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ABSTRACT 

 

REAL – TIME DATA MONITORING AND MANIPULATION 

FOR WIRELESS SENSOR NETWORKS 

 

Publication No. _______ 

 

Sankar Bhanu Gorthi, M.S. 

 

The University of Texas at Arlington, 2006 

 

Supervising Professor: Dr. Frank Lewis 

The growth of Wireless Sensor Network research has brought about the need for 

tools to help developers rapidly develop applications for various platforms. In the 

pursuit of these capabilities, this work deals with the design of a graphical approach to 

development of Wireless Sensor Network applications for implementation in the 

LabVIEW Graphical Development Environment. The work done also covers the 

implementation and development of the Sound and Vibration Toolkit for LabVIEW. 

The implementation of these tools in developing a novel test-bed at the Distributed 

Intelligence and Automation Laboratory (DIAL) at the ARRI at UT Arlington is also 

shown. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Rapid developments in Wireless Sensor Networks (WSNs) have driven the rate 

of advancement in the resources and technologies available to researchers to astonishing 

levels. Advances in transistor design have raised transistor densities in circuit design 

leading to the physical size of devices shrinking exponentially. Fabrication techniques 

to create micro electro-mechanical systems (MEMS) are being perfected leading to low-

power microscopic sensors being manufactured at very low costs. The advances in 

MEMS coupled with the improvements in CMOS technology have led to intelligence 

being embedded on tiny platforms. Together, these developments have helped to make 

the vision of potentially dust-size computing platforms into an inevitable reality. With 

low-cost CMOS-based RF radios being able to function adequately at low-power to 

support low data rate communication on these tiny nodes, sensor networks capable of 

performing wireless communications, local processing, data storage, sensing, hardware 

control (on mobile platforms) all within the physical size of a typical postage stamp. 

Future platforms will have the potential to fit within a cubic millimeter of volume.[1][8] 

Building smart applications to utilize the available capabilities on these 

platforms and building smart environments represents the next evolutionary 

development step for deployment in many fields, an important member of which is 

system automation in many warehouse scenarios. The detection of the relevant 
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quantities, monitoring and collection of data, evaluating, analyzing and storing the 

information and controlling the components of the networks through meaningful user 

interfaces, form major development concerns.[2]  

Industrial competition in the field of sensor network development is truly global 

with fragmented markets in the fields mentioned above and customers expect the best 

product at the best price with immediate availability. Meeting consumer demands 

requires a great deal of flexibility, low-cost/low-volume manufacturing skills, and short 

delivery times.[2][3]  

Success in manufacturing, and indeed survival, of the sensor network developer 

is increasingly more difficult to ensure and requires continuous evolution of the sensor 

platforms, learning to integrate new development in network topologies unleashed 

everyday and unlearning technologies which have become obsolete because of the 

increasing demands of the consumer. The developer of the sensor network should be 

able to adapt to constantly fluctuating consumer requests. However the development 

time and consequently the production time are adversely affected. This has made the 

availability of tools to improve manufacturing performance a strategic weapon for 

competition and future success.  

 

1.2 LabVIEW 

The LabVIEW Graphical Development Environment plays a major role in 

cutting down design, simulation, verification and manufacturing times and is an 

essential tool in data analysis, storage, display and deployment. The LabVIEW 

programming language provides an easy-to-use interface, online compilation of code as 
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it is “written”, concurrent error handling, inherent multi-thread processing and an 

extensive library of Virtual Instrument blocks (VIs). LabVIEW also provides for the 

simultaneous generation of user-end interfaces and the relevant code to represent the 

application. LabVIEW is available in various popular operating system 

platforms.[4][5][6][25] These features come together to provide Wireless Sensor Network 

developers with the perfect platform to build applications to program the network and 

handle base-station or processor intensive calculations easily. Although LabVIEW’s set 

of mathematical tools are limited at present (version 7.1), newer versions can be 

expected to be more powerful in handling complicated mathematical analysis (in the 

present version, the user has to rely on a port to MATLAB placed within the LabVIEW 

environment to handle these calculations. The creation of VIs to handle simple matrix 

operations is also an objective of this thesis. 

 

1.3 Objectives 

1.3.1 Overview 

 
The analysis of data retrieved from deployed sensor networks is a common 

application. However the retrieval of data is non-trivial and involves considerable 

expertise in being able to communicate with the sensor network and being able to 

address particular sections of the network for pertinent data. Care must also be taken not 

to overload the considerable but limited power and programming resources on the 

platforms. Further, the translation of the data to meaningful and consistent formats for 

analysis in standard tools available in various development environments is essential.[8] 
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Various tools in numerous development environments are available for analysis 

of the data and the development of aesthetic user-interfaces for interacting with the 

sensor network. The majority of these tools have been developed using text-based 

programming languages like java, python and perl while Microsoft’s suite of Visual 

Studio languages and MATLAB have also been used to a considerable extent. However, 

all of these languages take considerable time and effort for a developer to learn and 

implement effective solutions for a required application. National Instruments™ 

LabVIEW™ Graphical Development Environment is a less widely used environment in 

this field, but is gaining popularity. One of the main objectives of this thesis has been to 

develop tools which integrate into the LabVIEW environment seamlessly to provide 

developers tools to rapidly design Virtual Instruments for modeling, testing, remodeling 

and final deployment. The effectiveness of LabVIEW in the development of Wireless 

Sensor Network applications is also studied. 

 

1.3.2 The Distributed Intelligence and Autonomy Laboratory 

Tying the capabilities of versatile sensors, with multi-functional robotic 

platforms, the Distributed Intelligence and Autonomy Laboratory (DIAL) at the 

Automation and Robotics Research Institute (ARRI) – University of Texas at Arlington 

has been conceived as a powerful, adaptive, malleable and intelligent test-bed for 

developing technologies in Discrete event coordination, Self-localizing networks and 

Adaptive sampling to name a few. The goal of the laboratory has been to acquire off-

the-shelf, customizable platforms and rapidly integrate them into multi-platform 

scenarios.[6] 
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An objective of this thesis has been to develop LabVIEW tools to speed up and 

streamline the process of communication between the various platforms. Rudimentary 

decision – making systems for testing implementations of the platforms and the 

LabVIEW tools developed in this thesis are also to be conceptualized and implemented. 

 

1.3.3 The Sound and Vibration Toolkit for LabVIEW 

The LabVIEW platform is bundled with a variety of toolkits to perform a variety 

of functions. Of these, the new Sound and Vibration toolkit is studied in this thesis for 

its effectiveness. The VIs were to be implemented in applications that were commonly 

required in the test-bed at the Distributed Intelligence and Autonomy Laboratory 

(DIAL). Although these tools are quite extensive, LabVIEW does not provide drivers 

and analysis tools for the instruments which are used at the DIAL. A major objective of 

the thesis was to develop these tools for addition to the Sound and Vibration toolkit.  

 

1.3.4 List of Objectives 

 Identification of platforms utilized at the DIAL 

 Development of tools for the programming of/communication with the 

various platforms 

o for LabVIEW 

o for the platform’s native programming language 

 Maintaining a standard mode of application/driver structure in order to 

sustain manageability and ease of debugging 
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 Development of tools to be included in the Sound and Vibration toolkit of 

LabVIEW 

 Implementation of the tools developed in the test-bed at the DIAL 

 

1.3.5 List of Contributions 

The result of the objectives listed above is briefly listed below. The elaboration 

of each is given in later chapters.  

 Development of drivers to interface LabVIEW to the hardware used at the 

DIAL – hardware supported 

o MicroStrain G-Link Accelerometer 

o Crossbow Mica 

o Crossbow Mica2 

o Crossbow Mica2Dot 

o Crossbow Cricket 

 Improved existing applications for Condition Based Maintenance with the 

new Sound and Vibration Toolkit from LabVIEW 

 Virtual Instrument Libraries developed for addition to LabVIEW’s suite of 

toolboxes – specifically: 

o Custom Matrix multiplication VIs 

o Windowing sub-VI 

o Kurtosis VI 

o Bollinger Band Analysis 

o Kalman Filter 
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o RLS Estimator 

 Initiated the TinyOS toolkit for LabVIEW – VIs contributed 

o Serial communication configuration VIs 

o AM message reader 

o Cricket message reader 

o Mote communication synchronizer 

o Packet deciphering 

 A host of applications implemented in the test-bed 

o Statistical Processing and Analysis Module 

o MicroStrain Application for CBM 

o Crossbow Application for LabVIEW 

o TinyDB application for LabVIEW 

o Cricket navigation module 
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CHAPTER 2 

WIRELESS SENSOR NETWORKS 

2.1 Introduction 

A Wireless Sensor Network (WSN) may be defined as a network composed of 

numerous small computers, employed in the processing of sensor data. These small 

computers are generally designed to be extremely basic in their functionality and in 

most cases are meant to be so. Designers of WSN platforms advise developers to use 

programming structures which are modular and run for short periods of time so as to 

prevent the platform from being locked into indefinite loops which burden the limited 

power resources available.[8] 

A major contributor to the WSN community which has been modeled on the 

above design philosophy is TinyOS which is “an event based operating system 

environment designed for use with embedded networked sensors”. TinyOS was initiated 

by the Electrical Engineering and Computer Sciences department of the University of 

California – Berkeley (UC Berkeley) around the beginning of this millennium. It is 

based on the Open Source philosophy wherein all the source code and documentation 

required for the development of TinyOS based programs is freely available to the 

general public. TinyOS is now developed by a world-wide consortium of developers at 

various educational institutions all over the world but is still lead at the helm by 

developers at UC Berkeley. The TinyOS platform is intended to be incorporated into the 

smartdust concept introduced by Kristofer Pister of UC Berkeley.[22] Smartdust is now a 
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DARPA project aimed at creating “massively distributed sensor networks”. Smartdust 

is a general class of tiny wireless sensor systems and encompasses MEMS sensors, 

micro-robots and other devices equipped with wireless communications and capable of 

deploying various sensors (audio, light, temperature, vibration etc.).  

