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ABSTRACT

A DYNAMIC MULTIPLE STAGE, MULTIPLE OBJECTIVE

OPTIMIZATION MODEL WITH AN APPLICATION TO A

WASTEWATER TREATMENT SYSTEM

Prashant K. Tarun, Ph.D.

The University of Texas at Arlington, 2008

Co-Supervising Professors: Dr. Victoria C. P. Chen, Dr. H. W. Corley

Decision-making for complex dynamic systems involves multiple objectives. Various

methods balance the tradeoffs of multiple objectives, the most popular being weighted-

sum and constraint-based methods. Under convexity assumptions an optimal solution to

the constraint-based problem can also be obtained by solving the weighted-sum problems,

and all Pareto optimal solutions can be obtained by systematically varying the weights

or constraint limits. The challenge is to generate meaningful weights or constraint lim-

its that yield practical solutions. In this dissertation, we utilize the Analytic Hierarchy

Process (AHP) and develop a methodology to generate weight vectors successively for

a dynamic multiple stage, multiple objective (MSMO) problem. Our methodology has

three phases: (1) the input phase obtains judgments on pairs of objectives for the first

stage and on dependencies from one stage to the next, (2) the matrix generation phase

uses the input phase information to compute pairwise comparison matrices for subsequent

stages, and (3) the weighting phase applies AHP concepts, with the necessary weight vec-

tors obtained from expert opinions. We develop two new geometric-mean based methods

vi



for computing pairwise comparison matrices in the matrix generation phase. The weight

ratios in the pairwise comparison matrices conform to the subjective ratio scale of AHP,

and the geometric mean maintains this scale at each stage. Finally, for these two meth-

ods, we discuss the consistency of computed pairwise comparison matrices, note the

convergence behavior, and apply our three-phase methodology to a problem of evalu-

ating technological processes/units at each stage of an MSMO Wastewater Treatment

System (WTS). The WTS is a 20-dimensional, continuous-state, 17-stage, 6-objective,

stochastic problem.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The application of multistage multiobjective optimization is rapidly growing in

fields such as operations research, computer science, and environmental engineering, as

well as such varied disciplines as chemical engineering, economics, and management.

A large portion of control problems exhibit multiple stage, multiple objective (MSMO)

characteristics. Despite its prevalence, there are few methods with the capability to solve

a general large-scale multistage multiobjective optimization problem. Advancement in

computing power in the last two decades has made it possible to solve some computa-

tionally intensive problems in various application areas.

The research objective of this dissertation is to scalarize a multistage and multi-

objective optimization model so that it can be solved using existing approaches. This

dissertation uses weighted-sum of objective functions as an a priori method to solve

the multiple stage, multiple objective optimization problem. What gives the weighted-

sum approach an edge over other contemporary scalarization approaches such as the

ε-constraint method, etc., are the following.

• It allows decision makers in a particular MSMO problem domain to participate in

the solution process due to its simplicity.

• Decision makers do not need to understand the optimization theory and method-

ology for an effective participation.

1
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• The weighted-sum can be implemented easily and effectively in general, which is

particularly important for a complicated large-scale problem where objectives are

conficting and measured in different units.

• The weighted-sum approach can easily be used with other frequently used ap-

proaches in multiobjective decision-making such as Analytic Hierarchy Process

(AHP), etc.

A detailed discussion on the contemporary scalarization approaches is given in the liter-

ature review. The weighted-sum of objective functions approach converts the multiple

objective optimization to single-objective optimization at each stage, which yields a mul-

tiple stage single-objective model that can be solved using dynamic-programming based

approaches such as in Tsai [113]. The weighted-sum of the objective functions has long

been one of the most preferred a posteriori methods for solving single stage, multiple

objective optimization problems [73, 40]. A major challenge for using the weighted-sum

as an a priori method in the multiple stage setting is the determination of meaningful

weight vectors at each stage.

Figure 1.1 shows the basic multiple stage, multiple objective optimization problem.

The weighted-sum of objective functions approach results in a multiple stage, single

objective optimization problem as shown in Figure 1.2. We seek to find a method that

both determines a weight vector at one stage and modifies this vector appropriately from

one stage to the next. An exhaustive set of Pareto optimal solutions can be obtained

by varying the weight vectors at each stage of the multiple stage, multiple objective

optimization problem.

1.2 Methodology

Traditionally, pairwise comparison matrices are used to compare a pair of objectives

in a multiple objective decision-making domain. Pairwise comparison matrices are con-



3

 
 
1 

 
 
2 

 
 

T 
State 

Vector, 
x1 

Decision 
Vector, 

u1 
 

Objective Function 
Vector, 

m1(x1,u1)= 
 

Decision 
Vector, 

u2 
 

Objective Function 
Vector, 

m2(x2,u2)= 

State 
Vector, 

x2 

State 
Vector, 

xT 

Decision 
Vector, 

uT 
 

Objective Function 
Vector, 

mT(xT,uT)= 

State 
Vector, 

xT+1 

m1
1(x1,u1) 

m2
1(x1,u1) 

. 

. 

. 
mk

1(x1,u1) 
 

m1
2(x1,u1) 

m2
2(x1,u1) 

. 

. 

. 
mk

2(x1,u1) 
 

m1
T(x1,u1) 

m2
T(x1,u1) 

. 

. 

. 
mk

T(x1,u1) 
 

State 
Vector, 

x3 

 

Figure 1.1. Basic formulation of multiple stage multiple objective optimization problem.



4

 

 
 
1 

 
 
2 

 
 

T 
State 

Vector, 
x1 

Decision 
Vector, 

u1 
 

Weighted Sum of Objective 
Functions, 

W1m1(x1,u1)= 
 

Decision 
Vector, 

u2 
 

Weighted Sum of Objective 
Functions, 

W2m2(x2,u2)= 

State 
Vector, 

x2 

State 
Vector, 

xT 

Decision 
Vector, 

uT 
 

Weighted Sum of Objective 
Functions, 

WTmT(xT,uT)= 

State 
Vector, 

xT+1 

m1
1(x1,u1) 

m2
1(x1,u1) 

. 

. 

. 
mk

1(x1,u1) 
 

State 
Vector, 

x3 

w1
1 

w2
1 

. 

. 

. 
wk

1 

' 
m1

2(x2,u2) 
m2

2(x2,u2) 
. 
. 
. 

mk
2(x2,u2) 

 

w1
2 

w2
2 

. 

. 

. 
wk

2 

' 
m1

T(xT,uT) 
m2

T(xT,uT) 
. 
. 
. 

mk
T(xT,uT) 

 

w1
T 

w2
T 

. 

. 

. 
wk

T 

' 

)),()(
1
( 1111 uxtm

k

t

tw∑

=
=  )),()(

1
( 2222 uxtm

k

t

tw∑

=
=  )),()(

1
(

TT
TT uxtm

k

t

tw∑

=
=  

Figure 1.2. Scalarization using weighted-sum of objective functions approach.
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structed based on the inputs from the experts/decision makers. The problem with this

approach is that we need experts to answer a large number of questions for the complete

pairwise comparison matrices. This becomes a larger issue when we deal with multiple

stage, multiple objective (MSMO) decision-making. Therefore, for an MSMO decision-

making problem we need an approach that reduces the amount of information/input

required from the decision makers and yet maintains the consistency in their judgments

from one stage to the next. In this dissertation, we introduce a new methodology for

computing pairwise comparison matrices at each stage of an MSMO decision-making

framework, which can be used to compute stagewise weight vectors and to form the

weighted-sum of objective functions at each stage.

The advantage of the new approach in terms of the amount of input required

from the decision makers can be seen as follows. In the first stage, decision makers are

required to compare k×(k−1)
2

pairs of objectives for obtaining the complete k× k pairwise

comparison matrix in the first stage, where k is the number of objectives at each stage.

The assumption is that the number of objectives remains the same for all stages. The

benefit of the approach can be seen in subsequent stages, where decison makers need to

compare only k pairs of objectives instead of k×(k−1)
2

at each stage. Mathematically, k is

less than k×(k−1)
2

, for k greater than 3. Hence, a tremendous reduction in the amount of

information can be achieved for an MSMO problem with a large number of stages and

objectives.

After a multiobjective subproblem has been converted at each stage into a single-

objective subproblem, dynamic programming-based approaches, such as that utilized in

Tsai [113], can be used to solve the multistage optimization problem. We have developed

a methodology that consists of three phases. (1) The input phase obtains judgments

on pairs of objectives for the first stage and on dependencies from one stage to the

next. (2) The matrix generation phase uses the input phase information to construct
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pairwise comparison matrices for the subsequent stages. (3) The weighting phase applies

Analytic Hierarchy Process (AHP) concepts to obtain the weight vectors representing

expert opinions as in [93]. These three phases are depicted in Figure 1.3 for a typical

multistage and multiobjective model.

In this dissertation, we primarily focus on the input phase (1) and matrix gen-

eration phase (2). For the input phase (1), we have developed a questionnaire-based

approach to elicit inputs from decision makers that are crucial in forming the following

two classes of input matrices: pairwise comparison matrix at stage 1, and interstage diag-

onal transformation matrix, also referred to as the matrix of dependencies from one stage

to the next. The questionnaire-based approach is innovative in its implementation to the

multiple stage setting. In addition to obtaining the input matrix at stage 1, this also

entails asking questions to determine the interstage dependencies between same objective

types in consecutive stages. The weighting phase (3) follows the standard AHP approach

[49].
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Objective Function 
Vector, m1(x1,u1) 
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A(ττττ,ττττ) Pairwise comparison matrix at 
         stage τ 
Wττττ    Weight vector at stage τ  
 

Figure 1.3. A typical multistage multiobjective model highlighting three phases in our
methodology.
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Two geometric-mean based methods have been developed for the matrix generation

phase. These methods compute pairwise comparison matrices in a multistage setting

and use AHP methodology to determine weight vectors at each stage from computed

stagewise pairwise comparison matrices. Computation of pairwise comparison matrices

is a new concept as they have traditionally been formed based on the direct inputs

from decision makers. We alleviate the traditional time-consuming process through our

new methods, which can reduce the amount of information required from the decision

makers thereby reducing the interaction with them in solving a general large-scale MSMO

decision-making problem. As a result, we gain a tremendous advantage in terms of time it

will take to solve a practical MSMO decision-making problem. Both of these methods use

the concept of geometric mean to maintain the component values of computed pairwise

comparison matrices in the AHP ratio scale range.

The novelty of our two matrix generation methods can also be seen in the way

they help extend AHP to multiple stage, multiple objective decision-making problems.

In particular, our approach allows:

• interpretability as a result of the pairwise comparison matrices complying to the

AHP ratio scale,

• an improvement in the consistency of the pairwise comparison matrices (shown in

Chapter 4),

• the extension of the AHP ratio scale to a continuum,

• the extension of AHP to the MSMO decision-making framework,

• input from the actual decision makers on the relative importance of the different

objectives at the initial stage and between two consecutive stages without decision

makers needing to understand the optimization concepts in detail.
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1.3 The Application

We demonstrate our three-phase methodology on the problem of selecting a set

of technologies for a 17-level (or stage) Wastewater Treatment System (WTS) to satisfy

the following six objectives: minimize [economic cost (in USD, capital cost and operat-

ing cost), size (in m2, expressed as land area), odor emissions (in mg/min)], maximize

[robustness (no units), global desirability (on 1-6 scale), and nutrient recovery (on 1-5

scale)]. The multiple stage version is also solved using standard single-stage optimization,

which leads to a loss in the significance of stages and stagewise decision-making, the most

important feature in a multiple stage decision-making problem. The high-dimensional

continuous-state stochastic dynamic programming approach is used for the solution [113]

due to the following advantages it holds over contemporary approaches. This method

is equipped with efficient design of experiments-based discretization of the state-space

and statistical modeling for approximating future value functions, and most importantly

it retains the original properties in the multiple stage decision-making problem. The

approach has been enhanced to enable the following:

• Augmentation to handle multiple objectives that includes decision makers’ tradeoff

preferences with respect to objectives,

• Transformation/normalization of non-commensurable (in different units) objec-

tives,

• Addition of new technology processes/units at some levels, which led to new tran-

sition equations at these levels and a modification in the cleanliness constraints at

these and subsequent levels.

The final solution can be validated from the fact that it satisfies the interstage dependen-

cies between various technologies. Also, the solution results are more or less consistent

with those in [113]. Interestingly, the newly-added technologies have been shown to be the
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decisions selected in the relevant levels. The big design with 12167 points is considered

to provide the “true” solutions to WTS.

1.4 Overview of Dissertation

This dissertation is organized as follows. Chapter 2 presents a literature review

and background. Chapter 3 explains the three-phase methodology. Chapter 4 presents

the application to an MSMO WTS. Chapter 5 gives the concluding remarks and future

research directions. Appendices A and B present questionnaire modeling-related data and

computed pairwise comparison matrices in the matrix generation phase, respectively.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

The primary objective of this dissertation is to develop an efficient method of

generating weight vectors to form a weighted-sum of objective functions at a stage for

solving a multiple stage multiple objective (MSMO) problem. The weighted-sum of

objective functions method has been used traditionally as an a posteriori method to

scalarize the vector optimization problem. However, we intend to use the weighted-sum

of objective functions method as an a priori method for solving MSMO problems. Two

critical issues that arise while using the weighted-sum of objective function as an a priori

method for MSMO problems are:

• Determination of weight vector at one stage,

• Transformation of the weight vector from one stage to the next.

The above issue of determining the weight vector at a stage entails an approach that

involves decision makers effectively, which implies that the approach should be simple

enough to be understood and followed. In other words, the decision makers should not

be expected to understand the optimization concepts for an effective participation. Easy

participation of decision makers/technical experts is one of the major advantages the

weighted-sum of objective functions approach has over ε-constraint and other contempo-

rary scalarization approaches. Furthermore, the above issue of interstage transformation

has its own complication in designing an approach that takes decision makers inputs at

one stage and transforms them in such a way that the “true” preferences/judgments of

decision makers are reflected in the next stage.

10
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In subsequent sections we will present relevant past research on multiobjective

optimization methods, analytic hierarchy process (AHP), weight generation methods,

and multistage multiobjective methods respectively.

2.2 Multiobjective Optimization Methods

In this dissertation we solve multiobjective optimization problems at every stage

of a general MSMO problem. This section will review some of the prominent solution

methods in terms of their popularity, efficiency and applicability from among a vast array

of methods to solve multiobjective problems. Despite diverse choices we choose to use the

weighted-sum of objective functions approach of solving the multiobjective problem at

each stage of MSMO due to the following reasons. It is easy to understand and apply. It

uses conventional single objective optimization theory. Local Pareto optimal solutions are

easily obtained (unless the objective functions and the feasible region are convex or quasi-

convex and convex respectively), and weighted-sum approach can produce an exhaustive

set of Pareto optimal solutions by using different weight vectors. The weighted-sum

approach scalarizes the multiobjective optimization problem (also referred to as vector

optimization problem). Scalarization implies the conversion of a multiobjective (vector)

optimization problem into a single (scalar) objective optimization problem.

We first classify multiobjective optimization methods as described in Collette [32]

and Miettinen [73]. Such a classification of multiobjective methods is an extremely con-

tentious subject, which can be seen in Cohon [31], Rosenthal [83], Carmichael [20], Hwang

[51], and Vedhuizen [118]. Different schools of thought on classification of multiobjective

optimization methods can be summarized as follows:

• generating (these methods generate an adequately large set of Pareto optimal solu-

tions for the decision maker to choose from), and preference-based (these methods
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take into account the preferences of the decision maker, and enable the decision

maker to select the method that closely maps his/her preferences) [31],

• classes based on partial generation of the Pareto optimal set, explicit value function

maximization and interactive implicit value function maximization [83],

• classes based on a composite single objective function, a single objective function

with constraints, or many single objective functions [20]

• classes based on decision maker’s participation (a widely used methodology sug-

gested by Hwang and Masud) [51], and

• interactive methods (these allow progressive articulation of preferences by decision

maker) versus non-interactive (do not allow progressive articulation of preferences

by decision maker) [73].

Our choice is the most widely used classification methodology based on the participation

of the decision maker as in Hwang [51, 18], Buchanan [15], and Lieberman [68, 67]. We

prefer this methodology because it:

• covers the majority of current methods,

• has a futuristic value in the sense of its adaptability to the methods under devel-

opment, and

• utilizes the experience of the decision maker.

This classification includes no participation at all (no-preference methods), participation

before (a priori methods), participation after (a posteriori methods), progressive par-

ticipation (interactive methods), fuzzy methods, and metaheuristic methods. However,

there may be methods that do not belong directly to any of the above classes, or they

belong to more than one class simultaneously. For example, it is practical to use a priori

method first for random computation of preferences and then use a posteriori method

for generation of a large set of Pareto optimal solutions for the decision maker. We next

review various methods in each of these classes.
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2.2.1 Methods for no participation at all

No preference methods do not take into consideration the preferences of the decision

maker. The methods are: global criterion, exponential sum, objective sum, min-max, Nash

arbitration scheme, objective product, multiobjective proximal bundle (MPB), etc.

The global criterion method, also referred to as compromise programming, mini-

mizes the distance between some reference point and the feasible objective region. In this

method, selecting the reference point and the metric for measuring distance is the most

significant issue. A typical reference point is the ideal objective vector (final solution).

Typical metrics being used are: Lp (values widely used for p are 1, 2, or infinity) and L∞

is also called Tchebycheff metric [73].

Yu and Zeleny provide a detailed coverage of the global criterion method [131, 134].

This method can be used when nothing is expected other than obtaining a solution. The

advantage is an assortment of metrics that guarantee a Pareto optimal solution. The

disadvantage [73] is that the solution obtained is seldom used.

Marler explains exponential sum, objective sum, min-max, Nash arbitration scheme,

and objective product methods [70]. The idea behind MPB is to seek for a search direction

that optimizes an unconstrained improvement function. MPB can deal with nonlinear

and perhaps nondifferentiable functions under the assumption that all the objective and

the constraint functions exhibit Lipschitzian behavior locally [73].

2.2.2 A priori methods

A priori methods require a decision maker’s preferences before the solution process.

Unfortunately the decision maker seldom has a good grasp of realities and possibilities of

the problem. Yet we must map the decision maker’s preferences accurately and maintain

the desired level of objectivity while determining a solution.
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If the decision maker is supremely confident in his understanding of all aspects of

problems and can express his/her understanding in a reliable mathematical form, then

the value function method is one of the most viable options for obtaining an optimal

solution. The value function method takes decision maker’s mathematical expression of

his/her preferences, formulates a single objective optimization problem with this value

function as the objective, and solves it by using a single objective optimization method

[57]. Though very simple in formulation, the value function method depends solely on

an often unreliable value function expressed by the decision maker. The difficulty in

obtaining a value function has been dealt with by deNeuf [35] and Rosinger [84]. The

weighting techniques (including weighted-sum and weighted-product) may be seen as a

special case of the value function method where the utilities are linear, and additive or

multiplicative (for instance, in weighted-product).

The weighted global criterion is an extension of the global criterion method dis-

cussed in the previous section [134]. A weighted min-max criterion is another approach

that utilizes achievement scalarizing functions instead of metrics in the weighted global

criterion method as in Wierzbicki [123, 124, 125, 126, 127, 129, 128].

The first step in lexicographic ordering requires decision makers to arrange objec-

tive functions according to their absolute importance. The ordering is predicated on

the assumption that more important means infinitely more important. Subsequent steps

involve optimizing the most important objective function subject to the original con-

straints. Stop if the solution is unique, or else the second most important objective

function is optimized subject to the original constraints and a new constraint for main-

taining the optimal value of the most important objective function. Again stop if the

solution is unique, or else repeat the above step as in Fishburn [41].

The advantages of lexicographic ordering are its simplicity, its orientation toward

the decision maker in terms of seeking an ordering of objective functions, and its robust-



15

ness. Some of the disadvantages include the difficulties in ordering objective functions

according to their absolute importance and the fact that tradeoffs between any two ob-

jective functions are not allowed.

Goal programming was conceptualized in 1955 [1], and named as such in 1961 by

Charnes [22]. This method allows the decision maker to specify goals in terms of assigning

aspiration levels to objective functions, and then minimizing any deviations from these

goals. Different goal programming formulations are: weighted (or Archimedian) [23],

lexicographic (or preemptive), weighted-lexicographic, min-max [42].

Goal programming still ranks high in terms of applicability due to the following

reasons: (1) proven methodology, (2) sound rationale of goal-setting, and (3) broad reper-

toire that allows a variety of formulations and methodologies. Some of the limitations

include the difficulty in a priori goal-setting without having a clear idea about the fea-

sible region of the Pareto optimal set. Also, tradeoffs are not possible, and there is the

underlying restriction of a piecewise linear value function.

Goal programming applications have been in numerous areas such as public works

planning [55], portfolio selection [112], wildlife management [86], etc. An extensive col-

lection of references on goal programming can be found in [107].

Bounded objective function methods are frequently used to solve practical multiob-

jective problems. One of the popular methods of this type is the ε-constraint approach,

which minimizes a single objective function while turning all other objective functions

into bounded constraints. Marler discusses other a priori methods in his dissertation

[70].

2.2.3 A posteriori methods

A posteriori methods are based on generation of a relatively large set of Pareto

optimal solutions that are presented to the decision maker for final selection. They
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present several difficulties. First, it is computationally inefficient to generate a large set

of Pareto optimal solutions. Second, it is not easy for a decision maker to select from

such a large set of solutions. Third, it is hard to find an effective way of presenting the

set of Pareto optimal solutions to the decision maker [116, 115, 2, 3].

Many of the previous methods that can be used as a posteriori methods are weight-

ing, ε-constraint, hybrid that combines weighting and ε-constraint, weighted metrics (a

variant of global criterion method), and weighted min-max. The approaches that are ex-

clusive to this class are the generalized hyperplane method [106], the envelope approach

[65], the non-inferior set estimation method (NISE) method [30, 21, 6], global shoot-

ing procedure [12], the normal boundary intersection (NBI) method [34], the normal

constraint (NC) method [72], the adaptive search method, and the projection method.

2.2.4 Interactive methods

The interactive method is an iterative way to arrive at the most satisfactory results.

The analyst interacts with the decision maker throughout the solution process. This has

an obvious advantage over other classes because of the decision maker’s high level of

confidence in the final solution. The three-step process involves: (1) finding the initial

feasible solution, (2) interacting with the decision maker, and (3) obtaining a new solution

(or a set of new solutions). If the new solution is acceptable to the decision maker, stop.

Otherwise, repeat steps two and three.

Interactive methods eliminate many of the disadvantages of the three classes of

methods discussed above. Its advantages include generation of only a part of the Pareto

optimal solution set, the flexibility of correcting preferences/judgments as the process

moves along, and a better opportunity to understand the problem and improve decision-

making.
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Consistency of the decisions by the decision maker is one of the basic assumptions

overriding the majority of interactive methods. However, inconsistencies are unavoid-

able because of the subjectivity of the decision makers. Consistency is becoming the

focal point in the development of new interactive methods. Various methods deal with

inconsistencies in various ways as in [108].

Interactive methods are relatively advanced due to a progressive involvement of

decision makers in the solution development process. Numerous such methods are used,

and they differ in terms of:

1. how the decision maker receives information,

2. how the decision maker provides information,

3. how the multiple objectives are aggregated to form single objective optimization

problem,

4. how the decision maker’s inconsistencies are handled,

5. how the decision maker’s behavioral issues are accounted for [61, 62],

6. how user-friendly and descriptive they are while dealing with decision maker’s in-

puts, and

7. how and, to what extent, the decision maker’s creativity is encouraged.

The decision maker should be able to understand the information easily and utilize it in

a meaningful way to come up with a proper response efficiently. This would entail a total

commitment from the analyst and the decision maker to this methodology. The amount

of information received by the decision maker affects the amount of the information

he/she uses. More information does not always lead to better decisions [60].

Convergence of the interactive method is discussed next. According to the conven-

tional definition of convergence, the method is said to converge to Pareto optimal points

if the final solution is Pareto optimal [73]. Another definition states that the method is

said to converge to a satisficing solution if the final solution is satisficing [73]. In other
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words, there is some degree of ambiguity about the meaning and proof of convergence for

interactive methods. As a matter of fact there has been research, as described in Stewart

[111], Gardiner [44], and Zionts [137, 136], claiming that mathematical convergence is

neither necessary nor sufficient to evaluate the validity of an interactive method. The

solution process stops when the decision maker is convinced that no significantly better

solutions exist.

Miettinen [73] discusses numerous interactive methods. These include an inter-

active surrogate worth tradeoff (ISWT), the Geoffrion-Dyer-Feinberg (GDF), sequential

proxy optimization technique (SPOT), and Tchebycheff’s method. He also delves into the

step method (STEM), reference point method, GUESS or naive method, and satisficing

tradeoff method (STOM), along with light beam search, reference direction approach, ref-

erence direction method, and non-differentiable interactive multiobjective bundle based

optimization system (NIMBUS). Collette and Siarry [32] discuss Fandel, Jahn, and the

simplex methods.

