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ABSTRACT 

 

FAST ALGORITHMS FOR MDCT AND 

LOW DELAY FILTERBANKS 

USED IN AUDIO CODING 

 

 

  

 

Ravi Kiran Chivukula, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Venkat Devarajan  

Modern audio and speech coding systems use filterbank and transform coding 

techniques to decorrelate the input signal. Cosine-modulated, perfect reconstruction, 

pseudo-QMF filterbanks are most commonly used for this purpose. In this thesis, we 

present three propositions. First, a fast algorithm for modified discrete cosine transform 

(MDCT) for transform lengths of the form 5× 2
m
 and 15× 2

m
 is presented. This 

algorithm is based on mapping the MDCT to DCT-II via DCT-IV and using the 

involutory property of the DCT-IV matrix. This leads to a reduction in the number of 

multiplications and constant memory requirement. The algorithm also uses very 
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efficient DCT-II modules for transform lengths of 5 and 15 which are derived from the 

Winograd Fourier Transform Algorithm. Second, the newly introduced MPEG-4 AAC 

Enhanced Low Delay filterbanks are mapped to MDCT. The mapping involves just 

input and output permutations, sign changes and additions. Since many fast algorithms 

exist for MDCT, this mapping essentially provides a fast algorithm for the new 

filterbanks. Third, we present a radix-5 decomposition for DCT-II useful for MDCT of 

length 5× 2
m
. This decomposition is useful for improving the precision of the fixed-

point implementations of the algorithms. Complexity analysis is provided for all the 

algorithms and comparisons are made with existing algorithms.   
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

There has been a tremendous growth in the use of digital multimedia in the last 

two decades. Speech and audio content have always been an integral part of 

multimedia. This exponential growth in demand for digital audio has created 

requirements for high fidelity content at very low bit rates. Consequently, there has 

been much research in the past two decades on perceptually lossless low bit rate 

compression of speech and audio data. This has led to several international standards for 

speech and audio such as Adaptive Multi Rate (AMR) Narrow Band codec, AMR Wide 

Band codec and Enhanced Variable Rate Codec (EVRC) for speech and MPEG-1 Layer 

3 (MP3), MPEG-4 Advanced Audio Coding (AAC) for audio; proprietary audio codecs 

such as Dolby AC-3, and an open source audio codec called Ogg Vorbis [1-6]. 

Speech codecs are based on vocal tract modeling for redundancy removal using 

a technique called Linear Predictive Coding (LPC) [7]. The human vocal tract is 

modeled as a time varying filter. The parameters of the filter (LPC coefficients) are 

transmitted or stored. Speech codecs are highly effective for single speaker material 

with the signals sampled at 8 kHz or 16 kHz. Their round-trip algorithmic delay is less 

than 30 ms making them useful for full-duplex communications purposes. On the other 
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hand, audio codecs achieve compression by exploiting the perceptual redundancies 

present in the audio signal [8, 51]. This perceptual redundancy is due to the limitations 

of the human auditory system. Audio and speech codecs operate on convenient blocks 

of the original signal called frames. To achieve good coding gain, audio codecs operate 

on longer frame lengths. In general, the audio signal can be assumed to be a quasi-

stationary random process within each frame. However, occasionally there could be 

non-stationary parts to the signal where a shorter frame length allows better modeling. 

Therefore, audio codecs also use look-ahead buffers for detecting non-stationary parts 

of the signal and switch over to a shorter block length to increase the temporal 

resolution. Audio codecs are highly effective for any generic audio content but suffer 

from large algorithmic delays (due to long block lengths and look-ahead buffers) 

making them unsuitable for full-duplex communications. 

1.2 Elements of an Audio Codec 

A basic block diagram of an audio encoder is shown in Fig. 1.1. 
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The analysis filterbank or the analysis transform splits the incoming signal into 

several frequency bands so as to exploit the statistical redundancies in the signal. 

Typically, cosine modulated, perfect reconstruction filterbanks such as the modified 

discrete cosine transform (MDCT) are used [4, 5, 26]. The perceptual model estimates 

the maximum inaudible amount of quantization noise that can be introduced in each sub 

band. The quantization and coding block does the actual quantization of the sub band 

samples based on the guidance information received from the perceptual model. The 

coded spectral coefficients are further entropy coded using Huffman codes, arithmetic 

codes etc. The parameters are then multiplexed into a bit stream which is either 

transmitted or stored. 

The block diagram of an audio decoder is shown below in Fig 1.2. 

 

 

 

 

Fig 1.2 Block diagram of an audio decoder 
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demultiplexed from the bit stream, entropy decoded, inverse quantized and then the 
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resources and battery power. Hence there is a distinct need for fast algorithms (detailed 

in the next section) for the implementation of these transforms.  

In this thesis, we develop several novel fast algorithms for some of the most 

commonly used transforms in audio coding.  

1.3 The Need for a Class of New Fast Algorithms 

There has been a large amount of literature on fast algorithms for the standard 

filterbanks and transforms used in audio coding [9-15]. However, because of the new 

application scenarios, these algorithms are not directly applicable for some of the new 

codecs. The cases addressed in this thesis are described below: 

1. MPEG has proposed new filterbanks for low delay communications [20-

22]. This set of new tools or ‘profile’ is called MPEG-4 AAC ELD 

(Enhanced Low Delay). These filterbanks are different from the 

traditional MDCT in that they have longer overlap among frames than 

MDCT and, use a different prototype filter to reduce the introduced 

delay. It is therefore necessary to also have fast algorithms for these new 

filterbanks which do not currently exist. 

2. Many of the fast algorithms for transforms such as MDCT are for 

powers-of-2 lengths [10-13]. In other words, the length of the transform 

is of the form 2
m
.
 
Because of MP3 codec, there also exist algorithms for 

lengths that have a factor of 3 [15,16]. However, the latest wide band 

speech codecs such as EVRC-Wide Band (EVRC-WB) and G.EV-VBR 

use transform lengths that have a factor of 5 [17-19] such as 160, 320 
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and 640. Moreover, because of the introduction of MPEG-4 AAC-ELD, 

transform lengths such as 960 and 480 have become more important. 

These lengths have a factor of 15. The existing algorithms are not 

directly applicable for these new cases. 

3. Algorithms that are specific for powers-of-2 lengths have higher fixed-

point precision than algorithms that are applicable for general lengths 

[23-24]. Hence, for fixed-point implementations it would be desirable to 

split the general length algorithm into several powers-of-2 length 

algorithms for improved precision and accuracy. 

1.4 Objectives of Efficient Algorithms 

In deriving fast algorithms in this thesis, the following objectives have been 

kept in mind: 

1. Minimize the number of arithmetic operations – multiplications and 

additions. This will improve the battery life of the device. 

2. Minimize data and code memory requirements. This will reduce the cost 

of the system. 

3. Improve fixed-point precision of the existing algorithms. 

1.5 Organization of the Thesis 

In chapter 2, we derive fast algorithms for MDCT of lengths 5× 2
m
 and 15× 2

m
. 

Complexity analysis and comparison figures are given at the end of the chapter. In 

chapter 3, we introduce the MPEG-4 AAC ELD filterbanks and then derive an 

algorithm that maps these filterbanks to MDCT. Complexity analysis is given at the end 
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of the chapter. In chapter 4, we derive a radix-5 decomposition of DCT. In chapter 5, 

we provide conclusions about the work and point to possible future work. Relevant 

Matlab code is provided in Appendices A and B. 
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CHAPTER 2 

FAST MDCT ALGORITHMS  

2.1 Introduction 

The Modified Discrete Cosine Transform (MDCT) is widely used in speech and 

audio coding as analysis/synthesis filter bank with time domain alias cancellation 

property [31]. Since it is a lapped transform it is particularly useful in mitigating 

blocking artifacts that arise in audio coding because of quantization of the spectral 

coefficients. It usually represents one of the most computationally intensive parts of the 

codec and hence there exists a need for fast algorithms for implementing it.  

This problem is well known, well studied, and numerous efficient algorithms 

have been proposed for solving it [10-16, 32]. Many of these proposed algorithms are 

derived for transforms of lengths N = 2
m
. Among other transform sizes, ones including 

a factor of 3 (as prompted by the design of MP3 audio codec [3]) have also been 

thoroughly studied [15, 16]. However, fast algorithms for transforms of other sizes such 

as 5× 2
m
 and 15× 2

m
 do not exist, and engineers are often left with the necessity to 

modify or combine some of these techniques in their designs. 

