-Level

Shear Stress and Strain Energy -- Torsional Loading - NI

Maximum Shear Stress, 1899 elements

Strain energy, 1899 elements

 98

For this model, the theoretical strain energy of 0.999 in-lbs. provided a lower

bound for the calculated strain energy, while the theoretical shear stress appears to

provide an upper bound for the maximum shear stress.

Table 9.3 summarizes the results for strain energy and the error in the energy

norm, including results for the fourth order isoparametric implementation. The

isoparametric fourth order results shows error of only 6.32% for values similar to

hierarchical p-level 4, adding credence to the hierarchical p-level 4 results. Also note

how the strain energy converged to 1.10 in-lbs, which is above the lower estimate

provided by theory.

Table 9.3 Summary of Closed-form Results for the Torsional Beam Problem.

 Hierarchical Isoparametric

P-level 1 2 3 4 4

Strain Energy (lb-in) 0.688 1.07 1.10 1.10 1.10

Energy Norm Error

Estimate (lb-in)

0.43 0.07 0.0014 0.0181 0.0088

Maximum Shear Stress

(psi)

1,010 1,470 1,450 1,561 1,565

Error Estimate 55% 18% 3.0% -- 6.3%

 99

9.1.5 Uniform Temperature Load

In order to verify the stress recovery and equivalent nodal temperature load, a

uniform temperature load was applied to a cantilever beam with geometry and boundary

conditions as used in the axially loaded beam problem. This results in a problem with

no stress. For the model tested, the tip displacement should be 0.01 in. All four p-

levels gave this result, with stress at all nodes equivalent to zero.

The second temperature problem involved a beam constrained at both ends, with

the same temperature difference applied. All four p-levels responded the same: no

displacement along the constrained axis, with a compressive stress of -1,000 psi along

that axis.

9.1.6 Stress Concentration Factor Test

The final test for straight-sided elements is a thin plate with a hole subjected to a

uniform pressure load, creating a stress concentration at A shown in Fig. 9.9, below.

Figure 9.9 Geometry and boundary conditions, and loading used for the stress

concentration factor test.

Y

X

Z

0.5

2.0

0.1

1.0

23

2

A

2

1

23

13

1

13

3

Pressure

Load

 100

For the loadings applied, Roark’s Stress and Strain [60] indicates for this

geometry and loading a stress concentration factor of 2.16.

The closed-form results and numerically integrated results were comparable,

therefore only the closed-form results are presented. Four models were tested: 53

elements, 295 elements, 449 elements, and 1350 elements. Only results for the 1350

element model are presented. Note that the models were created in ANSYS and

modified for use in this research.

Figure 9.10 Typical plate with a hole mesh using 449 elements.

Figures 9.11 through 9.12 graphically summarize the hierarchical straight-sided,

closed-form results obtained using the 1350 element model. Note the convergence of

the strain energy in Fig. 9.11.

Luo et. al. [61] noted that the maximum stress will be overestimated for

problems where straight-sided elements are used to approximate the curved surface at

the center of the plate, because as the p-level increases a solution is approximated where

the theoretical stress goes to infinity due to the straight-edges and corners at the curved

surface.

 101

Figure 9.11 Closed-form strain energy results for plate with a hole problem.

Figure 9.12 Closed-form stress results for plate with a hole problem.

1.39E-04

1.39E-04

1.40E-04

1.40E-04

1.41E-04

1.41E-04

1.42E-04

1 2 3 4

S
tr

a
in

 E
n

e
r
g

y

p-Level

Strain Energy - Plate with a Hole - CF

1350 Elements

2.05

2.1

2.15

2.2

2.25

2.3

2.35

1 2 3 4

M
a

x
im

u
m

 S
tr

e
ss

 /
 N

o
m

in
a

l
S

tr
e
ss

p-Level

Stress - Plate with a Hole - CF

1350 Elements

 102

For this model, the ratio of maximum stress to nominal stress is not expected to

be the same as the stress concentration factor. The results do show, however, that the

elements are behaving as expecting for straight-sided elements approximating a curved

surface: the ratio of maximum stress to nominal stress is rising as the p-level is

increased, as illustrated in Fig. 9.12.

Table 9.4 summarizes the strain energy, ratio maximum stress to nominal stress,

error, and displacement of the loaded face for all four hierarchical p-levels and

isoparametric p-level 4.

Table 9.4 Summary of Closed-form Results for the Plate with a Hole Problem.

Hierarchical Isoparametric

P-level 1 2 3 4 4

Strain Energy (x10
-4

lb-in) 1.39 1.41 1.41 1.41 1.41

Ratio of Maximum Stress

to Nominal Stress

2.08 2.24 2.28 2.32 2.34

Displacement at the

Loaded Face (x10
-5

 in)

2.91 2.89 2.91 2.92 2.90

Error Estimate 8.5% 2.7% 0.14% -- 3.08%

 103

9.2 Curved-sided Elements

The testing of curved-sided elements began with a straight-sided verification

problem, followed by an internally pressurized thick-walled cylinder, as discussed in

the previous chapter.

9.2.1 Straight-sided Verification Test

The verification test for the curved-sided elements, using a 12 element model,

gave results identical to those obtained using straight-sided elements. The

displacements, stresses, and strain energy were correct, with no measurable error

reported.

9.2.2 Thick-walled Cylinder Test

The material properties used in the pressurized thick-walled cylinder test were E

= 10
7

psi and  = 0.33, with a uniform pressure loading of 20,000 psi, an inner radius of

2 in., an outer radius of 10 in., and a thickness of 1 in.

A 20 element model was used, and positions where the stress and displacement

values were checked are shown in Figure 9.13. Table 9.5 contains results taken at the

mid-thickness of the slice compared with the theoretical values at the inner and outer

surface. For this set of values, the maximum error in the stresses is 5.86%, and the

maximum displacement error is less than 1%.

 104

X

Y

1

4

32

5

6

Figure 9.13 Points at which the stress and displacement values were checked for the

cylinder problem.

Table 9.5 Summary of Mid-Thickness Results for Thick-walled Cylinder Problem

 
(x10

-3
 in)

Error r

(psi)

Error 

(psi)

Error

20 Elements, 1 in. thick

1 5.69 0.71% -18,829 5.86% 21,690 0.11%

2 5.69 0.71% -18,829 5.86% 21,671 0.02%

Theoretical 5.65 -20,000 21,667

3 1.68 0.59% 93 -- 1,730 3.78%

4 1.68 0.59% 95 -- 1,738 4.26%

Theoretical 1.67 0 1,667

9.3 Compaction Results

Table 9.6 summarize the results of compaction and conversion for source code

files that are required to implement the hierarchical elements. The initial file sizes are

for the Mathematica source code files converted to Fortran 77 fixed-format with white

space removed; the compacted file sizes are for the source code files subsequent to

 105

compaction, fixed-format, with white space removed. Note that the results are

summarized for hierarchical element for the p-levels 2 through 4, and isoparametric

fourth order element. The percent reduction is calculated as shown in Eq. 9.1, where

Original is the original (un-compacted) file size, and Compacted is the size of the file

after compaction.

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
(𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑒𝑑)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑥 100 (9.1)

Table 9.6 Summary of Compaction Results for Hierarchical Straight-sided

Elements.

Max Percent

Reduction

Min Percent

Reduction

Error Term1 16% 3%

Error Term2 57% 16%

Error Term3 57% 51%

[K] 12% 7%

[B] 55% 27%

𝜎∗ 21% 8%

𝜎 80% 67%

Centroidal Stress 81% 64%

P-level 4 elements, of both the hierarchical and isoparametric type, had large

file sizes in comparison to lower p-levels. For example, term 3 of the error estimator

for p-level 3 is 88.9 Kb (41.8 Kb after compaction), compared to hierarchical p-level 4

at 368 Kb (160 Kb after compaction) and isoparametric p-level 4 at 271 Kb (163 Kb

after compaction). Note that the tables in Appendix F include compaction results for

 106

the isoparametric curve-sided implementation, which averaged 62% of the original file

size.

Inspection of the actual source code file for Term3 of the isoparametric p-level

4 element, in uncompacted form, had commands with line continuations in excess of

100, which cannot be compiled using the Silverfrost Fotran compiler used in this

research because it is limited to 39 continuation lines. Term 2, also for the

isoparametric elements, had several instances of up to 396 continuation lines for one

command, which cannot be easily implemented in fixed-form source code without some

form of compaction. Even more powerful compilers, such as Sun Microsystems F95,

cannot handle such code without modification: F95 allows for 999 continuation lines

for free-form source code, but only 19 for fixed-form and 39 for free-form [62].