2.2.5 Fuzzy-based methods

The notion of fuzzy sets and logic can be used to model real-world processes. The

theory of fuzzy sets, created by Zadeh [133], redefines fuzzy sets to allow one to deal with

uncertainty, inaccuracy and progressive transition. The idea is to model each objective

function and constraint with a membership function developed by the decision maker

using reasoning, experience, interpretation, and perception. Some of the popular fuzzy

approaches applied to multiobjective optimization are the Sakawa method [105, 104] and

the Reardon method [81, 82].
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2.2.6 Methods for metaheuristics

We will now discuss some metaheuristic methods that are inherently different from

the above methods. Primary metaheuristic methods include simulated annealing, TABU

search and genetic algorithms. Simulated annealing is based on the physical process of

metal annealing in terms of how it functions [87]. Glover’s TABU search [45] is designed

to circumvent local optima. Genetic algorithms are mathematically analogous to the

Darwin’s theory of natural selection [36]. They converge to a set of Pareto optimal solu-

tions by successively working with a population of points. The vector evaluated genetic

algorithm (VEGA) is a non-aggregation method to deal with a multiobjective optimiza-

tion problem [28, 36]. The drawback with this method is its inability to find Pareto

optimal solutions in the non-convex region. The multiple objective genetic algorithm

(MOGA) method employs the domination relation to compute the efficiency of an indi-

vidual [36, 43]. The limitation is its inability to produce diverse solutions approximating

the Pareto frontier. Two improvements to the MOGA method are the non-dominated

sorting genetic algorithm (NSGA) method [109] and the niched Pareto genetic algorithm

(NPGA) method [53].

In summary, no one method is superior to other methods. Selection of a particular

method to solve multiobjective optimization problems depends on:

• features of the problem at hand,

• appropriateness to the problem,

• people and the place of implementation,

• knowledge and type of decision maker,

• ease of use for real-world problems,

• theoretical properties of the method,

• computational efficiency, validity and sensitivity of results to the choice of method,

• transparency,
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• ease of understanding,

• possibilities of interaction,

• interpretability of the results,

• ease of choosing the most preferred solution from an adequately big set of solution

set, and

• ease of showing and interpreting the effect of decision makers’ inputs on the solution.

Interestingly, the selection of multiobjective optimization methods is a multiobjective

optimization problem itself.

2.3 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP), developed by Thomas Saaty in the 1970s,

has proven remarkably efficient in organizing and resolving complex decision-making

problems. The AHP concept is based on human psychology. Humans tend to break down

a complex problem in hierarchies or levels, and then make a rather simplistic pairwise

comparison between criteria/alternatives at each level. Decomposition of the complexity

is one of the first things humans do when they are faced with complex decision-making

situations. Having identified various decision elements and the interrelationships among

them, the human mind starts synthesizing them to form a judgment.

AHP is hierarchical in structure. For a decision-making problem, the significant

factors are identified first. Then, these factors are arranged in a hierarchical structure

from an overall goal to objectives, sub-objectives and alternatives in different levels from

top to bottom [93]. Hierarchies are not something devised by self-serving bureaucratic

organizations, but they are basic to how a human mind breaks a complex situation into

clusters and sub-clusters [122]. The hierarchical structure is useful in two ways. First,

it gives a detailed account of the intricate relationships in a complex decision-making
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problem. Second, it aids decision makers in assessing homogeneity of factors in each

level for an accurate comparison. The hierarchy process is illustrated in Saaty [93, 94].

Like any social variable, judgment or preference is subjective in nature. Since

judgments/preferences are critical to the use of AHP in a practical problem domain,

AHP works on the following assumptions:

• the pairwise comparisons can be obtained by direct questioning of people (meaning

a group or individual in the sole authority of the decision making) familiar with

the decision making problem;

• inconsistencies are unavoidable in real-world situations;

• priority setting is a must;

• all the alternatives (like technology choices at each level of WTS) are specified in

advance, and not all variables need to be under the control of the people involved;

• the expressed judgments are deterministic in nature (although there have been a

lot of interest in the study of probabilistic case as in Saaty [101, 102], Ozdemir [77],

and Basak [8]); and

• in case of a dispute in a group setting, the separate judgments of the disputing

parties may be compared with the judgments of the non-disputing parties.

AHP involves setting up the hierarchical structure of the decision-making problem,

pairwise comparisons of all the elements of a lower level with each element of the next

higher level, assigning a ratio to each pairwise comparison according to Saaty’s funda-

mental ratio scale [94] in a matrix form, and finding the eigenvector associated with the

pairwise comparison matrix giving the largest eigenvalue [93].

Mathematically, AHP works toward computation of principal eigenvector, which

when normalized becomes the vector of priorities (or weight vector) for the given pairwise

comparison matrix. This in turn is based on an important property of square matrices

from algebra stating that associated with a square matrix are its eigenvectors and corre-
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sponding eigenvalues [130]. Forming a pairwise comparison matrix is central to AHP’s

efficacy and is discussed in Saaty [93]. A good discussion on the necessity of the princi-

pal eigenvector for the representation of priorities can be found in Saaty [96], and Saaty

[98] shows through counter-examples the reason why the principal eigenvector is the only

way to obtain correct vector of priorities under inconsistency of judgments. The principal

eigenvector is insensitive to small perturbations as explained in Saaty [103].

Saaty [93] described the following four ways to get estimates of the principal eigen-

vector from a given pairwise comparison matrix.

1. The crudest estimate is obtained by summing the elements in each row and nor-

malizing these by dividing them by the total of all the sums.

2. A relatively better estimate is obtained by summing the elements in each column,

forming the reciprocals of these sums, and normalizing by dividing each reciprocal

by the sum of the reciprocals.

3. A good estimate is obtained by dividing the elements of each column by the sum

of that column (normalizing the column), adding the elements in each row of the

normalized column matrix, and dividing this sum by the number of elements in the

row (averaging over the normalized columns).

4. An equally good estimate can be obtained by taking the geometric mean of n

elements in each row and normalizing the resulting numbers.

We use the method of normalizing the column and averaging over the normalized columns

to get an estimate of the weight vector.

The computed eigenvector provides the vector of priorities, and the eigenvalue pro-

vides a measure of the consistency (or lack thereof) of judgment. Consistency is not only

the requirement that transitivity of preferences gets satisfied but also the actual strength

with which the expressed preference transits through the objectives in consideration. The

consistency of an n × n positive reciprocal matrix is equivalent to the requirement that
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its maximum eigenvalue should be equal to n. It is possible to estimate the departure

from consistency by comparing the ratio of the difference between maximum eigenvalue

and number of elements to (number of elements - 1) with its value from randomly chosen

judgments and corresponding reciprocals in the reverse positions in a matrix of the same

order as in [93, 90, 95, 102, 92].

Saaty described in [93] the following method to obtain a crude estimate of consis-

tency of a pairwise comparison matrix:

• multiplying the matrix of pairwise comparisons on the right by the estimated so-

lution vector to obtain a new vector;

• dividing the first component of the new vector by the first component of the es-

timated solution vector, the second component of the new vector by the second

component of the estimated solution vector and so on to obtain another vector;

and

• computing average of the components of this vector to get an approximation of

maximum (or principal) eigenvalue, which provides an estimate of consistency.

The closer the maximum eigenvalue is to the number of objectives/criteria in the pairwise

comparison matrix, the more consistent is the result. New approaches in Pelez [79] and

Alonso [5] have recently been developed for studying the consistency.

The next issue is how large the order of pairwise comparison matrix should be

to ensure consistency. This should be seven plus or minus two as explained in Saaty

[88]. The human mind is more sensitive to improving large inconsistencies, and the

inconsistencies are shown to be sufficiently large if the order of pairwise comparison

matrix falls in the seven plus or minus two for humans to respond effectively. We note that

the wastewater treatment system (WTS) of this dissertation has six objectives/criteria

for comparison, which fall in this range.
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AHP does an excellent job of eliciting a group or individual judgment and express-

ing it on the ratio scale: 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,

where these values suggest the ratio of relative importance of one criterion to another.

The relative importance of a particular criterion means the level of its importance to

the overall goal of the decision-making process with respect to another criterion. For

example, if technology T1 has two different criteria, cost and size, and cost is strongly

more important than size. The corresponding ratio value that fits this is 5, implying that

cost=5*size. The interpretation of different values on the ratio scale is given in Saaty

[93, 103, 90].

It is important to note here that AHP also uses real numbers other than the 17

rational numbers specified by the ratio scale to form ratios when it is desired to force

consistency on the entire matrix from a few judgments. In order to form an n×n perfectly

consistent pairwise comparison matrix, a minimum of n-1 judgments are needed [93]. We

use this information as an intuitive justification for using continuous ratio values in the

computed pairwise comparison matrices.

The ratio scale of AHP raises numerous questions, which include why the ratio

scale is necessary, what the rationale is behind the fundamental 1-9 scale, why 9 should

be the upper value of the scale, etc. Technically, a scale is a triple consisting of a set

of criteria, a binary operation on the criteria and a transformation of the criteria to the

real numbers. Ratio scale is used in AHP because it can be shown mathematically that

the pairwise comparisons defined by the binary operation map into the ratio scale of real

numbers corresponding to the criteria being compared [93]. The fundamental 1-9 scale

can be explained through the way we compare two objects in terms of their importance to

us. We put the comparisons in either of the following five categories: equally important,

weakly more important, strongly more important, demonstrably or very strongly more

important, and absolutely more important. This task requires five real numbers, and
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thus 1, 3, 5, 7, 9 are chosen to represent the above comparisons. The numbers 2, 4, 6, 8

then represent compromises between differing judgments. A good overview can be found

in Saaty [90]. Poyhonen et al. [69] show that there are alternative numerical scales that

produce more accurate estimates of judgments than the fundamental 1-9 scale and help

reduce the inconsistency of the pairwise comparison matrices.

In order to represent reality in numerical judgments or preferences, AHP makes

the following assumptions: (1) physical reality is consistent and can be counted on to

produce similar results under controlled conditions; (2) consistency is necessary for cap-

turing reality but not sufficient; (3) improving objectivity and playing down subjectivity

will give a better estimate of reality; (4) mathematics can be used to develop a theoret-

ical background for numerical scales of judgments; (5) a scale can be devised that has

the power to differentiate various judgments and provide some kind of correspondence

between qualitative judgments and the numbers on the scale; (6) measurement theory

from physics and economics can be applied; and (7) inconsistency in judgment can be

computed [103].

AHP holds some advantages over contemporary methods. It can deal with a large

problem easily by breaking it down into subproblems, which in turn helps the decision

makers focus and make sound decisions. It can detect the violation in consistency and

evaluate it. It can be used by people with little experience, and can translate qualitative

and subjective inputs into quantitative values for decision making. It can also point out

potential conflicts and tradeoffs. It also exhibits invariance of the solution with respect

to the index order of the criteria as explained in Saaty [93], Kablan [56], Nigim [54], and

Debeljak [17].

AHP also has its limitations: (1) the inability to take into consideration the vari-

ability of confidence in making pairwise comparisons [135]; (2) the inability to explain

the use of reciprocal values in the pairwise comparison matrix with regard to human per-
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ception and judgment; (3) the unwieldy number of pairwise comparisons for a relatively

large problem; (4) there could be better alternatives to the ratio scale, as evidenced by

[69]; and (5) invariance is a handicap because of insensitivity to the relative uncertainty

of the weight ratios assessed by the decision maker [38].

AHP has been applied in diverse areas since its inception about three and half

decades ago. It was developed to solve a contingency planning problem [89]. It had its

breakthrough application in designing alternative futures for Sudan [91]. Furthermore,

it gained prominence through a flurry of applications [99, 97, 100]. The diversity of its

application can be gauged by its use in economic, environmental, social, political and

technological areas as described in Saaty [103] and Hobbs et al. [49].

AHP mimics reality since it allows for the inconsistencies in the judgments. AHP

has the tools to adapt to complex situations. From the decision maker’s standpoint,

the ratio scale is simple to use and has all the requisite features to represent complex

judgments extensively. As discussed above, AHP readily embraces the unavoidable in-

consistencies of the judgments in real-world decision making, provides a way to measure

the deviation in consistency, and validates this measurement by putting a given pairwise

comparison matrix in a more tangible accept/reject category.

In summary, AHP has the following significant features: the ratio scale, the recip-

rocal paired comparisons, and the sensitivity of the principal eigenvector. It also allows

the extension of scale from 1-9 to 1-infinity as well as group decision making [103].

2.4 Weight Generation Method

Determining weight vectors is one of the most significant elements of this disserta-

tion. We are using AHP method in a multistage framework to compute weight vectors

at each stage. Some of the important points in favor of AHP are:
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• high level of confidence in the decision makers’ judgments for wastewater treatment

application to form a valid pairwise comparison matrix,

• a straightforward way to check the consistency of the judgments,

• mathematical basis for a unique weight vector calculation,

• semantic scales used in AHP have an implicit way of describing relative importance

of criteria, and

• ease of application.

Nevertheless, the following questions arise. What should be the inherent properties

of weight? What are the other methods to generate weight vectors (this also includes

other eigenvector-based methods)? Where do they stand versus AHP? Are there methods

exclusively designed for multistage setup? If yes, what are they? How do these multistage

methods compare with our multistage version? Are there methods to derive weight

vectors from pairwise comparison matrices? If yes, what are they? Finally, how do they

compare against AHP?

We address each of these issues. We will present a survey of weight vector determi-

nation methods assigning pros and cons to each of them. Weight vector determination

methods can be classified as: subjective and objective. Subjective methods work on

the inputs from decision makers, and objective methods work without any participation

from the decision makers. Some methods combine them to achieve some sort of tradeoff

between objectivity and subjectivity [27]. Real-world decision making problems are dealt

with by a decision making authority (an individual or a group solely in position to make a

decision). If the decision making is democratic (takes inputs from all the members in the

organization) then a high degree of objectivity can be expected as opposed to a highly

subjective autocratic decision making. There is no single best way to make a decision

that reflects the essence of democracy.
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Since the goal is to develop an approach that can deal with the practical decision-

making problems effectively, weights must have certain properties irrespective of the

methods used. We will consider a wastewater treatment application to explain these

properties. The desirable properties are as below.

• Weight values should be ratio scaled (for example, if the attribute ‘cost’ is three

times as important as ‘odor emissions’, then the weight associated with ‘cost’ should

be three times as large as the weight associated with ‘odor emissions’).

• Weights should indicate the relative importance of unit changes in their attribute

value functions (for example, if a decision maker is indifferent between a change in

cost value function of 1 and a change in odor emissions value function of 1/5, then

the weight associated with cost should be 0.2 times weight associated with odor

emissions).

In other words, the ratio of the weights of two criteria should be inversely proportional

to the rate at which the decision maker makes a tradeoff between them. A criterion’s

weight is strongly linked to its value function implying that the value function (or at least

the range of value function) definition is necessary for obtaining a meaningful weight.

Hobbs and Rowe [50] present some applications in the power sector that have made

the mistake of assigning weights without defining the attribute/criterion value function.

Therefore, the validity of weights goes hand in hand with the tradeoffs decision makers

are willing to make. The decision makers should understand all the above properties of

weights, and they should be able and willing to apply these properties while being asked to

answer tradeoff questions. We made the choice to use AHP for weight vector calculations

because of our close interaction with the WTS decision maker and a subsequent boost in

our confidence in his judgment.

The simplest method to set weights is to use equal weights for the criteria. It is

important to understand here that two criteria with equal weights in no way implies they
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are equally important. The key point here is that the relative importance of two criteria

depends on weights as well as their ranges as explained in [49, 11].

We next discuss subjective methods. The weight vectors obtained through this

method reflects decision makers’ experience and judgments. It is evident that AHP falls

in this category. We will present an assortment of other subjective methods currently in

use and under development. Subjective methods begin by collecting judgments from a

designated decision maker, and then using these to calculate weights. There are several

methods for obtaining decision makers’ preferences such as ranking, rating, various ver-

sions of pairwise comparisons, successive comparison [19, 39], and Delphi [120]. Further,

the methods based on statistical and optimization modeling are multiple regression [49],

linear programming [52, 110], and least-squares [93, 63]. In addition, point allocation

[49], categorization [49], ratio questioning [93, 49], swing weights [120, 11], method of in-

difference tradeoff weights [57], and gamble method [49] are the frequently used methods

for eliciting decision makers’ judgments.

The ranking method ranks each criterion by asking the decision maker to assign

a numerical rank. The numerical value 1 indicates most valuable, 2 means next most

valuable, and so on.

The rating method rates each criterion by asking the decision maker to draw a

line connecting the criterion to a continuous scale marked in units from 0 to 10 (or any

equivalent form). This method allows decision makers to select points between numbers

and assign more than one criterion to a single point on the scale.

Partial pairwise comparisons version I, proposed by Buel [16], asks the decision

maker to indicate in a partial matrix form the number of the more valuable of the pair

of criteria forming the row and column. Partial pairwise comparisons version II asks

decision maker to circle the more valuable member of each pair of criteria. In this

method, each criterion gets paired once with every other criterion. Complete paired
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comparisons method is similar in approach as version II, however, the number of paired

comparisons gets doubled due to duplication of each pair (for instance A and B appear

once as A-B and the second time as B-A at a different place in the pairwise comparison

matrix).

The Delphi technique is used to bring a consensus in group decision making through

surveys, questionnaires, emails etc. This method has changed so much since its inception

in 1950s that more often people have a hard time understanding it. Originally, the Delphi

technique was developed to accomplish the following:

• a formal procedure of group decision making in which the group members never

met and remained anonymous,

• a contribution by each member of group to produce an estimate of the task of

interest supported by written arguments,

• anonymous exchange of these estimates and arguments in sequential rounds leading

to new estimates, and

• some form of averaging to determine the group output after the third round typi-

cally.

A comparison of the Delphi technique with other group decision making methods is

presented in [120].

Multiple regression method uses regression techniques to estimate weights. Linear

programming methods use linear optimization techniques to determine weights. Point

allocation method asks a decision maker to allocate 100 points among attributes in pro-

portion of their importance. Categorization method assigns attributes to different hier-

archies of importance, each having a different weight. Ratio questioning asks decision

makers for ratios of the importance of two criteria at a time. AHP is a popular version

of ratio questioning.
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In the swing weights method, the decision maker considers a hypothetical decision

situation where criteria are all at their worst value. Next, a series of swings are made

starting with swinging the most preferred attribute from its worst value to its best value

first, then swinging the second most preferred attribute, and so on. The swing weights

method has the advantage of allowing the decision makers to consider the ranges for each

attribute while ranking them [49, 11, 120].

In the method of indifference tradeoff weights, the weights should be consistent

with tradeoffs decision makers are willing to make among attributes. This is achieved by

asking decision makers to make tradeoffs and then deriving the implied weights.

In the successive comparisons method proposed by Churchman et al. [19], the

decision maker takes the following steps. The first step is the ranking of criteria in the

order of importance. The second step assigns the value 1 to the most important criterion

and other values between 0 and 1 to the other criteria in order of importance. The third

step decides whether the criterion with value 1 is more important than all other criteria

combined: if it is then increasing the value of most important criterion greater than the

sum of all the values associated with all subsequent criteria; else adjusting the value of

this criterion to a value less than the sum of the values associated with all subsequent

criteria. The fourth step decides whether the second most important criterion is more

important than all lower-valued criteria and then proceeding as above, finally continuing

until (n-1) criteria have been evaluated.

According to Hobbs et al. [49], of the methods listed above, the most preferred

one is indifference tradeoff weights if decision makers are capable and willing to answer

tradeoff questions. However, it is not always easy to tradeoff criteria. For example, in

the wastewater treatment application both economic costs and odor emissions are to be

minimized. It is hard to figure out how much one is willing to increase odor emissions

to decrease economic costs, and vice versa. These are the instances when indifference
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tradeoff weights assessed may be unstable. In order to minimize instability in the assessed

weights a consistency check should be carried out by asking more than the minimum

number of questions needed to determine weights. It is highly likely that a good number

of decision makers may show discomfort in answering tradeoff questions. In this case,

weights may best be assessed by using other methods.

One effective way to ensure the validity of the weights is to combine various meth-

ods to reflect the ranges of criteria. Examples of the hybrid methods are: swing-AHP

technique [49], Delphi-AHP [58], etc.

According to Hobbs et al. [49], the recommended precautions are as follows. If

subjective methods are used: the decision makers (involved in assessing weights) should

be well aware of the necessary properties of weights outlined above, decision makers

should consider the ranges of criteria when picking weights, tradeoff questions should be

asked to validate weights, and use two or more methods for determining weights if time

permits.

Since obtaining judgments is not always easy, and for such situations we need

objective methods to generate weights. In this method, weight vectors are calculated

without seeking judgments of the decision maker. Though the literature is sparse on

objective methods, some popular examples include the extreme weight approach [78],

the random weight approach [121], and the entropy method [52].

We now look specifically at other eigenvector methods for deriving weight vectors.

Some of the prominent methods include: alternative eigenvector method by Cogger and

Yu [29], graded eigenvector method (GEM) by Takeda et al. [38], etc. How do these

compare with AHP? Cogger and Yu’s method is computationally simpler than AHP.

The comparison between GEM and AHP is still under development [38].

Krovak [63] presents three methods of deriving weights based on pairwise com-

parison matrices and gives a simulation study for comparing these methods with AHP.
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Batishchev et al. suggested a method to determine weights based on the qualitative

information provided by the decision maker [33].

Though the multistage weight determination is not well featured in the literature,

Chen and Fu [27] provide an iterative method of obtaining weights in a multistage decision

making framework where the objective weights are initially elicited from the information

implicit in alternatives and can be interactively adjusted to reflect the dynamic nature

of decision situations.

For multiobjective multistage decision making the weight assessment is not straight-

forward due to dynamic nature of the problem. Every stage has its own characteristics

and setting a priority from stage to stage is cumbersome. Despite being criticized for its

lack of interpretability and a sound rationale a convenient way to deal with this problem

is to have a method that specifies weights objectively (no participation from decision

makers) in the beginning, which gets adjusted according to the changes in the situation

at different stages [27].

2.5 Multistage Multiobjective Methods

Over past couple of decades a tremendous amount of attention has been directed

toward research in the area of multistage multiobjective optimization problems, albeit

the progress has been excruciatingly slow. It is evident from the fact that even today not

one method can claim to have the capability to solve a general large-scale MSMO problem

effectively. The reason for the slow progress can be attributed to a lack of truly efficient

and effective method for practical purposes to deal with multistage and multiobjective

parts separately.

Dynamic programming is typically used for multistage problems, which however

comes with limitations such as curse of dimensionality, inability to satisfy conditions

for decomposition: separability and monotonicity, computational intractability for large
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problems, etc. An overview of multiobjective methods can be seen in the preceding

section. More often than not, multiobjective methods have common drawbacks: problem

specific, solves small problems, computationally inefficient for large problems, and lack

of real-world application [40].

MSMO problems are prevalent in disparate areas such as operations research and

industrial engineering, computer science and engineering, civil engineering, mechanical

engineering, electrical engineering, chemical engineering, economics and finance, manage-

ment, etc. A wide spectrum of contributions stems from its application to a wider area

of real-world problems [40]. For example, a large portion of control problems exhibits

these characteristics.

We begin with a review of past work on multistage single criterion techniques, and

then move on to a discussion on significant past contributions in the multistage multi-

objective area. Scalarization techniques such as weighted-sum and ε-constraint convert

the multistage, multiobjective formulation into a multistage, single criterion formula-

tion, which can be easily solved using existing approaches for multistage, single criterion

problems.

Dynamic programming-based approaches, discussed in [9, 74, 76, 37, 75, 113], are

used for solving multistage, single criterion problems. Bellman conceptualized the dy-

namic programming method, and presents an overview of theory and methodology in [9].

Mitten explains the synthesis of multistage processes using two composition operations:

recursive methods to construct the optimal processes, and a state-space dimensionality

reduction method [74]. The paper also presents some sufficient conditions for optimal

composition and some state-space approximation techniques. Nemhauser does an excel-

lent job of explaining the single criterion, finite stage decision problem [76]. Denardo

talks about various aspects of sequential decision processes [37]. Mitten discusses a

method for solving finite stage problems based on the preference relations instead of a
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real valued utility function measuring the objective in conventional approaches. Mitten’s

approach generalizes traditional dynamic programming by replacing: transition function

with a simple partition of the set of states, and the real valued return function with a

set of preference relations [75]. The drawbacks to Mitten’s approach are the following:

restrictive due to the assumption of complete and transitive preference relation (contrary

to the preference relation associated with Pareto optimality, which is not complete and

transitive, and the fact that transitivity fails in more general preference relations), and

limited practical applicability due to a restriction on the number of states and decisions

that may be considered.

We will use a method based on the new dynamic programming-based approach,

developed by Tsai [113], to solve our scalarized model. Tsai [113] uses high-dimensional

continuous-state Stochastic Dynamic Programming (SDP) for optimizing a system over

finite time periods. Solution to the high-dimensional continuous-state SDP problem

involves: (1) discretization of the continuous state-space by constructing an orthogonal-

array based experimental design, and (2) approximation of the SDP future value func-

tion by fitting a statistical model obtained by multivariate adaptive regression splines

(MARS). The accurate solution may be obtained in the event the solutions using differ-

ent number of discretization points converge.

Usually multistage, multiobjective problems are converted into a large single stage,

multiobjective problem, which can be solved using the single stage, multiobjective meth-

ods discussed above. Lost in the conversion, however, is the innate significance of the

stages to the overall problem and perhaps the computational tractability of the problem.

