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ABSTRACT 

 

PERFORMANCE EVALUATION OF GREEDY HEURISTIC  

FOR SIP ANALYZER IN H.264/SVC 

 

 Publication Number: _________ 

 

Jaydeep Vijay Inamdar, M.S. 

  

The University of Texas at Arlington, 2008 

 

 

Supervising Professor:  Dr. Soontorn Oraintara 

The latest scalable video coding standard, H.264/SVC uses many components of 

H.264/AVC standard to maintain backward compatibility and also has proposed many tools to 

support scalable video coding with increased coding efficiency. SIP Analyzer is one such tool 

incorporated in JSVM (Joint Scalable Video Model) software which is the reference software for 

the SVC project.  

SIP Analyzer implements Selective Interlayer Prediction strategy to encode the 

bitstream so as to improve coding performance in scenarios where multiple adaptation is not 

needed without losing much if the same bitstream is used in scenario where multiple adaptation 

is needed. Core of this algorithm is a 0-1 Knapsack Problem that decides the right combination 

of lower layer frames for which interlayer prediction can be safely turned off. Current 

implementation solves the Knapsack Problem using Dynamic Programming approach. Even 

though it gives optimal solution to the problem, it is computationally complex to be implemented 

in real time encoders. 
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In this thesis we attempt to solve the problem using Greedy heuristic approach. Since 

it’s a heuristic approach, solution given by it may differ from the optimal solution. We evaluate 

the performance of Greedy heuristic approach both qualitatively and quantitatively and 

summarize the observations which can serve as reference for the developers. It has been 

verified that Greedy heuristic approach greatly reduces the SIP analyzer complexity both in time 

and in space without compromising much with the quality.  
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CHAPTER 1 

INTRODUCTION 

 

Continuous improvement in computing power and communication technologies coupled with 

increasing density of storage media is enabling increased number of multimedia applications. 

Most of the interactive consumer multimedia devices today include video based applications. 

They range from multimedia messaging, high-definition video broadcasts, video telephony and 

video conferencing to video storage on DVD, Blu-ray, HD-DVD optical discs. All these 

applications attribute to the advances in video compression technology which is focus of this 

thesis. 

 

1.1 Overview of Video Coding Standards 

Video signal can be compressed by using various proprietary or standardized 

algorithms. Proprietary algorithms are developed, owned and used by smaller groups or 

commercial organizations for business or research purposes and they lack global compatibility 

and hence are of less significance. Examples include Microsoft
®
 Windows Media Video (WMV 

xx) series, RealNetworks
®
 Real Video (RV xx) series etc. More important families of 

compression standards are published by internationally standardized bodies such as the 

International Telecommunication Union (ITU), the International Organization for Standardization 

(ISO) or the Motion Pictures Expert Group (MPEG). 

ISO/IEC (International Organization for Standardization/ International Electrotechnical 

Commission) and ITU-T (International Telecommunications Union/Telecommunication 

Standardization Sector) are two main bodies for recommending Speech/Audio/Video coding 

standards. ITU-T has designed the well known H.264x series. H.261 [1] being the first member 
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of this series, during following years ITU-T released H.262 [2], H.263 [3], H.263+, H.263++ and 

H.264 [4] standards targeting wide range of applications. Details can be found on ITU-T website 

[5]. 

The MPEG family of standards includes MPEG-1 (ISO/IEC 11172), MPEG-2 (ISO/IEC 

13818), MPEG-4(ISO/IEC 14496), MPEG-7 (Multimedia Content Description Interface), and 

MPEG-21 (ISO /IEC 21000). Details can be found on MPEG website [6]. The MPEG working 

group is part of the Joint ISO/IEC Technical Committee on Information Technology.  

In order to come up with a new video coding standard capable of providing better video 

quality at substantially lower bitrates than all the previous standards (MPEG-2, H.263, or 

MPEG-4 Part 2) without increasing design complexity, ITU-T Video Coding Experts Group 

(VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG) formed Joint Video 

Team (JVT) which includes members from both the teams. They published H.264 

standard/MPEG-4 Part 10 formally known as H.264/MPEG-4 AVC, in May 2003 [7]. JVT then 

developed extensions to the standard such as Fidelity Range Extension (FRExt) to enable 

higher quality by supporting increased sample bit depth precision and high resolution color 

information. It also added five new extensions supporting professional applications. 

H.264/AVC has attracted a lot of attention from industry in recent years and is being 

increasingly used in variety of applications and products. It is expected to become the most 

popular video coding standard for almost all the industry applications. 

Scalable Video Coding has been topic of research and standardization for almost 20 

years [8]. Given the gaining popularity and wide industrial use of H.264/AVC standard, it 

scalable extension has been proposed and has officially become part of H.264/AVC standard as 

Annex G. It is supposed to supersede all the previously proposed scalability tools as in MPEG-2 

video, H.262, H.263 and MPEG-4 Visual by overcoming their problems like significant loss in 

coding efficiency and increased decoder complexity. H.264/SVC is remains the most recent and 

revolutionary scalable video coding standard as of now. 
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1.2 Outline of work 

The H.264/SVC standard uses many components of H.264/AVC standard to maintain 

backward compatibility and also has proposed many tools to support scalable video coding with 

increased coding efficiency. SIP Analyzer is one such tool incorporated in JSVM (Joint Scalable 

Video Model) software which is the reference software for the SVC project.  

SIP Analyzer implements Selective Interlayer Prediction strategy [9] to encode the 

bitstream so as to improve coding performance in scenarios where multiple adaptation is not 

needed without losing much if the same bitstream is used in scenario where multiple adaptation 

is needed. Core of this algorithm is a 0-1 Knapsack Problem that decides the right combination 

of lower layer frames for which interlayer prediction can be safely turned off. Current 

implementation solves the Knapsack Problem using Dynamic Programming approach. Even 

though it gives optimal solution to the problem it is computationally complex to be implemented 

in real time encoders. 

In this thesis we attempt to solve the problem using Greedy heuristic approach. Since 

it’s a heuristic approach, solution given by it may differ from the optimal solution. We evaluate 

the performance of Greedy heuristic approach both qualitatively and quantitatively and 

summarize the observations which can serve as reference for the developers. It has been 

verified that Greedy heuristic approach reduces the SIP analyzer complexity both in time and in 

space without compromising much with the quality. 

 

1.3 Reader’s Guide 

Rest of the document is organized as follows: 

 

Chapter 2 gives brief overview of latest single layer video coding standard H.264/AVC. 
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Chapter 3 extends this idea and introduces the scalable extension to H.264/AVC, also known 

as H.264/SVC. 

Chapter 4 discusses Selective Interlayer Prediction (SIP) strategy employed in H.264/SVC and 

the SIP Decision problem which boils down to 0-1 Knapsack Problem. 

Chapter 5 gives basic idea of Knapsack Problem and various approaches to solve it. 

Chapter 6 summarizes the contribution of this thesis to the SIP Analyzer in H.264/SVC. 

Chapter 7 concludes with results, observations and future scope.  
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CHAPTER 2 

OVERVIEW OF H.264/MPEG-4 PART 10 

 

H.264/MPEG-4 Part 10 also known as H.264/AVC (Advanced Video Coding) is the 

latest single layer coding standard jointly developed by ITU-T Video Coding Expert Group 

(VCEG) and ISO/IEC Motion Pictures Expert Group (MPEG). The joint group is known as JVT 

(Joint Video Team). H.264/AVC standard aims at achieving significant enhancement in coding 

efficiency and error robustness in comparison to previous video coding standards like MPEG-2, 

H.263 and MPEG-4 Part2 with a range of features supporting better quality and low bitrate for 

streaming video over fixed and wireless networks and over different transport protocols.  

 

Numerous papers and tutorials have been written about video coding theory in general 

and also about industry standard H.264/AVC. In this chapter we take a quick review of 

distinguishing features of the H.264/AVC standard. Reader is suggested to refer [10] [11] [12] 

[13] for comprehensive information about video coding techniques and standards. Detailed 

information about H.264/AVC can be found in [14] [15]. 

 

2.1 Introduction 

Similar to previous standards (MPEG-1, MPEG-2 and MPEG-4) H.264/AVC standard 

does not explicitly define encoder-decoder pair specifications. Rather it specifies syntax of a 

valid encoded bitstream along with method to decode it. With this defined the implementation 

details of encoder are completely left to the developers. 

H.264/AVC uses the same basic functional elements as in previous standards [13] i.e. 

block transform to exploit spatial redundancy, motion compensated prediction to exploit 

temporal redundancy, quantization to control bitrate, entropy encoding to reduce statistical 
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correlation. However important changes occur in details of each element. It introduces a new 

intra-picture prediction technique, new 4x4 integer transform, variable block sizes, deblocking 

filter, multiple reference frames, quarter pixel precision for motion compensation and improved 

lossless coding. In order to reduce complexity it introduces new multiplier free integer transform. 

Multiplier operation for exact transform is combined with quantization scaling. To cope with 

degradation arising due to channel noise H.264/AVC adds parameter setting, flexible macro 

block ordering, switched slice, redundant slice methods to data partitioning for error resilience.  

 

2.2 H.264/AVC Profiles 

Although the H.264/AVC standard proposes many tools to improve coding efficiency 

and better visual experience, not all the tools are needed by all the applications. If every 

decoder is forced to implement all these tools, it will unnecessarily increase decoder complexity. 

On the other hand the interoperability between certain class of applications and the related 

applications should also be maintained. To address this, the standard defines various subsets 

of coding tools intended for variety of applications. These subsets are called ‘Profiles’. Currently 

standard defines following profiles: 

o Baseline: Mainly used for videoconferencing and mobile video applications. 

o Main: Used mainly for video storage and playback and also in some studio 

applications. 

o Extended: Used for streaming video applications. 

o High: Used for high quality studio distribution.  

For a given profile, the performance limits of codecs are defined as collection of levels, each 

specifying restrictions on coding process such as sample rate, decoding speed, number of 

blocks per second, coded bit rate, picture buffer size etc. Additional details of each profile and 

level can be found in [15]. 

Profiles have common as well as specific coding tools as shown in fig. 2.1. 
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Fig. 2.1 Specific coding tools supported by H.264/AVC profiles [16] 
 

 

2.3 Layered Coding Structure 

The H.264/AVC bitstream has been coded in two layers: Network Abstraction Layer 

(NAL) and Video Coding Layer (VCL). VCL contains the actual coded video information. 

Purpose of NAL is to abstract VCL data such that it would be convenient to store on storage 

media or transmit it on variety of communication channels or networks.  

 

 
 

Fig. 2.2 Structure of H.264/AVC encoder [14] 
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2.3.1 Network Abstraction Layer 

NAL formats the compressed video (VCL) data and provides additional non-VCL 

information such as parameter setting etc [16] in such a way that it can be conveniently coded 

as byte-stream or packet-based format. 

 

 
Fig. 2.3 NAL unit syntax [17] 

 

 

All data related to video stream is encapsulated in NAL Units (referred as NALU). 

Format of NALU is shown in fig. 2.3. First byte of each NALU is a header byte and rest all is 

data. First bit is always zero. Next two bits indicate whether content of NALU is sequence or 

picture parameter set or a slice of reference picture. Next five bits specify NALU type 

corresponding to payload being carried in NALU which may be VCL or non-VCL type. The 

picture and parameter sets play pivotal role during decoding. They define some parameters of 

data being encoded which are used for decoding. So during transmission, these two sets are 

sent frequently. If the bitstream has to be played from a random point, these parameters along 

with next IDR (Instantaneous Decoder Refresh) picture are used. 

 

2.3.2 Video Coding Layer 

The VCL design follows block based hybrid video coding approach. The basic source 

coding algorithm is, to exploit inter-picture and intra-picture redundancies in temporal, spatial 

domains and apply transforms and lossless coding to further exploit statistical redundancy. 

There is no single functional block in VCL which gives dramatic improvement in coding gain but 

it is the cumulative effect of modifications done in implementation details of these blocks in 

H.264/AVC standard with reference to previous standards. 
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Fig.2.4 and 2.5 show architecture and core building blocks of H.264/AVC coding system. 

 

Fig. 2.4 H.264/AVC Encoder Structure [16] 
 

  

 
 

Fig. 2.5 H.264/AVC Decoder Structure [16] 
 

 
We describe details of components in fig. 2.4 and 2.5: 
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2.3.2.1 Intra Prediction 

Unlike previous standards in which intra macroblocks are coded by themselves without 

temporal prediction which significantly increases the bit rate, H.264/AVC proposes predicting 

intra macro block from original signal itself. To encode a block or macro block in Intra-coded 

mode a prediction is formed from previously reconstructed unfiltered blocks and this prediction 

is coded. The standard specifies intra-prediction as linear interpolation of pixels from adjacent 

edges of neighboring macroblocks that are decoded before current macro block. These 

interpolations are directional in nature with multiple modes implying spatial direction of 

prediction. For luminance pixels with 4x4 partitions, 9 prediction modes as shown in fig. 2.6 are 

defined. 

