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ABSTRACT

COMPUTING BEST COVERAGE PATH IN THE PRESENCE OF

OBSTACLES IN WIRELESS

SENSOR NETWORKS

Publication No.

Senjuti Basu Roy, M.S.

The University of Texas at Arlington, 2007

Supervising Professors: Sajal K. Das, Gautam Das

Given a set S = {S1, . . . , Sn} of n homogeneous wireless sensors deployed in a two

dimensional area, a source point s and a destination point t, the least protected point p

along a path P (s, t) is that point such that the Euclidean distance between p and its

closest sensor node Si is maximum. This distance between p and Si is called the Cover

value of the path P (s, t). The Best Coverage Path between s and t, denoted as BCP (s, t),

is the path that has the minimum cover value. Although there exists efficient algorithms

to compute BCP in O(n log n) time, the presence of obstacles inside the two dimensional

area has not been addressed in the literature. In this thesis, we consider the problem of

computing BCP (s, t) in the presence of m line segment obstacles distributed among n

sensors. Because of the presence of obstacles, sensing by sensors can get obstructed and

the constructed path may have to detour which pose significant challenges. We propose

three algorithms to compute two different variations of the BCP (s, t) problem in the

presence of obstacles. In particular, for the case of em opaque obstacles, i.e., which

obstruct both the sensing as well the computed path, we develop an algorithm that

computes BCP (s, t) in O((m2n2 + n4) log(mn + n2))) time. The underlying idea is to
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leverage the concept of a quartic-time Constrained and Weighted Voronoi diagram among

obstacles and creating its dual. For the case of transparent obstacles that cannot obstruct

sensing but the computed path has to avoid obstacles, we develop two algorithms that

compute BCP (s, t). The first algorithm runs in O(nm2 + n3) time using the visibility

graph data structure, while the second one is an approximation algorithm and requires

O(nm+n2) time using spanners of the visibility graph. The approximation factor of the

cover value is O(nk) where k is the stretch factor of the spanner graph. The proofs of

correctness of the three proposed algorithms are also presented in this thesis.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis primarily investigates the modeling of obstacles, present in the sens-

ing field and its impact in the computation of coverage path in Wireless Sensor Net-

works(WSNs). The solutions of these problems are proposed using techniques from

Computational Geometry, Graph Theory and Approximation algorithm.

A Wireless Sensor Network(WSN) consists of a set of small untethered sensor nodes

that are deployed either randomly or according to some pre-defined statistical distribu-

tion, over a geographical region of interest to monitor a physical phenomenon. Each

of the sensor node can sense and actuate, compute and communicate wirelessly with a

certain confidence level. Physical phenomenon to be sensed can be light, sound, vibra-

tion, temperature, pressure, and so on. A sensor has severe resource constraints such

as limited signal processing, computation and communication capabilities, storage and

energy(battery power). Thus lifetime of a sensor node is typically driven by its battery

life.

The applications of WSNs comprise of but not limited to security surveillance in

military and battle-fields, emergency alert, chemical and biological sensing, earthquake

emergencies, vehicle tracking, traffic control, smart homes and offices, improved health

care, industrial diagnosis, and so on. For example, in emergency alert scenario, sensors

identify early signs of fire in forests, help fire fighters predict the direction in which fire

expands, prevent fire fighters from getting trapped, etc. Not only that, the recent trend

to integrate wireless networking into interactive devices such as PDAs, cellular phones,

and portable computers has led to foster a wide class of interactive ubiquitous computing

applications using sensors.

1
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In order to accomplish the designated task successfully, sensors need to actuate,

compute and disseminate the acquired information amongst themselves. Intuitively, cov-

erage denotes the quality of sensing of a sensor node. While a sensor senses, it needs

to communicate with its neighboring sensor nodes in order to disseminate the acquired

data. That is where connectivity comes into place. In fact, coverage and connectivity

together measures the quality of service(QoS) of a sensor network.

Coverage and connectivity in wireless sensor networks are not unrelated problems.

Therefore, the goal of an optimal sensor deployment strategy is to have a globally con-

nected network, while optimizing coverage at the same time. By optimizing coverage, the

deployment strategy would guarantee that optimum area in the sensing field is covered

by sensors, as required by the underlying application. Whereas by ensuring that the net-

work is connected, it is ensured that the sensed information is transmitted to other nodes

and possibly to a centralized base station (called sink) which makes valuable decisions

for the application.

Many recent and ongoing research in sensor networks focus on optimizing coverage

and connectivity by optimizing node placement strategy, minimizing number of nodes

to guarantee required degree of coverage, maximizing network lifetime by minimizing

energy usage, computing the most and least sensed path in the given region, and so

on. To solve these optimization problems related to coverage, existing research uses

mostly probabilistic techniques based on random graph theory, randomized algorithm,

computational geometry, and so on. We discuss the current state of the art at this context

into more detail in the related work chapter (Chapter 3).

Of particular interest to us is the problem of computing the Best Coverage Path

(BCP), where given a set of homogeneous sensors deployed in a field and the initial and

final locations of an agent that needs to move through the field, determine the path that

is most protected by the sensors.

More formally, let S = {S1, . . . Sn} be a set of n homogeneous wireless point sensors

deployed in a 2D sensor field Ω. Each sensor node has the capability to sense data (such
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as temperature, light, pressure and so on) in its vicinity (defined by its sensing radius).

For the purpose of this thesis, assume that these sensors are guards that can protect any

object within their sensing radius, except that the level of protection decreases as the

distance between the sensor and the object increases. Let P (s, t) be any path between

a given a source point s and a destination point t. The least protected point p along

P (s, t) is that point such that the Euclidean distance between p and its closest sensor

Si is maximum. This distance between p and Si is the known as the Cover value of the

path P (s, t). The Best Coverage Path between s and t, BCP (s, t), is the path that has

the minimum cover value. Likewise, the Worst Coverage Path (WCP) is one which is

least protected by the sensors (e.g., a path that an intruder is likely to follow). These

paths are also known as maximal support path (MSP) and maximal breach path (MBP)

respectively.

During our investigation, we have seen that cover is a new metric and essen-

tially holds all metric properties. To prove this, cover holds: (i) Symmetric Property,

i.e., cover(x, y) = cover(y, x)∀x 6= y. and (b) the Triangle Inequality Property, i.e.,

cover(x, y) ≤ cover(x, z) + cover(z, y). Property (b) is easy to prove since the best ob-

served path to go from x to y has cover cover(x, y) which is ≤ the cover value of any

other alternative path from x to y. Hence the proof.

As an example, in Figure 1.1, the solid line path depicts the BCP between a source

and destination point in the sensor field. In contrast to that, the dotted line path in the

Figure 1.1 goes from source−P −Destination, but this alternative path is not a BCP .

Existing solution for BCP [13, 46, 38] uses computational geometry based data

structures. To solve BCP , the papers [13, 46, 38] use Voronoi diagram, Delaunay Trian-

gulations and even the sparse subgraphs of Delaunay Triangulations. A normal Voronoi

diagram is the planar partition of a set V = {v1, v2, . . . , vn} of point site into n convex

polygons, with the property that all points lying inside a particular convex polygon is

closer to its own point site vi of V than any other point sites. This BCP problem is

solved by creating Delaunay Triangulations, which is the dual of Voronoi diagram. It is
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P

Destination

Source

Figure 1.1. The BCP amidst a set of sensors.

also proved that at least one of the BCP s follow only the edges of Delaunay Triangula-

tion. Furthermore, [46] shows that sparse subgraphs of the Delaunay triangulation, such

as Gabriel Graphs and even Relative Neighborhood Graphs also contain BCP . These

graphs can be efficiently computed in O(n log n) time since the Voronoi diagram is a

linear-sized structure. We will discuss these data structures individually and in more

detail in the Chapter 2.

However, in solving these problems, existing literature has not considered the pres-

ence of obstacles in the sensor field, i.e., objects that obstruct paths and/or block the

line of sight of sensors. The presence of obstacles is especially realistic in a random dense

deployment of sensors in unmanned terrain, e.g., buildings and trees, uneven surfaces

and elevations in hilly terrains, and so on. Hence in this thesis, we initiate a study of the

presence of obstacles in computing best coverage paths.

Next, we elucidate why computing BCP in presence of obstacles is a novel and

challenging problem. In addition, we discuss several potential application domains where

computation of BCP in presence of obstacles is useful.
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1.2 Motivation

Our motivation for taking BCP problem is instigated by the possibility of its po-

tential applicability and relevance in several diverse application domains. Some potential

applications comprise of but not limited to security and surveillance and QoS of WSN.

