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ABSTRACT 

 

DECOUPLING OF HAMILTONIAN SYSTEM  

WITH APPLICATIONS TO  

LINEAR QUADRATIC 

 PROBLEM 

 

Publication No. ______ 

 

Vishal Gupta, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor: Dr. Kai-Shing Yeung 

This thesis provides a method of decoupling the Hamiltonian system with 

application to linear quadratic problem in control system. Resulting decoupled 

Hamiltonian system helps in formulating easy closed form solution to various optimal 

control problems. These closed form solution are improvement over the problem of 

solving first order nonlinear differential equations in conventional methods. Decoupling 

also eliminates the constraint, “ 0=Q ” for certain type of optimal control. 
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CHAPTER 1 

INTRODUCTION  

This thesis deals with the problem of optimization. Optimization is a process by 

which one seeks to minimize (or maximize) a function by systematically choosing the 

values of variable from within an allowed set. We apply the theory of optimization to 

the field of control systems with the objective of minimization to a linear quadratic 

function under constrain of plant dynamics. The problem of solving linear quadratic 

problem is equivalent to that of optimization under equality constrains. Problem in 

general can be stated as minimization of a scalar performance index ),( uxL , a function 

of control vector m
u R∈  and a system state vector n

x R∈ , while satisfying the plant 

constrain equation 0),( =uxf , where f  is a set of n  scalar equations, nR∈f . There 

exist many methods for optimization, but two most commonly used are the “Calculus of 

variation” and “Dynamic programming”. 

Dynamic programming was developed by R.E. Bellman in the later 1950s [5], 

[6], [7]. Dynamic programming is based on Bellman’s principle of optimality: 

“An optimal policy has the property that no matter what the previous decisions 

have been, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from those previous decisions.” 

In dynamic programming problem of finding optimal control is solved by 

working backward from the final stage. The principle of optimality serves to limit the
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number of potentially optimal control strategies that must be investigated, thus making 

backward-in-time choice making an optimal decision. 

Calculus of variation deals with the functional, such as those making a function 

attain a maximum or minimum value. Functional could be formed as integral of 

function and its derivatives. In this method changes in function, which is to be 

minimized, is written as sum of independent changes in all of its variables. Values of 

variable are systematically determined by subjecting variation in function due to that 

variable to necessary and sufficient conditions. This method is used in this thesis to find 

optimal control sequence. In next section we shall review this method and derive the 

control for various types of linear quadratic problem [1], [3], [9], [10]. 

 

1.1 Optimization with Equality Constraints 

It is desired to minimizes the scalar performance index ),( uxL , a function of 

control vector m
u R∈  and a system state vector n

x R∈ , while satisfying the plant 

constrain equation 0),( =uxf , where f  is a set of n  scalar equations, nR∈f .  

One of the method used to solve such problems is to adjoin constrain to the 

performance index via use of a Lagrange multiplier to define the Hamiltonian function 

),(),(),,( uxfuxLuxH Tλλ +=     1.1 

Increment in H  depend on increment in x , u  and λ  according to 

λλ dHduHdxHdH
TT

u

T

x ++=      1.2 

where   
x

H
H x ∂

∂
=  
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u

H
H u ∂

∂
=  

λλ ∂
∂

=
H

H  

Necessary condition for a minimum point of ),( uxL  that also satisfies the 

constrain 0),( =uxf  are 

0),( ==
∂
∂

uxf
H

λ
      1.2 

0),( =+=
∂
∂

λuxfL
x

H T

xx      1.3 

0),( =+=
∂
∂

λuxfL
u

H T

uu      1.4 

So now we have three set of equation, due to Lagrange multiplier λ . Intuitively 

we can see that dx  and du  are not independent increments because of constrain 

0),( =uxf , but by using an undetermined multiplier λ  we can now make dx  and du  

behave as if they were independent increments. Thus by use of Lagrange multiplier we 

converted the problem of minimizing ),( uxL  with constrain 0),( =uxf  to that of 

minimizing ),,( λuxH  with no constrain. 

We can use these results to determine the optimal control for linear quadratic 

problems. 

1.2 Discrete-Time Linear Quadratic Problem 

1.2.1 Regulation Problem 

Let the plant to be controlled be described by the liner equation 
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kkk BuAxx +=+1       1.2-1 

with nR∈kx  and m
u R∈ . The associated performance index is the quadratic function 

defined over the interval [ ]Ni,  

( )∑
−

=

++=
1

2
1

2
1

N

ik

k

T

kk

T

kNN

T

Ni RuuQxxxSxJ    1.2-2 

where the matrices Q  and NS  are symmetric positive semi-definite and R  is symmetric 

positive definite. It can be shown that the discrete Hamiltonian system for the above 

system is as follows: 
















 −
=









+

−
+

1

1
1

k

k

T

T

k

k x

AQ

BBRAx

λλ
    1.2-3 

with 1

1

+
−−= k

T

k BRu λ  

1.2.1.1 For free final state, optimal control is given as [1] 

kkk xKu −=*        1.2-4 

( ) ASBRBSBK k

T

k

T

k 1

1

1 +

−

+ +=     1.2-5 

( )[ ] QASBRBSBBSSAS k

T

k

T

kk

T

k ++−= +

−

+++ 1

1

111   1.2-6 

1,......,3,2,1,0 −= Nk       

1.2.1.2 For fixed final state, the problem becomes difficult to solve 

analytically due to the coupling 0≠Q in the Hamiltonian system [1]. If we have 0=Q  

then Hamiltonian system (1.2-3) is decoupled and we can write optimal control as an 

open loop control sequence which depends upon desired final state value Nr : 
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)()( 0

1

,0

11
xArGABRu

N

NN

kNTT

k −= −−−−    1.2-6 

where 0x  is the initial state of the plant and ∑
−

=

−−−−−=
1

0

111

,0 )(
N

i

iNTTiN

N ABBRAG  is the 

weighted reachability gramian of the system. 

 

1.2.2 Tracking Problem 

Consider a plant described by the linear equation kkk BuAxx +=+1  with n

k Rx ∈  

and m

k Ru ∈ . It is desired to get a control law that forces a certain linear combination of 

the states kk Cxy =  of the plant to track a desired reference trajectory kr  over a 

specified time interval [ ]Ni, , then we have to minimize the cost function 

( ) ( ) ( ) ( )[ ]∑
−

=

+−−+−−=
1

2
1

2
1

N

ik

k

T

kkk

T

kkNNN

T

NNi RuurCxQrCxrCxPrCxJ  1.2-7 

where P  and Q  are symmetric positive semi-definite matrices and R  is symmetric 

positive definite matrix. Actual value of Nx  is not constrained but we want it to be as 

close as Nr . 

For the above problem it can be shown that the following non-homogenous 

Hamiltonian system exists 

kT

k

k

TT

T

k

k
r

QC

x

AQCC

BBRAx









−
+















 −
=









+

−
+ 0

1

1
1

λλ
  1.2-8 

with 1

1

+
−−= k

T

k BRu λ  
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We can express ku  as a combination of a linear state variable feedback plus a term 

depending on reference trajectory kr  as: [1] 

( ) ( )11

1

1 ++

−

+ +−+= kkkk

T

k vAxSRBSBu     1.2-9 

( ) QCCASBBRISAS
T

k

T

k

T

k ++= +
−

+ 1

1

1    1.2-10 

( )[ ] k

T

k

T

k

T

k

TT

k QrCvBRBSBBSAAv ++−= +

−

++ 1

1

11   1.2-11 

1,......,3,2,1,0 −= Nk  

with boundary conditions 

PCCS
T

N =
         

N

T

N Cv Pr=
         

 

1.3 Continuous-Time Linear Quadratic Problem 

1.3.1 Regulation Problem 

Consider a plant described by BuAxx +=&  with n
Rx∈  and m

Ru ∈ , A  and B  

are constant matrices. The associated performance index is the quadratic function 

defined over the interval ],[ 0 Tt , 

( )∫ ++=
T

t

TTT dtRuuQxxTxTSTxtJ

0

2
1

2
1

0 )()()()(   1.3-1 

where matrices )(TS  and Q  are symmetric positive semi-definite and R  is symmetric 

positive definite. Then it can be shown that the following homogeneous Hamiltonian 

system holds: 
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−−

−
=







 −

λλ
x

AQ

BBRAx

T

T1

&

&
     1.3-2 

with )()( 1 tBRtu Tλ−−=  

1.3.1.1 Free final state 

For free final state case optimal control is given as: [1] 

)()()( txtKtu −=      1.3-3 

)()( 1 tSBRtK T−=      1.3-4 

QSBSBRSASAS TT +−+=− −1&    1.3-5 

Tt ≤≤0      

 

1.3.1.2 Fixed final state 

Again the problem of fixed final state is difficult to solve analytically due to the 

coupling 0≠Q  in the Hamiltonian system [1]. So if 0=Q  then we can derive optimal 

control as an open loop control sequence depending upon the desired final state )(Tr as: 

)]()()[,()( 0

)(

0

1)(1 0 txetrTtGeBRtu
tTAtTAT

TT −−−− −=   1.3-6 

where ∫ −−−=
T

t

TATTA dtxeBBReTtG
TT

0

)(),( 0

)(1)(

0 τττ  is the weighted continuous 

reachability gramian for the system. 

 

1.3.2 Tracking Problem 

Consider a plant described by the linear equation BuAxx +=&  with n
Rx∈  and 

m
Ru ∈ , matrices A  and B  are constant. It is desired to get a control law that forces a 
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certain linear combination of the states Cxy =  of the plant to track a desired reference 

trajectory )(tr  over a specified time interval [ ]Tt ,0 , then we have to minimize the cost 

function 

( ) ( ) ( ) ( )[ ]∫ +−−+−−=
T

t

TTT
RuurCxQrCxTrTCxPTrTCxtJ

0

()()()()()( 2
1

2
1

0  1.3-7 

where P  and Q  are symmetric positive semi-definite matrices and R  is symmetric 

positive definite matrix. Actual value of )(Tx  is not constrained but we want it to be as 

close as )(Tr . 

For the above problem it can be shown that the following non-homogenous 

Hamiltonian system exists 

r
QC

x

AQCC

BBRAx
TTT

T










−
+















 −
=









−

− 01

λλ&
&

  1.3-8 

with λT
BRu

1−−=  

We can express u  as a combination of a linear state variable feedback plus a term 

depending on reference trajectory r  as: [1] 

vBRKxu
T1−+−=       1.3-9 

)()( 1 tSBRtK T−=       1.3-10 

( ) QCCASBBRISAS TTT ++=− −1&     1.3-11 

QCCvBKAv TT +−=− )(&      1.3-11 

Tt ≤≤0  

with boundary conditions 
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PCCTS T=)(         

)Pr()( TCTv T=         
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CHAPTER 2 

METHOD FOR DECOUPLING OF THE HAMILTONIAN SYSTEM 

AND 

IT’S APPLICATION TO LINEAR QUADRATIC PROBLEM 

 

Here we shall discuss method to decouple the Hamiltonian system formed 

during solution of the linear quadratic problem. The performance function here is a 

quadratic and constrains are given by plant equation. With out loss of generality method 

to decouple involves insertion of an instrumental term in performance index which dose 

not alters it. Value of this term is then chosen such that the Hamiltonian system is 

decoupled. Choice of term’s value is not a guess as a proper equation is derived in 

process of decoupling. Remaining portion of this chapter deals with the method of 

deriving that equation, forming decoupled Hamiltonian system and use of these results 

for the various linear quadratic problems discussed in chapter 1. 

2.1 Discrete-Time Linear Quadratic Problem 

2.1.1 Regulation Problem 

Consider a plant described by the linear equation 

kkk BuAxx +=+1       2.1-1 

with n

k Rx ∈  and m

k Ru ∈ . The associated performance index is the quadratic function 

defined over the interval [ ]Ni,  

( )∑
−

=

++=
1

2
1

2
1

N

ik

k

T

kk

T

kNN

T

Ni RuuQxxxSxJ     2.1-2 
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where the matrices Q  and NS  are symmetric positive semi-definite and R  is symmetric 

positive definite. The objective is to find closed form solution of control sequence ku  to 

minimize iJ . 

Consider the original cost function 

( )∑
−

=

++=
1

2
1

2
1

N

ik

k

T

kk

T

kNN

T

Ni RuuQxxxSxJ        

We can subtract and add a term N

T

N xSx ˆ
2

1  to obtain: 

( ) ( )∑
−

=

+++−=
1

2
1ˆ

2
1ˆ

2
1

N

ik

k

T

kk

T

kN

T

NNN

T

Ni RuuQxxxSxxSSxJ  2.1-3 

where Ŝ is a symmetric positive semi-definite matrix. 