The TinyOS environment is built using “stylized C” or a customized version of 

the C programming language called “network embedded system C” or nesC for short. 

Although TinyOS may be ported to numerous platforms, the Wireless Sensor 

Network solutions provided by Crossbow Technology (XBow) have a huge developer 

base and as the TinyOS website notes, over 500 research groups and companies use 

TinyOS on the XBow “Motes”. The test-bed at the DIAL utilizes the MPR300/MPR310 

“MICA”, the MPR400CB “MICA2” and the MPR560 “MICA2DOT” mote platforms 

developed at UC Berkeley and the MCS410 “Cricket” motes developed in a joint 

collaboration between XBow and the Massachusetts Institute of Technology (MIT). 

These platforms were all coded using nesC code in the TinyOS environment at the 

DIAL. 

The DIAL also works with wireless sensors – the 900/868MHz G-Link® 

wireless accelerometer and the 900/868MHz SG-Link® wireless strain gauge – from 

MicroStrain®. These are programmed and handled entirely in LabVIEW. 

The following sections will look at the structure and organization of the above 

environments and platforms. 
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2.2 TinyOS 

2.2.1 Introduction 

As noted above, TinyOS is an event based environment on top of which nesC 

programs are implemented. TinyOS provides a component-based architecture that 

supplies the drivers for the various sensors, while also providing network protocols for 

handling general broadcast or multihop routing, distributed services to handle parent 

selection in multihop, multi-threading – a standard feature in most operating systems – 

customized for the severe memory restrictions inherent in the miniaturized wireless 

sensor platforms which run many simultaneous timer algorithms to handle the 

numerous components handled in most TinyOS applications, and data acquisition tools 

which allow for black-box access to all the sensor drivers for standard operation or for 

easy customization to suit a custom solution. The event-based execution scheme helps 

to simplify power management for the available platforms which mostly still rely on 

galvanic or gel cells for power supply. This architecture has been, and is, an excellent 

solution to handle the myriad events which occur randomly in wireless sensor network 

applications. 

All these operations are designed to work within a very small operating system 

footprint. The core of the operating system requires just about 400 bytes of physical 

memory. 

The structure and design of TinyOS are constantly being upgraded as it adapts to 

strenuous testing by various research groups and hence, requires the developer to keep 

abreast of many issues when preparing applications. 
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2.2.2 OS Structure 

The heart of the TinyOS application structure is specified as blank interface 

definition components, which form the template on which all components are intended 

to be designed. The interface definitions also allow the developer the freedom of 

implementing functions and events in a logical programming order which makes sense 

to the developer. Once the interfaces have been defined, the standard TinyOS 

component “provides” interfaces which a higher level application “uses” to implement 

the functionality. “provides” and “uses” are incidentally keywords in the nesC 

programming language and can be visualized as input and output pins on a chip which 

connect to the rest of the circuit board (which is essentially how the application is 

structured). Each TinyOS component consists of a declaration of interfaces which it 

uses and provides followed by the actual implementation of the interfaces. These are 

simple C-style functions which are given special keywords customized for nesC like 

“task”, “event” and “command”. A more detailed description is provided in the 

following section. [22] 

Although this structure seems simple enough, it takes quite a bit of effort and 

exercise for a developer to grasp the functionality of even basic applications which 

access components which do not utilize networking components. Following a code tree 

for a mammoth TinyOS based application is cumbersome and convoluted to say the 

least. Although this might be said to be true for any programming language, the 

recursive use of implemented components at various locations in the TinyOS 

application structure causes the developer to be thrown off quite often without a visual 

code tree to follow and refer to. 
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As research into various networking strategies to be implemented on these 

miniaturized platforms proceeds to generate new implementations, the fluid change in 

the standards used in TinyOS programs helps only in increasing the complexity of the 

implementations. Although the TinyOS community does try to keep drastically new 

implementations to a minimum, as can be expected from any fledgling technology, 

constant innovations are a harsh reality until a wider implementation base is achieved. 

With a larger consumer base, standardized implementations will increase productivity 

for developers. However, as most of the platform implementations are still viewed as 

being in the research phase, and as research into newer platforms continues, the TinyOS 

programmer is resigned to keeping up with the worldwide consortium in order to 

develop relevant applications which are stable as well as up-to-date. 

Newer versions of TinyOS (TinyOS 2.x for example) attempt to simplify this 

process by redefining the application structure. However these versions are still in their 

infancy and the world wide consortium is working on porting existing TinyOS 1.x 

components to the newer versions. In a later part of the thesis, it is suggested how the 

newer versions are easier to model using LabVIEW so that developers simply wire 

together components to generate the nesC code automatically. All the applications at the 

DIAL were built on the TinyOS 1.x version. 

 

2.3 nesC 

2.3.1 Introduction 

nesC was developed by the University of California – Berkeley’s EECS 

department and the Intel Research Center at Berkeley. The nesC language was designed 



 13

to supplement the architecture defined and required by TinyOS. With the development 

of nesC, the developers of TinyOS were able to allow it to evolve into a stable and 

reliable environment. nesC provides an easy interface to connect and control various 

physical components on various platforms even when the resources for computing on 

the platform are limited. The data collection and processes and timing handlers on the 

platforms are streamlined by the use of event driven task execution rather than on 

interaction with a controller input or relying on batch processing routines. The nesC 

language was also designed to handle data race conditions which arise out of the task 

and data acquisition concurrency handled by TinyOS and detects them at compile 

time.[22] 

nesC was designed keeping in mind that the system is expected to run for very 

lengthy intervals of time without human intervention or interaction and should be able 

to operate even in the event of hardware malfunctions or issues at run-time.  

 

2.3.2 nesC Application/Component Structure 

 nesC was built as a customized version of the C programming language and so 

keeps many of the code structures from the original, which many programmers are 

familiar with. As such, it is a simple step forward from C. 

nesC, to aid the concept of components in TinyOS’s event-based concurrency, 

has “wiring” conventions to wire together various components which are to be used in a 

bigger component or a target application. In fact, from a C programming point of view, 

the wiring of interfaces between different components essentially creates function 

pointers which address functions interfaces defined in sub-components and 
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implemented either in the sub-component or in the component being developed. These 

functions may be provided as interfaces, if required, for super-components to 

implement, or for the super-component to override, and so on. This essentially helps in 

creating black-box components which a new developer would quickly wire together for 

an application without having to go through the working of the functions in the sub-

component. 

nesC is a static language in that all memory is allocated at compile time. No 

dynamic memory assignments are required as the component based-architecture 

eliminates the need in most cases. 

A nesC “task” runs to execution. It does not preempt other tasks, while a nesC 

“event” may. Tasks are called using the “post” keyword. A task when finished returns 

the program execution to its poster. Events run to execution too, but are operated in 

split-phase i.e. the operation request and completion signalers are separate functions. A 

nesC “command” is typically called to execute an operation like toggling LEDs or 

sending messages over a communication port. If the execution of the system is split-

phase, the completion of the command results in the invocation of a completion event. 

Typically, when concurrent requests reach the application, the system rejects them in 

favor of running commands. As most command requests repeat at short intervals until 

acknowledged, the incoming command request need not be queued for execution. 

However some components do use this system. Following the former application 

control structure, though, helps in keeping applications uniform and free for execution 

even in the event of command requests being retracted. The developer would of course 



 15

have to use his/her personal judgment to determine the required structure depending 

upon available resources and the target application. 

In general however, all task implementations are short. Command executions 

usually call many tasks and sub-functions and hence need careful mapping. Events 

usually are used to signal interfaces or call commands to execute such as sending 

messages via communication interfaces. nesC does support all mathematical functions 

supported by C, and C datatypes. 