The need for transforms of sizes 5 2m
N = ×  arises in the design of speech and 

audio codecs, which typically operate with sampling rates of 8 kHz or 16 kHz and have 

to use frames of only 10ms or 20ms duration. Examples of such algorithms include 

recently standardized ITU-T G.729.1, and 3GPP2 EVRC-WB vocoders [17, 18], and an 
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emerging ITU-T G.EV-VBR standard [19]. The need for transform sizes 15× 2
m
 arises 

in the case of MPEG-4 AAC profiles. Transforms of sizes 960 and 480 are used in 

AAC-LC and AAC-ELD profiles respectively. To operate synchronously with speech 

codecs (which often have frame length of 160 samples), it is necessary to have frame 

lengths that are multiples of 160. This, combined with the requirement that the frame 

size be large enough for good frequency resolution, results in transform lengths of 960 

and 480. 

In this chapter, we present efficient algorithms for MDCT and IMDCT of sizes 

5× 2
m
 and 15× 2

m
 ( 2m ≥ ). Since MDCT is an orthogonal transform, the inverse 

transform can be obtained by transposing the flow graph of the forward transform and 

vice versa. Hence, the theory presented here is equally valid for both MDCT and 

IMDCT.  

The rest of this chapter is organized as follows. In section 2.2, we explain the 

mapping of the MDCT into a DCT-IV and DCT-II with isolated pre/post- 

multiplications, allowing their subsequent absorption by the windowing stage. In 

section 2.3, we describe efficient implementations of 5-point and 15-point DCT-II 

algorithms, adopted in our MDCT design. The design of the merged window (because 

the window absorbs the pre/post multiplications in DCT-IV) is discussed in section 2.4. 

Finally, in section 2.5 we characterize the overall complexity of our proposed 

algorithms and compare it with other possible implementations. Parts of this chapter are 

also presented in [33].  
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2.2 Mapping MDCT to DCT-IV and DCT-II 

Let { ( )}, 0,..., 1x n n N= −  represent an input sequence of samples (multiplied by 

the window), and let N denote the frame length. In this section, we consider MDCT and 

inverse MDCT (IMDCT), defined respectively as follows: 

2

1

2

0

1

0

, 0, ...., 1

, 0, ...., 1

( ) ( ) cos 2 1 (2 1)
2 2

( ) ( ) cos 2 1 (2 1)
2 2

N

N

N

n

k

k

n N

N
X k x n n k

N

N
x n X k n k

N

π

π

−

=

−

=

= −

= −

  
= + + +  

  

  
= + + +  

  

∑

∑%

                  (2.1) 

where, X(k) are the resulting MDCT coefficients and ( )x n% are the reconstructed 

samples. Because of time domain aliasing, ( )x n%  will not be the same as x(n). ( )x n%  has 

to be windowed and then overlap-added with the previous frame to cancel the time 

domain aliasing. For convenience, we ignore the normalization factors in all definitions. 

The normalization factors can also be incorporated in the window without affecting the 

computational complexity. 

By adopting the matrix notation proposed by Cheng and Hsu [29], the (N/2× N) 

MDCT matrix M can be defined as, 

2
0, ..., 1,

0 , ..., 1.
( , ) cos 2 1 (2 1) ,

2 2

Nk

n N

N
M k n n k

N

π = −
=

= −

  
+ + +  

  
          (2.2) 

and write, 

                                                 
T

M

M

=

=%

X x

x X

                                                                (2.3) 

where, 

                                         ( )2
(0),..., 1

T
NX X = − X                                                (2.4) 

 

                                           [ ](0),..., ( 1)
T

x x N= −x                                                  (2.5) 
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                                    [ ](0),..., ( 1)
T

x x N= −% % %x                                           (2.6) 

 

We next map MDCT and IMDCT into an N/2-point DCT-IV as follows [29]: 

 

                                              /2

T IV

N
M PSC=                                               (2.7) 

 

                                             /2

IV T

N
M C SP=                                             (2.8) 

where, 

,                                         

/4

/4

/4

/4

0

0

0

0

N

N

N

N

I

J
P

J

I

 
 − =
 
 
 

                                         (2.9) 

 

IN/4 is an N/4× N/4 identity matrix and JN/4 is an N/4× N/4 order reversal matrix defined 

as, 

                                    /4

/4 /4

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

N

N N

J

×

 
 
 
 =
 
 
  

L

L

M M N M M

L

L

                             (2.10) 

                                              
/4

/4

0

0

N

N

I
S

I

− 
=  
 

                                    (2.11) 

and, /2

IV

N
C  is an N/2× N/2 DCT-IV matrix defined as 

/2 2
( , ) cos (2 1)(2 1) , , 0,..., 1.

2

IV N
NC k n k n k n

N

π 
= + + = − 

 
                      (2.12) 

These relationships are shown in Fig. 2.1 for IMDCT. By using the involutory property 

of the DCT-IV matrix (i.e., the matrix is both symmetrical and orthogonal), it can be 

mapped into DCT-II as follows [30], 
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                                                  ( )/2 /2

T
IV II T

N N
C D C L=                                           (2.13) 

where, D is a diagonal matrix with elements, 

                          
2

( , ) 2cos (2 1) , 0,..., 1
2

ND i i i i
N

π 
= + = − 

 
                               (2.14) 

 

Fig. 2.1 Mapping IMDCT to DCT-IV [29] 
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0.5 0 0 0 0

0.5 1 0 0 0

0.5 1 1 0 0

0.5 1 1 1 0

0.5 1 1 1 1

L

 
 − 
 −

=  
− − 
 
 
− − 

L

L

L

L

M M M M O M

L

                                 (2.15) 

and, /2

II

N
C  is an N/2× N/2 DCT-II matrix defined as 

/2 2
( , ) cos (2 1) , , 0,..., 1II N

NC k n n k k n
N

π 
= + = − 

 
                                           (2.16) 

The relationship between DCT-IV and DCT-II is shown in Fig. 2.2. 

 

Fig. 2.2 Mapping DCT-IV to DCT-II [30] 

As can be seen from Fig. 2.1 and 2.2, the multiplications contributed by matrix D in 

equation (2.14) can be absorbed into the subsequent windowing stage after the 
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application of IMDCT. This would save N/2 multiplications and N/2 constant memory 

locations. 

As we can also see from the figures, the most computationally intensive block is 

the N/2-point DCT-II/IDCT-II. Since we are interested in lengths of type 5× 2
m
 and 

15× 2
m
, we need a good algorithm that is applicable for even lengths. One of the most 

efficient algorithms for even length DCTs is the one presented by Kok [30] in which the 

author shows that the algorithm is better than the prime factorization algorithms 

available for DCT such as Yang [44], Lee [45] and Chan [46]. It is also optimal for 

power-of-2 lengths in the sense that it gives the same number of multiplications and 

additions as the best power-of-2 algorithms. Kok’s algorithm is basically a decimation-

in-frequency strategy, splitting an N-point DCT into two N/2-point DCTs along with 

some pre/post additions and multiplications. Hence, the algorithm can be recursively 

executed till we are left with odd-length transforms; in our case we will have 5-point or 

15-point DCT/IDCT. An illustration of Kok’s algorithm for a 10-point IDCT is shown 

in Fig. 2.3. 
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Fig. 2.3 Kok’s algorithm for a 10-point IDCT-II [30] 

Note that the discussion so far is applicable for any even length MDCT 

transform including power-of-2 lengths. 

 

2.3 Fast Algorithms for 5-point and 15-point DCT-II 

2.3.1 Overview 

We need efficient DCT algorithms for the smaller lengths of 5 and 15 because 

there will be 2
m-1

 such blocks at the last stage of Kok’s algorithm [30]. The 5-point 

DCT is usually implemented in a brute force manner, leading to 20 additions and 

multiplications. The 15-point DCT is usually implemented using prime factor 

algorithms for DCT [44, 45]. These algorithms split the 15-point DCT into a two 
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dimensional 3×5 DCT with input and output index mappings. These mappings also 

have additions at either the input [45] or output [46].  

In this section, we present an efficient implementation of odd-length DCT by an 

FFT. We first discuss Heideman’s mapping of odd-length DCTs to equal length real 

DFTs. This mapping involves only permutations at input and output and, sign changes 

at the output. Next, efficient algorithms for odd-length real input DFTs are presented 

which are based on Winograd short, prime-length DFT modules. Since Winograd DFT 

modules for prime length sequences have theoretically optimal number of 

multiplications, the DCT modules obtained from these DFT modules are very efficient.  

Specifically, 5-point DCT is implemented by applying Heideman’s mapping to 

5-point Winograd DFT module. This algorithm requires 5 multiplications and 13 

additions. 15-point DCT is implemented by applying Heideman’s mapping to 15-point 

Winograd Fourier Transform Algorithm (WFTA). WFTA is essentially a prime factor 

algorithm for FFT along with a step called nesting which further reduces the number of 

multiplications. Details are given in the following sub sections. The resulting 15-point 

DCT algorithm takes 17 multiplications and 67 additions.  