Now observe: 

( )∑
−

=
++ −+=

1

112
1

2
1

2
1 ˆˆˆˆ

N

im

m

T

mm

T

mi

T

iN

T

N xSxxSxxSxxSx    2.1-4 

Substituting (2.1-4) into (2.1-3) yields 

( ) ( )∑∑
−

=

−

=
++ ++−++−=

11

11 2
1)ˆˆ(

2
1ˆ

2
1ˆ

2
1

N

ik

k

T

kk

T

k

N

im

m

T

mm

T

mi

T

iNN

T

Ni RuuQxxxSxxSxxSxxSSxJ

( ) ( )( )∑
−

=
++ ++−++−=

1

11
ˆˆ

2
1ˆ

2
1ˆ

2
1

N

ik

k

T

kk

T

kk

T

ki

T

iNN

T

N RuuxSxxSQxxSxxSSx          2.1-5 

Using kkk BuAxx +=+1 , (2.1-5) can be rewritten after simplification as: 

( ) [ ]∑
−

=

+++++=
1

2
1

2
1

2
1 ˆˆ2ˆ2ˆˆ~ N

ik

k

T

kk

T

kk

T

kk

T

ki

T

iNN

T

Ni uRuxHuuGxxQxxSxxSxJ     2.1-6 

where 

SSS NN
ˆ~

−= , 
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ASASQQ T ˆˆˆ +−= , 

BSAG T ˆˆ
2

1= ,          2.1-7 

ASBH T ˆˆ
2

1= , 

BSBRR
T ˆˆ += . 

To solve this linear quadratic regulation problem, we begin with the Hamiltonian 

function for modified cost function (2.1-6) 

( ) ( )kk

T

kk

T

kk

T

kk

T

kk

T

k

k
BuAxuRuxHuuGxxQxH +++++= +12

1 ˆˆ2ˆ2ˆ λ  2.1-8 

Then state and costate equations are 

kk

k

k

k BuAx
H

x +=
∂
∂

=
+

+
1

1 λ
            2.1-9 

( ) 1
ˆˆˆ

++++=
∂
∂

= k

T

k

T

k

k

k

k AuHGxQ
x

H
λλ         2.1-10 

and the stationary condition 

( ) 1
ˆˆˆ0 ++++=

∂
∂

= k

T

k

T

k

k

k

BxHGuR
u

H
λ         2.1-11 

Rearranging (2.1-11), we get 

( ) 1

11 ˆˆˆˆ
+

−− −+−= k

T

k

T

k BRxHGRu λ     2.1-12 

Using (2.1-12) to eliminate ku in (2.1-9) and (2.1-10) we get the following Hamiltonian 

system 
















 −
=









+

−
+

1

1
1

~~

ˆ~

k

k

T

T

k

k x

AQ

BRBAx

λλ
            2.1-13 

where 
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( )HGRBAA T ˆˆˆ~ 1 +−= − , 

( ) ( )HGRHGQQ TT ˆˆˆˆˆˆ~ 1 ++−= − .                2.1-14 

In order to decouple the Hamiltonian system (2.1-13), we set 0
~

=Q , and obtain 

( ) ( ) 0ˆˆˆˆˆˆ 1 =++− − HGRHGQ TT                2.1-15 

Using (2.1-7), (2.1-15) can be rewritten as: 

  ( ) 0ˆˆˆˆˆ 1

=+−−+
−

ASBBSBRBSASASAQ TTTT  

( )( ) ( ) QASBBSBRBSAASAS TTTT ++−=
−

ˆˆˆˆˆ
1

              2.1-16 

which is an algebraic Riccati equation. 

There exists a symmetric positive semi-definite solution *
Ŝ for (2.1-16) as long as 

( )BA,  is a stabilizable pair, 0>R and 0≥Q . Proof of this statement can be obtained 

from Corollary 13.1.2 in [2]. 

Corollary 13.1.2: Assume 0>R , ( )BA,  is a d-stabalizable pair, and  

   0
*

≥








RC

CQ
 

Then the maximal hermitian solution +X of (13.1.1) exists, is unique, and is 

positive semidefinite. Moreover, all eigenvalues of the matrix (13.1.14) lie in the 

closed unit disk. 

( ) ( ) ( )XABCXBBRXABCQXAAX *1**** +++−+=
−

     (13.1.1) 

( ) ( )AXBCBXBRBAA +

−

+ ++−= *1*ˆ              (13.1.14) 

Then, for this *
Ŝ , the Hamiltonian system (2.1-13) is decoupled and is given by: 
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 −
=









+

−
+

1

1
1

~
0

ˆ~

k

k

T

T

k

k x

A

BRBAx

λλ
         (2.1-17) 

2.1.1.1 Fixed-Final-State optimal control 

The state and costate equations are given by (2.1-17), once *
Ŝ  is evaluated. To solve 

these we need the termination conditions. Let the objective here be to make Nx  match 

exactly the desired final reference state Nr . The boundary conditions thus are: 

   NN rx =  

   Given0 =x . 

Since both the boundaries of state are fixed, the split boundary conditions are satisfied. 

As opposed to conventional theory [1], the Hamiltonian system (2.1-17) is decoupled 

and the problem has an easy solution. Reproducing state and costate equation, 

   1

1

1
ˆ~

+
−

+ −= k

T

kk BRBxAx λ                2.1-18 

   1

~
+= k

T

k A λλ                  2.1-19 

Rewriting (2.1-19) in term of unknown final costate as 

   ( )
N

kN
T

k A λλ
−

=
~

                2.1-20 

Use this to eliminate 1+kλ  in (2.1-18) to get 

   ( ) N

kN
TT

kk ABRBxAx λ
11

1

~ˆ~ −−−
+ −=               2.1-21 

Considering this as a first order difference equation with second term as input, 

   ( )∑
−

=

−−−−−−=
1

0

111

0

~ˆ~~ k

i

N

iNTTiNk

k ABRBAxAx λ              2.1-22 
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Evaluate (2.1-22) at Nk = , to find Nλ  

   ( )∑
−

=

−−−−−−=
1

0

111

0

~ˆ~~ N

i

N

iN
TTiNN

N ABRBAxAx λ  

Therefore, using the fact NN rx = , the final costate is 

   ( )0

1

,0

~~
xArG

N

NNN −−= −λ                2.1-23 

where 

   ( ) ( )∑
−

=

−−−−−
=

1

0

111

,0

~ˆ~~ N

i

iNTTiN

N ABRBAG               2.1-24 

Using (2.1-24) in (2.1-20) the costate is 

   ( ) ( )0

1

,0

~~~
xArGA

N

NN

kN

k −−= −−
λ               2.1-25 

and so by (2.1-12) the optimal control sequence is 

  ( ) ( ) ( )0

1

,0

111 ~~~ˆˆˆˆ xArGABRxHGRu
N

NN

kNT

k

T

k −++−= −−−−−             2.1-26 

This is the required minimum-control-energy solution to the fixed-final-state linear 

quadratic regulator problem.  

It is very easy to prove that closed loop control (2.1-26) drives x  from 0x  state to 

NN rx =  state. Apply the control (2.1-26) to the state equation: 

  ( ) ( ) ( )0

1

,0

111

1

~~~ˆˆˆˆ xArGABRBxHGRBAxx
N

NN

kNT

k

T

kk −++−= −−−−−
+  

  ( ) ( )0

1

,0

11

1

~~~ˆ~
xArGABRBxAx

N

NN

kNT

kk −+= −−−−
+              2.1-27 

The solution to (2.1-27) is 

  ( ) ( ) ( )0

1

,0

1

0

111

0

~~~ˆ~~
xArGABRBAxAx

N

NN

k

i

iNTTikk

k −+= −
−

=

−−−−−

∑             2.1-28 
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Evaluating (2.1-28) at Nk =  yields 

  ( ) ( ) ( )0

1

,0

1

0

111

0

~~~ˆ~~
xArGABRBAxAx

N

NN

N

i

iNTTiNN

N −+= −
−

=

−−−−−

∑             2.1-29 

but ( )0

1

,0

~~
xArG

N

NN −−  dose not depend on i , and remaining portion of the sum is 

just NG ,0

~
. This implies that (2.1-29) can be simplified as 

  ( ) N

N

NNN

N

N rxArGGxAx =−+= −
0

1

,0,00

~~~~
              2.1-30 

This is what we desired! 

Equation (2.1-24) gives weighted reachability gramian of modified system. In terms 

of the system reachability matrix [BU k =
~ ]BABA k 1~~ −

K , NG ,0

~
 can be written as 

  T

NNN U

R

R

UG
~

ˆ00

00

00ˆ

~~

1

1

,0

















=
−

−

O                2.1-31 

Since we have assumed 0≠R , it is can be easily to show that 0ˆ ≠R . So to have 

0
~

,0 ≠NG  we require NU
~

 having full rank n , where n  is the state dimension. Thus 

invertiblity of NG ,0

~
is ensured under the condition that the system is reachable, 

i.e. [BU n =
~ ]BABA n 1~~ −

K  has full rank n , and nN ≥ . Now we know that state feed 

back (or lack of it) dose not affect controllability of the system. Therefore, we can drive 

any given 0x  to any desired NN rx =  for some N  if the system is controllable! 
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TABLE 2-1 Discrete-Time Linear Quadratic Regulator (Final State Fixed) 

System model: 

kkk BuAxx +=+1 ,  ikN >>  

Performance index: 

( )∑
−

=

++=
1

2
1

2
1

N

ik

k

T

kk

T

kNN

T

Ni RuuQxxxSxJ  

Assumptions: 

0≥NS ,  0≥kQ , 0>R ,  and all three are symmetric 

Optimal feedback control: 

( ) ( ) ( )0

1

,0

111 ~~~ˆˆˆˆ xArGABRxHGRu
N

NN

kNT

k

T

k −++−= −−−−−  

( ) ( )∑
−

=

−−−−−
=

1

0

111

,0

~ˆ~~ N

i

iNTTiN

N ABRBAG  

( )HGRBAA T ˆˆˆ~ 1 +−= −  

( ) ( )HGRHGQQ TT ˆˆˆˆˆˆ~ 1 ++−= − , ASASQQ T ˆˆˆ +−=  

BSAG T ˆˆ
2

1= , ASBH T ˆˆ
2

1= , BSBRR
T ˆˆ +=  

( )( ) ( ) QASBBSBRBSAASAS TTTT ++−=
−

ˆˆˆˆˆ
1
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Example 2.1-1: Scalar System 

Consider a scalar system described by kkk BuAxx +=+1 , where 01.0B,05.1A == , 

with the initial condition 100 =x . It is desired to find the optimal control that minimizes 

the cost function 

     ( )∑
−

=

++=
1

0

2
1

2
1

0

N

k

k

T

kk

T

kNN

T

N RuuQxxxSxJ  where 100N,5S,1R,1Q N ==== . 

Let 12=Nr . Conventional method [1] does not allow an analytical solution because 

of 0≠Q . Using the new method, control and state sequences are found and are shown 

in Fig. 2-1 and Fig. 2-2, respectively. Optimal cost in this case is 98.51977*

0 =J  and 

intermediate costs are shown in Fig. 2-3. 
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Figure 2-1: Fixed Final State LQR Control Sequence (Scalar case)  
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Figure 2-2: Fixed Final State LQR State Sequence (Scalar case) 
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Figure 2-3 Fixed Final State LQR Cost of Controlling (Scalar case) 
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Examples 2.1-2: Second Order System. 

Consider a second order system described by kkk BuAxx +=+1 , 

where 







=

05.101.0

01.01
A and 








=

1.0

0
B  , with the initial condition 









−

−
=

10

5
0x . It is 

desired to find the optimal control that minimizes the cost function 

( )∑
−

=

++=
1

0

2
1

2
1

0

N

k

k

T

kk

T

kNN

T

N RuuQxxxSxJ  where 







=

20

01
NS , 








=

20

02
Q  and 1=R . 

Let 








−
=

1

4
Nr . Again, an analytical solution cannot be derived from the 

conventional approach owing to 0≠Q . Control and state sequences are shown in Fig. 2-

4 and Fig. 2-5, respectively. The optimal cost in this case is 98.51977*

0 =J  and 

intermediate costs are shown in Fig. 2-6. 
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Figure 2-4: Fixed Final State LQR Control Sequence (2

nd
 Order case) 
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Figure 2-5: Fixed Final State LQR State Sequence (2

nd
 Order case) 
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Figure 2-6: Fixed Final State LQR Cost of Controlling (2
nd

 Order System) 
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2.1.1.2 Free-Final-State optimal control 

It is now desired to find an optimal control sequence that drives the system from 

an initial state ix , along a trajectory such that the cost function (2.1.1) is minimized, but 

we are not making any restriction on the final state Nx .This means that Nx  can be 

varied thus 0≠Ndx . Using the split boundary condition we require that 

   
N

N
x∂
∂

=
φ

λ                 2.1-32 

The final state weighting function is NN

T

N xSx
~

2
1=φ , so we get 

   NNN xS
~

=λ                 2.1-33 

This is the new termination condition that we require to solve free final state problem. 

