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ABSTRACT 
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The critical problem of CFD is perhaps an accurate approximation of 

derivatives for a given discrete data set. Based on our previous work on the weighted 

compact scheme (WCS), a uniform weighted compact / non-compact scheme 

(UWCNC) has been developed. Similar to WENO, three high order candidates, left, 

right, and central, are constructed by using Hermite polynomials. According to the 

smoothness, three weights are derived and assigned to each candidate. The weights will 

lead the scheme to be upwind-biased when approaching the shock or other 



 iv 

discontinuities but quickly becomes central, compact, and of high order just off the 

shock. Therefore, the new scheme can get a sharp shock without oscillation, but keep 

central, compact and of high resolution in the smooth area. This feature is particularly 

important to numerical simulation of the shock-boundary layer interaction, where both 

shock and small eddies are important. Comparing with 5th order WENO which has 5th 

order accuracy in the smooth area and 3rd order accuracy near the shock, UWCNC 

scheme is superior with smaller stencils and higher order of accuracy. The necessary 

dissipation is provided by weights and some high order upwind-biased scheme. The 

new scheme has been successfully applied to 1-Dimensional shock tube and shock-

entropy interaction and 2-Dimensional incident shock reflection. The new scheme has 

obtained sharper shock, no deformation of expansion wave, and much higher resolution 

than 5th order WENO for small length scales. A variety of cases including shock-

boundary interaction with incident shock and double angles has been tested. The 

preliminary numerical solution is encouraging. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview on shock capturing schemes 

 

The fluid flow is in general governed by the Navier-Stokes equation which is a 

system of time dependent partial differential equations. However, for external flow, the 

viscosity is important largely only in the boundary layers. The main flow can still be 

considered as inviscid and the governing system can be dominated by the time 

dependent Euler equations which are hyperbolic. The difficult problem with numerical 

solution is to capture shocks which can be considered as a discontinuity or 

mathematical singularity (no classical unique solution and no bounded derivatives). In 

the shock area, continuity and differentiability of the governing Euler equations are lost 

and only the weak solution in an integration form can be obtained. The shock can be 

developed in some cases because the Euler equation is non-linear and hyperbolic. On 

the other hand, the governing Navier-Stokes system presents parabolic type behaviors 

and is therefore dominated by viscosity or second order derivatives. One expects that 

the equation should be solved by high order central difference scheme, high order 

compact scheme is preferable, to get high order of accuracy and high resolution. High 

order of accuracy is critical in resolving small length scales in flow transition and 
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turbulence process. However, for the hyperbolic system, the analysis already 

shows the existence of characteristic lines and Riemann invariants. Apparently, the 

upwind finite difference scheme coincides with the physics for a hyperbolic system. 

History has shown the great success of upwind technologies. We should consider not 

only the eigenvalues and eigenvectors of the Jacobian system, but also non-linearity 

including the Rankine-Hugoniot shock relations. From the point of view of shocks, it 

makes no sense to use high order compact scheme for shock capturing which use all 

gird points on one grid line to calculate the derivative by solving a tri-diagonal or penta-

diagonal linear system because shock does not have finite derivatives and downstream 

quantities cannot cross shock to affect the upstream points. From the point of view of 

the above statement, upwind scheme is appropriate for the hyperbolic system. Many 

upwind or bias upwind schemes have achieved great success in capturing shocks 

sharply, such as Godunov (1959), Roe (1981), MUSCL (Van Leer, 1979), TVD 

(Harten, 1983), ENO (Harten et al, 1987; Shu et al, 1988, 1989) and WENO (Liu et al, 

1994; Jiang et al, 1996). Roe’s scheme may be better in capturing the shock sharply 

because it satisfies the Rankine-Hugoniot relation. Of course, Roe’s method can also be 

considered as a method for flux difference splitting and any high order method such as 

ENO and WENO can use Roe’s method as a splitting method. However, all these 

shock-capturing schemes are based on upwind or bias upwind technology, which is 

appropriate for hyperbolic system, but is not favorable to the N-S system which presents 

parabolic equation behavior. The small length scale is very important in the flow 

transition and turbulence process is thus very sensitive to any artificial numerical 
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dissipation. High order compact scheme (Lele, 1992; Visbal, 2002) is more appropriate 

for simulation of flow transition and turbulence because it is central and non-dissipative 

with high order accuracy and high resolution. 

 

 

Figure 1.1 Schematic of the flow pattern of shock / boundary layer interaction 

 

Unfortunately, the shock-boundary layer interaction, which is common and 

important in high speed flows, is a mixed type problem which has shock (discontinuity), 

boundary layer (viscosity), separation, transition, expansion fans, fully developed 

turbulence and reattachment. In order to capture the shock and keep high order accuracy 

and high resolution in the smooth area, we have developed the so called weighted 

compact scheme (WCS, Jiang et al, 2001) which works very well for 1-D convection 

equation, Burger’s equation, but not so good for Euler’s equation with shocks. Visible 

wiggles have been found near the shock. In the case of shock-boundary layer 
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interaction, there are elliptic areas (separation, transition, turbulence) and hyperbolic 

areas (main flow, shocks, expansion fans), which make the accurate numerical 

simulation extremely difficult if not impossible. We have to divide the computational 

domain to several parts: the elliptic, hyperbolic, and mixed regions. The division or 

detection can be performed by switch function automatically such as shock detector 

which simply sets 1=Ω  for the shock area and 0=Ω  for the rest. The switch function 

may give the best results for shock-boundary layer interaction, but it will have too many 

logical statements in the code which may slow down the computation. The switch 

function could also be case-related and very difficult to adjust. It would also slow down 

the convergence for steady problems. The use of “weights” will be naturally considered 

as a good candidate that succeeded for many schemes, WENO is a good example and 

Weighted Compact Scheme is another example. 

 

Traditional finite difference schemes use the idea of Lagrange interpolation. To 

obtain nth order of accuracy, a stencil covering n+1 grid points is needed. In other 

words, the derivative at a certain grid point depends upon the function values at these 

n+1 grid points and only these grid points. In contrast, standard compact schemes (Lele, 

1992; Visbal, 2002) use the idea of Hermitian interpolation. By using derivatives as 

well as function values, a compact scheme achieves high order of accuracy without 

increasing the width of stencils. As discussed in Lele’s paper, a compact scheme has not 

only high order of accuracy, but also high resolution. Fourier analysis indicates that, 

with the same order of accuracy, a compact scheme has better spectral resolution than a 
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traditional, explicit finite difference scheme. For this reason, compact schemes are 

favorable in the simulation of turbulent flows where small-length-scale structures are 

important. 

 

Due to the usage of derivatives, compact schemes usually give us a tri-diagonal 

or penta-diagonal system. Although the tri-diagonal matrix is sparse, the inverse of a tri-

diagonal matrix is dense, which means the derivative at a certain grid point depends 

upon all the grid points along a grid line. The success of compact schemes indicates that 

the global dependency is very important for high resolution. However, the global 

dependency is good for resolution but not so applicable for shock capturing. 

 

The basic idea proposed in ENO (Harten et al, 1987) and WENO (Jiang et al, 

1996) schemes is to avoid the stencil containing a shock. ENO chooses the smoothest 

stencil from several candidates to calculate the derivatives. WENO controls the 

contributions of different stencils according to their smoothness. In this way, the 

derivative at a certain grid point, especially one near the shock, is dependent on a very 

limited number of grid points. The local dependency here is favorable for shock 

capturing and helps obtaining the non-oscillatory property. The success of ENO and 

WENO schemes indicates that the local dependency is critical for shock capturing. 