The most significant early contributions in the area of multistage multiobjective

optimization are attributed to Brown and Strauch, Henig, and Yu and Seiford. Brown and

Strauch extended Bellman’s dynamic programming principle to the multicriteria decision

making framework [14]. Brown and Strauch’s technique has limited applicability due to
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the assumption that states use same associative operation to combine the returns from

successive stages. It is important to emphasize here that majority of practical problems

require operators to possess non-associativity and/or variability from stage to stage.

Henig’s dissertation remains a cornerstone in the field of infinite stage multicrite-

ria problems and proposes some of the value and policy improvement techniques [47].

Results of Henig’s dissertation can be summarized as: establishing a generalized role

of stationary policies among the set of all policies, examining the set of nondominated

returns with respect to an acute cone, establishing conditions: for sets in Rn to contain a

non-empty nondominated subset, for the non-empty nondominated subset to be charac-

terized and approximated by the set of nondominated exposed points, and for the set of

nondominated returns to be characterized and approximated by the set of nondominated

stationary policies.

We next discuss some of the pioneering past research in the field of finite stage

multiple criteria. Yu et al. [132] discuss finite stage, multiple criteria problems with an

unprecedented clarity, which can be outlined as follows: a formulation of serial deci-

sion problem with multiple criteria; preliminary results; separability, monotonicity and

nondominance boundedeness conditions to decompose the problem for stage-wise com-

putation; a 2-objective 3-stage example to illustrate the backward computation; and a

list of problems for future research. The approach has the following limitations. It is

enumerative and thus computationally inefficient for a real-world problem. It provides

an approximate solution if the nondominance boundedeness condition is not satisfied.

It is restrictive in terms of conditions for decomposing (separability, monotonicity, and

nondominance boundedeness conditions may not be satisfied simultaneously). Moreover,

it suffers from the curse of dimensionality and limited applicability. On the other hand,

some of the advantages of this approach are: its simple formulation and its ability to
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approximate a set of all nondominated solutions under the conditions of separability and

monotonicity.

Another important contribution in finite stage multiple criteria comes from Go-

mide, who uses the ε-constraint approach, augmented Lagrange multiplier functions,

and the concepts of hierarchical optimization to solve multistage, multiobjective opti-

mization problems [46]. Gomide calls his methodology multiobjective, multistage impact

analysis method (MMIAM), which essentially is a methodology for multiple stage and

multiple objective decision making. For multistage and multiobjective optimization prob-

lems satisfying the separability and monotonicity assumptions, multiobjective dynamic

programming has been used extensively over last three decades.

Klotzler extends Bellman’s dynamic programming to a vector-valued objective

function by modifying the separability condition, monotonicity condition and recurrence

relations [59]. The modified recurrence relations, referred to as recurrence set relations,

are required to satisfy the von Neumann-Morgenstern property. This paper offers a good

theoretical account on multiobjective discrete dynamic programming.

Villarreal and Karwan extend the fundamental dynamic programming recursive

equations to the multiple criteria framework [119]. Computation results for the binary

multiple criteria knapsack problem are reported. The disadvantages are limited applica-

bility and lack of efficiency.

Henig investigates a dynamic programming model with vector-valued returns. He

proposes a general theory on dynamic programming with multiple objectives at each

stage [48].

Abo-Sinna and Hussein present an algorithm for generating efficient solutions of

multiobjective dynamic programming problem [4]. They use a constraint-based method

to derive a generalized functional equation of dynamic programming under the separa-
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bility and monotonicity conditions. The drawbacks still are: limited applicability and

lack of efficiency.

Other significant work on multiobjective dynamic programming is summarized as

follows. Li and Haimes review the theoretical concepts behind multi-objective dynamic

programming and examine the evolution of its theory and methodology since its inception

[66]. Li finds the set of Pareto optimal solutions through the use of a generating approach

based on stochastic multi-objective dynamic programming [64]. A general separable class

of stochastic programming multi-objective optimization with perfect state information is

considered here. Sastry et al. propose a solution methodology to multiple goal control

problems with fuzzy goals [117]. These authors consider a decision vector as opposed to

a single decision variable at each stage.



CHAPTER 3

METHODOLOGY

3.1 Introduction

In this dissertation, we extend AHP concepts to a multistage setting and use the

weighted-sum approach as an a priori method at each stage of an MSMO problem.

This requires a methodology that both determines a weight vector at one stage and

modifies this vector appropriately from one stage to the next. We use AHP to determine

stagewise weight vectors. Our motivation behind using AHP can be summarized as

follows: provides a way to obtain a priori weight vectors at each stage for the weighted-

sum approach to be used as an a priori method; provides a firm mathematical basis

for unique weight vector calculations; decision makers/technical experts easily adapt to

AHP due to the following: they do not need to know optimization theory, and they only

need to have some idea about the relative importance of objectives/criteria; provides

a straightforward way to check the consistency of judgments; provides an efficient way

of generating different sets of weight vectors for multiple iterations to navigate through

an exhaustive Pareto optimal solution set for an MSMO problem; interpretability as

semantic scales used in AHP have an implicit way of describing relative importance of

criteria; practical due to its ability to adapt easily to a pairwise comparison matrix with

rational number entries; and ease of application. Next, we need some way of transforming

the pairwise comparison matrix at one stage to the next to obtain the weight vectors at

various stages using AHP while satisfying the properties of pairwise comparison matrix

outlined in section 3.2.1.

39
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In this chapter, we introduce a new methodology for computing pairwise compari-

son matrices at each stage of a multistage decision-making framework, which can be used

to compute stagewise weight vectors and to form weighted-sum of objective functions at

each stage. After a multiobjective subproblem has been converted at each stage into

a single-objective subproblem, dynamic programming-based approaches, such as that

utilized in [113], can be used to solve the multistage optimization problem. We have

developed a methodology that begins with the input phase for obtaining judgments on

pairs of objectives for the first stage and on dependencies from one stage to the next,

uses the input phase information in the matrix generation phase to construct pairwise

comparison matrices for the subsequent stages, and applies Analytic Hierarchy Process

(AHP) on the information from the first two phases in the weighting phase to obtain the

stagewise weight vectors representing the expert opinions. In summary, our methodol-

ogy consists of three phases: (1) The input phase, (2) The matrix generation phase, and

(3) The weighting phase [93].

The input phase plays a crucial role in controlling the efficacy of the matrix gener-

ation phase, which affects the usefulness of weighting phase. Therefore, obtaining high

quality data in the input phase is paramount to the effectiveness of our three-phase

methodology in solving a general MSMO problem. Since the input phase seeks opin-

ions/judgments of the decision makers, the problem is: how can we ensure high quality

human opinions/judgments? Our goal is to involve decision makers in finding a practical

Pareto optimal solution. One way to improve the odds of getting precise and consistent

judgments is by asking questions in a logical sequence so as to instill some degree of

intuition for making relatively accurate judgments.

The input phase (1), with the exception of matrix of dependencies from one stage

to the next, and the weighting phase (3) follow the standard AHP approach [49]. For

the input phase (1), we present a questionnaire-based approach to elicit relatively pre-
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cise and consistent judgments on the trade-offs decision makers are willing to make on

pairs of objectives for a general MSMO problem. For the matrix generation phase (2),

however, we present here two new methods that generate pairwise comparison matrices

in a multistage setting and use AHP methodology to determine weight vectors from each

pairwise comparison matrix. In both the methods, the geometric mean is used to main-

tain the component values of resulting pairwise comparison matrices in the AHP ratio

scale range. Our two new matrix generation methods extend AHP to multiple objective,

multiple stage decision problems. In particular, our approach allows (a) interpretability

as a result of the pairwise comparison matrices following the AHP ratio scale, (b) an

improvement in the consistency of the pairwise comparison matrices, (c) the extension

of the AHP ratio scale to a continuum, and (d) input from the actual decision makers on

the relative importance of the different objectives at a stage and between two consecu-

tive stages without decision makers needing to understand the optimization concepts in

detail.

This section is organized as follows. Subsection 3.2 explains the input phase. Sub-

section 3.3 describes the matrix generation phase and states the necessary definitions.

Subsection 3.4 elaborates upon the weighting phase. A numerical example is shown in

Subsection 3.5. The conditional convergence of the new methods is discussed in Subsec-

tion 3.6. The divergence of the SGM method is shown in Subsection 3.7. Finally, some

remarks on the convergence behavior of the new methods are given in Subsection 3.8.

3.2 The input phase

Let the matrices A(τ,τ) and Tτ be defined as follows.

• A(τ,τ) is the k × k pairwise comparison matrix at stage τ , where k is the number

of objective functions at stage τ , and a
(τ,τ)
ij is the value at the intersection of row i

and column j of A(τ,τ).
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• Tτ is the k × k diagonal transformation matrix between stage τ and τ + 1, and tτij

is the value at the intersection of row i and column j of Tτ .

In this phase, two classes of judgments are required from the decision maker (or

expert or technical consultant). They are:

1. the judgment on the pairwise comparisons in the first stage to form a complete

pairwise comparison matrix at stage one (denoted by matrix A(1,1))

2. the judgments on dependencies of the same classes of objective function from one

stage to the next (denoted by matrices Tτ between stage τ and τ + 1)

3.2.1 Judgment on the pairwise comparisons at the first stage

A(1,1) satisfies all the properties of the pairwise comparison matrix specified by

the AHP. According to AHP, the following are the properties of a pairwise comparison

matrix:

• the value in row i and column j of A(τ,τ) (denoted by a
(τ,τ)
ij ) indicates how much

more important objective i is than objective j at stage τ ;

• the importance is measured on a ratio scale [1
9
, 9] with each number being inter-

preted according to the AHP philosophy given in [93];

• the value in row i and column j of Aτ,τ should be positive, i.e., a
(τ,τ)
ij > 0, ∀ i, j;

• a
(τ,τ)
ii = 1, ∀i;

• for consistency it is necessary that a
(τ,τ)
ji = 1

a
(τ,τ)
ij

, ∀ i, j;

• transitivity may not hold if the decision maker is inconsistent, i.e., if ∃ i, j, k such

that [a
(τ,τ)
ij ][a

(τ,τ)
jk ] 6= a

(τ,τ)
ik .

We assume that there are the same k objective functions in every stage. The necessary

consistency property implies a need for k(k−1)
2

pairwise judgments in order to form a

complete pairwise comparison matrix.
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3.2.2 Judgments on dependencies from one stage to the next

The k × k diagonal matrix Tτ implies a need to obtain k pairwise judgments.

We assume that dependencies exist between the same objective functions in consecutive

stages. This implies k pairwise judgments. Alternately, the matrix of dependencies can

also be termed as an interstage diagonal transformation matrix, named from the role

it plays in transforming the pairwise comparison matrix in one stage into the pairwise

comparison matrix in next stage following the methodologies for matrix generation in

the second phase. The properties of the matrix of dependencies (or interstage diagonal

transformation matrix), Tτ , are:

• the value in row i and column i of Tτ (denoted by tτii) indicates how much more

important objective i in the stage τ is than objective i in the stage τ + 1;

• the importance is measured on a ratio scale [1
9
, 9] with each number being inter-

preted according to AHP philosophy given in [93];

• the value of non-diagonal elements of Tτ should be zero, i.e., tτij = 0, for i 6= j;

• diagonal elements of Tτ should be positive, and belong to the AHP ratio scale [1
9
, 9],

i.e., tτii > 0 and tτii ∈ [1
9
, 9].

3.2.3 Questionnaire modeling

The questionnaire modeling is used in the input phase to come up with weight

ratios that represent the rate at which the decision maker is willing to tradeoff one

objective for another considering the improvement from the worst value to the best

value. One way to obtain meaningful weight ratios is through ratio questioning based on

the tradeoffs reflecting “true” preferences of the decision maker [49]. In the past, there

have been numerous instances of erroneous weight assessments due to misrepresentation

of preferences [10]. Weight assessment is more complicated for an MSMO problem from

the standpoint of decision makers’ participation. We have simplified it by comparing the
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same objective types in consecutive stages. However, we consider all pairwise comparisons

for the first stage. The questionnaire modeling involves asking two types of questions for

each class of judgments, which are:

1. Value questions that ask for the worst and best values of objectives in various

stages.

2. Importance questions that ask for the tradeoff and relative importance between

pairs of objectives.

We adopt a sequential questioning process to obtain weight ratios. Each weight ratio

requires: 4 value questions to be answered first, and 2 importance questions to be an-

swered second. Moreover, there is a logical order for answering 2 importance questions.

Knowledge of lower and upper objective bounds helps decision makers answer tradeoff

questions more consistently and precisely. We define the following.

• k is the number of objective functions, which is same for all stages in the MSMO

problem,

• T denotes the total number of stages in the MSMO problem,

• A(τ,τ) is the k × k pairwise comparison matrix at stage τ ,

• Tτ is the k × k diagonal transformation matrix between stage τ and τ + 1,

• wi is the weight for objective i at stage 1, i=1,2,. . . ,k, and

• wi
τ is the weight for objective i at stage τ , i=1,2,. . . ,k and τ=1,2,. . . ,(T − 1).

The sequential questioning is explained next for both classes of judgments in the input

phase. For the judgments on the pairwise comparisons in the first stage, the sequential

questioning for a pair of objectives i and j involves asking:

1. What is the worst value of objective i in the first stage?

2. What is the best value of objective i in the first stage?

3. What is the worst value of objective j in the first stage?

4. What is the best value of objective j in the first stage?

These value questions lead us to the following importance questions:
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5. Which one of the pairs of objectives i and j is more important in terms of improve-

ment from the worst value to the best value?

6. Given the more important objective, how many times is this objective more impor-

tant than the other?

The answer to question (6) is based on the AHP ratio scale shown in 3.1, which gives

the weight ratio wi

wj
. The total number of weight ratios to be determined for a complete

Table 3.1. AHP Ratio Scale

Ratio Values 1 3 5 7 9 2, 4, 6, 8 
Interpretation Equal Slightly 

more 
Moderately 
more 

Strongly 
more 

Absolutely 
more 

Intermediate 
Importance Relations 

 
 

pairwise comparison matrix at stage 1, A(1,1), is k(k−1)
2

. It does not matter whether these

weight ratios come from the upper triangle or lower triangle of the pairwise comparison

matrix A(1,1) due to the reciprocal property of the pairwise comparison matrix, which

implies that the elements in the upper triangle are the reciprocal of the corresponding

elements in the lower triangle. Hence, the total number of questions required to determine

A(1,1) is 6k(k−1)
2

.

Similarly for the judgments on the dependencies from one stage to the next, the sequential

questioning for a pair of objectives, i at stage τ and i at stage τ + 1, involves asking:

1. What is the worst value of objective i at stage τ + 1?

2. What is the best value of objective i at stage τ + 1?

3. What is the worst value of objective i at stage τ?

4. What is the best value of objective i at stage τ?

These value questions lead us to the following importance questions:

5. Which one of the pairs of objectives i at stage τ and i at stage τ + 1 is more

important in terms of improvement from the worst value to the best value?
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6. Given the more important objective, how many times is this objective more impor-

tant than the other?

The answer to question (6) gives the weight ratio
wi

τ+1

wi
τ

. The number of weight ratios

to be determined for a diagonal transformation matrix between stage τ and τ + 1, Tτ ,

is k, which implies that the total number of weight ratios required to determine Tτ ,

τ=1,2,. . . ,(T − 1), for a T -stage k-objective problem is k(T − 1). Therefore, the total

number of questions required to determine Tτ , τ=1,2,. . . ,(T−1), for a T -stage k-objective

problem is 6k(T − 1). Finally, the input phase for a general T -stage k-objective problem

requires,

6k(k−1)
2

+ 6k(T − 1),

questions to be answered by decision makers. However, the number of unique questions

to be answered in the input phase for a general T -stage k-objective problem is: 2kT value

questions plus k(k − 1) + 2k(T − 1) importance questions.

3.3 The matrix generation phase

This step is crucial for achieving the primary objective of weight vector generation.

In this phase, pairwise comparison matrices are computed for all stages.

Initially, we tried various ideas to accomplish this task. One among these was

finding a k × k matrix Tτ that could transform pairwise comparison matrix at stage τ ,

A(τ,τ) into pairwise comparison matrix at stage τ+1, A(τ+1,τ+1) such that

A(τ+1,τ+1) = TτA(τ,τ), τ = 1, 2, . . . , (T − 1)

This was ruled out because of an underlying restriction of invertibility of A(τ,τ), which

obviously is not invertible if it is a perfectly consistent matrix. The next approach

involved using a transformation,

A(τ+1,τ+1) = (Tτ )
−1A(τ,τ)Tτ , τ = 1, 2, . . . , (T − 1)
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However, the results of this transformation violated the AHP ratio scale.

Let us denote the expression [(Tτ )
−1A(τ,τ)Tτ ] by Âτ+1 with elements âτ+1

ij at the

intersection of row i and column j, where i, j = 1, 2, . . . , k. Subsequently, we tried the

square root of the previous transformation with the purpose of satisfying the AHP ratio

scale, which for an arbitrary row i and an arbitrary column j led to

a
(τ+1,τ+1)
ij =

√
âτ+1

ij ,

where

âτ+1
ij = [(

1

tτii
)(a

(τ,τ)
ij )(tτjj)].

Following the properties of pairwise comparison matrix the elements with i < j are the

reciprocals of the corresponding elements in the lower triangle. In this transformation,

square root was applied to each entry of the product matrix Âτ+1, which is illustrated

below.

Numerical Example of Square Root Transformation:

Suppose there are three objectives at each stage.

Let the given pairwise comparison matrix at stage 1 be

A(1,1) =





1 1
2

1
3

2 1 1
2

3 2 1




.

Let the interstage diagonal transformation matrix between stage 1 and 2 be

T1 =





2 0 0

0 3 0

0 0 2




.
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Given these input matrices we would like to determine the pairwise comparison matrix

at stage 2, A(2,2). In doing that the first step would be to determine the product matrix

Â2.

Â2 = [(T1)
−1A(1,1)T1] =





(1
2
)(1)(2) 1

( 1
3
)(2)(2)

1
( 1
2
)(3)(3)

(1
3
)(2)(2) (1

3
)(1)(3) 1

( 1
2
)(2)(3)

(1
2
)(3)(3) (1

2
)(2)(3) (1

2
)(1)(2)




.

Then the pairwise comparison matrix at stage 2,

A(2,2) =
√

â2
ij =





√
(1

2
)(1)(2) 1√

( 1
3
)(2)(2)

1√
( 1
2
)(3)(3)√

(1
3
)(2)(2)

√
(1

3
)(1)(3) 1√

( 1
2
)(2)(3)√

(1
2
)(3)(3)

√
(1

2
)(2)(3)

√
(1

2
)(1)(2)





=





1 0.866025 0.57735

1.154701 1 0.57735

1.732051 1.732051 1




.

However, the square root transformation also violated the AHP ratio scale. This draw-

back would be illustrated through an example next.

Numerical Example Illustrating the Violation of AHP Ratio Scale:

Suppose there are three objectives at each stage. Let the given pairwise comparison

matrix at stage 1 be

A(1,1) =





1 1
5

1
3

5 1 5

3 1
5

1




.

Let the interstage diagonal transformation matrix between stage 1 and 2 be

T1 =





4 0 0

0 1
5

0

0 0 4




.
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Then the product matrix

Â2 = [(T1)
−1A(1,1)T1] =





(1
4
)(1)(4) 1

(5)(5)(4)
1

(( 1
4
)(3)(4)

(5)(5)(4) (5)(1)(1
5
) 1

( 1
4
)( 1

5
)( 1

5
)

(1
4
)(3)(4) (1

4
)(1

5
)(1

5
) (1

4
)(1)(4)




.

Then the pairwise comparison matrix at stage 2 is

A(2,2) =
√

â2
ij =





√
(1

4
)(1)(4) 1√

(5)(5)(4)

1√
( 1
4
)(3)(4)

√
(5)(5)(4)

√
(5)(1)(1

5
) 1√

( 1
4
)( 1

5
)( 1

5
)√

(1
4
)(3)(4)

√
(1

4
)(1

5
)(1

5
)
√

(1
4
)(1)(4)





=





1 0.10 0.57735

10 1 10

1.732051 0.10 1




.

It can be seen above that entries a
(2,2)
12 = 0.10, a

(2,2)
21 = 10, a

(2,2)
23 = 10, and a

(2,2)
32 =

0.10 in A2,2 do not comply with the AHP ratio scale. In conclusion, the square root

transformation leads to the following types of violation of AHP ratio scale:

Violation I: at least one of the entries in the product matrix (Tτ )
−1A(τ,τ)Tτ less than

1
81

(In other words, the reciprocal values greater than 81 leading to violation II),

Violation II: at least one of the entries in the product matrix (Tτ )
−1A(τ,τ)Tτ greater

than 81 (In other words, the reciprocal values less than 1
81

leading to violation I).

Violations I and II occur simultaneously due to the reciprocal property of pairwise com-

parison matrix, which implies that a
(τ,τ)
ji = 1

a
(τ,τ)
ij

. In other words, the occurrence of

violation I at the intersection of row i and column j will lead to the occurrence of viola-

tion II at the intersection of row j and column i, and vice versa. In the example above,

the violation I occurs at a
(2,2)
32 and a

(2,2)
12 , while violation II occurs at a

(2,2)
21 and a

(2,2)
23 .
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Next we tried the cube root transformation, which for an arbitrary row i and an

arbitrary column j led to

a
(τ+1,τ+1)
ij = 3

√
âτ+1

ij ,

where

âτ+1
ij = [(

1

tτii
)(a

(τ,τ)
ij )(tτjj)].

âτ+1
ij is an element of the matrix Âτ+1 at the intersection of row i and column j. Following

the properties of pairwise comparison matrix the elements with i < j are the reciprocals

of the corresponding elements in the lower triangle. In this transformation cube root was

applied to each entry of the product matrix Âτ+1, which could be easily understood by

substituting cube root for square root in the above square root transformation example.

The upside with the cube root transformation was its ability to satisfy AHP ratio scale.

Numerical Example Illustrating the Cube Root Transformation

Suppose there are three objectives at each stage.

Let the given pairwise comparison matrix at stage 1 be

A(1,1) =





1 1 1
3

1 1 1
2

3 2 1




.

Let the interstage diagonal transformation matrix between stage 1 and 2 be

T1 =





2 0 0

0 1 0

0 0 1




.
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Then the product matrix

Â2 = [(T1)
−1A(1,1)T1] =





(1
2
)(1)(2) 1

(1)(1)(2)
1

(1)(3)(2)

(1)(1)(2) (1)(1)(1) 1
(1)(2)(1)

(1)(3)(2) (1)(2)(1) (1)(1)(1)





=





1 0.5 0.166667

2 1 0.5

6 2 1




.

Then the pairwise comparison matrix at stage 2

A(2,2) = 3

√
â2

ij =





3

√
(1

2
)(1)(2) 1

3
√

(1)(1)(2)

1
3
√

(1)(3)(2)

3
√

(1)(1)(2) 3
√

(1)(1)(1) 1
3
√

(1)(2)(1)

3
√

(1)(3)(2) 3
√

(1)(2)(1) 3
√

(1)(1)(1)





=





1 0.793701 0.550321

1.259921 1 0.793701

1.817121 1.259921 1




.

Intuitively, it would make more sense to scale as follows:




2

√
(1

2
)(1)(2) 1

1
√

(1)(1)(2)

1
2
√

(1)(3)(2)

1
√

(1)(1)(2) 1
√

(1)(1)(1) 1
1
√

(1)(2)(1)

2
√

(1)(3)(2) 1
√

(1)(2)(1) 1
√

(1)(1)(1)




=





1 0.5 0.408248

2 1 0.5

2.44949 2 1




.

Having compared the entries in this matrix with the corresponding entries in the trans-

formed matrix A(2,2) we found out the following: the relative difference at the intersection

of row 2 and column 1 is 2−1.259921
2

= 0.37004, which is larger than the relative difference

at the intersection of row 3 and column 1 of 2.44949−1.817121
2.44949

= 0.258163. This implies that

more ones distort the results of cube root transformation without contributing to the

relative importance of the objectives.
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Next we set out to formulate an approach to circumvent limitations with above

approaches. Our primary motivation for the new methods was to attain pairwise com-

parison matrices that comply with the AHP ratio scale. These methods are:

1. Geometric mean (GM)

2. Successive geometric mean (SGM).

Aside from satisfying the AHP ratio scale, these two methods do not distort the

scaling. Before describing them, we will first define the new functions gν and G that form

the basis for GM and SGM methods.