 

2.4 MICA series 

The MICA series of motes were initially developed as upgrades to the existing 

rene2 platforms developed at UC Berkeley in 2001. The MICA series are macro-sized 

sensors compared to the micro-sensors with essentially the same features developed at 

UC Berkeley. The MICA series has been built to be sturdy under strenuous testing and 

repeated reprogramming and will eventually be replaced by cheaper, smaller motes (a 

working model 5 mm2 has been developed at UC Berkeley) which are to be mass-

produced and deployed in target locations. 
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2.4.1 MPR300 “MICA” 

 

Figure 2.1 Crossbow MPR300 "Mica" (actual size) 
 

This was the first upgrade to the rene2 and was developed in 2002. It features a 

4MHz Atmel ATmega 128L microcontroller and typically features a 916MHz radio. It 

has a 10 bit 8 channel ADC. The MICA board also holds three programmable LEDs and 

a 51 pin expansion connector to interface removable sensor boards. The production of 

this range has been discontinued from XBow after to the development of the MPR4x0 

“MICA2” series.[27] 
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2.4.2 MPR400CB “MICA2” 

 
Figure 2.2 Crossbow MPR400CB “Mica2” (actual size) 

 
The MICA2 is the second upgrade to the rene2 and features a 7.3827MHz Atmel 

ATmega 128L microcontroller. It features a radio with a tunable radio which typically 

runs at 433MHz but can be tuned to run at 315MHz, 868MHz or 916MHz. The 

MPR400CB has 50 radio channels which are controllable programmatically, but the 

MPR410CB and the MPR420CB are built with lesser channels. All these sport the same 

memory ratings as the MICA with the major upgrades being made in the radio circuit 

and the addition of I2C buses and digital input output pins to expand the board for 

customization. The MICA2s draw more current at run-time than the MICA but typically 

run longer in sleep mode than the MICA for identical programs and hence last longer on 

two AA (double A – 1.5V) batteries than the MICA does. During testing the two 

platforms at the DIAL, the MICA2 performed better at Multihop handling strategies and 

handling bulkier applications than the MICA. 
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2.4.3 MPR500CA “MICA2DOT” 

 

Figure 2.3 Crossbow MPR500CA “Mica2Dot” (actual size) 
 

The MICA2DOT is essentially a miniaturized version of the MICA2 and was 

developed along with the MICA2. It features only one status LED and has an 18 pin 

expansion connector for connecting the 18 pin range of sensor boards manufactured at 

XBow. It comes with a 3V Coin cell holder to power it, but has a provision to be 

connected to a regulated power supply of 2.7V to 3.3V. It has a maximum outdoor radio 

range of 500ft. In addition to the above, the MICA2DOT has an onboard temperature 

sensor and a battery monitor as opposed to the MICA2 which needs the MTS range of 

sensor boards for interfacing Acoustic, Light, Temperature, Vibration and other sensors 

along with the output buzzer.  
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2.5 Cricket series 

2.5.1 Overview 

 

Figure 2.4 Crossbow MCS410CA "Cricket" (actual size) 
 

The MCS410CA “Cricket” series of motes are a recent addition to the XBow 

product list and are prototype models for many announced upgrades. The Cricket motes 

are built on top of the MICA2 architecture and possess the same features except for the 

addition of the Ultrasonic transmitter receiver pair attached to the platform. The 

Computer Science and Artificial Intelligence Laboratory at MIT has been testing 

miniaturized versions of the Cricket motes to fit into standard memory card slots 

available in most handheld electronic devices. With the motes drawing power from the 

device they’re plugged into, the compact mote would be extremely convenient for 

localization of mobile users. 

 

2.5.2 Operation 

The Cricket mote is designed as an alternative to expensive indoor GPS. The 

Cricket network requires the installation of Cricket motes configured to run as beacons 
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placed in various unobstructed locations. A mote configured to run as a listener detects 

the radio and ultrasonic beacon signals broadcast by the different beacons and through a 

series of ultrasonic and radio transmission algorithms determines its distance to the 

beacons. It operates on line of sight however, so requires that the listener mote be 

pointed towards the beacons. These messages are compiled in simple string message 

formats and posted to the available communication interface. These messages may 

either be sent over the radio as listener messages (after some non-trivial manipulation of 

the nesC code) or via the serial port connection provided on the mote. 

The code behind the operation of the cricket mote is the basic TinyOS 

application built using nesC code. The motes may be configured with simple string 

commands which the inbuilt program parses. Hence, with a simple serial port or 

applicable connecter interfacing application running on the electronic device, a simple 

LabVIEW or Java application may be used to localize the moving mote. 

The range of the listener beacon pair is about 25ft with an angle of attack of 

about 45o. Hence, ideally, in an indoor environment, the cricket beacons can be used as 

environment monitors as well as message routing agents.  

 

2.6 MicroStrain® G-Link® Accelerometer Node 

The G-Link® accelerometer node is a triaxial accelerometer node. It operates in 

the 902-928MHz radio frequency band. It consists of a coin-sized MEMS based 

accelerometer which operates in continuous mode of operation where it logs measured 

data and transmits the data in periodic radio bursts which are picked up by a transceiver 

connected to a base computer via a serial or USB interface. These motes have a very 
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strong 100m line of sight transceiver range. The nodes are used for vibration and 

inclination sampling. They also sport a substantial amount of memory to store up to 

1,000,000 measurements. They also support simultaneous streaming from multiple 

nodes to the base station receiver. 

 

Figure 2.5 MicroStrain G-Link Accelerometer (actual size) 
 

The programs on these nodes are hard-coded into the memory and programmers 

only have access to flash-registers which carry status flags which can be set to 

determine the execution mode of the node or to set data requests. The various flash 

registers can be addressed by sending simple serial string packets containing the address 

followed by the data to be placed in the registers. These registers are reset however on 

restarting the node. The nodes at the DIAL use 9V regulated power supplies which can 

be replaced by battery packs. The motes sport 12-bit Analog to Digital Converters and 

are very accurate. These motes were controlled entirely in LabVIEW. 
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2.7 WSNs and the Distributed Intelligence and Autonomy Laboratory (DIAL) 

The DIAL employs various sensor platforms and mobility platforms which are 

used in WSN research. One example of the application scenarios and which can be 

instantly applicable to a well known scheme is Sensor Network and Mobile Platform 

assistance in a fire-escape strategy.[6] 

 
Figure 2.6 Warehouse scenario with a distributed network of sensors and mobile 

platforms: When an event, triggered in this case by a fire at the circled motes, occurs the 
robots attempt to guide the human operator whose position is localized using a localized 

mote platform to a safe area 
 

The sensor networks in the scenario shown involve independent MICA2 and 

Cricket mote networks. The Cricket networks are used exclusively for localization of 

the mobile nodes, platforms and human operators. The localization algorithms used on 

the robots controlled by the PXI microcontrollers need discrete Kalman filters and RLS 
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estimators which were implemented as part of this thesis. They are described in Chapter 

4. The static MICA2 network monitors the warehouse for temperature, light, etc and 

determines the location of the event(s). Event-triggering requires even-detection 

algorithms which can be implemented using Bollinger Band type of algorithms and 

Kurtosis, Skew and other measurements which are also implemented in Chapter 4. The 

system then determines the path in which to guide the human and the mobile platforms 

are triggered to monitor the region and the path to be followed.[4][14][16] 

 
Figure 2.7 Warehouse scenario with a distributed network of sensors and 
mobile platforms: Having determined the path that the human operator 

must traverse, the system sends robot R4 to monitor the unmonitored area 
near the door. Robot R2 guides the operator through safe areas in the 

warehouse 
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Scenarios like these require seamless integration of the data acquisition and 

analysis modules and this is provided by the tools described in the succeeding chapters. 

 

2.8 Conclusions 

This chapter dealt with some of the various platforms which are available at the 

DIAL. The modular nature of the TinyOS application structure and wiring scheme of 

nesC are of particular interest as these bear many similarities to the structure of typical 

LabVIEW™ virtual instruments. The following chapter discusses the programming 

concepts of LabVIEW and their applicability to Wireless Sensor Network applications. 
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CHAPTER 3 

NATIONAL INSTRUMENTS™ LABVIEW™ 

3.1 Introduction 

LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) is a 

graphical development environment from National Instruments™ (NI). The LabVIEW 

distribution was first developed as a programming language for the Apple Macintosh in 

1986. It has since evolved into an environment which aids scientific and engineering 

research and application building with various versions and flavors for different 

operating systems with versions available for Microsoft® Windows® UNIX, Linux and 

Mac OS. 

LabVIEW is an extremely powerful data acquisition, analysis, storage and 

presentation tool. The programming language in LabVIEW called “G” represents code 

execution as dataflow. G is one of the first in a host of dataflow languages developed 

for various platforms and target applications. MathWorks’ Simulink and Agilent VEE 

can be considered to be prominent competitors in the scientific and engineering 

community to LabVIEW. However, NI has always provided simple solutions to 

incorporate MATLAB code and to interface Simulink code to simple evaluation VIs. 

With the introduction of better file/project structuring and matrix-handling strategies in 

the latest version of LabVIEW (LabVIEW 8.0), NI seems to be challenging the 

MathWorks hold on engineering community. However, further discussion in this vein is 

outside the scope of this thesis. 
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The straightforward visual dataflow and structuring of LabVIEW programs 

simplifies program development and debugging. The extensive libraries in LabVIEW to 

handle various common tasks in standard data acquisition and analysis engineering (or 

many other areas of use for that matter) help the developer to adhere to standard 

application or virtual instrument templates so as to decrease complexity while providing 

the ability to customize application-flow to suit the target function of the virtual 

instrument. LabVIEW is especially useful to non-programmers as putting together 

simple applications for a basic function is straightforward. A rudimentary introduction 

to the available tools and resources is of course needed, but the extensive online and 

offline help provided by LabVIEW and the many examples in the tutorials simplifies 

the process. 

Even though critics of LabVIEW claim that debugging of larger applications 

running complex algorithms is complicated and takes a tremendous amount of effort 

even by the original programmer, it can be argued that that is true for all complex 

systems. The visual nature of LabVIEW and easy access to sub-VIs – the main menu in 

any front panel window contains the tree of sub-VIs of any VI – softens the blow a 

great deal, as opposed to other visual languages like Visual Basic for example. The 

concurrent error handling provided while preparing LabVIEW applications also ensures 

syntactical errors do not occur in the program. 
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3.2 Programming Techniques 

3.2.1 Basics 

The LabVIEW program is called a Virtual Instrument (VI) as the development 

of the code which controls data flow concurrently creates objects on a front-end display 

for the user to interact with the program. The program flow in G is not a linear 

execution of tasks and depends on the arrival of all inputs at a particular node for it to 

execute. This mostly requires that various nodes run simultaneously. Parallel execution 

of various nodes of the virtual instrument is therefore innately implemented in G.[25] 

The inbuilt scheduler of most LabVIEW run-time engines automatically handle multi-

threading and multi-processing at optimized levels. This is again one of the reasons why 

LabVIEW is a powerful programming environment. 