 

The Weighted Compact Scheme (WCS) developed by Jiang et al, 2001 is 

constructed by introducing the idea of WENO scheme to the standard compact schemes 
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which uses weights for several candidates. The building block for each candidate is a 

Lagrange polynomial in WENO, but is Hermite in WCS. Therefore WCS achieves a 

higher accuracy with same stencil width. In shock regions, WCS controls the 

contributions of different candidate stencils to minimize the influence of the candidate 

which contains a shock. In smooth regions where shocks are not present, WCS recovers 

to the standard compact scheme to achieve high accuracy and resolution. The numerical 

tests indicate that original WCS works fine in some cases such as convection equation 

and Burger’s equation, but not very well for Euler equation. As mentioned above, the 

usage of derivatives by compact schemes results in the global dependency.  

In order to overcome the drawback of the WCS scheme, we need to achieve 

local dependency in shock regions and recover the global dependency in smooth 

regions. This fundamental idea will naturally lead to a combination of local dependent 

scheme, e.g. WENO and global dependent weighted compact schemes which we call 

“Uniform Weighted Compact / Non-compact Schemes” (UWCNC). The mixing and 

weights are designed in following ways: the new scheme automatically becomes bias 

when approaching the shock, but rapidly recovers to be central, compact, with high 

order of accuracy and high resolution. This kind of scheme has been developed and 

preliminary computation results are very promising.  

 

1.2 Importance of high order schemes to DNS/LES 

It should be pointed out that the order of accuracy of the finite difference 

scheme is absolutely not a trivial issue to CFD, especially to DNS and LES. There is a 
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significant difference in requirements of grid size by DNS/LES between low order 

schemes and high order schemes. Let us take a look at the local truncation error for 1-D 

problem. If one uses a second order scheme with a mesh size of 2x∆ and wants to have 

same truncation error using a sixth order scheme with a mesh size of 6x∆ , one should 

have: 

6
66

2
22 )()( xCxC ∆=∆                                              (1.1) 

 
Assume 62 CC ≈ and 01.06 =∆x (100 grid points in a normalized domain), we will get 

622
2 )10()( −=∆x  

 6
2 10−=∆x                                                           (1.2) 

  
In other words, the second order scheme needs one million of grid points to beat 

the sixth order scheme with 100 grid points for same order of accuracy. This advantage 

of high order scheme will become more significant when one uses DNS for 3-D 

problems. We do not want to use one million of grids in each direction for DNS, but 

prefer to use 100 grid points. Therefore high order scheme must be used. Of course, the 

global accuracy is also influenced by factors other than the local truncation errors, and 

the advantage of the sixth order scheme does not typically show a magnitude of 10 

thousand times improvement over the second order scheme. However, it is now widely 

recognized that high order finite schemes are strongly encouraged to be used for DNS 

and LES which have much higher accuracy and higher resolution than low order 

schemes.  
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1.3 Discussion on low order LES with low order subgrid models 

Most LES computations require use of a subgrid model trying to get the 

unresolved scales back, which could be mathematically considered as truncation errors. 

Let us take a look at the famous Smagorinsky model: 

ijtij Sντ −=  and 

||)2 SCst ∆=ν                                                    (1.3) 
 

Where ∆,,, sijij CSτ  are unresolved stress tensor, resolved strain tensor, 

Smagorinsky constant, and filter width, respectively. Apparently, it is a second order 

model with 2∆ . Other models are similar. If we use a sixth order compact scheme for 

LES without model (Implicit LES), we will get sixth order of accuracy. However, if we 

add the Smgorinsky subgrid model, our LES results will be degenerated to second order 

of accuracy, which is really bad.  A carefully designed 6th order subgrid model may be 

needed for high order LES. Therefore, second order DNS, second order LES with 

second order subgrid models are not appropriate for DNS or LES. 

Table 1 shows the orders obtained by different orders of schemes, which 

demonstrates the importance of high order numerical schemes for DNS/LES.  

Table 1.1 Orders of DNS/LES approaches 

Scheme Truncation Errors Comments 

Second order DNS        )( 2hO                          Bad 

Second order LES +Second order 
subgrid model 

      )( 2hO  or up Bad 

Sixth order LES without subgrid 
model (ILES) 

      )( 6hO                   Good 
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Table 1.1 - Continued 

Sixth order LES with second order 
subgrid model 

        )( 2hO             Bad 

Sixth order LES with sixth order 
subgrid model 

         )( 6hO  or up Best 

 
 

1.4 Basic point of view on the scheme development 

The 3-D time dependent Navier-Stokes equations in a general curvilinear 

coordinate can be written as  

( ) ( ) ( ) 01
=

∂
−∂

+
∂
−∂

+
∂
−∂

+
∂
∂

ζηξ
vvv FFFFEE

t
Q

J
                       (1.4) 

 
For 1-D conservation law, it will be: 

0=
∂
∂

+
∂
∂

ξ
E

t
Q                                                   (1.5) 

 
The critical issue for high order CFD is to find an accurate approximation of 

derivatives for a given discrete data set. The computer does not know any physical 

process but accepts a discrete data set as input. The output is also a discrete data set. We 

measure the input data by slopes to determine it is smooth (slope is small), oscillatory 

(slope is large), and non-differentiable (or corner points which have slopes large on one 

side, but small on the other side), or, in other words, by a smoothness function, and then 

an appropriate numerical scheme is set up based on the feature of the discrete data set, 

but not the governing system.  This is the basic view point for our new scheme 

development.
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CHAPTER 2 

UNIFORM WEIGHTED COMPACT / NON-COMPACT SCHEMES 

 

2.1 ENO reconstruction function 

For 1-D conservation laws: 

0)),((),( =+ txuftxu xt    (2.1) 

When a conservative approximation to the spatial derivative is applied, a semi-

discrete conservative form of the equation (2.1) is described as follows: 

)ˆˆ(1
)2/1()2/1( −+ −

∆
−= jj

j ff
xdt

du
                   (2.2) 

where ∫
∆+

∆−∆
=

2/

2/
)(ˆ1 xx

xxj
j

j

df
x

f ξξ  and then )ˆˆ(1)( )2/1()2/1( −+ −
∆

−= jjjx ff
x

f . Note 

that  f  is the original function, but f̂ is the flux defined by the above integration which 

is an exact expression of the flux but is different from f. 

Let H be the primitive function of f̂  defined below: 

∑∫∑∫
−∞=

∆+

∆−

=

−∞=

∆+

∞−+ ∆===
j

i
i

xx

xx

ji

i

xx

j fxdfdfxH i

i

j 2/

2/

2/

)2/1( )(ˆ)(ˆ)( ξξξξ           (2.3) 

H can be easily calculated, but is a discrete data set. 

The numerical flux f̂  at the cell interfaces is the derivative of its primitive 

function H. i.e.:  
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 '
)2/1()2/1(

ˆ
++ = jj Hf                                                  (2.4) 

All formulae given above are exact without approximations. However, the 

primitive function H is a discrete data set or discrete function and we have to use 

numerical method to get the derivatives, which will introduce numerical errors, or, in 

other words, order of accuracy. 

This procedure, 'ˆ
xffHf →→→ , is called reconstruction introduced by Shu 

& Osher (1988, 1989). The problem left for numerical methods is how to solve (2.4) or 

how to get accurate derivatives for a data set. 

2.2 Data normalization 

 
In order to find universal formula, we need to normalize the data set, u(i), i=1, 

…, n: 

|| minmax uuudiff −=                                              (2.5) 

diffuuuu /)( min−=                                            (2.6) 

Here, maxu and minu are the maximum and minimum values of u respectively and 

u is normalized. For simplicity, we throw out the hat of u and use u(i) as the 

normalized data set. 

2.3 Weighted compact scheme 

 
As we addressed that one problem left for numerical methods, which is how to 

solve (2.4) or how to get accurate derivatives for a discrete data set. It is equivalent to 
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finding an accurate flux in the interface. We turn our attention into finding a high order 

scheme which, however, must be able to pass the shock without non-physical wiggles. 

 

2.3.1 WENO Scheme (Jiang & Su, 1996) 

 
Before discuss our new scheme, first let us see how to construct the WENO 

scheme. 

