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ABSTRACT

UNIFORM WEIGHTED COMPACT / NON-COMPACT
SCHEMES FOR SHOCK / BOUNDARY

LAYER INTERACTION

Publication No.
Peng Xie, PhD.
The University of Texas at Arlington, 2007

Supervising Professor: Chaogun Liu

The critical problem of CFD is perhaps an accurate approximation of
derivatives for a given discrete data set. Based on our previous work on the weighted
compact scheme (WCS), a uniform weighted compact / non-compact scheme
(UWCNC) has been developed. Similar to WENO, three high order candidates, left,
right, and central, are constructed by using Hermite polynomials. According to the
smoothness, three weights are derived and assigned to each candidate. The weights will

lead the scheme to be upwind-biased when approaching the shock or other
iii



discontinuities but quickly becomes central, compact, and of high order just off the
shock. Therefore, the new scheme can get a sharp shock without oscillation, but keep
central, compact and of high resolution in the smooth area. This feature is particularly
important to numerical simulation of the shock-boundary layer interaction, where both
shock and small eddies are important. Comparing with 5th order WENO which has 5th
order accuracy in the smooth area and 3rd order accuracy near the shock, UWCNC
scheme is superior with smaller stencils and higher order of accuracy. The necessary
dissipation is provided by weights and some high order upwind-biased scheme. The
new scheme has been successfully applied to 1-Dimensional shock tube and shock-
entropy interaction and 2-Dimensional incident shock reflection. The new scheme has
obtained sharper shock, no deformation of expansion wave, and much higher resolution
than 5th order WENO for small length scales. A variety of cases including shock-
boundary interaction with incident shock and double angles has been tested. The

preliminary numerical solution is encouraging.
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CHAPTER 1

INTRODUCTION

1.1 Overview on shock capturing schemes

The fluid flow is in general governed by the Navier-Stokes equation which is a
system of time dependent partial differential equations. However, for external flow, the
viscosity is important largely only in the boundary layers. The main flow can still be
considered as inviscid and the governing system can be dominated by the time
dependent Euler equations which are hyperbolic. The difficult problem with numerical
solution is to capture shocks which can be considered as a discontinuity or
mathematical singularity (no classical unique solution and no bounded derivatives). In
the shock area, continuity and differentiability of the governing Euler equations are lost
and only the weak solution in an integration form can be obtained. The shock can be
developed in some cases because the Euler equation is non-linear and hyperbolic. On
the other hand, the governing Navier-Stokes system presents parabolic type behaviors
and is therefore dominated by viscosity or second order derivatives. One expects that
the equation should be solved by high order central difference scheme, high order
compact scheme is preferable, to get high order of accuracy and high resolution. High

order of accuracy is critical in resolving small length scales in flow transition and



turbulence process. However, for the hyperbolic system, the analysis already
shows the existence of characteristic lines and Riemann invariants. Apparently, the
upwind finite difference scheme coincides with the physics for a hyperbolic system.
History has shown the great success of upwind technologies. We should consider not
only the eigenvalues and eigenvectors of the Jacobian system, but aso non-linearity
including the Rankine-Hugoniot shock relations. From the point of view of shocks, it
makes no sense to use high order compact scheme for shock capturing which use all
gird points on one grid line to calculate the derivative by solving atri-diagonal or penta-
diagonal linear system because shock does not have finite derivatives and downstream
guantities cannot cross shock to affect the upstream points. From the point of view of
the above statement, upwind scheme is appropriate for the hyperbolic system. Many
upwind or bias upwind schemes have achieved great success in capturing shocks
sharply, such as Godunov (1959), Roe (1981), MUSCL (Van Leer, 1979), TVD
(Harten, 1983), ENO (Harten et a, 1987; Shu et a, 1988, 1989) and WENO (Liu et al,
1994; Jiang et al, 1996). Roe’s scheme may be better in capturing the shock sharply
because it satisfies the Rankine-Hugoniot relation. Of course, Roe’s method can also be
considered as a method for flux difference splitting and any high order method such as
ENO and WENO can use Roe’s method as a splitting method. However, all these
shock-capturing schemes are based on upwind or bias upwind technology, which is
appropriate for hyperbolic system, but is not favorable to the N-S system which presents
parabolic equation behavior. The small length scale is very important in the flow

transition and turbulence process is thus very sensitive to any artificial numerical



dissipation. High order compact scheme (Lele, 1992; Visbal, 2002) is more appropriate
for simulation of flow transition and turbulence because it is central and non-dissipative

with high order accuracy and high resolution.

Reflected Shock

Expansion Fan

Compression Waves (or
Shock) of separation

Leading Edge Shock

Separation Reartachment
Point Point

Figure 1.1 Schematic of the flow pattern of shock / boundary layer interaction

Unfortunately, the shock-boundary layer interaction, which is common and
important in high speed flows, is a mixed type problem which has shock (discontinuity),
boundary layer (viscosity), separation, transition, expansion fans, fully developed
turbulence and reattachment. In order to capture the shock and keep high order accuracy
and high resolution in the smooth area, we have developed the so called weighted
compact scheme (WCS, Jiang et a, 2001) which works very well for 1-D convection
eguation, Burger’s equation, but not so good for Euler’s equation with shocks. Visible
wiggles have been found near the shock. In the case of shock-boundary layer

3



interaction, there are elliptic areas (separation, transition, turbulence) and hyperbolic
areas (main flow, shocks, expansion fans), which make the accurate numerical
simulation extremely difficult if not impossible. We have to divide the computational
domain to several parts: the elliptic, hyperbolic, and mixed regions. The division or
detection can be performed by switch function automatically such as shock detector
which simply sets W=1 for the shock areaand W= 0 for the rest. The switch function
may give the best results for shock-boundary layer interaction, but it will have too many
logical statements in the code which may slow down the computation. The switch
function could also be case-related and very difficult to adjust. It would also slow down
the convergence for steady problems. The use of “weights” will be naturally considered
as a good candidate that succeeded for many schemes, WENO is a good example and

Weighted Compact Scheme is another example.

Traditional finite difference schemes use the idea of Lagrange interpolation. To
obtain nth order of accuracy, a stencil covering n+1 grid points is needed. In other
words, the derivative at a certain grid point depends upon the function values at these
n+1 grid points and only these grid points. In contrast, standard compact schemes (Lele,
1992; Visbal, 2002) use the idea of Hermitian interpolation. By using derivatives as
well as function values, a compact scheme achieves high order of accuracy without
increasing the width of stencils. Asdiscussed in Lele’s paper, a compact scheme has not
only high order of accuracy, but also high resolution. Fourier analysis indicates that,

with the same order of accuracy, a compact scheme has better spectral resolution than a

4



traditional, explicit finite difference scheme. For this reason, compact schemes are
favorable in the simulation of turbulent flows where small-length-scale structures are

important.

Due to the usage of derivatives, compact schemes usually give us a tri-diagonal
or penta-diagonal system. Although the tri-diagonal matrix is sparse, the inverse of atri-
diagonal matrix is dense, which means the derivative at a certain grid point depends
upon all the grid points along a grid line. The success of compact schemes indicates that
the global dependency is very important for high resolution. However, the global

dependency is good for resolution but not so applicable for shock capturing.

The basic idea proposed in ENO (Harten et al, 1987) and WENO (Jiang et al,
1996) schemes is to avoid the stencil containing a shock. ENO chooses the smoothest
stencil from several candidates to calculate the derivatives. WENO controls the
contributions of different stencils according to their smoothness. In this way, the
derivative at a certain grid point, especially one near the shock, is dependent on a very
limited number of grid points. The local dependency here is favorable for shock
capturing and helps obtaining the non-oscillatory property. The success of ENO and

WENO schemes indicates that the local dependency is critical for shock capturing.