Without compaction, such files are extremely difficult to implement and are

unwieldy to modify by hand. Compaction caused the excessively long instructions in

the Term 2 file to be reduced from 396 continuation lines to a maximum of 52

continuation lines, which can be easily implemented.

 Table 9.7 summarizes the original required memory for the higher order

elements compared to the required memory subsequent to compaction. Note that for p-

level 4 the memory required after compaction is almost half the 1.4 Mb originally

required.

Note that compaction was also performed on files used for the numerical

implementation. Timing comparisons were performed between straight-sided closed-

form and numerical implementations. By performing compaction on the numerical

 107

source code files, any bias in timing due to the run-time reduced by compaction was

virtually eliminated.

Table 9.7 Required Memory for Higher Order Elements

Element Type Original

Memory, Kb

Compacted

Memory, Kb

% of

Original Size

Straight-sided Hierarchical

p-level 3
817.2 407.97 50%

Straight-sided Hierarchical

p-level 4
1395.1 741.4 53%

Straight-sided Isoparametric

p-level 4
1108.8 813.3 73%

Curve-sided Isoparametric

p-level 4
306.2 190 62%

9.4 Closed-form and Numerical Timing Comparisons

A major objective of this work as the evaluation of potential computation speed

gains resulting the use of closed-form element expressions as opposed to numerically

integrated element quantities. Thus, timing comparisons between the closed-form and

the numerical integration implementation were performed to determine if the closed-

form implementation is more efficient. The Fortran programs were built using

Silverfrost Fortran 95
©

, and the timing for the stiffness matrix and error estimation was

performed using its TimingAnalysis profiling tool. This tool allows for accurate

measurement of CPU time for each subroutine and function in a Fortran program, and,

before reporting the timing values, removes any overhead timing effects caused by the

 108

timing itself. Inclusive timing values report the time spent in a subroutine as well as all

other routines it calls [63].

The values in Table 9.8 below presents results of timing evaluation based on the

procedures developed in this work. Inclusive timing for numerical routines divided by

inclusive timing for the closed-form routines are given. For all p-levels, the closed-

form stiffness implementation was found to be more efficient than the numerical

implementation. Closed-form error estimation was also found to be more efficient for

p-levels 3 and 4.

Speed up ratios for the element stiffness matrix evaluation range from 4 to 76,

that is, for p-level 1, the closed form element stiffness evaluation is 4 times faster than

the numerically integrated equivalent. For the higher order elements, the speed ratio

increased to 76 because of the larger number of matrix terms involved.

Table 9.8 Timing Results for Straight-sided Elements.

 Error Estimation Stiffness

P-Level Num/CF Num/CF

1 0.75 4

2 0.74 37

3 2.9 68

4 5.9 76

9.5 Conclusions and Summary

Closed-form implementations of straight-sided tetrahedral element stiffness

matrices were found to have deflection and stress results of high accuracy. This is to be

 109

expected since no quadrature is introduced in the process. The closed-form stiffness

matrix calculations were more efficient by a factor of 4 for p = 1 and a factor of 76 for p

= 4. For p-levels 3 and 4, closed-form implementations were found to be more efficient

for error estimation by a factor of up to 5.9.

The straight-sided isoparametric fourth order closed-form elements performed

as well, and provided results comparable to the p-level 4 hierarchical elements. The

results of testing numerically integrated isoparametric curved elements demonstrated

the accuracy of this formulation. Since both the straight-sided and curved-sided

elements are based on the same shape functions interelement continuity is preserved,

and thus straight-sided and curved-sided elements can be successfully combined in a

single model. Furthermore, the demonstrated efficiency of the closed-form straight-

sided elements combined with the curved-sided elements provides the most

computationally efficient model for element stiffness evaluation. This supports earlier

work [64] and extends its application to hierarchical and fourth order isoparametric

element formulations.

The results of compaction demonstrated that the algorithm used allows large

source code files to be substantially reduced in size. Benefits include smaller storage

requirements, smaller executables, and improved execution speed.

9.6 Recommendations for Future Work

The use of blending functions for hierarchical curved-sided elements [22], to

allow for combined straight-sided and curved-sided hierarchical models, would be an

 110

advisable extension of the current research and would most likely entail the

development of a mesh generator tailored specifically for the blending function method.

Other areas include allowing multiple p-level elements in a single model,

automated p-refinement, and graphical post-processing capabilities that would allow

plots of displacements, element errors, and stresses. Also, an graphical user-interface

for the pre-processor that allows users to apply loads using ―point-and-click‖ would be

highly desirable.

The efficiency of closed-form element formulation has been demonstrated. A

natural extension of this work would include consideration of p-levels 5 and greater, for

either hierarchical or isoparametric elements, to determine if closed-form procedure

continues to be more efficient and to determine if expression growth can be controlled

by compaction to produce files of manageable size. Finally, an improved error

estimator for p-level 4 and higher hierarchical elements may prove useful.

 111

APPENDIX A

P-LEVEL 4 STIFFNESS GENERATION

(The reference and title must be centered on
the page both horizontally and vertically.)

 112

(* Order of the shape functions *)

p = 4

i3 = IdentityMatrix[3];

A = {

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1},

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0}

};

(* ELA will be the D matrix used in Nambiar's Calculations *)

ELA={

{e1, e2, e2, 0, 0, 0}, {e2, e1, e2, 0, 0, 0}, {e2, e2, e1, 0, 0, 0},

{0, 0, 0, e3, 0, 0}, {0, 0, 0, 0, e3, 0}, {0, 0, 0, 0, 0, e3}

};

L4 = 1 - L1 - L2 - L3;

(* Initialize shape function matrix N for 35 nodes *)

nn = Table[0, {35}];

nTot=35

(* 0, 1, 2, . . . *)

LPoly = {1, x, 1/2 (3 x ^ 2 - 1), 1/2 (5 x ^ 3 - 3 x), 1/8 (35 x ^ 4 - 30 x ^ 2 + 3), 1/8 (63

x ^ 5 - 70 x ^ 3 + 15 x) };

Legendre[i_] := LPoly[[i]];

Ei[i_, t1_, t2_] := - 8 Sqrt[4 i + 2] / (i (i + 1)) (D[Legendre[i+1],x])/.x->(t2 - t1)

Fi[r1_, r2_, t1_, t2_, t3_] := (Legendre[r1+1]/.x->(t2 - t1))*(Legendre[r2+1]/.x->(2 t3 -

1))

Print["Creating vertices"];

(* Coordinate system: eta, zeta, xi *)

(* Four nodal shape functions, one for each node *)

nn[[1]] = L1; nn[[2]] = L2; nn[[3]] = L3; nn[[4]] = L4;

(* Edge modes *)

Print["Creating edge modes"];

nn[[5]] = Simplify[L2 L3 Ei[1,L2,L3]];

nn[[6]] = Simplify[L1 L3 Ei[1,L1,L3]];

nn[[7]] = Simplify[L1 L2 Ei[1,L1,L2]];

nn[[8]] = Simplify[L1 L4 Ei[1,L1,L4]];

nn[[9]] = Simplify[L2 L4 Ei[1,L2,L4]];

nn[[10]] = Simplify[L3 L4 Ei[1,L3,L4]];

 113

nn[[11]] = Simplify[L2 L3 Ei[2,L2,L3]];

nn[[12]] = Simplify[L1 L3 Ei[2,L1,L3]];

nn[[13]] = Simplify[L1 L2 Ei[2,L1,L2]];

nn[[14]] = Simplify[L1 L4 Ei[2,L1,L4]];

nn[[15]] = Simplify[L2 L4 Ei[2,L2,L4]];

nn[[16]] = Simplify[L3 L4 Ei[2,L3,L4]];

(* Face modes *)

nn[[17]] = Simplify[L2 L3 L4 Fi[0, 0, L2, L3, L4]];

nn[[18]] = Simplify[L3 L4 L1 Fi[0, 0, L1, L3, L4]];

nn[[19]] = Simplify[L4 L1 L2 Fi[0, 0, L1, L2, L4]];

nn[[20]] = Simplify[L1 L2 L3 Fi[0, 0, L1, L2, L3]];

nn[[21]] = Simplify[L2 L3 Ei[3,L2,L3]];

nn[[22]] = Simplify[L1 L3 Ei[3,L1,L3]];

nn[[23]] = Simplify[L1 L2 Ei[3,L1,L2]];

nn[[24]] = Simplify[L1 L4 Ei[3,L1,L4]];

nn[[25]] = Simplify[L2 L4 Ei[3,L2,L4]];

nn[[26]] = Simplify[L3 L4 Ei[3,L3,L4]];