 

 
Fig. 2.6 Intra 4x4 Prediction Mode Directions [16] 

 

For predicting 16x16 luma components of a macro block, mode 0 (vertical), mode 

1(horizontal), mode 2 (DC) and mode 4 (plane) are used. Chroma prediction is defined for three 

possible block sizes: 8x8 in 4:2:0 format, 8x16 in 4:2:2 format and 16x16 in 4:4:4 format. There 

are 4 prediction modes for all chroma sizes: mode 0 (DC), mode 1 (horizontal), mode 2 

(vertical) and mode 3 (plane) similar to 16x16 luma prediction modes. 
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2.3.2.2 Inter Prediction 

This block includes both motion estimation (ME) and motion compensation (MC) to 

reduce temporal redundancy. Current picture can be partitioned into macroblocks or even 

smaller blocks. A 16x16 macro block can be partitioned into 16x16, 8x16, 16x8, 8x8 and for 8x8 

macro block mode size are 8x8, 4x8, 8x4 and 4x4. Choosing smaller partition facilitates better 

prediction or less prediction error. But number of motion vectors and extra signaling data 

increases for overall picture. So there is always a tradeoff depending on input signal 

characteristics.  The process generates a predicted version of a rectangular array of pixels by 

choosing another similar sized array from previously decoded and stored reference picture and 

translating the reference array to position of current array. This translation can be specified at 

quarter pixel accuracy for luma components. Motion vectors for chroma components are scaled 

accordingly depending on source sampling format used. 

This process also involves selection of reference picture frame from a number of 

previously encoded (and decoded) and stored pictures. The reference picture buffer 

management is needed to update the reference frames depending on available system 

memory. 

 

2.3.2.3 Transform 

H.264 standard is based on block based transform to reduce spatial redundancy.  

Rather than 8x8 floating point transform as used in MPEG-2 / MPEG-4 part 2, a new 4x4 integer 

transform (8x8 for high profile) is proposed in H.264/AVC and its transform coefficients are 

explicitly specified. It is perfectly invertible.  The standard avoids multiplication in transformation 

to reduce computational complexity and combines that as a scaling factor with quantization. 

Standard explicitly specifies transform and inverse transform matrices for 4x4 luma, 8x8 luma 

(high profile) and also specifies Hadamard transform matrices for luma and chroma DC 

coefficients. In addition to this, encoders can use default perceptual scaling matrices as 
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suggested by FRExtensions or even customize them and send to the decoder. They help in 

shaping the quantization error by exploiting properties of Human Visual System (HVS). 

Scanning of the transform coefficients is based on decreasing variances and maximizing 

number of zero-valued coefficients along the scan to generate run-level events to be coded with 

VLC. Popular methods are zig-zag or alternate scan. 

 

2.3.2.4 Quantization 

Quantization is also called as ‘scaling’ in the standard. High profile supports HVS based 

quantization scaling matrices same as in MPEG-2. The scale factor for each element in each 

sub block varies as function of quantization parameter associated with its associated 

macroblock. The rate-control algorithm in encoder decides this quantization parameter. As 

mentioned earlier the quantization (and inverse quantization) equations are modified to 

incorporate the scaling factors adjusted in transform (and inverse transform) operations. 

 

2.3.2.5 Deblocking Loop Filter 

In H.264/AVC visually disturbing blocking artifacts can be generated due to coarse 

quantization of block based integer transform in intra and inter residue coding. Another source 

of these block artifacts is motion compensated prediction. Since there is almost never a perfect 

match between interpolated block and the actual block from reference frame, discontinuities on 

the edges of the copied blocks of data arise and they are carried forward in next block which 

uses this block as reference. Even though small transform size (4x4) makes this artifact less 

visible, deblocking loop filter still enhances the performance. However it is computationally 

complex. It is an adaptive filter operation which is dependent on several factors such as 

quantization parameters, magnitude of motions vectors, macro block coding type etc. The 

detailed algorithm for loop filter decision logic can be found in [15]. Result of loop filtering is 

saved as reference picture. 
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(a)                                                        (b) 

Fig 2.7 Details of luminance output in case of (a) No loop filtering (b) With loop filtering [18] 

 

 
2.3.2.6 Mode Decision 

It decides coding mode for each macroblock. To achieve highest coding efficiency 

mode decision may use rate-distortion optimization. It works with rate-control loop and outcome 

is the optimal coding mode for given macro block. 

 

2.3.2.7 Entropy Coding 

H.264/AVC uses a number of techniques such as Golomb codes, Context Adaptive 

Binary Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding (CAVLC) for 

entropy coding. All the syntax elements except the residual data are coded using Exp-Golomb 

codes [19]. For coding residual data more sophisticated CAVLC or CABAC (in main and high 

profiles) is used. CABAC is more complex than CAVLC but has more coding efficiency. 

 

2.3.2.8 B-Slices 

Bidirectional prediction is very efficient in reducing temporal correlation using many 

reference frames. H.264/AVC generalizes concept of B-slices in comparison to previous 

standards e.g. pictures containing B-slices can be used as reference frames for motion 

compensated prediction. In addition, H.264/AVC supports not only forward/backward prediction 

but also forward/forward and backward/backward prediction for scene change scenario. It also 
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introduces weighted prediction and direct mode for inter prediction. More details can be found in 

[20] [21]. 

 

2.3.2.9 SI and SP Slices 

 In previous standards switching between bitstream is possible only at I-picture intervals. 

Therefore supporting such perfect switching requires introducing I-frames frequently thereby 

increasing bitrate. H.264/AVC introduces two new frame types SI and SP to handle such 

switching.   

• SP Slice: a so called switching P slice is coded such that switching between different 

pre-coded pictures is possible e.g. If there are two different bitstreams P(1, k) and P(2, 

k) corresponding to same video sequence but coded at different bitrates, within each 

bitstream SP frames are placed at locations where we can switch from one stream to 

another. For switching from P(1,3) to P(2,3) we can use SP(3) frame that produces 

P(2,3) from P(1,3). 

• SI Slice: the switching I slice allows exact match of a macro block in SP slice for 

random access and error recovery. 

 

2.3.2.10 Error Resilience 

Robustness to channel noise and data errors/loss and operation over wide variety of 

networks is facilitated by following features. Details can be found in [14]. 

o Parameter set structure 

o NAL unit syntax structure 

o Flexible slice size 

o Flexible macro block ordering (FMO) 

o Arbitrary slice ordering (ASO) 

o Redundant pictures 
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o Data partitioning 

o SI/SP synchronization 

 

2.3.2.11 H.264/AVC Decoder 

It takes valid .264 bitstream as input and decodes it produce raw video sequence in 

YUV format. Bitstream first passes through entropy decoder which extracts header, syntax 

information and slice data with motion vectors. It is followed by scaling and inverse quantization 

and then inverse transformation to bring the information in pixel domain. If this is residue, it is 

added with appropriate reference frame from reference picture buffer and motion compensated 

to reconstruct current frame. This reconstructed frame is then passed though same deblocking 

filter as used on encoder side to remove blocking artifacts. 

 

2.4 Summary 

This chapter summarizes latest single layer coding standard H.264/AVC developed and 

standardized by JVT in May 2003. It can match the best MPEG-2 video quality at up to half the 

data rate [22]. It also delivers excellent video quality from 3G to HD between 40 kbps and 10 

Mbps [23]. 

Most important characteristics are 4x4 transform, quarter pixel accuracy motion vectors, 

multiple reference prediction, deblocking filter, CAVLC, CABAC along with error resilience, 

stream switching etc.  

Its wide acceptance from industry has motivated further developments to support 

various application dependent scenarios as extension to existing standard. 
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CHAPTER 3 

SCALABLE EXTENSION TO H.264/AVC 

 

3.1 Introduction 

 Emergence of broadband wireless technology, rapid developments in network 

infrastructures, storage capacity, computing power have enabled proliferation of multimedia 

applications on consumer PCs connected to World Wide Web and consumer devices like cell 

phones, PDAs, networked handheld gaming devices. Video applications are becoming 

important part of this revolution. 

In comparison to older TV transmission systems, today’s video transmission is 

characterized by varying connection quality. Also, receiving devices today, range from handheld 

cell phones, PDAs with small screens, limited processing/battery power to high definition TVs 

with large display panels. 

It may be streaming video over packet based networks or video communication over 

wireless broadband networks, both face similar challenges: 

• Bandwidth Fluctuations 

• High bit error rate / Packet loss rate 

• Heterogeneity amongst networks/receiving terminals 

Due to these major problems it is difficult to develop a single video application that can 

meet demands of variety of receivers residing on the other side of the network. But the same 

source content should be provided with different bit-rates, different frame rates, different 

display/quality resolutions, different loss/error handling mechanisms. Variation in connection 

quality should not result interruption in service or unacceptably bad quality to the receiver. 
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3.2 Scalable Video Coding 

 An appealing solution to the problems posed by video transmission for modern 

communication systems for variety of receiving devices is Scalable Video Coding (SVC). 

Scalable Video Coding is to produce a compressed video stream, parts of which can form other 

valid sub-streams and can be decoded by the given decoder. These sub-streams represent the 

same source video content with reduced reconstruction quality as compared to the output which 

is produced when the complete bitstream is decoded. The immediate advantage of such 

scheme is – Video Content can be coded only once with the highest desired coding gain and 

quality and can later on serve to demand of different applications with varied constraints on 

bitrate, quality, bandwidth availability etc. by partially extracting and decoding appropriate 

substreams out of it.  

Usually scalability can be: Spatial Scalability, Temporal Scalability and Quality (Signal 

to Noise Ratio - SNR) Scalability. Also there are, Region of Interest (ROI) and Object based 

scalability modes but they are rarely used. A coded scalable bitstream can be configured to 

incorporate any combination of these basic scalable modes. Depending on the modes used in 

creating original coded scalable bitstream, the partially extracted and decoded bitstreams can 

reproduce content with degraded quality (lower SNR), lower bitrate or lower frame rate or any 

combination of them to serve various applications. 

A video stream which is not coded using any such scalability modes, but is coded for 

fixed frame rate, bit rate and resolution is called Single Layer stream. 

 

3.3 Applications 

There is multitude of application scenarios where such scalable video stream can be 

used [8]: 

For instance, a video server serving variety of end user devices with different display 

capabilities with the same source content over variety of network connections with different 
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bandwidths. With properly configured encoder, the bitstream is encoded only once with highest 

desired resolution and bitrate and then extracted and substreams are formed as per need to 

serve various clients.  

Another interesting scenario is video transmission over a channel with unpredictable 

throughput variations and/or relatively high packet loss rates. Since the scalable video stream 

usually contains different parts with different importance in terms of quality, they can be coded 

with unequal error protection schemes such that stronger protection is provided to more 

important information i.e. base layer information and relatively weaker protection to subsequent 

enhancement layers. Such scheme can help in graceful degradation up to certain degree of 

channel error/loss rates. They can be assisted with the Media Aware Network Elements 

(MANE) by removing unwanted parts from the bitstream before forwarding it to terminals as per 

their feedback. 

One different kind of application is for video archiving in video recorders, home 

networking or for video surveillance applications. In such scenario, the high quality parts of the 

video stream can be deleted after some expiration time to save storage space assuming that as 

time passes the probability that they will be viewed again and again lowers down. 

For web browsing of video library, scalable video coding can generate a low resolution 

preview without decoding a full resolution picture. 

In general, Scalable Video Coding addresses the issue of reliable delivery of video to 

diverse systems over diversified network connections using available system resources, 

especially in scenarios where the end system capabilities, resources and network conditions are 

not known beforehand.    

 

3.4 Scalable Video Coding Standards 

Given the need of scalable video coding technique to serve tremendously varied end-

systems over uncertain network conditions, earlier video coding standards tried to handle this 
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issue. Scalability has already been present in prior video coding standards like MPEG-2 [24], 

H.263 [25] and MPEG-4 Visual [26] in form of scalable profiles. However the quality and spatial 

scalability came along with considerable increase in decoder complexity and significant loss in 

coding efficiency as compared to corresponding non-scalable profiles. Due to these drawbacks 

earlier attempts to introduce scalability were not accepted by industry. 