To solve this two-point boundary-value problem we shall use sweep method [3]. Thus 

we shall assume linear relation 2.1-33 holds for all times Nk ≤ : 

   kkk xS
~

=λ             2.1-34 

for some intermediate sequence of nn×  matrices kS
~

. So now we have to find a 

formula to populate kS
~

 for all times Nk < . A valid expression for kS
~

 shall mean that 

our assumption is valid. 

The decoupled state and costate equation with ku  eliminated are reproduced 

here: 
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  1

1

1
ˆ~

+
−

+ −= k

T

kk BRBxAx λ                2.1-35 

   1

~
+= k

T

k A λλ                  2.1-36 

The control is given as: 

  ( ) 1

11 ˆˆˆˆ
+

−− −+−= k

T

k

T

k BRxHGRu λ               2.1-37 

Use (2.1-37) in (2.1-35) to get 

  11

1

1

~ˆ~
++

−
+ −= kk

T

kk xSBRBxAx                2.1-38 

Solving for 1+kx  yields 

  ( ) kk

T

k xASBRBIx
~~ˆ

1

1

1

1

−

+
−

+ +=                2.1-39 

Now substitute (2.1-34) into costate equation (2.1-36) to get 

  1

~~~
+= kk

T

kk xSAxS                 2.1-40 

Use (2.1-39) in (2.1-40) to yield 

  ( ) kk

T

k

T

kk xASBRBISAxS
~~ˆ~~~ 1

1

1
−

+
−+=               2.1-41 

For (2.1-41) to hold for all state sequences give by any ix , evidently we have 

  ( ) ASBRBISAS k

T

k

T

k

~~ˆ~~~ 1

1

1
−

+
−+=               2.1-42 

This is a backward recursion for postulated kS
~

. Though (2.1-42) completely specifies 

kS
~

, we can modify (2.1-42) to get a closed form solution. If 0
~

≠NS  and 0
~

≠A  then 

we can rewrite (2.1-42) as 
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  ( ) TTT

kk ABRBAASAS
−−−−−

+
−− +=

~ˆ~~~~~ 111

1

11              2.1-43 

This is a backward-developing Lyapunov equation for 1~ −
kS . The solution for (2.1-43) is 

given by, 

  ( ) ( ) ( ) ( )∑
−

=

−−−−−−−−− +=
kN

i

iTTikNT

N

kN

k ABRBAASAS
1

111 ~ˆ~~~~~
              2.1-44 

Our work is not quite finished yet. We would like to obtain an expression for ku  

in term as a feedback of system state kx . Use (2.1-34) in (2.1-37) to get 

  ( ) 11

11 ~ˆˆˆˆ
++

−− −+−= kk

T

k

T

k xSBRxHGRu              2.1-45 

Use the plant equation kkk BuAxx +=+1  in (2.1-45) to yield 

  ( ) ( )kkk

T

k

T

k BuAxSBRxHGRu +−+−= +
−−

1

11 ~ˆˆˆˆ             2.1-46 

simplifying to get expression for ku , 

  ( ) ( )[ ] k

T

k

T

k

T

k xHGASBBSBRu ˆˆ~~ˆ
1

1

1 +−+= +

−

+              2.1-47 

This is the required expression! 
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TABLE 2-2 Discrete-Time Linear Quadratic Regulator (Final State Free) 

System model: 

kkk BuAxx +=+1 ,  ik >  

Performance index: 

( )∑
−

=

++=
1

2
1

2
1

N

ik

k

T

kk

T

kNN

T

Ni RuuQxxxSxJ  

Assumptions: 

0≥NS ,  0≥kQ , 0>R ,  and all three are symmetric 

Optimal feedback control: 

kkk xKu −= ,           Nk <  

( ) ( )[ ]HGASBBSBRK
T

k

T

k

T

k
ˆˆ~~ˆ

1

1

1 +−+−= +

−

+  

( ) ( ) ( ) ( )∑
−

=

−−−−−−−−− +=
iN

TTiNT

N

iN

i A
~

BR̂BA
~

A
~

S
~

A
~

S
~

1

111

µ

µµ ,     Ni < ,    SSS NN
ˆ~

−=  

( )HGRBAA T ˆˆˆ~ 1 +−= −  

( ) ( )HGRHGQQ TT ˆˆˆˆˆˆ~ 1 ++−= −  

ASASQQ T ˆˆˆ +−=  

BSAG T ˆˆ
2

1=  

ASBH T ˆˆ
2

1=  

BSBRR
T ˆˆ +=  

( )( ) ( ) QASBBSBRBSAASAS TTTT ++−=
−

ˆˆˆˆˆ
1
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Example 2.1-3: Example 1: Scalar System 

Consider a scalar system kkk BuAxx +=+1  where 01.0B,05.1A ==  with the 

initial condition 100 =x . It is desired to find the optimal control that minimizes the cost 

function 

    ( )∑
−

=

++=
1

0

2
1

2
1

0

N

k

k

T

kk

T

kNN

T

N RuuQxxxSxJ  where 100N,5S,1R,1Q N ==== . 

Free final state control and state sequence are shown in Figure. 2.1-7 and 

Figure. 2.1-8, respectively. Corresponding results for the conventional method are also 

included and are seen to be the same. Optimal cost is found to be 16.51608*

0 =J  in 

both cases. 
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Figure 2-7: Free Final State LOR Control Sequence (Scalar case) 
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Figure 2-8: Free Final State LQR State Sequence (Scalar Case) 
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Figure 2-9: Free Final State LQR Cost of Controlling (Scalar case) 
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Example 2.1-4: Second Order System. 

Consider a second order system described by kkk BuAxx +=+1 , 

where 







=

05.101.0

01.01
A and 








=

1.0

0
B , with the initial condition 









−

−
=

10

5
0x . It is 

desired to find the optimal control that minimizes the cost function 

( )∑
−

=

++=
1

0

2
1

2
1

0

N

k

k

T

kk

T

kNN

T

N RuuQxxxSxJ  where 







=

20

01
NS , 








=

20

02
Q  and 1=R . 

Free final state control and state sequences are shown in Figure. 2.1-10 and 

Figure. 2.1-11, respectively. Optimal cost is found to be 3472.56*

0 =J  in both cases. 
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Figure 2-10: Free Final State LQR Control Sequence (2

nd
 Order case) 
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Figure 2-11: Free Final State LQR State Sequence (2

nd
 Order case) 
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Figure 2-12: Free Final State LQR Cost of Controlling (2

nd
 Order case)
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2.1.2 Tracking Problem 

Consider a plant described by the linear equation kkk BuAxx +=+1  with n

k Rx ∈  

and m

k Ru ∈ . It is desired to get a control law that forces a certain linear combination of 

the states kk Cxy =  of the plant to track a desired reference trajectory kr  over a 

specified time interval [ ]Ni, , then problem can be converted to one where we have to 

minimize the cost function 

( ) ( ) ( ) ( )[ ]∑
−

=

+−−+−−=
1

2
1

2
1

N

ik

k

T

kkk

T

kkNNN

T

NNi RuurCxQrCxrCxPrCxJ  

where P  and Q  are symmetric positive semi-definite matrices and R  is symmetric 

positive definite matrix. Actual value of Nx  is not constrained but we want it to be as 

close as Nr . 

Consider the original cost function 

( ) ( ) ( ) ( )[ ]∑
−

=

+−−+−−=
1

2
1

2
1

N

ik

k

T

kkk

T

kkNNN

T

NNi RuurCxQrCxrCxPrCxJ         2.1-48 

We can subtract and add a term ( ) ( )NN

T

NN rCxSrCx −− ˆ
2

1  to obtain: 

( ) ( )( ) ( ) ( )

( ) ( )[ ]∑
−

=

+−−+

−−+−−−=
1

2
1

2
1

2
1 ˆˆ

N

ik

k

T

kkk

T

kk

NN

T

NNNNN

T

NNi

RuurCxQrCx

rCxSrCxrCxSPrCxJ

            2.1-49 

where Ŝ  is a symmetric positive semi-definite. 

 

Now observe 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( )∑
−

=

++++













−−−

−−
+

−−=−−

1

2
1

1111

2
1

2
1

2
1

ˆ

ˆ

ˆˆ

N

im
mm

T

mm

mm

T

mm

ii

T

iiNN

T

NN

rCxSrCx

rCxSrCx

rCxSrCxrCxSrCx

            2.1-50 

Substituting (2.1-50) into (2.1-49) yields 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )[ ]
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )[ ]∑

∑

∑

−

=
++++

−

=

−

=
++++

+−−+−−−+

−−+−−−=

+−−+

−−−−−+

−−+−−−=

1

11112
1

2
1

2
1

1

2
1

1

2
1

11112
1

2
1

2
1

ˆˆ

ˆˆ

ˆˆ

ˆˆ

N

ik

k

T

kkk

T

kkkk

T

kk

ii

T

iiNNN

T

NN

N

ik

k

T

kkk

T

kk

N

im

mm

T

mmmm

T

mm

ii

T

iiNNN

T

NNi

RuurCxSrCxrCxSQrCx

rCxSrCxrCxSPrCx

RuurCxQrCx

rCxSrCxrCxSrCx

rCxSrCxrCxSPrCxJ

                     2.1-51 

Using kkk BuAxx +=+1 , (2.1-51) can be rewritten after simplification as: 

( ) ( ) ( ) ( )

∑
−

= ++++++ 











++++++

+++++
+

−−+−−=

1

111111

2
1

002
1

2
1

ˆˆˆ2ˆ2ˆ2ˆ2

ˆ2ˆ2ˆˆ2ˆ2ˆ

ˆˆ

N

ik
k

T

kk

T

kk

T

kk

T

kk

T

kk

T

k

k

T

kk

T

kk

T

kk

T

kk

T

kk

T

k

NN

T

NNN

T

NNi

rSrrWruTrrOuxMrrLx

xFrrExuRuxHuuGxxQx

rCxSrCxrCxPrCxJ

      2.1-52 

where  

SPP NN
ˆˆ −=  

( ) CASCACSQCQ TTT ˆˆˆ +−=  

CBSCAG TT ˆˆ
2

1=  

CASCBH TT ˆˆ
2

1=  

CBSCBRR
TT ˆˆ +=  

( )SQCE T ˆˆ
2

1 −−=  
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( )CSQF ˆˆ
2

1 −−=                   2.1-53 

SCAL TT ˆˆ
2

1−=  

CASM ˆˆ
2

1−=  

SCBO TT ˆˆ
2

1−=  

CBST ˆˆ
2

1−=  

SQW ˆˆ −=  

Hamiltonian function for modified cost function (2.1-52) 

( )kk

T

k

k

T

kk

T

kk

T

kk

T

kk

T

kk

T

k

k

T

kk

T

kk

T

kk

T

kk

T

kk

T

kk