Our contribution is to use efficient DFT algorithms for implementing DCT 

rather than using the more complex prime factor algorithms for DCT or the brute-force 

approaches. 

2.3.2 Definitions 

For the purpose of this section, DCT-II and DFT are defined as follows: 
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1

0

1

0

2
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−
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−
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=

∑
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We assume the data is real. We also ignore all normalization factors since they can be 

absorbed in other blocks such as windowing without affecting the computational 

complexity. 

2.3.3 Heideman’s Mapping 

Typically to implement DCT through DFT, we need to use DFT of twice or four 

times the length of DCT [34]. Hence, it is generally inefficient to compute DCT by 

FFT. However, Heideman showed that an odd length DCT can be implemented by DFT 

of the same size with just input and output permutations and output sign changes [34]. 

This is possible because, for odd length DCT the set of cosines is exactly the same as 

the set of sines and cosines in DFT of the same length. This is however not true if the 

length is even. Thus, an odd length DCT can be efficiently implemented by a real 

valued DFT. The mapping given by Heideman is as follows: 

Define a new sequence ˆ( )x n : 

( 1)/2 1

( 1)/2 1

1 1
( 1) ;             0,1,...,

2 2
ˆ( )

1 1
( 1) ( ) ;   ,..., 1

2 2

n N

n N

N N
x n n

x n
N N

x N n n N

+ + +

+ + +

 − − 
− + = 

  
= 

− +  − − + = −   

                   (2.18) 
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ˆ( )x n  is essentially a permutation of the input sequence x(n). Let ˆ ( )FX k be the DFT of 

the sequence ˆ( )x n . Then, 

1

1ˆ(2 ) ( 1) Re ( ) ;              0,...,
2

1ˆ( 2 ) ( 1) Im ( ) ;    1,...,
2

k

C F

k

C F

N
X k X k k

N
X N k X k k

+

− = − = 

− − = − = 

                           (2.19) 

(Note that the exponent for -1 in equation (9) of [34] is incorrect. The correct expression 

is shown in the above equations.) As can be seen from equation (2.19), we need to 

compute only the first (N+1)/2 output points for the DFT. The input mapping for N = 

15 is given in Appendix A as part of the Matlab code for 15-point DCT. 

For real input, DFT exhibits conjugate symmetry property, i.e., 

                      ( ) ( )
F F

X k X N k
∗= −                                                      (2.20) 

Hence, if N is odd, here too we need to compute just the first (N+1)/2 output points. 

Therefore, we conclude that the computational complexity of the DCT is exactly the 

same as that of DFT for odd N such as 5 and 15. The problem now boils down to 

implementing a very efficient FFT for real valued input data and an odd transform 

length. 

2.3.4 DFT Algorithms for Real-Valued Input Data 

There has been significant literature discussing efficient algorithms for real 

valued FFTs [35-38]. Basically, the algorithms fall into two categories: prime factor 

algorithms (PFA) and common factor algorithms (CFA). PFAs are used when the 

transform length N can be decomposed into two or more relatively prime factors. An 

example of PFA is the Winograd Fourier Transform Algorithm (WFTA). CFAs are 
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used when the factors are not relatively prime. Examples of CFA are the traditional 

Cooley-Tukey FFT algorithms and the split radix algorithms. Both PFAs and CFAs are 

based on permuting the input data into a two dimensional matrix so that the 

corresponding two dimensional DFT is a separable transform with minimum number of 

twiddle factors [39]. Especially for PFAs, the row and column DFTs are independent 

and are not related by any twiddle factors [39].  

In our case, the length 15 can be decomposed into 5 and 3 which are mutually 

prime. Hence, PFAs are applicable in our case. Two PFA algorithms are available: the 

PFA algorithms developed by Burrus et al. [35-37, 39] and the WFTA. The WFTA 

algorithm uses Winograd short-N DFT modules for prime lengths N as building blocks. 

WFTA algorithms typically minimize the number of multiplications (by using a nesting 

procedure) at the expense of a slight increase in additions [39, 40]. However, for short 

lengths (including 15) [35, 36], the WFTA algorithm uses lesser number of 

multiplications and the same number of additions as PFA. Hence, we will be using the 

WFTA algorithm for our 15-point FFT. Our survey of the existing literature shows that 

the 15-point real WFTA is the least complex among the available algorithms [35-40]. 

2.3.5 Winograd Short-N DFT Modules 

Winograd short-N DFT modules are the building blocks for constructing the 

WFTA for longer lengths. The short-N modules are defined for prime lengths. 

Specifically, we need 3-point and 5-point DFT modules for the 15-point transform. For 

5-point DCT, we can simply use Winograd’s 5-point DFT module combined with 

Heideman’s mapping.  
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The Winograd DFT modules are based on a fast cyclic convolution algorithm 

for prime lengths using the theoretically minimum number of multiplications [39-41]. 

This optimum convolution algorithm can be mapped to DFT using Rader’s technique 

[39] to give very efficient DFT modules for prime lengths.  

In mathematical terms, Winograd’s algorithm achieves a canonical 

decomposition of the DFT matrix as shown below. Using the matrix notation in [42], 

DN = SNCNTN,                                                                                                 (2.21) 

where, 

DN is the N N×  DFT matrix, 

SN is a N J×  matrix having only 0’s, 1’s and -1’s, 

CN is a J J×  diagonal matrix, 

TN is a J N×  matrix having only 0’s, 1’s and -1’s. 

That is, SN and TN are just addition matrices and CN is the multiplier matrix. Moreover, 

the elements of CN matrix are either purely real or purely imaginary, so for real input 

data, we will have just one real multiplication for each element of CN. Hence, the 

number of multiplications will be J. Winograd algorithm is powerful because, for small 

and prime N (such as 3, 5, 7, 11), J is very close to N. That is, we need only about N 

multiplications instead of N
2
 multiplications required in brute force approach. For 

example, for N = 3, the S3, C3 and T3 can be derived from [41] as follows: 
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3

3

3

1 0 0

1 1 1 ,

1 1 1

2 2
1 cos 1 sin ,

3 3

1 1 1

0 1 1

0 1 1

S

C diag j

T

π π

 
 =  
 − 

    
= − − −    

    

 
 =  
 − 

                                       (2.22) 

Note that the SN and TN matrices can be factorized into sparse matrices to minimize the 

number of additions. For example S3 and C3 in equation (2.22) can be factorized as [41], 

3

3

1 0 0 1 0 0

0 1 1 1 1 0 ,

0 1 1 0 0 1

1 1 0 1 0 0

0 1 0 0 1 1

0 0 1 0 1 1

S

T

   
   =    
   −   

   
   =    
   −   

                                                                (2.23) 

2.3.6 Prime Factor Mapping 

The idea behind mapping a one-dimensional array into a two-dimensional array 

is to divide the bigger problem into several smaller problems and solve each of the 

smaller problems effectively [39]. The mappings are based on modulo integer 

arithmetic to exploit the periodicity property of the complex exponentials in DFT. 

Let N = N1N2. Let N1 and N2 be co-prime. Let n, n1, n2, k, k1, k2 be the 

corresponding index variables in time and frequency domain. The mappings from n1, n2, 

k1, k2 to n and k can be defined as follows [39]: 

        
1 1 2 2 1 1 2 2

3 1 4 2 1 1 2 2

   0,... 1;  0,..., 1

   0,... 1;  0,..., 1

N

N

n K n K n n N n N

k K k K k k N k N

= + = − = −

= + = − = −
                                      (2.24) 
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where, .
N

 represents modulo-N operation. 

There always exist integers K1, K2, K3 and K4 such that the above mapping is 

unique (i.e., all values of n and k between 0 and N-1 can be generated by using all 

combinations of n1, n2 and k1, k2) [39]. The mapping is called a prime factor map (PFM) 

if [39], 

                                           
1 2 2 1

3 2 4 1

 and ,

 and 

K aN K bN

K cN K dN

= =

= =
                                               (2.25) 

A solution that satisfies the PFM and also decouples the row and column DFTs is [39], 

                                     

1 2

1 2 2 1

1 1

3 2 2 4 1 1

,  ,

,  
N N

K N K N

K N N K N N
− −

= =

= =
                                 (2.26) 

where, 1

N
x

−  is defined as the smallest natural number that satisfies 1 1
N

x x
− =  [39]. 