(* Face modes *)

nn[[27]] = Simplify[L2 L3 L4 Fi[1, 0, L2, L3, L4]];

nn[[28]] = Simplify[L3 L4 L1 Fi[1, 0, L1, L3, L4]];

nn[[29]] = Simplify[L4 L1 L2 Fi[1, 0, L1, L2, L4]];

nn[[30]] = Simplify[L1 L2 L3 Fi[1, 0, L1, L2, L3]];

nn[[31]] = Simplify[L2 L3 L4 Fi[0, 1, L2, L3, L4]];

nn[[32]] = Simplify[L3 L4 L1 Fi[0, 1, L1, L3, L4]];

nn[[33]] = Simplify[L4 L1 L2 Fi[0, 1, L1, L2, L4]];

nn[[34]] = Simplify[L1 L2 L3 Fi[0, 1, L1, L2, L3]];

(* Bubble mode *)

nn[[35]] = L1 L2 L3 L4;

(* From Shiakolas *)

(* Put into appropriate format for use with developed equations *)

NT = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1];

NN = Transpose[NT];

NN = Simplify[NN];

(* Form the R matrix *)

RL1 = D[NN,L1];RL2 = D[NN,L2];RL3 = D[NN,L3];

R = Flatten[{RL1, RL2, RL3}, 1];

 114

R = Simplify[R];

Print["Dimensions of R: ", Dimensions[R]];

(* Generate the P matrix *)

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]];

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]];

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]];

GAM = Flatten[{g1, g2, g3}, 1];

P = A.GAM;

Clear[g1, g2, g3, A, GAM];

Print["Dimensions of P: ", Dimensions[P]];

(* Generate the G matrix *)

G = Simplify[Transpose[P].ELA.P];

Print["Dimensions of GG: ",Dimensions[G]];

(* Create a temp matrix for G *)

GG = G;

(* Redefine G to avoid expression growth . . . *)

G = {

{g11, g12, g13, g14, g15, g16, g17, g18, g19},

{g12, g22, g23, g24, g25, g26, g27, g28, g29},

{g13, g23, g33, g34, g35, g36, g37, g38, g39},

{g14, g24, g34, g44, g45, g46, g47, g48, g49},

{g15, g25, g35, g45, g55, g56, g57, g58, g59},

{g16, g26, g36, g46, g56, g66, g67, g68, g69},

{g17, g27, g37, g47, g57, g67, g77, g78, g79},

{g18, g28, g38, g48, g58, g68, g78, g88, g89},

{g19, g29, g39, g49, g59, g69, g79, g89, g99}

};

(* Define dummy variables and symbolic integration rule *)

mult = L1^t L2^t L3^t;

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!};

(* Generate the element stiffness matrix *)

Print["Calculate K"];

K = Transpose[R].G.R;

K = K mult;

K = Expand[K];

Print["Applying rule and setting t = 0"];

K = K/.rule;

K = K/.t->0;

Print["Simplifying K"];

K = Simplify[K];

 115

Print["Dimensions of K: ",Dimensions[K]];

(* Save the upper triangular part of the stiffness matrix in a file in the FORTRAN

language syntax *)

counter=1;

Print["Writing the Stiffness file . . . : / "];

strm=OpenWrite["k4.f90",FormatType->FotranForm, PageWidth->70];

str1 = "akqst("; str2 =")=";str3 = "";

For[

 ii=1, ii<=3*nTot,

 For[

 jj=ii, jj<=3*nTot,

 WriteString[strm,"akqst("<>ToString[counter]<>")=("<>ToString[FortranForm[

K[[ii,jj]]]]<>")*det"<>"\n"];

 counter++;

 jj++

];

 ii++

];

Close[strm];

 116

APPENDIX B

ISOPARAMETRIC FOURTH ORDER CLOSED-FORM ERROR ESTIMATION

 117

NQUINITEEORIG.TXT

(* Order of the shape functions *)

p = 4;

nTot=35;

Print["p = ",p];

i3 = IdentityMatrix[3];

i6 = IdentityMatrix[6];

A = {

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1},

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0}

};

L4 = 1 - L1 - L2 - L3;

(* Initialize shape function matrix N for 20 nodes *)

nn = Table[0, {nTot}];

(* Four nodal shape functions, one for each node *)

nn[[1]] = 32/3 (L1 - 3/4) (L1 - 1/2) (L1 - 1/4) L1;

nn[[2]] = 32/3 (L2 - 3/4) (L2 - 1/2) (L2 - 1/4) L2;

nn[[3]] = 32/3 (L3 - 3/4) (L3 - 1/2) (L3 - 1/4) L3;

nn[[4]] = 32/3 (L4 - 3/4) (L4 - 1/2) (L4 - 1/4) L4;

(* Edge modes *)

Print["Creating edge modes"];

nn[[5]] = 128/3 (L1 - 1/2) (L1 - 1/4) L1 L2;

nn[[6]] = 128/3 (L2 - 1/2) (L2 - 1/4) L1 L2;

nn[[7]] = 64 (L1 - 1/4) (L2 - 1/4) L1 L2;

nn[[8]] = 128/3 (L2 - 1/2) (L2 - 1/4) L2 L3;

nn[[9]] = 128/3 (L3 - 1/2) (L3 - 1/4) L2 L3;

nn[[10]] = 64 (L3 - 1/4) (L2 - 1/4) L3 L2;

nn[[11]] = 128/3 (L1 - 1/2) (L1 - 1/4) L1 L3;

nn[[12]] = 128/3 (L3 - 1/2) (L3 - 1/4) L1 L3;

nn[[13]] = 64 (L3 - 1/4) (L1 - 1/4) L3 L1;

nn[[14]] = 128/3 (L3 - 1/2) (L3 - 1/4) L4 L3;

nn[[15]] = 128/3 (L4 - 1/2) (L4 - 1/4) L4 L3;

nn[[16]] = 64 (L3 - 1/4) (L4 - 1/4) L3 L4;

nn[[17]] = 128/3 (L4 - 1/2) (L4 - 1/4) L4 L1;

nn[[18]] = 128/3 (L1 - 1/2) (L1 - 1/4) L4 L1;

nn[[19]] = 64 (L1 - 1/4) (L4 - 1/4) L1 L4;

nn[[20]] = 128/3 (L4 - 1/2) (L4 - 1/4) L4 L2;

nn[[21]] = 128/3 (L2 - 1/2) (L2 - 1/4) L4 L2;

nn[[22]] = 64 (L2 - 1/4) (L4 - 1/4) L2 L4;

 118

(* Face modes *)

Print["Creating face modes"];

nn[[23]] = 128 L1 L2 L3 (L1 - 1/4);

nn[[24]] = 128 L1 L2 L3 (L2 - 1/4);

nn[[25]] = 128 L1 L2 L3 (L3 - 1/4);

nn[[26]] = 128 L2 L3 L4 (L2 - 1/4);

nn[[27]] = 128 L2 L3 L4 (L3 - 1/4);

nn[[28]] = 128 L2 L3 L4 (L4 - 1/4);

nn[[29]] = 128 L1 L2 L4 (L1 - 1/4);

nn[[30]] = 128 L1 L2 L4 (L2 - 1/4);

nn[[31]] = 128 L1 L2 L4 (L4 - 1/4);

nn[[32]] = 128 L1 L3 L4 (L1 - 1/4);

nn[[33]] = 128 L1 L3 L4 (L3 - 1/4);

nn[[34]] = 128 L1 L3 L4 (L4 - 1/4);

nn[[35]] = 256 L1 L2 L3 L4;

(* From Shiakolas *)

(* Put into appropriate format for use with developed equations *)

(* We use i6 because we have six stresses possible per node *)

NT = Flatten[Table[i6 * nn[[i]], {i,1,nTot}],1];

NN = Transpose[NT];

(* Form the R matrix *)

NTi = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1];

NNi = Transpose[NTi];

RL1 = D[NNi,L1];RL2 = D[NNi,L2];RL3 = D[NNi,L3];

R = Flatten[{RL1, RL2, RL3}, 1];

Print["Dimensions of R: ", Dimensions[R]];

(* Generate the P matrix *)

Print["Generating GAM"];

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]];

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]];

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]];

GAM = Flatten[{g1, g2, g3}, 1];

Print["Generating P matrix as A.GAM"];

P = A.GAM;

Print["Dimensions of P: ", Dimensions[P]];

(* Note that Transpose[P].ELA.P does provide G as a 9x9 matrix *)

(* We know that B = P R *)

 119

B = P.R;

Print["Dimensions of B: ",Dimensions[B]];

ERRQUINTIC.TXT

(* Modified from Shiakolas research *)