2.3.1.1 Conservation Form of Derivative 

0=
∂
∂

+
∂

∂
x
F

t
U                                                    (2.7) 

The ENO reconstruction can provide a semi-discretization for the derivative: 

x

FF

x
F ii

∆

−
=

∂
∂ −+

2
1

2
1

ˆˆ

, where F̂ is the flux which must be accurately obtained. 

  
2.3.1.2 Fifth Order WENO (bias upwind) 

1) Flux approximation 

In order to get an high order approximation for '

2
1

2
1

ˆ
−−

=
jj

HF , we can use three 

different candidates (Figure 2.1) which are all third order polynomials: 

2
1

2
3

2
5

2
70 ,,,:

−−−− jjjj
HHHHE ; 

2
1

2
1

2
3

2
51 ,,,:

+−−− jjjj
HHHHE ;  

2
3

2
1

2
1

2
32 ,,,:

++−− jjjj
HHHHE . 
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Figure 2.1 Schematics of WENO Scheme Stencils – WENO Candidates 

 
Figure 2.2 Schematics of WENO Scheme Stencils – 5th order WENO Scheme 

 

Let us look at candidate 0E  first. Assume H is a third order polynomial: 

3
2/33

2
2/122/110 )()()( −−− −+−+−+= jjj xxaxxaxxaaH , we have 

3
3

2
2102/7

3
3

2
2102/5

3
3

2
2102/3

02/1

2793

842

hahahaaH

hahahaaH

hahahaaH

aH

j

j

j

j

−+−=

−+−=

−+−=

=

−

−

−

−

                                 (2.8) 

Further by subtraction, we can get 

3
3

2
213212/72/1

3
3

2
21212/52/1

3
3

2
2112/32/1

2793)(

842)(

hahahaFFFhHH

hahahaFFhHH

hahahahFHH

jjjjj

jjjj

jjj

+−=++=−

+−=+=−

+−==−

−−−−−

−−−−

−−−

     (2.9) 

Deleting 3a , we can get 
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haaFFFF
haaFFF

jjjj

jjj

213211

21211

1824)(27
46)(8

−=++−

−=+−

−−−−

−−−                                (2.10) 

or 

1321

121

482252
54963

aFFF
aFF

jjj

jj

=−−

=−

−−−

−−
                                                  (2.11) 

Then, 

1231 11726 −−− +−= jjj FFFa  

Or     1231
'

2/1
2
10 6

11
6
7

3
1ˆ: −−−−

−
+−=== jjjjj

FFFaHFE                         (2.12) 

Finally, we have 

123
2
10 6

11
6
7

3
1ˆ: −−−

−
+−= jjjj

FFFFE  

jjjj
FFFFE

3
1

6
5

6
1ˆ: 12

2
11 ++−= −−

−
                            (2.13) 

11
2
12 6

1
6
5

3
1ˆ: +−

−
−+= jjjj

FFFFE  

 

2)  Optimal weights for high order of accuracy  

The final scheme should be a combination of three candidates: 

221100 ECECECE ++= . If we set
10
3,

10
6,

10
1

210 === CCC , we will have 

1123
2
1 20

1
60
27

60
47

60
13

30
1ˆ

+−−−
−

−++−= jjjjjj
FFFFFF  
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2112
2
1 20

1
60
27

60
47

60
13

30
1ˆ

++−−
+

−++−= jjjjjj
FFFFFF                           (2.14) 

)(/)
20
1

2
1

3
1

4
1

30
1(

ˆˆ
5

21123
2
1

2
1

xOxFFFFFF
x

FF

x
F

jjjjjj

jj
∆+∆−++−+−=

∆

−
=

∂
∂

++−−−

=+
 

Using Taylor expansion for kjF − , we find 

( ) ( ) ( ) ( ) ...
140

1
60
1'

ˆˆ
76652

1
2
1

+∆+∆−=
∆

−
=

∂
∂ −+

jjj

jj
FxFxF

x

FF

x
F ,                            (2.15) 

which shows the  scheme with optimal weights and 6 grid points has a 5th order 

truncation error. Note that the scheme is a standard 5th order bias upwind finite 

difference scheme. 

3)  Bias up-wind weights: 

Let us define a bias weight for each candidate according to WENO: 

 

∑ =

= 2

0i i

k
k

γ

γ
ω ,         p

k

k
k IS

C
)( +

=
ε

γ                                         (2.16) 

where 

∫ ∑+

−

−
∞

=

=
2/1

2/1

122)(
2

1
])([j

j

x

x

kk

k
i dxhxpIS  

2
12

2
120 )34(

4
1)2(

12
13

jjjjjj FFFFFFIS +−++−= −−−−  

2
11

2
111 )(

4
1)2(

12
13

+−+− −++−= jjjjj FFFFFIS  

2
12

2
212 )34(

4
1)2(

12
13

jjjjjj FFFFFFIS +−++−= ++++  
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The 5th order WENO can be obtained  

2211002/1
ˆ EEEF j ωωω ++=−                                                                            (2.17) 

)
6
1

6
5

3
1(

)
3
1

6
5

6
1()

6
11

6
7

3
1(ˆ

112/1,2

122/1,11232/1,02/1

+−−

−−−−−−−−

−++

++−++−=

jjjj

jjjjjjjjj

FFF

FFFFFFF

ω

ωω
 (2.18) 

WENO is a very popular scheme with great successes by many users. However, 

the scheme has 5th order dissipation everywhere and third order dissipation near the 

shock and it is too dissipative for transition and turbulence. Let us turn into central and 

compact schemes for assistance. 

 

2.3.2 Weighted Compact Scheme (WCS, Jiang et al, 2001) 

 
1) High-order compact schemes 

A Pade-type compact scheme could be constructed based on the Hermite 

interpolation where both function and derivatives at grid points are involved, e.g. a 

fourth order finite difference scheme can be constructed if both the function and first 

order derivative are used at three grid points. For a function f we may write a compact 

scheme by using five grid points (Lele, 1992): 

ξβααβ ∆++++=++++ ++++−−−−++++−−−− /)( 2112
'

2
'

1
''

1
'

2 jjjjjjjjjj fbfacffafbfffff    (2.19)  

We can get 8th order of accuracy by using the above formula based on Taylor 

series.  
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If we use a symmetric and tri-diagonal system, by setting 0== +− ββ , we can 

get a one parameter family of compact scheme (Lele, 1992): 

( ) ( ) ( ) ( ) hfffffff ijjii ii
/14

12
12

3
12

3
114

12
1

2112
'''

11 



 −++++−−−=++ ++−−+−

αααααα     (2.20) 

If 3
1=α , we will get a standard sixth order compact scheme.  

  

When a compact scheme is used to differentiate a discontinuous or shock 

function, the computed derivative has grid to grid oscillations. In our previous work 

(Jiang et al, 2001) a new class of finite difference scheme - weighted compact scheme 

(WCS) was proposed.  

2) Basic formulations of weighted compact scheme 

 

 Figure 2.3 WCS Stencil Candidates 

 

Figure 2.4 Sixth Order Compact Scheme 
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In order to get an high order approximation for '

2
1

2
1

ˆ
−−

=
jj

HF , the six order 

weighted compact scheme uses three candidates for 
2
1

ˆ
−j

F as shown in Figure 2.3  which 

are all polynomials:  

2/12/32/50 ,,: −−− jjj HHHE , 2/12/12/31 ,,: +−− jjj HHHE , 

and    2/32/12/12 ,,: ++− jjj FHHE                                                      (2.21) 

Note that: 

xFH
j

i
ij ∆= ∑

−

=
−

1

0
2/1                                                                              (2.22) 

Compact schemes are used for these three candidates: 

xHcHaHbHHE jjjjj ∆+−−=+ −−−−− /)(: 2/102/302/50
'

2/1
'

2/300 α  

xHHaHHHE jjjjj ∆−=++ −++−− /)(: 2/32/11
'

2/11
'

2/1
'

2/311 αα                          (2.23) 

xHcHaHbHHE jjjjj ∆−+=+ −+++− /)(: 2/122/122/32
'

2/12
'

2/12 α  

For high order, we pick 

2
5,

2
5,

2
1,

2
1,2,

4
3,2,2,

4
1,2 2020210210 ========== ccbbaaaααα    (2.24) 

0E  and 2E have third order, but 1E has fourth order of accuracy. 