3.3.1 Function Definitions

Let νp be a function such that νp : ℜp → ℵ where ℜ is the set of all real numbers

on the AHP ratio scale [1
9
, 9], p is the number of input matrices, ℵ is the set of all natural

numbers less than or equal to p, and

νp(α1, α2, . . . , αp) = number of non-one αi’s, if ∃ αi 6= 1 for some i = 1, 2, . . . , p. (3.1)

Then let gp be a function such that gp : ℜp → ℜ, and

gp(α1, α2, . . . , αp) = (α1α2 · · ·αp)
1

νp(α1,α2,...,αp) , if ∃ αi 6= 1 for some i = 1, 2, . . . , p,

= 1, otherwise. (3.2)

Let there be a set of p k×k matrices where p is an odd number greater than or equal

to 3. Of the p matrices let there be p−1 diagonal matrices Dq = (dq
ij), q = 1, 2, . . . , (p−1)

with positive diagonal entries d
q
ii > 0 for i = 1, 2, . . . , k, and Θ = (θij) being a real matrix

with positive entries θij > 0 for i, j = 1, 2, . . . , k. Then let us define a function G such

that

G(D1, D2, . . . , D(p−1
2

), Θ, D(p−1
2

+1), D(p−1
2

+2), . . . , D(p−1)) = Θ′, (3.3)
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where Θ′ = (θ′ij) is a k × k matrix, and

θ′ij = gp(d
1
ii, d

2
ii, . . . , d

(p−1
2

)

ii , θij, d
(p−1

2
+1)

jj , d
(p−1

2
+2)

jj , . . . , d
(p−1)
jj ). (3.4)

We next describe the computation of pairwise comparison matrices using these methods.

3.3.2 GM

The GM method calculates the geometric mean of non-ones: the first iteration

computes a matrix containing the geometric mean of non-ones of the multiplication of

matrices (T1)
−1, A(1,1), and T1; the second iteration computes a matrix containing the

geometric mean of non-ones of the multiplication of (T2)
−1, three matrices from the first

iteration, and T2; and an arbitrary (τ−1)st iteration computes the geometric mean of

non-ones of the multiplication of (Tτ−1)
−1, 2τ − 3 matrices from (τ − 2)nd iteration, and

Tτ−1. The meaning of the geometric mean of non-ones becomes clear from the second

iteration onward. It involves computation of a matrix containing the geometric mean

of non-ones of the multiplication of 2i + 1 matrices, where i is the iteration. Given the

matrices from the input phase and using the definition of G(·) from the previous section

with p = 2i + 1, the GM computation is as follows:

1st iteration: Pairwise comparison matrix at stage 2

A(2,2) = G[(T1)
−1

, A(1,1), T1],

2nd iteration: Pairwise comparison matrix at stage 3

A(3,3) = G[(T2)
−1

, (T1)
−1

, A(1,1), T1, T2],

...

(τ-1)st iteration: Pairwise comparison matrix at stage τ

A(τ,τ) = G[(Tτ−1)
−1

, (Tτ−2)
−1

, . . . , (T1)
−1

, A(1,1), T1, T2, . . . , Tτ−1].
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For i > j at an arbitrary stage τ , values in the pairwise comparison matrix A(τ,τ)

can be expressed as:

a
(τ,τ)
ij =




((

tτ−1
jj

tτ−1
ii

)(
tτ−2
jj

tτ−2
ii

)

· · ·
(

t1jj

t1ii

)) 1
Nτ

ij




[
(a

(1,1)
ij )

1
Nτ

ij

]
, (3.5)

for τ = 2, 3, . . . , T , where N τ
ij is the number of non-ones involved in the GM computation

of a
(τ,τ)
ij .

3.3.3 SGM

The SGM method calculates the geometric mean of non-ones successively: the first

iteration computes a matrix containing the geometric mean of non-ones of the multiplica-

tion of matrices (T1)
−1, A(1,1), and T1; the second iteration computes a matrix containing

the geometric mean of non-ones of the multiplication of (T2)
−1, the resulting matrix from

the first iteration, and T2; etc. The meaning of the successive geometric mean of non-

ones becomes clear from the second iteration onward. It involves computation of a matrix

containing the geometric mean of non-ones of the multiplication of three matrices, one of

which is a matrix having geometric mean of non-ones from the previous iteration. Given

the matrices from the input phase and using the definition of G(·) from Section 3.3.1

with p=3 for all iterations, the SGM computation becomes:

1st iteration: Pairwise comparison matrix at stage 2

A(2,2) = G[(T1)
−1

, A(1,1), T1],

2nd iteration: Pairwise comparison matrix at stage 3

A(3,3) = G[(T2)
−1

, A(2,2), T2],

...

(τ−1)st iteration: Pairwise comparison matrix at stage τ

A(τ,τ) = G[(Tτ−1)
−1

, A(τ−1,τ−1), Tτ−1].
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For i > j at an arbitrary stage τ , values in the pairwise comparison matrix A(τ,τ)

can be expressed as:

a
(τ,τ)
ij =




(

tτ−1
jj

tτ−1
ii

) 1
Nτ

ij

(
tτ−2
jj

tτ−2
ii

) 1

Nτ
ij

N
τ−1
ij

· · ·
(

t1jj

t1ii

) 1

Nτ
ij

N
τ−1
ij

···N2
ij




[
(a

(1,1)
ij )

1

Nτ
ij

N
τ−1
ij

···N2
ij

]
, (3.6)

for τ = 2, 3, . . . , T , where N τ
ij is the number of non-ones involved in the SGM computation

of a
(τ,τ)
ij .

3.4 The weighting phase

This phase is identical for the above two methods of matrix generation. Saaty’s

eigenvector method is used to approximate the principal eigenvector associated with each

pairwise comparison matrix. These principal eigenvectors are referred to as the weight

vectors. The weight vector calculation procedure requires one to:

• Normalize the pairwise comparison matrix A(τ,τ) at a stage τ by dividing each entry

in column j by the sum of entries in column j, which is denoted by Anorm
(τ,τ) .

• Approximate the principal eigenvector (termed as weight vector Wτ at stage τ) by

finding the average of each row of the normalized matrix.

There are other methods for computing the principal eigenvector. The power

method is one of the most popular approaches to determine the principal eigenvector.

For a single-stage multiobjective problem, both Saaty’s eigenvector method and power

method lead to same mean random consistency index [80]. In the next section we present

a numerical example.
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3.5 Numerical example on GM and SGM methods

We illustrate GM and SGM methods with a numerical example that has 3 stages

and 3 objective functions at each stage. Suppose the input phase results in the following

matrices,

A(1,1) =





1 0.5 0.333333

2 1 0.5

3 2 1




, T1 =





2 0 0

0 3 0

0 0 4




, T2 =





5 0 0

0 6 0

0 0 7




.

For both GM and SGM methods stage 1 and 2 yield the same weight vectors and pairwise

comparison matrices with the calculations are shown below:

The normalized matrix and weight vector at stage 1 thus become,

Anorm
(1,1) =





0.1667 0.1428 0.1818

0.3333 0.2857 0.2727

0.5 0.5714 0.5454




, W1 =





0.1638

0.2973

0.5389




.

Similarly the computed pairwise comparison matrix, the normalized matrix, and weight

vector at stage 2 are

A(2,2) =





1 0.9085 0.8736

1.1006 1 0.8736

1.1447 1.1447 1




, Anorm

(2,2) =





0.3081 0.2975 0.3179

0.3391 0.3275 0.3179

0.3527 0.3749 0.3640




,

W2 =





0.3079

0.3282

0.3639




.

However, stage 3 results differ for GM and SGM due to their algorithmic structures.

Stage 3 calculations are shown in Table 3.2, and the detailed layout outlining various

phases of GM and SGM methods can be seen in the Figure 1.3 of the introduction.
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Table 3.2. Stage 3 Calculations for GM and SGM Methods.

A(3,3) Anorm
(3,3) W3

GM




1 0.9791 0.9863

1.0213 1 0.951
1.0139 1.0515 1








0.3295 0.3231 0.3358
0.3365 0.3299 0.3237
0.3340 0.3469 0.3404








0.3294
0.3301
0.3405





SGM




1 1.0292 1.0694

0.9716 1 1.0063
0.9351 0.9937 1








0.344 0.3405 0.3477
0.3343 0.3308 0.3272
0.3217 0.3287 0.3251








0.3441
0.3307
0.3252





3.6 Conditional convergence of the GM and SGM methods

This section is focused on developing a theory for the convergence behavior of new

methods described in the matrix generation phase. For practical purposes we desire

to have a method that results in distinct pairwise comparison matrices from stage to

stage (implying distinct stagewise weight vectors) in order to explore the Pareto optimal

solution set exhaustively. Hence, a method that quickly converges as it progesses through

the stages is less desirable. As discussed above in the input phase, the input matrices

integral to our approaches are: input pairwise comparison matrix for stage 1 A(1,1), and

the interstage diagonal transformation matrices Tτ s between stage τ and stage (τ + 1).

The matrix generation phase shows the functioning of GM and SGM methods. Next we

will analyze them to gain an insight on their convergence behavior. We first define the

notion of divergence vs. convergence of the stage-wise sequence of pairwise comparison

matrices obtained using GM and SGM methods.

Definition 3.1: Convergence and Divergence of Pairwise Comparison Matrix

Let A(τ,τ) be a k×k pairwise comparison matrix having the properties outlined in Section

3.2.1. Let Aτ
ij = ((aij)τ ) be a sequence of real numbers where (aij)τ is the element at

the intersection of an arbitrary row i and an arbitrary column j of A(τ,τ). Then A(τ,τ) is

divergent if and only if there exists (i, j) such that sequence Aτ
ij = ((aij)τ ) of real numbers
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is divergent. Equivalently, A(τ,τ) is convergent if and only if sequence Aτ
ij = ((aij)τ ) of

real numbers is convergent for all (i, j).

We will present a case when the dependencies of the same classes of objective func-

tion from one stage to the next are equal i.e. Tτ ’s are equal. The reason for considering

this case lies in the general human tendency to assign same level of relative importance

to the same class of objectives from one stage to the next.

We assume the following: the interstage diagonal transformation matrices are equal,

which implies T1 = T2 = . . . = T(τ−1) = T ; all the AHP assumptions are still valid; and

Tτ satisfies the properties given in the input phase. For both the methods we will show

the calculation involving the lower triangle values of the pairwise comparison matrix,

which can be used to compute the corresponding upper triangle values (being reciprocals

from AHP). For illustration purposes we use the following k × k real-valued matrices:

T =





t11 0 . . . 0

0 t22 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . tkk





A(1,1) =





1 1

a
(1,1)
21

. . . 1

a
(1,1)
k1

a
(1,1)
21 1 . . . 1

a
(1,1)
k2

. . . . . .

. . . . . .

. . . . . .

a
(1,1)
k1 a

(1,1)
k2 . . . 1





(3.7)
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3.6.1 Convergence behavior of the GM method

Using this method the pairwise comparison matrix at stage 2 is:

A(2,2) = G[T−1, A(1,1), T ] =





1 R2
21 . . . R2

k1

(( 1
t22

)(a
(1,1)
21 )(t11))

1

N2
21 1 . . . R2

k2

. . . . . .

. . . . . .

. . . . . .

(( 1
tkk

)(a
(1,1)
k1 )(t11))

1

N2
k1 (( 1

tkk
)(a

(1,1)
k2 )(t22))

1

N2
k2 . . . 1





(3.8)

where N2
ij, for i > j means the number of non-ones in A(2,2) at the intersection of row

i and column j, and R2
ij for i < j means 1

a
(2,2)
ij

, where a
(2,2)
ij = (( 1

tii
)(a

(1,1)
ij )(tjj))

1

N2
ij for

i, j = 1, 2, ...k. This notation is extended to other stages.

For the intersection of row 2 and column 1, the values associated with pairwise

comparison matrix from stage 3 through t are as follows:

a
(3,3)
21 = [(

1

t22
)(

1

t22
)(a

(1,1)
21 )(t11)(t11)]

( 1

N3
21

)
= [(

t11

t22
)
( 2

N3
21

)

][(a
(1,1)
21 )

( 1

N3
21

)
],

a
(4,4)
21 = [(

1

t22
)(

1

t22
)(

1

t22
)(a

(1,1)
21 )(t11)(t11)(t11)]

( 1

N4
21

)
= [(

t11

t22
)
( 3

N4
21

)

][(a
(1,1)
21 )

( 1

N4
21

)
],

...

a
(t,t)
21 = [(

t11

t22
)
( t−1

Nt
21

)

][(a
(1,1)
21 )

( 1

Nt
21

)
].

For i > j at stage t and intersection of row i and column j, we can generalize the

pairwise comparison matrix as:

a
(t,t)
ij = (

tjj

tii
)
( t−1

Nt
ij

)

∗ (a
(1,1)
ij )

( 1

Nt
ij

)
, (3.9)

for t = 2, 3, . . ..
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The next task is to find out an exhaustive list of cases that will be studied for its

infinite convergence behavior. The results of the analysis are the following cases that

converge infinitely to the same value using this approach:

1. All ones i.e. N t
ij = 1, for all t.

2. Arithmetic series with a common difference of one:

• Examples: N t
ij = t − 1 OR N t

ij = t, for t = 2, 3, . . ..

3. Arithmetic series with a common difference of two:

• Examples: N t
ij = 2t − 2 = 2(t − 1) OR N t

ij = 2t − 1, for t = 2, 3, . . ..

CASE 1: All ones i.e. N t
ij = N t−1

ij = · · · = N2
ij = 1 = N (say).

Substituting into equation (3.9) we get

a
(t,t)
ij = [(

tjj

tii
)
(t−1)

][(a
(1,1)
ij )

1
] = [(

tjj

tii
)
(t−1)

][a
(1,1)
ij ].

However, for N=1 to be possible exactly one of the following two conditions must be

satisfied:

1. 1
tii

= 1, a
(1,1)
ij = 1, and tjj = 1. In other words, if the case has all ones (or no

non-ones).

2. 1
tii

= 1, a
(1,1)
ij 6= 1, and tjj = 1.

From above conditions we infer that tii = 1 and tjj = 1, which implies
tjj

tii
= 1. Conse-

quently we get a
(t,t)
ij = a

(1,1)
ij , which confirms an immediate convergence.

We conclude that CASE 1 converges immediately to a
(1,1)
ij .

CASE 2: Arithmetic series with a common difference of one.

For convergence analysis we select the case N t
ij = t−1, for t = 2, 3, . . .. Substituting into

equation (3.9) we get

a
(t,t)
ij = [(

tjj

tii
)
( t−1

t−1
)

][(a
(1,1)
ij )

( 1
t−1

)
] = [(

tjj

tii
)][(a

(1,1)
ij )

( 1
t−1

)
].

It can also be shown that as t goes to ∞, 1
t−1

converges to 0 (By the definition of the

limit of a sequence and the Archimedean property).



61

This implies that as t goes to ∞, a
(t,t)
ij converges to [

tjj

tii
][(a

(1,1)
(ij) )0] =

tjj

tii
.

We conclude that CASE 2 converges to
tjj

tii
.

CASE 3: Arithmetic series with a common difference of two.

For convergence analysis we select the case N t
ij = 2t − 2 = 2(t − 1), for t = 2, 3, . . ..

Substituting into equation (3.9) we get

a
(t,t)
ij = [(

tjj

tii
)
( t−1
2t−2

)

][(a
(1,1)
ij )

( 1
2t−2

)
] = [(

tjj

tii
)
( 1
2
)

][(a
(1,1)
ij )

( 1
2t−2

)
].

It can also be shown that 1
2t−2

converges to 0 as t goes to ∞ (By the definition of the

limit of a sequence and the Archimedean property).

This implies that as t goes to ∞, a
(t,t)
ij converges to [(

tjj

tii
)
( 1
2
)
][(a

(1,1)
(ij) )0] = (

tjj

tii
)
( 1
2
)
.

We conclude that CASE 3 converges to (
tjj

tii
)( 1

2
).

3.6.2 Convergence behavior of the SGM method

We will use matrices in equation (3.7) for illustrating SGM method. Using this

approach the pairwise comparison matrix at stage 2 is same as equation (3.8) above. For

the intersection of row 2 and column 1, the values associated with pairwise comparison

matrix from stage 3 through t are as follows:

a
(3,3)
21 = [(

1

t22
)[((

1

t22
)(a

(1,1)
21 )(t11))

( 1

N2
21

)

](t11)]

( 1

N3
21

)

= [(
t11

t22
)
( 1

N3
21

+ 1

N3
21

N2
21

)

][(a
(1,1)
21 )

( 1

N3
21

N2
21

)
],

a
(4,4)
21 = [(

1

t22
)[(

1

t22
)[((

1

t22
)(a

(1,1)
21 )(t11))

( 1

N2
21

)

](t11)]

( 1

N3
21

)

(t11)]

( 1

N4
21

)

= [(
t11

t22
)
( 1

N4
21

+ 1

N4
21N3

21
+ 1

N4
21N3

21N2
21

)

][(a
(1,1)
21 )

( 1

N4
21

N3
21

N2
21

)
],

...

a
(t,t)
21 = [(

t11

t22
)
( 1

Nt
21

+ 1

Nt
21N

t−1
21

+···+ 1

Nt
21N

t−1
21 ···N2

21

)

][(a
(1,1)
21 )

( 1

Nt
21N

t−1
21 ···N2

21

)
].
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For i > j at stage t and intersection of row i and column j, we can generalize the

entries in pairwise comparison matrix A(t,t) as:

a
(t,t)
ij = [(

tjj

tii
)
( 1

Nt
ij

+ 1

Nt
ij

N
t−1
ij

+···+ 1

Nt
ij

N
t−1
ij

···N2
ij

)

][(a
(1,1)
ij )

( 1

Nt
ij

N
t−1
ij

···N2
ij

)

], (3.10)

for t = 2, 3, . . ..

The next task is to find out an exhaustive list of cases that will be studied for its

infinite convergence behavior. In order to accomplish this we develop scenarios for the

values of N t
ij , for t = 2, 3, . . . , T . We start with all possible values of N t

ij at stage t=2.

Without loss in generality, N t
ij can be 1, 2, or 3. We start with N2

ij=1, 2, or 3, and for

each of these values we develop various scenarios. The next step is the analysis of these

scenarios to ascertain possible corresponding values for N3
ij, N

4
ij , and so on. The results

of the analysis are the following cases that converge infinitely to the same value using

this approach:

1. All ones i.e. N t
ij = 1, for all t.

2. No threes AND at least one two:

(a) mix of 1 and 2, OR

• Some of the examples are: N t
ij={1 for t=2, and 2 otherwise};N t

ij={1 for

t=3, and 2 otherwise}, etc.

(b) all twos i.e. N t
ij = 2, for all t.

3. No ones AND at least one three:

(a) mix of 2 and 3, OR

• Some of the examples are: N t
ij={2 for t=2, and 3 otherwise};N t

ij={2 for

t=3, and 3 otherwise}, etc.

(b) all threes i.e. N t
ij = 3, for all t.
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CASE 1: All ones i.e. N t
ij = N t−1

ij = · · · = N2
ij = 1 = N (say).

Substituting into equation (3.10) we get

a
(t,t)
ij = [(

tjj

tii
)
( 1

N
+ 1

N2 +···+ 1

N(t−1)
)

][(a
(1,1)
ij )

1

N(t−1) ]

= [(
tjj

tii
)
(1+1+···+1)

][(a
(1,1)
ij )(1)] = [(

tjj

tii
)
(t−1)

][a
(1,1)
ij ].

Since we get the same result as case 1 of GM method we follow the same procedure for

proof of convergence. Therefore as before, we conclude that CASE 1 converges immedi-

ately to a
(1,1)
ij .

CASE 2: No threes AND at least one two.

For convergence analysis we select the case N t
ij = 2, for all t (all twos), due to its sim-

plicity. Substituting into equation (3.10) we get

a
(t,t)
ij = [(

tjj

tii
)
( 1
2
+ 1

22
+···+ 1

2(t−1)
)

][(a
(1,1)
ij )

1

2(t−1) ].

Using the formula for summing a geometric series we get

1

2
+

1

22
+ · · · + 1

2(t−1)
=

(1
2
)(1 − 1

2(t−1) )

(1 − 1
2
).

It can be shown that as t goes to ∞, 1
2
+ 1

22 +· · ·+ 1
2(t−1) converges to 1 (By the convergence

of geometric series with the absolute value of common ratio less than 1).

Also, it can be shown that as t goes to ∞, 1
2(t−1) converges to 0 (Using the definition of

the limit of a sequence (bn) converges to 0 if 0< b <1).

This implies that as t goes to ∞, a
(t,t)
ij converges to

tjj

tii
.

We conclude that CASE 2 converges to
tjj

tii
.

CASE 3: No ones AND at least one three.

For convergence analysis we select the case N t
ij = 3, for all t (all threes) due to its

simplicity. Substituting into equation (3.10) we get

a
(t,t)
ij = [(

tjj

tii
)
( 1
3
+ 1

32
+···+ 1

3(t−1)
)

][(a
(1,1)
ij )

1

3(t−1) ].
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Using the sum of geometric series we get

1

3
+

1

32
+ . . . +

1

3(t−1)
=

(1
3
)(1 − 1

3(t−1) )

(1 − 1
3
).

It can be shown that as t goes to ∞, 1
3

+ 1
32 + · · ·+ 1

3(t−1) converges to 1
2

(By the conver-

gence of geometric series with the absolute value of common ratio less than 1).

Also, it can be shown that as t goes to ∞, 1
3(t−1) converges to 0 (Using the definition of

the limit of a sequence (bn) converges to 0 if 0< b <1).

This implies that as t goes to ∞, a
(t,t)
ij converges to (

tjj

tii
)( 1

2
).

We conclude that CASE 3 converges to (
tjj

tii
)( 1

2
).

Thus the convergence behavior of GM and SGM methods is established. Following inter-

esting observations can be gathered from the convergence behavior of these approaches:

• For both the approaches, the case all ones converges to a
(1,1)
ij .

• Cases arithmetic series with a common difference of one for GM approach

and no threes AND at least one two for SGM approach converge to
tjj

tii
.

• Cases arithmetic series with a common difference of two for GM approach

and no ones AND at least one three for SGM approach converge to (
tjj

tii
)
( 1
2
)
.

There are instances when SGM method does not converge at all. We will discuss the

divergence of SGM method in the next section.
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3.7 Divergence of the SGM method

In this section we will present a case that leads to the divergence of SGM method.

We will use A(1,1) matrix in equation (3.7). Let’s suppose Tτ ’s oscillate between T ∗ and

T ∗∗, where

Tτ =





t111 0 . . . 0

0 t122 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . t1kk





= T ∗, τ = 1, 3, 5, . . . (3.11)

=





t211 0 . . . 0

0 t222 . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . t2kk





= T ∗∗, τ = 2, 4, 6, . . . . (3.12)

For i > j, using SGM method the elements of pairwise comparison matrix from

stage 2 through t at the intersection of an arbitrary row i and an arbitrary column j are

calculated as follows:

a
(2,2)
ij = [(

1

t1ii
)(a

(1,1)
ij )(t1jj)]

1

N2
ij = [(

t1jj

t1ii
)

1

N2
ij

][(a
(1,1)
ij )

1

N2
ij ],

a
(3,3)
ij = [(

1

t2ii
)(a

(2,2)
ij )(t2jj)]

1

N3
ij = [(

t2jj

t2ii
)

1

N3
ij

][(
t1jj

t1ii
)

1

N3
ij

N2
ij

][(a
(1,1)
ij )

1

N3
ij

N2
ij ],
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a
(4,4)
ij = [(

1

t1ii
)(a

(3,3)
ij )(t1jj)]

1

N4
ij = [(

t2jj

t2ii
)

1

N4
ij

N3
ij

][(
t1jj

t1ii
)

1

N4
ij

+ 1

N4
ij

N3
ij

N2
ij

][(a
(1,1)
ij )

1

N4
ij

N3
ij

N2
ij ],

a
(5,5)
ij = [(

1

t2ii
)(a

(4,4)
ij )(t2jj)]

1

N5
ij

= [(
t2jj

t2ii
)

1

N5
ij

+ 1

N5
ij

N4
ij

N3
ij

][(
t1jj

t1ii
)

1

N5
ij

N4
ij

+ 1

N5
ij

N4
ij

···N2
ij

][(a
(1,1)
ij )

1

N5
ij

N4
ij

···N2
ij ],

a
(6,6)
ij = [(

1

t1ii
)(a

(5,5)
ij )(t1jj)]

1

N6
ij

= [(
t2jj

t2ii
)

1

N6
ij

N5
ij

+ 1

N6
ij

N5
ij

···N3
ij

][(
t1jj

t1ii
)

1

N6
ij

+ 1

N6
ij

N5
ij

N4
ij

+ 1

N6
ij

N5
ij

···N2
ij

][(a
(1,1)
ij )

1

N6
ij

N5
ij

···N2
ij ],

a
(7,7)
ij = [(

1

t2ii
)(a

(6,6)
ij )(t2jj)]

1

N7
ij

= [(
t2jj

t2ii
)

1

N7
ij

+ 1

N7
ij

N6
ij

N5
ij

+ 1

N7
ij

N6
ij

···N3
ij

][(
t1jj

t1ii
)

1

N7
ij

N6
ij

+ 1

N7
ij

N6
ij

···N4
ij

+ 1

N7
ij

N6
ij

···N2
ij

][(a
(1,1)
ij )

1

N7
ij

N6
ij

···N2
ij ],

...