The DFT then becomes [39], 

                                    
2 1

1 1 2 2

1 2

2 1

1 1

1 2 1 2

0 0

ˆ ˆ( , ) ( , )
N N

n k n k

F N N

n n

X k k x n n W W
− −

= =

= ∑ ∑                               (2.27) 

where, 

                                    
( )

( )
1 2 1 1 2 2

1 2 3 1 3 2

ˆ( , ) ,

ˆ ( , )

N

F F N

x n n x K n K n

X k k X K k K k

= +

= +
                                    (2.28) 

That is, the DFT is first applied along the columns and then along the rows.  

Matrix Interpretation: If we fix a value for n1 and vary the values for n2 from 0 to N2-1 

in the above mapping and do this for all values of n1 from 0 to N1-1, we obtain a 

permuted sequence of values of n from 0 to N-1. Let Pi be the input permutation matrix 
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describing these steps. Similarly, we define Po to be the output permutation matrix. 

Then it can be shown that [42], 

( )
1 2o N N i

P D D P= ⊗
F

X x ; ⊗  denotes the Kronecker product.                           (2.29) 

where, the Kronecker product of two matrices A and B is defined as, 

(0,0) (0,1) (0, 1)

(1,0) (1,1) (1, 1)

( 1,0) ( 1,1) ( 1, 1)

M N P Q

MP NQ

A B A B A N B

A B A B A N B
A B

A M B A M B A M N B

× ×

×

− 
 

− ⊗ =
 
 

− − − − 

L

L

M M O M

L

                    (2.30) 

That is, a two-dimensional N1×N2 DFT can be viewed as a Kronecker product of the 

row and column DFT matrices 
1N

D and
2N

D . This matrix representation and the 

corresponding permutation matrices for N = 15 are illustrated in the Matlab code of 

Appendix B. 

2.3.7 Winograd Fourier Transform Algorithm (WFTA) 

WFTA takes forward the matrix interpretation of the PFA given above. If we 

have short-N DFT modules for lengths N1 and N2, then, 

                                       
1 2 1 1 1 2 2 2

( ) ( )
N N N N N N N N

D D S C T S C T⊗ = ⊗                              (2.31) 

Using the properties of Kronecker products, it can be shown that [41-42], 

                                1 2 1 2 1 2 1 2
( )( )( )

N N N N N N N N

N N N

D D S S C C T T

S C T

⊗ = ⊗ ⊗ ⊗

=
                       (2.32) 

This last step in equation (2.32) is called the nesting procedure in WFTA [42]. Because 

the multiplications are nested, this algorithm generally yields the lowest multiplication 

count. The above equations can be further simplified as follows: 

Suppose, 
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2

2

2

1 2

1 2

0

1

2 1

( 1)

1

.

.

.

.

.

.

.

.

.

.

.

.

N

N

i

N

N N

N N

e

e

e

P
e

e

e

−

−

−

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x

                                           (2.33) 

Define, 

                                                

2

2 2

1 2 1 2

0 1

2 1

( 1) 1

. . .

. . .

. . . . .

. . . . .

. . . . .

. . .

N

N N

N

N N N N

e e

e e

z

e e

−

−

− −

 
 
 
 
 =
 
 
 
 
 

                      (2.34) 

Similarly, define ZN for the output coefficients. Pi and Po are as defined in equation 

(2.29). Then it can be shown that [42] (see also the corrections and comments in [43]), 

                                    ( ){ }1 2 2 1

T
T

N N N N N N
Z S S C T T z

  =     
o                                 (2.35) 
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where, 

        
2 1 2 1

( , ) ( , ) ( , );    0,..., 1,  0,..., 1
N N N N

C m n C m m C n n m M n M= = − = −             (2.36) 

1N
M  and 

2N
M  are the lengths of the diagonals (i.e., the number of multiplications) of 

1N
C and 

2N
C  respectively, 

o  denotes element-by-element product of two matrices of same dimensions. It is 

defined as follows, 

           
If ,  then,

( , ) ( , ) ( , );   0,..., 1;  0,..., 1

M N M N M N
C A B

C m n A m n B m n m M n N

× × ×=

= = − = −

o
                      (2.37) 

T
 denotes matrix transpose. 

It can be seen from equation (2.36) that the number of multiplications is 

1N
M ×

2N
M . Some of these are trivial multiplications by 1. When N = 3×5, M3 turns out 

to be 3 and M5 = 6 [41]. So we have a total of 17 multiplications (excluding the 

multiplication by 1). Two of these are multiplications by 1.25 and 1.5. If we discount 

them as trivial multiplications (because they can implemented by adds and shifts) then 

we have only 15 non-trivial multiplications. 

The number of complex additions is calculated as follows: Let 
1N

A be the 

number of complex additions contributed together by 
1N

S and
1N

T . Similarly define
2N

A . 

Then from the above matrix description we can derive the number of complex additions 

as ([39, 40]) ( )
1 1 22 N N N

N A M A+ . If we interchanged N1 and N2, the number would be 

( )
2 2 11 N N N

N A M A+ which is different from the previous number. Hence the order is 

important here. When N = 15, we have A3 = 6 and A5 = 17 [41]. If we choose N1 = 3 and 
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N2 = 5, we get the number of additions as 81. If N1 = 5 and N2 = 3, we get 86. Hence, 

we choose N1 = 3 and N2 = 5. For real data, we use the fact that DFT exhibits conjugate 

symmetry. Hence, we need not calculate (N-1)/2 output points. Further, we note that 

adding a purely real number to a purely imaginary number is not an addition in the 

computational sense. Using these facts, it is possible to reduce (N-1) additions from the 

above count. Hence, we require 81-14 = 67 real additions for N = 15. This number 

tallies with that given in [35]. This also proves that our novel combination of 

Heideman’s mapping and WFTA has accomplished the task of implementing a 15-point 

DCT using a minimum number of multiplications and additions. As a comparison, PFA 

algorithms for DCT or DFT take 25 multiplications and 67 additions. Therefore, the 

number of multiplications has been reduced by 9. 

2.3.8 5-point DCT 

The 5-point DCT-II algorithm can simply be derived by applying Heideman’s 

mapping to Winograd’s 5-point DFT module. For 5-point DFT we have the following 

[41]: 

5

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0

0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

S

       
       
       
       = −
       

− − −       
              

      (2.38) 

5

2
;

5

cos cos2 cos cos2
1 1 (sin sin2 ) sin2 (sin sin2 )

2 2

u

u u u u
C diag j u u j u j u u

π−
=

+ − 
= − + −  

    (2.39) 
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5

1 1 0 0 0 0 1 0 0 0 0
1 0 0 0 0

0 1 0 0 0 0 0 1 1 0 0
0 1 0 0 1

0 0 1 0 0 0 0 1 1 0 0
0 0 1 1 0

0 0 0 1 0 0 0 0 0 0 1
0 0 1 1 0

0 0 0 0 1 0 0 0 0 1 1
0 1 0 0 1

0 0 0 0 0 1 0 0 0 1 0

T

   
    
    
    −
 =    
     −    
 −     

   

                         (2.40) 

The flow graph for the 5-point DCT is shown in Fig. 2.4. It requires 5 multiplications 

and 13 additions. The algorithm for IDCT can simply be obtained by transposing the 

flow graph since DCT is an orthogonal transform. 

( )cos 3 / 10 0.587785β π= ≈

5 / 4 0.559017δ = − ≈ −

(0)CX

(3)
C

X

(4)
C

X

(1)
C

X

(2)
C

X

α

1 / 4α =

γ

δ

( )cos / 10 0.951056γ π= − ≈ −

β

(0)x

(1)x

(2)x

(3)x

(4)x

β

 

Fig. 2.4 Flow graph for 5-point DCT-II 

2.3.9 15-point DCT 

To summarize, we have developed and implemented a new 15-point DCT 

algorithm using Winograd’s 3-point and 5-point DFT algorithms in the WFTA. We 

applied Heideman’s mapping (equations (2.18), (2.19)) to the DFT algorithm to obtain 
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the DCT algorithm. The flow graph for the algorithm is shown in Fig. 2.5. Algorithm 

for IDCT can be obtained by transposing the flow graph.  

Fig. 2.5 Flow graph for 15-point DCT-II 

The constants used in Fig. 2.5 are defined below: 

2 2
;     

5 3
u v

π π
= − = −  

1 2

cos cos 2 cos cos 2
1;     

2 2

u u u u
c c

+ −
= − =  

3 4 5sin sin 2 ;   sin 2 ;   sin sin 2c u u c u c u u= + = = −  
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6 7 1 6 8 2 6

9 3 6 10 4 6 11 5 6

cos 1;   ;   

;   ;   

c v c c c c c c

c c c c c c c c c

= − = =

= = =
 

                                  
12 13 1 12 14 2 12

15 3 12 16 4 12 17 5 12

sin ;   ;   

;   ;   

c v c c c c c c

c c c c c c c c c

= = =

= − = − = −
                    (2.41) 

 

The Matlab code for 15-point DCT is given in Appendix A. The code is tested 

applying the algorithm to all 15 basis vectors. The results were exactly the same as 

those of brute force approach. Since DCT is a linear transform, the fast algorithm 

should also work for any linear combination of the basis vectors, i.e., the algorithm 

should work for any arbitrary 15-point input. 