This however raises the issue of data race conditions which may occur, for 

example, when nodes which are required to run sequentially execute due to the 

immediate availability of all inputs. This can be simply demonstrated as in the figure 

below.  

 
Figure 3.1 Demonstration of Race Conditions 

 
The initialization, write and close sub-VIs for serial communication are all 

connected directly to the Serial Port identifier. This causes the VI to behave 

unpredictably. 
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This issue can be handled by simple forcing the dataflow by either placing the 

VIs in sequence structures or by connecting the error or duplicate Serial Identifier 

outputs to sub-VIs which are forced to wait for the previous VI(s) to execute. 

 
Figure 3.2 Demonstration of avoiding Data Race Conditions by 

providing sub-VIs with duplicate outputs and error out 
connectors to ensure flow control 

 
The latter is a better alternative as it ensures consistent error handling and 

eliminates the need for sequence structures which aid to the visual complexity of the VI.  

In addition to the above, it should be mentioned that as VIs increase in 

functionality and complexity, the increased visual size of the code actually encourages 

programmers to adopt a modular approach which ensures better organization. This 

architecture, along with continuous flow of data simplifies debugging and maintenance. 

 

3.2.2 Other issues 

It should also be mentioned that it is good programming practice to ensure that 

sub-VIs are identifiable by purpose and classification. This ensures reusability and 

simplifies later implementation or modification of applications. 

Grouping together parallel processes is not suggested. Instead, separating them 

and placing them in separate while loops and interfacing them with the liberal use of 

local variables ensures faster performance. For example, data acquisition from serial 
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ports and analysis of data thus obtained, and the subsequent display of the translated 

data can be seen as three separate processes. Applying different time delays on each 

process leads to better program and hardware control. 

 

3.3 LabVIEW and WSNs 

With the above programming paradigm and the inherent need for modularity 

and ease of visualization of data retrieved from a WSN platform, it is but logical that a 

graphical approach will be a better solution for designing WSN applications (if not all 

data acquisition and programming applications). 

As of this writing, all applications developed using the TinyOS environment rely 

on a text based programming language (nesC) approach to building applications on 

wireless platforms and preparing communication protocols where the motes 

periodically or on querying, send a preformatted message format to the base station and 

this message is interpreted by the language or environment of the developer’s choice 

(LabVIEW at the DIAL). 

However, it was observed that a lot of development time was initially taken up 

by the need for training with the nesC language and the LabVIEW development 

environment, although, the time required adapting to LabVIEW was significantly 

shorter. The initial goal of the DIAL as far as LabVIEW was concerned was to develop 

drivers to be included in the LabVIEW Sound and Vibration Toolkit. Soon, it was 

apparent that this was not enough. The constantly varying nature of the TinyOS 

applications and the desperate need for better tools to build applications led to the 

consideration of a Graphical Development paradigm for TinyOS development. The 
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similarities in the code structure of LabVIEW and TinyOS and the apparent need and 

imposition of modularity of code and need for parallel processing of data and hardware 

management made it clear that LabVIEW would be a very viable solution. 

Further, with National Instruments recently embarking on a fierce campaign to 

garner the hardware control market and also to promote the use of their real-time 

processors modules (PXI microcontrollers); the need for a robust hardware control 

scheme arose. 

LabVIEW could be a major strength in the wireless sensor community if the 

code structure and the compiler used by the TinyOS community were to be emulated in 

a customized version of LabVIEW. With the ability of users to visualize the 

organization of the code and with LabVIEW’s superior concurrent compilation scheme, 

WSN applications can be developed at rapid rates and help developers concentrate on 

the research aspect of development. The major push towards this would also be the fact 

that thanks to LabVIEW’s Block Diagram – Front Panel architecture of code, 

simulation of implementations of code on the physical platform will be radically 

simpler. 

As of this writing, the development phase of the new TinyOS 2.0 architecture is 

under way and if a LabVIEW solution were available, a majority of the developers are 

sure to opt for the graphical approach to application design. 
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CHAPTER 4 

THE SOUND AND VIBRATION TOOLKIT 

4.1 Introduction 

This section of the thesis deals with the testing of and development of VIs and 

tools in NI’s Sound and Vibration (SnV) Toolkit. This toolkit was designed to bring 

together various tools to perform standard measurements on audio, acoustic and 

vibration measurements. Tools for concurrent display of analyzed data on the front 

panel are also provided, but the majority of the VIs deal with the analysis and 

interpretation of data. 

 

4.2 Toolkit Design 

The design philosophy of the SnV toolkit is illustrated in the figure below. As 

illustrated, the SnV toolkit deals with the data once it has been acquired from the 

acquisition device. The toolkit provides tools to perform relative calibration of devices 

with drivers designed by NI. These mostly have to do with NI’s range of DAQ cards 

and devices and non-NI products aren’t currently supported. 

Once the data has been accumulated, it is first sent to the Scale Voltage to 

Engineering Units VI which is a standard VI required for all SnV analysis operations. 

As the name suggests, the VI applies a standard SnV format to the input data and 

attaches an appropriate engineering unit (chosen by the developer) along with a 



 32

timestamp if provided. The input may also be filtered by selecting an input weighting 

filter provided with the VI. 

The scaled data is conditioned for the required application. The signal may be 

integrated or frequency weighted. Limit testing on the resulting data can be used to set 

off condition based maintenance algorithms. A host of tools available for standard 

sound and vibration analysis tools can be applied to the conditioned signal. A detailed 

discussion on the different groups of tools is given later in this section. 

Limit testing is expected to be used again in typical applications to check for 

anomalous data. Finally, for the display of the analyzed or received data, the SnV 

toolkit also provides a new addition to the LabVIEW collection of display graphs. The 

Waterfall display and related control VIs to determine the behavior of the display are 

provided. 

It must be mentioned that anti-aliasing filters are not provided in this toolkit as 

all NI DAQ devices inherently deal with aliasing. Hence, for a custom device, the 

developer will have to design the anti-aliasing filters along with preparing custom 

drivers. 

 

4.3 Toolkit Organization 

4.3.1 Scaling 

In typical data acquisition applications the signal is scaled to appropriate 

Engineering Units (EU) before any analysis is performed. The Sound and Vibration 

Library (SVL) provides the Scale Voltage to EU to scale the signal to the appropriate 

EU. All data sent for analysis in the SVL requires that the signal be scaled in this VI 
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first. Along with ensuring a uniform programming practice, it also ensures that the data 

to be used has been assigned to the right analysis. This is again a great help while 

debugging complex programs. 

 

4.3.2 Limit Testing Analysis 

The SVL Limit Testing VI can be used to analyze typical scaled signals, 

frequency spectrum measurements and is especially useful in determining peaks to 

verify operation within set limits. The limit testing VI allows for an envelope to be 

defined around the signal to set the upper and lower limits. The VI also allows for these 

limits to be adjusted dynamically to suit acceptable levels. Masking the input signal to 

get discontinuous areas of the signal for analysis is also possible with this VI. 

If the VI is placed on the block diagram, it requires that at least one limit is 

specified. This ensures that the VI is utilized if placed on the block diagram and does 

not take up memory resources. Indicators can be automatically added from the outputs 

of the VI. 

 

4.3.3 Weighting Filters 

The Weighting filters are designed to filter the signal according to industrial 

standards to implement psophometric weighting filters for acoustic signals, especially 

those obtained from instrument-grade microphones.  

The Weighting filters contain status flags to make sure that a weighted signal is 

not weighted again at different stages in the application – the VIs produce an error 

report in the Channel Info output. 
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The Weighting Filters do require that the incoming data’s sampling rate be 

within limits set by the ISO/IEC. The signal can be tested to be within maximum 

frequency tolerance levels using the SnV Toolkit Maximum Frequency Within 

Tolerances (ANSI/IEC) VI. 

The weighting filters group also contains Radiocommunications and 

Telecommunications Weighting filters, which handle anti-aliasing if reading from a 

standard NI DAQ device. 

 

4.3.4 Integration 

The SnV Toolkit provides two VIs for performing integration in the time-

domain or in the frequency-domain. The principle of the definite integrals within the 

VIs is simple enough, however, the challenges which arise when integrating Vibration 

data must deal with the inherent DC component which should be first removed for 

analysis. This is because in most vibration testing, the DC component is erroneous as it 

indicates that the device under test (DUT) has a net acceleration which is generally not 

the case, as the DUT is usually fixed to the sensor and plugged in to the data acquisition 

module. For Mobile sensors however, this has to be handled differently. 

The other challenge arises due to the lower-frequency sampling limits on most 

vibration transducers. The vibration signal therefore is very close to the DC component 

of the signal and hence depends upon the DC noise. The integration VIs attenuate the 

DC noise and this leads to erroneous results. As this is a hardware issue, care must be 

taken to obtain accurate measurements for low frequency measurements. 
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4.3.5 Vibration-Level Measurements 

The SnV Toolkit provides VIs to perform RMS level measurements for 

accelerometer readings. Like all the VIs in the SnV toolkit, the RMS VIs can be used in 

Single-Shot mode after the entire signal has been collected or in continuous mode with 

short-time samples of data being analyzed. The RMS VI output can be interfaced 

directly with a display tool or analyzed further in the SnV toolkit. 