BuAx

rSrrWruTrrOuxMrrLx

xFrrExuRuxHuuGxxQx
H

++













++++++

+++++
=

+

++++++

1

111111

2
1

ˆˆˆ2ˆ2ˆ2ˆ2

ˆ2ˆ2ˆˆ2ˆ2ˆ

λ

        2.1-54 

Then state and costate equations are 

kk

k

k

k BuAx
H

x +=
∂
∂

=
+

+
1

1 λ
                 2.1-55 

( ) ( ) ( ) 11
ˆˆˆˆˆˆˆ

++ +++++++=
∂
∂

= k

T

k

T

k

T

k

T

k

k

k

k ArMLrFEuHGxQ
x

H
λλ       2.1-56 

and the stationary condition 

( ) ( ) 1
ˆˆˆˆˆ0 ++++++=

∂
∂

= k

TT

k

T

k

k

k

BTOxHGuR
u

H
λ               2.1-57 

Rearranging (2.1-57), we get 

( ) ( ) 1

1

1

11 ˆˆˆˆˆˆˆ
+

−
+

−− −+−+−= k

T

k

T

k

T

k BRrTORxHGRu λ           2.1-58 

Using (2.1-58) to eliminate ku in (2.1-55) and (2.1-56) we get the following 

Hamiltonian system 
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( )
( ) 

















+

+−
+















 −
=









+

−

+

−
+

1

1

1

1
1

~ˆˆ

ˆˆˆ0
~~

ˆ~

k

k

T

T

k

k

T

T

k

k

r

r

ZFE

TORBx

AQ

BRBAx

λλ
         2.1-59 

where 

( )HGRBAA T ˆˆˆ~ 1 +−= − , 

( ) ( )HGRHGQQ TT ˆˆˆˆˆˆ~ 1 ++−= − .                2.1-60 

( ) ( ) ( )TTT TORHGMLZ ˆˆˆˆˆˆˆ~ 1 ++−+= −  

In order to decouple the Hamiltonian system (2.1-59) we set 0
~

=Q  

( ) ( ) 0ˆˆˆˆˆˆ 1 =++− − TT GHRHGQ                 2.1-61 

using (2.1-53), (2.1-61) can be rearranged as, 

( ) QCCCASCBCBSCBRBSCACASCACSC TTTTTTTTTT ++−=
− ˆˆˆˆˆ 1

            2.1-62 

Equation (2.1-62) is an algebraic riccati equation. There exits a symmetric positive 

semi-definite solution *
Ŝ  for (2.1-62) as long as ( )BA,  is a stabalizable pair, 0>R  

and 0≥Q . Proof of this can be obtained from Collary 13.1.2 in [2]. 

Corollary 13.1.2: Assume 0>R , ( )BA,  is a d-stabalizable pair, and  

     0
*

≥








RC

CQ
 

Then the maximal hermitian solution +X of (13.1.1) exists, is unique, and is 

positive semidefinite. Moreover, all eigenvalues of the matrix (13.1.14) lie in the 

closed unit disk. 

( ) ( ) ( )XABCXBBRXABCQXAAX *1**** +++−+=
−

     (13.1.1) 
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( ) ( )AXBCBXBRBAA +

−

+ ++−= *1*ˆ             (13.1.14) 

Then for this *
Ŝ , the Hamiltonian system (2.1-59) is decoupled and is given by: 

( )
( ) 

















+

+−
+















 −
=









+

−

+

−
+

1

1

1

1
1

~ˆˆ

ˆˆˆ0
~

0

ˆ~

k

k

T

T

k

k

T

T

k

k

r

r

ZFE

TORBx

A

BRBAx

λλ
            2.1-63 

To solve this problem we need boundary conditions. First one is the initial condition 

0x , which is given. The final state condition Nx , which we want to be as closed as Nr , 

is not fixed. Thus 0≠Ndx  and therefore from split boundary conditions we require 

    
N

N
x∂
∂

=
φ

λ                 2.1-64 

The final state weighting function is ( ) ( )NNN

T

NN rCxPrCx −−= ˆ
2

1φ , so we get 

    ( )NNN

T

N rCxPC −= ˆλ               2.1-65 

We assume that linear relation (2.1-65) holds for all Nk ≤  [3], thus we can write: 

    kkkk vxS −=
~

λ                2.1-66 

where  

 CPCS N

T

N
ˆ~

=  

 NN

T

N rPCv ˆ=  

Use (2.1-66) in state equation portion of decoupled system (2.1-63) to get 

 ( ) 1

1

1

1

11

1

1
ˆˆˆˆ~ˆ~

+
−

+
−

++
−

+ +−+−= k

T

k

T

kk

T

kk rTORBvBRBxSBRBxAx                 2.1-67 

Solve for 1+kx  to yield 

 ( ) ( )[ ]1

1

1

1
1

1

1

1
ˆˆˆˆ~~ˆ

+
−

+
−−

+
−

+ +−++= k

T

k

T

kk

T

k rTORBvBRBxASBRBIx              2.1-68 
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Now use (2.1-66) again in costate portion of decoupled system (2.1-63) to get 

( ) 11!1

~ˆˆ~~~~
++++ +++−=− kk

T

k

T

kk

T

kkk rZrFEvAxSAvxS             2.1-69 

Use expression for 1+kx  from (2.1-70) in (2.1-71) to simplify as 

( )
( )

( ) ( ) ( ) 0ˆˆ~ˆˆˆ~ˆ~~

ˆ~ˆ~~~

~~ˆ~~~

1

1
1

1

1

1

1

1
1

1

1

11

1

1

1

1

=+−



 −+++

+−+

−



 +−

+
−−

+
−

+

+
−−

+
−

++

−

+
−

+

k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

T

kkk

T

k

T

k

rFErZTORBSBRBISA

vBRBSBRBISAvA

vxASBRBISAS

         2.1-72 

Equation (2.1-72) must hold for all state sequences kx  given any 0x , thus we have 

following set of equations 

   ( ) 0
~~ˆ~~~ 1

1

1

1 =+−
−

+
−

+ ASBRBISAS k

T

k

T

k  

( )
( ) ( )[ ] ( ) 0ˆˆ~ˆˆˆ~ˆ~~

ˆ~ˆ~~~

1

1
1

1

1

1

1

1
1

1

1

11

=+−−+++

+−+−

+
−−

+
−

+

+
−−

+
−

++

k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

rFErZTORBSBRBISA

vBRBSBRBISAvAv
 

or 

 ( ) ASBRBISAS k

T

k

T

k

~~ˆ~~~ 1

1

1

1

−

+
−

+ +=                 2.1-73 

 
( )

( ) ( )[ ] ( )
k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

rFErZTORBSBRBISA

vBRBSBRBISAvAv

ˆˆ~ˆˆˆ~ˆ~~

ˆ~ˆ~~~

1

1
1

1

1

1

1

1
1

1

1

11

+−−+++

+−=

+
−−

+
−

+

+
−−

+
−

++
       2.1-74 

Equation (2.1-73) and (2.1-74) are the required consistent equations that validate our 

assumptions. Boundary condition for these set of equation are given by 

CPCS N

T

N
ˆ~

=  

  NN

T

N rPCv ˆ=  
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We can further modify (2.1-73) to get a closed form solution for it. If 0
~

≠NS  and 

0
~

≠A  then we can rewrite (2.1-73) as 

( ) TTT

kk ABRBAASAS
−−−−−

+
−− +=

~ˆ~~~~~ 111

1

11                2.1-75 

This is a backward-developing Lyapunov equation for 1~ −
kS . The solution for (2.1-75) is 

given by, 

 ( ) ( ) ( ) ( )∑
−

=

−−−−−−−−− +=
iN

TTiNT

N

iN

i A
~

BR̂BA
~

A
~

S
~

A
~

S
~

1

111

µ

µµ               2.1-76 

 1,......,3,2,1,0 −= Ni  

We are yet to find a expression for ku  in term of system state. To do this we first put 

(2.1.-66) in (2.1-58) to get 

 ( ) ( ) 1

1

11

1

1

11 ˆ~ˆˆˆˆˆˆˆ
+

−
++

−
+

−− +−+−+−= k

T

kk

T

k

T

k

T

k vBRxSBRrTORxHGRu      2.1-77 

Use plant equation kkk BuAxx +=+1  to solve for ku  in (2.1-77) to yield, 

( ) ( ) ( )[ ]111

1

1
ˆˆˆˆ~~ˆ

+++

−

+ −+++++−= k

T

k

T

k

T

k

T

k

T

k vBrOTxHGASBBSBRu          2.1-78 
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TABLE 2-3 Discrete-Time Linear Quadratic Tracker 

System model: 

kkk BuAxx +=+1 ,  ik >  

kk Cxy =  

Performance index: 

( ) ( ) ( ) ( )[ ]∑
−

=

+−−+−−=
1

2
1

2
1

N

ik

k

T

kkk

T

kkNNN

T

NNi RuurCxQrCxrCxPrCxJ  

Assumptions: 

0≥NP ,  0≥kQ , 0>R ,  and all three are symmetric 

Optimal feedback control: 

( ) ( ) ( )[ ]111

1

1
ˆˆˆˆ~~ˆ

+++

−

+ −+++++−= k

T

k

T

k

T

k

T

k

T

k vBrOTxHGASBBSBRu ,           Nk <  

( ) ( ) ( ) ( )∑
−

=

−−−−−−−−− +=
iN

TTiNT

N

iN

i A
~

BR̂BA
~

A
~

S
~

A
~

S
~

1

111

µ

µµ ,     Ni < ,    ( )CSPCS N

T

N
ˆ~

−=  

( )
( ) ( )[ ] ( )

k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

T

k

rFErZTORBSBRBISA

vBRBSBRBISAvAv

ˆˆ~ˆˆˆ~ˆ~~

ˆ~ˆ~~~

1

1
1

1

1

1

1

1
1

1

1

11

+−−+++

+−=

+
−−

+
−

+

+
−−

+
−

++
,

( )
NN

T

N rSPCv ˆ−=  

( )HGRBAA T ˆˆˆ~ 1 +−= −  

( ) ( )HGRHGQQ TT ˆˆˆˆˆˆ~ 1 ++−= −  

ASASQQ T ˆˆˆ +−=  

BSAG T ˆˆ
2

1=  

ASBH T ˆˆ
2

1=  

BSBRR
T ˆˆ +=  

SCBO TT ˆˆ
2

1−=  

CBST ˆˆ
2

1−=  

( )SQCE T ˆˆ
2

1 −−=  

( )CSQF ˆˆ
2

1 −−=  

( )( ) ( ) QASBBSBRBSAASAS TTTT ++−=
−

ˆˆˆˆˆ
1
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Example 2.1-5: Scalar Case 

Consider a scalar system described by kkk BuAxx +=+1 , where 01.0B,05.1A == , with 

the initial condition 100 =x . It is desired to find the optimal control that minimizes the 

cost function ( ) ( ) ( ) ( )[ ]∑
−

=

+−−+−−=
1

2
1

2
1

N

ik

k

T

kkk

T

kkNNN

T

NNi RuurCxQrCxrCxPrCxJ  

where 100,5,1,100000 ==== NPRQ N  1=C . 

It is desired to make system track a specific trajectory given by )sin(5 πkrk = . 
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Figure 2-13: Discrete LQ Tracker Control Sequence 
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Figure 2-14: Discrete LQ Tracker State Sequence 

 

 

2.2 Continuous-Time Linear Quadratic Problem 

2.2.1 Regulation Problem 

In this section we would consider continuous-time linear plant 

   BuAxx +=& ,                   2.2-1 

where n
Rx ∈  and m

Ru ∈  with associated quadratic performance index defined over 

the time interval [ ]Tt ,0  

   ( )∫ ++=
T

t

TTT dtRuuQxxTxTSTxtJ

0

2
1

2
1

0 )()()()(               2.2-2 

where matrices )(TS  and Q  are positive semi-definite and R  is symmetric positive 