The compact scheme for each candidate is: 

0E : 212/12/32/5
'

2/1
'

2/3 2
1

2
5

2
52

2
12 −−−−−−− +=






 +−−=+ jjjjjjj FFhHHHHH   

1E :
( )

)(
4
3

4
3

4
1

4
1

1
2/32/1'

2/1
'

2/1
'

2/3 −
−+

+−− +=
−

=++ jj
jj

jjj FF
h

HH
HHH           (2.25) 
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2E : jjjjjjj FFhHHHHH
2
5

2
1

2
52

2
12 12/12/12/3

'
2/1

'
2/1 +=






 −+=+ +−+++−  

3)  Non-bias compact scheme 

Let 221100 ECECECE ++= and 
18
1,

18
16,

18
1

210 === CCC   

E: 112
'

2/1
'

2/1
'

2/3 36
1

36
29

36
29

36
1

3
1

3
1

+−−+−− +++=++ jjjjjjj FFFFHHH          (2.26) 

Similarly, E at point 2/1+j is  

211
'

2/3
'

2/1
'

2/1 36
1

36
29

36
29

36
1

3
1

3
1

++−++− +++=++ jjjjjjj FFFFHHH                (2.27) 

Subtracting the previous equation at point j-1/2, we get  

)
36
1

9
7

9
7

36
1(1

3
1

3
1

2112
'

1
''

1 ++−−+− ++−−=++ jjjjjjj FFFF
h

FFF                       (2.28) 

This is a standard sixth order compact scheme. The stencil candidates are 

120 ,: −− jj FFE , jj FFE ,: 11 − , and 12 ,: +jj FFE for 2/1
'

2/1
ˆ

−− = jj FH . This also shows the 

WCS uses smaller candidate stencils but gets higher accuracy comparing with the 5th 

order WENO. 

 

The procedure described above implies that a sixth order centered compact 

scheme can be constructed by a combination of three lower order schemes. In order to 

achieve the non-oscillatory property, the WENO weights (Jiang et al., 1996) are 

introduced to determine new weights for each stencil. The weights are determined 
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according to the smoothness of the function on each stencil. Following the WENO 

method, the new weights are defined as 

∑ =

= 2

0i i

k
k

γ

γ
ω   p

k

k
k IS

C
)( +

=
ε

γ              (2.29) 

where ε  is a small positive number to prevent the denominator becoming zero 

and p is a parameter to control the weighting. Actually, the weights are very sensitive to 

p. We set p as a function of smoothness instead of constant. When p=0, the 6th order 

standard compact scheme is recovered.  ISk is a smoothness measurement which is 

defined in (2.16). Through the Taylor expansion, it can be easily proved that in smooth 

regions the new weights kω  satisfy: 

)( 2hOCkk +=ω and 

)( 3
02 hO=− ωω                                                                                             (2.30) 

The new scheme is formed using these new weights: 

221100 EEEE ωωω ++=                                (2.31) 

The leading error of E is a combination of the leading errors of the original 

schemes, which is: 

4)5(
210

3)4(
20 )

15
1

120
1

15
1()

12
1

12
1( hfhf ωωωωω −+−+−              (2.32) 

When equation (2.30) is satisfied, the leading error of the new scheme can be 

written as )( 6hO and the new scheme remains its 6th order of accuracy. 
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2.4 Uniform weighted compact / non-compact schemes 

 
Now, we try to use one parameterα -family of the compact scheme. On each 

stencil, a compact difference scheme is derived as follows by matching the coefficients 

in Taylor series to obtain corresponding orders.  

[ ]iiiii fcfafb
h

ffFS 010201000
1'': ++=+ −

−
−

−
−

−α

[ ]11111111111
1''': +

+
−

−
+

+
−

− ++=++ iiiiii fafcfa
h

fffFS αα

[ ]221221222
1'': +

+
+

+
+

+ ++=+ iiiii fbfafc
h

ffFS α                                                  (2.19) 

The linear weight for each stencil is C0, C1, C2, respectively. Then we have 16 

unknowns, 

,,,,,
,,,,,,

,,,,,

22222

111111

00000

cbaC
caaC

cabC

+++

+−+−

−−−

α

αα

α

 

For each stencil, a compact scheme of lower order is established. By matching 

the coefficients in Taylor’s series, we have the following conditions: 

2
3 0

0

−+
=

αc ,   01 =c ,   
2

3 0
2

−+
−=

αc ,   22 =+a ,   20 −=−a ,    

2
1 0

0

−
− −

=
αb ,   

2
1 0

2

−
+ −

−=
αb ,     

2
13 11

1
−−

=
−+

− ααa ,    
2

13 11
1

−−
−=

−+
+ ααa                                                   (2.20) 

In order to reassemble the standard compact scheme in equation (2.10), we have 

the following conditions: 
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ααα =+ −−
1100 CC ,   1210 =++ CCC ,   ααα =+ ++

2211 CC ,   

)14(
12
1

00 −−=− αbC ,   ( )2
3
1

1100 +−=+ −− αaCaC ,   

0221100 =++ cCcCcC ,   ( )2
3
1

2211 +=+ ++ αaCaC ,   

)14(
12
1

22 −=− αbC                                                         (2.21) 

where α is treated as a parameter.  

All these nonlinear equations above are not independent to each other. 

Therefore, the system is not closed for 16 unknowns. We can add an artificial condition 

to close the system. Note that this is a non-linear system. Let us try to use 
4

3
1

α
α =+  

artificially. We have a closed system with the following solution listed in Table 2.1 

 

Table 2.1 Coefficients for the compact scheme on 

each stencil S0, S1, S2 (
4

3
1

α
α =+ ) 

 C  −α  +α  −b  −a  c  +a  +b  

0S
 

)23(6
25

−
−

α
α

 

25
)12(6

−
−

α
αα

 

 25
)12(3

2
1

−
−

−
α

αα

 

-2 25
)12(3

2
3

−
−

+
α

αα

 

  

1S
 

)23(3
)1(4

−
−

α
α

 4
3α

 

4
3α

  2
1

4
3

−−
α

 

0  2
1

4
3

+
α

 

 

2S
 

)23(6
25

−
−

α
α

 

 25
)12(6

−
−

α
αα

 

  25
)12(3

2
3

−
−

−−
α

αα

 

2  25
)12(3

2
1

−
−+−

α
αα

 

 

Every coefficient varies smoothly and monotonically whenα varies from 0 to 

1/3. Therefore, the scheme is formulated as follows,  
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( ) ( ) ( )
















−
−

++−







−
−

−=+
−

−
−−− jjjjj fff

h
ffFS

25
123

2
32

25
123

2
11''

25
126: 12100 α

αα
α

αα
α

αα















 ++






 +−=++ +−+− 111111 2

1
4

3
2
1

4
31'

4
3''

4
3: jjjjj ff

h
fffFS αααα

( ) ( ) ( )
















−
−

−−+







−
−

+−=
−

−
+ +++ 21122 25

123
2
12

25
123

2
31'

25
126': jjjjj fff

h
ffFS

α
αα

α
αα

α
αα                             

For candidates S0 and S2, the function values at three grid points and first 

derivative at one grid point are used to calculate jf ' . Thus the scheme is at least second-

order accurate (third-order if =α 1/3) and one sided. For candidate S1, the function 

values at two grid points and first derivative at two grid points are used to calculate jf ' . 

Thus the scheme is at least second-order accurate (fourth-order if =α 1/3) and centered. 

Then a specific weight is assigned to each equation, and a new scheme is obtained by a 

summation of the equations. 