 

4.3.6 Sound-Level Measurements 

The sound level VIs can be implemented in Linear, exponential or peak-hold 

modes depending upon the application. The scaled signal output is wired to the 

appropriate Sound-Level Measurement VI and analyzed and displayed accordingly. As 

with all other VIs the Sound-Level Measurement VIs has extensive support in the help 

files of MATLAB. 

 

4.3.7 Fractional Octave Analysis 

The Fractional octave analysis is a widely used technique for analyzing audio 

and acoustic signals. The 1/3 and the 1/12 octave, when analyzed, in particular exhibit 

characteristics analogous to human ear responses. 

This analysis is also required as per many industrial standards such as the ANSI 

and the IEC. 

 



 36

4.3.8 Frequency Analysis 

A very common application requirement is the Fast Fourier Transform (FFT) 

and the SnV Toolkit provides many VIs for the implementation of the FFT for standard 

mode of operation, Zoom mode of operation and also, handles data over various 

channels. The FFT VIs provided by the SnV Toolkit also provide standard windowing 

formats The averaging modes provided by the FFT VIs are also discussed extensively in 

the help files which accompany the SnV toolkit. 

 

4.3.9 Transient Analysis 

The Short Time Fourier Transform (STFT) VIs are provided in this grouping. 

These VIs generate the STFT of the input signal as functions of time provided the 

timestamp is input. The output of the STFT VIs can directly be sent to the Waterfall 

display graphs. 

 

4.3.10 Waterfall Display 

This display tool is an addition to the LabVIEW set of graphical display tools. It 

is a visualization technique that presents the various analyses of non-stationary signals, 

such as machine vibrations during run-up, braking, as well as others. This VI is soon to 

be replaced by an Express VI grouping in order to reduce the number of blocks needed 

on the block diagram. 
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4.4 Contributions to the SnV toolkit 

4.4.1 Preliminary Discussion 

As part of the study of the SnV toolkit, this thesis was also aimed at increasing 

the number of tools provided. The main issue encountered during the development of 

these VIs was the lack of standard resources to handle Matrix based operations in 

LabVIEW. There has been a slight upgrade to this state in the new release (LabVIEW 

8), but the major concern with Control System research is the development of custom 

matrix handlers for standard applications. 

A polymorphic set of VIs to handle matrix based mathematics were developed 

and implemented. The following VIs were built using these tools and have been tested 

to work stably.  

As the VIs are to be inducted into the SnV toolkit, they have been designed to 

always handle time-varying inputs as arrays by default. The Scale Voltage to 

Engineering Unit VI collects all incoming data into an array and passes them along with 

a timestamp if provided. The VIs thus run in an All-at-once mode. The execution 

doesn’t end until all the data has been processed. This leads to a certain delay in 

program execution, but if the data processing is handled in a separate thread, this does 

not influence hardware handlers. Error Handling is provided to keep up with the current 

updates in LabVIEW code structure. In case of an error in any part of the instrument 

code, the execution of all VIs is skipped until that error is handled. All the VIs are 

designed to be modular so as to assist future updates/upgrades. No Global variables 

were used so as to ensure that code transfer is simplified. All VIs are executed in 

reentrant mode to allow for parallel processing. 
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Most of these VIs are integral to the development of tools used frequently in 

Condition Based Maintenance scenarios. The VIs for Kalman filtering, RLS estimation, 

Bollinger Band analysis were designed to be implemented on the real-time PXI modules 

developed by National Instruments. The scenarios involving the localization of motes or 

mobile platforms to estimate the errors in position utilize the Kalman filter which can be 

customized to be a distributed algorithm to run on different motes and platforms. The 

RLS algorithm is useful in channel estimation applications in the WSN. 

The Bollinger Band and Kurtosis VIs are used in event detection algorithms as 

they provide measurements which can be used to determine the triggering of rapidly 

changing events. They are also useful in the analysis of polled statistical data from mote 

networks for calibrating the sensor readings and event detection algorithms. 

Most application scenarios at the DIAL involve localization algorithms and 

event detection to trigger processes in the mobile platforms for Condition Based 

Maintenance. 
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4.4.2 Window 

 
Figure 4.1 Block Diagram: Moving Window sub-VI 

 

 
Figure 4.2 Block Diagram: Moving Window sub-VI Array Input 
 

This is a standard VI which is again used in most SnV analysis. It is a simple VI 

to sample the data using a window of user specified length. This is a polymorphic VI 

that handles 
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• Scalar data in 

• Array data in 

The output automatically adjusts to the appropriate 1-dimensional or 2-

dimensional array output. 

The moving window VI is very useful as it provides a simple solution to 

maintaining a buffered array of data to be stored as opposed to using shift registers in 

conditional loops in LabVIEW. Apart from reducing clutter, it simplifies handling the 

length of the stored array and offers easy customization for different data types. 

 

4.4.3 Kurtosis 

 
Figure 4.3 Block Diagram: Kurtosis sub-VI 

 
The Kurtosis set of VIs are again a group of Polymorphic VIs to handle single 

dimensional or two dimensional data. The Kurtosis is performed across rows of the two 

dimensional matrix treating the various rows as channels which need to be analyzed. 
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The equation which governs the Kurtosis calculation is given as 2
2

4

µ
µβ =  where 

2µ  and 4µ  are the second and fourth moments of the input data. 

The implementation of a simple application to demonstrate the Kurtosis of a 

noisy sinusoidal signal is shown below. 

 
Figure 4.4 Front Panel: Kurtosis Implementation 

 
The kurtosis VI does have an upper limit to it’s execution due to the exponential 

of the calculated standard deviation. Care must be taken not to raise the frequency 

above this upper limit. The limit is system specific and is usually not reached in 

standard applications. 

The Kurtosis VI is useful in the simulation of localization algorithms and peak 

detection algorithms which are regularly used at the DIAL in scenarios involving 

localization of mobile platforms and event detection.  
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4.4.4 Bollinger Band Sub-VIs 

 
Figure 4.5 Block Diagram: Bollinger Bands 

 
The Bollinger Band set of polymorphic Sub-VIs are developed using the moving 

window sub-VI and as can be observed, the output is a cluster of three arrays which 

contain the Bollinger Bands for the incoming data. The Windowed Data Init variable is 

set to initialize the band data and acts as an accumulator. 

As the Bollinger Band sub-VI only takes an array input, the data is first 

windowed to get a user-defined series of data points which can be analyzed. The 

multiplier supplied for this VI is preprogrammed for three values (1, 1.5 and 2) which 

are the standard values in most texts and can be changed at run-time to a user defined 

value. 
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4.4.5 Kalman Filter 

The Kalman Filter set of polymorphic VIs were developed using the standard 

Kalman Filter algorithms. 

 
Figure 4.6 Block Diagram: Kalman Filter 

 
The equations governing the construction of the above sub-VI are given below. 

Given a system defined by the equations given below, 

System model and measurement model: 

kkkkkkk wGuBxAx ++=+1  

kkkk vxHz +=  

( ) ( ) ( )kkkkx RvQwPxx ,0~,0~,,~
000  
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Time update: 
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It is assumed that the P and initial estimate matrices are initialized. The VI 

recursively estimates the states while executing the following sub-VI: 

 
Figure 4.7 Block Diagram: Kalman Filter sub-VI implemented using the custom matrix 

VIs 
 

The custom matrix handler VIs can be seen here according to the dimensions of 

their inputs. The polymorphic VI can be seen to adapt to the input data format and 

resize according to the dimensions of the input arrays. These VIs were tested using 
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standard Kalman Filtering problems encountered in standard texts and are observed to 

work faultlessly. The H-matrix however is assumed to remain static and the VI cannot 

analyze a time-varying system matrix.  

 

4.4.6 RLS Estimator 

 
Figure 4.8 Block Diagram: RLS Estimator 

 
This sub-VI again implements the Window and matrix VIs developed for the 

SnV toolkit. This is a single shot estimator which needs the entire data table to be 

known before processing. The “h” matrix needs to be initialized and so do the theta and 

“P” matrices. The degrees of the numerator and denominator polynomials need to be 

specified. 

The equations of the system and the estimator which govern the working of the 

RLS estimator sub-VIs are given below. 
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System model 
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This VI was also tested and seen to match results obtained from other methods. 

 

4.5 Conclusions 

The Sound and Vibration toolkit, the VIs developed to be added to the SnV 

Toolkit, along with the many VIs developed for the TinyOS toolkit are essential tools 

for developers of Wireless Sensor Networks. Standardized data analysis schemes make 

sure that application development and maintenance is less error-prone. 
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CHAPTER 5 

THE DIAL 

5.1 Introduction 

The Distributed Intelligence and Autonomy Laboratory (DIAL) established at 

the ARRI of UT Arlington is an innovative test-bed aimed at studying the integration of 

mobile platforms and wireless sensor networks. The laboratory aims at developing a 

dynamic environment which is monitored using a mobile wireless sensor network 

implemented using off-the-shelf robotic platforms and the wireless sensor network 

research platforms distributed by Crossbow Technologies. Apart from the Crossbow 

platforms discussed in Chapter 2, the test-bed includes Acroname Inc. Garcia© robots 

which are highly flexible commercial platforms provided with Brainstem 

microcontrollers and infrared sensors for obstacle avoidance. Cybermotion sentry robots 

donated to the ARRI by JC Penney are also available. A LabVIEW based application to 

control and monitor this test-bed was developed as part of this thesis. 