definite. We have to determine the control sequence ku  such that it minimizes )( 0tJ  on 
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[ ]Tt ,0 . As in discrete regulator case we have two cases: fixed final state and free final 

state. But before that we shall apply a transformation to quadratic performance index 

similar to that discrete case to enable a closed form solution of problem. 

Consider the original cost function (quadratic performance index) 

   ( )∫ ++=
T

t

TTT dtRuuQxxTxTSTxtJ

0

2
1

2
1

0 )()()()(  

We can subtract and add a term )(ˆ)(
2
1 TxSTx

T  to obtain 

( ) ( )∫ +++−=
T

t

TTTT dtRuuQxxTxSTxTxSTSTxtJ

0

2
1

2
1

2
1

0 )(ˆ)()(ˆ)()()(            2.2-3 

 

Now observe  

( )∫ ++=
T

t

TTTT dttxStxtxStxtxStxTxSTx

0

)(ˆ)()(ˆ)()(ˆ)()(ˆ)(
2
1

002
1

2
1 &&               2.2-4 

Substituting (2.2-4) into (2.2-3) yields 

( )
( ) ( )∫∫ ++++

+−=
T

t

TT

T

t

TT

TT

dtRuuQxxdttxStxtxStx

txStxTxSTSTxtJ

00

2
1

2
1

002
1

2
1

0

)(ˆ)()(ˆ)(

)(ˆ)()(ˆ)()()(

&&
              2.2-5 

Using plant equation BuAxx +=& , (2.2-5) can be written as after simplification as 

( )∫ ++++

+=
T

t

TTTT

TT

dtRuuxHuuGxxQx

txStxTxTSTxtJ

0

ˆ2ˆ2ˆ

)(ˆ)()()(
~

)()(

2
1

002
1

2
1

0

                2.2-6 

where 

 STSTS ˆ)()(
~

−=  
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SAASQQ T ˆˆˆ ++=  

BSG ˆˆ
2

1=                      2.2-7 

SBH T ˆˆ
2

1=  

Hamiltonian function for this modified cost function (2.2-6)  

( ) ( )BuAxRuuxHuuGxxQxtH
TTTTT +++++= λˆ2ˆ2ˆ)(

2
1               2.2-8 

 

 

Then the state and costate equation are 

   BuAx
H

x +=
∂
∂

=
λ

&                   2.2-9 

   ( ) λλ T
AuHGxQ

x

H
+++=

∂
∂

=− ˆˆˆ&               2.2-10 

and the stationary condition is 

   ( ) λT
BxHGRu

u

H
+++=

∂
∂

= ˆˆ0               2.2-11 

Rearrange (2.2-11) to yield control )(tu in term of costate )(tλ  

   ( ) λTBRxHGRtu 11 ˆˆ)( −− −+−=               2.2-12 

Using (2.2-12) to eliminate )(tu  from (2.2-9) and (2.2-10) we get the following 

Hamiltonian system 

   
















−−

−
=







 −

λλ
x

AQ

BBRAx

T

T

~~

~ 1

&

&
               2.2-13 

where 
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( )HGBRAA T ˆˆ~ 1 +−= − , 

( ) ( )HGRHGQQ TT ˆˆˆˆˆ~ 1 ++−= −  

In order to decouple the Hamiltonian system (2.2-13) we set 0
~

=Q  

   ( ) ( ) 0ˆˆˆˆˆˆ~ 1 =++−= − HGRHGQQ TT               2.2-14 

Using (2.2-7), (2.2-14) can rewritten after simplification as 

   0ˆˆˆˆ 1 =−−−− QSAASSBBRS TT               2.2-15 

Equation (2.2-15) is an continuous algebraic riccati equation. There exits a 

symmetric positive semi-definite solution *
Ŝ  for (2.2-15) as long as ( )BA,  is a 

stabalizable pair, 0>R  and 0≥Q . Proof of this can be obtained from Theorem 9.1.2 

in [2]. 

Theorem 9.1.2 : If 0≥D , 0≥C and the pair ( )DA,  is stabalizable then 

there exist hermitian solutions of 0=(X)RRRR . Moreover, the maximal hermitian 

solution +X also satisfies 0≥+X . If, in addition, ( )AC,  is detectable then 

+− DXA  is stable. 

  0* =−−−= CXAXAXDX(X)RRRR    (9.1.1) 

Then for this *
Ŝ , Hamiltonian system (2.2-13) is decoupled and given by 

   














 −
=







 −

λλ
x

A

BBRAx

T

T

~
0

~ 1

&

&
               2.2-16 

 

2.2.1.1 Fixed-Final-State optimal control 
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Objective here is to make )(Tx  exactly match reference final state )(Tr . The 

decoupled Hamiltonian system is given by (2.2-16), to solve it we first need to state 

boundary condition and check for validity of split boundary conditions. The boundary 

conditions are 

    )()( TrTx =  

    Given)( 0 =tx . 

Since both conditions are fixed, split boundary equations are also satisfied. 

State and costate equation from decoupled Hamiltonian system (2.2-16) are 

reproduced 

   λTBBRxAx 1~ −−=&                 2.2-17 

   λλ T
A
~

=&                  2.2-18 

Solution to (2.2-18) is 

   )()( )(
~

Tet
tTA

T

λλ −=                 2.2-19 

where we still don’t know )(Tλ . Using this expression (2.2-19) in state equation (2.2-

17) yields 

   )(
~ )(

~
1

TeBBRxAx
tTAT

T

λ−−−=&                2.2-20 

We can obtain a solution to (2.2-20) considering second term as input as 

   ∫ −−−− −=
t

t

TATtAttA
dTeBBRetxetx

T

0

0 )()()( )(
~

1)(
~

0

)(
~

τλττ             2.2-21 

Evaluate (2.2-21) at Tt = , to get expression for )(Tλ  
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   )(),(
~

)()( 00

)(
~

0 TTtGtxeTx
tTA λ−= −

              2.2-22 

where the weighted continuous reachability gramian of modified system is: 

   ∫ −−−=
T

t

TATTA dTeBBReTtG
T

0

)(),(
~ )(

~
1)(

~

0 τλττ              2.2-23 

Using final condition )()( TrTx =  in (2.2-22) to get 

   )]()()[,(
~

)( 0

)(
~

0

1 0 txeTrTtGT
tTA −− −−=λ              2.2-24 

Using (2.2-24) in (2.2-19) to get costate expression as 

   )]()()[,(
~

)( 0

)(
~

0

1)(
~

0 txeTrTtGet
tTAtTAT −−− −−=λ             2.2-25 

Finally using (2.2-25) in (2.2-12) to get optimal control as 

 ( ) )]()()[,(
~ˆˆ)( 0

)(
~

0

1)(
~

11 0 txeTrTtGeBRxHGRtu
tTAtTAT

T −−−−− −++−=             2.2-26 

TABLE 2-4 Continuous-Time Linear Quadratic Regulator (Final State Fixed) 

System model: 

BuAxx +=& ,  0tt ≥  

Performance index: 

( )∫ ++=
T

t

TTT dtRuuQxxTxTSTxtJ

0

2
1

2
1

0 )()()()(  

Assumptions: 

0)( ≥TS ,  0≥Q , 0>R ,  and all three are symmetric 

Optimal feedback control: 

( ) )]()()[,(
~ˆˆ)( 0

)(
~

0

1)(
~

11 0 txeTrTtGeBRxHGRtu
tTAtTAT T −−−−− −++−=  

∫ −−−=
T

t

TATTA dTeBBReTtG
T

0

)(),(
~ )(

~
1)(

~

0 τλττ  

( )HGBRAA T ˆˆ~ 1 +−= −  

( ) ( )HGRHGQQ TT ˆˆˆˆˆ~ 1 ++−= −  

SAASQQ T ˆˆˆ ++=  

BSG ˆˆ
2

1= , SBH T ˆˆ
2

1=  

0ˆˆˆˆ 1 =−−−− QSAASSBBRS TT  
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2.2.1.2 Free-Final-State optimal control 

The decoupled state and costate equations are reproduced here 

   λTBBRxAx 1~ −−=&                 2.2-27 

   λλ T
A
~

=&                  2.2-28 

and the control input is 

   ( ) λTBRxHGRu 11 ˆˆ −− −+−=                2.2-29 

We are required to find the optimal control that minimizes the quadratic performance 

index (2.2-2), while having no constrain on final system state. In other words final state 

)(Tx  is free. Thus 0)( ≠Tdx , so from split boundary condition we require 

   
Tx

T
∂
∂

=
φ

λ )(                  2.2-30 

The final state weighting function is )(()(
~

)(2
1 TxTSTxT=φ , so we get 

   )()(
~

)( TxTST =λ                 2.2-31 

This is the required termination condition. Now we again use sweep method [3] and that 

the linear relation (2.2-31) holds for all ],[ 0 Ttt ∈ , for some yet unknown matrix 

function )(
~

tS . 

   )()(
~

)( txtSt =λ                 2.2-32 

Now we have to find intermediate function )(
~

tS , a valid expression shall mean our 

assumption was correct. Differentiate (2.2-32) with respect to time to yield 

   xSxS &
&& ~~

+=λ                  2.2-33 



 

 46 

Use the state equation (2.2-27) and costate equation (2.2-28) in (2.2-33) to get 

   ( )λλ TT BBRxASxSA 1~~~~ −−+=− &
              2.2-34 

again use (2.2-32) in (2.2-34) to get 

   ( )xSBBRxASxSxSA TT ~~~~~~ 1−−+=− &
 

or 

   SBBRSASSAS
TT ~~~~~~~ 1−−+=− &

              2.2-35 

This specifies S
~

 entirely. But we can modify (2.2-35) to get a closed form solution for 

S
~

. If 0)(
~

≠TS  we can rewrite (2.2-35) as 

   TT
BBRSAASSSS

11111 ~~~~~~~ −−−−− −+=− &
 

or   TT
BBRSAASS

1111 ~~~~~ −−−− −+=&
              2.2-36 

This is the Lyapunov equation in 1~ −
S  and has a closed form solution given as 

  ∫ −−−−−−− +=
t

T

tATtATtATtA
deBBReeTSetS

TT

τττ )(
~

1)(
~

)(
~

1)(
~

1 )(
~

)(
~

             2.2-37 

We now are going to find optimal control sequence. Use (2.2-32) in (2.2-29) to get 

expression for )(tu  in term of state feedback as 

   ( ) )(]
~ˆˆ[)( 11 txSBRHGRtu T−− ++−=               2.2-38 
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TABLE 2-5 Continuous-Time Linear Quadratic Regulator (Final State Free) 

System model: 

BuAxx +=& ,  0tt ≥  

Performance index: 

( )∫ ++=
T

t

TTT dtRuuQxxTxTSTxtJ

0

2
1

2
1

0 )()()()(  

Assumptions: 

0)( ≥TS ,  0≥Q , 0>R ,  and all three are symmetric 