The Weighted Compact Scheme (WCS) developed by Jiang et al, 2001 is

constructed by introducing the idea of WENO scheme to the standard compact schemes

5



which uses weights for several candidates. The building block for each candidate is a
Lagrange polynomial in WENO, but is Hermite in WCS. Therefore WCS achieves a
higher accuracy with same stencil width. In shock regions, WCS controls the
contributions of different candidate stencils to minimize the influence of the candidate
which contains a shock. In smooth regions where shocks are not present, WCS recovers
to the standard compact scheme to achieve high accuracy and resolution. The numerical
tests indicate that original WCS works fine in some cases such as convection equation
and Burger’s equation, but not very well for Euler equation. As mentioned above, the
usage of derivatives by compact schemes results in the global dependency.

In order to overcome the drawback of the WCS scheme, we need to achieve
local dependency in shock regions and recover the global dependency in smooth
regions. This fundamental idea will naturally lead to a combination of local dependent
scheme, e.g. WENO and global dependent weighted compact schemes which we call
“Uniform Weighted Compact / Non-compact Schemes” (UWCNC). The mixing and
weights are designed in following ways: the new scheme automatically becomes bias
when approaching the shock, but rapidly recovers to be central, compact, with high
order of accuracy and high resolution. This kind of scheme has been developed and

preliminary computation results are very promising.

1.2 Importance of high order schemesto DNS/LES

It should be pointed out that the order of accuracy of the finite difference

scheme is absolutely not atrivial issue to CFD, especially to DNS and LES. Thereis a



significant difference in requirements of grid size by DNS/LES between low order
schemes and high order schemes. Let ustake alook at the local truncation error for 1-D

problem. If one uses a second order scheme with a mesh size of Dx,and wants to have
same truncation error using a sixth order scheme with a mesh size of Dx;, one should
have:

C,(Dx,)? = C4(Dx,)° (1.2

Assume C, » C and Dx, = 0.01(100 grid points in a normalized domain), we will get
(Dx,)? =(10°?)°
Dx, =10°° 1.2

In other words, the second order scheme needs one million of grid pointsto beat
the sixth order scheme with 100 grid points for same order of accuracy. This advantage
of high order scheme will become more significant when one uses DNS for 3-D
problems. We do not want to use one million of grids in each direction for DNS, but
prefer to use 100 grid points. Therefore high order scheme must be used. Of course, the
global accuracy is also influenced by factors other than the local truncation errors, and
the advantage of the sixth order scheme does not typically show a magnitude of 10
thousand times improvement over the second order scheme. However, it is now widely
recognized that high order finite schemes are strongly encouraged to be used for DNS
and LES which have much higher accuracy and higher resolution than low order

schemes.



1.3 Discussion on low order LES with low order subgrid models

Most LES computations require use of a subgrid model trying to get the
unresolved scales back, which could be mathematically considered as truncation errors.

Let ustake alook at the famous Smagorinsky model:

t;,=-nS; ad
n =CD)’|S| (13

Where t, S;,C,,D are unresolved stress tensor, resolved strain tensor,

Smagorinsky constant, and filter width, respectively. Apparently, it is a second order
model with 7. Other models are similar. If we use a sixth order compact scheme for
LES without model (Implicit LES), we will get sixth order of accuracy. However, if we
add the Smgorinsky subgrid model, our LES results will be degenerated to second order
of accuracy, which isreally bad. A carefully designed 6th order subgrid model may be
needed for high order LES. Therefore, second order DNS, second order LES with
second order subgrid models are not appropriate for DNS or LES.

Table 1 shows the orders obtained by different orders of schemes, which
demonstrates the importance of high order numerical schemes for DNS/LES.

Table 1.1 Orders of DNS/LES approaches

Scheme Truncation Errors Comments
Second order DNS O(h?) Bad
Second order LES +Second order|  O(h?) or up Bad
subgrid model

Sixth order LES without subgrid  O(h®) Good
model (ILES)




Table 1.1 - Continued

Sixth order LES with second order O(h?) Bad
subgrid model
Sixth order LES with sixth order| O(h®) or up Best
subgrid model

1.4 Basic point of view on the scheme development

The 3-D time dependent Navier-Stokes equations in a general curvilinear

coordinate can be written as

190, 9(E- E), 1(F- F), 1(F- F.

=0 (1.9
J 9t Mx Th 9z
For 1-D conservation law, it will be:
T + 1E =0 (1.5
1t 9

The critical issue for high order CFD is to find an accurate approximation of
derivatives for a given discrete data set. The computer does not know any physical
process but accepts a discrete data set as input. The output is also a discrete data set. We
measure the input data by slopes to determine it is smooth (slope is small), oscillatory
(slope is large), and non-differentiable (or corner points which have slopes large on one
side, but small on the other side), or, in other words, by a smoothness function, and then
an appropriate numerical scheme is set up based on the feature of the discrete data set,
but not the governing system. This is the basic view point for our new scheme

development.



CHAPTER 2

UNIFORM WEIGHTED COMPACT / NON-COMPACT SCHEMES

2.1 ENO reconstruction function

For 1-D conservation laws:
u (x,t)+ f (u(x,t)) =0 (2.1)
When a conservative approximation to the spatial derivative is applied, a semi-

discrete conservative form of the equation (2.1) is described as follows:

A

du, -
: (fj+(1/2) - fj-(1/2)) (2-2)

1
dt Dx

1 x+Dx/2» 1, ;- A
where f, =&Q_Dxlzf(x)dx and then (f,), =-&(fj+(l,2)- f,_w2)- Note

that f isthe original function, but f is the flux defined by the above integration which

is an exact expression of the flux but is different from f.

Let H be the primitive function of f defined below:

+Dx i +Dx

12 A 5] 12 » d
f (x)dx =_a Q 2 f(x)dx =Dx g f; (2.3)

i=-¥ i=¥

&

H (Xj+(]JZ)) =0

H can be easily calculated, but is a discrete data set.

The numerical flux f at the cell interfaces is the derivative of its primitive

function H. i.e.:

10



fj+(l/2) = H}+(1/2) (2.4)

All formulae given above are exact without approximations. However, the
primitive function H is a discrete data set or discrete function and we have to use
numerical method to get the derivatives, which will introduce numerical errors, or, in

other words, order of accuracy.
This procedure, f ® H® f ® f_, is called reconstruction introduced by Shu

& Osher (1988, 1989). The problem left for numerical methods is how to solve (2.4) or
how to get accurate derivatives for a data set.

2.2 Data normalization

In order to find universal formula, we need to normalize the data set, u(i), i=1,

Ugit =l Un = Upnin | (2.5)

max

U =(U- Uppn) /Ugy (2.6)
Here, u_, and u . are the maximum and minimum values of u respectively and
U is normalized. For simplicity, we throw out the hat of u and use u(i) as the

normalized data set.

2.3 Weighted compact scheme

As we addressed that one problem left for numerical methods, which is how to

solve (2.4) or how to get accurate derivatives for a discrete data set. It is equivalent to
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finding an accurate flux in the interface. We turn our atention into finding a high order

scheme which, however, must be able to pass the shock without non-physical wiggles.

2.3.1 WENO Scheme (Jiang & Su, 1996)

Before discuss our new scheme, first let us see how to construct the WENO

scheme.