Not only that, BCP can be a widely studied problem in any motion planning domain,

such as Robotics and so on. In this section, we discuss some of these potential applica-

tions and challenges that motivated us towards computing BCP problem in presence of

obstacles.

1.2.1 Security and Surveillance Aspect

As stated earlier, coverage and connectivity together ensures the QoS of the net-

work. Computing BCP has a great impact in security surveillance and can be appro-

priate in military and emergency control related applications. For example, if the given

domain is under surveillance by the sensors which are capable of detecting, say fire, then

clearly BCP is the most preferred path of traversal of an agent who is moving around

the field gathering critical information. A related problem in this fire detection sensor

network example is, one may ask how well the network can observe a given area and

what the chances are that a fire starting in a specific location will be detected in a given

time frame. Furthermore, coverage formulations can try to find weak points in a sensor

field and suggest future deployment or reconfiguration schemes for improving the overall

quality of service. On the contrary, WCP (worst coverage path) would be the preferred

path of adversaries in the battle-field.

1.2.2 Challenges Posed by Obstacles

Prior work on computing BCP relied on the use of linear-sized Voronoi Diagram,

Delaunay Triangulations, and so on. However, it is not easy to extend these ideas for

solving BCP with obstacles. During our investigation, we have seen that to solve the

BCP problem with obstacles, the existing ideas has to be considerably and non-trivially
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extended. Moreover, we also showed that the visibility graph - a popular structure exten-

sively used in shortest path computations in the presence of obstacles [33] - is also not

applicable for solving BCP problem for opaque obstacles, since best coverage paths need

not follow edges of the visibility graph. In fact, to solve the BCP problem for opaque

obstacles, we have developed an algorithm that takes quartic-time, based on constructing

a specialized dual of the Constrained and Weighted Voronoi Diagram [9] among obsta-

cles. In our case, this structure is only constrained because of the presence of obstacles

in the domain (but all point sites are of equal weights). So, henceforth we will call this

Constrained and Weighted Voronoi Diagram as Constrained Voronoi Diagram, a more

appropriate terminology to our problem scenario. While the time complexity using this

diagram is obviously high, we conjecture that this is likely to be optimal. However,

to solve BCP problem for transparent obstacles, we have shown that the best coverage

path is contained in the visibility graph (with suitably defined edge weights), and thus we

could develop more efficient exact and approximation algorithms for it. In fact, our ap-

proximation algorithm is based on the notion of k-spanners [18] which are approximation

structures of the visibility graph.

1.2.3 Path Planning Problems

As the calculation of the best coverage path is essentially a path planning problem,

we believe BCP has general applications even in path planning of wireless sensor nodes.

Our algorithm gives the best obstacle- free path where the constructed path stays as close

as possible to the protectors ( sensor nodes). With the latest advent of sensor technol-

ogy, where mobile sensors are easily available, we can even think of an complementary

application scenario, where a set of mobile sensor nodes (for example fuel tanks) move

along the BCP , to stay as close as possible to the protectors, such as, fire stations.

Other potential application of BCP might occur in the field of robotics where

motion planing problems are widely studied.

Next we formally define the problems.
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1.3 Problem Definition

Let S = {S1, . . . Sn} be a set of n homogeneous wireless point sensors deployed in a

2D sensor field Ω. Assume that in addition to the n sensors, there are also m line segment

obstacles O = {O1, . . . , Øm} placed in the sensor field. Line segments are fundamental

building blocks for obstacles, as more complex obstacles (e.g., polygonal obstacles) can

be modeled via compositions of line segments. We consider two types of obstacles: (a)

opaque obstacles which obstruct paths as well as block the line of sight of sensors, and

(b) transparent obstacles which obstruct paths, but allow sensors to “see” through them.

Examples of the former may include buildings - they force agents to take detours around

them as well as prevent certain types of sensors (such as cameras) from seeing through

them - while examples of the latter may include lakes - agents have to take detours

around them but cameras can see across to the other side. When obstacles are opaque,

we refer to the best coverage path problem as BCP for Opaque Obstacles, whereas if the

obstacles are of the transparent type we refer to the problem as BCP for Transparent

Obstacles. Figure 1.2 is an example of a BCP (s, t) amidst two sensors and four opaque

obstacles, whereas Fig 1.3 shows the BCP (s, t) in the same sensor field but assumes the

obstacles are transparent.

Cover 

S1
O1

O2

O3 O4

S2

s

t

P(least protected point)

Figure 1.2. BCP (s, t) for Opaque Obstacles.
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Cover
S1

O1

O3 O4

S2

s

t

P (least protected point)

two point S1 and S2

Bisector between

O2

Figure 1.3. BCP (s, t) for Transparent Obstacles.

We assume that each static sensor node knows its position information, either

through a low-power Global Position System (GPS) receiver or through some other ap-

proach.

Notations and Terminologies

The associated notations and terminologies are stated below:

||xy|| denotes the Euclidian distance between two points x and y.

The distance of a point x to a point set V is the smallest distance of x from all the

points in V . Defining mathematically, dist(x, V ) = miny∈V ||xy||. The point set V may

be infinite. In fact, in our application V is infinite because V is the set of points in the

path in the domain which is the best coverage path.

The coverage distance of a point set U by a point set V can be defined as Cover(U,

V), the maximum of the minimum distance of every point of U to all the points of V .

Mathematically,

Cover(U, V ) = maxx∈Udist(x, V ). or Cover(U, V ) = maxx∈U(miny∈V ||xy||). Clearly

this is a max-min problem.

A path from s to t, denoted as P (s, t), that achieves the minimum coverage distance,

Cover(P (s, t), S) is known as the Best Coverage Path, BCP (s, t).

Next we state the problem definitions:



9

Problem Statement

Inside a two-dimensional domain Ω, with a set S = {S1, . . . , Sn} of n sensor nodes

and O = {o1, . . . , om} of m obstacles, given a starting point s and ending point t inside

the domain, compute the Best Coverage Path, BCP (s, t), so that the cover value of the

path P (s, t), i.e., Cover(P(s,t), S) is minimized. We compute BCP (s, t) in two following

cases:

• obstacles are opaque - The corresponding problem in known as BCP (s, t) for

Opaque Obstacles.

• obstacles are transparent - The corresponding problem in known as BCP (s, t) for

Transparent Obstacles.

1.4 Contributions of this Thesis

Our contributions in this thesis may be summarized as follows:

• We have initiated a study of the presence of obstacles and their impact in the com-

putation of Best Coverage Paths. We have developed two variants of the problem,

the BCP problem for opaque obstacles and the BCP problem for transparent ob-

stacles, based on variants of obstacle properties. We have shown that obstacles

significantly complicate these problems.

• We have designed an O((m2n2 + n4) log(mn + n2))) time algorithm for BCP prob-

lem, given n sensor nodes and m opaque line obstacles. The algorithm is based

on constructing a special dual of the Constrained Voronoi diagram, and the time

complexity is dominated by the quartic combinatorial structure of the diagram

itself.

• We have designed an O(nm2 + n3) time algorithm for the BCP problem, given

n sensor nodes and m transparent line obstacles. The algorithm is based on con-

structing the visibility graph of the sensors and obstacles (with special weights

assigned to edges).
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• We have also designed an O(nm + n2) time approximation algorithm for the BCP

problem for transparent obstacles. This algorithm is based on constructing a k-

spanner of the visibility graph. The approximation factor in the cover of the com-

puted path is O(nk), where k is the Euclidean stretch factor of the spanner.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows:

In Chapter 2, we illustrate in detail the Coverage and Connectivity in wireless

sensor network (section 2.1 and 2.2). Mathematical model of sensing and communication

are also discussed in conjunction to that. In Section 2.3, we expand the idea of related

computational geometry tools and techniques that we have used in this thesis. Precisely,

Chapter 2 details out all the preliminaries that are important in order to understand our

proposed solution.

Chapter 3 illustrates the current state of the art research in coverage problems in

WSNs. In particular, we classify the related coverage research in three broad category

and expand each of these categories in more detail in terms of the problem definition,

solution technique and performance issues.

In chapter 4, we discuss BCP problem for opaque obstacles in detail. We outline

our proposed algorithm intuitively, state the algorithm, provide the proof of correctness

and analyze its running time. In addition to that, dual creation and edge weighing

process (two important parts of our proposed solutions) are also discussed in detail.