 

5.2 TinyOS Toolkit 

With the increasing demand for rapid development of applications for TinyOS, 

the DIAL has been developing tools to streamline the process by designing a toolkit to 

be integrated into LabVIEW. This toolkit aims at providing tools to simplify code 

generation for TinyOS applications and bypassing the Cygwin environment which is 
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required for programming XBow motes with TinyOS applications. The contributions of 

this thesis to the TinyOS toolkit are listed below. 

 

5.2.1 Active Message (AM) Resources 

The standard data transfer format in TinyOS is the AM message format. It forms 

the template for all messages sent to and received from the TinyOS network. The AM 

message format has a fixed type of synch bytes which start and end all messages. 

However, the length of the message is not always constant. This necessitates the design 

of interpreter tools to extract the message packet and decipher the message specified in 

the format determined while programming the motes. 

 

5.2.2 GetAMPacket.vi 

 
Figure 5.1 Block Diagram: GetAMPacket.vi retrieves the next available TOS AM 

packet 
 

This VI is built on the standard template of all the VIs developed so far. The 

error in input, while helping the developer set the data flow in the top level application, 

also ensures that the VI will not execute as long as the error exists or until the error is 
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handled. The VI reads from the serial port one byte at a time and discards bytes which 

do not correspond to the synch byte. If the synch byte is encountered, or a time out, set 

at 150 iterations – indicating that 150 bytes have been read without encountering a 

synch byte, is not triggered, it clears the error flag and moves to the second stage of the 

VI. In this stage, the VI reads the next available byte – whatever it may be – stores and 

ignores it and continues to read the bytes until the next synch byte is reached. This 

ensures that at least one full message is read. 

If this VI is run iteratively, it ensures that the messages read are in perfect synch 

and that relevant messages are read every time. 

 

5.2.3 GetTOSPacket.vi 

 
Figure 5.2 Block Diagram: GetTOSPacket.vi - Synchronizes packet retrieval 

 
This VI implements the GetPacket.vi sub-VI. This VI has been used liberally in 

all the top level applications dealing with reading data from the TinyOS networks at the 

DIAL. It has been tested and observed to work flawlessly. 

As has been seen from the working of GetPacket.vi, the output of the sub-VI 

might have an erroneous message packet in it. This case arises when the serial port has 

been out of synch and the sub-VI has synchronized the packet retrieval. Due to the sub-
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VI ignoring the first packet after retrieving the synch byte, it does not rule out the case 

where the ignored byte might be a synch byte indicating the beginning of a message. 

So, the GetTOSPacket.vi checks for the presence of two synch packets at the beginning 

of the retrieved message and if true, discards it. Alternatively, a second version of this 

VI simple deletes the first synch byte and retains the message. This VI also does not 

execute if an error is encountered in this VI’s caller. 

 

5.2.4 DecipherTOSPacket.vi 

 
Figure 5.3 Block Diagram: DecipherTOSPacket.vi Unescapes incoming Data and 

separates the payload and the CRC bytes 
 

This VI is always called after the execution of the GetTOSPacket.vi or the 

GetPacket.vi. This VI is used to trim the message of the synch bytes which wrap the 

message and “unescape” the data received which might be escaped. Escaped data occurs 

when the message contains bytes which correspond to standard message bytes (like the 

synch byte or group ID bytes). The offending byte is exclusive-or’ed with a 

predetermined value and suffixed to an escape byte. Whenever the VI encounters an 

escape byte, it discards it and exclusive or’s the next byte with the appropriate value and 

continues execution. It must be noted here that the CRC bytes which occupy the last 
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two bytes of all messages will also be escaped if they correspond to the standard 

formats. The deciphered packet and the retrieved CRC are sent back to the calling 

application. 

This VI is implemented in every application which requires the interpretation of 

the data received in CRC packet communication with the MICA series of motes. 

 

5.2.5 GetCricketPacket.vi 

 
Figure 5.4 Block Diagram: GetCricketPacket.vi - Retrieves the next available Cricket 

message and retrieves the distance information and beacon ID 
 

This VI is similar to the GetAMPacket.vi except that it is used to interpret data 

retrieved from the Cricket series of motes. The Cricket message ends with the carriage 

return (or the line feed) and this is used as the synch byte. The VI reads bytes – one at a 

time – until the new line character is received and then retrieves the rest of the message 

up to the next new line character. As the applications dealing with the cricket motes at 

the DIAL deal with the distance packets only, the distance section of the message is 

retrieved and the value is returned to the caller. 
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5.2.6 TinyDB Resources 

Apart from the AM type and Cricket type of messages, TinyDB messages have 

also been supported in this toolkit. This collection of VIs used to build TinyDB query 

messages (in the AM message format) and the VIs used to retrieve the required to 

extract the appropriate parameter received from the network. 

 

5.2.7 InitMote.vi 

The InitMote set of VIs are used to initialize the platform under use. All 

platforms under test at the DIAL have diverse requirements as far as the serial port 

communication protocols are concerned. This series of VIs helps in automating the 

process by initializing the serial port to the appropriate value and sending appropriate 

handshake messages if necessary. If the platform returns a positive status message, 

these VIs do not return an error ensuring that error handling is present at all stages of 

the application. 

The initialization VIs were developed for the Cricket, MICA2, MICA and the 

MICA2 motes running TinyDB. This template can be used to initialize other platforms 

as and when acquired. The initialization VIs are used in every application involving any 

of the Cricket, MICA series or the MicroStrain gauges. 

 

5.3 Implementation of Toolkit VIs 

With these resources ready to implement, the DIAL has been able to build 

applications implementing the TinyOS network. Some of them are described below. 
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5.3.1 MicroStrain Acquire 

This VI is an implementation of the Sound and Vibration (SnV) toolkit on an 

existing application developed at the DIAL.  

 
Figure 5.5 Block Diagram: MicroStrain Acquire: The original LabVIEW VI to handle 

communication and analysis and display 
 

This figure shows the VI developed to use the MicroStrain G-Link 

accelerometer to monitor the activity on an air conditioning system at the ARRI for 

Condition Based Maintenance. The application runs the G-Link in periodic mode and 

sends request messages to the node to retrieve stored measurement values. 

The first stage of implementation of the SnV toolkit to this application was to 

design drivers to interface the Scale Voltage to Engineering unit VI for the node. His 

also involved the trimming of deprecated VIs which had been removed from the 

LabVIEW suit of VIs. The drivers designed set the channels to retrieve messages from, 

the sampling period and other status values which are written into standard registers at 

initialization. Message retrieval drivers were then designed for sending appropriate 

messages to the nodes to trigger transfer of data. Once the transfer of data is complete, 
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the formatted data is sent back to the main application. In the main application, the 

retrieved data is scaled in the SVT VIs and the FFT is performed. 

The process is repeated until the user input to stop the application is received. 

The final code (with the initialization VI trimmed due to lack of space) is shown below. 

 
Figure 5.6 Block Diagram: MicroStrain Acquire modified with the SnV toolkit VIs and 

MicroStrain Drivers 
 

It was observed that with the implementation of the new drivers for the node and 

the implementation of the SVT, the response of the node was greatly improved and the 

stability of the program increased. The front panel with some vibration results is shown 

in the figures below (This figure also demonstrates the various functions provided by 

the FFT VI in the SnV Toolkit). 
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Figure 5.7 Front Panel: MicroStrain Acquire shows a particular vibration 

sample 
 

 
Figure 5.8 Front Panel: MicroStrain Acquire shows the FFT analysis of 

the measured vibrations on three channels 
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5.3.2 XBow Acquire 

The next stage in this application was to extend it to interface the XBow mote 

network. 

 
Figure 5.9 Front Panel: XBow Acquire shows the extension to implement Crossbow 

Mica2 drivers 
 

The program structure of the VI is fairly similar to the MicroStrain Acquire 

portion of the code with the only divergence being in the interpretation of the data 

retrieved from XBow motes. The platform was also tested for the values of the Sound, 

Light and Temperature measurements.  
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5.3.3 Statistical Processing and Analysis Module (SPAM) 

As a departure from the WSN data retrieval, the idiosyncratically named SPAM 

application was developed to test the robustness of a stand alone application which had 

implemented the various VIs that had been developed for the SnV toolkit. This 

application was idiosyncratically named SPAM but is a sophisticated Web Crawler used 

to poll data from a federal government public website. The application retrieves data 

relating to the values of various currencies as ratios with respect to the US Dollar from a 

series of websites, collects them, discards values which indicate national holidays and 

plots the values along with a Bollinger band analysis of the data. The Bollinger band is 

customizable – the window size and the Bollinger multiplier may be specified by the 

user while the application is being executed. 
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Figure 5.10 Front Panel: Bollinger Band Analysis 

implementation in the Currency Analyzer showing the 
currency analysis over about 10 years with the Bollinger bands 

shown 
 

The Kurtosis analysis of the data retrieved is also provided. This application has 

been tested over long periods of time and has been seen to be error-free and accurate. 