2.4 Modified Window Function 

As noted in section 2.2, the multiplications contributed by the matrix D 

(equation (2.14)) in implementing DCT-IV, can be absorbed into the windowing stage 

that precedes MDCT or accompanies IMDCT. In this section, we show that if we start 

with a symmetrical sine window, then the modified window is piece-wise symmetric. 

The symmetrical sine window that is usually used with MDCT filterbanks [31] 

is defined as follows: 

                                   ( )
( )2 1

sin
2

n
h n

N

π +
=  

 
, 0,..., 1n N= −                                       (2.42) 

The modified window function obtained by merging the matrix D with h(n) 

(after some algebraic manipulation) is as follows: 

4

4

(2 1)
2cos 2 1 sin , 0,..., 1,

2 2 2
( )

(2 1)
2 cos 2 1 sin , ,..., 1.

2 2 2

N

N

N n
n n

N N
w n

N n
n n N

N N

π π

π π

   +   
+ + = −     

    =
   +   
− + + = −    
     

      (2.43) 
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For 0 / 4n N≤ < : 

(2 1)
1 2 sin cos 2 1

4 2 2 2

( )

N n N
w n n

N N

w n

π π +     
− − = + +      

      

=

            (2.44) 

Similarly, for 0 3 / 4n N≤ < : 

(2 1)
2sin sin 2 1

4 2 2 2

( 1 )

N n N
w n n

N N

w N n

π π +     
+ = + +      

      

= − −

                                  (2.45) 

As can be observed from (2.44) and (2.45), the window is piece-wise symmetric. This is 

illustrated in Fig. 2.6 (N = 640). This means that the memory required to store the 

modified window is the same as that for the sine window (N/2 words). In effect, we 

have reduced N/2 words of memory requirement by not storing the factors of matrix D. 
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Fig. 2.6 Modified window function (N = 640) 
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2.5 Complexity Analysis of the New MDCT Algorithm 

In this section, we consider the complexity analysis of the proposed MDCT 

algorithm in terms of the number of additions, multiplications and memory requirement. 

We consider the case of N = p×2
m
 ( 2m ≥ ), where p is either 5 or 15. Let RMF(N) and 

RAF(N) be, respectively, the number of multiplications and additions of an N-point 

MDCT along with windowing operation. Let RMI(N) and RAI(N) be, respectively, the 

number of multiplications and additions of an N-point IMDCT along with windowing 

and overlap-add operation. Let RMD(p) and RAD(p) be, respectively, the number of 

multiplications and additions of the fast 5-point and 15-point DCT-II. Then the 

computational complexity of the proposed algorithm is given by 

1 2( 2 ) ( 2 ) 2 2 ( ) ( 1)2m m m m m

F I D
RM p RM p p RM p p m

− −× = × = × + + −                        (2.46) 

1 2 1( 2 ) ( 2 ) 2 2 ( ) 3 ( 1)2 2m m m m m m

F I D
RA p RA p p RA p p m

− − −× = × = × + + − −                 (2.47) 

From section 2.3, RMD(5) = 5, RAD(5) = 13, RMD(15) = 17, RAD(15) = 67. 

In Table 2.1, we present the results of complexity comparison of our algorithm 

with two possible implementations of MDCT of size N = 640 (5× 2
7
) using the well-

known Britanak and Rao’s algorithm [14]. In the first case, we assume that DCT-II of 

size 5 is implemented using straightforward matrix multiplication, and in the second 

case, we use same 5-point DCT-II as in our proposed algorithm. The complexity 

numbers presented in Table 3.1 include the complexity of windowing and overlap-add 

operations. This table also presents estimated constant memory requirements for these 

algorithms. Table 2.2 gives a similar complexity comparison for N = 1920 (15× 2
7
).  
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It can be seen from these tables that there are considerable gains in number of 

multiplications and additions and ROM requirement. The algorithm for N = 5× 2
m
 was 

accepted in the floating point implementation of G.EV-VBR codec [19]. 

Table 2.1 Comparison of proposed MDCT algorithm for N = 640 
*: without fast 5-point DCT (direct matrix multiplication, 20 mults and adds) 

**: with fast 5-point DCT proposed in this chapter 

Algorithm 

Multi 

plica-

tions 

Addi-

tions 

Transform 

Memory  

# words 

Window Memory # 

words 

[14]*  3200 5376 640 320 

[14]**  2240 4928 640 320 
MDCT with windowing 

Proposed 

Algorithm 
1920 4288 320 320 

[14]*  3200 5376 640 320 

[14]** 2240 4928 640 320 
IMDCT 

 with windowing and overlap-add 

operation 
Proposed 

Algorithm 
1920 4288 320 320 

 

Table 2.2 Comparison of proposed MDCT algorithm for N = 1920 
*: without fast 15-point DCT (direct matrix multiplication, 210 mults and adds) 

**: with fast 15-point DCT proposed in this chapter 

Algorithm 

Multi 

plica-

tions 

Addi-

tions 

Transform 

Memory  

# words 

Window Memory # 

words 

[14]*  19200 25856 1920 960 

[14]**  6848 16704 1920 960 
MDCT  with windowing 

Proposed 

Algorithm 
5888 14784 960 960 

[14]*  19200 25856 1920 960 

[14]** 6848 16704 1920 960 
IMDCT 

 with windowing and overlap-add 

operation 
Proposed 

Algorithm 
5888 14784 960 960 
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CHAPTER 3 

MPEG-4 AAC ENHANCED LOW DELAY FILTERBANKS 

3.1 Introduction 

Traditionally, speech and audio coding paradigms have been different. Speech 

coding was primarily based on source modeling [7, 25] and many speech codecs are 

characterized by low round-trip algorithmic delay [7] making them suitable for full-

duplex communications. However, they were focused on single-speaker material and 

performed badly for music signals [20]. On the other hand, audio coding was based on 

the psychoacoustics of the human ear [8]. The codecs were intended for perceptually 

transparent reproduction of any generic music material. However, they usually have 

high algorithmic delays making them unsuitable for full-duplex communication 

purposes [8]. 

The algorithmic delay of a codec depends on the following factors [26]: 

1. Frame Length: larger the frame length, more the delay because of the time 

required to buffer the input samples. 

2. Filterbank delay: analysis and synthesis filterbanks used in the codec also 

introduce delay. This is contributed by the causal FIR filters used in the 

filterbank. 

3. Block switching: audio codecs switch between long and short blocks to 

optimally handle non-stationary parts of the signal. Since block switching 
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cannot happen instantaneously, a certain amount of look-ahead is required to 

make the transition between long and short blocks smooth. This look-ahead 

contributes to the delay. 

4. Bit Reservoir: the encoder generally uses a bit reservoir to optimize the number 

of bits used for each frame, yet maintaining an average bit rate over a period of 

time. This causes the decoder to wait till it receives the maximum possible 

number of bits in a frame, contributing to the algorithmic delay [27]. 

3.2 MPEG-4 AAC LD 

The first effort toward making the audio codecs suitable for full-duplex 

communications was made with the standardization of MPEG-4 ER AAC LD [26]. LD 

stands for Low Delay. The algorithmic delay is reduced by making the following 

changes [26]: 

1. The frame size is reduced from the usual 1024/960 points to 512/480 points. 

2. Block switching is not used to avoid the delay due to look-ahead. 

3. To handle non-stationary parts of the signal in the absence of block switching, 

the coder uses a low overlap sine window for transient regions. The low overlap 

also minimizes pre-echo artifacts produced by the temporal spreading of 

quantization noise in the non-stationary portions [26]. The low overlap window 

is defined as follows [26] (N, the frame length, is either 1024 or 960): 
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4. The size of the bit reservoir is minimized to reduce the delay contributed by it. 

These techniques reduce the algorithmic delay to about 20 ms (for 48 kHz 

sampling rate), making full-duplex communications possible. However, this profile is 

still a full bandwidth coder like the traditional low complexity (LC) profile [26]. Such 

profiles use large bit rates such as 64kbps per channel for transparent audio quality. 

Thus the coding efficiency of AAC-LD is low and is not suitable for low bandwidth 

channels. MPEG-4 AAC Enhanced Low Delay (ELD) profile addresses this problem by 

incorporating spectral band replication (SBR) technology [49-50] to improve the coding 

efficiency. 