Likewise in Chapter 5, we discuss the BCP problem for transparent obstacles. In

particular, we individually discuss the exact and approximation algorithm for computing

BCP for transparent obstacles. We discuss the algorithm, provide proof of correctness

and analyze running time for both the exact and approximation algorithm. In addition,

we calculate the approximation factor for approximation algorithm.

Finally in Chapter 6 we conclude with some directions of future research work.



CHAPTER 2

PRELIMINARIES

This chapter elucidates the preliminary concepts related to Coverage and Connec-

tivity in WSN and Computational Geometry. In Sections 2.1 and 2.2, we discuss the

concepts of Coverage in WSN along with modeling coverage and communication model

mathematically. Section 2.3 expands the related computational geometry concepts.

2.1 Concepts of Coverage and Connectivity

Optimal resource management and assuring reliable QoS are two of the most fun-

damental requirements in wireless sensor networks. To provide better QoS, sensor de-

ployment strategies play a very important role, because they relate to the issue of how

well each point in the sensing field is covered. However, due to severe resource constraints

and hostile environmental conditions, it is non-trivial to design an efficient deployment

strategy that would minimize the cost, reduce computation, minimize node to node com-

munication and provide a high degree of area coverage, while at the same time maintain

a globally connected network. Challenges also arise because of the fact that often topo-

logical information about a sensing field is unavailable and such information may change

over time. Many wireless sensor network applications are required to perform certain

functions that can be measured in terms of area coverage. In these applications, it is

necessary to define precise measures of efficient coverage that will impact overall system

performance. In [15] three types of coverage are broadly defined:

1. Blanket Coverage: To achieve a static arrangement of sensor nodes that maximizes

the detection rate of targets appearing in the sensing field.

2. Barrier Coverage: To achieve a static arrangement of sensor nodes that minimizes

the probability of undetected penetration through the barrier.

11
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3. Sweep Coverage: To move a number of sensor nodes across a sensing field, such

that it addresses a specified balance between maximizing the detection rate and

minimizing the number of missed detections per unit area.

It is interesting to notice that the area coverage problem is closely related to a classical

problem of computational geometry, namely the Art Gallery Problem [25, 27]. This

problem seeks the minimum number of guards needed in the museum so that every point

in the museum is protected by at least one guard. This is similar to the coverage problem

which tries to find out the minimum number of sensors so that every point in the field

is protected. An early result in art gallery research, due to V. Chvátal [25, 27], asserts

that bn
3
c guards are occasionally necessary and always sufficient to guard an art gallery

represented by a simple polygon of n vertices. Since then, numerous variations of the

art gallery problems have been studied, including mobile guards, guards with limited

visibility or mobility, guarding of rectilinear polygon and so on. The main difference

between the the art gallery problems and the BCP problems in this thesis is that the

former problems (such as Watchman Route, Robber Route [25, 27] and so on) attempt

to determine paths that minimize total Euclidean distances under certain constraints,

whereas the metric to be minimized in the latter problems (the cover of the path) is

sufficiently different from Euclidean distance, thus requiring different approaches.

2.2 Modeling of Sensing, Coverage and Connectivity

In this Section, we describe the sensing model and definitions of coverage and

connectivity. These are important to our work since the modeling of sensing is required

to understand the concept of coverage.

2.2.1 Sensing Model

The sensing intensity, S, of a sensor si at point P is defined as [39]:

S(si, P ) =
λ

[d(si, P )]γ
(2.1)
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Figure 2.1. The sensing Radius Rs takes an irregular shape because of obstacle.

In this definition, λ and γ are (positive) sensor dependent parameters and d(si, P )

is the Euclidean distance between the sensor and the point. Typically the value of γ is

dependent on environmental parameters and varies between 2 to 5. Since the sensing

intensity rapidly decreases as the distance increases, a maximum sensing range for all

sensors can be defined. It is customary to assume a binary sensing model, according to

which a sensor is able to sense from all the points that lie within its sensing range. Any

point lying beyond is considered outside its sensing range. Thus, according to this model,

the sensing range for each sensor is confined within a circular disk of radius Rs. In a

heterogeneous sensor network, the sensing radii may vary for different sensors. In this

work, we have assumed homogeneous sensing model with a homogeneous sensing radius,

Rs. Implementing our algorithm for non-homogeneous sensor nodes is a trivial extension

and is omitted from this thesis. In general, the homogeneous or nonhomogeneous sensors

ideally produce circular sensing radii. However, due to the presence of the obstacles,

the sensing radii gets irregular shape and hence the computation of BCP (s, t) becomes

computationally harder to solve.

As an example, consider Figure 2.1(a), which shows a perfect circular sensing radius

Rs which is not the case for the Figure 2.1 (b). Due to the presence of the obstacle ab,

the region abdc can not be seen by the sensor s, and thus creates a hole in the sensing

region. This is how the sensing region becomes irregular in shape.
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Figure 2.2. Sensors si can only communicate with sj but sj can not since d(si, sj) >
min(Rci, Rcj).

2.2.2 Communication Model

Like sensing, the communication relationship between two sensors can also be mod-

eled mathematically.Two sensors si and sj are able to communicate with each other if

the Euclidean distance d(si, sj) between them is less than or equal to the minimum of

their communication radii, Rci and Rcj respectively, i.e., when d(si, sj) ≤ min(Rci, Rcj).

This essentially means that the sensor with smaller communication radius falls within

the communication radius of the other sensor. Two such nodes that are able to commu-

nicate with each other are called 1-hop neighbors. The communication radii might vary

depending on the residual battery power (energy) of an individual sensor. In this thesis,

we assume that the communication radii for all the nodes are the same, denoted by Rc.

Usually, communication is more than the sensing radius.

In homogeneous sensor networks, all sensors are ideally of equal communication

radii; hence they can communicate with each other. In contrast to that, as depicted in

Figure 2.2, in heterogeneous sensor network, sensors may have varying sensing and com-

munication radius. For this case, it might be possible that a sensor with communication

radius Rci is able to communicate with sensor of sensing radius Rcj, where Rci > Rcj
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but Rcj can not as d(si, sj) > Rcj. Even here, due to the presence of obstacles, the

communication region may take irregular shape instead of being circular.

2.2.3 Graph Theoretic Perspective of Coverage Problems

As illustrated in previous Section 3.1, sensors can ideally sense each point inside the

sensing disk and communicate(broadcast) with other sensors inside the communication

radius. By a simple broadcasting, each node u can gather the location information of

all nodes within the transmission range of u. This communication relationship basically

leads to a graph theoretic topology. Comparing it with a standard graph model, the

entire network is a graph G = (V, E) where, the set of sensors constitutes the vertex set

V and the set E is comprised of the set of links present between the vertices.

Essentially coverage related problem thus can be realized as a graph theoretic

problem. Many of the ongoing research on coverage and connectivity manipulates this

communication graph and optimize different parameters of the constructed graph, such

as, number of nodes, no of links or the topology of the graph itself, and so on.

2.3 Concepts Related to Computational Geometry

In this Section, we discuss the related computational geometry concepts and the

various data structures that used in the thesis.

Computational Geometry is the study of the algorithms that manipulates abstract

geometric objects, which are themselves used to model the real world.

In this work, we have used a Constrained Voronoi diagram (henceforth known as

C-Voronoi Diagram) among obstacles [9, 11]; In addition to that, visibility graph [33],

a popular proximity graph based data structure in Euclidean Geometry, is also used in

the BCP problem for transparent obstacles. For the approximation algorithm, we have

used the concepts of Euclidean Spanners [18, 29] of Visibility Graphs. Not only that,

the normal linear sized Voronoi diagram [33], Delaunay Triangulation [33], Constrained

Delaunay Triangulation [31] are also studied at the context of study of related work.
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Next, we discuss about each of these data structures and its application in our work

in different subsections.

2.3.1 Voronoi Diagram

A normal Voronoi diagram [33] is the planar partition of n point sites into n

number of convex polygons such that each polygon contains exactly one point site and

all points in a given polygon is closer to its generating point site than any other point

sites. A Voronoi diagram is sometimes also known as a Dirichlet tessellation [33].