Therefore, apart from support for various scalability modes, most important design 

criteria for success of a scalable coding standard are coding efficiency and decoder complexity. 

In addition to this, the bitstream produced by a scalable codec should also compete in 

performance with simulcast video transmission and also against video transcoding in multipoint 

control units in 3-G systems.  

 

3.5 ‘H.264/SVC’ - Scalable extension to H.264/AVC  

H.264/AVC standard which was finalized in May 2003 is now a well established video 

coding standard and derivative standardization projects have started emerging out of it. Most 

important of them is called Scalable Video Coding (SVC) Project [27]. Initially started within 

MPEG by the time H.264/AVC standard was on its way of being finalized, it was later moved to 

Joint Video Team (JVT) in 2005. It was decided to be as an amendment of existing H.264/AVC 

standard. Main motivation was to remove the drawbacks of earlier scalable coding standards.  

Initially to handle problem of drift [28][29] due to lost synchronization in encoder-

decoder motion compensation prediction loops, a 3-d wavelet based structure was proposed 

[30], but it was later removed due to increased design complexity and DPCM based structure 

with some modifications was adopted. Latest draft of the standard [31] includes some more 

modifications than first model [32], like methods for non-dyadic scalability and interlaced 

processing. 

The scalable extension to H.264/AVC standard is also referred as H.264/SVC. In this 

document we use SVC with reference to the H.264/SVC standard. 
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3.5.1 Scalability Modes in H.264/SVC 

Similar to prior scalable video coding standards, in H.264/SVC standard the basic scalability 

modes are: 

• Temporal Scalability 

• Spatial Scalability 

• Quality (SNR) Scalability 

 

Here we review changes needed in H.264/AVC standard to support these scalability modes. 

The scalable extension of H.264/AVC proposes a layered video codec. Usually codec 

configuration and structure depends upon the scalability space needed by the application. Fig 

3.1 shows a typical encoder structure with two spatial layers. Each layer can be either spatial or 

coarse-grain SNR layer.  

 

Fig. 3.1 Typical encoder structure with two spatial layers [8] 

 
3.5.1.1 Temporal Scalability 

Given bitstream is said to provide temporal scalability when set of corresponding 

access units can be partitioned into a temporal base layer and set of temporal enhancement 

layers with following property: Let temporal layers be identified by identifier T which is set to 0 
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for the base layer and incremented for each successive temporal enhancement layer. Then for 

each natural number k (0 for base layer), the bitstream that is obtained by removing all access 

units of all temporal layers with a temporal identifier T greater than k, forms a valid sub stream 

for given decoder [8]. 

 

Fig. 3.2 Hierarchical prediction structures for enabling temporal scalability (a) Coding with 
hierarchical B-frames (b) Non-dyadic hierarchical prediction structure (c) Hierarchical prediction 

structure with structural encoder/decoder zero delay [8] 
 

Actually all prior standards support temporal scalability to some degree. H.264/AVC 

provides significant flexibility in temporal scalability with its reference picture memory control. It 

allows coding of picture sequences with arbitrary temporal dependencies which are only 

restricted by decoded picture buffer (DPB) size. Therefore, to support temporal scalability no 

major changes in H.264/AVC are needed except signaling the temporal layers. 

Temporal scalability with dyadic enhancement layers can be efficiently implemented 

with concept of hierarchical B or P pictures as shown in fig. 3.2(a). Enhancement layers are 

typically coded as B pictures with reference picture lists 0 and 1 corresponding to temporally 

preceding and succeeding picture respectively, with a temporal identifier less than that of the 
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picture being predicted. Since the backward prediction is not necessarily coupled with B frames, 

structure in fig. 3.2(a) can also be realized using P frames. Each set of temporal layers {T0 … 

Tk} can be decoded independent of frames corresponding to T > k. Group of Pictures (GOP) 

corresponds to all the frames between two successive frames of temporal base layer (i.e. T0) 

including the second T0 frame. 

To represent generalized non-dyadic case, hierarchical prediction structures for 

temporal scalability can be combined with ‘multiple reference picture’ concept in H.264/AVC, 

meaning that reference picture lists can be constructed by using more than one reference 

picture and they can also include frames with same temporal level as the one being predicted. 

Fig. 3.2(b) shows the non-dyadic case with two independently decodable sub-sequences at 

1/9
th
 and 1/3

rd
 of full frame rate. Fig. 3.2(c) shows further case where it is possible to adjust 

encoder/decoder structural delay by restricting prediction from frames that follow the frame to 

be predicted in display order. Fig. 3.2(a) and 3.2(c) represent same temporal scalability but 

structural delay of 7 and 0 respectively. However low delay coding structures usually suffer from 

coding efficiency problems. In hierarchical prediction structures the reference frames should be 

coded before they can be used for prediction of other frames. Coding efficiency can be 

improved by carefully choosing quantization parameters for different temporal layers. Typically 

the base layer is coded with highest fidelity (or lowest quantization parameter) and quantization 

parameter is incremented for each subsequent temporal level. Further improvement in selection 

of quantization parameters can be achieved by computationally expensive rate-distortion 

analysis [33]. A simpler and sufficiently robust approach has been discussed in [34]. Coding 

efficiency of B-frames can be improved by using a weighted sum of list 0 and list 1 predictions is 

used during motion search [20]. It has been verified in [8] that coding efficiency of hierarchical 

temporal prediction structures can be improved by increasing GOP size and thus the 

encoding/decoding delay; the maximum coding efficiency is achieved for GOP sizes between 8 

and 32. 
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When higher coding delay can be tolerated, hierarchical temporal prediction structure 

not only provides temporal scalability but also improves coding efficiency. 

 

3.5.1.2  Spatial Scalability 

Like previous scalable video coding standards, H.264/SVC follows multilayer spatial 

coding approach. Each layer corresponds to specific spatial resolution and is called as a ‘spatial 

layer’ with some dependency identifier D. Value of D is 0 for base layer, which has lowest 

spatial resolution and increments for each subsequent spatial layer. Each spatial layer is coded 

with most of the coding techniques used in single layer coding; like motion compensated 

prediction, intra prediction. In addition to this, to improve coding efficiency by exploiting 

correlation between adjacent layers, different ‘Interlayer Prediction’ techniques are used. 

 

Table 3.1 Video frames sampled at different display resolutions [10] 

 

 

 
3.5.1.2.1 Interlayer Prediction 

Spatial scalability is achieved by using an over sampled pyramid approach. For each 

layer and independent hierarchical motion compensation prediction structure with layer specific 

motion parameters is used.  

As each higher layer is high resolution version of the previous layer, there exists 

redundancy in the information contents of consecutive layers. In order to improve coding 

efficiency of the enhancement layers in comparison to simulcast, various inter-layer prediction 
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mechanisms to re-use information from a lower spatial resolution to higher spatial resolution 

layer are specified.  

These prediction mechanisms are made switchable so that the coder can liberally 

choose which base layer information should be exploited for an efficient enhancement layer 

coding. So the SVC conforming encoder can freely choose between intra and inter-layer 

prediction depending on the signal characteristics. Since the inter-layer prediction techniques 

employ methods for motion parameter and residual prediction, the temporal prediction 

structures of the layers should be aligned to maintain efficiency in enhancement layer coding.  

 

 
Fig. 3.3 Multi-layer structure with additional inter-layer prediction (black arrows) [35] 

 

Following interlayer prediction techniques have been used in H.264/SVC coder design [36]: 

• Prediction of motion vectors using the upsampled lower resolution motion vectors 

• Prediction of residual signal using upsampled version of residual signal in the lower 

resolution layer 

• Prediction of macroblocks using reconstructed and upsampled lower resolution signal 

 

1. Motion Vector Prediction:  Additional macroblock modes have been introduced in 

spatial enhancement layers to utilize motion information from low resolution layer. The 

macro block partitioning is obtained by upsampling partitioning of the corresponding 8x8 
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block of lower resolution layer. The reference picture indices are copied from co-located 

base layer blocks and corresponding motion vectors are scaled by factor of 2 in case of 

simple dyadic spatial scalability. For arbitrary resolution ratios reader is referred to [37] 

[38] [39]. For the first of these macro block modes no additional motion information is 

coded, for the second one, a quarter-sample refinement is transmitted for each motion 

vector. Additionally scaled motion vector of the lower resolution can be used as motion 

vector predictor.  

 

2. Residual Prediction: In order to incorporate possibility of exploiting residual 

information coded in the lower resolution layer, an additional flag is transmitted for all 

inter-coded macroblocks that signals application of residual prediction from low 

resolution layer. If the flag is true the base layer residual signal is block-wise upsampled 

using a bi-linear filter with constant border extension and used as prediction for residual 

signal of present layer which is differentially coded.  

 

3. Intra Prediction: An additional intra macro block mode has been introduced in which 

intra prediction signal is generated by upsampling co-located reconstruction signal of 

the lower layer using the 6-tap filter specified in H.264/AVC for half sample 

interpolation. The prediction residual is transmitted using H.264/AVC residual coding. 

This inter-layer prediction scheme is the only one that is supported in earlier video 

coding standards like MPEG-2/4 for spatial scalable coding. 
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Fig. 3.4 Inheritance of modes [40] 

 

There is also interlayer intra texture prediction. However it is not supported in the standard.  

For the interlayer prediction using the reconstructed lower resolution signal it is 

generally required that the lower resolution layer is completely decoded including the 

computationally complex motion compensated prediction (or MCTF) and deblocking. It was 

shown in [41] that by restricting the prediction from upsampled decoded pictures to those parts 

of lower layer pictures which are intra coded the computational burden can be reduced with only 

small impact on coding efficiency for most of the test sequences. This facilitates decoding of 

each spatial layer with a single motion compensation loop also called as ‘single loop decoding’ 

which is computationally much less complex as compared to ‘multiple loop decoding’ that 

improves coding efficiency. 

Similar to MPEG-2 video and MPEG-4 Visual, H.264/SVC supports generalized spatial 

scalability with arbitrary spatial resolution ratios. Only restriction is that neither horizontal nor 

vertical resolution should decrease from one layer to next. It also supports picture cropping. 
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3.5.1.3 Quality Scalability 

Quality scalability can be considered as a special case of spatial scalability with 

identical frame sizes for base and enhancement layers. This is referred as Coarse Grain 

Scalability (CGS) and is supported by general spatial scalability case. Interlayer prediction 

techniques without upsampling operations are used. Usually the texture residue information is 

requantized using smaller quantization step size in enhancement layer than that used in base 

layer. As specific feature of this configuration, deblocking operation of base layer intra signal for 

interlayer intra prediction is omitted. Also, interlayer intra prediction and residue prediction are 

performed in transform domain to reduce complexity on decoder side. 

However CGS allows only few selected bitrates in the coded scalable bit stream. In 

general, number of rate points supported is equal to number of layers. Switching between 

different CGS layers can be done only at defined points in the coded stream. Furthermore, CGS 

becomes less efficient when relative difference between succeeding CGS layers becomes 

smaller. Although CGS coding is simpler and provides low decoder complexity overhead as 

compared to single layer coding, it does not provide enough flexibility for all applications. 

To increase flexibility of bitstream adaptation and error robustness in addition to 

improving coding efficiency of bitstreams that have to provide variety of bitrates, a variation of 

CGS coding scheme, called as Medium Grain Scalability (MGS) is introduced in SVC design. 

The differences with CGS concept are, modified high level signaling that allows switching 

between different MGS layers in any access unit, and so called ‘key picture’ concept, that allows 

suitable tradeoff between drift and enhancement layer coding efficiency for hierarchical 

prediction structures. 

Earlier drafts of H.264/SVC had incorporated Fine Grain Scalability (FGS) in its design 

which is based on so called Progressive Refinement (PR) Slices. Each PR slice represents 

refinement of residual signal that corresponds to bisection of quantization size (or QP decrease 

of 6). These signals are represented in a way such that a single inverse transform has to be 
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performed at the decoder side. The ordering of transform coefficients in PR slices allows the 

corresponding PR refinement NAL units to be truncated at any arbitrary byte aligned point, so 

that the quality of the base layer can be refined in fine granular way.  

The FGS method, though quite competitive in terms of R-D performance compared to 

single layer coding, has disadvantage of being computationally complex due to its related 

multipass entropy coding stage [42]. Therefore FGS was removed from the standard finalized in 

July 2007 [43] but it contained MGS as a low complexity version of FGS [44]. 

Similar to FGS, MGS operates in transform domain and allows fragmentation of a given 

fidelity enhancement by means of frequency selective grouping of transform coefficients. 