3.3 MPEG-4 AAC Enhanced Low Delay Filterbanks 

MPEG-4 AAC ELD profile improves the coding efficiency of the AAC-LD 

profile by incorporating the SBR bandwidth extension tool. This allows perceptually 

transparent audio quality at bit rates as low as 32 kbps per channel [20]. A modified 

SBR tool with reduced delay is used in conjunction with a new low delay core coder 

filterbank to minimize the overall delay.  

The new core coder filterbank uses a different window function with multiple 

overlap to reduce delay without affecting the frequency selectivity of the filterbank 
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[20]. This window is used in conjunction with the MPEG-4 AAC ELD filterbanks 

originally proposed in [28].  

Delay reduction is obtained by zeroing out parts of the window that overlap with 

future input samples. For example, if the frame size is 480 samples, the length of the 

analysis window is 1920 samples (overlap of 4 frames), the last 120 samples of which 

are zeros. Similarly, the first 120 samples of the synthesis window are zeros. Thus, the 

delay of the analysis-synthesis filterbank chain is reduced from 480 + 480 = 960 

samples to (480 – 120) + (480 – 120) = 720 samples. The analysis and synthesis 

windows are shown in Fig. 3.1 along with the traditional sine window that is used in 

AAC-LD. In Fig. 3.1, X-axis represents sample index and Y-axis represents window 

amplitudes. 
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Fig. 3.1 Analysis and synthesis windows used in MPEG-4 AAC ELD core coder 

filterbanks [20] 

 

Because of the longer overlap, the frequency selectivity of the new window 

function is comparable to that of the sine window (Fig. 3.2) and much better than that of 

the low-overlap window used in AAC-LD (Fig. 3.3).  
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Fig. 3.2 Sine window vs low delay window [20] 
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Fig. 3.3 Low overlap window vs low delay window [20] 

In the next section, we describe our development of a mapping of the core coder 

ELD filterbanks to the well known MDCT. Our motivation for such development is the 

implementation of these new filterbanks using MDCT for which many fast algorithms 

already exist. 

3.4 Mapping the ELD Filterbanks to MDCT 

3.4.1 Definitions 

The analysis filterbank in AAC-ELD is defined as follows [22]: 
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where, 

zi,n = input sequence multiplied by the analysis window 

n = sample index 

k = spectral coefficient index 

i = block index 

N = window length based on the window sequence value 

n0 = (-N / 2 + 1) / 2 

 

 

The synthesis filterbank in AAC-ELD is defined as follows [22]:  
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where, 

n = sample index 

i = window index 

k = spectral coefficient index 

N = window length 

n0 = (-N / 2 + 1) / 2 

spec[i][k] = Received spectral coefficients 

with N = 960 or 1024. 

 

The MDCT filterbank is defined as follows in [26]: 
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= input sequence multiplied by the analysis window 

n = sample index 

k = spectral coefficient index 

i = block index 

N = window length 

p0 = (N / 2 + 1) / 2 

 

The IMDCT filterbank is defined as follows [26]: 
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where: 

n = sample index 

i = window index 

k = spectral coefficient index 

N = window length 

p0 = (N / 2 + 1) / 2 

with N = 1920 or 2048. 

3.4.2 Mapping the ELD Analysis Filterbank to MDCT 
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It can be seen that the cosine kernel on RHS is the same as the MDCT kernel. MDCT is 

applied to the modified input shown in double braces. Hence the algorithm for 

implementing the analysis filterbank is: 

1. Form the sequence {zi,n – zi,(n-N)} for 0 n N≤ < , 

2. Invert the signs of the even indexed samples of this sequence if N/4 is even. 

3. Invert the signs of the odd indexed samples of this sequence if N/4 is odd. 

4. Apply MDCT, 

5. Reverse the order of the output, 

6. Invert the signs of the odd-indexed samples if N/2 is even, 

7. Invert the signs of the even-indexed samples if N/2 is odd. 

We can now develop the flow graph for the analysis filterbank as shown in Fig 3.4. 
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Fig. 3.4 Implementation of ELD analysis filterbank by MDCT 

3.4.3 Mapping the ELD Synthesis Filterbank to IMDCT 

A similar approach can be used to derive the mapping of the synthesis filterbank 

to IMDCT. 

Lemma 3.2: xi,n+N = -xi,n for 0 n N≤ < .                                                                        (3.6) 

Proof: 
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From Lemma 3.2, we can observe that we need not calculate all the 2N output points. 

Instead, the last N output points can be obtained just by negating the first N output 

points. Now we focus on efficiently calculating the first N output points. 

Lemma 3.3: For 0 n N≤ < , 
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It can be seen that the cosine kernel on RHS is the same as the IMDCT kernel. IMDCT 

is applied to modified input as shown in the double braces. Hence the algorithm for 

implementing the ELD synthesis filterbank is: 
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1. Invert the signs of the odd-indexed spectral coefficients, spec[i][k], if N/2 is 

even, 

2. Invert the signs of the even-indexed spectral coefficients, spec[i][k], if N/2 is 

odd, 

3. Reverse the order of the above sequence, 

4. Apply IMDCT, 

5. Invert the signs of the even-indexed output samples if N/4 is even, 

6. Invert the signs of the odd-indexed output samples if N/4 is odd,  

7. The result of steps 5 and 6 form the first N outputs of the filterbank, 

8. The remaining N output samples are obtained by inverting the signs of the first 

N samples. 

The flow graph for implementing the synthesis filterbank can now be derived as shown 

in Fig. 3.5. 
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Fig. 3.5 Implementation of the ELD synthesis filterbank by IMDCT 

3.4.4 Complexity Analysis 

3.4.4.1 Complexity of non-MDCT part of our fast algorithm 

For the mappings provided in section 3.4.2 and 3.4.3, it is clear that the 

complexity of the analysis filterbank is equal to the complexity of implementing an N-

point MDCT plus N additions. Before the analysis filterbank is applied, we also require 

2N multiplications for windowing. The complexity of the synthesis filterbank is the 

same as that of an N-point IMDCT. After the synthesis filterbank is applied, we also 
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require 2N multiplications and 3N/2 additions for windowing and overlap-add 

operation.  

3.4.4.2 Complexity of MDCT 

We can use the efficient MDCT algorithm given in chapter 2 for implementing 

the ELD filterbanks. The complexity numbers given in section 2.5 are also applicable 

here. The complexity analysis of ELD filterbanks given in this section assumes the 

usage of the algorithms in chapter 2. 

3.4.4.3 Complexity of our fast algorithm 

Assume N is a power of 2. Let RMA(N) and RAA(N) denote, respectively, the 

number of real multiplications and additions required for the analysis filterbank along 

with windowing operation. Let RMS(N) and RAS(N) denote the corresponding numbers 

for the synthesis filterbank along with windowing and overlap-add operation. Then, 

RMA(N) = RMS(N) = 0.25N(log2N – 1) + 2N                                                  (3.8) 

RAA(N) = RAS(N) = 0.75N(log2N + 1)                                                            (3.9) 

Thus for N = 1024, we require 4352 multiplications and 8448 additions. On the other 

hand, a brute force approach requires more than a million multiplications and additions. 

The other commonly used length for MPEG-4 AAC-ELD is 960 which has a 

factor of 15. Assume N = 15× 2
m 

( 2m ≥ ). Efficient algorithms for MDCT and IMDCT 

of this type of length are presented in chapter 2. Using the results from chapter 2, the 

computational complexity of the filterbanks can be shown as:   

1 1 2(15 2 ) (15 2 ) 15 2 2 (15) 15( 1)2m m m m m

A S D
RM RM RM m

+ − −× = × = × + + −                (3.10) 

1 2(15 2 ) (15 2 ) (59 (15))2 45( 1)2m m m m

A S D
RA RA RA m

− −× = × = + + −                           (3.11) 
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where RMD(15) and RAD(15) are the multiplicative and additive complexities of the fast 

15-point DCT algorithm presented in chapter 3. RMD(15) = 17 and RAD(15) = 67. Thus, 

for N = 960, we have 3664 multiplications and 7632 additions. Again, if we were to 

implement the filterbanks using brute force approach, it will take more than a million 

multiplications and additions. 
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        CHAPTER 4 

RADIX-5 DECOMPOSITION OF DCT 

4.1 Introduction 

 

In chapter 2, we presented efficient algorithms of MDCT and IMDCT for 

certain composite transform lengths. We observed that DCT-II is the major 

computational unit in those algorithms. In most of the cases, these algorithms are 

implemented on mobile devices which have limited processing power. Also, these 

devices use fixed-point processors to reduce the system cost. Hence, there is a need for 

implementing the algorithms in fixed point using integer arithmetic. Under these 

conditions, apart from computationally efficient algorithms, it is also important that the 

algorithms have good numerical accuracy. 