(* com: compliance matrix, u: nodal displacement vector; sav: nodal averaged stresses

*)

com = { { cm11, cm12, cm12, 0, 0, 0},

 { cm12, cm11, cm12, 0, 0, 0},

 { cm12, cm12, cm11, 0, 0, 0},

 { 0, 0, 0, cm13, 0, 0},

 { 0, 0, 0, 0, cm13, 0},

 { 0, 0, 0, 0, 0, cm13} };

cmm = {cm11, cm12, cm13 };

u = {

u1, v1, w1, u2, v2, w2, u3, v3, w3, u4, v4, w4, u5, v5, w5,

u6, v6, w6, u7, v7, w7, u8, v8, w8, u9, v9, w9, u10, v10, w10,

u11, v11, w11, u12, v12, w12, u13, v13, w13, u14, v14, w14, u15, v15, w15,

u16, v16, w16, u17, v17, w17, u18, v18, w18, u19, v19, w19, u20, v20, w20,

u21, v21, w21, u22, v22, w22, u23, v23, w23, u24, v24, w24, u25, v25, w25,

u26, v26, w26, u27, v27, w27, u28, v28, w28, u29, v29, w29, u30, v30, w30,

u31, v31, w31, u32, v32, w32, u33, v33, w33, u34, v34, w34, u35, v35, w35}

cc = { {c11, c12, c13}, {c21, c22, c23}, {c31, c32, c33} };

(* Should be for p = 4,35 *)

sav = { sx1, sy1, sz1, tx1, ty1, tz1, sx2, sy2, sz2, tx2, ty2, tz2,

 sx3, sy3, sz3, tx3, ty3, tz3, sx4, sy4, sz4, tx4, ty4, tz4,

 sx5, sy5, sz5, tx5, ty5, tz5, sx6, sy6, sz6, tx6, ty6, tz6,

 sx7, sy7, sz7, tx7, ty7, tz7, sx8, sy8, sz8, tx8, ty8, tz8,

 sx9, sy9, sz9, tx9, ty9, tz9, sx10, sy10, sz10, tx10, ty10, tz10,

 sx11, sy11, sz11, tx11, ty11, tz11, sx12, sy12, sz12, tx12, ty12, tz12,

 sx13, sy13, sz13, tx13, ty13, tz13, sx14, sy14, sz14, tx14, ty14, tz14,

 sx15, sy15, sz15, tx15, ty15, tz15, sx16, sy16, sz16, tx16, ty16, tz16,

 sx17, sy17, sz17, tx17, ty17, tz17, sx18, sy18, sz18, tx18, ty18, tz18,

 sx19, sy19, sz19, tx19, ty19, tz19, sx20, sy20, sz20, tx20, ty20, tz20,

 sx21, sy21, sz21, tx21, ty21, tz21, sx22, sy22, sz22, tx22, ty22, tz22,

 sx23, sy23, sz23, tx23, ty23, tz23, sx24, sy24, sz24, tx24, ty24, tz24,

 sx25, sy25, sz25, tx25, ty25, tz25, sx26, sy26, sz26, tx26, ty26, tz26,

 120

 sx27, sy27, sz27, tx27, ty27, tz27, sx28, sy28, sz28, tx28, ty28, tz28,

 sx29, sy29, sz29, tx29, ty29, tz29, sx30, sy30, sz30, tx30, ty30, tz30,

 sx31, sy31, sz31, tx31, ty31, tz31, sx32, sy32, sz32, tx32, ty32, tz32,

 sx33, sy33, sz33, tx33, ty33, tz33, sx34, sy34, sz34, tx34, ty34, tz34,

 sx35, sy35, sz35, tx35, ty35, tz35};

(* Read in Mathematica script to obtain shape functions, R, P, and B *)

<<NQuinticEEorig.txt

b=B;

(* Define the G matrix *)

Print["Defining the G matrix . . ."];

(* Redefine G to avoid expression growth . . . *)

(* It appears that G is symmetric *)

(* We will probably define these values using the gmatrix.f file *)

G = {

{g11, g12, g13, g14, g15, g16, g17, g18, g19},

{g12, g22, g23, g24, g25, g26, g27, g28, g29},

{g13, g23, g33, g34, g35, g36, g37, g38, g39},

{g14, g24, g34, g44, g45, g46, g47, g48, g49},

{g15, g25, g35, g45, g55, g56, g57, g58, g59},

{g16, g26, g36, g46, g56, g66, g67, g68, g69},

{g17, g27, g37, g47, g57, g67, g77, g78, g79},

{g18, g28, g38, g48, g58, g68, g78, g88, g89},

{g19, g29, g39, g49, g59, g69, g79, g89, g99}};

gVec = {g11, g12, g13, g14, g15, g16, g17, g18, g19,

g22, g23, g24, g25, g26, g27, g28, g29,

g33, g34, g35, g36, g37, g38, g39,

g44, g45, g46, g47, g48, g49,

g55, g56, g57, g58, g59,

g66, g67, g68, g69,

g77, g78, g79,

g88, g89,

g99};

(* Define dummy variables and symbolic integration rule *)

mult = L1^t L2^t L3^t;

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!};

(* Evaluate the error estimator using three terms

TERM 1: (N.sav)T.COM.(N.sav)

TERM 2: 2 (N.sav)T.B.u

 121

TERM 3: (R.u)T.G.(R.u) *)

strm = OpenWrite["term1_QuinticOrig.f90"];

(* TERM 1: (N.sav)T.COM.(N.sav) *)

Print["Working on term 1 . . . "];

dum = NN.sav;

Print["Simplifying dum"];

dum = Simplify[dum];

Print["term1 = dum.com.dum"];

term1 = dum.com.dum;

(* First, expand term1 into individual terms, then collect together those terms that

involve the same powers of objects matching L1, L2, and L3 *)

Print["Expand . . ."];

term1 = term1 mult;

term1 = Expand[term1];

(* Integrate over volume by applying rule, substituting t = 0 *)

Print["About to integrate term 1 . . . [:|"];

term1 = term1/.rule;

term1 = term1/.t->0;

(* Puts the terms in a sum over a common denominator *)

Print["Put the terms in a sum over a common denominator"];

term1 = Together[term1, Extension->Automatic];

(* Extract the aforementioned denominator and store in dt1 *)

Print["Prepare to extract the denominator"];

dt1 = Denominator[term1];

(* Set term1 = dt1 x term1 . . . eliminates denominator in term1, now we just have a

sum of terms without denominators *)

Print["Set term1 = dt1 x term . . ."];

term1 = dt1 term1;

(* Expand term1, then collect together those terms that involve the same powers of

onjects matching cm11, cm12, and cm13 *)

Print["Expand term 1 . . ."];

term1 = Collect[Expand[term1], sav];

(* Coefficent gives the coefficient of cm11 in term1 *)

Print["Break term1 into parts"];

str2 = "term1 =";

 122

Do[

 tnt = Coefficient[term1, cmm[[i]]];

 term1 = Expand[term1 - tnt cmm[[i]]];

 tnt = Collect[tnt, sav];

 str1 = "t1cm1" <> ToString[i] <> "=";

 str1 = "t1cm1" <> ToString[i] <> "=";

 str2 = str2 <> " t1cm1" <> ToString[i] <> "*cm1" <> ToString[i] <> "+";

 WriteString[strm, str1, ToString[FortranForm[tnt]], "\n"],

{i,1,3}];

str2 = str2<> "term1\n";

WriteString[strm,str2];

str1 = "dt1 =";

WriteString[strm, str1, ToString[FortranForm[dt1]], "\n"];

WriteString[strm, "term1=term1/dt1","\n"];

Print["Finished writing term 1 to the term1_2.f90 file . . ."];

Print["End of Term1"];

Close[strm];

 (* Term 2 *)

(* Evaluate the error estimator using three terms

TERM 1: (N.sav)T.COM.(N.sav)

TERM 2: 2 (N.sav)T.B.u

TERM 3: (R.u)T.G.(R.u) *)

strm = OpenWrite["term2_QuinticOrig.f90"];

(* TERM 2: 2 (N.sav)T.B.u *)

Print["Working on term 2 . . . "];

Print["Creating dum1"];

dum1 = NN.sav;

Print["Creating dum2"];

dum2 = b.u;

Print["Creating term2"];

term2 = dum1.dum2;

(* Expand term2, then collect together those terms that involve the same powers of

objects matching L1, L2, L3 *)

Print["Expand term 2"];

term2 = Expand[term2 mult];

 123

(* Puts the terms in a sum over a common denominator *)

term2 = term2/.rule/.t->0;

Print["Put terms in a sum over a common denominator"];

term2 = Together[term2];