For the even-numbered stage 2τ

a
(2τ,2τ)
ij = [(

t2jj

t2ii
)

1

N2τ
ij

N
2τ−1
ij

+ 1

N2τ
ij

N
2τ−1
ij

···N
2τ−3
ij

+···+ 1

N2τ
ij

N
2τ−1
ij

···N3
ij

]

[(
t1jj

t1ii
)

1

N2τ
ij

+ 1

N2τ
ij

N
2τ−1
ij

N
2τ−2
ij

+···+ 1

N2τ
ij

N
2τ−1
ij

···N2
ij

]

[(a
(1,1)
ij )

1

N2τ
ij

N
2τ−1
ij

···N2
ij ]. (3.13)

For the odd-numbered stage 2τ + 1

a
(2τ+1,2τ+1)
ij = [(

t2jj

t2ii
)

1

N
2τ+1
ij

+ 1

N
2τ+1
ij

N2τ
ij

N
2τ−1
ij

+···+ 1

N
2τ+1
ij

N2τ
ij

···N3
ij

]

[(
t1jj

t1ii
)

1

N
2τ+1
ij

N2τ
ij

+ 1

N
2τ+1
ij

N2τ
ij

···N
2τ−2
ij

+···+ 1

N
2τ+1
ij

N2τ
ij

···N2
ij

]

[(a
(1,1)
ij )

1

N
2τ+1
ij

N2τ
ij

···N2
ij ]. (3.14)
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Subsequences are frequently used to establish the divergence of a sequence [7]. Next

we define subsequence of a sequence, and then we give the divergence criteria that has

been used in this section to establish the divergence of SGM method.

Definition 3.2: Subsequence of a Sequence

Let A = (an) be a sequence of real numbers and let n1 < n2 < · · · < ni < · · · be a

strictly increasing sequence of natural numbers. Then the sequence A′ = (ani
) given by

(an1 , an2, . . . , ani
, . . .)

is called a subsequence of A.

Theorem 3.1: Divergence Criteria

If a sequence A = (an) of real numbers has two convergent subsequences A′ = (ani
) and

A′′ = (ali) whose limits are not equal, then A is divergent.

For the proof of the theorem 3.1 refer [7]. Now we will discuss the conditions under

which SGM method satisfies the above divergence criteria. We will give one example to

demonstrate the divergence of SGM method.

Divergence condition I:

1. t1ii 6= 1, t1jj 6= 1, t2ii 6= 1, t2jj = 1, a
(τ,τ)
ij 6= 1, ∀τ,

OR

t1ii 6= 1, t1jj 6= 1, t2ii = 1, t2jj 6= 1, a
(τ,τ)
ij 6= 1, ∀τ.

2. N τ
ij = {3, for τ = 2, 4, 6, . . . ; 2, for τ = 3, 5, 7, . . .}.

3. (
t1jj

t1ii
) 6= (

t2jj

t2ii
)
2

.

Numerical Example for Divergence Condition I:

Let t1ii = 1
9
, t1jj = 9, t2ii = 3, t2jj = 1, a

(1,1)
ij = 0.5.

These values satisfy condition (3) as (
t1jj

t1ii
) = 9

1
9

= 81, which is not equal to (
t2jj

t2ii
)
2

= 1
3
.

We will use theorem (7.2) to prove the divergence of SGM under divergence condition I.

We need to show that the subsequence of real numbers formed at stage 2τ, τ = 1, 2, . . .
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converges to a value different from the limit of the subsequence of real numbers formed

at stage 2τ + 1, τ = 1, 2, . . .. From equation (3.13), we have at even-numbered stages

a
(2τ,2τ)
ij = [(

t2jj

t2ii
)

1
(3)(2)

+ 1

(3)2(2)2
+···+ 1

(3)(τ−1)(2)(τ−1)

][(
t1jj

t1ii
)

1
3
+ 1

(3)2(2)
+···+ 1

(3)(τ)(2)(τ−1)

]

[(a
(1,1)
ij )

(3)(τ)(2)(τ−1)

]

= [(
t2jj

t2ii
)

( 1
(3)(2)

)(1−( 1
(3)(2)

)
(τ−1)

)

(1−( 1
(3)(2)

))

][(
t1jj

t1ii
)

( 1
3 )(1−( 1

(3)(2)
)
τ
)

(1−( 1
(3)(2)

))

][(a
(1,1)
ij )

(3)(τ)(2)(τ−1)

].

As τ −→ ∞,

a
(2τ,2τ)
ij −→ [(

t2jj

t2ii
)

( 1
(3)(2)

)(1−0)

(1−( 1
(3)(2)

))

][(
t1jj

t1ii
)

( 1
3 )(1−0)

(1−( 1
(3)(2)

))

][(a
(1,1)
ij )

0
] = [(

t2jj

t2ii
)

1
5

][(
t1jj

t1ii
)

2
5

].

Substituting the above values we get

a
(2τ,2τ)
ij −→ [(

1

3
)

1
5

][(
9
1
9

)

2
5

] = 4.655536722.

From equation (3.14), we have at odd-numbered stages

a
(2τ+1,2τ+1)
ij = [(

t2jj

t2ii
)

1
2
+ 1

(2)2(3)+···+ 1

(2)(τ)(3)(τ−1)
][(

t1jj

t1ii
)

1
(2)(3)

+ 1

(2)2(3)2
+···+ 1

(2)(τ)(3)(τ)

]

[(a
(1,1)
ij )

(2)(τ)(3)(τ)

]

= [(
t2jj

t2ii
)

( 1
2 )(1−( 1

(2)(3)
)
(τ)

)

(1−( 1
(2)(3)

))

][(
t1jj

t1ii
)

( 1
(2)(3)

)(1−( 1
(2)(3)

)
τ
)

(1−( 1
(2)(3)

))

][(a
(1,1)
ij )

(2)(τ)(3)(τ)

].

As τ −→ ∞,

a
(2τ+1,2τ+1)
ij −→ [(

t2jj

t2ii
)

( 1
2 )(1−0)

(1−( 1
(2)(3)

))

][(
t1jj

t1ii
)

( 1
(2)(3)

)(1−0)

(1−( 1
(2)(3)

))

][(a
(1,1)
ij )

0
] = [(

t2jj

t2ii
)

3
5

][(
t1jj

t1ii
)

1
5

].

Substituting the above values we get

a
(2τ,2τ)
ij −→ [(

1

3
)

3
5

][(
9
1
9

)

1
5

] = 1.24573094.
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Since subsequence of even stages converges to 4.655536722, while subsequence of odd

stages converges to 1.24573094, hence the sequence consisting of these two subsequences

is divergent according to the above theorem.

We next present some examples from among several divergence conditions for SGM

method:

Divergence condition II: 1. t1ii 6= 1, t1jj 6= 1, t2ii 6= 1, t2jj 6= 1, a
(τ,τ)
ij 6= 1, ∀τ

2. N τ
ij = 3, ∀τ

3. (
t1jj

t1ii
) 6= (

t2jj

t2ii
).

Divergence condition III: 1. a
(1,1)
ij = 1, t1ii 6= 1, t1jj 6= 1, t2ii 6= 1, t2jj 6= 1, a

(τ,τ)
ij 6= 1 for

τ = 2, 3, . . .

2. N τ
ij = {2, for τ = 2; 3, otherwise}

3. (
t1jj

t1ii
) 6= (

t2jj

t2ii
).

3.8 Remarks on the Convergence Behavior

Previous two sections established the conditional convergence of both GM and

SGM methods while also proving that the SGM method diverges conditionally. These

information are valuable in the following ways. Since SGM method displays divergence

at some points, it holds an edge over GM method in generating distinct weight vectors

at each stage of a large-scale MSMO optimization model. The distinct weight vectors at

each stage allow an exhaustive exploration of the Pareto optimal solution set.



CHAPTER 4

APPLICATION TO A MULTIPLE STAGE, MULTIPLE OBJECTIVE
WASTEWATER TREATMENT SYSTEM (WTS)

4.1 Introduction

Rapid population growth and continued industrial development have created enor-

mous challenges in conserving water, one of the most precious natural resources, and

keeping it clean for the survival of living beings on this planet. Despite these challenges,

a wastewater treatment system (WTS) needs to be designed to meet the economic, envi-

ronmental, space, and performance requirements. There is a need for wastewater treat-

ment technologies that meet the demands of today. The wastewater treatment system

considered here is based on the system presented by Chen and Beck [24], which involves

cleaning the liquid and solid pollutants in several levels of processing of domestic wastew-

ater. There are eleven levels of liquid processing, and six levels of solid processing shown

in Figure 4.1 and Figure 4.2 respectively. This WTS differs from the one used in Tsai’s

dissertation [113] in the following:

• Yellow Water Separation, and Yellow and Black Water Separation are new treat-

ment technologies added in WTS level 1.

• UASB System plus Activated Sludge Process (C, P, N) is a new treatment tech-

nology added in WTS level 5.

• There are multiple objectives at each level of WTS. These objectives are: minimize

(economic cost, size, odor emissions), and maximize (nutrient recovery, robustness,

global desirability).

70
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Influent 

Yellow water 
separation 

Flow equalization tank Yellow & black 
water separation 

Sedimentation 
tank 

Vortex SSO Chemical 
Precipitation 

Physical 
irradiation 

Ozonation 

Supplying readily 
degradable substrate 

Main treatment 
technologies I 

Main treatment 
technologies II 

Microfiltration Reverse 
Osmosis 

Chemical 
precipitation 

Physical 
infiltration 

Physical 
irradiation 

Ozonation 

Air stripping Ammonia 
Stripping 

Chlorine 
disinfection 

Chlorating 
disinfection 

Granular Activated Carbon 
(GAC) Adsorption 

Infiltration 
basin 

Effluent 
Empty unit 

Level 9 

Level 10 

Level 11 

Level 8 

Level 7 

Level 6 

Level 5 

Level 4 

Level 3 

Level 2 

Level 1 

Figure 4.1. Levels and unit processes for the liquid line of the wastewater treatment
system..
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Sludge influent 

Sludge tank Sludge thickening 
tank 

Main treatment 
technologies 

Permanent thermal 
processing 

Filter and belt 
processing 

Thermo-chemical 
liquefaction 

Sludge dewatering bed 

Physical irradiation 

Incineration Chemical 
fixation 

Thermal treatment for 
building materials 

Sludge for disposal 

Empty unit 

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

Level 6 

Figure 4.2. Levels and unit processes for the solid line of the wastewater treatment
system..

In order to evaluate the treatment technology options for this multiple objective

version of WTS, the decision-making elements - state variables, decision variables, tran-

sition functions, objectives, and constraints, are defined in the next section.
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4.2 Decision-Making Elements in WTS

The multiple stage, single objective decision-making framework presented in Tsai

[113] is extended to a multiple stage, multiple objective (MSMO) decision-making do-

main. The stages correspond to different levels of processing in WTS. Various elements

of decision-making are specified next.

4.2.1 State and decision variables

The state variables represent the state of the wastewater treatment system going

across various levels of treatment. The state variables are continuous. The following

ten state variables were considered for the liquid processing in the wastewater treatment

system:

1. chemical oxygen demand (Liq-COD).

2. suspended solids (Liq-SS).

3. organic-nitrogen (Liq-orgN).

4. ammonia-nitrogen (Liq-ammN).

5. nitrate-nitrogen (Liq-nitN).

6. total phosphorus (Liq-totP).

7. heavy metals (Liq-HM).

8. synthetic organic chemicals (Liq-SOCs).

9. pathogens (Liq-pathogens).

10. viruses (Liq-viruses).

Similarly, the ten sludge state variables considered for both liquid and solid pro-

cessing are:

11. sludge volume (Sl-Vol).

12. sludge water content (Sl-WC).

13. sludge organic-carbon (Sl-orgC).
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14. sludge inorganic-carbon (Sl-inorgC).

15. sludge organic-nitrogen (Sl-orgN).

16. sludge ammonia-nitrogen (Sl-ammN).

17. sludge total phospho-rus (Sl-totP).

18. sludge heavy metals (Sl-HM).

19. sludge synthetic organic chemicals (Sl-SOCs).

20. sludge pathogens (Sl-pathogens).

In the liquid line, all 20 of these state variables must be monitored. In particular, sludge

is generated in levels 1, 2, 5, 6, and 7 of the liquid line.

The decision variables are the control variables, which are the technology units

being evaluated at each level of the multiple stage, multiple objective WTS. In order to

connect the liquid line and the solid line, the levels are numbered 1 through 17. The levels

1 through 11 form the solid line, and 12 through 17 form the solid line. The decision

variables in this 17-level WTS are shown in Table 4.1. At each stage, a decision has to

be made regarding the selection of a technology unit. At any level, technology units can

be added or removed depending on current or future needs. Except for the first level of

the liquid line, an “empty unit” can be seen in all other WTS levels. The selection of

“empty unit” at a particular level implies that no treatment is performed at that level.

Further, there are interstage dependencies for the usage of technology units at certain

levels. Specifically, the list of interstage dependencies between the technology units is as

follows:

1. In level 5, “Reed Bed System” requires using a technology unit in level 2.

2. In level 13, “Sludge C-G Drying” requires using of a technology unit in level 12.

3. In level 13, “Anaerobic Digestion” requires using a technology unit in level 12.

4. In level 14, “Filter and Belt” requires using the “Sludge Thickening Tank” in level

12 AND one of the following in level 13: Sludge Vertech + Ammonia Stripping,
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CWOP-UASB + Ammonia Stripping, Sludge Hydrolysis + UASB, Anaerobic Di-

gestion, OR Aerobic-Anaerobic Digestion.

Also, uncertainty of the following two types are modeled:

1. Uncertainty in the values of the influent and state variables at subsequent levels of

WTS, and

2. Uncertainty in the performance of technology, denoted by ut in level t, including

the objectives associated with a technology.

Type (1) is represented by range limits, initiated by those in Table 4.2. In order to solve

the SDP, we will describe later an approach that utilizes a statistical experimental design

to efficiently represent the possible values and model over the continuous ranges of the

state variables. Type (2) is represented by the stochastic vector ǫt,ut
. The dimension of

this vector depends on the performance parameters for a particular technology, specified

in the database by Jining Chen [25]. Since nothing is known about the appropriate prob-

ability distributions to represent the stochasticity, only the ranges of the performance

parameters are specified, and sampling based on a uniform distribution is utilized. Nar-

rower ranges are assigned to well-known technologies and wider ranges are assigned to

newer, emerging technologies.

4.2.2 Transition functions

The transition function for a particular level determines how the state variables

change at the exit point of this level. For the multivariate transition function at level

t, given xt, the state entering level t, if ut is the treatment technology selected in level

t, and ǫt,ut
is the uncertainty associated with the transition, then the new state exiting

level t, xt+1 = ft(xt, ut, ǫt,ut
).
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Table 4.1. Decision Variables in WTS

 
 
 
 
 

LIQUID LINE OF WTS  
Level 1 2 3 4 5 
Technology 
Units 

• Flow 
Equalization 
Tank 

• Yellow Water 
Separation 

• Yellow & Black 
Water 
Separation 

• Empty Unit 
• Vortex SSO 
• Sedimentation 

Tank 
• Chemical 

Precipitation 

• Empty Unit 
• Physical 

Irradiation 
• Ozonation 

• Empty 
Unit 

• Empty Unit 
• Activated Sludge (C) 
• Activated Sludge (C, N) 
• Activated Sludge (C, P) 
• Activated Sludge (C, P, N) 
• High Biomass Act. Sludge (C, N) 
• Activated Sludge (N) 
• Multi-reactor/Deep 

• A-B System 
• Trickling Filter 
• Rotating Biological Contractors 
• UASB System 
• UASB System + Activated Sludge 

(C, P, N) 
• Reed Bed System 
• Lagoons and Ponds 

Level 6 7 8 9 10 11 
Technology 
Units 

• Empty Unit 
• Secondary Settler 
• Microfiltration 
• Reverse Osmosis 
• Chemical Precipitation 

• Empty Unit 
• Physical Filtration 
• Microfiltration 
• Reverse Osmosis 
• Chemical Precipitation 

• Empty Unit 
• Physical 

Irradiation 
• Ozonation 

• Empty Unit 
• Air Stripping 
• Ammonia 

Stripping 

• Empty Unit 
• Chlorine 

Disinfection 
• Chlorating 

Disinfection 

• Empty Unit 
• GAC 

Adsorption 
• Infiltration 

Basin 

SOLID LINE OF WTS  
Level 12 13 14 15 16 17 
Technology 
Units 

• Empty Unit 
• Sludge Storage 

Tank 
• Sludge 

Thickening Tank 

• Empty Unit            
• Sludge Dewatering Bed 
• Sludge C-G Drying 
• Sludge V + A Stripping 
• Sludge CWOP-UASB + A Stripping 
• Sludge Hydrolysis + UASB 
• Anaerobic Digestion 
• Aerobic Digestion 
• Aerobic-Anaerobic Digestion 

• Empty Unit 
• Filter and Belt 
• Permanent 

Thermal Process 
• Thermo-

Chemical 
Liquefaction 

• Empty Unit 
• Sludge 

Dewatering 
Bed (II) 

• Empty Unit  
• Physical 

Irradiation 

• Empty Unit 
• Chemical Fixation 
• Incineration 
• Thermal Building 

Materials 
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4.2.3 Objectives and constraints

As mentioned above, the six objective functions that are considered for the multiple

stage, multiple objective wastewater treatment system are:

1. Minimize economic cost (in US Dollars), capital and operating cost of the treatment

technology units

2. Minimize size (in m2), the land area occupied by the treatment technology units

3. Minimize odor emissions (in mg/min), obtained by multiplying the concentration

of the discharged gas (in the unit of mg/l or mg/m3) and the flow of the gas (in

the unit of l/min or m3/min)

4. Maximize nutrient recovery (on 1-5 scale), characterizing the rating of the treatment

technology units in cleaning liquid or sludge pollutants

5. Maximize robustness (no units), characterizing the insensitivity to the variation of

the inputs

6. Maximize global desirability (on 1-6 scale), characterizing the impact of wastewater

treatment ouputs on the global environment

The basic constraints are cleanliness targets that are specified at levels 11 and 17 for

the liquid and solid lines respectively. Also, constraints are added on the cleanliness

of the liquid/sludge entering each level to handle a situation when liquid/sludge in the

WTS are too polluted to be processed by any treatment technology units available in

a particular level (as a result of empty units being selected too often in earlier levels).

These range limits on the state variables entering each level are shown in Tables 4.2,

4.3, and 4.4. They define the state space for each level of liquid and solid lines. The

weighted-sums of objective functions are calculated for each selected treatment technol-

ogy unit, and are subject to uncertainty modeled similar to the performance parameters

for each technological unit. Attainment of the constraints is achieved via a penalty func-

tion added to the weighted-sum of the objective functions. The same penalty function
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was utilized to achieve cleanliness targets and to maintain state space limits. The math-

ematics behind the formulation of the target penalty function can be seen in Chen et

al. [85] and Tsai [113]. The purpose of utilizing a penalty function is to assess penalty

for violating liquid/sludge cleanliness targets. Therefore, the exact form of the penalty

function is not that important, and it was chosen to facilitate modeling by multivariate

adaptive regression splines (MARS). The cleanliness penalty is assessed in level 11 for the

liquid line and in level 17 for the solid line. Tables 4.5 and 4.6 present the state variable

ranges of the liquid/sludge exiting the wastewater treatment system, target values, cost

smoothing values (denoted by △), and penalty coefficients. Target values can be easily

adjusted to satisfy any desired requirements.
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Table 4.2. Lower and Upper Limits (in mg/l) on the Ten Liquid State Variables of the
Wastewater Treatment System for the Liquid Line (Levels 1-11)

Entering Liq-COD Liq-SS Liq-orgN Liq-ammN Liq-nitN 
Level 1 200 

210 
220 
231 

15 
15.75 

25 
26.25 

0 
0.01 

Level 2 52 
210 

59.4 
231 

4.5 
15.75 

2 
26.25 

0 
0.01 

Level 3 33.8 
210 

5.94 
115.5 

1.35 
14.9625 

1.8 
28.875 

0 
0.01 

Level 5 27.04    
199.5 

5.346 
115.5 

1.08 
14.214375 

1.08 
23.1 

1.314 
42.1675 

Level 6 0.5408  
69.825 

0.10692 
7000 

0.162 
100 

0 
21.945 

0.1314 
122.26675 

Level 7 0.05408 
69.825 

1.07(10-3) 
350 

0.0162 
100 

0 
21.945 

0.01314 
122.26675 

Level 8 5.408(10-3)  
62.8425 

1.07(10-5) 
52.5 

0.00162 
70 

0 
21.945 

1.314(10-3) 
122.26675 

Level 9 4.3264(10-3)  
59.700375 

9.6228(10-6) 
52.5 

1.296(10-3) 
66.5 

0 
17.556 

1.314(10-3) 
170.3263 

Level 10 8.6528(10-4)  
47.7603 

9.6228(10-6) 
52.5 

1.296(10-3) 
66.5 

0 
14.9226 

1.314(10-3) 
170.3263 

Level 11 8.6528(10-4)  
47.7603 

9.6228(10-6) 
52.5 

1.296(10-3) 
66.5 

0 
14.9226 

1.314(10-3) 
170.3263 

 

Entering Liq-totP Liq-HM Liq-SOCs Liq-pathogens Liq-viru ses 
Level 1 8 

8.4 
0.01 

0.0105 
15 

15.75 
5.00(107) 
5.25(107) 

100 
105 

Level 2 2 
8.4 

0.0035 
0.0105 

3.75 
15.75 

1.75(107) 
5.25(107) 

40 
105 

Level 3 0.2 
7.98 

0.000175 
0.00945 

0.375 
14.175 

1.75(106) 
3.15(107) 

4 
63 

Level 5 0.2  
7.98 

0.000175 
0.00945 

0.05625 
7.0875 

0 
3.15(106) 

0.08 
6.3 

Level 6 0.01  
10 

1.75(10-6) 
0.00567 

5.625(10-6) 
4.2525 

0 
1.89(106) 

8(10-6) 
3.78 

Level 7 0   
10 

3.5(10-8) 
0.00567 

2.8125(10-7) 
4.2525 

0 
1.89(106) 

4(10-8) 
3.78 

Level 8 0  
8 

7(10-10) 
0.001701 

1.4063(10-8) 
1.063125 

0 
283500 

2(10-10) 
0.567 

Level 9 0  
8 

7(10-10) 
0.001701 

2.1094(10-9) 
0.5315625 

0 
28350 

4(10-12) 
0.0567 

Level 10 0  
8 

7(10-10) 
0.001701 

3.164(10-10) 
0.26578125 

0 
4252.5 

4(10-14) 
0.008505 

Level 11 0   
8 

7(10-10) 
0.001701 

3.164(10-10) 
0.3189375 

0 
212.625 

8(10-15) 
0.0025515 
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Table 4.3. Lower and Upper Limits (in mg/l) on the Ten Sludge State Variables of the
Wastewater Treatment System for the Liquid Line (Levels 1-11)

Entering Sl-Vol Sl-WC Sl-orgC Sl-inorgC Sl-orgN 
Level 2 0.0575   

0.453 
0.0566   
0.451 

197.36   
5328.72 

56.4    
1998.27 

3.595   
169.853 

Level 3 1.0575   
100.405 

0.86    
99.9 

3248.395   
9.23(106) 

3167.25   
9.41(106) 

86.93   
6.66(105) 

Level 6 2.057   
203.69 

1.842   
203.086 

8048.395   
1.03(107) 

4367.25   
9.826(106) 

206.93   
7.07(105) 

Level 7 2.057   
2728.69 

1.842   
2725.56 

8048.47   
2.4(107) 

4367.266   
1.89(107) 

206.932   
1.48(106) 

Level 8 3.057   
3078.69 

2.802   
3075.22 

8348.47   
2.455(107) 

4667.266   
1.953(107) 

221.932   
1.533(106) 

 

Entering Sl-ammN Sl-totP Sl-HM Sl-SOCs Sl-pathogens 
Level 2 0.024    

1.698 
507.94   
37705.5 

0    
0.83 

152.381   
14883.75 

0    
3.721(109) 

Level 3 0.3545   
3999.77 

552.1   
5.14(105) 

0.126   
629.252 

341.62   
9.08(105) 

3.81(108)   
1.79(1012) 

Level 6 1.1545   
4402.6 

553.014   
8.194(105) 

0.1285   
1121.44 

342.3    
1.3(106) 

3.81(108)   
1.87(1012) 

Level 7 1.1545   
59813.71 

553.014   
4.72(1011) 

0.1285   
5.583(108) 

342.3   
2.932(1011) 

3.81(108)   
7.445(1016) 

Level 8 1.1545   
67494.46 

553.014   
4.72(1011) 

0.1285   
5.583(108) 

342.3   
2.93(1011) 

3.81(108)   
7.445(1016) 
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Table 4.4. Lower and Upper Limits (in mg/l) on the Ten Liquid State Variables of the
Wastewater Treatment System for the Solid Line (Levels 12-17)

Entering Sl-Vol Sl-WC Sl-orgC Sl-inorgC Sl-orgN 
Level 12 3.0575   

3078.691 
0.001   
0.9999 

2.712   
8.03(106) 

1.516    
6.387(106) 

7.21(10-2)   
5.0125(105) 

Level 13 1 
3078.691 

0.001 
0.996 

2.441 
8.03(106) 

1.516 
6.387(106)    

6.5(10-2)   
5.0125(105) 

Level 14 1 
3078.691 

9.1(10-5)   
0.999 

0.122    
8.03(106) 

0.455 
6.387(106)    

3.24(10-3)  
5.0125(105)  

Level 15 1 
3078.691 

0.05 
0.8 

0.0122    
8.03(106) 

0.273 
6.387(106)    

4.866(10-4) 
5.0125(105)   

Level 16 1 
3078.691 

0.005 
0.6 

0.0122    
8.03(106) 