It is shown in [23] and [24] that DCT algorithms following Hou’s approach of 

recursive computation of DCT [47] (computing an N-point DCT from two N/2-point 

DCTs) are numerically less accurate than other algorithms such as Vetterli’s [48] 

especially if less bit depth is available for representing variables. Since Kok’s algorithm 

used in chapter 2 is a realization of Hou’s algorithm, its fixed point accuracy is not 

expected to be good at low bit depths.  

In this thesis, we are interested in composite lengths such as N = 5× 2
m
. As 

noted in chapter 2, there are not many DCT algorithms for even lengths. One alternative 

to Kok’s algorithm is to use prime factor algorithms such as [44, 45] which split an N-



 

 49 

point DCT with mutually prime factors N1 and N2 (i.e., N = N1N2) into a two-

dimensional 1 2N N×  DCT. DCT is then applied along each of the dimensions and the 

results are combined through input and output permutations. For N = 5× 2
m
, this results 

in a two dimensional 5 2m×  DCT where we would have 5-point DCTs and 2
m
-point 

DCTs. We could then apply numerically stable algorithms such as [48] for the 2
m
-point 

DCTs. The short 5-point DCT modules also have good numerical accuracy. Hence, we 

would have a good fixed-point algorithm for the original length. However, apart from 

higher computational complexity, these algorithms also have complex input and output 

mappings and matrix transpose operations in between. For large transform lengths, 

these operations require large data moves and hence are very costly. 

In this chapter, we develop a new radix-5 decomposition of DCT which may be 

useful for implementing accurate fixed-point DCT-II for lengths of the type N = 5× 2
m
. 

We use an approach similar to radix-3 and radix-6 DCT algorithms presented in [46]. 

Application of radix-5 decomposition splits an N-point DCT into five N/5-point DCTs 

with some pre and post processing. Thus, in our case, this would result in five 2
m
-point 

DCTs each of which can be implemented using say, Vetterli’s algorithm [48]. This 

algorithm doesn’t have complex input and output permutations and hence can be easily 

implemented. It is not as efficient as Kok’s algorithm but since the decomposition is 

applied only once in our case, the effect on overall computational complexity is 

minimal.  
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4.2 Radix-5 DCT 

Assume N is a multiple of 5. For this section, we define DCT as follows: 
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Substituting these in the above equation and simplifying we get, 



 

 51 

{ }
/5 1

0

(2 1)
(5 ) ( ) ( ) ( ) ( ) ( ) cos

2( / 5)

,

( ) ( ),

2
( ) 1 ,

5

2
( ) ,   0,..., 1

5 5

4
( ) 1 ,

5

4
( )

5

N

n

n k
X k a n b n c n d n e n

N

where

a n x n

N
b n x n

N N
c n x n n

N
d n x n

N
e n x n

π−

=

 +
= + + + +  

 


=

 

= − −  
  

 
= + = − 

  
 

= − −  
  

 
= +  

  

∑

                              (4.3) 

It can be seen that from equation (4.3) that X(5k) is a N/5-point DCT. Now consider: 

(5 ) (5 ) for 1,2,3 and 4X k i X k i i+ + − = . 
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The RHS in (4.4) is similar to what we had for X(5k) in (4.2). Hence following a similar 

procedure for (4.4), it can be converted to: 
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where, 
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Thus, we are able to split the N-point DCT into five N/5-point DCTs. We note that, 
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The remaining DCT coefficients can be obtained from the recursive relation, 
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4.3 Complexity Analysis 

In this section, we give the complexity analysis of the algorithm assuming that N 

is a power of 5, i.e., N = 5
m
. We also assume that in the last stage we will be using the 

fast 5-point DCT algorithm proposed in chapter 2 which can be implemented using 5 

multiplications and 13 additions. 

It is clear that in each stage we would be performing 4N multiplications by the 

cosine factors. Also, there are 4N additions in the N/5-point DCTs. Additionally, we 

have 4N/5-4 additions in the recursive computation part. Hence, we have in total 4(6N-

5)/5 additions. Let RM(N) and RA(N) denote the number of multiplications and 

additions respectively. Then, 
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Solving these recursive equations we get, 
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Application of this algorithm once for MDCT of size 640, as discussed in 

chapter 2, results in five 64-point DCTs. The total complexity of MDCT would be 2880 

multiplications and 4736 additions. However, this algorithm does not have any intricate 

input and output permutations or matrix transpose operations needed in PFA DCT 

algorithms. 
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CHAPTER 5 

CONCLUSIONS 

In this thesis, we have presented fast algorithms for several filterbanks used in 

audio coding. In particular, we presented fast algorithms for MDCT and IMDCT of 

lengths 5× 2
m
 and 15× 2

m
, fast algorithms for the core coder filterbanks used in MPEG-4 

AAC ELD. The MDCT algorithms were based on a mapping to DCT-IV which in turn 

is mapped to DCT-II. We used efficient algorithms for even length DCT in conjunction 

with our proposed fast 5-point and 15-point DCT modules. We showed that the 

modified window function is still piece-wise symmetric, thus requiring no extra 

memory to store it. We also derived a radix-5 decomposition of DCT which may be 

useful in the fixed-point implementation of the proposed MDCT algorithm. Complexity 

analysis for all the algorithms and comparisons are given. 

The work presented in this thesis can be extended in the following ways: 

1. Fast algorithms for the low delay SBR filterbanks used in MPEG-4 AAC 

ELD can also be derived. 

2. An exhaustive fixed point error analysis of various MDCT algorithms 

can be carried out including the algorithms proposed in this thesis and 

the radix-5 DCT algorithm. 

3. Prime factor algorithms directly for the MDCT can also be explored. 
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MATLAB CODE FOR FAST 15-POINT DCT 
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function [dct_15] = dct_15_unrolled(x) 
%15 point DCT for real input using WFTA and Heideman's mapping.  
%x is the input vector and dct_15 is the output vector (no scaling 

done).  
%Complexity: 17 multiplications and 67 additions 

  
%application of T3 matrix...3 adds each 
idx_map = [8 13 3]; 
s1 = x(idx_map(2)) + x(idx_map(3)); 
x(idx_map(3)) = x(idx_map(2)) - x(idx_map(3)); 
x(idx_map(2)) = s1; 
x(idx_map(1)) = s1 + x(idx_map(1)); 

  
idx_map = [11 1 10]; 
s1 = x(idx_map(2)) + x(idx_map(3)); 
x(idx_map(3)) = x(idx_map(2)) - x(idx_map(3)); 
x(idx_map(2)) = s1; 
x(idx_map(1)) = s1 + x(idx_map(1)); 

  
idx_map = [2 12 9]; 
s1 = x(idx_map(2)) + x(idx_map(3)); 
x(idx_map(3)) = x(idx_map(2)) - x(idx_map(3)); 
x(idx_map(2)) = s1; 
x(idx_map(1)) = s1 + x(idx_map(1)); 

  
idx_map = [14 7 4]; 
s1 = x(idx_map(2)) + x(idx_map(3)); 
x(idx_map(3)) = x(idx_map(2)) - x(idx_map(3)); 
x(idx_map(2)) = s1; 
x(idx_map(1)) = s1 + x(idx_map(1)); 

  
idx_map = [5 6 15]; 
s1 = x(idx_map(2)) + x(idx_map(3)); 
x(idx_map(3)) = x(idx_map(2)) - x(idx_map(3)); 
x(idx_map(2)) = s1; 
x(idx_map(1)) = s1 + x(idx_map(1)); 

  
%application of T5 to the the transpose of above result...8 adds each 
m = zeros(6,3); k = 1; 

  
idx_map = [8 11 2 14 5]; 
s1 = x(idx_map(2)) + x(idx_map(5)); s2 = x(idx_map(2)) - 

x(idx_map(5)); 
s3 = x(idx_map(4)) + x(idx_map(3)); s4 = x(idx_map(4)) - 

x(idx_map(3)); 
s5 = s1 + s3; s6 = s1 - s3; 
s7 = s4 + s2; s8 = s5 + x(idx_map(1)); 
m(1,k) = s8; m(2,k) = s5; m(3,k) = s6; 
m(4,k) = s2; m(5,k) = s7; m(6,k) = s4; 
k = k+1; 

  
idx_map = [13 1 12 7 6]; 
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s1 = x(idx_map(2)) + x(idx_map(5)); s2 = x(idx_map(2)) - 

x(idx_map(5)); 
s3 = x(idx_map(4)) + x(idx_map(3)); s4 = x(idx_map(4)) - 

x(idx_map(3)); 
s5 = s1 + s3; s6 = s1 - s3; 
s7 = s4 + s2; s8 = s5 + x(idx_map(1)); 
m(1,k) = s8; m(2,k) = s5; m(3,k) = s6; 
m(4,k) = s2; m(5,k) = s7; m(6,k) = s4; 
k = k+1; 

  
idx_map = [3 10 9 4 15]; 
s1 = x(idx_map(2)) + x(idx_map(5)); s2 = x(idx_map(2)) - 

x(idx_map(5)); 
s3 = x(idx_map(4)) + x(idx_map(3)); s4 = x(idx_map(4)) - 

x(idx_map(3)); 
s5 = s1 + s3; s6 = s1 - s3; 
s7 = s4 + s2; s8 = s5 + x(idx_map(1)); 
m(1,k) = s8; m(2,k) = s5; m(3,k) = s6; 
m(4,k) = s2; m(5,k) = s7; m(6,k) = s4; 