2.3.1.1 Conservation Form of Derivative

U IR o @2.7)

=
T
_Th
If
1
_Th

2.3.1.2 Fifth Order WENO (bias upwind)

1) Flux approximation

In order to get an high order approximation for If_ . =H |, we can use three
J-E J-E

different candidates (Figure 2.1) which are all third order polynomials:

H i E:H o, H 4, H
' j N

PEARRN-ERLNE LAY
2 2 2 2
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J+2 J+3

| | | o | o | |

J 1 J+1 J+2
I+

Figure 2.2 Schematics of WENO Scheme Stencils — 5th order WENO Scheme

Let us look a candidate E, first. Assume H is a third order polynomial:
H =a,+a(x- Xj-1/2)+az(x' Xj-1/2)2+as(x' Xj-slz)S’Wehave

j-12 = 8

32 =8 - ah+ah’- ah’
512 =8 - 2ah+4ah’- 8ah’®
1712 = 8- 3ah+9a,h? - 27a;h°

H

H
2.8

H (2.8)

H

Further by subtraction, we can get

H j-1/2 ~ Hj—3/2 = hFj—l =ah- a,zhz +a3h3
Hi - Hiso= h(Fj—l + Fj-z) =2ah - 4a'zh2 +833h3 (2.9)
H j-1/2 " H 712 = h(Fj.]_ + Fj_z + FJ—_3) =3a,h- 9(’:\2h2 + 276\3h3

Deleting a,, we can get

13



8Fj_l- (Fj_l+ Fj_z) =6a, - 4a,h

2.10
27F, - (Fj,+F ,+F, ;) =24a - 183,h (2.10)
or
63F, ;- 9F, , =54a (2.11)
S2F, - 2F, ,- 2F, ; =483
Then,
6a, = 2F, ;- 7F, , +11F, ;
A : 1 7 11
O E,:F ,=H ,,=a,==F .-—-F_,+—F 212
0 j—% j-1/2 al 3 j-3 6 j-2 6 j-1 ( )
Finally, we have
e 1 7 11
EO.FJ__% —§Fj 3" EFj'2+EFj 1
A 1 5 1
El:Fj_éz'gFi-2+gFi-l+§Fi (2.13)
2
o 1 5 1
E,: F,—.& _§F‘ l+EFJ EF”l
2

2) Optimal weights for high order of accuracy

The final scheme should be a combination of three candidates:

1 6 3 .
E:COE0+C1E1+C2E2.|fW€S€tC0:E,Cl:E,szl—O,WeWIHhave
. _1 13 47 271 1
F ,==F ,-F ,+—F +=-F - —F,
i3 30 " 60 " 60 " 60 ' 20 '™

14



1 13 47 27 1 (2.14)

w130 2 gt e e in T o i
2

" _ o 5, 1 1 1.1 1
o —# =(- 30 st Pt gh S Z—OF,-+2)/DX+O(DX5)

Using Taylor expansion for F;_, , we find

" FaF —F- (OO + L DX+ (2.15)
x Dx 60 140
which shows the scheme with optimal weights and 6 grid points has a 5th order
truncation error. Note that the scheme is a standard 5th order bias upwind finite
difference scheme.

3) Bias up-wind weights:

Let us define a bias weight for each candidate according to WENO:

(2.16)

where

Xj+1/2éé -
1IS=9 a [p.("1*h*"dx

U2 =

13 1
1S, :E(Fj_z- 2Fj_l+Fj)2+Z(Fj_2- 4F, , +3F))?

13 1
|% :E(Fj—l' 2Fj + Fj+1)2 +Z(Fj-l- Fjﬂ)z

- 4F,,, +3F; )?

j+2

13 , 1
ISz _E(Fj - 2Fj+1+Fj+2) +Z(F

15



The 5th order WENO can be obtained

Fio = WoEy +W,E, +W,E, (217)
A 1 7 11 1 5 1
Fiie :WO,j—llz(:_a Fis- 6 —~F. 6 —F) tW (- 6 Fi.. +E Fiit5F)
(2.18)
5
tW, ;. 1/2( Fi1 6 F, - ,+1)

WENO is a very popular scheme with great successes by many users. However,
the scheme has 5th order dissipation everywhere and third order dissipation near the
shock and it istoo dissipative for transition and turbulence. Let us turn into central and

compact schemes for assistance.

2.3.2 Weighted Compact Scheme (WCS, Jiang et al, 2001)

1) High-order compact schemes

A Pade-type compact scheme could be constructed based on the Hermite
interpolation where both function and derivatives at grid points are involved, e.g. a
fourth order finite difference scheme can be constructed if both the function and first
order derivative are used at three grid points. For a function f we may write a compact
scheme by using five grid points (Lele, 1992):

b_f;.,+a. fj + 1, +a+fJ+1 + J+2

=(b.f, ,+af +cf +a,f, +bf,,)/Dx (219

j- + J+1

We can get 8" order of accuracy by using the above formula based on Taylor

16



If we use a symmetric and tri-diagonal system, by settingb. =b, =0, we can
get aone parameter family of compact scheme (Lele, 1992):

1 1 1 Y
(4a - 1)f_,- 5)(a +2)fj_l+§(a +2)fj+l+E(4a ; 1)fi+2§/h (2.20)

af +f+af

e

_é
"8

If a =3, wewill get astandard sixth order compact scheme.

When a compact scheme is used to differentiate a discontinuous or shock
function, the computed derivative has grid to grid oscillations. In our previous work
(Jiang et al, 2001) a new class of finite difference scheme - weighted compact scheme
(WCS) was proposed.

2) Basic formulations of weighted compact scheme

o—%—0 X—O0—X
d5 43
Fo B Jal Tl T2
2 2 2 2
I | & o | o | 4 |
e e e
J-2 J-1 J J+1 J+2 J+3

Figure 2.4 Sixth Order Compact Scheme
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In order to get an high order approximation for F =H ,, the six order
i1
2

I\J\H

weighted compact scheme uses three candidates for If_ , asshown in Figure 2.3 which
i-

N

are all polynomials:
EO : Hj—5/2’ Hj—3/2’ Hj—l/2 ’ El: Hj—3/2’ Hj—l/2’ Hj+l/2’
and Ez : Hj—l/2’ Hj+l/2’ Fj+3/2 (2-21)

Note that:

-1

H.y,=a FDx (2.22)
i=0

Compact schemes are used for these three candidates:

E,: aOH'J-_s,2 i-1/2 =(- bOHJ 52 8H 5t Hj_l,z)/Dx

E:aH s, +H ,+aH ,=a(H ;- Hig,)/Dx (2.23)
E,: H}_l,2+ J+1/2 (bZHJ+3/2 aH ;- Cij_l,z)/Dx

For high order, we pick

1 3 1 1 5
a0:2,alzz,a2:2,a():2,alzz,a2:2,b0:§,b225,(;0:§,c2:

N | ol

(2.24)

E, and E, have third order, but E, has fourth order of accuracy.