Optimal feedback control: 

( ) xSBRHGRtu T ]
~ˆˆ[)( 11 −− ++−=  

∫ −−−−−−− +=
t

T

tATtATtATtA
deBBReeTSetS

TT

τττ )(
~

1)(
~

)(
~

1)(
~

1 )(
~

)(
~

,   STSTS ˆ)()(
~

−=  

( )HGBRAA T ˆˆ~ 1 +−= −  

BSG ˆˆ
2

1=  

SBH T ˆˆ
2

1=  

0ˆˆˆˆ 1 =−−−− QSAASSBBRS TT  

 

 

Example 2.2-1: Scalar system 

Consider a scalar system described by BuAxx +=&  where 05.1=A  and 

01.0=B , with initial condition 10)0( =x . It is desired to find optimal control that 

minimizes the cost function ( )∫ ++=
T

t

TTT dtRuuQxx)T(x)T(S)T(x)t(J

0

2
1

2
1

0  where 

1=Q , 1=R , and 1)( =TS ; 0t =0, sec10=T . 

Free final state. 

Free final state control and state sequence are shown in Figure 2.2-1 and Figure 

2.2-2 respectively. Corresponding results for the conventional method [1] are also 

included and are seen to be the same.  
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Figure 2-15: Free Final State CLQR Control Sequence (Scalar case) 
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Figure 2-16: Free Final State CLQR State Sequence (Scalar case) 
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Fixed final state 

Let 12)( =Tr . Conventional method does not allow an analytical solution 

because 0≠Q . Using the new method, control and state sequence are found and are 

shown in Figure 2.2-3 and Figure 2.2-4, respectively. 
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Figure 2-17: Fixed Final State CLQR Control Sequence (2

nd
 Order case) 
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Figure 2-18: Fixed Final State CLQR State Sequence (2

nd
 Order case) 

 

 

Example 2.2.-2: Second order system 

Consider a scalar system described by BuAxx +=&  where 







=

00

10
A  and 









=

1

0
B , with initial condition [ ]Tx 104)0( −= . It is desired to find optimal control 

that minimizes the cost function ( )∫ ++=
T

t

TTT dtRuuQxxTxTSTxtJ

0

2
1

2
1

0 )()()()(  where 









=

10

01
Q , 1=R , and 








=

50

05
)(TS ; 0t =0, sec10=T . 

Free final state. 

Free final state control and state sequence are shown in Figure 2.2-5 and Figure 
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2.2-6 respectively. Corresponding results for the conventional method [1] are also 

included and are seen to be the same. 

 

 

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

6

8

10

12

14

 Time (sec)

C
o
n
tr

o
l 
(u

(t
))

 

 

Conventional Method [1]

New Method

 
Figure 2-19: Free Final State CLQR Control Sequence (2

nd
 Order Case) 
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Figure 2-20: Free Final State CLQR State Sequence (2

nd
 Order) 

 

Fixed final state 

Let [ ]TTr 14)( −−= .Conventional method does not allow an analytical solution 

because 0≠Q . Using the new method, control and state sequence are found and are 

shown in Figure 2.2-7 and Figure 2.2-8, respectively. 
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Figure 2-21 Fixed Final State CLQR Control Sequence (2

nd
 Order case) 
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Figure 2-22: Fixed Final State CLQR State Sequence (2

nd
 Order System) 
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2.2.2 Tracking Problem 

Consider a plant described by the linear equation BuAxx +=&  with n
Rx ∈  and 

m
Ru ∈ . It is desired to get a control law that forces a certain linear combination of the 

states )()( tCxty =  of the plant to track a desired reference trajectory )(tr  over a 

specified time interval [ ]Ni, , then problem can be converted to one where we have to 

minimize the cost function 

( ) ( ) ( ) ( )[ ]∫ +−−+−−=
T

t

TTT

i dtRuurCxQrCxTrTCxPTrTCxJ

0

2
1

2
1 )()()()(  

where P  and Q  are symmetric positive semi-definite matrices and R  is symmetric 

positive definite matrix. Actual value of )(Tx  is not constrained but we want it to be as 

close as )(Tr . 

Consider the original cost function 

( ) ( ) ( ) ( )[ ]∫ +−−+−−=
T

t

TTT

i dtRuurCxQrCxTrTCxPTrTCxJ

0

2
1

2
1 )()()()(      2.2-39 

We can subtract and add a term ( ) ( ))()(ˆ)()(2
1 TrTCxSTrTCx

T −−  to obtain: 

( ) ( )( ) ( ) ( )

( ) ( )[ ]dtRuurCxQrCx

TrTCxSTrTCxTrTCxSPTrTCxJ

T

t

TT

TT

i

∫ +−−+

−−+−−−=

0

2
1

2
1

2
1 )()(ˆ)()()()(ˆ)()(

       2.2-40 

where Ŝ  is a symmetric positive semi-definite. 

Now observe 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ]∫ −−+−−+

−−=−−
T

t

TT

TT

dtrxCSrCxrCxSrxC

trtCxStrtCxTrTCxSTrTCx

0

ˆˆ

)()(ˆ)()()()(ˆ)()(

2
1

00002
1

2
1

&&&&
            2.2-41 

Use (2.2-41) in (2.2-40) to get: 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )[ ]

( ) ( )[ ]dtRuurCxQrCx

dtrxCSrCxrCxSrxC

trtCxStrtCxTrTCxSPTrTCxJ

T

t

TT

T

t

TT

TT

i

∫

∫

+−−+

−−+−−+

−−+−−−=

0

0

2
1

2
1

00002
1

2
1

ˆˆ

)()(ˆ)()()()(ˆ)()(

&&&&      2.2-42 

Use BuAxx +=&  in (2.2-42) to get after simplification: 

∫ 













++−−+−

−−−+++
+

+=

T

t
TTTTTTT

TTTTTTT

TT

dt
rSrrSrrSCxCxSrQrrxMr

rLuxFrrExRuuxHuuGxxQx

txStxTxTPTxtJ

0

ˆˆˆˆˆ2

ˆ2ˆ2ˆ2ˆ2ˆ2ˆ

)(ˆ)()()(ˆ)()(

2
1

002
1

2
1

0

&&&&

         2.2-43 

where 

 SPTP ˆ)(ˆ −=  

CSACACSCQCCQ TTTT ˆˆˆ ++=  

CSCBG TT ˆˆ
2

1=  

CBSCH T ˆˆ
2

1=  

]ˆ[ˆ
2

1 SCAQCE TTT +=                  2.2-44 

]ˆ[ˆ
2

1 CASQCF +=  

SCBL TT ˆˆ
2

1=  

CBSM ˆˆ
2

1=  
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Hamiltonian function for this modified cost function (2.2-43)  

( )BuAx
rSrrSrrSCxCxSrQrrxMr

rLuxFrrExRuuxHuuGxxQx
tH

T

TTTTTTT

TTTTTTT

++














++−−+−

−−−+++
= λ

&&&& ˆˆˆˆˆ2

ˆ2ˆ2ˆ2ˆ2ˆ2ˆ
)(

2
1  

           2.2-45 

 

 

 

Then the state and costate equation are: 

  BuAx
H

x +=
∂
∂

=
λ

&                  2.2-46 

  ( ) rSCArFEuHGxQ
x

H TTT
&& ˆ2)ˆˆ(ˆˆˆ −++−++=

∂
∂

=− λλ                  2.2-47 

and the stationary condition is 

  ( ) rMLBxHGRu
u

H TT )ˆˆ(ˆˆ0 +−+++=
∂
∂

= λ              2.2-48 

Rearrange (2.2-48) to yield control )(tu in term of costate )(tλ  

  ( ) rMLRBRxHGRtu TT )ˆˆ(ˆˆ)( 111 ++−+−= −−− λ              2.2-49 

Using (2.2-49) to eliminate )(tu  from (2.2-46) and (2.2-47) we get the following 

Hamiltonian system 
















 +−
+

















−−

−
=







 −−

r

r

ZSC

MLBRx

AQ

BBRAx

T

T

T

T &

&

&

~ˆ2

)ˆˆ(0
~~

~ 11

λλ
    2.2-50 

where 

( )HGBRAA T ˆˆ~ 1 +−= − , 
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( ) ( )HGRHGQQ TT ˆˆˆˆˆ~ 1 ++−= −  

)ˆˆ()ˆˆ()ˆˆ(
~ 1 TTT MLRHGFEZ ++−+= −  

To decouple the Hamiltonian system (2.2-50) we set 0
~

=Q  

( ) ( ) 0ˆˆˆˆˆ~ 1 =++−= − HGRHGQQ TT  

Use (2.2-44) to simplify as: 

  0ˆˆˆˆ 1 =−++ − CSCBCBRSCCSACACSCQCC TTTTTTT             2.2-51 

Equation (2.2-51) is an continuous algebraic riccati equation. There exits a 

symmetric positive semi-definite solution *
Ŝ  for (2.2-51) as long as ( )BA,  is a 

stabalizable pair, 0>R  and 0≥Q . Proof of this can be obtained from Theorem 9.1.2 

in [2]. 

Theorem 9.1.2 : If 0≥D , 0≥C and the pair ( )DA,  is stabalizable then 

there exist hermitian solutions of 0=(X)RRRR . Moreover, the maximal hermitian 

solution +X also satisfies 0≥+X . If, in addition, ( )AC,  is detectable then 

+− DXA  is stable. 

  0* =−−−= CXAXAXDX(X)RRRR    (9.1.1) 

Then for this *
Ŝ , Hamiltonian system (2.2-50) is decoupled and given by 

 














 +−
+

















−

−
=







 −−

r

r

ZSC

MLBRx

A

BBRAx

T

T

T

T &

&

&

~ˆ2

)ˆˆ(0
~

0

~ 11

λλ
            2.2-51 

We have to still find the optimal control for the problem. For this we require boundary 

conditions, first one is the given initial system state )( 0tx  while second condition is: 
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( ))()()(ˆ)( TrTCxTPCT T −=λ               2.2-52 

We again shall make assumption that linear relation (2.2-53) holds for all time 

Ttt ≤≤0 , thus we can say 

)()()(
~

)( tvtxtSt −=λ                 2.2-53 

where   CTPCTS T )(ˆ)(
~

=  

  )()(ˆ)( TrTPCTv T=  

Differentiating (2.2-53) with respect to time to get: 

   vxSxS &&
&& −+=

~~
λ                 2.2-54 

Use the Hamiltonian System (2.2-51) and (2.2-53) again in (2.2-54) to get: 

vrMLBRSvBBRSxSBBRSxASxSrZrSCvAxSA TTTTTT
&

&
& −+−+−+=+++− −−− )ˆˆ(