Let S denote a set of n points(called sites) in the plane. For two distinct sites p,q

∈ S, the dominance of p over q is defined as the subset of the plane being at least as

close to p as to q. Formally, dom(p, q) = x ∈ R2|d(x, p) ≤ d(x, q),

where d denotes the Euclidean distance function. Clearly, dom(p, q) is a closed half plane

bounded by the perpendicular bisector of p and q. This bisector separates all points of

the plane closer to it and will be termed the separator of p and q. The region of a site

p ∈ S is the portion of the plane lying in all of the dominance of p over the remaining

sites in S.

There exist efficient algorithms to compute Voronoi diagram of a set of n point sites.

Using O(n) storage space and O(n log n) time, the Voronoi diagram can be computed

efficiently by divide and conquer or sweep-line algorithm [33].

It is proved in [13, 46, 38], that BCP and WCP problems without obstacles can

be solved using Voronoi Diagram and its dual Delaunay Triangulation. Particularly, it

is shown that the WCP path follows the edges of the constructed Voronoi Diagram.

In Figure 2.3, a normal Voronoi diagram of a set of 7 arbitrary point sites is shown.

Each of these 7 cells are separated from one another by the dotted lines, which actually

are the perpendicular bisectors between point sites. This set of bisectors also constitutes

the edge set of the Voronoi diagram.
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Figure 2.3. A Voronoi diagram of a set of 7 points.

We use this Voronoi diagram example to analyze other proximity graphs; Delaunay

Triangulation (DT),Gabriel Graph (GG) and Relative Neighborhood Graph (RNG) to

explain sparse subgraph property.

2.3.2 Delaunay Triangulation

Delaunay Triangulation (DT) is a planar graph, dual of the Voronoi Diagram. In

DT, there exists an edge between a pair of points if they share a common edge in their

Voronoi Diagram and obeys the empty circle property. A triangulation of R is a Delau-

nay triangulation, denoted by Del(R), if the circumcircle of each of its triangles does not

contain any other vertices of S in its interior. It is simple to create a Delaunay Triangu-

lation [33] of any point set P by first creating the Voronoi Diagram of P , then creating

the dual graph of this diagram. This computation requires no more than O(n log n)

time. An alternative way to create a DT is to use a randomized incremental algorithm

whose complexity is O(n log n). This algorithm begins with a large initial triangle and

incrementally adds each point while maintaining the DT properties.
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Figure 2.4. The Delaunay Triangulation of the Voronoi diagram of Figure 2.3.

Figure 2.4 contains the DT of the Voronoi diagram of the Figure 2.3. Due to the

empty circle property, many possible edges between point sites are removed in DT; hence

DT is sparse and has O(n) edges of n point sites.

In [13, 46, 38], it is shown that the BCP without obstacles follows the edges of

the DT of the sensor nodes. It is also proved that one of the BCP s is contained only in

the edges of DT.

2.3.3 Gabriel Graph

A Gabriel Graph (GG) is a sparse subgraph of Delaunay Triangulation. The Gabriel

graph consists of those edges connecting two points of the point set such that the circle

whose diameter is the edge does not contain any other points of the point set in its interior.

This well known proximity graph establishes neighborhood relationship between objects,

for example, points in the Euclidean Space. The formal definition of a Gabriel Graph is

as follows: In a point set P , an edge exists between two vertices x and y iff:

d(x, y) ≤
√

d2(x, z) + d2(y, z),∀z ∈ P, z 6= x, y
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Figure 2.5. The Sparser Gabriel Graph of DT of Figure 2.4.

A Gabriel Graph can be created in O(n log n) time by first finding the Delaunay

Triangulation and Voronoi Diagram for the set of points [33]. Then, for each edge in the

triangulation, if the edge intersects its Voronoi edge, it is added as an edge to the GG.

Figure 2.5 contains the GG of the DT of Figure 2.4. It is evident that GG is sparser

than DT. In [46], it is shown that the edge set of GG contains the BCP .

2.3.4 Relative Neighborhood Graph

A more sparse subgraph of DT is Relative Neighborhood Graph (RNG) [28] in

which an edge exists between two points iff their lune doesn’t contain any other nodes

inside. Formally, lune is the region of intersection of two points if we draw an arc through

each of these points. In 2-dimension, RNG of n points can be computed in O(n log n)

time.

Figure 2.6, is the RNG of the DT of Figure 2.4. Due to the empty lune property,

here one more edge is removed from the GG and the RNG graph becomes even more

sparse than GG.

The discussions of preceding Subsections 2.3.1, 2.3.2, 2.3.3, and 2.3.4 are related

to those data structures which model the BCP and WCP without obstacles. Next we
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Figure 2.6. Relative Neighborhood Graph of DT of Figure 2.4.

discuss data structures which we have used to model the BCP problem for opaque and

transparent obstacles.

2.3.5 Constrained Voronoi Diagram

Apart from sensor network, obstacles are of interest in areas like autonomous vehicle

navigation, where hilly terrains are being modeled. Specialized Voronoi diagram are used

to model this type of problems. An example of this is Peeper’s Voronoi Diagram, where

each point in the plane is assigned to the closest visible site, and visibility is constrained

to a segment on a line avoiding the convex hull of the sites (Reference Figure2.7) [16].

This structure can attain a size of Θ(n2) and is constructible in O(n2) time. Figure 2.7

depicts the Peeper’s Voronoi diagram of four point sites . Edges contributed by visibility

rays (or bisectors) are shown by solid (or dashed) lines. Note that here are points not

covered by any region. As can be seen from Figure 2.7, unlike a normal Voronoi diagram,

the presence of obstacles greatly complicates the diagram, and Voronoi regions of a site

may even be disconnected. Not only that, there may be holes not visible from any of the

point sites.
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Figure 2.7. Peeper’s Voronoi diagram of 4 sites.

As a generalization of Peeper’s Voronoi Diagram, Constrained Voronoi Diagram,

originally named as Constrained and Weighted Voronoi Diagram [9] is studied. The exis-

tence of obstacles make a simple divide-n-conquer and a sweep algorithm for constructing

this diagram incorrect for constructing this diagram. The algorithm for this diagram con-

struction is done [9] by exploiting the property of arrangement of a set of lines, where the

lines are completely determined by the sites and obstacles. By constructing a visible-site

list and a closest-site list for each edge in the arrangement, this Constrained Voronoi

diagram is computed in the original work [9].

There are even planar Voronoi diagrams which model obstacles in the region with

certain constraints in the positioning of obstacles. Constrained Voronoi diagram is the

classical diagram constrained by a set of line segments [36] in literature. But here, unlike

Peeper’s Voronoi Diagram, the obstacles are non-crossing line segments and their end

points belong to the set of point sites itself. This makes the diagram planar and easy to

compute. Plane-sweep techniques can be applied to compute this diagram.

As a generalization to this Peeper’s Voronoi diagram, in [9] the authors considered

the Constrained and Weighted Voronoi diagram over a set of weighted sites amidst a set

of line segment obstacles in the plane. Both the Peeper’s and the Constrained Voronoi
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Figure 2.8. C-Voronoi diagram of sensors and obstacles.

diagrams are distinct from other Voronoi diagrams involving obstacles studied in papers

such as [30, 4, 36] - the Voronoi diagrams studied in [30, 4, 36] require that every obstacle

endpoint be a site, whereas in the Peeper’s and Constrained Voronoi diagram the Voronoi

sites are distinct from the obstacle endpoints.

As an example, consider Figure 2.8 which shows the C-Voronoi diagram where

S1, S2 are two sensors and O1, O2, O3, O4 are 4 obstacles. The filled areas are dark re-

gions which cannot be sensed by either of the two sensors S1, S2. The remaining cells of

the C-Voronoi diagram are labeled by the sensors to which they are closest. This con-

strained Voronoi diagram has Ω(m2n2) combinatorial complexity and its construction

takes O(m2n2 + n4) time and space. This algorithm is optimal when m ≥ cn, for any

positive constant c.

2.3.6 Visibility Graphs

Given a set of line obstacles, a visibility graph is a graph of intervisible loca-

tions [33]. Each node or vertex in the graph represents a location (such as an obstacle

endpoint), and each edge represents a visible connection between them (that is, if two
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Figure 2.9. Visibility Graph of 4 sensors and 4 line obstacles.

locations can see each other, an edge is drawn between them). This graph gives the

shortest obstacle avoiding path between two points in the region. The visibility graph

of n sites can have as many as O(n2) edges. In our problem, we need to consider the

visibility graph of n sensors and m obstacles, thus with a total of n + 2m locations. The

visibility graph of 4 sensor nodes and 4 line obstacles in shown in Figure 2.9. We use

visibility graphs for solving the BCP (s, t) problem for transparent obstacles.