However the difference lies in re-using the bitstream syntax and entropy coding design of 

H.264/AVC to maximum extent. The degree of fragmentation can be chosen by the encoder 

without significantly compromising R-D performance. 

  It should be noted that a phase 2 of SVC project is under study which may contain FGS 

mode [45]. 

Drift is the effect of lost synchronization between motion compensation loops on 

encoder and decoder side because of unavailability of quality refinement packets due to some 

reason. 

 

It can be handles using various methods, such as: 

 

• Base layer only control: Fig. 3.5(a) Used in MPEG-4 Visual for Fine Grain Scalability 

(FGS). Drawback: Significantly decreases enhancement layer coding efficiency as 

compared to single layer coding. 

• Enhancement layer only control: Fig. 3.5(b) Used in H.262/MPEG-2 video. Drawback: 

Any loss of quality refinement packets result in drift that can only be controlled by intra 

updates. 
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• Two-loop control: Fig. 3.5(c) Drawback: Although base layer is not influenced by 

enhancement layer packet loss, any loss of a quality refinement packet results in drift 

for enhancement layer. 

• SVC key picture concept: Fig. 3.5(d) Used in H.264/SVC. For each picture, a flag is 

transmitted which indicates whether base quality reconstruction or the enhancement 

layer reconstruction of reference picture is used for motion compensated prediction. To 

limit decoded picture buffer (DPB) memory, a second syntax element signals whether 

base quality picture is additionally reconstructed and stored in DPB. To limit decoder 

overhead for such key pictures, the standard specifies that motion parameters between 

base and enhancement layers for key pictures must not change so that they can be 

decoded with single motion compensation loop. 

 

 

Fig. 3.5 Various drift control mechanisms for packet based quality scalable coding (a) base 
layer only control (b) enhancement layer only control (c) two-loop control (d) key-picture concept 

used in H.264/SVC (Key pictures are marked by black frames) [35] 
 

With MGS, any enhancement layer NAL unit can be discarded from a quality scalable bitstream 

to form a valid sub stream and thus packet based quality scalable coding can be provided. 

Additionally, H.264/SVC provides following features for quality scalable video coding 

[8]:  
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• Partitioning of transform coefficients  

• SVC-to-AVC rewriting 

 

 
3.5.2 NAL Unit Syntax 

The 1 byte header in H.264/AVC is extended by additional 3 bytes for SVC NAL unit 

types. The extended header includes identifiers D (for spatial), T (for temporal) and Q (for 

quality) as well as additional information to assist easy bitstream manipulations. One such 

additional syntax is priority identifier P signaling importance of a NAL unit. Also, in order to 

attach SVC relayed information to non-SVC NAL unit, prefix-NAL units are introduced. SVC also 

specifies additional Supplementary Enhancement Information (SEI) messages, which contain 

information like spatial resolution or bitrate of layers included in coded scalable bitstream that 

can assist in bitstream adaptations. 

 

3.5.3 SVC Profiles 

SVC amendment supports following profiles for scalable video coding: 

• Scalable Baseline Profile: Mainly targeted for mobile broadcast, conversational and 

surveillance applications that require low decoding complexity. 

• Scalable High Profile: Designed for broadcast, storage and streaming applications. 

• Scalable High Intra Profile: Mainly intended for professional applications. 

 

3.6 Summary 

In comparison to scalable video coding tools provided by prior standards, H.264/SVC provides 

various tools to improve coding efficiency relative to single layer coding. Important differences 

are: 
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� Possibility to employ hierarchical prediction structures for providing temporal 

scalability while improving coding efficiency and increasing efficiency in spatial and 

quality scalability. 

� Methods to improve interlayer prediction of macro block modes, motion and 

residual that improves coding efficiency for spatial and quality scalability. 

� Concept of key pictures to control drift for packet based quality scalable coding with 

hierarchical prediction structures. 

� Low decoder complexity due to single motion compensated loop for decoding both, 

base and enhancement layers. 

� Support for modified decoding process that allows lossless and low complexity re-

writing of quality scalable bitstream into non-SVC H.264/AVC profile. 
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CHAPTER 4 

SIP ANALYZER 

 

4.1 Introduction 

 This chapter discusses Selective Inter Layer Prediction (SIP) scheme incorporated in 

scalable extension of H.264/AVC (H.264/SVC) that selectively disables some frames’ inter layer 

prediction where it’s not efficient, using some criterion.  

SIP scheme was originally proposed by Kai Zhang (Institute of Computing Technology, 

Chinese Academy of Sciences) along with Jizheng Xu, Feng Wu (Microsoft Research Asia, 

Beijing, China) in 18
th
 SVC Meeting held in Bangkok, Thailand (14-20 January 2006). It was 

submitted to JVT as proposal document JVT-R064.doc. It was originally a temporal level based 

selective interlayer prediction scheme which was later modified by them as a frame based 

selective interlayer prediction in 19
th
 SVC Meeting held in Geneva, CH (31 March-7 April 2006). 

It was submitted to JVT as proposal document JVT-S051.doc. 

Frame based selective interlayer prediction has been incorporated in JSVM version 5.9 

and above as SIP Analyzer tool.  

Following sections discuss it in more detail. 

 
 
Some concepts: 

Simulcast: It is method of transmitting two or more independent single layer streams i.e. non-

scalable streams coded at different resolutions, which in principle provide similar functionality as 

a scalable stream, although typically at the expense of increased overall bit rate. 
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Multiple Adaptation Scenario (MA): It is scenario in which the receiver of the scalable video 

stream needs all the resolution layers for its purpose.  

e.g. If the scalable video stream is coded with two layers viz. CIF and QCIF, the 

receiver end which may be a home gateway may need both of them probably to serve different 

resolution devices like CIF for a PDA screen and QCIF for a mobile screen. Therefore all the 

resolution layers need to be transmitted. 

 

Without Multiple Adaptation Scenario (without MA): If the receiver end needs only one 

particular resolution for its purpose e.g. 4CIF or CIF etc. then there is no need to transmit all the 

resolutions but just transmitting that particular resolution layer will be sufficient.  

e.g. a TV station broadcasting program for TV screens at 4CIF resolution  

 

4.2 Selective Interlayer Prediction 

 As discussed in earlier chapter, in order to improve coding efficiency of the 

enhancement layers in comparison to simulcast, various inter-layer prediction mechanisms are 

incorporated in H.264/SVC that re-use information from a lower spatial resolution to higher 

spatial resolution layer.  

There are numerous application scenarios where H.264/SVC video could be used. For 

example, a video server may save a program as an SVC file. It might be needed to serve two 

different end-devices with different capabilities i.e. a mobile with small display and limited power 

might need video with QCIF resolution and a PDA screen may need CIF resolution. The server 

will then use a bit stream extractor to extract appropriate resolution from the SVC file and 

transmit the substream to corresponding end device. This particular scalability will require 

combined scalability i.e. SNR and spatial scalability. Due to interlayer prediction, the decoding 

of high resolution layer depends on low resolution layer even though the end-device does not 

need the low resolution layer for display purpose.  
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This scenario can also be handled using simulcast i.e. encoding and storing two 

different copies of the same program independently, one with CIF resolution and the other with 

QCIF resolution. Appropriate stream is then transmitted. In this method only SNR scalability is 

used and there is no relation between high and low resolution streams. 

Both of the approaches have advantages and disadvantages depending on the 

decoding scenario. In case of without MA scenario, where receiver knows beforehand, the 

resolution it is going to need for display purpose, method of simulcast performs better than 

combined scalability in the sense that for the same PSNR value simulcast achieves much lower 

bit rate. This is obvious as the bits are saved by not transmitting low resolution layer. So the 

combined scalable stream is not efficient in this scenario.  

However if the receiver can not know beforehand which resolution it’s going to need to 

serve the end-devices as mentioned in the previous example, using simulcast method will 

require saving both the resolutions. This is MA scenario. Experiments show that simulcast 

needs about 10% more storage than combined stream in MA scenario [46] because it does not 

exploit the correlation between consecutive layers. Again, this is not an efficient way as for the 

same PSNR simulcast will lead to considerably more bit rate than the combined scalable 

stream. 

  As mentioned earlier, the interlayer prediction in SVC exploits correlation between 

consecutive layers and saves bits while coding higher resolution layer. But the bits saved are 

not as many as bits used while coding the low resolution layer itself. This is the reason why 

JSVM performs worse under combined scalable scenario than under SNR scalable scenario.  

In JSVM, not all the frames in the low resolution layer contribute similarly to the bit 

saving of high resolution frames. For those frames whose interlayer prediction is not so strong 

corresponding low layer frame bits also need to be transmitted although they contribute little to 

overall saving.  
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In [46] it was proposed to disable the inter prediction of those frames where it is not 

efficient using some criterion and was confirmed in [9]. Those low resolution layer frames are 

called ‘Lazy Frames’ which do little good for the high resolution layer in terms of prediction gain.  

If MA is not required the bitstream extractor can just discard the packets corresponding 

to low layer frames. The decoding at receiving end will not be affected, as, in without MA 

scenario the receiving end does not need low resolution frames for display purpose. Hence bits 

of ‘Lazy Frames’ are saved. On the other hand, in MA scenario the increase in bit rate of high 

resolution frames by not using interlayer prediction for some low layer frames is not much 

because anyways those low resolution frames do only little good in terms of prediction gain. 

Thus selectively disabling interlayer prediction from low resolution frames is called Selective 

Inter Layer Prediction (SIP) scheme. 

Now the problems remains as deciding which frames in the low resolution are the ‘Lazy 

Frames’. In [46] authors proposed temporal level based SIP scheme. The proposition was 

disabling interlayer prediction on the low resolutions highest hierarchical B-level frames as their 

experiments showed that interlayer prediction of such frames is most likely to be inefficient. The 

extractor will drop packets corresponding to such frames if MA is not needed.  

 

However this method has some shortcomings [9]: 

• This method assumes that highest hierarchical B-frames are always the ‘Lazy 

Frames’ contributing little to the inter layer prediction. However this is not always 

true. 

• This method can not guarantee the amount of bit-rate increase when MA is needed 

i.e. the loss is not under control.  

• The method can not guarantee that it performance is the optimal one when MA is 

not needed. 
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4.3 SIP Decision Algorithm 

To overcome these drawbacks authors proposed a new Frame based Selective Inter-

layer prediction scheme in [9]. They have devised an algorithm to decide which frames are the 

‘Lazy Frames’ for which we can safely turn off the interlayer prediction without uncontrolled 

increase in bitrate when MA is needed and also to get best performance when MA is not 

needed. The decision to selectively turn off interlayer prediction is called ‘SIP decision’.  

 

The assumptions made and verified by the authors are: 

• Given a fixed QP, using or not using interlayer prediction does not affect high resolution 

frames quality i.e. PSNR value. It just helps by reducing bitrate. 

• Given fixed QP, performance of one frame with interlayer prediction with its SIP 

decision is independent of other frames’ SIP decision.  

• It assumes single loop decoding scheme with which we can discard low resolution 

packet without worrying about its necessity for decoding other frames.  

Under these assumptions the problem reduces to choosing the right combination of low 

layer frames which will reduce the output bitrate without MA as much as possible meanwhile 

avoiding output rate with MA increasing too much than specified. In other words, finding a 

binary vector (0 or 1) for all the low resolution frames where 0 means ‘keep interlayer prediction’ 

and 1 means ‘turnoff the interlayer prediction’.  

The SIP decision algorithm needs beforehand the acceptable bitrate increase in MA 

scenario. It may be specified as a percentage increase of original bitrate. 

For two spatial layers, mathematically it is formulated as [9]: 

 

Minimize, 
 

f(X) = ∑[(Ri + ri)(1- xi)+R'i xi]         (4.1) 
           i 
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Subject to, 

 

g(X) = ∑[(Ri + r'i)(1- xi)+ (R'i + r'i) xi] ≤ Rmax          (4.2) 
    i 

    
Where 

iR  , iR' , ir , 'ir , maxR >0, and they are all integer constants. 

ix  is 0 or 1. 

i  is the index of frame i. 

iR  is the output bits of the high resolution frame i if interlayer prediction is used. 

iR'  is the output bits of the high resolution frame i if interlayer prediction is not used. 

ir   is the output bits of the low resolution frame i when MA isn’t needed.(maybe including 

bits of some lower layers’ frames which are needed to decode frame i in the current low 

resolution layer) 

'ir   is the sum of the output bits of frame i in all the low spatial layers.(including the current 

low resolution one) 

ix   is the SIP decision of frame i. ix =1 means frame i’s interlayer prediction is cut off, and 

vice versa . 

maxR   is a given maximal output bits with multiple adaptation. 