~~~~~~~~ˆ2
~~~ 111

                     2.2-55 

0)ˆˆ(
~~ˆ2

~~~~~~~~~ 111 =++++−+++−−− −−−
rMLBRSrZrSCvBBRSvAvxSBBRSxASxSAxS

TTTTTT
&&

&

                     2.2-56 

For (2.2-56) to hold for all )(tx  under any given )( 0tx  condition we shall have: 

0
~~~~~~~ 1 =+−−− − SBBRSASSAS TT&

               2.2-57 

0)ˆˆ(
~~ˆ2

~~ 11 =++++−+ −−
rMLBRSrZrSCvBBRSvAv

TTTT
&&             2.2-58 

or on further simplification: 

SBBRSASSAS TT ~~~~~~~ 1−−++=− &
               2.2-59 

( ) [ ]rMLBRSZrSCvBBRSAv
TTTT

)ˆˆ(
~~ˆ2

~~ 11 ++++−=− −−
&&             2.2-60 
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Equation (2.2-59) and (2.2-60) are the required equation, boundary condition for them 

are:  CTPCTS T )(ˆ)(
~

=  

  )()(ˆ)( TrTPCTv T=  

But we can modify (2.2-59) to get a closed form solution for S
~

. If 0)(
~

≠TS  we can 

rewrite (2.2-59) as 

   TT
BBRSAASSSS

11111 ~~~~~~~ −−−−− −+=− &
 

or   TT
BBRSAASS

1111 ~~~~~ −−−− −+=&
              2.2-61 

This is the Lyapunov equation in 1~ −
S  and has a closed form solution given as 

  ∫ −−−−−−− +=
t

T

tATtATtATtA
deBBReeTSetS

TT

τττ )(
~

1)(
~

)(
~

1)(
~

1
)(

~
)(

~
             2.2-62 

Optimal control for this tracker is obtained by substituting (2.2-53) in (2.2-49) 

( )[ ] rMLRvRxtSBHGRtu TT )ˆˆ()(
~ˆˆ)( 111 +++++−= −−−             2.2-63 
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TABLE 2-6 Continuous-Time Linear Quadratic Tracker 

System model: 

BuAxx +=& ,  0tt ≥  

Performance index: 

( ) ( ) ( ) ( )[ ]∫ +−−+−−=
T

t

TTT

i dtRuurCxQrCxTrTCxPTrTCxJ

0

2
1

2
1 )()()()(  

Assumptions: 

0)( ≥TS ,  0≥Q , 0>R ,  and all three are symmetric 

Optimal feedback control: 

( )[ ] rMLRvRxtSBHGRtu TT )ˆˆ()(
~ˆˆ)( 111 +++++−= −−−  

∫ −−−−−−− +=
t

T

tATtATtATtA
deBBReeTSetS

TT

τττ )(
~

1)(
~

)(
~

1)(
~

1
)(

~
)(

~
,   CTPCTS T )(ˆ)(

~
=  

( ) [ ]rMLBRSZrSCvBBRSAv
TTTT

)ˆˆ(
~~ˆ2

~~ 11 ++++−=− −−
&&  

( )HGBRAA T ˆˆ~ 1 +−= −  

CSCBG TT ˆˆ
2

1= , CBSCH T ˆˆ
2

1=  

]ˆ[ˆ
2

1 SCAQCE TTT += , ]ˆ[ˆ
2

1 CASQCF += , SCBL TT ˆˆ
2

1= , CBSM ˆˆ
2

1=  

0ˆˆˆˆ 1 =−++ − CSCBCBRSCCSACACSCQCC TTTTTTT  
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CHAPTER 3 

CONCLUSION AND FUTURE WORK 

3.1 Conclusion 

In this work through chapter 2 we have explored a way to decouple the 

Hamiltonian system formed during the solution to linear quadratic problem in control 

theory. Resulting decoupled system proves to be helpful in solving linear quadratic 

problem. As opposed to conventional theory [1], [3], [8], [9], [10] we are able to reduce 

the problem of solving first order nonlinear differential equation and get a closed form 

solutions to those equations. Control vector is still combination of solution to those 

equations. For some type of linear quadratic problem we derive a closed loop control as 

opposed to open loop control given by conventional theory [1], [3], [8], [9], [10]. Work 

done here is for Time-invariant plant and performance index. 

3.2 Future Work 

This thesis deals with decoupling of the Hamiltonian system and its application 

in linear quadratic problem. Work done represents time- invariant plant system and 

performance index. Here are few suggestions for future work 

1) Formulate method for time variant plant system and performance index. 

2) Sub-optimal control and infinite horizon control. 
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APPENDIX A 

MATLAB
®
 CODE FOR THE EXAMPLES
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Example 2.1-1: 

close all 

clear all 

clc 

A=1.05; B=0.01; Q=1; R=1; Sn=5; N=101; 

x0=10; 

S=zeros(1,N); 

Ss=zeros(1,N); 

K=zeros(1,N-1); 

Ks=zeros(1,N-1); 

u=zeros(1,N-1); 

us=zeros(1,N-1); 

x=zeros(1,N); 

xs=zeros(1,N); 

x(1)=x0; 

xs(1)=x0; 

S(N)=Sn; 

Sc=dare(A,B,Q,R); 

Ss(N)=Sn-Sc; 

Qc=Q-Sc+(A')*Sc*A; 

Gc=(1/2)*((A')*Sc*B); 

Hc=(1/2)*((B')*Sc*A); 

Rc=R+((B')*Sc*B); 

As=A-B*(Rc^-1)*((Gc')+Hc); 

Qs=Qc-(Gc+(Hc'))*(Rc^-1)*((Gc')+Hc); 

for i=N-1:-1:1 

    S(i)=(A^2)*(S(i+1)-(S(i+1)^2)*(B^2)*(((B^2)*S(i+1)+R)^-1))+Q; 

    K(i)=(((B^2)*S(i+1)+R)^-1)*(B)*S(i+1)*A; 

end 

t=zeros(1,1); 

for m=1:N-1 

    t=t+((As)^-(m))*B*(Rc^-1)*(B')*((As')^-(m)); 

end 

Stemp=((As)^-(N-1))*((Ss(N))^-1)*((As')^-(N-1))+t; 

Ss(1)=Stemp^-1; 

for i=1:N-1 

    u(i)=-K(i)*x(i); 

    x(i+1)=A*x(i)+B*u(i); 

    t=zeros(1,1); 

    Stemp=ones(1,1); 

    for m=1:N-i-1 

        t=t+((As)^-(m))*B*(Rc^-1)*(B')*((As')^-(m)); 

    end     

    Stemp=((As)^-(N-i-1))*((Ss(N))^-1)*((As')^-(N-i-1))+t; 

    Ss(i+1)=Stemp^-1; 

    Ks(i)=((Rc+B'*Ss(i+1)*B)^-1)*((B'*Ss(i+1)*A)+(Gc'+Hc)); 

    us(i)=-Ks(i)*xs(i); 

    xs(i+1)=A*xs(i)+B*us(i); 

end 

J=zeros(1,N); 

Js=zeros(1,N); 

i=0; 
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for i=N:-1:1 

    temp2=zeros(1,i-1); 

    temp3=zeros(1,N-i); 

    temp4=zeros(1,N-i); 

    m=0; 

    for m=1:i-1 

        temp2(m)=(xs(:,m+1)')*Sc*xs(:,m+1)-(xs(:,m)')*Sc*xs(:,m); 

    end 

    if i==N 

        J(i)=(1/2)*(x(i)')*S(i)*x(i); 

        

Js(i)=(1/2)*(xs(i)')*Ss(i)*xs(i)+(1/2)*(xs(1)')*Sc*xs(1)+(1/2)*sum(tem

p2); 

        tt=(1/2)*sum(temp2); 

    else 

        k=0; 

        for k=i:N-1 

            temp3(k)=(x(k)')*Q*x(k)+(u(k)')*R*u(k); 

            

temp4(k)=((xs(k)')*Qc*xs(k)+(xs(k)')*2*Gc*us(k)+(us(k)')*2*Hc*xs(k)+(u

s(k)')*Rc*us(k)); 

        end 

        J(i)=J(N)+(1/2)*sum(temp3); 

        Js(i)=Js(N)+(1/2)*sum(temp2)+(1/2)*sum(temp4)-tt; 

    end 

end 

u_plot=plot(1:N-1,u,'or',1:N-1,us,'.b'); 

legend(u_plot,'Conventional Method [1]','New Method') 

ylabel('Control (u)') 

xlabel('Discrete Time Step (n)') 

figure 

x_plot=plot(1:N,x(1:N),'or',1:N,xs(1:N),'.b'); 

legend(x_plot,'Conventional Method [1]','New Method') 

ylabel('State (X_n)') 

xlabel('Discrete Time Step (n)') 

figure 

J_plot=plot(1:N,J,'or',1:N,Js,'.b'); 

legend(J_plot,'Original Theory','New Method') 

ylabel('Magnitude (J)') 

xlabel('Discrete Time Step (n)') 

 

Example 2.1-2: 

close all 

clear all 

clc 

A=[1 0.01;0.01 1]; 

B=[0;0.1]; 

Sn=[5 0;0 5]; 

Q=[2 0;0 2]; 

R=1; 

N=101; 
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x0=[-5;-10]; 

N2=2*N; 

S=zeros(2,N2); 

Ss=zeros(2,N2); 

K=zeros(N-1,2); 

Ks=zeros(N-1,2); 

u=zeros(1,N-1); 

us=zeros(1,N-1); 

x=zeros(2,N); 

xs=zeros(2,N); 

x(:,1)=x0; 

xs(:,1)=x0; 

Sc=dare(A,B,Q,R); 

Qc=Q-Sc+(A')*Sc*A; 

Gc=(1/2)*((A')*Sc*B); 

Hc=(1/2)*((B')*Sc*A); 

Rc=R+(B')*Sc*B; 

S(:,N2-1:N2)=Sn; 

Ss(:,N2-1:N2)=Sn-Sc; 

As=A-B*(Rc^-1)*((Gc')+Hc); 

Qs=Qc-(Gc+(Hc'))*(Rc^-1)*((Gc')+Hc); 

  

for i=N-1:-1:1 

    S(:,2*(i-1)+1:2*i)=(A')*(S(:,2*i+1:2*(i+1))-

S(:,2*i+1:2*(i+1))*(B)*(((B')*S(:,2*i+1:2*(i+1))*B+R)^-

1)*(B')*S(:,2*i+1:2*(i+1)))*A+Q; 

    K(i,:)=(((B')*S(:,2*i+1:2*(i+1))*B+R)^-

1)*(B')*S(:,2*i+1:2*(i+1))*A; 

end 

  

t=zeros(2,2); 

for m=1:N-1 

    t=t+((As)^-(m))*B*(Rc^-1)*(B')*((As')^-(m)); 

end 

Stemp=((As)^-(N-1))*((Ss(:,N2-1:N2))^-1)*((As')^-(N-1))+t; 

Ss(:,1:2)=Stemp^-1; 

  

for i=1:N-1 

    u(i)=-K(i,:)*x(:,i); 

    x(:,i+1)=A*x(:,i)+B*u(i); 

     

    t=zeros(2,2); 

    Stemp=ones(2,2); 

    for m=1:N-i-1 

        t=t+((As)^-(m))*B*(Rc^-1)*(B')*((As')^-(m)); 

    end     

    Stemp=((As)^-(N-i-1))*((Ss(:,N2-1:N2))^-1)*((As')^-(N-i-1))+t; 

    Ss(:,2*i+1:2*(i+1))=Stemp^-1; 

    Ks(i,:)=((Rc+B'*Ss(:,2*i+1:2*(i+1))*B)^-

1)*((B'*Ss(:,2*i+1:2*(i+1))*A)+(Gc'+Hc)); 

     

    us(i)=-Ks(i,:)*xs(:,i); 

    xs(:,i+1)=A*xs(:,i)+B*us(i); 

end 
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J=zeros(1,N); 

Js=zeros(1,N); 

for i=N:-1:1 

    temp2=zeros(1,i-1); 

    temp3=zeros(1,N-i); 

    temp4=zeros(1,N-i); 

    m=0; 

    for m=1:i-1 

        temp2(m)=(xs(:,m+1)')*Sc*xs(:,m+1)-(xs(:,m)')*Sc*xs(:,m); 

    end 

    if i==N 

        J(i)=(1/2)*(x(:,i)')*S(:,2*(i-1)+1:2*i)*x(:,i); 

        Js(i)=(1/2)*(xs(:,i)')*Ss(:,2*(i-

1)+1:2*i)*xs(:,i)+(1/2)*(xs(:,1)')*Sc*xs(:,1)+(1/2)*sum(temp2); 

        tt=(1/2)*sum(temp2); 

    else 

        k=0; 

        for k=i:N-1 

            temp3(k)=(x(:,k)')*Q*x(:,k)+(u(k)')*R*u(k); 

            

temp4(k)=((xs(:,k)')*Qc*xs(:,k)+(xs(:,k)')*2*Gc*us(k)+(us(k)')*2*Hc*xs

(:,k)+(us(k)')*Rc*us(k)); 

        end 

        J(i)=J(N)+(1/2)*sum(temp3); 

        Js(i)=Js(N)+(1/2)*sum(temp2)+(1/2)*sum(temp4)-tt; 

    end 

end 

plot(1:N-1,u,'or',1:N-1,us,'.b') 

legend('Conventional Method [1]','New Method') 

ylabel('Control (u)') 

xlabel('Discrete Time Step (n)') 

figure 

xplot=plot(1:N,x(:,1:N),'or',1:N,xs(:,1:N),'.b'); 

legend(xplot(1:2:3),'Conventional Method [1]','New Method') 

ylabel('State (X_n)') 

xlabel('Discrete Time Step (n)') 

figure 

plot(1:N,J,'or',1:N,Js,'.b') 

legend('Original Theory','New Method') 

ylabel('Magnitude (J)') 

xlabel('Discrete Time Step (n)') 

Example 2.1-3: 

close all 
clear all 
clc 
A=1.05; B=0.01; Q=1; R=1; Sn=5; N=100; 
x0=10; 
rn=12; 
u=zeros(1,N-1); 
x=zeros(1,N); 
x(1)=x0; 
Sc=dare(A,B,Q,R); 



 

67  

Qc=Q-Sc+(A')*Sc*A; 
Gc=(1/2)*((A')*Sc*B); 
Hc=(1/2)*((B')*Sc*A); 
Rc=R+((B')*Sc*B); 