221100 FCFCFCF ++=                                                    (2.23) 

where 1210 =++ CCC . By choosing the weights in table 1, the scheme 

reproduces the standard compact scheme: 

iiiiiiii hfffffff ταααααα +





 −++++−−−=++ ++−−+− /)14(

12
1)2(

3
1)2(

3
1)14(

12
1''' 211211  

                                                                     (2.24) 

 

which has sixth-order of accuracy if we pick =α 1/3, but fourth-order if we pick 

3/1≠α . As we discussed in section 2.3.2, we use WENO weights, 210 ,, ωωω  instead 

of 210 ,, CCC . 
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Following the WENO method, the weights are defined as: 

∑ =

= 2

0i i

k
k

γ

γ
ω ,   

( )p
k

k
k IS

C
+

=
ε

γ ,  

)23(6
25,

)23(3
)1(4,

)23(6
25

210 −
−

=
−
−

=
−
−

=
α
α

α
α

α
α CCC , 

where ε is a small number to prevent the denominator becoming zero. p is an 

important parameter to control weights. ISk is the smoothness measurements which are 

defined in section 2.2.2. 

 

The final scheme is 221100 FFFF ωωω ++= : 

( )
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−
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−
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ω
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ωω
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ω
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ω
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(2.25) 

Note that there is only one parameter α  which has not been determined yet. 

 

 

2.5 Determination of parameter α  

 
Apparently, determination of α  becomes the central stage of our research. 

Instead of using fixedα , we determine the value of α  according to the smoothness of 
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the function. All the other coefficients become the functions of α . In this work, we first 

define α  as  

2/
3
1

3
1

3
1

3
1 2

1
2

2

2

1

2

0

















 −+






 −+






 −−= ISISISα                    (2.26)                      

where 
∑ =

+

+
= 2

0
)(

i k

k
k

IS
IS

IS
ε

ε
, 

again ε  is a small positive number. In smooth regions, the three normalized 

smoothness are nearly equal, namely, 
3
1

210 === ISISIS . Thenα equals to 1/3 and the 

6th order standard compact scheme recovered. We achieve global dependency and the 

best resolution. In shock regions, for instance, the worst case gives us dramatically 

different weights. After normalization we have 0,1 210 === ISISIS . Then 0=α and 

we achieve the local dependency and non-oscillatory property from the weighting 

procedure.  

 

However, these kinds of WENO weights based on differences of left hand side, 

central, right hand side smoothness would not distinguish the low and high frequency 

waves and will give same α  for both low frequency and high frequency waves. It may 

mislead to give 3/1=α for center point of the shock if we capture the shock with more 

than three grid points. Apparently, we need to consider the fourth measurement of the 

smoothness, aveIS which is high for high frequency and low for low frequency. In this 

work, we define α  in the following way: 
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}
3
1,*)*1({min 21 aISa avefinal −= αα                  (2.27) 

We also define a function called smoothness which will control the compact and 

non-compact switch and everything: 

 

Smoothness = 1.0-3.0*α  or α  = (1.0-smoothness)/3.0 

 

When smoothness = 1.0 where is discontinuous, α =0.0 and non-compact 

scheme will be used. When smoothness=0.0, α =1/3 and the standard 6th order compact 

scheme will be recovered. 

 

2.6 Recovery to 8th order accuracy in smooth areas 

In smooth area, the scheme will become a standard 6th order compact scheme 

and keep 6th order in accuracy: 

)
36
1

9
7

9
7

36
1(1

3
1

3
1

211211 ++−−+− ++−−=′+′+′ jjjjjjj ffff
h

fff                     (2.28) 

Using 5 grid points, we can also get an 8th order scheme by following scheme: 

)
216
25

54
40

54
40

216
25(1

36
1

9
4

9
4

36
1

2112
'

211
'

2 ++−−++−− ++−−=+′+′+′+ jjjjjjjjj ffff
h

fffff    

(2.29) 

Subtracting (2.29) by (2.28), we get the residual: 
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:3F )
216
19

27
1

27
1

216
19(1

36
1

9
1

9
1

36
1

2112
'

211
'

2 ++−−++−− +−+−=+′+′+ jjjjjjjj ffff
h

ffff     

(2.30) 

The final finite difference scheme can be written as 

33221100 FFFFF ωωωω +++=                                              (2.31) 

Where  

Smoothness−== 0.1*0.33 αω                              (2.32)   

which is 1 in the smooth area and becomes zero near the shock or other 

discontinuities. In this way, the accuracy will be recovered to 8th order by 5-point 

stencil in the smooth area. Of course, a penta-diagonal system has to be solved on each 

grid line.  

 

The above derivation is based on the six order compact scheme: 

)( 6
2211006 hOFFFF +++= ωωω                                            (2.33) 

In order to get 8th order accuracy in the smooth area, we can use: 

8
83

6
63832211003 )1(])[1( hkhkFFFFF ωωωωωωω +−++++−=            (2.34) 

where 8F  is a standard 8th order compact scheme with 5 grid points. In the 

smooth area, 0.13 =ω , we obtain 8th order of accuracy. 

Here, we use the 6th order WCS as our base scheme. However, this method is 

universal and we can use for any base scheme. For example, we can use 5th order 

WENO as our base scheme or use the uniform weighted compact and non-compact 
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scheme (UWCNC) as our base scheme. The basic idea is to get 8th order of accuracy 

recovered in the smooth area, but bias near the shock to avoid numerical oscillations. 

 

The remained question is how to detect shock correctly and accurately and then 

chose a right switch function or sharply weighted function, 3ω , based on the 

smoothness, which has been discussed much in previous sections. 
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CHAPTER 3 

APPLICATION OF UWCNC TO 1-D PROBLEMS 

 

3.1 One-dimensional linear wave equation 

The scheme is tested by solving a linear wave equation with a smooth initial 

function: 

0=+ xt uu , ( ) )2sin(0, xxu π=  where 10 ≤≤ x .                    (3.1) 

The calculation stops at 3.0=t  and the errors are listed in table 3.1. The 

computation shows the 6th order accuracy is achieved. 

 
Table 3.1 Errors and Order of Accuracy 

N L1 Error L1 Order L2 Error L2 Order L∞ Error L∞ Order 
8 1.06E02 - 3.67E03 - 2.05E02 - 
16 8.66E05 6.93 2.46E05 7.22 2.00E04 6.68 
32 1.37E06 5.98 2.94E07 6.39 4.37E06 5.51 
64 2.23E08 5.93 3.74E09 6.30 1.11E07 5.30 
128 3.45E10 6.01 4.95E11 6.24 2.86E09 5.27 
256 4.49E12 6.26 5.73E13 6.43 5.98E11 5.58 

 

We also test both UWCNC and WENO schemes on a 1-D linear wave equation 

with jump initial function: 

0=+ xt uu ,  ( )


 ≤≤

=
otherwise

xif
xu

5.0
4.01.00.1

0,
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The calculation stops at 3.0=t  and the solutions are illustrated in Figure 3.1. 

The results indicate that standard compact scheme is not suitable for shocks while both 

UWCNC and WENO schemes work. Furthermore, UWCNC has less dissipation than 

WENO near shocks which means a sharper transition is obtained. Figure 3.2 shows the 

numerical solution of linear wave equation with high frequency sinuous function as 

initial condition. Traditional 6th order compact scheme has the best resolution, while 

UWCNC-6 has similar behaviors and very small dissipation. WENO-5 is the most 

dissipative. 
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Figure 3.1 Numerical test over linear wave equation: square wave function. 
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Figure 3.2 Numerical test over linear wave equation: High frequency sinuous function. 

 

 

3.2 One-dimensional Euler equations 

 

The governing conservation law for one-dimensional inviscid fluid flow can be 

formulated as follows,  

( )
( ) ( )

( )[ ] 0
0

0
2

=++

=++

=+

xt

xt

xt

pEuE
puu

u
ρρ

ρρ

 

These are the conservation of mass, momentum and energy, respectively. They 

can also be expressed in a very compact notation by defining a column vector U of 

conserved variables and flux vectors F(U). 