This application has helped to increase confidence in bulky standalone applications 

developed on the LabVIEW environment. 
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5.3.4 Cricket Demonstration 

 
Figure 5.11 Front Panel: Cricket Driver 

implementation in a simple warehouse decision 
making scenario 

 
An application to test the functioning and the accuracy of the Cricket series of 

motes was developed using the resources built for the TinyOS toolkit. A section of the 

Front Panel of the application is shown above. 
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The application featured a combination of two networked series of nodes 

controlled from a common base station. The two networks consisted of mobile cricket 

motes and the stationary XBow MICA2 sensors. The MICA2s (the blue dots on the 

front panel) were programmed to run an environment testing application. The motes 

retrieve the light readings at each mote and send the data back to the base station. The 

navigator (a Cricket mote represented by the black dot) starts at the bottom of the map, 

moves through the sensor field and the MICA2s guide the navigator through safe areas. 

The application was built using three MICA2s but can be extended to include any 

number of multihop linked motes.  

The navigator – once safely through the sensor field stage – reaches the moving 

system (three localized Cricket motes represented by the red, blue and green dots). This 

stage represents a dynamic system which the navigator must traverse. 

The application was also intended to test the communication between two 

disjointed networks and was observed to be a very stable application determined only 

by the line-of-sight contact between the Cricket Beacons and Listeners which are used 

for localization of the moving motes. 

The code behind the application is interesting to note as it emulates the 

concurrent data acquisition and analysis paradigm implemented in TinyOS. 

The first figure shows the data acquisition stage of the application. As can be 

observed, the three processes are separated and the retrieval of data from each of the 

two Cricket listener beacons and the MICA2 base station is concurrent. 

The second figure shows the interpretation of the data retrieved from the Cricket 

motes. The id of each mote is checked and the required data of the motes under 
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consideration are retrieved. Then the distances of the motes with respect to the base 

station are measured and stored in local variable linking to the storage variable. 

The third figure shows the analysis stage for the MICA2 where the light reading 

at each mote is retrieved and the distance of the mote with respect to the navigator mote 

is calculated. Using these measurements, the decision making block shows an 

appropriate message on the front panel.  

 
Figure 5.12 Block Diagram: Cricket Demo showing the 

Serial communication "module" 
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Figure 5.13 Block Diagram: Cricket Demo showing the Cricket distance 
calculation "module" where the readings from the two listeners is used 

to triangulate the coordinates of the mobile platform 
 

 
Figure 5.14 Block Diagram: Cricket Demo showing the Mica decision making 

"module" to guide the operator through safe zones in the network 
 



 63

The next figure below shows the code for the Cricket decision module and the 

Graphical display module. 

 
Figure 5.15 Block Diagram: Cricket Demo showing the Cricket Decision making 

"module" to guide the operator through the moving obstacle stage of the application 
 

 
Figure 5.16 Block Diagram: Cricket Demo showing the position mapping and graphic 

handler "module" 
 

This division of the code structure into modular sections all running 

concurrently, along with providing a great deal of stability to the application, improves 

performance and reliability. Debugging was also simplified as the developer only has to 
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deal with certain sections of the code the errors in which become apparent during 

execution.  

 

5.3.5 TinyDB Application 

The final and most recent addition to the TinyOS toolkit suit of VIs was the 

implementation of a simple query processor like interface to address particular motes in 

a TinyOS network. The TinyDB application sends SQL like queries to the base station. 

The base station running a nesC application interprets the query and configures the 

network to behave accordingly. The code behind the query builder portion of the 

application is shown below. 

 
Figure 5.17 Block Diagram: TinyDB Query Builder 

 
The generation of the query to be sent to the base station in itself is, however, 

not trivial. The many sub-VIs required for the implementation of the queries will be 

provided in the Appendices. The QueryBuilder.vi sub-VI takes an input of a set of 

strings representing the parameters to be retrieved like the ids of parent nodes (in a 

multihop network), the current node id and the corresponding light measurement at that 

node. Many such permutations and combinations of the data that can be retrieved from 

the motes are available. However, there is an upper limit to the number of parameters 
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which can be retrieved at a time and the application was built implementing only the 

parent id and temperature and light measurements. However, the application may be 

easily expanded to retrieve battery level readings, accelerometer, magnetometer 

measurements etc by adding the appropriate string to the query list. 

The results from this application while querying the Light readings from a series 

of four motes deployed in a target area showing the light reading levels at each point are 

shown below. 

 
Figure 5.18 Front Panel: TinyDB Application showing the temperature distribution at 

four nodes 
 

It can be observed that the light reading at coordinate (3, 3) has fallen below the 

rest of the motes and implies that the mote at that position is either in the dark or is 

malfunctioning. The query here has been sent to retrieve the light readings of all motes 

with node ids greater than zero (top of the front panel). Incidentally, the query can be 
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structured to retrieve values from motes of particular mote IDs by selecting the equal to 

option when sending the query. 

 

5.4 Implementation in the DIAL 

The tools described in the previous sections are integral to all of the applications 

involving the MICA series of motes or the Cricket series. These tools simplify 

interaction with the mote platforms and quickly building applications involving these 

platforms. 

The applications developed are also very useful in demonstrating the power and 

customizability of the LabVIEW platform for WSN application building. The 

applications in themselves are extremely useful in test-bed monitoring and as examples 

of decision making systems. They also serve as templates for applications developed in 

the DIAL and as the basic building blocks themselves are customizable, they allow for 

fluid application design. 
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5.5 Conclusions 

The various applications built for the development of the DIAL were 

implemented and tested for robustness. Apart from hardware issues and battery failures, 

all the applications developed were stable and repeatable endlessly. 

The VIs built to be inducted into the TinyOS Toolkit were tested in various 

applications and have been observed to streamline application building for Wireless 

Sensor Networks. 
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

As has been the common theme in almost every section of the thesis, the need 

for modular structuring of the applications built to be implemented on either the WSN 

platforms or PC based applications for human interfaces to best utilize limited resources 

and to build robust applications is apparent. This is a foregone conclusion in most 

application structures. However, most application builders rely on text-based 

programming languages for building their solutions. Although the power and flexibility 

of the well-established text-based structure is undeniable, the developer still has to rely 

on third party software or utilities to visualize the same code structure graphically. The 

code structure or tree is extremely useful for debugging and optimization. However, 

with the availability of excellent graphical programming languages (like G in 

LabVIEW), this is obviously redundant. A graphical programming approach to building 

applications, especially for implementation on hardware or real-time systems, is more 

intuitive and encourages modularity, efficient code architecture and efficient 

maintenance as demonstrated by faster debugging, rapid upgrades or updates. 

Digressing, it is evident that a symbolic representation of any application is simpler to 

understand as it is not bound in the narrow confines of representative language or script. 

The ease of implementation of wireless sensor program architectures using 

graphical programming languages is obvious. Wireless Sensor platforms rely on low 
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processing overhead and the need for multiple processes to run simultaneously (data 

acquisition, communication, power management etc.). Building such applications using 

a graphical programming language like G, while providing all the advantages as listed 

above, also provides easy access to low level architectural elements which would 

otherwise require the developer to methodically sift through architectural elements 

which are represented in text. As was evidenced by the use of the tools created at the 

Distributed Intelligence and Autonomy Laboratory (DIAL), the organization of the 

various elements which were used to build wireless sensor network applications greatly 

reduced modification times of low-level application parameters when compared to a 

similar application built in a text-based environment. As every wire in LabVIEW is 

representative of a variable and its dataflow, data-typing and source control is automatic 

in LabVIEW while it is caught only at compile time in the text-based approach. 

It was observed during the growth of this thesis that low-level handling of 

hardware was exceptionally intuitive and rapidly customizable – especially when 

dealing with serial communication with the mote platforms which was a major 

component in the development of all the applications developed in this thesis. 

However, it has to be noted that the main issue with building applications in 

LabVIEW is that stand-alone applications are inordinately bulky and occupy a large 

amount of processor memory as opposed to similar applications built on MATLAB or 

Visual Basic. This is mainly due to the run-time engine that comes bundled with every 

LabVIEW stand-alone application. Hopefully, this will change in future versions of 

LabVIEW. 
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This does not affect applications which are intended to be implemented on 

LabVIEW’s supported platforms – like the real-time processor module (the PXI series) 

or Personal Digital Assistants (PDAs) which have the LabVIEW run-time engine 

installed on them.  

Overall, LabVIEW, by far, outperforms traditional text-based programming 

approaches for building wireless sensor network applications. 

 

6.2 Discussion of Objectives 

The objectives of this thesis can be summarized as an attempt to bridge the gap 

between the developers of WSN platforms and researchers. The manifold applications 

of WSNs require that the tools involved in their implementation be easy to use and 

customize for any level of expertise with application building. LabVIEW’s graphical 

programming platform and the TinyOS group’s modular event based code structure are 

ideally suited for each other but have been mutually exclusive so far. With the 

introduction of programming and analysis tools and their demonstration in relevant 

scenarios should convince new users of WSNs to use a graphical programming 

approach. 

 

6.3 Discussion of Contributions 

In summary the contributions of this thesis have been to develop the tools 

envisioned in the objectives and implementing them in relevant WSN scenarios. The 

tools developed serve as templates on which to develop interaction and analysis tools. 
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Along with programming tools also being developed at the DIAL, the resulting toolkit 

promises to be an important factor in the WSN research at the DIAL. 

Apart from the tools, the building of application scenarios and deployment of 

these applications for the design of a novel test-bed has been a contribution of this 

thesis. 

6.4 Future work 

6.4.1 TinyOS toolkit 

With the development cycle of TinyOS 1.1.x almost reaching its end, the 

development of tools to encompass the various capabilities of TinyOS adapted to 

LabVIEW would be very well received by the Wireless Sensor Network community. 

With increasing interest in the implementation of LabVIEW VIs in TinyOS scenarios, 

the toolkit could possibly be instrumental in setting the trend for future Wireless Sensor 

Network application structures.  