0.273 
6.387(106)    

4.866(10-4) 
5.0125(105)   

Level 17 1 
3078.691 

0.005 
0.6 

0.0122    
8.03(106) 

0.273 
6.387(106)    

4.866(10-4) 
5.0125(105)   

 

Entering Sl-ammN Sl-totP Sl-HM Sl-SOCs Sl-pathogens 
Level 12 3.75(10-4)   

2.21(104) 
0.1796   

1.544(1011) 
4.173(10-5)   
1.826(108) 

0.1112   
9.6(1010) 

1.24(105)   
2.435(1016) 

Level 13 3.75(10-4)   
2.21(104) 

0.1796   
1.544(1011) 

4.173(10-5)   
1.826(108) 

0.1056   
9.6(1010) 

6.187(104)   
2.435(1016) 

Level 14 3.75(10-5)   
2.21(104) 

0.028   
1.544(1011) 

6.506(10-6)   
1.826(108) 

0.0317   
9.6(1010) 

61.87   
2.435(1016) 

Level 15 3.75(10-6)   
2.21(104) 

0.0168   
1.544(1011) 

6.506(10-6)   
1.826(108) 

0 
9.6(1010) 

18.561   
2.435(1016) 

Level 16 3.56(10-6)   
2.21(104) 

0.0168   
1.544(1011) 

6.506(10-6)   
1.826(108) 

0 
9.6(1010) 

0.18561   
2.435(1015) 

Level 17 3.56(10-6)   
2.21(104) 

0.0168   
1.544(1011) 

6.506(10-6)   
1.826(108) 

0  
9.6(1010)    

1.856(10-4)   
2.435(1013) 
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Table 4.5. Minimum and Maximum Values (in mg/l) of the Ten Liquid State Variables
of the Wastewater Exiting the Liquid Line

Entering Liq-COD Liq-SS Liq-orgN Liq-ammN Liq-nitN 
Minimum 
Maximum 

8.6528(10-4)  
47.7603 

9.6228(10-6) 
52.5 

1.296(10-3) 
66.5 

0 
14.9226 

1.314(10-3) 
170.3263 

Target �
 

Penalty 

5 
21.4 
47      

5.5 
24 
43                

7 
30 
34 

1.5 
6.7 
149 

16 
77.2 
13 

 

Entering Liq-totP Liq-HM Liq-SOCs Liq-pathogens Liq-viru ses 
Minimum 
Maximum 

0   
8 

7(10-10) 
0.001701 

3.164(10-10) 
0.32 

0 
212.625 

8(10-15) 
0.0025515 

Target �
 

Penalty 

0.8 
3.6 
278     

0.00015 
0.00078 
1.29(106) 

0.04 
0.1395 
7.2(103) 

20 
96.313 
10.4 

0.0003 
0.001126 
8.88(105) 

 

4.3 Multiple Objective Stochastic Dynamic Programming Formulation of
WTS and Weighted-Sum Scalarization

The MSMO version of WTS is formulated as a stochastic dynamic programming

(SDP), which has traditionally been used for optimization of multiperiod problems in

areas of application such as engineering, finance, economics, etc. [13] The WTS is a

continuous-state, 20-dimensional, 17-stage (time periods or levels), 6-objective MSMO

optimization problem. Since state variables are continuous, there is a need to discretize

the state space for finding approximate solutions. We use the orthogonal array (OA)

based Latin hypercube designs for state space discretization, and the MARS [114] al-

gorithm is used for future value function approximation. The details on the orthogonal

array based Latin hypercubes, OA-LHD and OA-LHS, can be seen in the Tsai’s disser-

tation [113]. A discussion on the MARS algorithm used for WTS can also be seen in the

Tsai’s dissertation [113]. Next, the multiple objective stochastic dynamic programming
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Table 4.6. Minimum and Maximum Values (in mg/l) of the Ten Solid State Variables
for the Sludge Exiting the Solid Line

Entering Sl-Vol Sl-WC Sl-orgC Sl-inorgC Sl-orgN 
Minimum 
Maximum 

1 
3078.691 

0 
0.3 

0.0122 
8.03(106) 

0.082 
8.942(106) 

4.87(10-4) 
5.0125(105) 

Target �
 

Penalty 

306 
1386 
0.72 

0.03 
0.135 

7407.41 

6.08(105) 
3.71(106) 
2.7(10-4) 

6.83(105) 
4.13(106) 
2.4(10-4) 

3.81(104) 
2.316(105) 
4.32(10-3) 

 

Entering Sl-ammN Sl-totP Sl-HM Sl-SOCs Sl-pathogens 
Minimum 
Maximum 

1.425(10-6) 
2.21(104) 

0.0168 
1.5442(1011) 

6.5(10-6) 
1.826(108) 

0 
9.588(1010) 

1.856(10-6) 
2.435(1013) 

Target �
 

Penalty 

1685 
1.02(104) 
0.0981 

1.472(105) 
7.721(1010) 

1.3(10-8) 

453 
9.13(107) 
1.1(10-5) 

2.74(105) 
4.794(1010) 
2.09(10-8) 

1.38(108) 
1.22(1013) 
8.21(10-11) 

 
 
     
              
         

formulation of WTS is elaborated. The multiple objective SDP can be formulated as

(shown schematically in Figure 1.1-Chapter 1):

V − min
u1,...,uT

E {M{m1(x1, u1, ǫ1,u1),m2(x2, u2, ǫ2,u2), . . . ,mT (xT , uT , ǫT,uT
)}}

s.t. xτ+1 = fτ (xτ , uτ , ǫτ,uτ
), for τ = 1, . . . , T − 1 and

xτ ∈ Sτ , uτ ∈ Γτ , for τ = 1, . . . , T

(4.1)

where T is time horizon, xτ is the state vector (attributes of the liquid/sludge), uτ is the

index of the selected technology unit, ǫτ,uτ
is the stochastic component on the performance

parameters of unit uτ , xτ+1 is determined by the transition function fτ (·), Sτ contains

the range limits on the state variables, Γτ contains the indices of the available technology

units, the function M(·) denotes the multiple objective return function, and V-min is

used to differentiate the vector minimization problem from the minimization problem.

Also, the objective vector at stage τ is

mτ (xτ , uτ , ǫτ,uτ
) =





m1
τ (xτ , uτ , ǫτ,uτ

)

m2
τ (xτ , uτ , ǫτ,uτ

)

...

mk
τ (xτ , uτ , ǫτ,uτ

)





,
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where k is the number of objective functions at each stage.

The equation 4.1 is the original multiple stage, multiple objective problem formu-

lation. The next task is to generate Pareto optimal solutions. Some of the methods

for generating Pareto optimal points include, weighted-sum [21], ε-constraint [21], hy-

brid that combines both weighted-sum and ε-constraint [73], norm or weighted metrics,

and minimax. The weighted-sum method is used here for its ease of application and

involvement of decision makers in the solution process. The weighted-sum transforms

multiple objective functions into a single objective function, and optimizes the weighted-

sum of the objectives. This conversion process is usually referred to as scalarization. The

weighted-sum scalarized form of the problem (shown schematically in Figure 1.2-Chapter

1) becomes

min
u1,...,uT

E

{
T∑

τ=1

Wτmτ (xτ , uτ , ǫτ,uτ
)

}

s.t. xτ+1 = fτ (xτ , uτ , ǫτ,uτ
), for τ = 1, . . . , T − 1 and

xτ ∈ Sτ , uτ ∈ Γτ , for τ = 1, . . . , T

(4.2)

where Wτ is the weight vector at stage τ , (w1
τ , w

2
τ , . . . , w

k
τ ), and mτ (xτ , uτ , ǫτ,uτ

) is the

objective vector at stage τ , (m1
τ (xτ , uτ , ǫτ,uτ

), m2
τ (xτ , uτ , ǫτ,uτ

), . . . , mk
τ (xτ , uτ , ǫτ,uτ

))′. We

next demonstrate the application of our three-phase methodology for computing weight

vectors at each stage of the wastewater treatment system.
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4.4 Normalization/transformation of objective functions

It is practical to transform or normalize the objective functions so that they all have

comparable orders of magnitude. We use the upper-lower-bound approach recommended

in Marler and Arora [71]. For a given stage τ , this approach uses the transformation,

mti =
mi(u) − mi

0

mi
max − mi

0

, (4.3)

mi
max = max

1≤j≤k
mi(u∗

j ), (4.4)

for i = 1, . . . , k where k is the number of objective functions and u∗
j is the point that

minimizes the jth objective function,

mi
0 = min

u

{mi(u)|u ∈ Γ}, (4.5)

where Γ is the feasible decision space.

Therefore, the normalized/transformed form of the stochastic dynamic program-

ming problem formulation in equation 4.2 is,

min
u1,...,uT

E

{
T∑

τ=1

WτMTτmτ (xτ , uτ , ǫτ,uτ
)

}

s.t. xτ+1 = fτ (xτ , uτ , ǫτ,uτ
), for τ = 1, . . . , T − 1 and

xτ ∈ Sτ , uτ ∈ Γτ , for τ = 1, . . . , T

(4.6)

where MTτ is the objective transformation vector at stage τ , (mt1τ , mt2τ , . . . , mtkτ ).

4.5 Implementation of Three-Phase Methodology

We are applying our three-phase methodology [26] on a conceptual multiple stage,

multiple objective wastewater treatment system. This extends the multiple stage, single

objective decision-making framework presented in Tsai [113] to a multiple stage, multi-

ple objective (MSMO) decision-making domain. Table 4.1 shows choices of treatment

technology units at all levels of WTS. The stages correspond to different levels of pro-

cessing in WTS. The MSMO version of WTS has two new technologies at level 1 and
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one new technology at level 5 of the liquid processing line. As mentioned above, the

goal is to select the treatment technology units at each level of WTS for minimizing eco-

nomic cost, size, and odor emissions, while maximizing nutrient recovery, robustness, and

global desirability. We will present the results of the implementation of our three-phae

methodology on the MSMO version of the WTS in the following sections.

4.5.1 Input phase implementation

For the input phase, we use the questionnaire-modeling approach discussed in chap-

ter 3. Since a single technology unit at level 4 of WTS implies that no optimization is

needed at this level, we do not include it in the questionnaire. In other words, our ques-

tionnaire concerns levels 1 through 3, and 5 through 17. Dr. Feng Jiang, who specializes

in wastewater treatment system and works at Georgia Department of Natural Resources

(GADNR), provided us with the answers to our questionnaire. Dr. Jiang was a student

of Dr. M. Bruce Beck at the University of Georgia, and is well-versed with the origi-

nal WTS co-developed by Dr. Beck and Dr. Jining Chen. Moreover, both Drs. Beck

and Chen have worked with Dr. Victoria Chen on the SDP formulation of WTS. Dr.

Jiang responded quickly and enthusiastically to a total of 390 questions. The information

provided by the questionnaire is used to compute practical weight vectors relating the

objectives at each WTS level. We denote the WTS objectives at level τ as follows:

• ECτ denotes the Economic Cost (in USD),

• Sτ denotes the Land Area (in m2),

• Oτ denotes the Odor Emissions (in mg/min),

• NRτ denotes the Nutrient Recovery (on 1-5 scale),

• Rτ denotes the Robustness (no units), and

• GDτ denotes the Global Desirability (on 1-6 scale)
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We asked Dr. Jiang questions on: the worst/best values for the objectives at each level,

the relative importance for different objectives within level 1, and the relative importance

for same types of objectives across different levels, of the WTS. The WTS questionnaire

is organized in the following tables:

• Table 4.7 presents the worst and the best values for all six objectives at levels 1

through 3. These values are based on the WTS code developed by Jining Chen

[25, 24]. The worst and best values for all six objectives at all 17 levels can be seen

in the Appendix A.

• Table 4.8 presents importance questions for comparing the different objectives

within Level 1 of WTS.

• Table 4.9 presents interlevel importance questions for comparing the same objective

types across different levels of WTS. The complete tables for all six objectives can

be seen in the Appendix A.

The worst and best values in Table 4.7 help decision makers answer tradeoff questions

(or importance questions) in Tables 4.8 and 4.9 with a relatively high level of precision

and consistency. We use Tables 4.8 and 4.9 to get the complete pairwise comparison

matrix at level 1 and interstage diagonal matrices, respectively.

Table 4.7. The Worst and the Best Objective Values in WTS Levels 1-3

The Worst Value The Best Value The Worst Value The Best Value The Worst Value The Best Value 
Economic Cost (in USD) Nutrient Recovery (on 1-5 ordinal scale) Robustness (No units) 

EC1= 43200550  EC1= 9643.3121  NR1= 1  NR1= 4  R1= 3821656.051 R1= 15286624.2 
EC2= 14500 EC2= 2500 NR2= 1 NR2= 5  R2= 2000 R2= 9000 
EC3= 9300 EC3= 6600 NR3= 1 NR3= 1 R3= 675 R3= 1500 

Size (in m2) Odor Emissions (in mg/min) Global Desirability (on 1-6 ordinal scale) 
S1= 96000 S1= 1274  O1= 384000 O1= 3821.6561  GD1= 2.5 GD1= 6  
S2= 1000 S2= 100 O2= 3500 O2= 250 GD2= 2.5 GD2= 4 
S3= 600 S3= 75 O3= 2880 O3= 330 GD3= 4 GD3= 4.8 
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Table 4.8. The Importance Questions for Level 1 of Wastewater Treatment System
Given the more important objective, how many times is this 
objective more important than the other? 
(Note: “Equal” = 1) 

Which one of the following pairs of objectives 
is more important in terms of improvement 
from the worst value to the best value? 

1 2 3 4 5 6 7 8 9 
    EC1     S1                          Equal          
    EC1     O1         Equal          
    EC1     NR1         Equal          
    EC1     R1           Equal          
    EC1     GD1          Equal          
    S1         O1        Equal          
    S1         NR1     Equal          
    S1         R1     Equal          
    S1         GD1          Equal          
    O1        NR1           Equal          
    O1        R1           Equal          
    O1         GD1        Equal          
    NR1                 R1        Equal          
    NR1                 GD1        Equal          
    R1                 GD1        Equal          

 
 

 
 
 
 

The questionnaire-based approach results in the pairwise comparison matrix at

stage 1, A(1,1), and interstage diagonal transformation matrices (or matrices of depen-

dencies from one stage to the next), Tτ , for τ = 1, 2, . . . , (T − 1), where T=17. These

matrices are utilized as inputs to the matrix generation phase. The resulting pairwise

comparison matrix at stage 1,

A(1,1) =





R S O GD EC NR

R 1 3 1
4

1
2

4 4

S 1
3

1 1
6

1
4

2 1
2

O 4 6 1 2 8 7

GD 2 4 1
2

1 6 6

EC 1
4

1
2

1
8

1
6

1 1
3

NR 1
4

2 1
7

1
6

3 1





.
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Table 4.9. The Interlevel Importance Questions for Six Objectives
                    Which one of the following pairs of 

objectives is more important in terms of 
improvement from the worst value to the 
best value? 

Given the more important objective, how many times is 
this objective more important than the other? 
(Note: “Equal” = 1) 

EC vs. EC  1 2 3 4 5 6 7 8 9 
L1 vs. L2     EC1     EC2     Equal          
L2 vs. L3     EC2     EC3     Equal          
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
L16 vs. L17     EC16     EC17     Equal          
S vs. S           
L1 vs. L2     S1     S2     Equal          
L2 vs. L3     S2     S3     Equal          
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
L16 vs. L17     S16     S17     Equal          
NR vs. NR           
L1 vs. L2     NR1     NR2     Equal          
L2 vs. L3     NR2     NR3     Equal          
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
L16 vs. L17     NR16     NR17     Equal          
O vs. O           
L1 vs. L2     O1     O2     Equal          
L2 vs. L3     O2     O3     Equal          
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
L16 vs. L17     O16     O17     Equal          
R vs. R           
L1 vs. L2    R1     R2     Equal          
L2 vs. L3     R2     R3     Equal          
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
L16 vs. L17     R16     R17     Equal          
GD vs. GD           
L1 vs. L2     GD1     GD2     Equal          
L2 vs. L3     GD2     GD3     Equal          
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
L16 vs. L17     GD16     GD17     Equal          
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The sixteen interstage diagonal transformation matrices are,

T1 =





1
7

0 0 0 0 0

0 1
3

0 0 0 0

0 0 1
5

0 0 0

0 0 0 1
3

0 0

0 0 0 0 1
8

0

0 0 0 0 0 4





, T2 =





1
5

0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 4 0 0

0 0 0 0 1
8

0

0 0 0 0 0 1
9





, T3 =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





,

T4 =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





, T5 =





1
5

0 0 0 0 0

0 1
6

0 0 0 0

0 0 1
7

0 0 0

0 0 0 1 0 0

0 0 0 0 1
8

0

0 0 0 0 0 4





, T6 =





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





,

T7 =





1
3

0 0 0 0 0

0 1
2

0 0 0 0

0 0 1
2

0 0 0

0 0 0 3 0 0

0 0 0 0 1
5

0

0 0 0 0 0 1
9





, T8 =





2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 2





, T9 =





1 0 0 0 0 0

0 1
2

0 0 0 0

0 0 1
2

0 0 0

0 0 0 1
9

0 0

0 0 0 0 1 0

0 0 0 0 0 1
9





,
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T10 =





6 0 0 0 0 0

0 5 0 0 0 0

0 0 6 0 0 0

0 0 0 9 0 0

0 0 0 0 8 0

0 0 0 0 0 9





, T11 =





4 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 5 0 0

0 0 0 0 9 0

0 0 0 0 0 1





, T12 =





3 0 0 0 0 0

0 3 0 0 0 0

0 0 4 0 0 0

0 0 0 2 0 0

0 0 0 0 5 0

0 0 0 0 0 1





,

T13 =





1
8

0 0 0 0 0

0 1
8

0 0 0 0

0 0 1
8

0 0 0

0 0 0 2 0 0

0 0 0 0 1
8

0

0 0 0 0 0 1
4





, T14 =





8 0 0 0 0 0

0 7 0 0 0 0

0 0 8 0 0 0

0 0 0 1
2

0 0

0 0 0 0 9 0

0 0 0 0 0 1





,

T15 =





1
9

0 0 0 0 0

0 1
9

0 0 0 0

0 0 1
9

0 0 0

0 0 0 5 0 0

0 0 0 0 1
9

0

0 0 0 0 0 1
9





, T16 =





6 0 0 0 0 0

0 4 0 0 0 0

0 0 5 0 0 0

0 0 0 2 0 0

0 0 0 0 9 0

0 0 0 0 0 9





.

The above matrices are used as inputs to our two new matrix generation methods, GM

and SGM, for computing pairwise comparison matrices at each stage of the MSMO

version of the WTS in the matrix generation phase.
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4.5.2 Matrix generation phase implementation

For both GM and SGM methods, the computed pairwise comparison matrix at

stage 2 is,

A(2,2) =





R S O GD EC NR

R 1.000000 1.912931 0.704730 1.052727 1.518294 4.820285

S 0.522758 1.000000 0.464159 0.629961 0.908560 1.817121

O 1.418983 2.154435 1.000000 1.493802 1.709976 5.192494

GD 0.949914 1.587401 0.669433 1.000000 1.310371 4.160168

EC 0.658634 1.100642 0.584804 0.763143 1.000000 2.201285

NR 0.207457 0.550321 0.192586 0.240375 0.454280 1.000000





,

The computed pairwise comparison matrices for WTS levels 3 through 17 using the

methods, geometric mean (GM) of non-ones and successive geometric mean (SGM) of

non-ones, for matrix generation can be seen in Appendix B.

4.5.3 Weighting Phase Implementation

Saaty’s eigenvector approach is used to compute weight vectors for both GM and

SGM method. These are principal eignevectors for the pairwise comparison matrices

obtained in the matrix generation phase. Tables 4.10 and 4.11 are the weight vectors

for the GM and SGM methods, respectively.

4.5.4 Computational results on the consistency of computed pairwise
matrices

In this section, results for consistency indices are presented. Lower values of consis-

tency indices indicate better consistencies of corresponding pairwise comparison matrices.

These results show that the weight vectors computed are extremely meaningful, and re-
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Table 4.10. Weight Vectors for GM Method

GM Method
W1 (0.154237, 0.058427, 0.421142, 0.256685, 0.036603, 0.072906)
W2 (0.218300, 0.117765, 0.273487, 0.195936, 0.139935, 0.054577)
W3 (0.244031, 0.106403, 0.214016, 0.119192, 0.203495, 0.112864)
W4 (0.244031, 0.106403, 0.214016, 0.119192, 0.203495, 0.112864)
W5 (0.244031, 0.106403, 0.214016, 0.119192, 0.203495, 0.112864)
W6 (0.231888, 0.137621, 0.225310, 0.101896, 0.219167, 0.084118)
W7 (0.231888, 0.137621, 0.225310, 0.101896, 0.219167, 0.084118)
W8 (0.221956, 0.142302, 0.204020, 0.089873, 0.225492, 0.116357)
W9 (0.211932, 0.147220, 0.196833, 0.104796, 0.214795, 0.124425)
W10 (0.193660, 0.147616, 0.188594, 0.128934, 0.196043, 0.145154)
W11 (0.191603, 0.154427, 0.187325, 0.131833, 0.189292, 0.145520)
W12 (0.186320, 0.161504, 0.186168, 0.132277, 0.174369, 0.159363)
W13 (0.183047, 0.161063, 0.179718, 0.138594, 0.167228, 0.170350)
W14 (0.186209, 0.166115, 0.183183, 0.124514, 0.171779, 0.168199)
W15 (0.176766, 0.160269, 0.174110, 0.146163, 0.163228, 0.179465)
W16 (0.180087, 0.164718, 0.177622, 0.127089, 0.167485, 0.182998)
W17 (0.178291, 0.167024, 0.177371, 0.135758, 0.164072, 0.177484)

Table 4.11. Weight Vectors for SGM Method

SGM Method
W1 (0.154237, 0.058427, 0.421142, 0.256685, 0.036603, 0.072906)
W2 (0.218300, 0.117765, 0.273487, 0.195936, 0.139935, 0.054577)
W3 (0.249305, 0.087228, 0.150558, 0.076308, 0.253163, 0.183438)
W4 (0.249305, 0.087228, 0.150558, 0.076308, 0.253163, 0.183438)
W5 (0.249305, 0.087228, 0.150558, 0.076308, 0.253163, 0.183438)
W6 (0.223666, 0.164886, 0.212225, 0.063104, 0.266724, 0.069395)
W7 (0.223666, 0.164886, 0.212225, 0.063104, 0.266724, 0.069395)
W8 (0.192707, 0.152082, 0.165406, 0.060352, 0.242291, 0.187161)
W9 (0.174404, 0.160278, 0.165265, 0.138625, 0.189626, 0.171803)
W10 (0.097431, 0.144250, 0.145907, 0.243649, 0.102808, 0.265956)
W11 (0.149496, 0.181108, 0.171078, 0.177404, 0.138297, 0.18261)
W12 (0.134220, 0.185263, 0.156601, 0.131842, 0.097592, 0.294482)
W13 (0.132221, 0.149261, 0.126301, 0.152176, 0.097900, 0.342142)
W14 (0.183986, 0.191534, 0.181199, 0.076517, 0.166317, 0.200446)
W15 (0.107444, 0.114419, 0.106874, 0.274970, 0.099282, 0.297011)
W16 (0.173007, 0.176721, 0.172702, 0.066514, 0.168428, 0.242628)
W17 (0.163754, 0.188783, 0.173912, 0.171678, 0.141776, 0.160098)



94

spresent a high level of consistency in the decision makers’ judgments derived in the input

phase.

Table 4.12. Consistency Indices (CI) for GM and SGM Methods

GM Method SGM Method
CI1 0.054527 0.054527
CI2 0.005730 0.005730
CI3 0.003273 0.012704
CI4 0.003273 0.012704
CI5 0.003273 0.012704
CI6 0.002739 0.010679
CI7 0.002739 0.010679
CI8 0.001420 0.001159
CI9 0.001117 0.000310
CI10 0.000546 0.002617
CI11 0.000380 0.000291
CI12 0.000247 0.001748
CI13 0.000196 0.001932
CI14 0.000148 0.000214
CI15 0.000140 0.004674
CI16 0.000109 0.000517
CI17 0.000091 0.000057

For GM method, consistency indices decrease as we go from one stage to the next.

This can be seen in Figure 4.3, the plot for the consistency index over various WTS

levels. It can be observed that the consistency indices obtained for the SGM method are

higher than the ones obtained using the GM method, which implies that the GM method

performs better in terms of consistency of judgments elicited from decision makers.

4.6 Solution to the Scalarized WTS

The MSMO version of WTS was scalarized using weighted-sum of objective func-

tions at each stage, which resulted in a stochastic dynamic programming (SDP) formu-
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Figure 4.3. Consistency indices of pairwise comparison matrices over WTS levels..

lation of wastewater treatment system. In this section, we present the SDP solution

results, which are obtained using an approach that modified the methods described in

Tsai [113] and Chen et al. [85] to deal with multiple objectives. In particular, the fol-

lowing modifications were made that helped scalarize the MSMO form of WTS (i.e. to

convert it into Multiple Stage, Single Objective (MSSO) problem):

• A routine was added to capture decision makers’ preferences, which get translated

into weights using the three-phase methodology.