( ) 0=+ xt UFU  

where  



 

 

 

32 

( )















+
+=
















=

pEu
pu

u
F

E
uU 2, ρ

ρ
ρ
ρ

. 

 

3.2.1 Shock tube flow (Sod’s problem) 

 

One classic benchmark is the Sod’s test problem which sets up a shock tube 

with quiescent gas on both left- and right-hand side. The initial condition is set as 

( ) ( )
( )




≥
<

=
.01.0,0,125.0
;0,1,0,1

,,
x
x

puρ  

The solution consists of a left-traveling rarefaction wave, a contact surface and a 

right-traveling shock wave. 

 

To solve the Euler equations, a three-step TVD Runge-Kutta is used in time 

marching and Steger-Warming flux vector splitting is used and the derivatives of 

splitting flux +F , −F  are calculated using our new scheme. In this case, α  is defined as 

in Equation 2.27. The distributions of velocity u and pressure are shown in Figure 3.3. 

Comparisons are also made with the solutions obtained using 5th order WENO scheme. 

From Figure 3.4, it can be found the UWCNC scheme (referred to as LJX) captured the 

shock sharper and smeared the expansion wave and shock less then the 5th order 

WENO. Figure 3.7 shows a locally enlarged comparison between UWCNC, WENO, 

and WENO with 1600 grid points which we consider as an exact solution. Figure 3.8 

show the smoothness measured by our definition which is the only parameter to control 
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the compact and non-compact scheme switch. The figure shows the shock is well 

captured with smoothness=1.0 ( 0=α ) and the smoothness measured on the coarser 

grid (N=100) and finer grid (N=200) are pretty consistent.  

 

 
Figure 3.3  Numerical test for 1D shock-tube problem, t=2, N=100 

Velocity Distribution 
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Figure 3.4  Numerical test for 1D shock-tube problem, t=2, N=100  

Pressure Distribution 

 
Figure 3.5  Numerical test for 1D shock-tube problem, t=2, N=200  

Velocity Distribution 
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Figure 3.6  Numerical test for 1D shock-tube problem, t=2, N=200  

Comparison of Velocities  

 
Figure 3.7  Numerical test for 1D shock-tube problem, t=2, N=200 

Comparison of Velocities, locally enlarged 
 



 

 

 

36 

 
Figure 3.8 Smoothness for 1D shock-tube problem, t=2, N=100 and 200 
 

3.2.2 Shock-entropy interaction 

To test the capability of the new scheme in both shock capturing and resolution, 

we applied it to the 1-D problem of shock/entropy wave interaction. In this case, Euler 

equations (3.3) are solved with the following initial conditions: 

 

( ) ( )
( )




−≥+
−<

=
.41,0),5sin(2.01

;4,33333.10,629369.2,857143.3
,, 0 xx

x
puρ                           (3.5) 

 

α  is calculated using (2.27).  Figures 3.9 – 3.17 show the solutions of the 

density distribution on the coarser and finer grids. On the coarser grid with grid number 

of N=200, our new scheme shows much better resolution for small length scales than 

the 5th order WENO (Figures 3.9 – 3.13). Apparently, there is an order difference in 

resolution between our 6th order UWCNC scheme and the 5th order scheme. This is 

because UWCNC uses central, non-dissipative, compact scheme with weights in the 
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shock area and recovers high order compact away from the shock. The numerical results 

by our UWCNC scheme with 200 grid points are even comparable with the 5th order 

WENO scheme with 1600 grid points. On the finer grid (N=400), both the 6th order 

UWCNC and 5th order WENO schemes show a good resolution (Figure 3.14 – 3.17). 

However, we can still find our 6th order UWCNC scheme has a much better resolution 

for the fifth wave left from the shock (Figure 3.11). In addition, the UWCNC captures 

the shock in a much sharper way for all shocks. On the shocks developed by the sinuous 

waves, only one grid point was found on the shock (Figure 3.15 and 3.17). Again, 

Figures 3.18 – 3.20 show the smoothness measured by our definition which is the only 

parameter to control the compact and non-compact scheme switch. The figure shows 

the main shock is well captured with smoothness=1.0 ( 0=α ) and the shocks developed 

by the sine function are also well captured. The smoothness measured on the coarser 

grid (N=200 and 400) and finer grid (N=1600) are quite consistent. 

 



 

 

 

38 

 
Figure 3.9 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8 – Density Distribution, N=200 

 
Figure 3.10 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8, N=200 – Comparison of Density Distributions 
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Figure 3.11 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8, N=200 – Comparison of Density Distributions, locally enlarged 

 
Figure 3.12 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8 – Density distribution, UWCNC, N=200 
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Figure 3.13 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8 – Comparison of UWCNC N=200 with WENO N=1600 

 
Figure 3.14 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8, N=400 – UWCNC-6 
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Figure 3.15 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8, N=400 – Comparison of WENO-5 and UWCNC-6 

 
Figure 3.16 Numerical test for 1D shock-entropy wave interaction problem,  
t=1.8, N=400 – Comparison of WENO-5 and UWCNC-6 (locally enlarged) 
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Figure 3.17 Numerical test for 1D shock-entropy wave interaction problem,  

t=1.8, N=400 – Comparison of WENO-5 and UWCNC-6 

 
Figure 3.18 Smoothness for 1D shock-entropy problem, t=2, N=200  
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Figure 3.19 Smoothness for 1D shock-entropy problem, t=2, N=400 

 
Figure 3.20 Smoothness for 1D shock-entropy problem, t=2, N=1600  
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CHAPTER 4 

APPLICATION OF UWCNC TO 2-D EULER EQUATIONS 

 

4.1 Two-dimensional Euler equations 

 
The conservative form of the 2-D Euler Equations is as follows, 

( ) ( ) 0=++ yxt UGUFU  

where  
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4.2 Incident shock reflection 

 
A simple uniform grid is generated for 2-D incident shock reflection. 

Computational domain:  0<x<1.95, 0<y<0.588 

Boundary Condition:  

Inflow Mach Number M∞=3.0 

Flow Deflection Angle 15o 
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The results are plotted and compared as follows, 
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Figure 4.1 Pressure Contours of Incident Shock Reflection. 
Comparison of Numerical Solutions With Exact Solution. 
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Figure 4.2 Pressure profiles at y=0, y=0.052, y=0.104, y=0.208, y=0.311 
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Figure 4.3 Detailed pressure distribution at y=0.104 
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The results show that UWCNC has slightly sharper shocks than WENO, but the 

difference is not significant. The UWCNC-6 scheme captures shock captures shock as 

good as (or a little better than) WENO-5 scheme does. 

 

4.3 Cylindrical shock tube problem 

 
To further test the shock capturing ability of UWCNC in two dimensions, 

cylindrical shock tube problem is solved in a square domain. 

Pressure = 1
Density =  1

Pressure = 10
Density = 10

Time = 0.0

 

Figure 4.4 Cylindrical Shock Tube Problem: Geometry and Initial Conditions 
 

 

Initial conditions are specified as follows,  
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For x2+y2<0.5:  P = 10 and ρ = 10 

Elsewhere: P = 1 and ρ = 1 

u = v = 0 

The 2-D Euler equations are solved in this domain with adiabatic and reflective 

wall boundaries. A simple uniform grid is generated for 2-D cylindrical shock tube 

problem. The flow pattern is as follows, 

P = 0
  = 0

Time = 0.8
Moving ShockContact Surface 

(instability)

Expansion Waves

 

Figure 4.5 Flow pattern of cylindrical shock tube problem. 
 

The contact surface is unstable and sensitive to small perturbations in this test 

case. Therefore, there are small structures on the contact surface. 2-D Euler equation is 

solved over two grid levels, 81x81 and 161x161. The results are the following. 
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Figure 4.6 Density distribution along wall surface (radial). Grids: 81x81 
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Figure 4.7 Density distribution along wall surface (radial). Grids: 161x161 
 

The results show again that UWCNC-6 has captures shock and contact surfaces 

sharper than WENO-5. 