X is the SIP decision vector )( ix  
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let   max'R = Rmax – R – r’ 

iii RRlet −=∆ '  

Solving it further we get, 

 
Maximize 

 

f(X) = ∑ ( ri - ∆i) xi                (4.3) 
           i 
 

Subject to 

 

g(X) = ∑  ∆i xi  ≤ R'max       (4.4) 
            i 
  

where, 

i∆  , ir , max'R >0, and they are all integer constants. 

ix  is 0 or 1. 

Here it is assumed that, iallfori 0>∆ , because if 0≤∆ j that means using 

interlayer prediction is worse than not using it. So jx  is set to 1 all the time. 

It is also assumed that, iallforr ii 0>∆− . If jjr ∆< it means that frames 

interlayer prediction is so effective that its performance is better than the single layer coding. 

Here jx  is set to 0 all the time. 
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Equations (4.3) and (4.4) lead to a classical 0-1 Knapsack Problem which is a well 

known problem in combinatorial optimization. In this case, a frame on lower resolution layer can 

either be chosen ( ix = 0) or discarded ( ix  = 1) for predicting corresponding higher resolution 

frame.  

Solving this Knapsack Problem means finding such array ix  for each of the low 

resolution layers ‘j’ involved in coding i.e. create matrix )( j

ix  that satisfies the constraints. 

Detailed derivation of this algorithm can be found in [9]. 

SIP Analyzer is the tool incorporated in JSVM (the reference software for SVC project) 

that implements the proposed Selective Interlayer Prediction strategy. Current implementation 

in JSVM code uses Dynamic programming approach to solve it.  

 

4.4 SIP Codec Scheme 

The overall coding process using SIP scheme is as follows [46]: 

 

4.4.1 The encoder:  

The encoder must encode the sequence three times. The application should mention in 

advance the allowed bit rate increase in with MA case e.g. It may be 3% more than original 

bitrate for layer ‘i’. 

First the encoder encodes using original configuration i.e. allowing interlayer prediction 

on all low resolution frames. It makes a record of bits allocated for each low and high resolution 

frame for the entire sequence with interlayer prediction. 

Secondly it encodes the sequence by disabling interlayer prediction on all low resolution 

frames. It again makes record of bits allocated for all low and high resolution frames without 

interlayer prediction. 

Then it feeds both the records i.e. bits allocated with and without interlayer prediction 

for all the frames in the sequence to the SIP Analyzer. Output of this algorithm is a matrix 
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)( j

ix which specifies whether interlayer prediction for frame i on layer j should be turned off 

( )( j

ix  = 1) or it should be used ( )( j

ix =0). 

Finally it encodes the sequence using this SIP decision matrix )( j

ix to get the final 

bitstream. 

  

4.4.2 The extractor 

 The bit stream extractor produces the bitstream as the application demands. If the 

application needs MA scenario extractor can be invoked in usual way thereby retaining frames 

on lower resolution. If the application demands without MA scenario, extractor can be invoked 

by specifying ‘-sip’ option by discarding low resolution frames as specified by SIP decision 

matrix )( j

ix  to get desired resolution bitstream. 

 

4.4.3 The decoder 

 No change is needed on decoder side except that it should support single loop 

decoding. 

 
The syntax modification in H.264/SVC standard needed to support SIP Analyzer tool can be 

found in [9]. Actual implementation in JSVM can be found in [65]. 

 
Fig. 4.1 SIP codec scheme [46] 
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CHAPTER 5 

KNAPSACK PROBLEM 

 

5.1 Introduction 

 The Knapsack Problem is a well known problem in combinatorial optimization [47].  

Optimization problems are those problems in which the objective is to find the best of all 

possible solutions i.e. to find solution in the feasible region that will optimize the value of 

objective function.  

 

Definition: There are ‘n’ objects each having some value ‘v’ and some weight ‘w’. Let i
th
 object 

be of value vi and weight wi. Let there be a knapsack which can carry objects with total weight 

no more than Wmax. The objective is to select items amongst ‘n’ items which will maximize total 

value and at the same time will not exceed the knapsack weight capacity.  

 

Mathematically,  

Maximize   ∑ vi                         

 i 

 

Under the constraint,    ∑ wi  ≤ Wmax; for i є  [1, n]    (5.1)  

   i 
 
Considering number of objects allowed selecting while filling the knapsack there are two 

variations of this problem. 

 

1. Bounded Knapsack Problem: It puts a bound on the number of objects of each type that 

can be chosen while making the selection. 
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Mathematically,  

Maximize    ∑ xi. vi                         

     i 

 

Under the constraint,   ∑ xi. wi  ≤ Wmax; for i є [1, n]      (5.2)                              

  i 

 
where  0 ≤  xi ≤   bi  for some 0 < bi <  ∞   

 

2. Unbounded Knapsack Problem: It puts no restriction on the number of objects of each 

type chosen while making the selection.  

 

Considering type of objects used while filling the knapsack, we can have, 

  

1. The 0-1 Knapsack Problem: It is special case of bounded Knapsack Problem with bi =1. 

So for every object we have choice of either choosing or discarding the object only 

once. If selected the object has to be taken in its entirety.  

  

2. The Fractional Knapsack Problem: It is special case of Knapsack Problem with the 

provision that object can be selected in its fraction.  

 

We will focus on 0-1 Knapsack Problem. 

 

Some concepts: 

P class problem: A computational problem is in class P (the polynomial time) if there is some 

deterministic algorithm that solves the problem and runs in time O(n
 k
) where ‘k’ is some integer 

[48]. These problems are generally considered to be feasible.  
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NP class problem: A computational problem is said to be in class NP (non-deterministic 

polynomial time) if there is some non-deterministic algorithm that can solve the problem in 

polynomial time. NP problem requires lucky guesses to work efficiently. 

 

NP-complete problem: They are subset of NP problems. They are the most difficult problems 

in NP class in the sense that there in unavailability of any algorithm that can solve such problem 

in polynomial time. In other words, if a polynomial time solution exists for an NP-complete 

problem then that would provide solution to every other problem in NP class. 

 

Knapsack Problems are considered to be NP-complete or Pseudo-Polynomial time 

algorithms in computational complexity theory. Pseudo-polynomial time algorithms are those for 

which running time is polynomial in the numeric value of the input but is actually exponential 

with length of the input i.e. number of digits in representation of the number.  So pseudo 

polynomial time algorithms are impractical for large values of input sequences.  

 

5.2 Solution to the Knapsack Problem 

As Knapsack Problem is supposed to be an NP-complete problem for which finding an 

exact solution for a large set of input is nearly impossible in practice. There are several ways of 

finding optimal/nearly optimal solution to the Knapsack Problem. Some of them are: 

 

1. Brute-force approach: It is the most straightforward solution. Since there are ‘n’ items 

we can have ‘2
n’
 possible combination of these items. We have to go through all 

combinations and find the one with maximum total value and total weight not more than 

Wmax. However it is inefficient and impractical for moderate and large length of input 

sequences. Complexity of this algorithm is O(n.2
n
). 
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2. Dynamic Programming: It takes much less time than brute-force approach to reach to 

the optimal solution provided that the problem exhibits properties of optimal 

substructure and overlapping subproblems which are discussed later in this chapter. 

3. Greedy Choice Solution: If the problems exhibit optimal substructure they can be solved 

by heuristic methods. They are much more efficient than dynamic programming in 

terms of computational complexity. Greedy approach can give optimal solution in 

fractional Knapsack Problems however they do not guarantee optimal solution to the 0-

1 Knapsack Problems [49]. They may give good solution for practical purposes.  

4. Memory Functions: Memory functions use the same recurrence relation as the dynamic 

programming approach. However they use top-down approach only to the subproblems 

that are necessary unlike Dynamic programming. More information can be found in [50] 

[51]. 

5. Branch-and-Bound: It is a generic algorithm used especially in discrete and 

combinatorial optimization problems. It is an improvement over exhaustive search in the 

sense that it generates candidate solutions one component at a time and evaluates 

these partly constructed solutions by using lower and upper estimated bounds of 

quantity being optimized. If discards those solution which are not going to lead to fruitful 

solution by not generating other components. 

6. Genetic Algorithm: It is a search technique used to find optimal/sub-optimal solution to 

search and optimization problems. It has been inspired by Darwin’s theory of evolution. 

Algorithm is started with set of possible solutions (called population). Solution from one 

population is chosen to form another population (called offspring) hoping that new 

population will lead to a better solution. This selection is done according to their fitness. 

This is repeated until some condition is satisfied [52].   
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Numerous papers have been written about various approaches towards finding optimal/nearly 

optimal solutions to generic/special cases of Knapsack Problem in the fields like business, 

operations research, cryptography, applied mathematics and many more. However study [53] 

shows that Dynamic programming remains the popular choice when it comes to finding optimal 

solution to a generic Knapsack Problem. 

 

5.2.1 Dynamic Programming 

Dynamic Programming is an algorithmic technique which is used to efficiently solve 

wide range of optimization and search problems which exhibit properties of overlapping 

subproblems and optimal substructure which are discussed later. This technique was originally 

used by Richard Bellman in the 1940s which was later modified several times. 

Since the Knapsack Problem exhibits both of these properties Dynamic programming is 

a good candidate for solving it. 

 

More specifically Dynamic programming makes use of following properties: 

� Overlapping subproblems 

� Optimal substructure 

� Memoization 

 
 
Some concepts: 

Overlapping subproblems: A problem is said to have overlapping subproblems if main 

problem can be divided into number of small problems and solution to each of them can be 

used then several times.  

e.g. Fibonacci series: The generalized equation for Fibonacci series is, F(n) = F(n-1) + 

F(n-2), where F(n-1) = F(n-2) + F(n-3) which means, F(n) = F(n-2) + F(n-3) + F(n-2). Thus F(n-

2) is getting reused. So it is exhibiting overlapping subproblems property.  
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Optimal substructure: Optimal substructure means optimal solution to a problem lies in the 

optimal solution to the subproblems that the main problem can be broken into. 

e.g. Shortest path algorithm: The shortest path from one node to another should contain 

shortest path from its nearest neighboring node to the other node. If this is not true then we will 

have shorter path than the shortest path which is a contradiction! Thus problem of finding 

shortest path exhibits optimal substructure property. 

 

Memoization: It is an optimization technique usually used in recursive algorithms by lowering 

functions time cost in exchange of functions space cost. In other words it speeds up the 

recursive program execution by avoiding repetitively calculating results needed to calculate 

future results by storing them in a lookup table on an as needed basis. They can be used 

directly while calculating future results.  

 

Typical way of solving problems using Dynamic programming is to break the main 

problem into subproblems; finding solutions to the subproblems by solving them and 

memorizing (storing) their results in case they need to be solved again and then trace back 

towards the solution to main problem by combining the solutions to the subproblems. This 

approach involves recursion and memorization combined together. 

We will now consider Dynamic programming with reference to solving 0-1 Knapsack 

Problem. 

 

To recall: There are ‘n’ objects each having some value ‘v’ and some weight ‘w’. Let i
th
 object be 

of value vi and weight wi. Let there be a knapsack which can carry objects with total weight no 

more than Wmax. The objective is to choose combination of items amongst ‘n’ items by 

choosing/discarding each item only once, which will maximize total value and at the same time 

will not exceed the knapsack weight capacity.  
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We define A(i,j) as the maximum value that can be attained by considering first ‘i’ items that can 

weigh no more than ‘j’ units [54]. 

 

A(0,j) = 0 and A(i,0) = 0 for any i ≤ N and j ≤ Wmax which is obvious. 

 

If  wi > j then A(i,j) = A(i-1, j) because we can not include item ‘i’.  

 

If wi ≤  j then we have choice of including i
th
 item or excluding it. If we include it then total value 

will be vi + A(i-1, j- wi) whereas if we exclude it total value will become A(i-1, j). The choice of 

whether to include or exclude depends on what is the maximum value amongst both of them. 

 

Mathematically we can put it in following recursive expression. 

 

(5.3) 

 

Here the subproblems overlap because at any stage (i,j) we may need to calculate A(k, 

l) for k < i and l < j. We have optimal substructure because at any point we need only the 

information about choices that we have already made.  

Since we need to calculate A(n, Wmax) as the solution to the Knapsack Problem. While 

doing so, we will need to create an ‘n’ by ‘W max’ table with A(i,j) as entry at location (i,j). 