Let O = o1, o2, . . . , on denotes the set of disjoint set of obstacles in the plane. The

naive way of computing the visibility graph is to find the pair of vertices that can see

each other. That means for every pair of vertices, we need to see if the line segment

joining them intersects with an obstacle. This test takes O(n) time when done naively,

leading to an O(n3) running time.

However, there exists more efficient algorithms based on arrangements which run

in O(n2) time [43]. Mitchell [26] proposed an algorithmic solution to compute visibility

graph breaking the quadratic barrier. Optimal algorithm to compute visibility graph

takes O(n log n) time [24].

A number of even faster algorithms on visibility graph is also known, including the

output-sensitive algorithm by [37].
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2.3.7 k-Spanner of Visibility Graph

Let, G = (V, E) be a connected n-vertex graph. A subgraph G′ = (V, E ′) is a k-

spanner if, between any pair of vertices, the distance in G′ is at most k times longer than

the distance in G. The value of k is the stretch factor associated with G′. To solve the

BCP (s, t) problem for transparent obstacles, we have investigated the available results,

and have used the k-spanner of the visibility graph [29] for the approximation algorithm.

This spanner has linear number of edges, and can be constructed in O(n log n) time.

However, a point to note is that while spanners are usually concerned with Euclidean

shortest paths (e.g., they have small stretch factors), in our case we use the this k-spanner

and its results directly in the approximation algorithm to calculate the approximate cover

value.

We use the spanner of visibility graph to compute the approximation algorithm

for BCP problem for transparent obstacles. There are relatively less work in literature

on non-complete Euclidean graphs, such as, visibility graphs in comparison to the well-

studied complete Euclidean graphs. An early result is by Clarkson [29], who showed how

to construct a linear sized t-spanner of visibility graph (t > 1) in O(n log n) time without

having to construct the visibility graph. This spanner is applied to solve approximate

shortest path problem. In [32], Chew shows that the Constrained Delaunay Triangulation

is a O(1)- spanner of the visibility graph and can be constructed in (O log n) time. Later

on, a novel technique of constructing the bounded degree t-spanner of visibility graph in

O(n log n) time is proposed by Das [18], given a collection of polygonal obstacles with n

vertices. In our approximation algorithm, we use the concept of the spanner graph [29],

precisely named as k-spanner.

2.4 Bellman Ford Shortest Path Algorithm

The Bellman-Ford algorithm [44] solves the single-source shortest paths problem

for a graph with both positive and negative edge weights. This algorithm is remarkable

in its simplicity, and has the further benefit of detecting whether a negative-weight cycle
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is reachable from the source. If there is such a cycle, the algorithm indicates that no

solution exists. If there is no such cycle, the algorithm produces the shortest paths and

their weights. We use this algorithm to compute the shortest path between the source

point s and destination point t of the constructed path in BCP problem for opaque and

transparent obstacles. For a planar graph, Bellman-Ford computes the shortest path

between a specific source and destination point in O(n log n) time, n being the number

of nodes.

2.5 Summary

We begin this chapter with the related concepts of Coverage and Connectivity in

Wireless Sensor Networks. In Section 3.2, we mathematically model sensing, coverage

and connectivity. Section 3.3 discuss the related computational geometry data structures

and concepts. We briefly explain the Bellman-Ford Algorithm in Section 3.4 which we

have used in our shortest path calculation.



CHAPTER 3

RELATED WORK ON COVERAGE PROBLEMS IN WSNs

In this chapter, we investigate the current state of the art research in Coverage

problems in Wireless Sensor Network.

Coverage is the measure of QoS of sensing function and is subject to a wide range of

interpretations due to large variety of sensors and applications. Considering the coverage

concept, different problems can be formulated, based on the subject to be covered (area

versus discrete points) and on the design choices, such as sensor deployment method,

additional critical requirements, sensing and communication radius as so on; we discuss

each of these issues in brief in this chapter. A wide classification can be done with

respect to the type of algorithm used as well - centralized versus distributed/localized.

We also compare these approaches and algorithms based on their goals, assumptions,

complexities and usefulness in practical scenarios. Objectives of these design choices are

either to maximize network lifetime; minimize number of sensors; or optimize degree of

coverage, and so on. A comprehensive study on coverage connectivity research can be

found in [6].

Coverage can be classified of three types based on the subject to be covered. Area

Coverage, Point Coverage and Barrier Coverage. The most studied problem is the area

coverage where the main objective of the sensor network is to cover(monitor) an area.

Research is going on in both the static and mobile sensor network [20, 3].

The design choices can be stated as:

1. Sensor Deployment Strategies: deterministic versus random. A deterministic sen-

sor placement may be feasible in friendly and accessible environments. Random

sensor distribution is generally considered in military applications and for remote

or inhospitable areas.

26
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2. Energy Requirements: In the most typical scenarios, energy requirement is a big

factor as sensors are usually limited with respect to its battery life. Several research

work has been done on energy efficient coverage.

3. Sensing and Communication Radii: Homogeneous/ Heterogeneous sensor network

is the subject of interest here. While constraints are less in homogeneous sensor

network; heterogeneous sensor network has a wider scope in applications.

A broader classification of coverage problems can also be done in terms of their

goals, assumptions, algorithm complexities and practical applicability. The three cate-

gories are:

1. Coverage based on the exposure path

2. Coverage based on sensor deployment strategies

3. Miscellaneous Strategies

Next, we illustrate each of these three categories in more detail.

3.1 Coverage Based On Exposure Path

Coverage based on the exposure path in WSNs is essentially a combinatorial opti-

mization problem. Two kind of coverage is considered in this case. One is to compute Best

Coverage [13, 46, 38, 21] and another is to compute Worst Coverage path [13, 38, 21].In

the Worst Coverage Path, the problem is to find that path in the sensor field that has

minimum observability. Hence, the probability of detecting the moving object would be

minimum. This is important in real application scenario as this can be the preferred path

of adversaries; hence knowing this path helps to add new nodes in the sensor field and

hence observability increases. Two well known methods of for the worst case coverage

problem are Minimal Exposure Path [13] and Maximal Breach Path [13, 46] .

On the other hand, in the best case coverage, the goal is to find a path that has

the highest observability, and hence an object moving along that path will be most

probable to be detected by the nodes [13, 46]. This is particularly important into those

applications where security is of highest concern. Two approaches have been used to
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solve this problem, Maximal Exposure Path [13] and Maximal Support Path [21]. In

the following subsections, we discuss several methods to calculate the worst case and

best case coverage paths and the algorithms that use the concept of exposure to derive

analytical results.

Another important work, investigated by Liu and Towsley [8], is to determine the

number of sensor nodes to be randomly deployed in the field such that the probability of

a penetration path is close to zero. In this exposure based model, sensing abilities of the

sensors diminish as the distance increases, but another important factor is the sensing

time (exposure). This modeling is done considering sensing time, intensity of the sensor

field, and so on

3.1.1 Minimal Exposure Path : Worst Case Coverage

Coverage is a measure of how well a sensing field is covered with sensors. Informally

stated, it can be defined as the expected average ability of observing a target moving in

the sensing field. The Minimal Exposure Path provides valuable information about the

worst case coverage in sensor networks.

The basis of the proof adopted to compute the exposure path of one sensor in [39]

lies in the fact that since any point on the dotted curve is closer to the sensor than any

point lying on the straight line segment along the edge of the square, the exposure is

more in the former case. Also, since the length of the dotted curve is longer than the line

segment, the dotted curve would induce more exposure when an object travels along it,

given that the time duration is the same in both the cases. Furthermore, this method is

extended when the sensing region is a convex polygon and the sensor is located at the

center of that inscribed circle.

This intuition can further be extended to compute the minimal exposure path

under the scenario of many sensors. To simplify, the problem can be transformed from

the continuous domain into a tractable discrete domain by using an m × n grid [39].

The minimal exposure path is then restricted to straight line segments connecting any
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two consecutive vertices of a grid square. This approach transforms the grid into an

edge weighted graph and computes minimal exposure path using Dijkstras Single Source

Shortest Path Algorithm.