However, in both cases the flows are inviscid which makes the solution 

relatively simple. To further test the capability of resolving small structures, the Navier-

Stokes Equations are solved. Corresponding comparisons are also made between 

UWCNC-6 and WENO-5. 
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CHAPTER 5 

APPLICATION OF UWCNC TO 2-D NAVIER-STOKES EQUATIONS 

 

5.1 Two-dimensional Navier-Stokes equations 

The 2-D Navier-Stokes Equations can also be written in conservative form. 

Furthermore, the equations are written in general curvilinear coordinates as follows,  
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and 

( )
( )yx

J
,
,

∂
∂

=
ηξ

 is Jacobian of the coordinate transformation between 

curvilinear ( )ηξ ,  and Cartesian ( )yx,  frames, and yxyx ηηξξ ,,,  are coordinate 

transformation metrics. The contravariant velocity component U, V are defined as  

yxyx vuVvuU ηηξξ +=+= ,
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E denotes the total energy,  

( )22

2
1

1
vupE ++

−
= ρ

γ
 

The components of the viscous stress tensor and heat flux are denoted by 

xxxyxx τττ ,,  and yx qq , , respectively. 

 

5.2 Shock / laminar boundary layer interaction : case 1 

 

5.2.1 Inflow profile generation 

It has been shown that the resolution of the flow at the leading edge is critical 

for the boundary layer. In order to resolve both the boundary layer and shock waves 

efficiently, the flow around leading edge is computed separately by using the same 

code. A uniform flow field is used as initial condition in the region far away from the 

adiabatic wall. For the inflow boundary (including both left and upper boundary), 

parameters are fixed to the given values as follows, 

0.3=∞M ,  
5103Re ×= ,  7.0Pr =  

Where ∞M is the inflow Mach number, Re and Pr are the Reynolds number and 

Prandtl number, respectively. At wall surface, adiabatic and non-slip boundary 

condition is employed. Non-reflection boundary condition is used at outflow boundary 

to avoid non-physical reflections. The flow converged to a steady solution. 
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Figure 5.1 Numerical results of inflow 

generator – Grids 
Figure 5.2 Numerical results of inflow 

generator – Pressure 

  
Figure 5.3 Numerical results of inflow 

generator – Density 
Figure 5.4 Numerical results of inflow 

generator – Temperature 
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Figure 5.5 Numerical results of inflow 

generator – Mach Number 
Figure 5.6 Numerical results of inflow 

generator – Convergence History 
 

5.2.2 Main flow solver 

5.2.2.1 Numerical grid generation 

In order to resolve the small structures inside boundary layer, the grid is 

stretched vertically as shown below. 
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Figure 5.7 Numerical grids for main flow solver of shock / boundary layer interaction 
 

5.2.2.2 Initial and boundary conditions 

The inflow boundary is given by the profile of the previous inflow generator. 

The oblique shock is given such that the flow deflection angle is ten degrees. At wall 

surface, adiabatic and non-slip boundary condition is employed. Non-reflection 

boundary condition is used at outflow boundary to avoid non-physical reflections. 

 

5.2.2.3 Numerical results 

The numerical results are shown below. For better illustration, the graphs of 

vorticities are vertically stretched by a factor of 3. 

(i) Fine Grids (241x141) 
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Figure 5.8 Numerical Results of WENO-5 over Fine Grids (241x141) – Density Contours 

 
Figure 5.9 Numerical Results of WENO-5 over Fine Grids (241x141) – Pressure Contours 

 
Figure 5.10 Numerical Results of WENO-5 over Fine Grids (241x141) –  Mach Number 
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Figure 5.11 Numerical Results of WENO-5 over Fine Grids (241x141)  

– Vorticity and Stream Trace 
 

(ii) Coarse Grids (121x141)  UWCNC-6 

 
Figure 5.12 Vorticity and Stream Trace (121x141) UWCNC-6  

 

(iii) Coarse Grids (121x141)  WENO-5 
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Figure 5.13 Vorticity and Stream Trace (121x141) WENO-5 

 

 

5.3 Shock / laminar boundary layer interaction: case 2 

 

In this test case, the Reynolds number is 510 and the inflow Mach number is set 

to 2.15. The overall pressure ratio is 1.55. For comparison, the inflow condition was set 

as same investigated by Degrez et al (1987). Their experimental work has shown the 

shock-boundary layer interaction is laminar and two-dimensional. Therefore, we can do 

a 2-D numerical simulation and compare with their computational and experimental 

results. The computational grids is 257x257 (Figure 5.14). The grid stretching in 

stremwise direction is 1.01. The stretching in wall normal direction is 1.015. The same 

2-D Navier-Stokes equation is solved as the governing equation.  
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Figure 5.14 Computational Grids (257x257) 

 
Figure 5.15 Pressure Contour: normal view 



 

 

 

60 

 
Figure 5.16 Pressure contour: vertically stretched by a factor of 5 

 
Figure 5.17 Density Contour : Normal View 
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Figure 5.18 Density contour : vertically stretched by a factor of 5 

 
Figure 5.19 Mach Number Contour : Normal View 
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Figure 5.20 Mach Number Contour : Vertically Stretched by a factor of 5 

 
Figure 5.21 Temperature Contour : Normal View 
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Figure 5.22 Temperature Contour : Vertically stretched by a factor of 5 

 
Figure 5.23 Comparison of pressure distribution on the wall surface.  

(The red dots are our computation, the black dash one and solid one are Degrez’s 
computation and experiment respectively.) 
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Figure 5.24 Comparison of velocity profiles at x=0.6 

(The red dots are our computation, the black solid line and black dots  
are Degrez’s computation and experiment respectively.) 

 
Figure 5.25 Comparison of velocity profiles at x=0.95 

(The red dots are our computation, the black solid line and black dots  
are Degrez’s computation and experiment respectively.) 
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Figure 5.26 Comparison of velocity profiles at x=1.6 

(The red dots are our computation, the black solid line and black dots  
are Degrez’s computation and experiment respectively) 

 

Figures 5.15 – 5.22 show the distribution of pressure, density, Mach number and 

temperature obtained by our computation. Figures 5.23 – 5.26 show our numerical 

results agree well with the numerical results and are close to the experimental results 

given by Degrez et al (1987). Degrez et al favor their computational results addressed in 

their JFM paper. 
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5.4 Hypersonic flow around double angle 

 

5.4.1 Flow parameters 

In order to validate our scheme and code, we compared our results with well 

documented experimental and computational data. The case including the geometry and 

inflow condition was set same as the experiment conducted by Wadhams et al (2004) 

and the computation by Gaitonde et al (2002).  The inflow Mach number is set to 

M=9.58, the Reynolds number Re=278870, the inflow temperature Tin=185.6, and the 

wall temperature Tw=293.3. 

 

5.4.2 Numerical grid generation 

Before we work on a double cone, a supersonic flow passing a double angle was 

solved first. The overall Grid is 257x129 obtained by elliptic grid generation and the 

girds are uniform in stream-wise direction, but stretched in wall normal direction with a 

factor of 1.037.  

An elliptic grid generation method first proposed by Spekreijse (1995) is used to 

generate 2D grids. The elliptic grid generation method is based on a composite 

mapping, which is consisted of a nonlinear transfinite algebraic transformation and an 

elliptic transformation. The algebraic transformation maps the computational space C 

onto a parameter space P, and the elliptic transformation maps the parameter space on 

to the physical domain D. The computational space, parameter space, and the physical 

domain are illustrated in Figure 5.27. and the elliptic transformation maps the parameter 
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space on to the physical domain D. The computational space, parameter space, and the 

physical domain are illustrated in Figure 5.27. The computational space C is defined as 

the unit square in a two-dimensional space with Cartesian coordinates ( )ηξ , , and 

[ ]1,0∈ξ , [ ]1,0∈η   (see Figure 5.27). The grids are uniformly distributed on the 

boundaries and in the interior area of the computational space. The mesh sizes are 

1
1
−ξN

 in the ξ direction and 
1

1
−ηN

in the η direction, where Nξ and Nη are the grid 

numbers in the corresponding direction. The parameter space P is defined as a unit 

space in a two-dimensional space with Cartesian coordinate (s,t), and [ ]1,0∈s , [ ]1,0∈t . 