Calculating and storing A(i,j) values is Memoization which is used to exploit overlapping 

subproblems. 
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Then we iterate over all i ≤ n and j ≤ Wmax by which we are basically exploiting optimal 

substructure. While using the recursive formula we do not recalculate previous entries but use 

table lookup instead. Out desired result is stored as (n, Wmax) 
th
 entry in the table. 

Pseudo code for Dynamic programming with reference to 0-1 Knapsack Problem would be: 

Function dynamic (v[], w[],Wmax ) 

for w = 0 to Wmax 

    do A[0, w] = 0 

for i = 1 to n 

    do A[i, 0] = 0 

        for w = 1 to Wmax 

            do if wi ≤ w 

                 then if vi + A[i-1, w-wi] 

                       then A[i, w] = vi + A[i-1, w-wi] 

                       else A[i, w] = A[i-1, w] 

                 else 

                      A[i, w] = A[i-1, w] 

 

Computational complexity of this algorithm is O(n. Wmax) in time and O(n. Wmax) in space. It 

should be noted that this is not a polynomial time solution to an NP-complete problem. 

 

Everyday examples of Dynamic programming include: 

• Viterbi algorithm used in Digital communication in connection with Hidden Markov 

Models. 

• The Needleman-Wunsch algorithm used in Bioinformatics. 

• Floyd’s shortest path algorithm 
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• Duckworth-Lewis method used in sport of Cricket. 

• Finding string-edit distance between two strings in spellcheckers.  

 

5.2.2 Other Approaches 

Presently all known algorithms that give optimal/nearly optimal solution to Knapsack 

Problem require time that is superpolynomial in the input size [55]. Therefore to solve such 

problems in real time where one is limited with computational resources and also can be 

satisfied with some solution that works well for all practical purposes we can use sub-optimal 

algorithms to solve NP-complete problems.   

For most of the practical purposes other techniques like Approximation, Randomization, 

Restriction, Parameterization or Heuristic can be used. They provide reasonably good solution 

and significantly faster processing speed.  

Most popular are Approximation and Heuristic methods. If one wants provably good 

solution within some tolerance limits of the optimal solution and known runtime bounds then 

approximation algorithms can help. But they consume considerably more time and space than 

heuristic methods.  

For example, Ibarra and Kim [56] provide one such approximation algorithm where 

relative error is guaranteed to be at most E with respect to the optimal solution. However time 

and space complexity of this algorithm is O(n/ E
2
) and hence polynomial in n and 1/ E. Proof 

can be found in [57].  

Heuristic methods like Greedy provide practically good solution considerably fast. They 

are simple, straightforward and require minimal amount of resources. They are easy to invent, 

implement and efficient for most of the times.  Even though optimality of this solution can not be 

always guaranteed, they remain popular choice when it comes to practical implementation [58]. 
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5.2.3 Greedy Heuristic Algorithm 

Greedy heuristic algorithms are the most simple and straightforward in their approach. 

They are shortsighted in the sense that they work by making decision that seems most 

promising at the moment on the basis of information at hand without considering possible side 

effects and never reconsiders the decision once made. They make locally optimum choice at 

each stage in the hope of finding global optimum which they may or may not obtain eventually. 

Greedy heuristic works in top-down manner by making one greedy choice after another 

reducing the given problem to smaller ones unlike Dynamic programming which solves the 

subproblems bottom-up and then combine the solutions to an optimal one. Even though 

exhaustive, Dynamic programming is guaranteed to find the optimal solution. 

 

Characteristics of problems for which Greedy methods can be applied are: 

� Greedy Choice Property: It means that globally optimum solution can be arrived at by 

making a locally optimal (greedy) choice. It iteratively makes greedy choices thereby 

reducing main problem to smaller ones and never reconsiders the decision once made. 

� Optimal substructure: Optimal substructure means optimal solution to a problem lies in 

the optimal solution to the subproblems that the main problem can be broken into.  

 

Typically if the problem exhibits optimal substructure property Greedy approach can be 

applied to find the solution. In addition if the problem also exhibits overlapping subproblems 

property Dynamic Programming can be a good choice, whereas if a problem does not exhibit 

any of these cases, then brute force approach can give optimal solution. 

 

Typical structure of Greedy algorithm is [59]: 

� Initially the set of chosen items is empty i.e. solution set 

� At each step 



 

 

 

51 

o Items will be added to the solution set by selection function 

o IF the solution set would no longer be feasible i.e. it can not be extended to 

produce optimal solution 

� Reject corresponding items and never consider them again 

o ELSE IF solution set is feasible THEN 

� Add the corresponding items 

 

 We will now consider Greedy heuristic algorithm with reference to solving 0-1 Knapsack 

Problem. 

Possible selection functions for making greedy choice are: 

� Choosing item with maximum value from remaining items that will increase total value 

of knapsack quickly 

� Choosing lightest item from remaining items which fills up capacity slowly thereby 

allowing more items to be stuffed and possibly maximizing total value 

� Choosing item with highest value per unit weight at each stage from remaining items 

 

It has been verified [53] that the third strategy i.e. choosing item with highest value per unit 

weight at each stage gives best results.  

Using this selection function and using maximum allowed weight as the upper bound on 

feasibility we can write following pseudo code for the Greedy algorithm to solve 0-1 Knapsack 

Problem: 

Function greedy (v[], w[],Wmax ) 

Wtotal = 0 

for i = 0 to N-1 

pi = vi/wi 

for i = 0 to N-1 
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sort pi in descending order and put result in si. A[si] retrieves item with cost per 

unit weight si. 

for i = 0 to N-1 

 if  (wi + Wtotal) > Wmax 

discard A[si] 

else 

 consider A[si] 

 Wtotal = Wtotal + wi 

 

Complexity of this algorithm is O(N.logN) to sort the elements plus O(N) to pick up the 

elements i.e. O(N.logN) + O(N) ≈ O(N.logN) in time. Space needed is just a single dimensional 

array of size ‘N’, which is considerably less than Dynamic programming approach. Also, this is a 

polynomial time algorithm which can be implemented in real-time systems. 

As we can see, once the Greedy selection algorithm makes a choice to put an element 

in the knapsack it never reconsiders this decision later. All it is left with is the set of remaining 

items to make future decisions. Disadvantage of this approach is that if our selection function is 

not optimal it introduces error in one step and goes on accumulating it further. As a result the 

final set of items which Greedy heuristic has chosen to be placed in the knapsack may not be 

optimal. So the knapsack may not be filled completely to its capacity or if filled may not have 

maximum possible total value of items. 

It should be noted that Greedy heuristic algorithm can give optimal solution to fractional 

Knapsack Problems but not to 0-1 Knapsack Problem [49]. Thus there is a tradeoff between 

optimality of the output versus complexity of the Greedy heuristic algorithm for 0-1 Knapsack 

Problems.  

However Greedy approach is much faster than any other approach and the results 

produced by Greedy approach are good approximations to the optimal solutions [60] when 
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tested for large set of data. Therefore Greedy heuristic remains the popular choice when one 

does not need provably good solution but just good solution is acceptable.  

 
5.3 Example 

We will illustrate each of the two methods with a simple example for a 0-1 Knapsack Problem. 

 

Problem: 

Let there be 3 items and a knapsack with maximum weight allowed = 5 units 

 

                    Table 5.1 Knapsack Problem: Input data 

Item 
i 

Value 
vi 

Weight 
wi 

1 2 1 

2 3 2 

3 4 3 

 

 

Choose items using 0-1 Knapsack Problem criterion that will total maximum value without 

exceeding maximum weight allowed. 

 

Approach 1: Dynamic programming solution [61] 

Create a 2-D array of size 4x6 (i.e. (N+1) x (Wmax+1)). It initially looks like, 

 

Table 5.2 Dynamic Programming: filling table values 
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Then using the pseudo-code for dynamic programming we can fill up the entries in the table. 

After filling up all the entries the table looks like: 

 

Table 5.3 Dynamic Programming: tracing back the table 

 

 

Once we have filled up all the entries we need to trace back the table for finding entries that 

lead to optimal solution. If T(i,w) are the items that produce solution V(i,w) then, 

 

T(i,w)  =  T(i-1, w)   ; if V(i,w) = V(i-1, w)  

  = { i } U  T(i-1, w-wi)  ; otherwise 

 

Using this criterion we get items 2 and 3 as desired.  

 

Approach 2: Greedy Heuristic Solution 

We choose selection function as the one with highest value to weight ratio. First we calculate   

pi = vi/wi values and sort them as, 

 

Table 5.4 Greedy Approach: sorting values 

Item 
i 

Value/Weight 
pi = vi//wi 

1 2 

2 1.5 

3 1.33 
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We have Wmax = 5 

Set Wtotal = 0 

Consider sorted item 1:  Wtotal = Wtotal + wi = 0 + 1 = 1 

Wtotal ≤ Wmax so select item 1 

 

Consider item 2: Wtotal = Wtotal + wi = 1+ 2 = 3  

Wtotal ≤ Wmax so select item 2 

 

Consider item 2: Wtotal = Wtotal + wi = 3 +3 = 6  

Wtotal > Wmax so discard item 3 

 

Therefore items selected are 1 and 2 (not an optimal choice) and their total value is 6. 

As we can see here, solution given by Greedy heuristic completely depends on the selection 

function used while making the choice. There can be several ways of choosing an item.  

However as discussed in section 5.2.3 results given by using highest value to weight 

ratio criterion approach optimal solution over large set of data. 

 

5.4 Summary 

Knapsack Problem is classical problem in combinatorial optimization. It is an NP-

complete problem for which there lacks any algorithm that can give polynomial time solution. 

Dynamic Programming if the most popular method when optimality of solution is 

concerned. It gives optimal solution to 0-1 Knapsack Problem although it is not polynomial time 

algorithm.  

Greedy remains popular choice when it comes to implementations. It is polynomial time 

algorithm however optimality of such solution can not be always guaranteed. Greedy heuristic 
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approach works well for large set of data and its solution closely matches to optimal solution for 

most of the practical purposes.  
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CHAPTER 6 

CONTRIBUTION OF THE THESIS 

 

6.1 Background 

 As discussed in chapter 4, Knapsack Problem is the core of the SIP decision algorithm 

or the SIP Analyzer tool which decides the right combination of lower resolution frames for 

which inter layer prediction can be safely turned off in order to produce a bitstream which can 

save bitrate in without MA scenario and also not exceed bitrate than restricted limits in MA 

scenario. 

As seen in chapter 5, Knapsack Problem is an NP-complete problem for which there 

lacks any algorithm which can give optimal solution in polynomial time. Dynamic programming 

gives optimal solution to Knapsack Problem and hence current implementation of SIP Analyzer 

uses Dynamic Programming approach to solve the Knapsack Problem in SIP decision algorithm 

although it is not polynomial time algorithm. 

Complexity of Dynamic programming in SIP Analyzer is O(n. R′max) in time and also in 

space. [Ref: section 4.3 to get description of terms] where ‘n’ is total number of frames in lower 

resolution layer and max'R = Rmax – R – r’ as discussed in section 4.3. As max'R depends 

entirely on the bitrate at which the sequence is being encoded, there is no upper limit on the 

value. It depends solely on the application. In fact it would be sensible to use SIP strategy for 

high bit rate coding systems where it is useful to have any saving in the bitrate because the 

bandwidth might already have become bottleneck. However the factor max'R will also increase 

as the encoding bitrate increase. Also we can not make any assumption about ‘n’. Therefore 

complexity of the algorithm increases when the algorithm is most needed. 
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Keeping these issues in mind, complexity O(n. R′max) in time and in space is not feasible 

for real time systems where processing time and power have constraints. Therefore even 

though Dynamic programming solves the Knapsack Problem in SIP Analyzer optimally, it is not 

practical way of doing it, as ‘n’ or ‘R′max’ grows in size. 

 As already discussed in chapter 5, Greedy heuristic remains the most popular choice to 

solve Knapsack Problems when it comes to real time implementations.  

 One good example of this is the Greedy Merge algorithm used in MPEG-4 AAC 

encoder implementations to perform optimal codebook search in Huffman coding where one 

has to find the right combination of codebook vectors that will code the frame with least possible 

bits under given rate-distortion constraint. This is also a 0-1 Knapsack Problem. Even though 

Greedy Merge may not always yield the optimal solution to the problem, it produces fairly good 

solution for practical purposes with considerably lower resource consumption. That is the 

reason it has been used in mostly all the industry implementations of MPEG-4 AAC [62] 

encoder. 

 

6.2 Proposal 

In this thesis, we propose applying Greedy heuristic approach to solve Knapsack 

Problem in SIP Analyzer in H.264/SVC and evaluate its performance both qualitatively and 

quantitatively.  