3.1.2 Maximal Exposure Path : Best Case Coverage

A maximal exposure path between two arbitrary points s and t in a sensing field

is a path following which the total exposure is maximum. It can be interpreted as a

path having the best case coverage. It has been proved in [21] that finding the maximal

exposure path is NP-hard because it is equivalent to finding the longest path in an

undirected weighted graph, which is known to be NP-hard. However, there exist several

heuristics to achieve near-optimal solutions under the constraints that the objects speed,

path length, exposure value and times:

• Random Path Heuristics: In this method, a random path is created according to

the rule that a node on the shortest path from source to destination is selected at

certain times and a random node is selected at other times. Nodes on the shortest

path are selected because of the time constraint and random nodes are selected to

collect more exposure..

• Shortest Path Heuristic: In this approach, first a shortest path is calculated between

the two end points assuming certain topographical knowledge is available.

• Longest Path Heuristics: This heuristic superimposes a grid over the exposure path

and then finds the shortest path to each grid point from s and t.

• Adjusted Best Point Heuristics: This method improves the best-point heuristic by

considering paths that consist of multiple shortest paths.

3.1.3 Maximal Breach Path : Worst Case Coverage

As discussed in Section 3.1.1 that finding a minimal exposure path is equivalent

of finding a worst case coverage path, which provides valuable information about node

deployment density in the sensing field. A very similar concept to find out worst case
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coverage paths is the notion of maximal breach paths [13]. A maximal breach path

through a sensing field starting at s and ending at t is a path, such that for any point

p on the path, the distance from p to the closest sensor is maximum. The concept of

Voronoi diagram [33], a well known construct from computational geometry is used to

find a maximal breach path in a sensing field. It is also proved intuitively since by

construction, the line segments in a Voronoi diagram maximizes the distance from the

closest sites, the maximal breach path must lie along the Voronoi edges. The algorithm

then checks the existence of a path from s to t using breadth-first-search (BFS) and

then uses binary search between the smallest and largest edge weights in the computed

Voronoi graph to find the maximal breach path.

3.1.4 Maximal Support Path: Best case coverage

A maximal support path through a sensing field starting at s and ending at t is

a path, such that for any point p on the path, the distance from p to the closest sensor

is minimized. This is similar to the concept of maximal exposure path. However, the

difference lies in the fact that a maximal support path algorithm finds a path at any given

time instant, such that the exposure on the path is no less than some particular value

which should be maximized. A maximal support path in a sensing field can be found

by replacing the Voronoi diagram by its dual, Delaunay triangulation where the edges of

the underlying graph are assigned weights equal to the length of the corresponding line

segments in the Delaunay triangulation [13, 46].

This ends our brief discussion on coverage problems based on exposure paths in

WSNs. Next, we discuss different deployment strategies which impact coverage in WSNs.

3.2 Coverage Based On Sensor Deployment Strategies

The second approach to the coverage problem is to find sensor deployment strate-

gies that would maximize coverage as well as maintain a globally connected network

graph. Several deployment strategies have been studied for achieving an optimal sensor
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network architecture that would minimize cost, provide high sensing coverage, and be re-

silient to random node failures etc. The most usual deployment strategy of sensor nodes

are random deployment. However, random placement does not guarantee full coverage

because it is stochastic in nature, hence often resulting in accumulation of nodes at cer-

tain areas in the sensing field whereas leaving other areas deprived of nodes. Keeping

this in mind, some of the deployment algorithms try to find new optimal sensor locations

after an initial random placement and moves the sensors to those locations, achieving

maximum coverage. These algorithms are applicable to only mobile sensor networks.

Research has also been conducted in mixed sensor networks, where some of the nodes are

mobile and some are static; and approaches are proposed to detect coverage holes after

an initial deployment and trying to heal or eliminate those holes by moving sensors. It

should be noted that an optimal deployment strategy should result not only in a config-

uration that would provide sufficient coverage, but also satisfy certain constraints such

as node connectivity and network connectivity [40].

Next, in the following subsections, we discuss several research efforts on this cate-

gory in brief.

3.2.1 Imprecise Detection Algorithm (IDA)

In [41], an effective sensor nodes placement strategy problem is solved so that it

can be covered effectively for surveillance and target detection. This algorithm is known

as Imprecise Detection Algorithm(IDA); IDA is grid-based coverage algorithm, proposed

to ensure that every grid point is covered with a minimum confidence level. IDA considers

a minimalistic view of a sensor network by deploying a minimum number of sensors on

a grid that would transmit a minimum amount of data.

The algorithm as described in [41] takes three inputs: M , M∗, Mmin; where M

is the miss probability matrix as mentioned above, M∗ = (M1,M2, . . . , MN) such that

Mi is the probability that a grid point i is not collectively covered by the set of sensors,

Mmin = 1 − T is the maximum value of the miss probability that is permitted for any



32

grid point. The algorithm is iterative and uses a greedy heuristic to determine the best

placement of one sensor at a time. It terminates either when a preset upper limit on the

number of sensors is reached, or sufficient coverage of the grid points is achieved. The

time complexity of the algorithm is O(n2), where n is the total number of grid points

in the sensor field. It attempts to evaluate the global impact of an additional sensor by

summing up the changes in the miss probabilities for the individual grid points.

3.2.2 Potential Field Algorithm (PFA)

In [3, 40], a potential field based deployment approach using mobile autonomous

robots is proposed to maximize the area coverage. This is known as Potential Field

Algorithm(PFA). In [40], the scheme is augmented such that each node has at least k

neighbors. The potential field technique using mobile robots was first introduced in [35].

The basic concept of potential field is that each node is subjected to a force F

(vector)2 that is the gradient of a scalar potential field U . That is, F = −5 U . Each

node is subjected to two kinds of forces: a) Fcover that causes the nodes to repel each other

to increase their coverage and b) Fdegree that constrains the degree of nodes by making

them attract towards each other when they are on the verge of being disconnected. The

forces are modeled as inversely proportional to the square of the distance between a pair

of nodes and they obey the two boundary conditions.

3.2.3 Virtual Force Algorithm (VFA)

Similar to the potential field approach as described in [40], a sensor deployment

algorithm based on virtual forces is proposed in [ [49, 50] to increase the coverage after

an initial random deployment. Since a random placement does not guarantee effective

coverage, an approach that modifies the sensor locations after a random placement is

useful.

A sensor is subjected to three kinds of forces, which are either attractive or repulsive

in nature. In the VFA model, obstacles exert repulsive forces (FiR), areas of preferential
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coverage (sensitive areas where a high degree of coverage is required) exert attractive

forces (FiA), and other sensors exert attractive or repulsive forces (Fij ), depending on

the distance and orientation. A threshold distance, dth, is defined between two sensors to

control how close they can get to each other. Likewise, a threshold coverage cth is defined

for all grid points such that the probability that a target at any grid point is reported as

being detected is greater than this threshold value.

For a n × m grid with a total number of k sensors deployed, the computational

complexity of the VFA algorithm is O(nmk). Negligible computation time and a one-

time repositioning of sensors are two of its primary advantages. However, the algorithm

does not provide any route plan for repositioning the sensors to avoid collision.

3.2.4 Integer Linear Programming Algorithm (ILPA)

Chakrabarty et. al in [49, 50], model the optimization problem of coverage with

Integer Linear Programming (ILP) and represent the sensor field as a two or three di-

mensional grid. Given a variety of sensors with different ranges and costs, they provide

strategies for minimizing the cost, provide coding-theoretic bounds on the number of

sensors and present methods for their placement with desired coverage. Their approach

of maximizing coverage in the sensing field is different in the sense that it determines a

deployment strategy, such that every grid point is covered by a unique subset of sensors.

In this way, the set of sensors reporting a target at a particular time uniquely identifies

the grid location for the target at that time.

Some more potential works in this field are Distributed Self Spreading Algorithm,

VEC, VOR and MiniMax Algorithm, Bidding Protocol Incremental Self Deployment Al-

gorithm and so on. The book chapter [6] has a comprehensive literature survey of these

problems. Next, we discuss the third category, the miscellaneous strategies of coverage

research in WSNs.
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3.3 Miscellaneous Strategies

Our discussion so far, has concerned mainly with algorithms that guarantee optimal

coverage of the sensing field. However, as mentioned earlier, a sensor network needs

to be connected as well, so that the data sensed by the nodes can be transmitted by

multi-hop communication paths to other nodes and possibly to a base station where

intelligent decisions can be made. Therefore, it is equally important for a coverage

algorithm to ensure a connected network. In this section, we discuss a few techniques

that ensure coverage as well as connectivity in a sensing field, while at the same time

reduces redundancy and increases overall network life time.