The compact scheme for each candidate is:

.1 ' +H' 1 ' :3(Hj+l/2_H13/2)

o HGRL® (2.25)
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. . o 5 o) 1 5
Ez: H j-1/2 + 2Hj+l/2 = 85 Hj+3/2 + 2Hj+l/2 - 5 H j-1/zg/h = E Fj+l +§ Fj

3) Non-bias compact scheme

Let E=C,E,+C,E, +C,E,and C,=—+,C, =0 ¢, =L

18 18" % 18

1 . . 1 .. 1 29 29 1

E:éHj—Slz + Hj—l/2 +§Hj+l/2 :3_Fj—2 +3_Fj—l +£Fj +3_Fj+1 (2-26)
Similarly, E a point j +1/2is

1 . . 1 .. 1 29 29 1

5 H j-1/2 +H j+1/2 +§ H j+312 = % Fj—l +£ Fj +3_ Fj+1 +£ Fj+2 (2-27)
Subtracting the previous equation at point j-1/2, we get

1_. 10 1,1 7 7 1

P Fj-l + Fj +§ Fj+l - E(' % Fj-z - 5 Fj—l +§ Fj+1 +£ Fj+2) (2-28)

This is a standard sixth order compact scheme. The stencil candidates are

Ey:F ., F.., E:F.,F, ad E,:F,Ffor H_,,=F_,,. This aso shows the

J

WCS uses smaller candidate stencils but gets higher accuracy comparing with the 5th

order WENO.

The procedure described above implies that a sixth order centered compact

scheme can be constructed by a combination of three lower order schemes. In order to

achieve the non-oscillatory property, the WENO weights (Jiang et al., 1996) are

introduced to determine new weights for each stencil. The weights are determined

19



according to the smoothness of the function on each stencil. Following the WENO

method, the new weights are defined as

gk g e —Ck
a9 © e+18)

w, = (2.29)

where e is asmall positive number to prevent the denominator becoming zero
and p is a parameter to control the weighting. Actually, the weights are very sensitive to
p. We set p as a function of smoothness instead of constant. When p=0, the 6th order
standard compact scheme is recovered. 1S is a smoothness measurement which is
defined in (2.16). Through the Taylor expansion, it can be easily proved that in smooth
regions the new weights w, satisfy:

w, =C, +0(h*) and

w, - w, =O(h%) (2.30)

The new scheme is formed using these new weights:

E=w,E, +wE +w,E, (2.31)

The leading error of E is a combination of the leading errors of the original

schemes, which is;

1

1 1 1 1
12 ¢

1
(5% ) Oh? + (- 2o+ oo~ W) f G (2.32)

When equation (2.30) is satisfied, the leading error of the new scheme can be

written as O(h®) and the new scheme remains its 6th order of accuracy.
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2.4 Uniform weighted compact / non-compact schemes

Now, we try to use one parametera -family of the compact scheme. On each
stencil, a compact difference scheme is derived as follows by matching the coefficients

in Taylor seriesto obtain corresponding orders.
s N o ;
So:Fo aofi-1+fizﬁ[bo fi—2+a0fi—l+cofi]
e , . ir . .
Sl : Fl al f i—l+f i+al f i+l:E[a1 fi—l+clfi +a1 fi+l]
Sz : Fz fli +a; f Ii+l: %[Cz fi +a; fi+l +b2+ fi+2] (2-19)

The linear weight for each stencil is Cy, Ci, C,, respectively. Then we have 16

unknowns,

Co 8o, By, &, G
C. a;, a, &, &, ¢,

+

Cz’ a,, a;’ b;’ G,
For each stencil, a compact scheme of lower order is established. By matching

the coefficients in Taylor’s series, we have the following conditions:

3+a, 3+a, .
0 = 20, C1:O’ C, =- 20, 2:2, aO:-Z,
1-a, 1-a,
b-: 0, b+__ 0,
0 2 2 2
a; :6‘1'#331'1, a’ :_al'f&il'l (2.20)

In order to reassemble the standard compact scheme in equation (2.10), we have

the following conditions:
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Ca, +Ca; =a, C,+C,+C, =1, Ca, +Ca, =a,

Cob; =- ~(4a-1), Coa;+Ca; =- ~(a +2),
12 3
CoCo +Ci6 +C,c, =0, Cia) +Cya, :%(a +2)’

1
Cb, =—(4a-1 221
b, = (4a- ) 221)

where a istreated as a parameter.
All these nonlinear equations above are not independent to each other.

Therefore, the system is not closed for 16 unknowns. We can add an artificial condition

to close the system. Note that this is a non-linear system. Let us try to use a, =

4
artificially. We have a closed system with the following solution listed in Table 2.1
Table 2.1 Coefficients for the compact scheme on
each stencil SO, S1, S2 (a, =%)
C a. a, b a. o a, b,
s -2 e(2a-)) 1 3(2a-1) 3 3a(2a-1)
0l (3 -2)| 5-2 2 m-2 2 |27 w2
4a@-1 3 3 Aa 1 A
S, 3(A - 2 — — 42 0 275
( ) 4 4 4 2 4 2
S %a-2 6a(2a - 1) 3 &(2&-) _1,3%(a-)
2l 6(3a - 2) 5a - 2 2 mm-2 2 2 b5Ga-2

Every coefficient varies smoothly and monotonically whena varies from 0O to

1/3. Therefore, the scheme is formulated as follows,
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., 22 o1& wa-do @8 B 1o
5a - 2 h&g2 5a-2 g & 5-2 g'H
, B?,, ., %@, _1é 16, .a8a 16, U
Sk 1:j»l"'f j+_f J+1_Eg gj‘kzafjl-'-gj-'- _fJ+1LJ
. 6a(2a-1),, _1é a8 Z(a-1p d Z(a-16, u
S,'F, j T & 9_+—Tfj +2fj+1_ ¢S “li+2y
5a - 2 hg§ &2 5-2 g &2 m-2 'Y

For candidates S and S, the function values at three grid points and first

derivative at one grid point are used to calculate f'; . Thusthe scheme is at least second-

order accurate (third-order ifa =1/3) and one sided. For candidate S;, the function

values at two grid points and first derivative at two grid points are used to calculate f ', .

Thus the scheme is at least second-order accurate (fourth-order ifa =1/3) and centered.
Then a specific weight is assigned to each equation, and a new scheme is obtained by a
summation of the equations.
F=C,F, +C,F, +C,F, (2.23)
where C,+C, +C, =1. By choosing the weights in table 1, the scheme
reproduces the standard compact scheme:

e 1 1 1 1 0
af' +f' +af',,=¢- —(“a-Df ,--(@+2f_+=@+2)f, ,+—4a-Df,,H/h+t,
-2t i+1 g 12( ) fios 3( ) it 3( ) fia 12( ) Zg

(2.24)

which has sixth-order of accuracy if we picka =1/3, but fourth-order if we pick

a ! 1/3. As we discussed in section 2.3.2, we use WENO weights, w,, w,,w, instead

of C,,C,,C,.
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Following the WENO method, the weights are defined as:

o .. G
a’a  l+1s)’

W, =

_ -2 . _4@-) . _ S-2
° 6E-2) " 3:-2 ¢ 6@:-2)°

where e is a small number to prevent the denominator becoming zero. p is an

important parameter to control weights. 1S is the smoothness measurements which are

defined in section 2.2.2.

The final schemeis F =w,F, +w,F, +w,F,:

i, B By g B, B Dy
5a - 2 47 4 5a-2 1
__3a( -3) £y 3,%@-1
wol 5 — 5 1Hie - (2 +w1( + )]f,1+(wo W)l + = 5 1,
1 3a(2a 1)
+[2w, +Wl(7+5)] fi- [— - W] fi.2k/h

(2.25)

Note that there is only one parameter a which has not been determined yet.

2.5 Determination of parameter a

Apparently, determination of a becomes the central stage of our research.