• A routine was added to normalize/transform the objective functions with different

units to have similar units and orders of magnitude.

• State transition equations were added for new technology units- Yellow Water Sep-

aration and Yellow and Black Water Separation in level 1, and UASB System plus

Activated Sludge Process (C, P, N) in level 5.

• Constraints (both liquid and sludge state variable limits in each level) were modified

to reflect the addition of new technology units.
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• Penalty coefficients and costsmooth parameters were modified due to addition of

new technologies.

For demonstration purposes, we have considered a small design with 2209 design points

and a big design with 12167 design points. These experimental designs are elucidated in

Tsai’s dissertation [113].

We next explain how these design points will be used to evaluate technology pro-

cesses/units in WTS. We solve for the future value functions backward. Starting in the

last level, for each discretization/design point we solve the optimization problem that

minimizes the weighted-sum of objective functions in the last level. Then, we approxi-

mate the solution to this minimization problem through a future value function, for all

the discretization points, obtained by fitting a statistical model to the data obtained in

the previous step. This results in the selection of optimal technologies for each of the

design points in the last level. Moving to the next level (last but one), for each discretiza-

tion point we solve the optimization problem that minimizes the (the weighted-sum of

objective functions in the current level + the future value function obtained from the last

level). Then, we approximate the solution to optimization problem through a future

value function, for all the discretization points in the current level, obtained by fitting a

statistical model to the data obtained in the previous step. This results in the selection

of optimal technologies for each of the design points in the current level. The process is

repeated until the future value function for the level 1 is obtained.

4.6.1 Solution for the small design

Tables 4.13 and 4.14 present the resulting counts for a solution with the GM

and the SGM methods respectively, using an OA-LHD with N=2209 generated from a

47-level strength two orthogonal array. For the MARS modeling to estimate the future

value functions, the maximum number of basis funtions and number of eligible knots
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considered are 200 and 35, respectively. The dependencies between technology units are

evident in Tables 4.13 and 4.14. For instance, the technology unit Sludge Thickening

Tank gets picked most of the time in level 12 and Aerobic-Anaerobic Digestion quite a

significant number of times in level 13, thereby enabling the selection of Filter and Belt

in level 14.

Yellow Water Separation, the new technology in level 1, is a clear winner for both

GM and SGM. Vortex SSO and Chemical Precipitation look promising in level 2. Ozona-

tion and Physical Irradiation are picked up in level 3. In level 5, A-B System is only

selected using the GM method while Activated Sludge (C, P, N) is selected only with

the SGM method. The use of a technology is necessary for levels 6 and 7. Both Physical

Irradiation and Ozonation appear to be promising in level 8. Air Stripping gets selected

more often in level 9. None of the technology units in level 10 appears to be a good candi-

date. GAC Adsorption is a clear winner in level 11. In the solid line, Sludge Thickening

Tank in level 12 appears to be highly promising. Sludge Dewatering Bed and Aerobic-

Anaerobic Digestion are effective in level 13. In level 14, Filter and Belt is favored in

counts. However, Permanent Thermal Process and Thermo-Chemical Liquefaction look

promising as well. Sludge Dewatering Bed and Physical Irradiation work well in levels

15 and 16 respectively. In level 17, Chemical Fixation appears to win by count with GM

while settling for a second place with SGM.
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Table 4.13. Selected Technologies using GM Method with 2209 Design Points
Level Technology Unit Count 

1 Flow Equalization Tank 
Yellow Water Separation 
Yellow & Black Water 
Separation 

0 
2209 

0 

2 Empty Unit 
Vortex SSO 
Sedimentation Tank 
Chemical Precipitation 

0 
1471 

0 
738 

3 Empty Unit 
Physical Irradiation 
Ozonation 

0 
8 

2201 
4 Empty Unit 2209 
5 Empty Unit 

Activated Sludge (C) 
Activated Sludge (C, N) 
Activated Sludge (C, P) 
Activated Sludge (C, P, N) 
High Biomass Act. Sludge 
(C, N) 
Activated Sludge (N) 
Multi-reactor/Deep 
A-B System 
Trickling Filter 
Rotating Biological 
Contractors 
UASB System 
Reed Bed System 
Lagoons and Ponds 
UASB+Activated Sludge (C, 
P, N)  

1 
0 

10 
0 
0 
0 
 

11 
0 
1 

65 
0 
 

0 
0 
0 

2121 

6 Empty Unit 
Secondary Settler 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

0 
26 
50 
13 

2120 
7 Empty Unit 

Physical Filtration 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

0 
220 
178 

1677 
134 

8 Empty Unit 
Physical Irradiation 
Ozonation 

2 
1356 
851 

9 Empty Unit 
Air Stripping 
Ammonia Stripping 

436 
1739 

34 

Level Technology Unit Count 
10 Empty Unit 

Chlorine Disinfection 
Chlorating Disinfection 

2205 
4 
0 

11 Empty Unit 
GAC Adsorption 
Infiltration Basin 

0 
2209 

0 
12 Empty Unit 

Sludge Storage Tank 
Sludge Thickening Tank 

0 
6 

2203 
13 Empty Unit 

Sludge Dewatering Bed 
Sludge C-G Drying 
Sludge V + A Stripping 
CWOP-UASB + A 
Stripping 
Sludge Hydrolysis + UASB 
Anaerobic Digestion 
Aerobic Digestion 
Aerobic-Anaerobic 
Digestion 

0 
1461 

0 
0 
0 
 

0 
0 
0 

748 

14 Empty Unit 
Filter and Belt 
Permanent Thermal Process 
Thermo-Chemical 
Liquefaction 

688 
981 
332 
208 

15 Empty Unit 
Sludge Dewatering Bed (II) 

712 
1497 

16 Empty Unit  
Physical Irradiation 

28 
2181 

17 Empty Unit 
Chemical Fixation 
Incineration 
Thermal Building Materials 

980 
1002 

33 
194 
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Table 4.14. Selected Technologies using SGM Method with 2209 Design Points
Level Technology Unit Count 

1 
[0.999] 

Flow Equalization Tank 
Yellow Water Separation 
Yellow & Black Water 
Separation 

0 
12167 

0 

2 
[0.999] 

Empty Unit 
Vortex SSO 
Sedimentation Tank 
Chemical Precipitation 

0 
12167 

0 
0 

3 
[0.431] 

Empty Unit 
Physical Irradiation 
Ozonation 

0 
0 

12167 
4 Empty Unit 12167 
5 

[0.989] 
Empty Unit 
Activated Sludge (C) 
Activated Sludge (C, N) 
Activated Sludge (C, P) 
Activated Sludge (C, P, N) 
High Biomass Act. Sludge 
(C, N) 
Activated Sludge (N) 
Multi-reactor/Deep 
A-B System 
Trickling Filter 
Rotating Biological 
Contractors 
UASB System 
Reed Bed System 
Lagoons and Ponds 
UASB+Activated Sludge 
(C, P, N)  

0 
0 
0 
0 
0 
0 
 

0 
0 
0 

55 
0 
 

0 
0 
0 

12112 

6 
[0.84] 

Empty Unit 
Secondary Settler 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

2 
3504 
7617 

10 
1034 

7 
[0.971] 

 

Empty Unit 
Physical Filtration 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

1 
25 

4469 
6980 
692 

8 
[0.935] 

Empty Unit 
Physical Irradiation 
Ozonation 

283 
522 

11362 
9 

[0.77] 
Empty Unit 
Air Stripping 
Ammonia Stripping 

4121 
8041 

5 

Level Technology Unit Count 
10 

[0.832] 
Empty Unit 
Chlorine Disinfection 
Chlorating Disinfection 

12162 
5 
0 

11 
[0.999] 

Empty Unit 
GAC Adsorption 
Infiltration Basin 

0 
12167 

0 
12 

[0.999] 
Empty Unit 
Sludge Storage Tank 
Sludge Thickening Tank 

0 
18 

12149 
13 

[0.996] 
Empty Unit 
Sludge Dewatering Bed 
Sludge C-G Drying 
Sludge V + A Stripping 
CWOP-UASB + A 
Stripping 
Sludge Hydrolysis + 
UASB 
Anaerobic Digestion 
Aerobic Digestion 
Aerobic-Anaerobic 
Digestion 

0 
7809 

0 
0 
0 
 

0 
 

0 
0 

4358 

14 
[0.972] 

Empty Unit 
Filter and Belt 
Permanent Thermal 
Process 
Thermo-Chemical 
Liquefaction 

3922 
5396 
1730 

 
1119 

15 
[0.99] 

Empty Unit 
Sludge Dewatering Bed 
(II) 

3993 
8174 

16 
[0.91] 

Empty Unit  
Physical Irradiation 

148 
12019 

17 
[0.985] 

Empty Unit 
Chemical Fixation 
Incineration 
Thermal Building 
Materials 

5648 
5127 
219 

1173 
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4.6.2 Solution for the big design

In order to validate the results using the small design, a solution was obtained using

an OA-LHD with 12167 design points generated from a 23-level strength three orthogonal

array. The results, which should be more precise than the small design, can be seen in

Tables 4.15 and 4.16. The coefficients of multiple determination (R2) are shown inside

the square brackets. The dependencies between technology units can be easily seen.

In level 1, Yellow Water Separation is a clear winner for both GM and SGM. In level

2, Vortex SSO is a winner by count with GM, and is a clear winner with SGM. Ozonation

is a clear winner in level 3. For GM, both Multi-reactor/Deep and UASB+Activated

Sludge (C, P, N) appear to be promising in level 5. However, for SGM UASB+Activated

Sludge (C, P, N) looks to be a heavy favorite. Microfiltration and Secondary settler

appear to have potential in level 6, while Reverse Osmosis and Microfiltration are shown

to be effective in level 7. Ozonation is dominant in level 8. Air stripping outshines other

units in level 9. Results for levels 10 and 11 are identical to the small design. Results for

the solid line look similar to the results using the small design.
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Table 4.15. Selected Technologies using GM Method with 12167 Design Points, where
the Fractions in Square Brackets denote the R2 Values

Level Technology Unit Count 
1 

[0.91] 
Flow Equalization Tank 
Yellow Water Separation 
Yellow & Black Water 
Separation 

0 
12167 

0 

2 
[0.984] 

Empty Unit 
Vortex SSO 
Sedimentation Tank 
Chemical Precipitation 

96 
12007 

3 
61 

3 
[0.975] 

Empty Unit 
Physical Irradiation 
Ozonation 

0 
0 

12167 
4 Empty Unit 12167 
5 

[0.983] 
Empty Unit 
Activated Sludge (C) 
Activated Sludge (C, N) 
Activated Sludge (C, P) 
Activated Sludge (C, P, N) 
High Biomass Act. Sludge 
(C, N) 
Activated Sludge (N) 
Multi-reactor/Deep 
A-B System 
Trickling Filter 
Rotating Biological 
Contractors 
UASB System 
Reed Bed System 
Lagoons and Ponds 
UASB+Activated Sludge 
(C, P, N)  

0 
0 
0 
0 
0 
0 
 

0 
6016 

0 
20 
0 
 

113 
0 
0 

6018 

6 
[0.94] 

Empty Unit 
Secondary Settler 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

6 
3216 
7547 

88 
1310 

7 
[0.974] 

Empty Unit 
Physical Filtration 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

1 
45 

4678 
6647 
796 

8 
[0.94] 

Empty Unit 
Physical Irradiation 
Ozonation 

286 
516 

11365 
9 

[0.77] 
Empty Unit 
Air Stripping 
Ammonia Stripping 

4125 
8037 

5 

Level Technology Unit Count 
10 

[0.832] 
Empty Unit 
Chlorine Disinfection 
Chlorating Disinfection 

12162 
5 
0 

11 
[0.999] 

Empty Unit 
GAC Adsorption 
Infiltration Basin 

0 
12167 

0 
12 

[0.999] 
Empty Unit 
Sludge Storage Tank 
Sludge Thickening Tank 

0 
44 

12123 
13 

[0.996] 
Empty Unit 
Sludge Dewatering Bed 
Sludge C-G Drying 
Sludge V + A Stripping 
CWOP-UASB + A 
Stripping 
Sludge Hydrolysis + 
UASB 
Anaerobic Digestion 
Aerobic Digestion 
Aerobic-Anaerobic 
Digestion 

0 
8094 

0 
0 
0 
 

0 
 

0 
0 

4073 

14 
[0.972] 

Empty Unit 
Filter and Belt 
Permanent Thermal 
Process 
Thermo-Chemical 
Liquefaction 

3903 
5379 
1780 

 
1105 

15 
[0.995] 

Empty Unit 
Sludge Dewatering Bed 
(II) 

3900 
8267 

16 
[0.921] 

Empty Unit  
Physical Irradiation 

152 
12015 

17 
[0.988] 

Empty Unit 
Chemical Fixation 
Incineration 
Thermal Building 
Materials 

5415 
5493 
212 

1047 
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Table 4.16. Selected Technologies using SGM Method with 12167 Design Points, where
the Fractions in Square Brackets denote the R2 Values

Level Technology Unit Count 
1 

[0.999] 
Flow Equalization Tank 
Yellow Water Separation 
Yellow & Black Water 
Separation 

0 
12167 

0 

2 
[0.999] 

Empty Unit 
Vortex SSO 
Sedimentation Tank 
Chemical Precipitation 

0 
12167 

0 
0 

3 
[0.431] 

Empty Unit 
Physical Irradiation 
Ozonation 

0 
0 

12167 
4 Empty Unit 12167 
5 

[0.989] 
Empty Unit 
Activated Sludge (C) 
Activated Sludge (C, N) 
Activated Sludge (C, P) 
Activated Sludge (C, P, N) 
High Biomass Act. Sludge 
(C, N) 
Activated Sludge (N) 
Multi-reactor/Deep 
A-B System 
Trickling Filter 
Rotating Biological 
Contractors 
UASB System 
Reed Bed System 
Lagoons and Ponds 
UASB+Activated Sludge 
(C, P, N)  

0 
0 
0 
0 
0 
0 
 

0 
0 
0 

55 
0 
 

0 
0 
0 

12112 

6 
[0.84] 

Empty Unit 
Secondary Settler 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

2 
3504 
7617 

10 
1034 

7 
[0.971] 

 

Empty Unit 
Physical Filtration 
Microfiltration 
Reverse Osmosis 
Chemical Precipitation 

1 
25 

4469 
6980 
692 

8 
[0.935] 

Empty Unit 
Physical Irradiation 
Ozonation 

283 
522 

11362 
9 

[0.77] 
Empty Unit 
Air Stripping 
Ammonia Stripping 

4121 
8041 

5 

Level Technology Unit Count 
10 

[0.832] 
Empty Unit 
Chlorine Disinfection 
Chlorating Disinfection 

12162 
5 
0 

11 
[0.999] 

Empty Unit 
GAC Adsorption 
Infiltration Basin 

0 
12167 

0 
12 

[0.999] 
Empty Unit 
Sludge Storage Tank 
Sludge Thickening Tank 

0 
18 

12149 
13 

[0.996] 
Empty Unit 
Sludge Dewatering Bed 
Sludge C-G Drying 
Sludge V + A Stripping 
CWOP-UASB + A 
Stripping 
Sludge Hydrolysis + 
UASB 
Anaerobic Digestion 
Aerobic Digestion 
Aerobic-Anaerobic 
Digestion 

0 
7809 

0 
0 
0 
 

0 
 

0 
0 

4358 

14 
[0.972] 

Empty Unit 
Filter and Belt 
Permanent Thermal 
Process 
Thermo-Chemical 
Liquefaction 

3922 
5396 
1730 

 
1119 

15 
[0.99] 

Empty Unit 
Sludge Dewatering Bed 
(II) 

3993 
8174 

16 
[0.91] 

Empty Unit  
Physical Irradiation 

148 
12019 

17 
[0.985] 

Empty Unit 
Chemical Fixation 
Incineration 
Thermal Building 
Materials 

5648 
5127 
219 

1173 
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4.6.3 Discussion on the solution

In this section, a detailed account on the comparison of results for the big design

with the small design will be given. First, a study of the results using GM method will

be presented. Then, the SGM method results will be elaborated.

In the GM method results, Yellow Water Separation wins clearly for both the

designs in level 1. It is interesting to see the newly-added Yellow Water Separation unit

get selected in level 1. In level 2, the small design selects Vortex SSO and Chemical

Precipitation while the big design also selects Sedimentation Tank and Empty Unit.

Nonetheless, there is a consistency in the selection of Vortex SSO as a heavy favorite in

level 2. In level 3, Ozonation wins the selection on count for both the designs. Levels 5,

6, 7, and 8 have the following interesting observations:

• In level 5, Multi-reactor/Deep emerges as another legitimate option for the big

design in addition to UASB + Activated Sludge (C, P, N). It is encouraging to see

UASB + Activated Sludge (C, P, N), the newly-added unit in level 5, as the most

promising technology.

• In level 5, UASB System gets selected for the big design as opposed to the small

design.

• In level 5, The set of technological units selected for the big design is smaller in

comparison with the small design.

• Results for levels 6 and 7 confirm a necessity for the use of technological units.

• Level 6 for the big design selects Microfiltration as the winner followed by Secondary

Settler, Chemical Precipitation, and Reverse Osmosis. On the other hand, level 6

for the small design declares Chemical Precipitation as a clear winner on count

while selecting other technology units occasionally.

• In level 7, both big and small design concur on Reverse Osmosis as the major

selection. However, the big design has a better balance in terms of how often
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other technology units get selected. Microfiltration and Chemical Precipitation are

selected frequently for the big design, while Physical Filtration, Microfiltration, and

Chemical Precipitation are the choices for the small design.

• In level 8, the big design selects Ozonation as the winner on count followed by

Physical Irradiation, which swaps the results for small design interestingly.

Level 9 selects Air Stripping far more often for both the designs. It is apparent that level

10 does not require the use of a technology unit. In level 11, GAC Adsorption is the clear

winner. In the solid line, the results are more or less consistent for both the designs.

In the SGM method results, Yellow Water Separation wins clearly for both small

and big designs in level 1. The big design clearly declares Vortex SSO and Ozonation as

winners in levels 2 and 3 respectively. The small design, however, also selects Chemical

Precipitation in level 2 and Physical Irradiation (rather infrequently) in level 3. For

both the designs, level 5 selects UASB + Activated Sludge (C, P, N) to be the winner.

Interestingly, the small design selects Activated Sludge (C, N), Activated Sludge (C, P,

N), and Activated Sludge (N) in level 5, which do not get picked up at all for the big

design. Trends similar to the GM method can be seen in levels 6 through 17.

In summary, both the methods show the new technologies in levels 1 and 5 to

be promising. This justifies the decision to include these technologies in the evaluation

process. Also, the solution obtained satisfies the dependencies between technology units.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Contributions

The contributions made in this dissertation can be summarized as follows. First,

we address the disconnect between the decision makers and the solution development

process through a questionnaire-based approach, which is unique in its application to

multiple-stage decision making problems. Second, we extend Analytic Hierarchy Pro-

cess (AHP) to a multiple-stage decision-making framework using our novel three-phase

methodology. Third, we develop theories and methodologies for computing pairwise

comparison matrices, which have traditionally been constructed using direct inputs from

decision makers. This reduces the amount of information required from the decision

makers, thereby increasing the efficiency of the solution process. More importantly, the

new methods in the matrix generation phase, GM and SGM, result in consistent pair-

wise comparison matrices. Fourth, we augment the high-dimensional continuous-state

stochastic dynamic programming (SDP) approach in Tsai [113] to handle multiple ob-

jectives. This was done through two new routines as follows. One, the routine that

allows inputs from decision makers in form of weight vectors at each stage. Two, the

routine that normalizes/transforms the objective functions with different units and or-

ders of magnitude, which is crucial to a practical application of weighted-sum of objective

functions approach. Finally, we solve a 20-dimensional, 17-stage, 6-objective, continuous-

state wastewater treatment system (WTS), which is larger than any numerically solved

problem in the literature.
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5.2 Concluding Remarks

We use our three-phase methodology with the augmented high dimensional, con-

tinuous state SDP to solve a multiple stage, multiple objective (MSMO) model. This

technique is quite general in its application to a variety of large-scale MSMO practical

problems. Also, the technique is pragmatic in the sense of involving decision makers

in the solution development process. We have demonstrated the solution technique on

a 20-dimensional, 17-stage, 6-objective, continuous-state wastewater treatment system

(WTS). The solution obtained satisfies all the constraints and complications such as

dependencies between technologies, etc. The final solution to WTS selects the new tech-

nologies, Yellow Water Separation and UASB System plus Activated Sludge Process (C,

P, N), in levels 1 and 5, respectively. This result justifies the decision to include these

new technologies in the evaluation process. However, our three-phase methodology might

benefit from the following refinements:

• Exploring the involvement of multiple decision makers in order to achieve a desired

level of objectivity in the Input phase,

• Developing a theoretical basis for the consistency behavior of computed pairwise

comparison matrices at a stage using the GM and SGM methods in the Matrix

Generation Phase,

• Exploring alternate weight determination methods in the Weighting Phase in a

quest to get a better weight estimate.

These and other extensions are discussed next.

5.3 Future Work

The results using the consistency index in Chapter 4 indicate that the consistency

indices decrease along the stages (or levels), implying that the judgments seem to improve
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as we move from one stage to the next for GM method. However, the consistency results

are not as conclusive for SGM method. A theoretical method for comparing the results

should be developed. The idea is to construct a mathematical proof to show that the

consistency indices for the computed pairwise comparison matrices using the GM and

the SGM methods, in general, go down while moving from one stage to the next. It is

based on the AHP-based fact that a lower value of consistency index indicates a more

consistent judgment from the decision maker.

In addition, we will investigate the use of alternate methods for weight determi-

nation in the weighting phase of the three-phase methodology. It is possible that these

methods could provide weight estimates better than the Saaty’s eigenvector method.

Some of the promising weight-determination methods that could be explored are: the

alternative eigenvector method by Cogger and Yu [29], the graded eigenvector method

(GEM) of Takeda et al. [38], the three methods for weight derivation based on pairwise

comparison matrices of Krovak [63], and the weight determination based on the decision

makers’ qualitative information by Batishchev et al. [33].

Group decision making is fast becoming the reality of today’s organizational deci-

sion making. The input phase in our three-phase methodology depends on the responses

from single expert thereby making it subjective. If the questionnaire could account for

responses from multiple decision makers, the input phase could be improved in terms of

consistency, accuracy, and representation of experts’ preferences. In other words, the goal

would be to collect inputs from multiple decision makers at a time in order to achieve

some level of objectivity in the judgment.

Currently, our three-phase methodology is based on inputs from one decision maker

thereby making it more or less deterministic. Though AHP has its value in terms of main-

taining and ensuring consistency in decision makers’ judgments/preferences, nonetheless

it could do much better if the pairwise comparison matrices were stochastic reflecting
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uncertainties or subjectivities in human judgments. In addition to asking the decision

makers a priori about their preferences, we could also investigate the possibility of pre-

senting them with multiple Pareto optimal solutions for multiple sets of stagewise weight

vectors. In solving the weighted-sum version of the stochastic dynamic programming, we

could also investigate various designs of experiments for the discretization of state space

and other statistical modeling approaches for the future value approximation.