Porting the new TinyOS 2.x to be implemented in LabVIEW should be simpler 

than the above because of the better organization of the component architecture and a 

more malleable coding design for nesC. Graphically modeling the code of TinyOS 2.x 

would encompass the entire hardware and software component tree. This would allow 

the user to appreciate the entire code structure and have intuitive and easy access to all 

levels of hardware and software components. 

 

6.4.2 LabVIEW and WSNs 

The main issue with LabVIEW has been that it offers limited access to hardware 

level architecture of any component. Most of the drivers distributed by National 
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Instruments for their devices are copyrighted and protected in the code by encryption. 

LabVIEW does not allow for custom variations of their programming languages to be 

built using LabVIEW. The latter limits the possibilities as far as Wireless Sensor 

Networks –especially the TinyOS applications – are concerned. Although a limited 

architecture of the TinyOS operating system and component architecture can be built 

using LabVIEW, emulating the nesC compiler on LabVIEW would require the input of 

the creators of the G programming language. 

Building the same structure using MATLAB’s Simulink or a custom graphical 

environment – designed from scratch – are also viable options. However G’s multi-

threading and online compilation are far superior to any solutions which could be 

developed as viable options in a short time frame. 

 

6.4.3 The Distributed Intelligence and Autonomy Laboratory 

The basic framework for a truly innovative test-bed has been laid at the DIAL. 

Along with the construction of various platforms, the template for simple 

communication needs to be customized for all the available platforms. As the developed 

scheme is extremely malleable and easily implemented, it can be customized for a more 

robust and secure solution.  

The multi-platform network is the perfect deployment device for the TinyDB 

application. The tools developed in this thesis can also be easily implemented for 

performing localization measurements with the various mote platforms from Crossbow. 
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With the addition of the LabVIEW PDA control modules, the implemented 

scenarios may be easily extended to include Personal Digital Assistants to realize a 

more interactive, facile and exciting test-bed. 

 

6.4.4 Final Thoughts 

The scenario of a graphical development platform for Wireless Sensor Network 

Applications was proposed and the implementation using LabVIEW was initiated in 

this thesis. If the philosophy behind pursuing a Graphical Development System is truly 

realized, the near future will see the Graphical programming paradigm at the forefront 

of all design. 

The innovative test-bed at the Distributed Intelligence and Autonomy 

Laboratory (DIAL) has been initiated. With the various platforms running on a simple, 

yet robust, and easily adapted control algorithm, concentrating on research into various 

control strategies was simplified.  

The various additions to the LabVIEW family of toolboxes were listed. Further 

developments were suggested.  
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APPENDIX A 

 
LIST OF IMPORTANT VIRTUAL INSTRUMENTS DESIGNED FOR THE 

TOOLKIT 
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Table A LabVIEW VIs Designed for the Toolkit 

Virtual Instrument Description 

 

This was the first version of the Mote communication 

VIs. The VI, apart from opening the connection to the 

serial port, optionally closes and reopens the 

connection to force the buffers of the serial port to 

reset. This scheme of communication was abandoned 

in favor of ensuring that the connection to the serial 

ports was closed upon normal completion of all 

applications. 

 

This was also a first version sub-VI used to translate 

the data read from the MICA series of motes. 

Specifically to extract data carried on the AM packet 

format by specifically extracting the data bytes 

located at particular offsets. This VI does not 

unescape the packet but instead, translates the data 

once extracted from the original packet. This sub-VI 

is re-entrant 
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This is a top-level VI which communicates, depending 

upon user selection, with the MICA motes or the 

MicroStrain motes to read vibration measurements on 

all available axes. This VI is an extension of the VIs 

designed by Mr. Ankit Tiwari in his thesis and 

simplifies the structure by using the Sound and 

Vibration toolkit VIs. 

 

The Matrix multiplication polymorphic VI handles 

matrix multiplication unlike previous versions 

available in LabVIEW. The VI automatically selects 

array or vector multiplication modes depending upon 

the inputs wired into the VI. It supports all 

combinations of array and vector multiplication. 

 

The Kurtosis VI as the name suggests calculates the 

kurtosis and also the kurtosis excess of an array of 

data input. 
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The Window VI is a polymorphic VI to handle 

buffering of one dimensional or two dimensional 

arrays or matrices. This VI is implemented in the 

design of the Kurtosis, Kalman Filter, Bollinger Band 

and RLS estimator top-level VIs. A user specified 

windowed buffer of the scalar or vector data input is 

maintained 

 

The Bollinger Band sub-VI calculates the upper and 

lower Bollinger bounds on the input data array and 

outputs the data as a cluster. The input data is also 

duplicated at the output so that the window sub-VI 

may use this data as an input in its next iteration. 

 

This is a middle layer sub-VI which implements the 

Bollinger band sub-VI and the window sub-VI to 

buffer the incoming scalar or vector data in and 

perform the Bollinger band analysis treating each 

column as a channel. 
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SPAM.vi 

The Statistical Processing and Analysis Module VI 

(SPAM) was designed using the Bollinger Band 

analysis VI, the Kurtosis VI and the LabVIEW 

DataSocket set of VIs to read the currency data from 

the federal reserve website and to perform the 

Bollinger band analysis on the currency data from 

every business week since 1995. It has a tabbed 

interface to switch between Bollinger band analysis 

and a kurtosis analysis of the data. 

 

The remove empty strings VI is a simple sub-VI 

designed for the SPAM VI to trim data string arrays 

which had empty strings resulting from blank data 

fields corresponding to holidays during weekdays.  

 

Kalman Filter.vi 

This is a top-level VI which holds the polymorphic 

sub-VIs which calculate the discrete time Kalman 

estimates for the input system. The VI is constructed 

using the matrix multiplication VIs. This VI is used in 

localization algorithms and position estimation at the 

DIAL. 
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The RLS Estimator VI is again a top-level VI and 

holds the RLS estimator sub-VI and the window sub-

VI. The RLS sub-VI performs the discrete time RLS 

estimation of the input system and gives the estimates 

as output. This VI is used in localization algorithms in 

mobile platform scenarios for estimating the accurate 

position of the mobile platform. 

 

The Initialize Mica series of VIs are used to quickly 

initialize the various COM port settings associated 

with MICA mote communication. This VI is always 

the first VI used when connecting to the Motes for 

reading data. 

 

The GetTOSPacket sub-VI gets one TinyOS AM 

message packet from the serial port specified and 

exits. This VI has a time out of 150 cycles before 

exiting with an error.  

 

The GetTOSPacketSynch.VI implements the 

GetTOSPacket sub-VI and purges incomplete or 

erroneous packets read to synchronize the 

communication between the PC and the mote 

platforms. 
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The Decipher TOS Packet VI unescapes the packet 

embedded between the synch bytes and separates the 

payload from the CRC bytes. 

 

The Surge Light VI is a generic template for 

designing message interpretation VIs for 

communicating with the MICA series of motes. This 

VI implements the GetTOSPacketSynch and the 

DecipherTOSPacket sub-VIs. The mote is assumed to 

be programmed with a standard application like Surge 

and the VI reads the light reading from the specified 

location in the packet. This template can be extended 

to any type of message which is to be read from the 

mote platforms. 

 

The CricketInit.vi initializes the COM port for 

communication with the Cricket series of motes and 

contains standard settings which are necessary for 

initializing communication with the Cricket motes. It 

is an extension of the InitMica2 VI in as much as it is 

also used to set the mode of operation of the Cricket at 

the time of initialization 
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The SetCricketListen.VI can be used in the 

application to set the mode of operation of the Cricket 

mote during the execution of the program. This VI is 

also part of the CricketInit.vi. 

 

The DecipherCricketPack.vi is used to extract 

required data from the message packet read from the 

mote. This VI also acts as a template for reading other 

data from the Cricket packet. 

 

The Coordrefs.vi is a top-level application which 

implements the mica resources and the cricket 

resources to track the motion of a mobile platform 

carrying a cricket and guide it through a MICA 

network in safe areas determined by a decision 

making system. 

 

The InitTinyDB.vi is an initialization VI and is part of 

the TinyDB application interface developed for 

TinyDB. This VI, apart from initializing the COM 

port, retrieves any running queries on the network. 
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The getQueries.vi sub-VI writes a request query to the 

TinyDB network and retrieves the running queries as 

an array output. 

 

The Build TinyDB Payload VI generates the node-id 

query which goes at the end of every TinyDB query. 

This VI serves as the basic template from which other 

command generation VIs are developed. 

 

The Build TinyDB Command VI generates the TOS 

message packet which forms the query being sent. It 

takes various parameters which make up the TinyDB 

query as inputs and appropriately manipulates them 

for the required result. 

 

The Get TinyDB Packet VI uses the Build VIs 

described above to generate the appropriate packet 

which forms the present query request to be sent with 

the various parameters required to be set when 

generating a query. 

 

The Get Command Array VI is a middle level VI 

which implements the Get TinyDB Packet sub-VIs to 

generate an array of queries which are to be written to 

the TinyDB mote and takes only an array of required 

parameters as an input. 
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The TinyDB application VI is a top-level application 

which is used to send simple queries to the TinyDB 

motes (MICA series motes running the TinyDB 

program) and analyzing and interpreting the data 

retrieved for the various available parameters. The 

present version has implemented the monitoring of 

light readings, parents for determining the network 

topology, the battery voltage reading of each mote and 

the temperature reading at each mote. 
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