Instead of using fixeda , we determine the value of a according to the smoothness of
24



the function. All the other coefficients become the functions of a . Inthiswork, we first

definea as
2 2 l
é . ..202
a = L eZis, 19 + &is, 19 + &is, - 1o 72 (2.26)
3  gé 3 e 39 e 39§
IS, +e

where 1S, = 55 <,
a (IS +e)

again € is a small positive number. In smooth regions, the three normalized

smoothness are nearly equal, namely, 1S, = 1S, = 1S, ==. Thena equals to 1/3 and the

wlk

6th order standard compact scheme recovered. We achieve global dependency and the

best resolution. In shock regions, for instance, the worst case gives us dramatically
different weights. After normalization we havelS, =1,1S, = IS, =0. Thena = 0and

we achieve the local dependency and non-oscillatory property from the weighting

procedure.

However, these kinds of WENO weights based on differences of left hand side,
central, right hand side smoothness would not distinguish the low and high frequency

waves and will give same a for both low frequency and high frequency waves. It may

mislead to give & = 1/3for center point of the shock if we capture the shock with more
than three grid points. Apparently, we need to consider the fourth measurement of the

smoothness, 1S, ,which is high for high frequency and low for low frequency. In this

work, we define & in the following way:
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)*a,, l} (2.27)

a ;g = mMmn {a (1- a,* IS 3

We also define a function called smoothness which will control the compact and

non-compact switch and everything:

Smoothness=1.0-3.0*a or a = (1.0-smoothness)/3.0

When smoothness = 1.0 where is discontinuous, a =0.0 and non-compact

scheme will be used. When smoothness=0.0, & =1/3 and the standard 6th order compact

scheme will be recovered.

2.6 Recovery to 8th order accuracy in smooth areas

In smooth area, the scheme will become a standard 6th order compact scheme
and keep 6th order in accuracy:

1 1 1,1 7 7 1
5 fj¢1+ fj¢+§ fj@l :E(' % fj-z' 5 fj—l+§ fj+1+£ fj+2) (2-28)

Using 5 grid points, we can also get an 8th order scheme by following scheme:

1.

1 4 1, _1, 25 40 40 25
36 2

4
+§qu—:l+ fj¢+§ fj@]_ +£ fj+2 —E(' 2_16 j-2 " a fj_l+a fj+l+2_16 fj+2)

(2.29)

Subtracting (2.29) by (2.28), we get the residual:
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B 3_16 f1z +é fo +é & +3_16 fiez :%(' 21_is fi-z +2_17 Fias 2_17 i +21_i3 fivo)
(2.30)
The final finite difference scheme can be written as
F =w,F, +w,F, +w,F, +W,F, (2.31)
Where
w, =3.0*a =1.0- Smoothness (2.32)

which is 1 in the smooth area and becomes zero near the shock or other
discontinuities. In this way, the accuracy will be recovered to 8th order by 5-point
stencil in the smooth area. Of course, a penta-diagonal system has to be solved on each

grid line.

The above derivation is based on the six order compact scheme:
F, =w,F, +w,F, +w,F, +O(h®) (2.33)
In order to get 8th order accuracy in the smooth area, we can use:

F = (L- wy)[woFo +WiFy +W, F ]+ W, Ry +(1- wy)kgh® +wykgh? (2.39)

where F; is a standard 8th order compact scheme with 5 grid points. In the
smooth area, w, =1.0, we obtain 8th order of accuracy.

Here, we use the 6th order WCS as our base scheme. However, this method is
universal and we can use for any base scheme. For example, we can use 5th order

WENO as our base scheme or use the uniform weighted compact and non-compact
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scheme (UWCNC) as our base scheme. The basic idea is to get 8th order of accuracy

recovered in the smooth area, but bias near the shock to avoid numerical oscillations.

The remained question is how to detect shock correctly and accurately and then

chose a right switch function or sharply weighted function,w,, based on the

smoothness, which has been discussed much in previous sections.
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CHAPTER 3

APPLICATION OF UWCNC TO 1-D PROBLEMS

3.1 One-dimensional linear wave equation

The scheme is tested by solving a linear wave equation with a smooth initial

function:
u, +u, =0, u(x,O) =gn(2px) where 0£ x£1. (3.1
The calculation stops a t =0.3 and the errors are listed in table 3.1. The

computation shows the 6th order accuracy is achieved.

Table 3.1 Errors and Order of Accuracy

N L, Error | Ly Order | Ly Error | L, Order | L., Error | L, Order
8 1.06E02 | - 3.67E03 | - 2.05E02 | -

16 8.66E05 | 6.93 2.46E05 | 7.22 2.00E04 | 6.68

32 1.37E06 | 5.98 2.94E07 | 6.39 4.37E06 | 5.51

64 2.23E08 | 5.93 3.74E09 | 6.30 1.11E07 | 5.30

128 3.45E10 | 6.01 495E11 | 6.24 2.86E09 | 5.27

256 4.49E12 | 6.26 5.73E13 | 6.43 5.98E11 | 5.58

We also test both UWCNC and WENO schemes on a 1-D linear wave equation
with jump initial function:

3 110 if 01£x£04
u, +u, =0, u(x,0)=105 .
i 0. otherwise
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The calculation stops a t = 0.3 and the solutions are illustrated in Figure 3.1.
The results indicate that sandard compact scheme is not suitable for shocks while both
UWCNC and WENO schemes work. Furthermore, UWCNC has less dissipation than
WENO near shocks which means a sharper transition is obtained. Figure 3.2 shows the
numerical solution of linear wave equation with high frequency sinuous function as
initial condition. Traditional 6™ order compact scheme has the best resolution, while
UWCNC-6 has similar behaviors and very small dissipation. WENO-5 is the most

dissipative.

—=—— Standard Compact Scheme

UWCNC
Exact Solution ’T WENO-5
. / )
I ' w“ ¥ " " “/ | Exact Solution
. DA A e N e JN T E
IR AR = B!
| L \ | v
r | . ' N f |
09| “ 09|
I ‘ \
- ‘ -
08 ‘ 08
2 I — I
07k | orf
I I
. “ i
0.6 | | 0.6 I \
I \ r | \
[ r tor I r I | k
Fhe a2 N A | ] 1\
L NANANPWANANAR AW il Fae
I VAT ARV TR 05F
Lo TR |/ I
7\\\\"“\\4‘\\'\\\\'\\\1’\' SRR R RS R
0 0.25 0.5 0.75 1 0 0.25 05 0.75 1
X X

Figure 3.1 Numerical test over linear wave equation: sguare wave function.

30



—a—— Compact 6
—&— UWCNC6
ir ) ) ) ) ) ) ) I — ¢ — WENOS5
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075 |
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u(x)
|

-0.25 |

05

-0.75

O [
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Figure 3.2 Numerical test over linear wave equation: High frequency sinuous function.

3.2 One-dimensional Euler equations

The governing conservation law for one-dimensional inviscid fluid flow can be
formulated as follows,

r +(ru), =0
)+ + ), =0
E +[u(E+ p)l, =0

These are the conservation of mass, momentum and energy, respectively. They
can also be expressed in a very compact notation by defining a column vector U of
conserved variables and flux vectors F(U).

U, +F{U), =0
where
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éroa & ru
e .u e. 2 u
= A - e + Ve
U gruq F gru pg'
BE§ au(E+pg

3.2.1 Shock tube flow (Sod’s problem)

One classic benchmark is the Sod’s test problem which sets up a shock tube
with quiescent gas on both left- and right-hand side. The initial condition is set as

i(L0,1), x<0;
1(0.125,0,01) x2 0.

The solution consists of a left-traveling rarefaction wave, a contact surface and a

right-traveling shock wave.