Since Greedy heuristic does not yield optimal solution to 0-1 Knapsack Problem, by 

applying it to SIP Analyzer we may not get the right combination of lower layer frames for which 

interlayer prediction can be turned off in without MA scenario to save the bitrate. There may be 

mismatch between the optimal solution given by existing Dynamic programming based 

algorithm and the one given by proposed Greedy based approach. However motivation for 

doing it lies in the reduced computational complexity while making SIP decision. 
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We have modified the SIP Analyzer module in JSVM code (version 5.10) to incorporate 

Greedy heuristic approach to solve the Knapsack Problem instead of existing Dynamic 

Programming based approach.  

Since mathematically we can not prove optimality of solution provided by Greedy 

heuristic approach, we have tried to judge its qualitative performance by conducting large 

number of tests. 

We conducted tests for all possible scalability scenarios with the standard test vectors 

specified by JVT for H.264/SVC testing and also with some more standard test cases used in 

MPEG and H.264 world. The results are promising.  

Chapter 7 discusses the results in more detail, however in essence we can say that 

Greedy approach works very well in terms of computational complexity reduction whereas in 

terms of optimality of the solution, the deviation from bitrates from optimal solution in with and 

without MA scenarios is considerably small. 

 

6.3 Implementation 

Proposed code for Greedy heuristic approach to solve Knapsack Problem in SIP Analyzer 

module in JSVM code [65] is as follows: 

 

 
// SSS Solve the Knapsack Problem using Greedy heuristic  

// Original routine from [65] is modified here 

 

ErrVal SIPAnalyser::xProcessKnapsack(int iNumber,  

    int *piWeight,  

    int *piPrice,  

    int iBagCubage,  

    int *piDecision) 

{ 

 

 int i,j; 

 

 // Create a 2-D array ppiM[value/weight][index]  

// and fill in the values 

 

 double **ppfM; 

 ROF(ppfM=new double* [iNumber+1]); // One extra space  
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        // to avoid exception  

 for(i=0;i<=iNumber;i++)  

 { 

  ppfM[i]=new double[2]; 

  ROF(ppfM[i]); 

 

  ppfM[i][0] = double(piPrice[i])/double(piWeight[i]); 

  ppfM[i][1] = (int)i; 

 } 

 

// Sort the array in descending order 

 RNOK(xQuickSort(&ppfM[0], 0, iNumber-1)); 

 

 // Call Greedy 

 RNOK(xGreedy(iNumber, iBagCubage, piWeight, ppfM, piDecision)); 

 

// Free memory 

 for(i=0;i<=iNumber;i++) 

  delete [] ppfM[i]; 

       delete [] ppfM 

 

 return Err::m_nOK; 

} 

 

 

// Greedy Heuristic approach to solve the 0-1 Knapsack Problem using       

// largest value to weight ratio criterion 

 

ErrVal SIPAnalyser::xGreedy(int iItemsLeft,  

 int iBagCubage,  

 int *piWeight,  

 double **ppfM,  

 int *piDecision) 

{ 

 

// Do until no items left 

 if(iItemsLeft <= 0)    

  return Err::m_nOK; 

 

 

// Pick up the item if it fits 

 if(piWeight[(int)ppfM[0][1]] < iBagCubage)  

{ 

  iBagCubage-=piWeight[(int)ppfM[0][1]]; 

  piDecision[(int)ppfM[0][1]]=1; 

 } 

// Discard if it does not fit 

 else          

  piDecision[(int)ppfM[0][1]]=0; 

 

 ppfM+=1; 

 

// Do it recursively for remaining items 

 RNOK(xGreedy(iItemsLeft-1, iBagCubage, piWeight, ppfM, piDecision)); 

 

 return Err::m_nOK; 

} 
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// Sort the array in descending order using QuickSort [63][64] 

 

ErrVal SIPAnalyser::xQuickSort(double** ppfM,  

     int iLower,  

     int iHigher) 

{ 

 //  iLower is the lower index and iHigher is the upper index 

 //  of the array to be sorted 

 

 int i = iLower, j = iHigher; 

 double x = ppfM[(iLower+iHigher)/2][0],temp1, temp2; 

 

 //  Perform partitioning 

 do 

 {     

  while (ppfM[i][0] > x)  

   i++;  

  while (ppfM[j][0] < x)  

   j--; 

 

  if (i<=j) 

  { 

   temp1 = ppfM[i][0]; 

   temp2 = ppfM[i][1]; 

   ppfM[i][0] = ppfM[j][0];  

   ppfM[i][1] = ppfM[j][1];  

   ppfM[j][0] = temp1; 

   ppfM[j][1] = temp2; 

   j--; 

   i++;  

  } 

 } while (i<=j); 

 

 //  Sort both the parts recursively 

 if (iLower < j)  

  xQuickSort(ppfM, iLower, j); 

 if (i < iHigher)  

  xQuickSort(ppfM, i, iHigher); 

 

 return Err::m_nOK; 

} 
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CHAPTER 7 

RESULTS AND CONCLUSION 

 

As discussed in previous chapters, the optimality of the solution given by Greedy 

Heuristic approach can not be mathematically proven. Therefore we conducted sufficiently large 

number of tests with possible scenarios where SIP Analyzer could be used.  

The main aim while conducting these tests was, to show quantitative performance 

improvement by measuring computing time and memory consumption for each algorithm.  

To measure qualitative performance of Greedy approach, we can either show change in 

bitrate at given PSNR value or show change in PSNR value at given bitrate. We have chosen 

the later option because it is easy to extract a subsequence at target bitrate using bitstream 

extractor provided by JSVM [65]. However it should be mentioned that using SIP decision does 

not affect coded frame’s quality. It just helps reducing bitrate. 

While presenting the results, we have compared decisions given both the algorithms 

(and corresponding decision error for Greedy approach) and the effect of that decision error in 

terms of PSNR degradation. Both the errors are measured for MA and without MA scenarios. 

 

7.1 Test Scenario 

The test sequences used include standard test cases suggested by JVT [66]. They 

include – Bus, City, Crew, Football, Foreman, Harbour, Mobile and Soccer.  

In addition we also used some more popular test vectors used in H.264 and MPEG 

World [67] [68] [69]. They are – Stefan, Deadline, Suzie, Miss-America, Flower, Tempete, 

Waterfall, Students, MaD9003 (Mother and Daughter), Paris, Pamphlet, News, Silent, Akiyo, 
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Coastguard, Container, Hall, Bowing, Carphone, Claire, Grandma, Bridge-Close (Bridge Close 

View).  

All test sequences have CIF@30, QCIF@15 resolutions at 4:2:0 sampling. In addition, 

City, Crew, Harbour and Soccer also have 4CIF@60 resolution. The minimum frame size is 90 

and the maximum is 2000 for the sequences used. 

The JSVM version used is 5.10 (just next version after actual SIP Analyzer was 

integrated in JSVM) mainly because we found it more stable than any other later version as far 

as SIP Analyzer is concerned. Other aspect is: our experiment is mainly concerned with 

evaluating performance of Greedy heuristic with respect to Dynamic Programming based 

approach in SIP Analyzer. Later JSVM versions have mainly improved the VCL components. 

Therefore applying same Greedy based approach to SIP Analyzer in any later version should 

give equivalent results except minor differences in PSNR values. 

All the tests were conducted on Dell Dimension DM061 machine with Intel ® Core ™ 2 

CPU @ 2.13 GHz, 3070 MB RAM and 32-bit Windows ® Vista ™ Home Premium Edition 

Operating system.  

For profiling the routines, we used GetSystemTimeAsFileTime() function for 

Windows ® which gives execution time with accuracy in milli-seconds. 

Possible application scenarios for SIP based codec use Spatial and Combined 

Scalability. Therefore we have tested our algorithm for these two scalability modes. For all test 

scenarios, allowed bitrate increase in ‘with MA’ scenario is restricted to 3% of original bitrate. 

 

For all scenarios, the error is calculated as: 

 

(DecisionDynamic - DecisionGreedy) 

% Decisionerror   =                                                                 x 100    (7.1) 

           DecisionDynamic 
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(PSNRDynamic - PSNRGreedy) 

% PSNRerror       =                                                          x 100    (7.2) 

        PSNRDynamic 
 
 

where, PSNRerror is the error caused in PSNR value of frame decoded at given bitrate, 

corresponding to error in decision because of sub-optimal Greedy approach. 

 

7.2 Results 

 While presenting the results, error values are averaged out after measuring errors for 

different quantization parameters. However we would like to mention that in most of the test 

cases, maximum error never exceeded 0.1%. 

  

The results for possible scalable modes are as follows: 

 

7.2.1 Spatial Scalability 

Each sequence was coded at three different Quantization Parameter (QP) values with 

two spatial layers. They are (28, 30), (30, 32), (32, 36) in (QPbase, QPenhanced) format. Error 

shown is calculated by averaging errors at all three points. Some of the encoder settings include 

– GOP Size 32, AVC Compatible Base layer mode, Loop filter on (idc = 0), Motion search with 

FastSearch (mode = 4), NumFGSLayers = 1. 

 

Following are results for QCIF15 and CIF30 combination: (The error is measured for enhanced 

layer i.e. CIF30 layer in this case) 
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Table 7.1 Results for spatial scalability (Enhancement layer resolution CIF30) 

 
% Error in 

SIP Decision 
 

% Error in 
PSNR 

 

Avg Processing Time 
(u –sec) 

 

Sequence 
 
 
 

# 
of 

frames 
 
 

with 
MA 

 

wo 
MA 

 

with 
MA 

 

wo 
MA 

 

Dynamic 
 
 

Greedy * 
 
 

 
Avg 

Memory 
Saving ** 

 
 

stefan 90 0.0307 -0.0985 -0.0111 -0.0363 146666.6667 0.0000 3976.6667 

bus 150 0.0341 -0.0940 -0.0024 -0.0049 354666.6667 0.0000 1797.8333 

deadline_1 150 0.0191 -0.0366 -0.0062 -0.0064 110000.0000 0.0000 591.8333 

deadline_2 150 0.0470 -0.2084 0.0703 -0.0579 86000.0000 0.0000 3473.0000 

deadline_3 150 0.0000 0.0000 0.0000 0.0000 80000.0000 0.0000 3184.3333 

deadline_4 150 0.0569 -0.1854 -0.0191 -0.0216 113000.0000 0.0000 2954.5000 

deadline_5 150 0.0072 -0.0172 -0.0017 -0.0118 120666.6667 0.0000 474.5000 

deadline_6 150 0.0064 -0.0176 -0.0059 -0.0051 138000.0000 0.0000 1025.5000 

deadline_7 150 0.0028 -0.0166 -0.0039 -0.0040 127000.0000 0.0000 710.6667 

suzie 150 0.0129 -0.0103 0.0000 0.0034 52000.0000 0.0000 648.1667 

miss-america 150 0.0170 -0.0164 -0.0105 -0.0052 41666.6667 0.0000 24.1667 

flower 250 0.0043 -0.0066 -0.0001 0.0012 516333.3333 333.3333 20540.1667 

tempete 260 0.0097 -0.0283 -0.0020 0.0023 605333.3333 333.3333 660.6667 

waterfall 260 0.7602 -0.4201 0.0016 -0.0200 328000.0000 333.3333 3717.3333 

football 260 0.0130 -0.0184 0.0007 0.0003 556666.6667 333.3333 2654.3333 

students1 300 0.0006 -0.0023 -0.0010 -0.0002 351666.6667 0.0000 237.8333 

students2 300 0.2889 -0.3879 0.0047 -0.0098 242000.0000 0.0000 1491.3333 

MaD9003 300 0.0026 -0.0093 0.0000 0.0009 342000.0000 0.0000 79.8333 

paris 300 0.0051 -0.0077 0.0006 0.0019 664000.0000 0.0000 2070.1667 

foreman 300 0.0024 -0.0171 0.0188 -0.0102 511000.0000 0.0000 188.5000 

mobile 300 0.0378 -0.0341 0.0113 -0.0339 630666.6667 666.6667 21992.8333 

soccer 300 0.0114 -0.0218 0.0000 0.0026 682333.3333 333.3333 501.1667 

harbour 300 0.0058 -0.0221 -0.0031 0.0001 585000.0000 0.0000 286.1667 

city 300 0.0000 0.0000 0.0000 0.0000 520000.0000 333.3333 19274.3333 

crew 300 0.0015 -0.0144 0.0120 0.0016 788333.3333 333.3333 47.1667 

pamphlet 300 0.0018 -0.0688 0.0053 -0.0010 165666.6667 333.3333 342.8333 

news 300 0.0084 -0.0260 -0.0028 -0.0026 410666.6667 0.0000 223.8333 

silent 300 0.0028 -0.0070 0.0003 -0.0003 490000.0000 0.0000 213.3333 

akiyo 300 0.0056 -0.0124 -0.0056 -0.0016 111000.0000 0.0000 145.5000 

coastguard 300 0.0060 -0.0136 -0.0028 -0.0036 769000.0000 333.3333 354.1667 

container 300 0.0007 -0.0197 0.0649 -0.0259 333333.3333 0.0000 2797.6667 

hall 300 0.0147 -0.0003 -0.0028 -0.0039 470000.0000 333.3333 2685.3333 

bowing 300 0.0020 -0.0169 0.0467 0.0341 145666.6667 0.0000 157.6667 

carphone 382 0.0112 -0.0067 -0.0032 -0.0003 747666.6667 0.0000 18.5000 

claire 494 0.0017 -0.0041 -0.0007 -0.0002 373000.0000 333.3333 239.0000 

grandma 870 0.0009 -0.0615 0.0469 0.0594 1308000.0000 1000.0000 53.0000 

bridge-close 2000 0.0000 0.0000 0.0000 0.0000 3746000.0000 1000.0000 38367.6667 

 
 