It is envisioned that a typical wireless sensor network would consist of large num-

bers of energy-constrained nodes deployed with high density. In such a network, it is

sometimes undesirable to have all the nodes to be in the active state simultaneously. In

addition, keeping all the nodes active simultaneously would dissipate energy at a much

faster rate and would reduce overall system lifetime. Hence, it is important to turn off the

redundant nodes and maximize the time interval of continuous-monitoring, transmitting

or receiving function. Scheduling of nodes that would control the density of active nodes

in a sensor network has been the focus of many research works.

One of the important design aspects in WSNs is to find the minimum number of

sensor nodes which can cover a given domain with a certain degree of precision while

maintaining the global connectivity in the network. Finding the minimum number of

nodes for the connected coverage has been identified as an NP hard problem [22, 5].

Therefore existing solutions [5] give different heuristics to optimize it.These problems

[22, 5], related to optimizing number of sensor nodes have got two variations - connected

coverage for homogeneous sensor network [22] and connected coverage for heterogeneous

sensor network [51, 52]. A related research problem is solved in [51] to find the optimum

number of sensor nodes in a fault tolerant heterogeneous sensor network. Furthermore,

[42] tries to find an optimum scheduling strategy so that the network becomes resilient to
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power consumption and in turn gives a longer life time. In addition to that, Integrated

coverage and connectivity problem is studied in [48].

An energy efficient node scheduling based coverage mechanism is proposed in [14].

The protocol proposed is distributed and localized. The off duty eligibility rule determines

whether a node’s sensing area is included in its neighbors’ sensing area. This algorithm

described in [14] consists of two phases: self scheduling phase and sensing phase. In

the self scheduling phase, each sensor broadcasts its position and node id, and listens

to the advertisement messages from its neighbors to obtain their location information.

Then it calculates the sponsored sectors by its neighbors and checks whether the union of

their sponsored sectors can cover its own sensing area. If so, it decides to turn itself off.

However, if all the nodes make decisions simultaneously, blind spots might appear. To

avoid such a situation, each node waits a random period of time and also broadcasts its

status message to other nodes. In this way the nodes self-schedule, thus reducing energy

consumption while maintaining the original coverage area.

This ends our discussion on related work on coverage problems in WSNs based

upon these three categories.

A different classification can also be done in terms of the varied solution techniques

of these problems. In general, to solve coverage related problems, both deterministic

and probabilistic models have been used. Existing solutions such as [3, 40, 41] use

the probabilistic model and geometric random graph theory and graph algorithms; as

the structure of Geometric Random Graphs (GRG) provides the closest resemblance to

wireless sensor networks. Researches are there on coverage models for Energy Efficient

Random Coverage, Connected random Coverage, Deterministic Coverage, Node Coverage

Approximation etc. While the first two are the randomized model, the third one is

deterministic. Solutions for determining whether a node’s coverage can be sponsored

by its neighbors (sponsored coverage calculation) is solved in [14]. These solutions are

intended for Energy Efficient Random Coverage. The solution there can also be random
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or deterministic. On the contrary, Computational geometry and different graph search

algorithms are used in existing solutions such as [13, 46, 38, 21] etc.

In terms of mobile sensor network, remarkable research is going on the coverage

and connectivity there as well. In contrast to static sensor networks, nodes in mobile

sensor networks are capable of moving in the sensing field. Such networks are capable of

self deployment starting from an initial configuration. The nodes spread out such that

coverage in the sensing field is maximized while maintaining network connectivity.

However, there are significant differences between the problem we consider and

these other works. To the best of our knowledge, ours is one of the first efforts to study

the presence of obstacles in coverage problems in WSNs.

3.4 Summary

Chapter 3 is the literature study on coverage problems in Wireless Sensor Networks.

We discuss existing research works in terms of their goals, assumptions, algorithm com-

plexities and practical applicability.



CHAPTER 4

BCP (s, t) PROBLEM FOR OPAQUE OBSTACLES

In this chapter we develop an algorithm for the BCP (s, t) problem for opaque

obstacles which we have defined in Chapter 1. We also analyze the running time of

the algorithm and prove its correctness. In this chapter, we show, that obstacles pose

significant challenges in the computation of BCP (s, t). Existing techniques of solving

it by creating the Delaunay Triangulations of sensor nodes or its sparse subgraphs such

as, GG or RNG can not be used here. Even visibility graph, a proximity based data

structure used in numerous obstacle avoiding shortest path computation problems in

computational geometry is also not adequate for BCP (s, t) for the opaque obstacles.

Let us first discuss why the presence of obstacles make the best coverage problem

difficult. As discussed earlier, the visibility graph, a standard data structure used for

numerous proximity problems in the presence of obstacles, does not necessarily contain

the BCP (Recall Figure 1.2 which clearly shows that the BCP from s to t, shown as a

dotted path, is not contained in the constructed visibility graph of the 2 sensors and 4

opaque obstacles). Besides the shortcomings of the visibility graph, the existing solutions

for the best coverage path problem without obstacles [13, 46, 38] depend on structures

such as the Delaunay triangulation, Gabriel graph, relative neighborhood graph and so

on. These structures have no easy generalizations to the case of obstacles.

4.1 Outline of the Algorithm BCP (s, t) for Opaque Obstacles

We construct the constrained Voronoi diagram of n sensor sites in presence of m

line obstacles (where each of the sites have the same weight, i.e., 1; that is why we

omit the term weighted in this work). Next we construct a specific dual graph of this

Voronoi diagram, such that the best coverage path is guaranteed to be contained in this

dual graph. We assign edge weights to each of the constructed edges in the dual graph,

37
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Figure 4.1. A worst case lower bound of the Constrained Voronoi Diagram.

where the weight of each edge is the distance from its least protected point to its nearest

sensor. The dual creation and edge weighing is defined in the Subsection 4.1.1. Finally,

we compute path between points s and t in the constructed weighed dual graph whose

largest edge is smaller than the largest of any other path in the graph. This computation

is accomplished using the Bellman-Ford algorithm [44].

As mentioned in Chapter 2, the constrained Voronoi diagram has Ω((mn)2) com-

binatorial complexity, where n is the number of sensor sites and m is the number of

line obstacles. We informally describe why this is so. Consider Figure 4.1 depicting the

Voronoi diagram of 4 sensors and 4 line segment obstacles. The sensors are S1, S2, S3 and

S4. Obstacles are O1, O2, O3 and O4. Generalizing for n sensors and m line obstacles,

each of the vertically placed O(n) sensors see through O(m) “gaps” between the verti-

cally placed obstacles, creating a combinatorial structure of O(nm) arrangement of lines.

A similar combinatorial structure is also created by the horizontally placed sensors. The

overlay of these two combinatorial structures will give rise to an O(n2m2) combinatorial

structure, where each cell is a Voronoi cell whose interior points are closest to a specific

sensor. (This arrangement becomes more complicated when we have to take into account

the perpendicular bisectors between every pair of sensors).
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Figure 4.2. Constrained Voronoi diagram of sensors and obstacles.

4.1.1 Dual of Constrained Voronoi Diagram

In this section we discuss how to define a suitable dual graph of the constrained

Voronoi diagram. As an example, consider Figure 4.2 which shows the Voronoi diagram

where S1, S2 are two sensors and O1, O2, O3, O4 are four obstacles. The filled areas are

dark regions which cannot be sensed by either of the two sensors S1, S2. The remaining

cells of the Voronoi diagram are labeled by the sensors to which they the closest. Notice

that unlike Voronoi diagrams without obstacles, the Voronoi region associated with a

sensor may be disconnected, consisting of several cells.

We define the dual of the constrained Voronoi diagram.

4.1.1.1 Dual Definition

The dual of the Constrained Voronoi diagram (C-Voronoi Diagram) is a weighted

graph. The vertices are the union of (a) the set of sensors, (b) the endpoints of the

obstacles, (c) the vertices of the Voronoi diagram not already included in the first two

sets (i.e., the third type of vertices are intersections of perpendicular bisectors between

sensors), and (d) the points s and t. We next define the edges of the dual graph.
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Consider any edge e = (u, v) of the C-Voronoi diagram. The edge is one of three

types: (a) it is part of an obstacle, (b) it is part of a perpendicular bisector between

two sensors, or (c) it is part of an extension of a visibility line from a sensor that passes

through an obstacle endpoint. For example, in Figure 4.2, edge (g, b) is of type (a), edge

(x, y) is of type (b), and edge (b, c) is of type (c). Let C1(e), C2(e) be two adjacent

C-Voronoi cells on either side of the edge. Assume that neither of the cells are dark, and

let S1 and S2 be the labels on these cells. Note that if e is of type (b), then e and one

of the two sensors are collinear (e.g., in Figure 4.2 the edge (b, c) is collinear with sensor

S2).