To solve the Euler equations, a three-step TVD Runge-Kutta is used in time
marching and Steger-Warming flux vector splitting is used and the derivatives of
splitting flux F*,F" are calculated using our new scheme. Inthiscase, @ isdefined as
in Equation 2.27. The distributions of velocity u and pressure are shown in Figure 3.3.
Comparisons are also made with the solutions obtained using 5th order WENO scheme.
From Figure 3.4, it can be found the UWCNC scheme (referred to as LJX) captured the
shock sharper and smeared the expansion wave and shock less then the 5th order
WENO. Figure 3.7 shows a locally enlarged comparison between UWCNC, WENO,
and WENO with 1600 grid points which we consider as an exact solution. Figure 3.8

show the smoothness measured by our definition which is the only parameter to control
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the compact and non-compact scheme switch. The figure shows the shock is well
captured with smoothness=1.0 (a =0) and the smoothness measured on the coarser

grid (N=100) and finer grid (N=200) are pretty consistent.

09
—8— 100LJX

—&— 100WENO
1600 WENO

08

07

0.6

05

04

03

0.2

0.1

-4 =2 0 2 4
X

Figure 3.3 Numerical test for 1D shock-tube problem, t=2, N=100
Velocity Distribution
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Figure 3.4 Numerical test for 1D shock-tube problem, t=2, N=100

Pressure Distribution
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Figure 3.5 Numerical test for 1D shock-tube problem, t=2, N=200

Velocity Distribution
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Figure 3.6 Numerical test for 1D shock-tube problem, t=2, N=200
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Figure 3.7 Numerical test for 1D shock-tube problem, t=2, N=200
Comparison of Velocities, locally enlarged
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Figure 3.8 Smoothness for 1D shock-tube problem, t=2, N=100 and 200

3.2.2 Shock-entropy interaction
To test the capability of the new scheme in both shock capturing and resolution,
we applied it to the 1-D problem of shock/entropy wave interaction. In this case, Euler

eguations (3.3) are solved with the following initial conditions:

| (3.857143, 2.629369,10.33333), x<-4

i
(r , U, p)o ‘%(1+o.2sin(5x), 0, 1) x> -4

(3.5)

a Iis calculated using (2.27). Figures 3.9 — 3.17 show the solutions of the
density distribution on the coarser and finer grids. On the coarser grid with grid number
of N=200, our new scheme shows much better resolution for small length scales than
the 5th order WENO (Figures 3.9 — 3.13). Apparently, there is an order difference in
resolution between our 6th order UWCNC scheme and the 5th order scheme. This is
because UWCNC uses central, non-dissipative, compact scheme with weights in the
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shock area and recovers high order compact away from the shock. The numerical results
by our UWCNC scheme with 200 grid points are even comparable with the 5th order
WENO scheme with 1600 grid points. On the finer grid (N=400), both the 6th order
UWCNC and 5th order WENO schemes show a good resolution (Figure 3.14 — 3.17).
However, we can still find our 6th order UWCNC scheme has a much better resolution
for the fifth wave left from the shock (Figure 3.11). In addition, the UWCNC captures
the shock in a much sharper way for all shocks. On the shocks developed by the sinuous
waves, only one grid point was found on the shock (Figure 3.15 and 3.17). Again,
Figures 3.18 — 3.20 show the smoothness measured by our definition which is the only
parameter to control the compact and non-compact scheme switch. The figure shows
the main shock iswell captured with smoothness=1.0 (a =0) and the shocks developed
by the sine function are also well captured. The smoothness measured on the coarser

grid (N=200 and 400) and finer grid (N=1600) are quite consistent.
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Figure 3.9 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8 — Density Distribution, N=200
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Figure 3.10 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8, N=200 — Comparison of Density Distributions
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Figure 3.11 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8, N=200 — Comparison of Density Distributions, locally enlarged
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Figure 3.12 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8 — Density distribution, UWCNC, N=200
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Figure 3.13 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8 — Comparison of UWCNC N=200 with WENO N=1600
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Figure 3.14 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8, N=400 - UWCNC-6
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Figure 3.15 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8, N=400 — Comparison of WENO-5 and UWCNC-6
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Figure 3.16 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8, N=400 — Comparison of WENO-5 and UWCNC-6 (locally enlarged)
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Figure 3.17 Numerical test for 1D shock-entropy wave interaction problem,
t=1.8, N=400 — Comparison of WENO-5 and UWCNC-6
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CHAPTER 4

APPLICATION OF UWCNC TO 2-D EULER EQUATIONS

4.1 Two-dimensional Euler equations

The conservative form of the 2-D Euler Equationsis as follows,

U, +F(U), +6U), =0

where

ér u é ru u é rv
é u e. 2 u é u
A ~ + A ~ 7

U:eruu’ . aru pg G=¢ ruv 0
érva € ruv 0 érv’ +pu
é_u é a é
&Eq a(E+pla  &E+p

4.2 Incident shock reflection

A simple uniform grid is generated for 2-D incident shock reflection.
Computational domain: 0<x<1.95, 0<y<0.588
Boundary Condition:

Inflow Mach Number M..=3.0

Flow Deflection Angle 15°



The results are plotted and compared as follows,
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Figure 4.1 Pressure Contours of Incident Shock Reflection.
Comparison of Numerical Solutions With Exact Solution.



5.5

4.5

35

25

15

0.5

o

o IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

—a—— WENO-5
—a—— UWCNC-6
Exact
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Figure 4.3 Detailed pressure distribution at y=0.104
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The results show that UWCNC has dlightly sharper shocks than WENO, but the
difference is not significant. The UWCNC-6 scheme captures shock captures shock as

good as (or alittle better than) WENO-5 scheme does.

4.3 Cylindrical shock tube problem

To further test the shock capturing ability of UWCNC in two dimensions,
cylindrical shock tube problem is solved in a square domain.

e

] L,
7 Time=0.0 7
] L,
] L,
/ Pressure= 1 Z
iy Density= 1 .
-
-
-
-
-

I rrid

Figure 4.4 Cylindrical Shock Tube Problem: Geometry and Initial Conditions

Initial conditions are specified as follows,
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For xX°+y’<0.5: P=10andr =10
Elsewheree P=1andr =1
u=v=_0
The 2-D Euler equations are solved in this domain with adiabatic and reflective
wall boundaries. A simple uniform grid is generated for 2-D cylindrical shock tube
problem. The flow pattern is as follows,

PP IS SIS SIS IS SIS SIS S SIS PS

Time=0.8

e e

T P N I D NI I,

i
S

Figure 4.5 Flow pattern of cylindrical shock tube problem.

The contact surface is unstable and sensitive to small perturbations in this test
case. Therefore, there are small structures on the contact surface. 2-D Euler equation is

solved over two grid levels, 81x81 and 161x161. The results are the following.
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Density Distribution Along Wall Boundary
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Figure 4.6 Density distribution along wall surface (radial). Grids: 81x81
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Density Distribution Along Wall Boundary
161 grid points (Time = 0.6)
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Figure 4.7 Density distribution along wall surface (radial). Grids: 161x161

The results show again that UWCNC-6 has captures shock and contact surfaces
sharper than WENO-5.

However, in both cases the flows are inviscid which makes the solution
relatively simple. To further test the capability of resolving small structures, the Navier-
Stokes Equations are solved. Corresponding comparisons are also made between

UWCNC-6 and WENO-5.

50



CHAPTER 5

APPLICATION OF UWCNC TO 2-D NAVIER-STOKES EQUATIONS

5.1 Two-dimensional Navier-Stokes equations

The 2-D Navier-Stokes Equations can also be written in conservative form.