* zero processing time for Greedy means actual processing time is less than 1 m-sec 

** Average memory saving = (Bytes needed by Dynamic Programming) / (Bytes needed by 

Greedy) 
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Fig. 7.1 Results for spatial scalability: Harbour 
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Fig. 7.2 Results for spatial scalability: Mobile  

 

From fig. 7.1 and 7.2 we can see that, in ‘with MA’ scenario the overall bitrate increases 

than anchor (i.e. sequence coded without using SIP decision) within restricted limits, whereas, 

in ‘without MA’ scenario there is considerable saving in bitrate as compared to anchor. We can 
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also see that, in both cases, Greedy performance matches closely with that using Dynamic 

Programming approach.  

It should be noted here that, since Greedy can never perform better than Dynamic 

Programming, the decision error is always positive for ‘with MA’ scenario (it means Greedy may 

not achieve allowed maximum bitrate increase margin) whereas decision error is always 

negative for ‘without MA’ case (which means, Greedy may not achieve minimum possible bitrate 

in this case). However since each coded bitstream has limitation on bitrate resolution to which it 

could be extracted with bitstream extractor provided by JSVM, the PSNR error may be positive 

or negative depending on deviation in bitrates between extracted substreams. However from 

magnitude of the PSNR error for all test cases we can see that deviation is extremely small with 

Greedy approach. 

  

Following are results for CIF30 and 4CIF60 combination: (The error is measured for enhanced 

layer i.e. 4CIF60 layer in this case) 

 

Table 7.2 Results for spatial scalability (Enhancement layer resolution 4CIF60) 

% Error 
In Decision 

 

% Error 
In PSNR 

 

Avg Processing Time 
(u-sec) 

 
Sequence 

 
 
 

# 
of frames 

 
 

with 
MA 

 

wo 
MA 

 

with 
MA 

 

wo 
MA 

 

Dynamic 
 
 

Greedy 
 
 

Avg 
Memory 
Saving 

 
 

City 600 0.0002 -0.0005 0.0008 0.0010 1054000.0000 666.6666 7988.5000 

Crew 300 0.0049 -0.0192 0.0096 0.0023 202333.3333 0.0000 175.0000 

Soccer 300 0.0095 -0.0081 -0.0016 -0.0001 782666.6667 0.0000 500.6667 

Harbour 300 0.0099 -0.0197 -0.0010 0.0060 207533.3333 0.0000 1012.3333 

 

 

From both the tables we can observe that Greedy heuristic approach is extremely fast and 

consumes considerably less memory than Dynamic Programming based approach.  Also, the 

deviation from PSNR value (and thereby the bitrates) is very small for all practical purposes. 
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7.2.2 Combined Scalability 

Two spatial layers and three quality layers were used. The base and enhanced layers 

were coded with different QP values (28, 30), (30, 32) and (32, 36) with base layer and 

enhanced layer coded at 3 FGS layers. Some of the encoder settings include – GOP Size 32, 

AVC Compatible Base layer mode, Loop filter on (idc = 0), Motion search with FastSearch 

(mode = 4).  

 Following are results for QCIF15 and CIF30 combination: (The error is measured for 

enhanced layer i.e. CIF30 layer in this case) 

 

Table 7.3 Results for combined scalability (Enhancement layer resolution CIF30) 

 
% Error 

In Decision 
 

 
% Error 
In PSNR 

 

 
Avg Processing Time 

(u-sec) 
 

 
 
 

Sequence 
 
 
 

 
 
# 

of frames 
 
 

with 
MA 

 

wo 
MA 

 

with 
MA 

 

wo 
MA 

 

Dynamic 
 

Greedy 
 

 
 

Avg 
Memory 
Saving 

 
 

stefan 90 0.0781 -0.0313 0.0167 -0.0497 202666.6667 0.0000 19872.6667 

bus 150 0.0000 0.0000 0.0000 0.0000 251666.6667 0.0000 35851.6667 

deadline_1 150 0.0000 0.0000 0.0000 0.0000 189666.6667 0.0000 57812.8333 

deadline_2 150 0.0000 0.0000 0.0000 0.0000 192666.6667 0.0000 69214.6667 

deadline_3 150 0.0000 0.0000 0.0000 0.0000 237333.3333 0.0000 80123.6667 

deadline_4 150 0.0000 0.0000 0.0000 0.0000 174666.6667 0.0000 56894.6667 

deadline_5 150 0.0000 0.0000 0.0000 0.0000 201333.3333 333.3333 53058.8333 

deadline_6 150 0.0000 0.0000 0.0000 0.0000 227333.3333 333.3333 44838.1667 

deadline_7 150 0.0000 0.0000 0.0000 0.0000 207666.6667 0.0000 48625.8333 

suzie 150 0.0607 -0.0591 -0.0179 0.0108 248000.0000 0.0000 3487.8333 

miss-america 150 0.0942 -0.1066 -0.0252 0.0518 295333.3333 333.3333 3681.1667 

flower 250 0.0000 0.0000 0.0000 0.0000 525333.3333 0.0000 83219.1667 

tempete 260 0.0000 0.0000 0.0000 0.0000 568000.0000 0.0000 26574.6667 

waterfall 260 0.0000 0.0000 0.0000 0.0000 444666.6667 0.0000 52988.1667 

football 260 0.0183 -0.0321 -0.0079 0.0088 515333.3333 0.0000 895.8333 

students1 300 0.0000 0.0000 0.0000 0.0000 640000.0000 0.0000 45508.3333 

students2 300 0.0000 0.0000 0.0000 0.0000 481000.0000 0.0000 42798.8333 

MaD9003 300 0.0016 -0.0010 -0.0026 -0.0006 696000.0000 0.0000 31905.5000 

paris 300 0.0000 0.0000 0.0000 0.0000 512000.0000 0.0000 46942.1667 

foreman 300 0.0000 0.0000 0.0000 0.0000 556666.6667 0.0000 37569.3333 

mobile 300 0.0000 0.0000 0.0000 0.0000 560333.3333 0.0000 71443.6667 

soccer 300 0.0000 0.0000 0.0000 0.0000 322333.3333 333.3333 58653.3333 

harbour 300 0.0000 0.0000 0.0000 0.0000 591666.6667 333.3333 24721.3333 
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Table 7.3 - Continued 

city 300 0.0000 0.0000 0.0000 0.0000 252333.3333 0.0000 84901.3333 

crew 300 0.0154 -0.0306 -0.0016 0.0028 603333.3333 0.0000 665.3333 

pamphlet 300 0.0015 -0.0384 -0.0068 -0.0019 435000.0000 0.0000 8383.3333 

news 300 0.0069 -0.0145 -0.0019 0.0024 503000.0000 0.0000 43683.5000 

silent 300 0.0000 0.0000 0.0000 0.0000 426666.6667 333.3333 24069.5000 

akiyo 300 0.0110 -0.0231 -0.0364 -0.0121 532000.0000 0.0000 384.3333 

coastguard 300 0.0029 -0.0063 0.0029 0.0022 618000.0000 333.3333 5692.0000 

container 300 0.0000 0.0000 0.0000 0.0000 369000.0000 0.0000 25607.8333 

hall 300 0.0138 -0.0187 -0.0049 0.0022 646666.6667 0.0000 884.1667 

bowing 300 0.0078 -0.0086 -0.0006 0.0008 415000.0000 333.3333 6913.1667 

carphone 382 0.0171 -0.0188 -0.0049 0.0022 837000.0000 333.3333 5.3333 

claire 494 0.0078 -0.0213 -0.0053 0.0003 906333.3333 0.0000 600.6667 

grandma 870 0.0035 -0.0089 -0.0029 -0.0001 1725666.6667 333.3333 323.3333 

bridge-close 2000 0.0000 0.0000 0.0000 0.0000 4574333.3333 1333.3333 50349.6667 

 

 

In this particular coding configuration, for some test cases, the factor Wmax in Knapsack 

Problem becomes big enough to accommodate all input items. Therefore Greedy approach 

works correctly and we get zero error. 
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Fig. 7.3 Results for combined scalability: Crew 
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Akiyo CIF30
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Fig. 7.4 Results for combined scalability: Akiyo 

 

We can observe from fig. 7.3 and 7.4 that similar to spatial scalability, in combined 

scalability mode too, SIP strategy is useful as it saves bitrate in ‘without MA’ scenario.  

 

Following are results for CIF30 and 4CIF60 combination where the base and enhanced layers 

were coded with different QP values (28, 30), (30, 32) and (32, 36) and 3 FGS layers: (The error 

is measured for enhanced layer i.e. 4CIF60 layer in this case)  

 

Table 7.4 Results for combined scalability (Enhancement layer resolution 4CIF60) 

% Error 
In Decision 

 

% Error 
In PSNR 

 

Avg Processing Time 
(u-sec) 

 
Sequence 

 
 
 

# 
of frames 

 
 

with 
MA 

 

wo 
MA 

 

with 
MA 

 

wo 
MA 

 

Dynamic 
 
 

Greedy 
 
 

Avg 
Memory 
Saving 

 
 

City 300 0.0000 0.0000 0.0000 0.0000 261400 0.0000 60342.3750 

Crew 300 0.0019 -0.0020 0.0029 -0.0018 315200 0.0000 3094.5000 

Soccer 300 0.0000 0.0000 0.0000 0.0000 416800 0.0000 28556.0000 

Harbour 300 0.0069 -0.0187 -0.0036 0.0051 380000 333.3333 1712.8750 
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Thus, similar to spatial scalability, Greedy heuristic approach works well for combined scalability 

mode, too. 

 

7.3 Conclusions 

• Dynamic Programming is computationally complex approach to solve 0-1 Knapsack 

Problem in SIP Analyzer in H.264/SVC. Its complexity increases as number of input 

frames or coded rate increases. Time and memory consumption becomes considerably 

high for real time applications. 

• Greedy Heuristic approach though may not always yield optimal solution to 0-1 

Knapsack Problem, has advantage of considerably small resource consumption as 

compared to Dynamic Programming based approach. Our experiments verify this 

supposition.  

• In terms of optimality of solution, the decision error introduced in SIP decision by sub-

optimal Greedy approach (using highest value per unit weight criterion) is considerably 

small for most of the practical applications. Also its effect on bitrate deviation (or PSNR 

in our case) is substantially lesser in scope which should work for all real time 

applications where reasonably good solution is acceptable. We can not mathematically 

predict performance of Greedy approach; however our tests show that the maximum 

decision error is much less than 0.1% for almost all test scenarios. 

 

7.4 Future Scope 

This thesis is aimed at evaluating performance of Greedy heuristic for the 0-1 Knapsack 

Problem in SIP Analyzer tool in H.264/SVC reference software both qualitatively and 

quantitatively. As expected, it performs excellently as compared to existing Dynamic 

Programming based approach in terms of reduction in computational complexity. The 
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experiments show that, in terms of optimality of the solution, the deviation from bitrates/quality is 

extremely small for practical applications.  

However since it is not mathematically provable, for those concerned with provably 

good solution, Greedy may not be the right approach. It may be a good idea to evaluate 

performance of E-optimal algorithms for this problem as compared to Dynamic Programming 

and Greedy Heuristic based approaches. 

Current SIP scheme needs the video sequence to be encoded thrice. Any improvement 

in this strategy would also be highly useful in reducing overall processing time and resource 

consumption. 
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