(* Extract the aforementioned denominator and store in dt2 *)

Print["Extract the denonminator"];

dt2 = Denominator[term2];

(* eliminates denominator in term2, now we just have a sum of terms without

denominators *)

Print["Eliminate the denominator in term2"];

term2 = dt2 term2;

Print["Expand term2"];

term2 = Expand[term2];

Print["Collect term2"];

term2 = Collect[term2,{c11, c12, c13, c21, c22, c23, c31, c32, c33}];

Print["Break term2 into parts"];

str2 = "term2 = 0.0"

Do[

 Do[

 Print["Working on: ", ToString[i], " ", ToString[j]];

 tnt = Coefficient[term2, cc[[i,j]]];

 term2 = Expand[term2 - tnt cc[[i,j]]];

 tnt = Collect[tnt, u];

 str1 = "t2c" <> ToString[i] <> ToString[j] <> " = ";

 str2 = str2 <> " + t2c" <> ToString[i] <> ToString[j] <> "*c" <> ToString[i] <>

ToString[j];

 WriteString[strm, str1, ToString[FortranForm[tnt]], "\n"],

 {j,1,3}],

{i,1,3}];

WriteString[strm, str2];

str1 = "\n"<>"dt2=";

WriteString[strm, str1, ToString[FortranForm[dt2]], "\n"];

WriteString[strm, "term2=term2/dt2","\n"];

Print["Finished writing term 2 . . ."];

Close[strm];

 (* Term 3 *)

 124

(* Define dummy variables and symbolic integration rule *)

mult = L1^t L2^t L3^t;

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!};

(* Evaluate the error estimator using three terms

TERM 1: (N.sav)T.COM.(N.sav)

TERM 2: 2 (N.sav)T.B.u

TERM 3: (R.u)T.G.(R.u) *)

strm = OpenWrite["term3_QuinticOrig.f90"];

(* TERM 3: (R.u)T.G.(R.u) *)

(* Using version from Shiakolas dissertation *)

Print["Creating term3"];

dum3 = R.u;

term3 = dum3.G.dum3;

(* Expand term3, then collect on L1, L2, and L3 *)

term3 = term3 mult;

term3 = Expand[term3];

(* Integrate term3 by substitution *)

term3 = term3/.rule;

term3 = term3/.t->0;

term3 =Together[term3];

Print["Extracting denominator"];

dt3 = Denominator[term3];

Print["Eliminating denominator"];

term3 = dt3 term3;

Print["Collecting and Expanding . . . ;)"];

term3 = Collect[Expand[term3], gVec];

Print["Break term3 into parts"];

str2 = "term3 = 0.0"

Do[

 Do[

 Print["Working on: ", ToString[i], " ", ToString[j]];

 Print["Determining tnt"];

 tnt = Coefficient[term3, G[[i,j]]];

 term3 = Expand[term3 - tnt G[[i,j]]];

 125

 tnt = Collect[tnt, u];

 str1 = "t3g" <> ToString[i] <> ToString[j] <> "=";

 str2 = str2 <> " + t3g" <> ToString[i] <> ToString[j] <> "*g" <> ToString[i] <>

ToString[j];

 WriteString[strm, str1, ToString[FortranForm[tnt]]<> "\n"],

 {j,i,9}],

{i,1,9}];

WriteString[strm, str2];

WriteString[strm,"\n"];

str1 = "dt3=";

WriteString[strm, str1 <> ToString[dt3] <> "\n"];

Close[strm]

 126

APPENDIX C

P-LEVEL 3 NUMERICAL ERROR ESTIMATION

 127

(* Based on Shiakolas *)

(* Modified and adapted by SE McCaslin *)

(* Order of the shape functions *)

p = 3;

nTot = 20;

Print["p = ",p];

i3 = IdentityMatrix[3];

i6 = IdentityMatrix[6];

A = {

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1},

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0}

};

(* Elasticity matrix *)

DD = { {ev1, ev2, ev2, 0, 0, 0}, {ev2, ev1, ev2, 0, 0, 0 }, {ev2, ev2, ev1, 0, 0, 0 }, {0, 0,

0, ev3, 0, 0}, {0, 0, 0, 0, ev3, 0}, {0, 0, 0, 0, 0, ev3} };

(* Displacement vector *)

dd = {u1, v1, w1, u2, v2, w2, u3, v3, w3, u4, v4, w4, u5, v5, w5,

u6, v6, w6, u7, v7, w7, u8, v8, w8, u9, v9, w9, u10, v10, w10,

u11, v11, w11, u12, v12, w12, u13, v13, w13, u14, v14, w14, u15, v15, w15,

u16, v16, w16, u17, v17, w17, u18, v18, w18, u19, v19, w19, u20, v20, w20};

(* Nodal stresses *)

sav = { sx1, sy1, sz1, tx1, ty1, tz1, sx2, sy2, sz2, tx2, ty2, tz2,

 sx3, sy3, sz3, tx3, ty3, tz3, sx4, sy4, sz4, tx4, ty4, tz4,

 sx5, sy5, sz5, tx5, ty5, tz5, sx6, sy6, sz6, tx6, ty6, tz6,

 sx7, sy7, sz7, tx7, ty7, tz7, sx8, sy8, sz8, tx8, ty8, tz8,

 sx9, sy9, sz9, tx9, ty9, tz9, sx10, sy10, sz10, tx10, ty10, tz10,

 sx11, sy11, sz11, tx11, ty11, tz11, sx12, sy12, sz12, tx12, ty12, tz12,

 sx13, sy13, sz13, tx13, ty13, tz13, sx14, sy14, sz14, tx14, ty14, tz14,

 sx15, sy15, sz15, tx15, ty15, tz15, sx16, sy16, sz16, tx16, ty16, tz16,

 sx17, sy17, sz17, tx17, ty17, tz17, sx18, sy18, sz18, tx18, ty18, tz18,

 sx19, sy19, sz19, tx19, ty19, tz19, sx20, sy20, sz20, tx20, ty20, tz20};

(* ELA will be the D matrix used in Nambiar's Calculations *)

ela={

{el11, el12, el13, el14, el15, el16},

{el12, el22, el23, el24, el25, el26},

{el13, el23, el33, el34, el35, el36},

{el14, el24, el34, el44, el45, el46},

{el15, el25, el35, el45, el55, el56},

 128

{el16, el26, el36, el46, el56, el66} };

L4 = 1 - L1 - L2 - L3;

(* Initialize shape function matrix N for 20 nodes *)

nn = Table[0, {nTot}];

(* Calculated nodes per edge *)

nEd = 6*(p-1);

Print["Edge nodes: ",nEd];

(* Face nodes *)

nFa = 2(p-1)(p-2);

Print["Face nodes: ",nFa];

(* Bubble (centroid) nodes *)

nBu = (p-1)(p-2)(p-3)/6;

Print["Bubble nodes: ",nBu];

nTot=4+nEd+nFa+nBu;

Print["Total nodes: ",nTot];

(* Hierarchic Shape Functions for the Tetrahedral Element *)

(* AUTHOR: S.E. McCaslin *)

 (* REFERENCE: Szabo and Babuska, Finite Element Analysis, pp. 242 - 244 *)

(* phi and Legendre polynomials tested and found to match Szabo and Babuska, p. 103

*)

(* 0, 1, 2, . . . *)

LPoly = {1, x, 1/2 (3 x ^ 2 - 1), 1/2 (5 x ^ 3 - 3 x), 1/8 (35 x ^ 4 - 30 x ^ 2 + 3), 1/8 (63

x ^ 5 - 70 x ^ 3 + 15 x) };

Legendre[i_] := LPoly[[i]];

Ei[i_, t1_, t2_] := - 8 Sqrt[4 i + 2] / (i (i + 1)) (D[Legendre[i+1],x])/.x->(t2 - t1)

Fi[r1_, r2_, t1_, t2_, t3_] := (Legendre[r1+1]/.x->(t2 - t1))*(Legendre[r2+1]/.x->(2 t3 -

1))

Print["Creating vertices"];

(* Coordinate system: eta, zeta, xi *)

(* Four nodal shape functions, one for each node *)

nn[[1]] = L1; nn[[2]] = L2; nn[[3]] = L3; nn[[4]] = L4;

(* Edge modes *)

Print["Creating edge modes"];

 129

nn[[5]] = Simplify[L2 L3 Ei[1,L2,L3]];

nn[[6]] = Simplify[L1 L3 Ei[1,L1,L3]];

nn[[7]] = Simplify[L1 L2 Ei[1,L1,L2]];

nn[[8]] = Simplify[L1 L4 Ei[1,L1,L4]];

nn[[9]] = Simplify[L2 L4 Ei[1,L2,L4]];

nn[[10]] = Simplify[L3 L4 Ei[1,L3,L4]];