As=A-B*(Rc^-1)*((Gc')+Hc); 
Qs=Qc-(Gc+(Hc'))*(Rc^-1)*((Gc')+Hc); 
Ss(N)=Sn-Sc; 
Gs=0; 
U=B; 
for i=1:N-1 
    U=cat(2,U,(As^i)*B); 
end 
Gs=U*((Rc^-1)*eye(N))*(U'); 
for i=1:N-1 
    u(i)=-(Rc^-1)*((Gc'+Hc)*x(i)-(B')*((As')^(N-i-1))*(Gs^-1)*(rn-

(As^(N-1))*x(1))); 
    x(i+1)=A*x(i)+B*u(i); 
end 
J=zeros(1,N); 
i=0; 
for i=N:-1:1 
    temp2=zeros(1,i-1); 
    temp4=zeros(1,N-i); 
    m=0; 
    for m=1:i-1 
        temp2(m)=(x(:,m+1)')*Sc*x(:,m+1)-(x(:,m)')*Sc*x(:,m); 
    end 
    if i==N 
        

Js(i)=(1/2)*(x(i)')*Ss(i)*x(i)+(1/2)*(x(1)')*Sc*x(1)+(1/2)*sum(temp2); 
        tt=(1/2)*sum(temp2); 
    else 
        k=0; 
        for k=i:N-1 
            

temp4(k)=((x(k)')*Qc*x(k)+(x(k)')*2*Gc*u(k)+(u(k)')*2*Hc*x(k)+(u(k)')*

Rc*u(k)); 
        end 
        Js(i)=Js(N)+(1/2)*sum(temp2)+(1/2)*sum(temp4)-tt; 
    end 
end 
plot(1:N-1,u) 
legend('New Method') 
ylabel('Control (u)') 
xlabel('Discrete Time Step (n)') 
figure 
plot(1:N,x) 
legend('New Method') 
ylabel('State (X_n)') 
xlabel('Discrete Time Step (n)') 
figure 
plot(1:N,Js) 
legend('New Method') 
ylabel('Cost (J_i)') 
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xlabel('Discrete Time Step (n)') 

 

Example 2.1-4: 

close all;clear all;clc 
A=[1 0.01;0.01 1.05]; 
B=[0;0.1]; 
Sn=[1 0;0 2]; 
Q=[2 0;0 2]; 
R=1; 
N=100; 
x0=[-5;-10]; 
rn=[4;-1]; 
N2=2*N; 
xs=zeros(2,N); 
us=zeros(1,N-1); 
xs(:,1)=x0; 
Sc=dare(A,B,Q,R); 
Qc=Q-Sc+A'*Sc*A; 
Gc=(1/2)*((A')*Sc*B); 
Hc=(1/2)*((B')*Sc*A); 
Rc=R+B'*Sc*B; 
As=A-B*(Rc^-1)*(Gc'+Hc); 
Qs=Qc-(Gc+Hc')*(Rc^-1)*(Gc'+Hc); 
Ss(:,N2-1:N2)=Sn-Sc; 
S(:,N2-1:N2)=Sn; 
Gs=0; 
Us=B; 
for i=1:N-1 
    Us=cat(2,Us,(As^i)*B); 
end 
Gs=Us*((Rc^-1)*eye(N))*(Us'); 
for i=1:N-1 
    us(i)=-(Rc^-1)*((Gc'+Hc)*xs(:,i)-(B')*((As')^(N-i-1))*(Gs^-1)*(rn-

(As^(N-1))*xs(:,1))); 
    xs(:,i+1)=A*xs(:,i)+B*us(i); 
end 
Js=zeros(1,N); 
for i=N:-1:1 
    temp2=zeros(1,i-1); 
    temp4=zeros(1,N-i); 
    m=0; 
    for m=1:i-1 
        temp2(m)=(xs(:,m+1)')*Sc*xs(:,m+1)-(xs(:,m)')*Sc*xs(:,m); 
    end 
    if i==N 
        Js(i)=(1/2)*(xs(:,i)')*Ss(:,2*(i-

1)+1:2*i)*xs(:,i)+(1/2)*(xs(:,1)')*Sc*xs(:,1)+(1/2)*sum(temp2); 
        tt=(1/2)*sum(temp2); 
    else 
        k=0; 
        for k=i:N-1 
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temp4(k)=((xs(:,k)')*Qc*xs(:,k)+(xs(:,k)')*2*Gc*us(k)+(us(k)')*2*Hc*xs

(:,k)+(us(k)')*Rc*us(k)); 
        end 
        Js(i)=Js(N)+(1/2)*sum(temp2)+(1/2)*sum(temp4)-tt; 
    end 
end     
plot(1:N-1,us) 
legend('New Method') 
ylabel('Control (u)') 
xlabel('Discrete Time Step (n)') 
figure 
xplot=plot(1:N,xs); 
legend(xplot(1),'New Method') 
ylabel('State (X_n)') 
xlabel('Discrete Time Step (n)') 
figure 
plot(1:N,Js); 
legend(xplot(1),'New Method') 
ylabel('Cost (J_i)') 
xlabel('Discrete Time Step (n)') 

 

Example 2.1-5: 

close all 
clear all 
clc 
A=1.05; 
I=eye(size(A)); 
B=0.01; 
C=1; 
P=1; 
Q=100000; 
R=1; 
N=100; 
v=zeros(1,N); 
S=zeros(1,N); 
x=zeros(1,N); 
u=zeros(1,N-1); 
xs=zeros(1,N); 
us=zeros(1,N-1); 
x(1)=0; 
xs(1)=0; 
r=5*sin((1:N)/pi); 
v(N)=C'*P*r(N); 
S(N)=C'*P*C; 
Sc=dare(A,B,(C')*Q*C,R); 
Sc=((C')^-1)*Sc*(C^-1); 
Ss=zeros(1,N); 
vs=zeros(1,N); 
Ss(N)=(C')*(P-Sc)*C; 
vs(N)=(C')*(P-Sc)*r(N); 
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Qc=(C')*(Q-Sc)*C+(A')*(C')*Sc*C*A; 
Gc=(1/2)*(A')*(C')*Sc*C*B; 
Hc=(1/2)*(B')*(C')*Sc*C*A; 
Ec=-(1/2)*(C')*(Q-Sc); 
Fc=-(1/2)*(Q-Sc)*C; 
Oc=-(1/2)*(B')*(C')*Sc; 
Tc=-(1/2)*Sc*C*B; 
Mc=-(1/2)*Sc*C*A; 
Lc=-(1/2)*(A')*(C')*Sc; 
Rc=R+(B')*(C')*Sc*C*B; 
Wc=Q-Sc; 
As=A-B*(Rc^-1)*((Gc')+Hc); 
Qs=(C')*(Q-Sc)*C+(A')*(C')*Sc*C*A-(A')*(C')*Sc*C*B*(Rc^-

1)*(B')*(C')*Sc*C*A 
Zs=(Lc+(Mc'))-(Gc+(Hc'))*(Rc^-1)*(Oc+(Tc')); 
i=0; 
Kx=zeros(1,N); 
Kv=zeros(1,N); 
Ks=zeros(1,N); 
for i=1:N-1 
    Stemp=0; 
    sumtemp=0; 
    for m=1:(N-i) 
        sumtemp=sumtemp+(As^-m)*(B*(Rc^-1)*(B'))*((As')^-m); 
    end 
    Stemp=(As^-(N-i))*Ss(N)*((As')^-(N-i))+sumtemp; 
    Ss(i)=Stemp^-1; 
end 
for i=N-1:-1:1 
    v(i)=[(A')-(A')*S(i+1)*B*(((B')*S(i+1)*B+R)^-

1)*(B')]*v(i+1)+(C')*Q*r(i); 
    S(i)=(A')*S(i+1)*[(I+B*(R^-1)*(B')*S(i+1))^-1]*A+(C')*Q*C; 
    Kx(i)=[((B')*S(i+1)*B+R)^-1]*(B')*S(i+1)*A; 
    Kv(i)=[((B')*S(i+1)*B+R)^-1]*(B'); 
%     Ss(i)=(As')*Ss(i+1)*[(I+B*(Rc^-1)*(B')*Ss(i+1))^-1]*As; 
    vs(i)=[(As')-(As')*Ss(i+1)*((I+B*(Rc^-1)*(B')*Ss(i+1))^-1)*B*(Rc^-

1)*(B')]*vs(i+1)-(Ec+(Fc'))*r(i)+[(As')*Ss(i+1)*((I+B*(Rc^-

1)*(B')*Ss(i+1))^-1)*B*(Rc^-1)*(Oc+(Tc'))-Zs]*r(i+1); 
    Ks(i)=(Rc+(B')*Ss(i+1)*B)^-1; 
end 
i=0; 
for i=1:N-1 
    u(i)=-Kx(i)*x(i)+Kv(i)*v(i+1); 
    x(i+1)=A*x(i)+B*u(i); 
    us(i)=-Ks(i)*[((B')*Ss(i+1)*A+(Gc')+Hc)*xs(i)+((Tc')+Oc)*r(i+1)-

(B')*vs(i+1)]; 
    xs(i+1)=A*xs(i)+B*us(i); 
end 
u_plot=plot(1:N-1,u,'or',1:N-1,us,'.b'); 
legend(u_plot,'Conventional Method [1]','New Method') 
ylabel('Control (u_n)') 
xlabel('Discrete Time Step (n)') 
figure 
x_plot=plot(1:N,x(1:N),'or',1:N,xs(1:N),'.b',1:N,r,'-k'); 
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legend(x_plot,'Conventional Method [1]','New Method','Reference 

Trajectory') 
ylabel('State (X_n)') 
xlabel('Discrete Time Step (n)') 

 

Example 2.2-1: 

Free Final State 

close all 
clear all 
clc 
A=1.05; B=0.01; Q=1; R=1; Sn=1; 
tf=10; 
x0=10; 
Sc=care(A,B,Q,R); 
Qc=Q+Sc*A+A'*Sc; 
Gc=(1/2)*Sc*B; 
Hc=(1/2)*B'*Sc; 
As=A-B*(R^-1)*(Gc'+Hc); 
Qs=Qc-(Gc+Hc')*(R^-1)*(Gc'+Hc); 
Ssn=Sn-Sc; 
x(1)=x0; 
xs(1)=x0; 
sd=@(t,s)(-A'*s-s*A+s*B*(R^-1)*(B')*s-Q); 
[tb,S]=ode45(sd,[10 0],Sn); 
t=flipud(tb)'; 
S=flipud(S)'; 
for i=1:length(t)-1 
    K(i)=(R^-1)*(B')*S(i+1); 
    u(i)=-K(i)*x(i); 
    x(i+1)=expm((A-B*K(i))*(t(i+1)-t(i)))*x(i); 
    fun=@(y)(exp(As.*(t(i+1)-y)).*B.*(R^-1).*(B').*exp((As').*(t(i+1)-

y))); 
    Stemp=exp(As.*(t(i+1)-tf)).*(Ssn^-1).*exp((As').*(t(i+1)-tf))-

quad(fun,tf,t(i+1)); 
    Ss(i+1)=Stemp^-1; 
    Ks(i)=(R^-1)*((Gc')+Hc)+(R^-1)*((B')*Ss(i+1)); 
    us(i)=-Ks(i)*xs(i); 
    xs(i+1)=expm((A-B*Ks(i))*(t(i+1)-t(i)))*xs(i); 
end 
plot(t(1:end-1),u,'-b',t(1:end-1),us,'-r'); 
legend('Conventional Method [1]','New Method') 
ylabel('Control (u(t))') 
xlabel(' Time (sec)') 
figure 
plot(t,x,'-b',t,xs,'-r') 
legend('Conventional Method [1]','New Method') 
ylabel('State (x(t))') 
xlabel(' Time (sec)') 

Fixed Final state case 
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close all 
clear all 
clc 
A=1.05; B=0.01; Q=1; R=1; Sn=1; 
tf=10; 
x0=10; 
r=12; 
Sc=care(A,B,Q,R); 
Qc=Q+Sc*A+A'*Sc; 
Gc=(1/2)*Sc*B; 
Hc=(1/2)*B'*Sc; 
As=A-B*(R^-1)*(Gc'+Hc); 
Qs=Qc-(Gc+Hc')*(R^-1)*(Gc'+Hc); 
Ssn=Sn-Sc; 
xs(1)=x0; 
Gsf=@(t)(exp(As.*(tf-t)).*B.*(R^-1).*(B').*exp((As').*(tf-t))); 
Gs=quadl(Gsf,0,tf); 
xsd=@(t,xs1)(A.*xs1-B.*(R^-1).*(Gc'+Hc)*xs1+B.*(R^-

1).*(B').*exp((As').*(tf-t)).*(Gs^-1).*(r-exp(As.*(tf)).*xs(1))); 
[tb xs]=ode45(xsd,[0 10],xs(1)); 
for i=1:length(tb) 
    us(i)=-(R^-1)*(Gc'+Hc)*xs(i)+(R^-1)*(B')*exp((As')*(tf-

tb(i)))*(Gs^-1)*(r-exp(As*(tf-tb(i)))*xs(1)); 
end 
plot(tb,us); 
legend('New Method') 
ylabel('Control (u(t))') 
xlabel(' Time (sec)') 
figure 
plot(tb,xs) 
legend('New Method') 
ylabel('State (x(t))') 
xlabel(' Time (sec)') 

 

Example 2.2-2: 

Free Final state case 

close all 
clear all 
clc 
A=[0 1;0 0]; 
B=[0;1]; 
Sn=[5 0;0 5]; 
Q=[1 0;0 1]; 
R=1; 
x0=[4;-10]; 
r=[-4;1]; 
tf=10; 
xs(:,1)=x0; 
Sc=care(A,B,Q,R); 
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Qc=Q+Sc*A+A'*Sc; 
Gc=(1/2)*Sc*B; 
Hc=(1/2)*B'*Sc; 
As=A-B*(R^-1)*(Gc'+Hc); 
Qs=Qc-(Gc+Hc')*(R^-1)*(Gc'+Hc); 
Ssn=Sn-Sc; 
sim('graman',[0 tf]); 
Gs=g(:,:,end); 
xsd=@(t,xs1)(A*xs1-B*(R^-1)*(Gc'+Hc)*xs1+B*(R^-1)*(B')*expm((As')*(tf-

t))*(Gs^-1)*(r-expm(As*(tf))*xs(:,1))); 
[tb xs]=ode45(xsd,[0 10],xs(:,1)); 
xs=xs'; 
for i=1:length(tb) 
    us(i)=-(R^-1)*(Gc'+Hc)*xs(:,i)+(R^-1)*(B')*expm((As').*(tf-

tb(i)))*(Gs^-1)*(r-expm(As.*(tf-tb(i)))*xs(:,1)); 
end 
plot(tb,us); 
legend('New Method') 
ylabel('Control (u(t))') 
xlabel(' Time (sec)') 
figure 
plot(tb,xs) 
legend('New Method') 
ylabel('State (x(t))') 
xlabel(' Time (sec)') 

 

Fixed final state case 

close all 
clear all 
clc 
A=[0 1;0 0]; 
B=[0;1]; 
Sn=[5 0;0 5]; 
Q=[1 0;0 1]; 
R=1; 
x0=[4;-10]; 
tf=10; 
xs(:,1)=x0; 
x(:,1)=x0; 
Sc=care(A,B,Q,R); 
Qc=Q+Sc*A+A'*Sc; 
Gc=(1/2)*Sc*B; 
Hc=(1/2)*B'*Sc; 
As=A-B*(R^-1)*(Gc'+Hc); 
Qs=Qc-(Gc+Hc')*(R^-1)*(Gc'+Hc); 
Ssn=Sn-Sc; 
t=sim('conth',[0 tf]); 
sim('newth',t); 
n=length(t); 
for i=1:n-1 
    K(i,:)=(R^-1)*(B')*S(:,:,n-i); 
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    u(i)=-K(i,:)*x(:,i); 
    x(:,i+1)=expm((A-B*K(i,:))*(t(i+1)-t(i)))*x(:,i); 
    Ss(:,:,n-i+1)=Ss(:,:,n-i)^-1; 
    Ks(i,:)=(R^-1)*((Gc')+Hc)+(R^-1)*((B')*Ss(:,:,n-i)); 
    us(i)=-Ks(i,:)*xs(:,i); 
    xs(:,i+1)=expm((A-B*Ks(i,:))*(t(i+1)-t(i)))*xs(:,i); 
end 
plot(t(1:end-1),u,'-b',t(1:end-1),us,'-r'); 
legend('Conventional Method [1]','New Method') 
ylabel('Control (u(t))') 
xlabel(' Time (sec)') 
figure 
plot(t,x,'-b',t,xs,'-r') 
legend('Conventional Method [1]','New Method') 
ylabel('State (x(t))') 
xlabel(' Time (sec)') 
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S
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newth
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