  
%application of matrix C...17 multiplications (C(1,1) is 1) 
u = -2*pi/5; v = -2*pi/3; 
C = ... 
    [1                              cos(v)-1                                    

sin(v) 
    (cos(u)+cos(2*u))/2-1          ((cos(u)+cos(2*u))/2-1)*(cos(v)-1)          

((cos(u)+cos(2*u))/2-1)*sin(v) 
    (cos(u)-cos(2*u))/2             (cos(u)-cos(2*u))/2*(cos(v)-1)              

(cos(u)-cos(2*u))/2*sin(v) 
    (sin(u)+sin(2*u))               (sin(u)+sin(2*u))*(cos(v)-1)                

-(sin(u)+sin(2*u))*sin(v) 
    sin(2*u)                        sin(2*u)*(cos(v)-1)                         

-sin(2*u)*sin(v) 
    (sin(u)-sin(2*u))              (sin(u)-sin(2*u))*(cos(v)-1)                 

-(sin(u)-sin(2*u))*sin(v)]; 

  
m = C .* m; 

  
%apply S5 matrix...5 adds each 
Ev = zeros(8,1); Od = zeros(7,1); 

  
%1st vector 
s9 = m(1,1) + m(2,1); s12 = m(4,1) - m(5,1); s13 = m(5,1) + m(6,1); 
s10 = s9 + m(3,1); s11 = s9 - m(3,1); 
Ev(1) = m(1,1);  
Ev(2) = s10; Od(1) = s12; 
Ev(3) = s11; Od(2) = s13; 

  
%2nd vector 
s9 = m(1,2) + m(2,2); s12 = m(4,2) - m(5,2); s13 = m(5,2) + m(6,2); 
s10 = s9 + m(3,2); s11 = s9 - m(3,2); 
Ev(4) = m(1,2);  
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Ev(5) = s10; Od(3) = s12; 
Ev(6) = s11; Od(4) = s13; 

  
%3rd vector 
s9 = m(1,3) + m(2,3); s12 = m(4,3) - m(5,3); s13 = m(5,3) + m(6,3); 
s10 = s9 + m(3,3); s11 = s9 - m(3,3); 
Od(5) = m(1,3);  
Od(6) = s10; Ev(7) = s12; 
Od(7) = s11; Ev(8) = s13; 

  
%apply S3 matrix to the transpose of the above result...total 13 adds 

  
%1st vector 
Ev(4) = Ev(1) + Ev(4); 

  
%2nd vector 
Ev(5) = Ev(2) + Ev(5); Od(3) = Od(1) + Od(3); 
r1 = Ev(5) + Ev(7); i1 = Od(3) + Od(6); 
Ev(7) = Ev(5) - Ev(7); Od(6) = Od(3) - Od(6); 
Ev(5) = r1; Od(3) = i1; 

  
%3rd vector 
Ev(6) = Ev(3) + Ev(6); Od(4) = Od(2) + Od(4); 
r1 = Ev(6) + Ev(8); i1 = Od(4) + Od(7); 
Ev(8) = Ev(6) - Ev(8); Od(7) = Od(4) - Od(7); 
Ev(6) = r1; Od(4) = i1; 

  
%finally apply the output permutation... 
dct_15 = zeros(15,1); 

  
dct_15(1) = Ev(1); 
dct_15(3) = -Ev(5); 
dct_15(5) = Ev(8); 
dct_15(7) = -Ev(3); 
dct_15(9) = Ev(7); 
dct_15(11) = -Ev(4); 
dct_15(13) = Ev(2); 
dct_15(15) = -Ev(6); 

  
dct_15(14) = Od(3); 
dct_15(12) = -Od(7); 
dct_15(10) = -Od(2); 
dct_15(8) = Od(6); 
dct_15(6) = -Od(5); 
dct_15(4) = -Od(1); 
dct_15(2) = Od(4); 
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function [] = fft_15() 
P_inp = zeros(15,15); 
P_out = zeros(15,15); 

  
%Prime Factor Mapping (PFM) for N = 3*5 
%3*5 means we first apply 5 point transforms and then 3 point 

transforms.  
%this will result in 67 real additions. if we use 5*3, we get 73 real  
%additions. multiplications will be the same in either case. hence we 

use  
%the factorization 3*5 

  
%mapping obtained by applying chinese remainder theorem as in the book 

by 
%Burrus 
k = 1; 
for n1 = 0:2 
    for n2 = 0:4 
        inp_idx_map(k) = mod(5*n1+3*n2,15); 
        out_idx_map(k) = mod(10*n1+6*n2,15); 
        k = k+1; 
    end 
end 

  
inp_idx_map = inp_idx_map + 1; 
out_idx_map = out_idx_map + 1; 

  
%form the permutation matrices of input and output 
for k = 1:15 
    P_inp(k,inp_idx_map(k)) = 1; 
    P_out(k,out_idx_map(k)) = 1; 
end 

  
%verify that the permuted transform matrix is equal to kronecker 

product of 
%prime factor transform matrices 
P_out * fft(eye(15)) * inv(P_inp) - kron(fft(eye(3)),fft(eye(5))) 

  
%define post addition matrix for tranform size 3; refer to Winograd 

short-N 
%DFT algorithms for the derivation of these matrices 
S3 = [1     0     0 
     1     1     1 
     1     1    -1]; 

  
%multiplication matrix for length 3 
C3 = diag([1 cos(-2*pi/3)-1 i*sin(-2*pi/3)]); 

  
%pre additons matrix for length 3 
T3 = [1     1     1 
     0     1     1 
     0     1    -1]; 
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%post additions matrix for length 5  
S5 = [1     0     0     0     0     0 
     1     1     1     1    -1     0 
     1     1    -1     0     1     1 
     1     1    -1     0    -1    -1 
     1     1     1    -1     1     0]; 

  
 %multiplication matrix for length 5 
 u = -2*pi/5; 
 C5 = diag([1 (cos(u)+cos(2*u))/2-1 (cos(u)-cos(2*u))/2 ... 
     i*(sin(u)+sin(2*u)) i*sin(2*u) i*(sin(u)-sin(2*u))]); 

  
 %pre additions matrix for length 5 
 T5 = [1     1     1     1     1 
     0     1     1     1     1 
     0     1    -1    -1     1 
     0     1     0     0    -1 
     0     1    -1     1    -1 
     0     0    -1     1     0]; 

  
 %verify eqn 16,17 in Silverman's paper 
 kron(S3,S5)*kron(C3,C5)*kron(T3,T5)-kron(fft(eye(3)),fft(eye(5))) 

  
 %form matrix C as defined eqn 24 of Silverman's paper 
 [r_C3,temp] = size(C3); 
 [r_C5,temp] = size(C5); 

  
 for j = 1:r_C5 
     for q = 1:r_C3 
         C(j,q) = (C5(j,j) * C3(q,q)); 
     end 
 end 

  
 %verify equation 24 in Silverman's paper.... 
 fft_15 = zeros(15,15); 
 for vec = 1:15 %test for each basis vector 
     clear z15; clear x; clear y; 
     x = zeros(15,1); 
     x(vec) = 1; 

  
     %apply input permutation 
     x = P_inp * x; 

  
     %form matrix z15 as in eqn 22 of Silverman's paper 
     q = 1; 
     for j = 1:3 
         for k = 1:5 
             z15(j,k) = x(q); 
             q = q+1; 
         end 
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     end 

  
     z15 = S3 * (S5 * (C .* (T5 * (T3 * z15).'))).'; 

  
     %form the output vector ... output scrambled 
     y = zeros(15,1); 
     q = 1; 
     for j = 1:3 
         for k = 1:5 
             y(q) = z15(j,k); 
             q = q+1; 
         end 
     end 

  
     %apply inverse output permutation to get the unscrambled output 
     y = inv(P_out) * y; 
     fft_15(1:end,vec) = y; 
 end 
 fft_15 - fft(eye(15))  
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