(* nodes between 2 and 3 *)

nn[[11]] = Simplify[L2 L3 Ei[2,L2,L3]];

nn[[12]] = Simplify[L1 L3 Ei[2,L1,L3]];

nn[[13]] = Simplify[L1 L2 Ei[2,L1,L2]];

nn[[14]] = Simplify[L1 L4 Ei[2,L1,L4]];

nn[[15]] = Simplify[L2 L4 Ei[2,L2,L4]];

nn[[16]] = Simplify[L3 L4 Ei[2,L3,L4]];

(* Face modes *)

nn[[17]] = Simplify[L2 L3 L4 Fi[0, 0, L2, L3, L4]];

nn[[18]] = Simplify[L3 L4 L1 Fi[0, 0, L1, L3, L4]];

nn[[19]] = Simplify[L4 L1 L2 Fi[0, 0, L1, L2, L4]];

nn[[20]] = Simplify[L1 L2 L3 Fi[0, 0, L1, L2, L3]];

(* From Shiakolas *)

 (* Put into appropriate format for use with developed equations *)

(* We use i6 because we have six stresses possible per node *)

NT = Flatten[Table[i6 * nn[[i]], {i,1,nTot}],1];

NN = Transpose[NT];

(* Form the R matrix *)

NTi = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1];

NNi = Transpose[NTi];

RL1 = D[NNi,L1];RL2 = D[NNi,L2];RL3 = D[NNi,L3];

R = Flatten[{RL1, RL2, RL3}, 1];

Print["Dimensions of R: ", Dimensions[R]];

(* Generate the P matrix *)

Print["Generating GAM"];

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]];

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]];

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]];

GAM = Flatten[{g1, g2, g3}, 1];

Print["Generating P matrix as A.GAM"];

P = A.GAM;

Print["Dimensions of P: ", Dimensions[P]];

 130

(* Note that Transpose[P].ELA.P does provide G as a 9x9 matrix *)

(* We know that B = P R *)

B = P.R;

Print["Dimensions of B: ",Dimensions[B]];

(* Write b matrix to file *)

strm=OpenWrite["b3SORT.f90"];

For[

 ii=1, ii<=6,

 For[

 jj=1, jj<=3*nTot,

 WriteString[strm, "b(" <> ToString[ii] <> "," <> ToString[jj] <> ")=" <>

ToString[FortranForm[B[[ii,jj]]]] <> "\n"];

 jj++

];

 ii++

];

Close[strm];

(* Calculate D.B *)

temp = DD.B;

str = temp.dd;

cc = {c11, c12, c13, c21, c22, c23, c31, c32, c33 }

str = Collect[Expand[str],cc];

strm=OpenWrite["str3SORT.f90"];

jj = 1;

For[

 jj = 1, jj <= 6,

 Print[jj];

 strng = "str(" <> ToString[jj] <> ")=";

 Print[string];

 For[

 ii = 1, ii<=9,

 strng = strng <> "b" <> ToString[cc[[ii]]] <> "*" <> ToString[cc[[ii]]]

<> "+";

 tnt = Coefficient[str[[jj]], cc[[ii]]];

 tnt = Simplify[tnt];

 str[[jj]] = Expand[str[[jj]] - tnt cc[[ii]]];

 WriteString[strm,"b" <> ToString[cc[[ii]]] <> "=" <>

ToString[FortranForm[tnt]]"\n"];

 ii++

];

 If[jj == 1||jj==2||jj==3,

 131

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "-thermfac\n"],

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "\n"]];

 jj++

];

Close[strm];

(* Calculate sigma hat *)

sigmaHat = DD.P.R.dd;

sigmaHat = Collect[Expand[sigmaHat],cc];

strm=OpenWrite["sHat3SORT.f90"];

jj = 1;

For[

 jj = 1, jj <= 6,

 Print[jj];

 strng = "shat(" <> ToString[jj] <> ")=";

 For[

 ii = 1, ii<=9,

 strng = strng <> "s" <> ToString[jj] <> ToString[cc[[ii]]] <> "*" <>

ToString[cc[[ii]]] <> "+";

 tnt = Coefficient[sigmaHat[[jj]], cc[[ii]]];

 tnt = Collect[tnt, {ev1, ev2, ev3}];

 sigmaHat[[jj]] = Expand[sigmaHat[[jj]] - tnt cc[[ii]]];

 WriteString[strm,"s" <> ToString[jj] <> ToString[cc[[ii]]] <> "=" <>

ToString[FortranForm[tnt]]"\n"];

 ii++

];

 If[jj == 1||jj==2||jj==3,

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "-thermfac\n"],

 WriteString[strm,strng <> ToString[FortranForm[str[[jj]]]] <> "\n"]];

 jj++

];

Close[strm];

(* Re-derive NN such that L4 remains in the shape functions *)

Clear[L4];

(* Coordinate system: eta, zeta, xi *)

(* Four nodal shape functions, one for each node *)

nn[[1]] = L1; nn[[2]] = L2; nn[[3]] = L3; nn[[4]] = L4;

(* Edge modes *)

nn[[5]] = Simplify[L2 L3 Ei[1,L2,L3]];

nn[[6]] = Simplify[L1 L3 Ei[1,L3,L1]];

nn[[7]] = Simplify[L1 L2 Ei[1,L1,L2]];

 132

nn[[8]] = Simplify[L1 L4 Ei[1,L1,L4]];

nn[[9]] = Simplify[L2 L4 Ei[1,L2,L4]];

nn[[10]] = Simplify[L3 L4 Ei[1,L3,L4]];

nn[[11]] = Simplify[L2 L3 Ei[2,L2,L3]];

nn[[12]] = Simplify[L1 L3 Ei[2,L3,L1]];

nn[[13]] = Simplify[L1 L2 Ei[2,L1,L2]];

nn[[14]] = Simplify[L1 L4 Ei[2,L1,L4]];

nn[[15]] = Simplify[L2 L4 Ei[2,L2,L4]];

nn[[16]] = Simplify[L3 L4 Ei[2,L3,L4]];

nn[[17]] = Simplify[L2 L3 L4 Fi[0, 0, L2, L3, L4]];

nn[[18]] = Simplify[L3 L4 L1 Fi[0, 0, L3, L4, L1]];

nn[[19]] = Simplify[L4 L1 L2 Fi[0, 0, L4, L1, L2]];

nn[[20]] = Simplify[L1 L2 L3 Fi[0, 0, L1, L2, L3]];

(* From Shiakolas *)

(* Put into appropriate format for use with developed equations *)

(* We use i6 because we have six stresses possible per node *)

NT = Flatten[Table[i6 * nn[[i]], {i,1,nTot}],1];

NN = Transpose[NT];

(* Calculate sigma* *)

sstar = NN.sav;

strm=OpenWrite["sstar3SORT.f90"];

jj = 1;

For[

 jj = 1, jj <= 6,

 WriteString[strm,"sstar(" <> ToString[jj] <> ")=" <>

ToString[FortranForm[Simplify[sstar[[jj]]]]]<>"\n"];

 jj++

];

Close[strm];

 133

APPENDIX D

P-LEVEL 1 EQUIVALENT NODAL TEMPERATURE LOAD

 134

(* Variables defined for symbolic integration *)

mult = L1^t L2^t L3^t;

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+3)!};

i3 = IdentityMatrix[3];

A = {

{1, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1},

{0, 1, 0, 1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 0, 1, 0, 0}

};

L4 = 1 - L1 - L2 - L3;

nTot = 4;

(* Initialize shape function matrix nn *)

nn = Table[0, {nTot}];

(* Coordinate system: eta, zeta, xi *)

(* Four nodal shape functions, one for each node *)

nn[[1]] = L1; nn[[2]] = L2; nn[[3]] = L3; nn[[4]] = L4;

(* From Shiakolas *)

 (* Put into appropriate format for use with developed equations *)

Print["About to flatten"];

NT = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1];

Print["About to transpose"];

NN = Transpose[NT];

(* Form the R matrix *)

RL1 = D[NN,L1];RL2 = D[NN,L2];RL3 = D[NN,L3];

R = Flatten[{RL1, RL2, RL3}, 1];

Print["Dimensions of R: ", Dimensions[R]];

(* Generate the P matrix *)

g1 = Transpose[Flatten[{i3 c11, i3 c12, i3 c13}, 1]];

g2 = Transpose[Flatten[{i3 c21, i3 c22, i3 c23}, 1]];

g3 = Transpose[Flatten[{i3 c31, i3 c32, i3 c33}, 1]];