APPENDIX A

QUESTIONNAIRE MODELING-RELATED DATA
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In this appendix, we present:

• the table for the worst and best values for all six objectives at all 17 levels,

• the table with interlevel importance questions for the objective Economic Cost,

• the table with interlevel importance questions for the objective Size,

• the table with interlevel importance questions for the objective Nutrient Recovery,

• the table with interlevel importance questions for the objective Odor Emissions,

• the table with interlevel importance questions for the objective Robustness, and

• the table with interlevel importance questions for the objective Global Desirability.
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Table A.1. The worst and the best objective values for all six objectives at all 17 levels
The worst value of  The best value of The worst value of  The best value of 

Economic Cost (in US Dollars) Nutrient Recovery (on 1-5 ordinal scale) 
EC1= 43200550  EC1= 9643.3121  NR1= 1  NR1= 4  
EC2= 14500 EC2= 2500 NR2= 1 NR2= 5  
EC3= 9300 EC3= 6600 NR3= 1 NR3= 1 
EC5= 865500 EC5= 4650 NR5= 1 NR5= 4  
EC6= 38500 EC6= 5218.75 NR6= 1 NR6= 5 
EC7= 38500 EC7= 5040.8163 NR7= 1 NR7= 5 
EC8= 9300 EC8= 6600 NR8= 1 NR8= 1  
EC9= 10500 EC9= 6400 NR9= 1 NR9= 5 
EC10= 8400 EC10= 5500 NR10= 1 NR10= 1 
EC11= 758500 EC11= 8250 NR11= 2 NR11= 4 
EC12= 109203182 EC12= 11.1495 NR12= 1 NR12= 5 
EC13= 251458510 EC13= 16.7 NR13= 2 NR13= 4 
EC14= 257187.84 EC14= 4.9 NR14= 1 NR14= 4 
EC15= 239125010 EC15= 2578.3421 NR15= 3 NR15= 3  
EC16= 32148.48 EC16= 7 NR16= 1 NR16= 1 
EC17= 1821134.8 EC17= 4 NR17= 1 NR17= 5  

Size (in m2) Odor Emissions (in mg/min) 
S1= 96000 S1= 1274  O1= 384000 O1= 3821.6561  
S2= 1000 S2= 100 O2= 3500 O2= 250 
S3= 600 S3= 75 O3= 2880 O3= 330 
S5= 4000000 S5= 3.3333 O5= 16200000 O5= 5 
S6= 1667 S6= 41.67 O6= 7500 O6= 145.83333 
S7= 1667 S7= 40.82 O7= 7500 O7= 122.44898 
S8= 600 S8= 75 O8= 2880 O8= 330 
S9= 2000 S9= 200 O9= 9600 O9= 900 
S10= 800 S10= 200 O10= 2400 O10= 500 
S11= 500000 S11= 20.83 O11= 2500000 O11= 93.75 
S12= 6000000 S12= 0.716 O12= 18719233 O12= 1.7894737 
S13= 500000000 S13= 0.005 O13= 1.63E+09 O13= 0.02 
S14= 18371 S14= 0.05 O14= 81646.933 O14= 0.1 
S15= 400000000 S15= 10737 O15= 1.55E+09 O15= 16105.263 
S16= 3062 S16= 0.25 O16= 14696.448 O16= 1.1 
S17= 500000 S17= 0 O17= 1543127 O17= 0 

Robustness (no units) Global Desirability (on 1-6 ordinal scale) 
R1= 3821656.051 R1= 15286624.2 GD1= 2.5 GD1= 6  
R2= 2000 R2= 9000 GD2= 2.5 GD2= 4 
R3= 675 R3= 1500 GD3= 4 GD3= 4.8 
R5= 540 R5= 2160000 GD5= 1 GD5= 4.7 
R6= 93.75 R6= 15000 GD6= 2.8 GD6= 4 
R7= 35.71428571 R7= 15000 GD7= 2.8 GD7= 4 
R8= 675 R8= 1500 GD8= 4 GD8= 4.8 
R9= 1200 R9= 4000 GD9= 4.3 GD9= 4.8 
R10= 1600 R10= 3680 GD10= 1.3 GD10= 2 
R11= 875 R11= 1750000 GD11= 4.5 GD11= 5 
R12= 5.726315789 R12= 140394249.2 GD12= 2 GD12= 3 
R13= 6 R13= 628630966.6 GD13= 1.5 GD13= 4.5 
R14= 0.7 R14= 110223.36 GD14= 1.5 GD14= 5 
R15= 8589.473684 R15= 597797215.5 GD15= 1.5 GD15= 3 
R16= 1.125 R16= 7348.224 GD16= 4 GD16= 4.5 
R17= 0 R17= 2571878.4 GD17= 3.5 GD17= 5.5 
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Table A.2. The interlevel importance questions for the objective Economic Cost

   
 
 

Which one of the following pairs of 
objectives is more important in terms of 
improvement from the worst value to 
the best value? 

Given the more important objective, how 
many times is this objective more important 
than the other? 
(Note: “Equally important” = 1) 

EC vs. EC  1 2 3 4 5 6 7 8 9 
Level 1-Level 2     EC1     EC2     Equally important          

Level 2-Level 3     EC2     EC3     Equally important          

Level 5-Level 6     EC5     EC6     Equally important          

Level 6-Level 7     EC6     EC7     Equally important          

Level 7-Level 8     EC7     EC8     Equally important          

Level 8-Level 9     EC8     EC9     Equally important          

Level 9-Level 10     EC9     EC10     Equally important          

Level 10-Level 11     EC10     EC11     Equally important          

Level 11-Level 12     EC11     EC12     Equally important          

Level 12-Level 13     EC12     EC13     Equally important          

Level 13-Level 14     EC13     EC14     Equally important          

Level 14-Level 15     EC14     EC15     Equally important          

Level 15-Level 16     EC15     EC16     Equally important          

Level 16-Level 17     EC16     EC17     Equally important          
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Table A.3. The interlevel importance questions for the objective Size

                   Which one of the following pairs of 
objectives is more important in 
terms of improvement from the 
worst value to the best value? 

Given the more important objective, how 
many times is this objective more important 
than the other? 
(Note: “Equally important” = 1) 

S vs. S  1 2 3 4 5 6 7 8 9 
Level 1-Level 2     S1     S2     Equally important          

Level 2-Level 3     S2     S3     Equally important          

Level 5-Level 6     S5     S6     Equally important          

Level 6-Level 7     S6     S7     Equally important          

Level 7-Level 8     S7     S8     Equally important          

Level 8-Level 9     S8     S9     Equally important          

Level 9-Level 10     S9     S10     Equally important          

Level 10-Level 11     S10     S11     Equally important          

Level 11-Level 12     S11     S12     Equally important          

Level 12-Level 13     S12     S13     Equally important          

Level 13-Level 14     S13     S14     Equally important          

Level 14-Level 15     S14     S15     Equally important          

Level 15-Level 16     S15     S16     Equally important          

Level 16-Level 17     S16     S17     Equally important          
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Table A.4. The interlevel importance questions for the objective Nutrient Recovery

                    Which one of the following pairs of 
objectives is more important in terms of 
improvement from the worst value to 
the best value? 

Given the more important objective, how 
many times is this objective more important 
than the other? 
(Note: “Equally important” = 1) 

NR vs. NR  1 2 3 4 5 6 7 8 9 
Level 1-Level 2     NR1     NR2     Equally important          

Level 2-Level 3     NR2     NR3     Equally important          

Level 5-Level 6     NR5     NR6     Equally important          

Level 6-Level 7     NR6     NR7     Equally important          

Level 7-Level 8     NR7     NR8     Equally important          

Level 8-Level 9     NR8     NR9     Equally important          

Level 9-Level 10     NR9     NR10     Equally important          

Level 10-Level 11     NR10     NR11     Equally important          

Level 11-Level 12     NR11     NR12     Equally important          

Level 12-Level 13     NR12     NR13     Equally important          

Level 13-Level 14     NR13     NR14     Equally important          

Level 14-Level 15     NR14     NR15     Equally important          

Level 15-Level 16     NR15     NR16     Equally important          

Level 16-Level 17     NR16     NR17     Equally important          
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Table A.5. The interlevel importance questions for the objective Odor Emissions

                    Which one of the following pairs of 
objectives is more important in terms 
of improvement from the worst value 
to the best value? 

Given the more important objective, how 
many times is this objective more important 
than the other? 
(Note: “Equally important” = 1) 

O vs. O  1 2 3 4 5 6 7 8 9 
Level 1-Level 2     O1     O2     Equally important          

Level 2-Level 3     O2     O3     Equally important          

Level 5-Level 6     O5     O6     Equally important          

Level 6-Level 7     O6     O7     Equally important          

Level 7-Level 8     O7     O8     Equally important          

Level 8-Level 9     O8     O9     Equally important          

Level 9-Level 10     O9     O10     Equally important          

Level 10-Level 11     O10     O11     Equally important          

Level 11-Level 12     O11     O12     Equally important          

Level 12-Level 13     O12     O13     Equally important          

Level 13-Level 14     O13     O14     Equally important          

Level 14-Level 15     O14     O15     Equally important          

Level 15-Level 16     O15     O16     Equally important          

Level 16-Level 17     O16     O17     Equally important          
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Table A.6. The interlevel importance questions for the objective Robustness

                    Which one of the following pairs of 
objectives is more important in terms 
of improvement from the worst value 
to the best value? 

Given the more important objective, how 
many times is this objective more important 
than the other? 
(Note: “Equally important” = 1) 

R vs. R  1 2 3 4 5 6 7 8 9 
Level 1-Level 2    R1     R2     Equally important          

Level 2-Level 3     R2     R3     Equally important          

Level 5-Level 6     R5     R6     Equally important          

Level 6-Level 7     R6     R7     Equally important          

Level 7-Level 8     R7     R8     Equally important          

Level 8-Level 9     R8     R9     Equally important          

Level 9-Level 10     R9     R10     Equally important          

Level 10-Level 11     R10     R11     Equally important          

Level 11-Level 12     R11     R12     Equally important          

Level 12-Level 13     R12     R13     Equally important          

Level 13-Level 14     R13     R14     Equally important          

Level 14-Level 15     R14     R15     Equally important          

Level 15-Level 16     R15     R16     Equally important          

Level 16-Level 17     R16     R17     Equally important          

 



117

Table A.7. The interlevel importance questions for the objective Global Desirability

                    Which one of the following pairs of 
objectives is more important in terms of 
improvement from the worst value to 
the best value? 

Given the more important objective, how 
many times is this objective more important 
than the other? 
(Note: “Equally important” = 1) 

GD vs. GD  1 2 3 4 5 6 7 8 9 
Level 1-Level 2     GD1     GD2     Equally important          

Level 2-Level 3     GD2     GD3     Equally important          

Level 5-Level 6     GD5     GD6     Equally important          

Level 6-Level 7     GD6     GD7     Equally important          

Level 7-Level 8     GD7     GD8     Equally important          

Level 8-Level 9     GD8     GD9     Equally important          

Level 9-Level 10     GD9     GD10     Equally important          

Level 10-Level 11     GD10     GD11     Equally important          

Level 11-Level 12     GD11     GD12     Equally important          

Level 12-Level 13     GD12     GD13     Equally important          

Level 13-Level 14     GD13     GD14     Equally important          

Level 14-Level 15     GD14     GD15     Equally important          

Level 15-Level 16     GD15     GD16     Equally important          

Level 16-Level 17     GD16     GD17     Equally important          

 



APPENDIX B

COMPUTED PAIRWISE COMPARISON MATRICES IN THE MATRIX
GENERATION PHASE
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In this appendix, we present the computed pairwise comparison matrices using

Geometric Mean (GM) of non-ones and Successive Geometric Mean (SGM) of non-ones.

B.0.0.1 Computed pairwise comparison matrices using GM method

A(3,3) =





R S O GD EC NR

R 1.000000 2.432299 1.150163 1.877567 1.169471 2.284489

S 0.411134 1.000000 0.464159 1.000000 0.553341 0.903602

O 0.869442 2.154435 1.000000 1.910886 0.889140 1.985964

GD 0.532604 1.000000 0.523318 1.000000 0.588040 1.148698

EC 0.855087 1.807204 1.124683 1.700566 1.000000 1.568105

NR 0.437735 1.106682 0.503534 0.870551 0.637712 1.000000





,

A(4,4) =





R S O GD EC NR

R 1.000000 2.432299 1.150163 1.877567 1.169471 2.284489

S 0.411134 1.000000 0.464159 1.000000 0.553341 0.903602

O 0.869442 2.154435 1.000000 1.910886 0.889140 1.985964

GD 0.532604 1.000000 0.523318 1.000000 0.588040 1.148698

EC 0.855087 1.807204 1.124683 1.700566 1.000000 1.568105

NR 0.437735 1.106682 0.503534 0.870551 0.637712 1.000000





,
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A(5,5) =





R S O GD EC NR

R 1.000000 2.432299 1.150163 1.877567 1.169471 2.284489

S 0.411134 1.000000 0.464159 1.000000 0.553341 0.903602

O 0.869442 2.154435 1.000000 1.910886 0.889140 1.985964

GD 0.532604 1.000000 0.523318 1.000000 0.588040 1.148698

EC 0.855087 1.807204 1.124683 1.700566 1.000000 1.568105

NR 0.437735 1.106682 0.503534 0.870551 0.637712 1.000000





,

A(6,6) =





R S O GD EC NR

R 1.000000 1.754477 1.037891 2.210503 1.045693 2.767830

S 0.569970 1.000000 0.611802 1.430969 0.642449 1.587401

O 0.963492 1.634517 1.000000 2.477464 0.904304 2.753218

GD 0.452386 0.698827 0.403639 1.000000 0.454280 1.414214

EC 0.956304 1.556543 1.105822 2.201285 1.000000 2.262430

NR 0.361294 0.629961 0.363211 0.707107 0.442003 1.000000





,

A(7,7) =





R S O GD EC NR

R 1.000000 1.754477 1.037891 2.210503 1.045693 2.767830

S 0.569970 1.000000 0.611802 1.430969 0.642449 1.587401

O 0.963492 1.634517 1.000000 2.477464 0.904304 2.753218

GD 0.452386 0.698827 0.403639 1.000000 0.454280 1.414214

EC 0.956304 1.556543 1.105822 2.201285 1.000000 2.262430

NR 0.361294 0.629961 0.363211 0.707107 0.442003 1.000000





,
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A(8,8) =





R S O GD EC NR

R 1.000000 1.603697 1.081746 2.385880 0.978233 1.953767

S 0.623559 1.000000 0.704010 1.668510 0.639936 1.171827

O 0.924432 1.420434 1.000000 2.469439 0.826977 1.771042

GD 0.419132 0.599337 0.404950 1.000000 0.394440 0.858946

EC 1.022252 1.562656 1.209223 2.535237 1.000000 1.767735

NR 0.511832 0.853368 0.564639 1.164218 0.565696 1.000000





,

A(9,9) =





R S O GD EC NR

R 1.000000 1.459143 1.064879 2.005580 0.982155 1.729764

S 0.685334 1.000000 0.761115 1.435189 0.699696 1.135248

O 0.939074 1.313862 1.000000 2.022529 0.859003 1.579731

GD 0.498609 0.696772 0.494430 1.000000 0.472411 0.943519

EC 1.018169 1.429193 1.164140 2.116800 1.000000 1.593794

NR 0.578114 0.880865 0.633019 1.059862 0.627434 1.000000





,

A(10,10) =





R S O GD EC NR

R 1.000000 1.323773 0.994150 1.501729 0.982155 1.376050

S 0.755417 1.000000 0.799843 1.148698 0.769794 0.980561

O 1.005884 1.250245 1.000000 1.511453 0.927602 1.291373

GD 0.665899 0.870551 0.661615 1.000000 0.634326 0.953546

EC 1.018169 1.299048 1.078049 1.576477 1.000000 1.276564

NR 0.726718 1.019824 0.774370 1.048718 0.783353 1.000000





,
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A(11,11) =





R S O GD EC NR

R 1.000000 1.250207 0.995048 1.451557 1.006917 1.353341

S 0.799867 1.000000 0.839495 1.178812 0.830916 1.025478

O 1.004977 1.191193 1.000000 1.459385 0.959386 1.281637

GD 0.688916 0.848312 0.685220 1.000000 0.677638 0.960549

EC 0.993130 1.203491 1.042333 1.475715 1.000000 1.243218

NR 0.738912 0.975155 0.780252 1.041071 0.804364 1.000000





,

A(12,12) =





R S O GD EC NR

R 1.000000 1.158731 0.976792 1.398418 1.061875 1.209232

S 0.863013 1.000000 0.882853 1.229313 0.941522 0.977528

O 1.023759 1.132691 1.000000 1.434047 1.038012 1.171582

GD 0.715094 0.813463 0.697327 1.000000 0.747093 0.858701

EC 0.941730 1.062110 0.963380 1.338522 1.000000 1.058347

NR 0.826971 1.022989 0.853547 1.164550 0.944870 1.000000





,

A(13,13) =





R S O GD EC NR

R 1.000000 1.138820 0.996211 1.307455 1.086565 1.115662

S 0.878102 1.000000 0.911179 1.168016 0.977145 0.913958

O 1.003804 1.097479 1.000000 1.312739 1.047121 1.063765

GD 0.764845 0.856153 0.761766 1.000000 0.820491 0.828293

EC 0.920331 1.023389 0.954999 1.218782 1.000000 0.953681

NR 0.896329 1.094143 0.940058 1.207303 1.048568 1.000000





,
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A(14,14) =





R S O GD EC NR

R 1.000000 1.123343 0.996609 1.480423 1.077111 1.145447

S 0.890200 1.000000 0.920144 1.339214 0.979526 0.959382

O 1.003403 1.086786 1.000000 1.485741 1.042058 1.097960

GD 0.675482 0.746706 0.673065 1.000000 0.718995 0.749353

EC 0.928409 1.020902 0.959639 1.390831 1.000000 0.996358

NR 0.873021 1.042338 0.910780 1.334485 1.003655 1.000000





,

A(15,15) =





R S O GD EC NR

R 1.000000 1.103927 0.996931 1.196988 1.075533 1.019389

S 0.905857 1.000000 0.933383 1.101050 0.993274 0.867881

O 1.003078 1.071372 1.000000 1.200857 1.043816 0.979308

GD 0.835430 0.908224 0.832739 1.000000 0.888932 0.822424

EC 0.929771 1.006772 0.958024 1.124946 1.000000 0.887719

NR 0.980979 1.152231 1.021129 1.215917 1.126482 1.000000





,

A(16,16) =





R S O GD EC NR

R 1.000000 1.094476 0.997198 1.400028 1.068745 1.017527

S 0.913679 1.000000 0.938995 1.297635 0.993857 0.879673

O 1.002810 1.064968 1.000000 1.404141 1.039931 0.981260

GD 0.714271 0.770633 0.712179 1.000000 0.755737 0.693307

EC 0.935677 1.006181 0.961603 1.323212 1.000000 0.897846

NR 0.982775 1.136786 1.019098 1.442362 1.113777 1.000000





,
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A(17,17) =





R S O GD EC NR

R 1.000000 1.069119 0.990174 1.300405 1.080458 1.034060

S 0.935349 1.000000 0.952197 1.233617 1.027130 0.921457

O 1.009923 1.050203 1.000000 1.313850 1.061341 1.008318

GD 0.768991 0.810625 0.761122 1.000000 0.823614 0.767500

EC 0.925534 0.973587 0.942204 1.214161 1.000000 0.906298

NR 0.967062 1.085237 0.991751 1.302931 1.103389 1.000000





.

B.0.0.2 Computed pairwise comparison matrices using SGM method

A(3,3) =





R S O GD EC NR

R 1.000000 3.092678 1.877139 2.761310 0.982680 1.388673

S 0.323344 1.000000 0.464159 1.587401 0.337002 0.449335

O 0.532726 2.154435 1.000000 2.444424 0.462328 0.759568

GD 0.362147 0.629961 0.409094 1.000000 0.344679 0.487083

EC 1.017626 2.967346 2.162967 2.901251 1.000000 1.250762

NR 0.720112 2.225509 1.316538 2.053039 0.799513 1.000000





,

A(4,4) =





R S O GD EC NR

R 1.000000 3.092678 1.877139 2.761310 0.982680 1.388673

S 0.323344 1.000000 0.464159 1.587401 0.337002 0.449335

O 0.532726 2.154435 1.000000 2.444424 0.462328 0.759568

GD 0.362147 0.629961 0.409094 1.000000 0.344679 0.487083

EC 1.017626 2.967346 2.162967 2.901251 1.000000 1.250762

NR 0.720112 2.225509 1.316538 2.053039 0.799513 1.000000





,
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A(5,5) =





R S O GD EC NR

R 1.000000 3.092678 1.877139 2.761310 0.982680 1.388673

S 0.323344 1.000000 0.464159 1.587401 0.337002 0.449335

O 0.532726 2.154435 1.000000 2.444424 0.462328 0.759568

GD 0.362147 0.629961 0.409094 1.000000 0.344679 0.487083

EC 1.017626 2.967346 2.162967 2.901251 1.000000 1.250762

NR 0.720112 2.225509 1.316538 2.053039 0.799513 1.000000





,

A(6,6) =





R S O GD EC NR

R 1.000000 1.371043 1.102697 3.715717 0.850023 3.028378

S 0.729372 1.000000 0.735484 3.086164 0.632263 2.209330

O 0.906868 1.359649 1.000000 4.136540 0.739581 2.770607

GD 0.269127 0.324027 0.241748 1.000000 0.207569 1.395826

EC 1.176439 1.581620 1.352116 4.817676 1.000000 3.420646

NR 0.330210 0.452626 0.360932 0.716422 0.292342 1.000000





,

A(7,7) =





R S O GD EC NR

R 1.000000 1.371043 1.102697 3.715717 0.850023 3.028378

S 0.729372 1.000000 0.735484 3.086164 0.632263 2.209330

O 0.906868 1.359649 1.000000 4.136540 0.739581 2.770607

GD 0.269127 0.324027 0.241748 1.000000 0.207569 1.395826

EC 1.176439 1.581620 1.352116 4.817676 1.000000 3.420646

NR 0.330210 0.452626 0.360932 0.716422 0.292342 1.000000





,
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A(8,8) =





R S O GD EC NR

R 1.000000 1.271689 1.182631 3.221774 0.798964 1.003143

S 0.786356 1.000000 0.902660 2.645595 0.632391 0.788889

O 0.845573 1.107836 1.000000 2.916953 0.666319 0.850722

GD 0.310388 0.377987 0.342823 1.000000 0.240081 0.372525

EC 1.251621 1.581299 1.500783 4.165268 1.000000 1.238640

NR 0.996867 1.267605 1.175473 2.684381 0.807337 1.000000





,

A(9,9) =





R S O GD EC NR

R 1.000000 1.083412 1.057506 1.269207 0.927917 1.001047

S 0.923010 1.000000 0.966440 1.150129 0.858345 0.924000

O 0.945621 1.034726 1.000000 1.207674 0.873428 0.947536

GD 0.787893 0.869467 0.828038 1.000000 0.692937 0.863163

EC 1.077683 1.165032 1.144913 1.443133 1.000000 1.073944

NR 0.998954 1.082251 1.055369 1.158529 0.931147 1.000000





,

A(10,10) =





R S O GD EC NR

R 1.000000 0.736007 0.727154 0.375530 0.927917 0.333508

S 1.358683 1.000000 0.988686 0.634617 1.310225 0.589956

O 1.375224 1.011444 1.000000 0.645029 1.321687 0.594923

GD 2.662901 1.575755 1.550318 1.000000 2.497284 0.952133

EC 1.077683 0.763228 0.756609 0.400435 1.000000 0.345438

NR 2.998431 1.695041 1.680888 1.050273 2.894879 1.000000





,
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A(11,11) =





R S O GD EC NR

R 1.000000 0.849637 0.899240 0.825871 1.073534 0.793839

S 1.176973 1.000000 1.058636 1.045349 1.279839 1.020228

O 1.112050 0.944612 1.000000 0.989062 1.207876 0.962759

GD 1.210843 0.956618 1.011059 1.000000 1.304483 0.983783

EC 0.931503 0.781348 0.827899 0.766587 1.000000 0.729750

NR 1.259701 0.980173 1.038682 1.016485 1.370332 1.000000





,

A(12,12) =





R S O GD EC NR

R 1.000000 0.751740 0.876958 1.010665 1.341733 0.445488

S 1.330247 1.000000 1.166664 1.377422 1.792487 0.714223

O 1.140305 0.857145 1.000000 1.181292 1.535965 0.566498

GD 0.989447 0.725994 0.846530 1.000000 1.329139 0.443572

EC 0.745305 0.557884 0.651057 0.752367 1.000000 0.284751

NR 2.244728 1.400123 1.765232 2.254423 3.511836 1.000000





,

A(13,13) =





R S O GD EC NR

R 1.000000 0.909263 1.053511 0.876675 1.307690 0.385352

S 1.099792 1.000000 1.158675 0.971983 1.440240 0.487929

O 0.949207 0.863055 1.000000 0.839027 1.242883 0.376330

GD 1.140673 1.028825 1.191857 1.000000 1.492233 0.470942

EC 0.764707 0.694329 0.804581 0.670136 1.000000 0.238643

NR 2.595031 2.049480 2.657241 2.123404 4.190368 1.000000





,
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A(14,14) =





R S O GD EC NR

R 1.000000 0.968790 1.017528 2.411679 1.093541 0.916845

S 1.032215 1.000000 1.050317 2.496086 1.129306 0.991887

O 0.982774 0.952093 1.000000 2.376650 1.075169 0.909633

GD 0.414649 0.400627 0.420760 1.000000 0.453495 0.389009

EC 0.914461 0.885500 0.930086 2.205097 1.000000 0.781495

NR 1.090697 1.008180 1.099344 2.570638 1.279599 1.000000





,

A(15,15) =





R S O GD EC NR

R 1.000000 0.946410 1.005809 0.422399 1.071509 0.338534

S 1.056625 1.000000 1.062766 0.446718 1.132362 0.376428

O 0.994225 0.940941 1.000000 0.420344 1.065475 0.337200

GD 2.367428 2.238547 2.379003 1.000000 2.536831 1.247411

EC 0.933263 0.883110 0.938549 0.394193 1.000000 0.294674

NR 2.953909 2.656550 2.965595 0.801660 3.393581 1.000000





,

A(16,16) =





R S O GD EC NR

R 1.000000 0.981808 1.001933 2.668775 1.023290 0.696949

S 1.018529 1.000000 1.020499 2.719039 1.042306 0.722039

O 0.998071 0.979913 1.000000 2.664440 1.021365 0.696032

GD 0.374704 0.367777 0.375313 1.000000 0.383436 0.302644

EC 0.977240 0.959411 0.979082 2.607996 1.000000 0.665448

NR 1.434825 1.384967 1.436715 3.304210 1.502748 1.000000





,
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A(17,17) =





R S O GD EC NR

R 1.000000 0.868251 0.941642 0.961753 1.153533 1.014918

S 1.151741 1.000000 1.084528 1.107801 1.328595 1.175568

O 1.061975 0.922060 1.000000 1.021461 1.225043 1.078038

GD 1.039768 0.902689 0.978990 1.000000 1.199412 1.108447

EC 0.866902 0.752675 0.816298 0.833742 1.000000 0.873048

NR 0.985302 0.850653 0.927611 0.902163 1.145413 1.000000





.
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