The boundary values of s and t are determined by the grid point distribution in the 

physical domain. 

 

Figure 5.27 Computational Space C, Parameter Space P and Physical D 
 

An algebraic transformation :s  C → P is defined to map the computational 

space C  onto the parameter space P. The grid distribution is specified by this algebraic 
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transformation, which depends on the prescribed boundary grid point distribution. The 

interior grid point distribution inside the domain, generated by the algebraic 

transformation, is a good reflection of the prescribed boundary grid point distribution. 

Let ( ) ( )0,
3

ξξ ssE =  and ( ) ( )1,4 ξξ ssE =  denote the normalized arc-length along 

edges E3 and E4, ( ) ( )ηη ,0
1

ttE =  and ( ) ( )ηη ,1
2

ttE =  denote the normalized arc-length 

along edges E1 and E2.  The algebraic transformation :s  C → P is defined as  

 

which is called the algebraic straight line transformation. It defines a 

differentiable one-to-one mapping because of positiveness of the Jacobian 

0>− ξηηξ tsts . 

The elliptic transformation x : P → D , which is independent of the prescribed 

boundary grid point distribution, is defined to map the parameter space P onto the 

physical domain D. The elliptic transformation is equivalent to a set of Laplace 

equations 

 

The elliptic transformation defined by the above equations is also differentiable 

and one-to-one. 

Till now we have defined two transformations, i.e., the algebraic transformation 



 

 

 

69 

s: C → P, and the elliptic transformation  x: P → D. Because both the algebraic 

transformation and the elliptic transformation are differentiable and one-to-one, the 

composition the two transformation is also differentiable and one-to-one, so as to the 

inverse transformation. 

 

In physical domain, the curvilinear coordinate system satisfies a system of 

Laplace equations:  

     (5.1) 

where ( )Tyxr ,= . The inherent smoothness of the Laplace operator makes the 

grids smoothly distributed in the physical domain. Being transformed to the 

computational space, this Laplace system becomes a set of Poisson equations. The 

control functions is determined by the composed transformation according to the 

following procedures. First, Equation 5.1 is transformed into the computational space 

C:  

 

where 221211 ,, ggg  are the components of the contravariant metric tensor, which 

can be calculated from the covariant metric tensor 
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J is defined as [ ]ijgdet . 

Then we have  

 

where 

 

and the matrix T is defined as  

 

Then the Laplace system is transformed to the computational space C: 

 

ξ∆  and η∆  are replaced by the control functions, then we obtain the Poission 

equations for the grid generation as follows, 

 

where the control functions are defined by the algebraic transformation. 
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The elliptic transformation is carried by solving a set of Poisson equations. The 

control functions are specified by the algebraic transformation only and it is, therefore, 

not needed to compute the control functions at the boundary and to interpolate them into 

the interior of the domain, as required in the case for all well-known elliptic grid 

generation systems based on Poisson systems. 

 

The computed grids are in general not orthogonal at the boundary. The algebraic 

transformation can be redefined to obtain a grid which is orthogonal at the boundary. 

First, redefine the elliptic transformation by imposing the following boundary 

conditions for s and t: 

• s = 0 as edge E1 and s = 1 at edge E2. 

• ∂s/∂n = 0 along edges E3 and E4, where n is the outward normal 

direction.  

• t = 0 as edge E3 and t = 1 at edge E4. 

• ∂t/∂n = 0 along edges E1 and E2, where n is the outward normal 

direction.  

Second, redefine the algebraic transformation s : C → P according to two 

algebraic equations, 

 

where H0 and H1 are cubic Hermite interpolation functions defined as 
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Grid orthogonality at boundaries is obtained in three steps. 

1. Compute an initial grid based on the Poisson grid generation system 

with control functions specified according to the algebraic straight line 

transformation defined by Eq.5.1; 

2. Solve the two Laplace equations given by Eq.5.1 with the above 

specified boundary conditions; 

3. Re-compute the grid based on the Poisson system but with control 

functions specified according to the algebraic transformation defined by 

Eq.5.1. 

 

The grid details are shown below. 
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Figure 5.28 Overall Grid 257x129 

 

 
Figure 5.29 Coarse grid drawn every four points for illustration purpose (64x32) 
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Figure 5.30 Leading Edge 

 

 
Figure 5.31 First Corner 
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Figure 5.32 Second corner 

 

 
Figure 5.33 Trailing Edge 
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5.4.3 Preliminary results 

The contour of flow field and distribution of physical quantities along the wall 

boundary are shown in Figure 5.39 — 5.41. Since the case we calculated is for a double 

angle not a double cone, we cannot compare with the above experiment and 

computation directly for now. However, the distribution of Mach number, pressure, 

density, and temperature are very similar.  

 
Figure 5.34 Contours of Mach Number 
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Figure 5.35 Contours of Pressure 

 

 
Figure 5.36 Contours of Density 
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Figure 5.37 Contours of Temperature 

 

 
Figure 5.38 Pressure Contours with Streamlines 
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Figure 5.39 Pressure Distribution Along Wall Surface 

 

 
Figure 5.40 Density Profile Along Wall Surface 
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Figure 5.41 Temperature Profile Along Wall Surface 

 

 

Although we used same geometry and inflow conditions as the experiment 

(Wadhams et al, 2004) and the computation used, we cannot directly compare our 

results with theirs since their results are for double cones and ours for double angles. 

However, we can make qualitatively comparison and find the flow structure is very 

similar. Figure 5.42 – 5.45 show such a comparison 
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Computation by Gaitonde et al, 2002 Liu et al, 2007 

 

Figure 5.42 Qualitative comparison of streamline and separation bubble 
 
 

  
Computation by Gaitonde et al, 2002                            Liu et al, 2007 

 

Figure 5.43 Qualitative comparison of Mach number 
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Figure 5.44 Qualitative comparison of Cp 
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Figure 5.45 Qualitative comparison of pressure distribution 
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CHAPTER 6 

CONCLUSIONS AND DISCUSSIONS 

 

In this work, a uniform weighted compact / non-compact scheme with 6th order 

of accuracy (UWCNC-6) is developed based on our previous Weighted Compact 

Scheme (WCS). The behaviors and properties of UWCNC are studied. It is further 

applied to one- and two-dimensional Euler equations as well as two-dimensional 

Navier-Stokes equations. Based on the numerical results, the following conclusions are 

made, 

1. The UWCNC-6 scheme uses a uniform formulation for both compact 

and non-compact schemes. The global dependency of the scheme is 

determined by the parameter α which is calculated based on smoothness. 

2. The new UWCNC scheme has the capability of capturing shocks in both 

one and two dimensions. In most cases, shocks and contact surfaces are 

captured sharper than WENO-5 results. 

3. The central differencing and high order of accuracy make UWCNC-6 

less dissipative than WENO-5. This property is desirable when small 

scale structures are very important. 
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4. The simulation of shock / boundary layer interaction shows that 

UWCNC-6 has better resolution inside boundary layer where the N-S 

equation is largely parabolic:  

a. In many cases the separation region has many small-scale 

structures (vortices). UWCNC-6 resolves these small vortices 

better than WENO-5 does. 

b. In other cases where the flow is proven to be steady and laminar, 

UWCNC-6 also resolves the flow field; the numerical solution 

matches the previous work in literatures. 

5. The simulation of hypersonic flow around double angle shows that 

UWCNC-6 has the capability of capturing very strong shocks (M>9). 

This makes it very promising in the future study of hypersonic boundary 

layer, transition, shock / boundary layer interaction, etc where both 

shock and small vortices are present in the flow field simultaneously. 
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