GAM = Flatten[{g1, g2, g3}, 1];

P = A.GAM;

Clear[g1, g2, g3, A, GAM];

(* We know that B = P R *)

B = P.R;

 135

Print["Dimensions of B: ",Dimensions[B]];

(* Define initial strain vector, assume uniform temperature over the element,

 eo = {a dt, a dt, adt, 0, 0, 0}, where a dt is factored out for ease of calcs *)

eo = {1, 1, 1, 0, 0, 0};

ela = { {e1, e2, e2, 0, 0, 0}, {e2, e1, e2, 0, 0, 0}, {e2, e2, e1, 0, 0, 0}, {0, 0, 0, e3, 0, 0},

{0, 0, 0, 0, e3, 0}, {0, 0, 0, 0, 0, e3}};

bt = Transpose[B];

f0 = bt.ela;

f0 = f0.eo;

f0 = f0 mult;

f0 = Expand[f0];

f0 = f0/.rule;

f0 = f0/.t->0;

f0 = Expand[f0];

f0 = f0 adt;

f0 = Expand[f0];

strm = OpenWrite["temp1.f90"];

Do[WriteString[strm, "tl(" <> ToString[i] <> ")=" <> ToString[FortranForm[f0[[i]]]]

<> "\n"], {i,3*nTot}];

Close[strm];

 136

APPENDIX E

P-LEVEL 1 EQUIVALENT NODAL PRESSURE/SHEAR LOAD

 137

(* Based on the work of Dr. Shiakolas *)

(* Assume that on the loaded face L4 is 0 *)

L4 = 0;

i3 = IdentityMatrix[3];

nTot = 4;

(* Variables defined for symbolic integration *)

mult = L1^t L2^t L3^t;

rule = {L1^aa_.L2^ab_.L3^ac_.->aa!ab!ac!/(aa+ab+ac+2)!};

(* Initialize shape function matrix nn *)

nn = Table[0, {nTot}];

(* Four nodal shape functions, one for each node *)

nn[[1]] = L1; nn[[2]] = L2; nn[[3]] = L3; nn[[4]] = L4;

(* Put into appropriate format for use with developed equations *)

NT = Flatten[Table[i3 * nn[[i]], {i,1,nTot}],1];

NN = Transpose[NT];

(* Define the pressure or shear direction cosines *)

phi = {fx, fy, fz};

(* Evaluate the equivalent nodal load vector *)

Print["Evaluating equivalent nodal load vector"];

f = phi.NN;

f = f mult;

f = Expand[f];

f = f/.rule;

f = f/.t->0;

f = Collect[f, phi];

Print["Writing the Equivalent nodal load file . . . :)"];

strm=OpenWrite["press1.f90"];

Do[WriteString[strm,"fp(" <> ToString[i] <> ")=" <> ToString[FortranForm[f[[i]]]]<>

"\n"], {i,3*nTot}];

Close[strm];

 138

APPENDIX F

DETAILED COMPACTION RESULTS FOR HIGHER ORDER ELEMENTS

139

Comparison of Hierarchical p-level 3 and 4 File Sizes.

Comparison of Isoparametric p-level 4 File Sizes.

File Type Original Size, F77

Kb

Compacted, F77

 Kb

% of Original Size

Hierarchical P-level 3

[B] 20.9 10.3 49%

[K] 91.3 82.8 91%

𝜎 34.9 6.97 20%

𝜎∗ 2.58 2.11 82%

Centroidal Stress 29.9 5.87 20%

Term1 16.1 16.5 102%

Term2 591. 261. 44%

Term3 88.9 41.8 47%

Hierarchical P-level 4

B matrix 53.6 24.1 45%

[K] 327. 288. 88%

Centroidal Stress 93.0 15.9 17%

Term3 368. 160. 43%

File Type Original Size, F77

 Kb

Compacted, F77

 Kb

% of Original Size

Isoparametric P-level 4

B matrix 79.6 32.9 41%

[K] 379. 341. 90%

𝜎 143. 31.9 22%

𝜎∗ 7.28 7.28 100%

Centroidal Stress 122. 79.6 65%

Term1 79.8 80.7 101%

Term2 257. 149. 58%

Term3 271. 163. 60%

Curved Isoparametric P-level 4

Jacobian 25.2 15.7 62%

[B] 98.6 58.5 59%

𝜎 91.6 57.8 63%

𝜎∗ 90.8 58.0 64%

140

REFERENCES

1. Zienkiewicz, O.C. The birth of the finite element method and of computational

mechanics, International Journal for Numerical Methods in Engineering 2004; 60:3

– 10.

2. Samuelsson, A., and Zienkiewicz, O.C., History of the stiffness method,

International Journal for Numerical Methods in Engineering 2006; 67:149 – 157.

3. Zienkiewicz, O.C. Achievements and some unsolved problems of the finite element

method, International Journal for Numerical Methods in Engineering 2000; 47:9 –

28.

4. Shiakolas, P.S. Closed form expressions for higher order tetrahedral finite

elements, Doctoral Dissertation, The University of Texas at Arlington 1992.

5. Shiakolas, P.S., Lawrence, K.L., and Nambiar, R.V. Closed-form expressions for

the linear and quadratic strain tetrahedral finite elements. Computers and Structures

1994; 50:743 – 747.

6. Shiakolas, P.S., Lawrence, K.L., and Nambiar, R.V. Closed-form error estimators

for the linear and quadratic strain tetrahedron finite elements. Computers and

Structures 1993; 47:907 - 915.

141

7. Babuska, I., Katz, I.N., and Szabo, B.A. Hierarchic families for the p-version of the

finite element method. Advances in Computer Methods for Partial Differential

Equations IMACS 1979; 272 – 286.

8. Szabo, B.A., and Babuska, I. Finite Element Analysis. New York: John Wiley &

Sons, 1991.

9. Argyris, J.H., Fried, I., and Scharpf, D.W. The TET 20 and TEA 8 elements for the

matrix displacement method, The Aeronautical Journal of the Royal Aeronautical

Society 1968; 72:618 – 623.

10. Dennis, B.H., Eberhart, R.C., Dulikravich, G.S., and Radons, S.W., Finite element

simulation of cooling of 3-D human head and neck, ASME Journal of

Biomechanical Engineering 2003; 125:832 – 840.

11. Gallagher, R.H., Padlog, J, and Bijlaard, P.P. Stress analysis of heated complex

shapes. A. R. S. Journal 1962; 700 – 707.

12. Melosh, R.J. Structural analysis of solids, Proc. Amer. Soc. Civ. Eng. 1963;

S.T.4:205 – 223.

13. Pawlak, T.P., Yunus, S.M., Cook, R.D. Solid elements with rotational degrees of

freedom: Part II – tetrahedron elements, International Journal for Numerical

Methods in Engineering 1991: 31:593 – 610.

14. Key, S.W., Heinstien, M.W., Stone, C.M., Mello, F.J., Blanford, M.L., and Budge,

K.G. A suitable low-order, tetrahedral finite element for solids, International

Journal for Numerical Methods in Engineering 1999; 44:1785 – 1805.

142

15. Kong, M.J.S., Mulder, W.A., and Van Veldhuizen, Higher-order triangular and

tetrahedral finite elements with mass lumping for solving the wave equation,

Journal of Engineering Mathematics 1999; 35:405 – 426.

16. Bittencourt, M.L. Fully tensorial nodal and modal shape functions for triangles and

tetrahedra, International Journal for Numerical Methods in Engineering 2005;

63:1530 – 1538.

17. Katz, I.N., and Rossow, M.P. Hierarchic finite elements and precomputed arrays.

International Journal for Numerical Methods in Engineering 1978: 31:977 – 999.

18. Babuska, I., and Szabo, B.A., On the rates of convergence of the finite element

method, International Journal for Numerical Methods in Engineering 1982; 18:323

– 341.

19. Babuska, I., and Suri, M. The p and h-p versions of the finite element method, an

overview, Computer Methods in Applied Mechanics and Engineering 1990; 80:5 –

26.

20. Carnevali, P., Morris, R.B., Tsuji, Y., and Taylor, G. New basis functions and

computational procedures for p-version finite element analysis, International

Journal for Numerical Methods in Engineering 1993: 36:3759 – 3779.

21. Adjerid, S., Aiffa, M. and Flaherty, J.E. Hierarchical finite element bases for

triangular and tetrahedral elements, Computer Methods in Applied Mechanics and

Engineering 2001; 190:2925 – 2941.

143

22. Zienkiewicz, O.C., and Taylor, R.L., The Finite Element Method, Volume 1: Basic

Formulation and Linear Problems, 4
th

 edition. New York: McGraw-Hill Book

Company, 1994.