Furthermore, the equations are written in general curvilinear coordinates as follows,

11Q,1(F-F) 1G-6G,)

=0
J Tt X fh
where
eru e rU u e rv.u
& é a G
o=¢Yy poldlYutPg _ES’V“’Lphxq
érvu JérUv+px U Jé&W+ph U
é_u é U é U
EEq &U(E+p) g &V(E+p) g
é 0 u é 0 u
a a
o ldXtXg o 1dhothyg
e x x0T g& b+t hou
) ) G
eaXxtaX, g gah,+ah, g
J:‘H(x,h)
and m(x.y) is Jacobian of the coordinate transformation between
. ) X.,X,,h,h .
curvilinear (x,h) and Cartesian (x,y) frames, and “*7¥" *"'y are coordinate

transformation metrics. The contravariant velocity component U, V are defined as

U=ux,+w, , V=uh,+vh,
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E denotesthe total energy,

E=ﬁ+%r(u2+v2)

The components of the viscous stress tensor and heat flux are denoted by

t t

XX !

ST and % qy,respectively.

5.2 Shock / laminar boundary layer interaction : case 1

5.2.1 Inflow profile generation

It has been shown that the resolution of the flow at the leading edge is critical
for the boundary layer. In order to resolve both the boundary layer and shock waves
efficiently, the flow around leading edge is computed separately by using the same
code. A uniform flow field is used as initial condition in the region far away from the
adiabatic wall. For the inflow boundary (including both left and upper boundary),

parameters are fixed to the given values as follows,
M, =30 Re=3"10° Pr=07
Where M, isthe inflow Mach number, Re and Pr are the Reynolds number and

Prandtl number, respectively. At wall surface, adiabatic and non-slip boundary
condition is employed. Non-reflection boundary condition is used at outflow boundary

to avoid non-physical reflections. The flow converged to a seady solution.
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5.2.2 Main flow solver
5.2.2.1 Numerical grid generation
In order to resolve the small structures inside boundary layer, the grid is

stretched vertically as shown below.
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Figure 5.7 Numerical grids for main flow solver of shock / boundary layer interaction

5.2.2.2 Initial and boundary conditions

The inflow boundary is given by the profile of the previous inflow generator.
The oblique shock is given such that the flow deflection angle is ten degrees. At wall
surface, adiabatic and non-slip boundary condition is employed. Non-reflection

boundary condition is used at outflow boundary to avoid non-physical reflections.

5.2.2.3 Numerical results
The numerical results are shown below. For better illustration, the graphs of
vorticities are vertically stretched by a factor of 3.

() Fine Grids (241x141)
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Figure 5.8 Numerical Results of WENO-5 over Fine Grids (241x141) — Density Contours

0.7
P
. 443381

287407

0.8 33142
275458
248484

05 16351
107835
051881

0.4

=
0.3
0.2

01

0
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Figure 5.10 Numerical Results of WENO-5 over Fine Grids (241x141) — Mach Number
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Figure 5.11 Numerical Results of WENO-5 over Fine Grids (241x141)
— Vorticity and Stream Trace

(ii) Coarse Grids (121x141) UWCNC-6

Figure 5.12 Vorticity and Stream Trace (121x141) UWCNC-6

(iii) Coarse Grids (121x141) WENO-5
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Figure 5.13 Vorticity and Stream Trace (121x141) WENO-5

5.3 Shock / laminar boundary layer interaction: case 2

In thistest case, the Reynolds number is 10° and the inflow Mach number is set
to 2.15. The overall pressure ratio is 1.55. For comparison, the inflow condition was set
as same investigated by Degrez et a (1987). Their experimental work has shown the
shock-boundary layer interaction is laminar and two-dimensional. Therefore, we can do
a 2-D numerical simulation and compare with their computational and experimental
results. The computational grids is 257x257 (Figure 5.14). The grid stretching in
stremwise direction is 1.01. The stretching in wall normal direction is 1.015. The same

2-D Navier-Stokes equation is solved as the governing equation.
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Figure 5.14 Computational Grids (257x257)

Figure 5.15 Pressure Contour: normal view
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Figure 5.16 Pressure contour: vertically stretched by a factor of 5

2

145 tha
[ 13
12
11

1
L 09
= 08
07
06

Figure 5.17 Density Contour : Normal View
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Figure 5.18 Density contour : vertically stretched by a factor of 5
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Figure 5.21 Temperature Contour : Normal View
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Figure 5.22 Temperature Contour : Vertically stretched by a factor of 5

Pressure distribution along wall surface
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Figure 5.23 Comparison of pressure distribution on the wall surface.
(The red dots are our computation, the black dash one and solid one are Degrez’s
computation and experiment respectively.)
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Figure 5.24 Comparison of velocity profiles at x=0.6
(The red dots are our computation, the black solid line and black dots
are Degrez’s computation and experiment respectively.)
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Figure 5.25 Comparison of velocity profiles at x=0.95
(The red dots are our computation, the black solid line and black dots
are Degrez’s computation and experiment respectively.)
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Figure 5.26 Comparison of velocity profiles at x=1.6
(The red dots are our computation, the black solid line and black dots
are Degrez’s computation and experiment respectively)
Figures 5.15 — 5.22 show the distribution of pressure, density, Mach number and
temperature obtained by our computation. Figures 5.23 — 5.26 show our numerical

results agree well with the numerical results and are close to the experimental results

given by Degrez et al (1987). Degrez et a favor their computational results addressed in

their JFM paper.

65



5.4 Hypersonic flow around double angle

5.4.1 Flow parameters

In order to validate our scheme and code, we compared our results with well
documented experimental and computational data. The case including the geometry and
inflow condition was set same as the experiment conducted by Wadhams et al (2004)
and the computation by Gaitonde et a (2002). The inflow Mach number is set to
M=9.58, the Reynolds number Re=278870, the inflow temperature Tin=185.6, and the

wall temperature Tw=293.3.

5.4.2 Numerical grid generation

Before we work on a double cone, a supersonic flow passing a double angle was
solved first. The overall Grid is 257x129 obtained by elliptic grid generation and the
girds are uniform in stream-wise direction, but stretched in wall normal direction with a
factor of 1.037.

Anelliptic grid generation method first proposed by Spekreijse (1995) is used to
generate 2D grids. The elliptic grid generation method is based on a composite
mapping, which is consisted of a nonlinear transfinite algebraic transformation and an
elliptic transformation. The algebraic transformation maps the computational space C
onto a parameter space P, and the elliptic transformation maps the parameter space on
to the physical domain D. The computational space, parameter space, and the physical
domain are illustrated in Figure 5.27. and the elliptic transformation maps the parameter
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gpace on to the physical domain D. The computational space, parameter space, and the
physical domain are illustrated in Figure 5.27. The computational space C is defined as
the unit square in a two-dimensional space with Cartesian coordinates (x,h), and
x1[04], hT [0l (see Figure 5.27). The grids are uniformly distributed on the

boundaries and in the interior area of the computational space. The mesh sizes are

in the x direction and in the h direction, where N and Ny are the grid

X h

numbers in the corresponding direction. The parameter space P is defined as a unit
space in a two-dimensional space with Cartesian coordinate (st), and s1 [0,1], tT [0]].
The boundary values of s and t are determined by the grid point distribution in the

physical domain.
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Computational Parameter Physical Domain

Space Space 7

Figure 5.27 Computational Space C, Parameter Space P and Physical D

An algebraic transformation s: C — P is defined to map the computational

gpace C onto the parameter space P. The grid distribution is specified by this algebraic
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transformation, which depends on the prescribed boundary grid point distribution. The
interior grid point distribution inside the domain, generated by the algebraic

transformation, is a good reflection of the prescribed boundary grid point distribution.