23. Tinawi, R.A. Anisotropic tapered elements using displacement models,

International Journal for Numerical Methods in Engineering 1972; 4:475 – 489.

24. Subramanian, G., and Bose, C.J. Convenient generation of stiffness matrices for the

family of plane triangular elements, Computers and Structures 1982; 10:119 – 124.

25. Subramanian, G., and Bose, C.J. On stiffness matrices for C0 continuous tetrahedra,

Computers and Structures 1983; 16:603 – 611.

26. Rathod, H.T., and Karim, M.S. An explicit integration scheme based on recursion

for the curved triangular finite elements, Computers and Structures 2002; 80:43 –

76.

27. Babu, D., and Pinder, G.F. Analytical integration formulae for linear isoparametric

finite elements, International Journal for Numerical Methods in Engineering 1984;

20:1153 – 1166.

28. Nambiar, R.V. Closed form expressions for hierarchic triangular and tetrahedral

finite elements, Doctoral Dissertation, The University of Texas at Arlington 1989.

29. Lawrence, K.L., Nambiar, R.V. and Bergmann, B. Closed form stiffness matrices

and error estimators for plane hierarchic triangular elements, International Journal

for Numerical Methods in Engineering 1991; 31:879 – 894.

144

30. Dey, S., Flaherty, J.E., Ohsumi, T.K., and Shephard, M.S. Integration by table

look-up for p-version finite elements on curved tetrahedra, Computer Methods in

Applied Mechanics and Engineering 2006; 195:4532 – 4543.

31. Zienkiewicz, O.C. The background of error estimation and adaptivity in finite

element computations, Computer Methods in Applied Mechanics and Engineering

2006; 195:207 – 213.

32. Babuska, I., and Rheinboldt, C. A-posteriori error estimates for the finite element

method, International Journal for Numerical Methods in Engineering 1978;

12:1597 – 1615.

33. Zienkiewicz, O.C. and Zhu, J.C. A simple error estimator and adaptive procedure

for practical engineering analysis, International Journal for Numerical Methods in

Engineering 1987; 24:337 – 357.

34. Ainsworth, M. , Zhu, J.Z., Craig, A.W. and Zienkiewicz, O.C. Analysis of the

Zienkiewicz-Zhu a-posteriori error estimator in the finite element method,

International Journal for Numerical Methods in Engineering 1989; 28:2161 –

2174.

35. Byrd, D.E. Identification and elimination of errors in finite element analysis,

Doctoral Dissertation, University of Colorado 1988.

36. Pawlack, Tim. The ANSYS error estimation capability, ANSYS News, Swanson

Analysis Systems Inc., Houston, PA, Fourth Issue, 1-2, 1989.

145

37. Zienkiewicz, O.C., and Zhu, J.Z. Superconvergent patch recovery (SPR) and

adaptive finite element refinement, Computer Methods in Applied Mechanics and

Engineering 1992; 101:207 – 224.

38. Boroomand, B., and Zienkiewicz, O.C. Recovery by equilibrium in patches (REP),

International Journal for Numerical Methods in Engineering 1997; 40:137 – 164.

39. Cartensen, C., and Funken, S.A. Average technique for FE – a posteriori error

control in elasticity. Part i: Conforming FEM, Computer Methods in Applied

Mechanics and Engineering 2001; 190: 2483 – 2498.

40. Shiakolas, P.S., Lawrence, K.L., and Nambiar, R.V. Closed-form error estimators

for the linear strain and quadratic strain tetrahedron finite elements. Computers and

Structures 1993; 47:907 – 915.

41. Felippa, C.A. A compendium of FEM integration formulas for symbolic work,

Engineering Computations 2004; 21:867 – 890.

42. Cools, R. and Rabinowitz, P. Monomial cubature rules since ―Stroud‖: a

compilation, Journal of Computational and Applied Mathematics, 1993; 48:309 –

326.

43. Cools, R. Monomial cubature rules since ―Stroud‖: a compilation – part 2, Journal

of Computational and Applied Mathematics, 1999; 112:21 – 27.

44. Cools, R. An encyclopedia of cubature formulas, Journal of Complexity, 2003;

19:445 – 453.

146

45. Muthukrishnan, S.N. Mesh generation and adaptive refinement of tetrahedral

elements for three-dimensional finite element applications, Doctoral Dissertation,

The University of Texas at Arlington 1993.

46. Xin, J., Pinchedez, K., and Flaherty, J.E. Implementation of hierarchical bases in

FEMLAB for simplicial elements, ACM Transactions on Mathematical Software,

2005; 31:187–200.

47. Gellert, M., and Harboud, R. Moderate degree cubature formulas for 3-D

tetrahedral finite-element approximations, Communications in Applied Numerical

Method, 1991; 7:487 – 495.

48. Nambiar, R.V., and Lawrence, K.L. The Zienkiewicz-Zhu error estimator for

multiple material problems, Communcations in Applied Numerical Methods, 1992;

8:273 – 277.

49. Peano, A. Short Communications: Gauss-Lobatto integration of high precision

tetrahedral elements, , International Journal for Numerical Methods in Engineering

1982; 18:311 – 320.

50. Cook, R.D. Concepts and Applications of Finite Element Analysis. New York: John

Wiley & Sons, 1974.

51. Sayood, K. Introduction to Data Compression. California: Morgan Kaufmann,

2000.

52. Visual Basic Developer Center, ―String Data Type (Visual Basic),‖ MSDN,

http://msdn2.microsoft.com/en-us/library/thwcx436(vs.80).aspx (accessed January

22, 2008).

147

53. Wolfram Mathematica Documentation Center, ―Expand,‖ Wolfram,

http://reference.wolfram.com/ mathematica/ref/Expand.html (accessed January 16,

2008).

54. Wolfram Mathematica Documentation Center, ―Rules,‖ Wolfram,

http://reference.wolfram.com/ mathematica/ref/Rule.html (accessed January 16,

2008).

55. Wolfram Mathematica Documentation Center, ―Collect,‖ Wolfram,

http://reference.wolfram.com/ mathematica/ref/Collect.html (accessed January 16,

2008).

56. Wolfram Mathematica Documentation Center, ―FortranForm,‖ Wolfram,

http://reference .wolfram.com/mathematica/ref/FortranForm.html (accessed January

16, 2008).

57. Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. New York: Dover Publications Inc., 1994 (Orig. published 1987).

58. Juvinal, R.C. Stress, Strain and Strength. Ohio: McGraw Hill Book Company,

1967.

59. Ugural, A.C., and Fenster, S.K. Advanced Strength and Applied Elasticity, 3
rd

 ed.,

Prentice-Hall PTR: New Jersey, 1995.

60. Roark, R.J., Young, W.C. and Budynas, R.G. Roark’s Formulas for Stress and

Strain, 7
th

 edition. Ohio: McGraw Hill Book Company, 2002.

148

61. Luo, X., Shephard, M.S., Remacle, J., O’bara, R.M., Beall, M.W., Szabo, B. and

Actis, R. P-version mesh generation issues, 11th International Meshing

Roundtable, Sandia National Laboratories, 2002, pp. 343 – 354.

62. Sun Microsystems Documentation, ―Sun Studio 12 Collect,‖ Sun,

http://docs.sun.com/app/docs/doc/819-5263/6n7c0cbgf?a=view (accessed April 7,

2008).

63. FTN95 Help files, ―\TIMING‖, Silverfrost Ltd., 2006.

64. Scheutze, K.T., Shiakolas, P.S., Muthukrishnan, S.N., Nambiar, R.V., and

Lawrence, K.L. A study of adaptively remeshed finite element problems using

higher order tetrahedra, Computers and Structures, 1994; 54:279—288.

149

 (This page must have a 2 inch top

BIOGRAPHICAL INFORMATION

Sara McCaslin has an AA in engineering from Tyler Junior College, graduating

in 1998, summa cum laude. She also has a BSME from the University of Texas at

Tyler, where she graduated summa cum laude in 2000. In 2002, she graduated with an

MS in computer science, also from the University of Texas at Tyler, with a

specialization in artificial intelligence. Sara started work on her PhD in mechanical

engineering at the University of Texas at Arlington in 2003. She plans to continue

working in research that combines her computer science skills with mechanical

engineering applications, and hopes to pursue a career in education. She has worked in

research involving hybrid DMSC-MD aerosol simulations, fuzzy neural networks,

knowledge discovery with applications in satellite imagery, and, most recently, closed-

form solutions in finite element analysis for her dissertation. Since obtaining her

master’s degree, she has taught at the University of Texas at Tyler for both the

mechanical engineering and computer science departments.