Let s (x)=s(x,0) and s.,(x)=s(x,1) denote the normalized arc-length along
edges Es and Es, t. (1)=t(0,h) and t. (1)=t(Lh) denote the normalized arc-length
along edges E; and E,. The algebraic transformation s: C — P isdefined as

s = sps((1 —1t) +sp (Ot
t = tEl(T/)(l_S)_‘_tEg(n)S

which is called the algebraic straight line transformation. It defines a
differentiable one-to-one mapping because of positiveness of the Jacobian
st, - st >0.

The elliptic transformation x : P — D , which is independent of the prescribed
boundary grid point distribution, is defined to map the parameter space P onto the

physical domain D. The elliptic transformation is equivalent to a set of Laplace

eguations
Sgx+ Syy = 0
toz +tyy = 0

The elliptic transformation defined by the above equations is also differentiable
and one-to-one.

Till now we have defined two transformations, i.e., the algebraic transformation
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s C — P, and the elliptic transformation x: P — D. Because both the algebraic
transformation and the elliptic transformation are differentiable and one-to-one, the
composition the two transformation is also differentiable and one-to-one, so as to the

inverse transformation.

In physical domain, the curvilinear coordinate system satisfies a system of
Laplace equations:

Ar =0 (5.1)

wherer =(x, y)". The inherent smoothness of the Laplace operator makes the
grids smoothly distributed in the physical domain. Being transformed to the
computational space, this Laplace system becomes a set of Poisson equations. The
control functions is determined by the composed transformation according to the
following procedures. First, Equation 5.1 is transformed into the computational space
C:

As = g'sge 29 sen + 9" sy + Alse + Ansy
At = g'Mtee + 29 tey + g7ty + Alte + Anty,

where g*, g%, g% arethe components of the contravariant metric tensor, which

can be calculated from the covariant metric tensor

11 1

g = J—2922:(7‘n,7’n)/J2
1

g = ~ﬁ912=—(rgﬂ’n)/c’2
1

i ﬁgu:(rg,rg)/ﬁ
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Jis defined as ./det]g, ].

Then we have

A
( A§ ) = g''Py; +29"°P13 + 9Py
n

where

P(Vl) _ s

Py tee
(1)

P, i S¢y

P ten
(1)

P. . S

PQQ tm/

and the matrix T is defined as

S¢ Sp
te 1ty

Then the Laplace system is transformed to the computational space C:
g“r& + 2g12r5" + 9221“,,,] + Aﬁrf + Anr,, =0

Dx and Dh are replaced by the control functions, then we obtain the Poission

eguations for the grid generation as follows,
gll,r&& | 29127'§q | !]227'-rm | (!jllpiifjl | 2{}121311;) } yzzpﬂ))rﬁ | (Uupl‘i‘fi | 2((]12131153 | Uzzpz(j}h,” -0

where the control functions are defined by the algebraic transformation.

70



The elliptic transformation is carried by solving a set of Poisson equations. The
control functions are specified by the algebraic transformation only and it is, therefore,
not needed to compute the control functions at the boundary and to interpolate them into
the interior of the domain, as required in the case for all well-known elliptic grid

generation systems based on Poisson systems.

The computed grids are in general not orthogonal at the boundary. The algebraic
transformation can be redefined to obtain a grid which is orthogonal at the boundary.
First, redefine the elliptic transformation by imposing the following boundary
conditions for sand t:

s=0asedgeE; and s=1 a edge E,.

odon = 0 along edges E; and E4, where n is the outward normal
direction.

t=0asedgeEsandt =1 a edge Ea.

ot/on = 0 adong edges E; and E,, where n is the outward normal
direction.

Second, redefine the algebraic transformation s : C — P according to two
algebraic equations,

s = sp;(§)Ho(t) + sg, (§)Hi(t)
t = tr(n)Ho(s)+te,(n)Hi(s)

where Hp and H; are cubic Hermite interpolation functions defined as
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Ho(s) = (142s)(1 —s)?
Hi(s) = (3—2s)s°
Grid orthogonality at boundaries is obtained in three steps.

1. Compute an initial grid based on the Poisson grid generation system
with control functions specified according to the algebraic straight line
transformation defined by EQ.5.1;

2. Solve the two Laplace equations given by Eqg.5.1 with the above
specified boundary conditions;

3. Re-compute the grid based on the Poisson system but with control
functions specified according to the algebraic transformation defined by

Eq.5.1.

The grid details are shown below.
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Figure 5.28 Overall Grid 257x129

Figure 5.29 Coarse grid drawn every four points for illustration purpose (64x32)
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5.4.3 Preliminary results

The contour of flow field and distribution of physical quantities along the wall
boundary are shown in Figure 5.39 — 5.41. Since the case we calculated is for adouble
angle not a double cone, we cannot compare with the above experiment and
computation directly for now. However, the distribution of Mach number, pressure,

density, and temperature are very similar.

Figure 5.34 Contours of Mach Number
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Figure 5.35 Contours of Pressure
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Figure 5.36 Contours of Density
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Figure 5.37 Contours of Temperature
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Figure 5.38 Pressure Contours with Streamlines
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Figure 5.39 Pressure Distribution Along Wall Surface
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Figure 5.40 Density Profile Along Wall Surface

79




2500

2000

1500

F1000

500

500 . 1

Figure 5.41 Temperature Profile Along Wall Surface

Although we used same geometry and inflow conditions as the experiment
(Wadhams et al, 2004) and the computation used, we cannot directly compare our
results with theirs since their results are for double cones and ours for double angles.
However, we can make qualitatively comparison and find the flow structure is very

similar. Figure 5.42 — 5.45 show such a comparison
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Figure 5.42 Qualitative comparison of streamline and separation bubble
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Figure 5.43 Qualitative comparison of Mach number
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Figure 5.44 Qualitative comparison of Cp
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Figure 5.45 Qualitative comparison of pressure distribution
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CHAPTER 6

CONCLUSIONS AND DISCUSSIONS

In this work, a uniform weighted compact / non-compact scheme with 6th order
of accuracy (UWCNC-6) is developed based on our previous Weighted Compact
Scheme (WCS). The behaviors and properties of UWCNC are studied. It is further
applied to one- and two-dimensional Euler equations as well as two-dimensional
Navier-Stokes equations. Based on the numerical results, the following conclusions are
made,

1. The UWCNC-6 scheme uses a uniform formulation for both compact
and non-compact schemes. The global dependency of the scheme is
determined by the parameter a which is calculated based on smoothness.

2. The new UWCNC scheme has the capability of capturing shocks in both
one and two dimensions. In most cases, shocks and contact surfaces are
captured sharper than WENO-5 results.

3. The central differencing and high order of accuracy make UWCNC-6
less dissipative than WENO-5. This property is desirable when small

scale structures are very important.
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4. The simulation of shock / boundary layer interaction shows that
UWCNC-6 has better resolution inside boundary layer where the N-S
eguation is largely parabolic:

a In many cases the separation region has many small-scale
structures (vortices). UWCNC-6 resolves these small vortices
better than WENO-5 does.

b. Inother cases where the flow is proven to be steady and laminar,
UWCNC-6 also resolves the flow field; the numerical solution
matches the previous work in literatures.

5. The simulation of hypersonic flow around double angle shows that
UWCNC-6 has the capability of capturing very strong shocks (M>9).
This makes it very promising in the future study of hypersonic boundary
layer, transition, shock / boundary layer interaction, etc where both

shock and small vortices are present in the flow field simultaneously.
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