For each such edge e = (u, v) of the C-Voronoi diagram, we add edges to the dual

graph as follows:

• We add four dual edges (u, S1), (u, S2), (v, S1), and (v, S2) (as shown in Figure

4.3). Each dual edge is assigned a weight equal to the Euclidean distance between

its endpoints.

S2

u

v

S1
S2

S1

Figure 4.3. The four dual edges corresponding to the Voronoi edge e(u, v).

• In addition, if the edge e is of type (b) i.e., it is part of a perpendicular bisec-

tor between S1 and S2, and such that the S1 and S2 can see each other and the

line connecting S1 to S2 passes through e, then we place an additional dual edge

(S1(e)S2(e)). This “direct” dual edge gets weight equal to half the Euclidean dis-
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Figure 4.4. The additional fifth “direct” dual edge S1S2.

tance between S1 and S2. Figure 4.4 shows an example of this additional “direct”

dual edge.

Next, for each edge of the C-Voronoi diagram such that one of the adjacent cells

is dark, we place two edges between the sensor associated with the other cell and the

endpoints of the Voronoi edge. Each such dual edge gets weight equal to their Euclidean

distance. Finally, we connect s and t to their closest visible sensors (assuming at least

one sensor can see them), and weigh these dual edges by their Euclidean distances. This

concludes the construction of the dual graph.

Lemma 1 The dual graph has O(m2n2 + n4) number of vertices and edges.

Proof 1: As the Voronoi diagram has O(m2n2 +n4) number of vertices and edges [9], so

has the dual, as per the dual definition. Since each C-Voronoi edge contributes a constant

number of edges to the dual, the number of edges in the dual is also O(m2n2 + n4).

We note that way the dual graph has been constructed, at least one endpoint of

each edge is a sensor. Thus there cannot be two or more consecutive vertices along any

path that are not sensors. We shall next show that there exists a BCP (s, t) that has

such a property, hence it can be searched for within this dual graph.
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4.2 The BCP (s, t) Algorithm for Opaque Obstacles

The algorithm to compute BCP (s, t) for opaque obstacles is as follows::

Algorithm 1 Calculate BCP (S, O, s, t) for Opaque Obstacles

1: Using the technique of [9], construct the constrained Voronoi diagram of all n sensors

and m obstacles (assign each sensor a weight of 1).

2: Construct the dual of this C-Voronoi diagram as described in Section 4.1.1.

3: Run Bellman-Ford algorithm on this constructed dual graph starting at point s and

ending at point t, which computes the Best Coverage Path between s and t.

4: The value of Cover = max(weight(e1), weight(e2), . . . , weight(er)) in the constructed

path, where e1, e2, . . . , er are the edges in the best coverage path, BCP (s, t).

4.2.1 Proof Of Correctness

Theorem 1 An BCP (s, t) path for opaque obstacles is contained within the constructed

dual graph.

Proof 2: The overall idea of the proof is to show that a best coverage path that

lies outside the dual graph can be “transformed” into one that only uses the edges of the

dual graph. Consider Figure 4.5, which shows a best coverage path that does not use

the edges of the dual graph. Let us decompose this path into pieces such that each piece

lies wholly within a cell of the Voronoi diagram. Consider one such piece within a cell

labeled Si. Let the piece start at a point p and end at a point q, where both p and q are

along the cell’s boundary. It is easy to see that each such piece can be replaced by the

two line segments (p, Si) and (Si, q) without increasing the cover of the path. Thus, any

best coverage path can be transformed into one having linear segments that goes from

cell boundary to sensor to cell boundary and so on.

We next show that the points along the cell boundaries of this transformed path

are actually Voronoi vertices. To prove this, assume that one such point is not a Voronoi

vertex, i.e, it is a point along an edge of a cell boundary. Consider Figure 4.6 which
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Figure 4.5. Transforming a best coverage path.

S1
S2

u

v

S1

S2

Figure 4.6. Moving a BCP (s, t) vertex to a Voronoi vertex.

shows a portion of the BCP (s, t) (transformed as discussed above) that goes from sensor

S1 to a point along the Voronoi edge (u, v) and then to sensor S2. It should be clear

that if we replace this portion by two edges of the dual graph, (S1, v) and (v, S2), we will

achieve an alternate path whose overall cover value will be the same or less.

One final case needs to be discussed. If the BCP (s, t) passes through a point along

a Voronoi edge that is a perpendicular bisector between two sensors S1 and S2 that such

that there is a “direct” dual edge between S1 and S2, then the portion of BCP (s, t) from

S1 to S2 can be replaced by this direct edge without increasing the overall cover value of

the path. This situation is shown in Figure 4.7.

Thus we conclude, that, for opaque obstacles there exists an BCP (s, t) that only

follows the edges of the dual graph.
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Figure 4.7. Moving a BCP (s, t) vertex to the middle of the dual edge.

4.2.2 Running Time Analysis

Using the techniques in [9], Step 1 of our algorithm can be accomplished in

O(m2n2 + n4) time and space. Likewise, constructing the dual is straightforward, as

we have to scan each edge of the Voronoi diagram and insert the corresponding dual

edges with appropriate weights. This also takes O(m2n2 + n4) time. Finally running the

Bellman-Ford Algorithm on a graph with O(m2n2 + n4) number of vertices and edges

takes O((m2n2 + n4) log(mn + n2))) time.

4.3 Summary

This chapter illustrated the intuition for solving BCP (s, t) problem for opaque

obstacles. We depicted the challenges of modeling opaque obstacles in computation of

best coverage path. Next, we outline the algorithm. In addition to that, we explain

the concept of the created dual graph of the constrained Voronoi diagram and describe

the weight assignment policy of the dual graph edges. In continuation, we state the

algorithm and prove its correctness. We conclude this Chapter with complexity analysis

of BCP (s, t) algorithm for opaque obstacles.



CHAPTER 5

BCP (s, t) PROBLEM FOR TRANSPARENT OBSTACLES

In this Chapter, we study the BCP (s, t) problem for transparent obstacles. Note

that for transparent obstacles, computing BCP (s, t) is an easier problem than that for

opaque obstacles. In contrast to the BCP for opaque obstacles, in the case of transparent

obstacles we can show that the visibility graph contains the BCP . However, unlike tra-

ditional visibility graph, the edge weights of this graph are more complex than standard

Euclidean distances. Consequently, the running time of the algorithm is dominated by

the edge weighing task.

We propose two algorithms for the BCP (s, t) problem for transparent obstacles:

an exact algorithm and an approximation algorithm. We prove the correctness and

running time analysis for both algorithms (as well as an approximation bound for the

approximation algorithm). Similar to the opaque case, here also both algorithms first

create a weighted graph and then search for the best coverage path within this graph

using the Bellman-Ford algorithm.

The exact algorithm uses a quadratic-size visibility graph whereas the approxima-

tion algorithm uses a linear-sized k-spanner of visibility graph. The linear size of the

spanner graph makes the approximate algorithm more efficient than the exact one in

terms of time complexity.

5.1 Exact BCP (s, t) Algorithm for Transparent Obstacles

As mentioned, computing BCP (s, t) is relatively an easier problem than that of

opaque obstacles: as here obstacles do not block sensing, so the complication that is

described in Figure 1.2 does not arise here . In fact, as we shall see, the best coverage

path indeed follows the edges of the visibility graph.
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The outline of the algorithm is as follows. We create the visibility graph of n

sensors and m line segment obstacles, as well as the points s and t. The graph has

O(m2 + n2) edges. We then weigh each of the edges of the constructed visibility graph

in a specific manner. Figure 5.1 explains the edge weighing process. A normal Voronoi

diagram of the n sensor points (i.e., ignoring obstacles) is first overlayed on top of the

constructed visibility graph. Consider the example in Figure 5.1, where the visibility

edge (u, v) has to be weighed. The edge (u, v) passes through the Voronoi cells of sensors

u, m, n and v. Let us partition (u, v) into segments that lie wholly within these Voronoi

cells. For each segment lying inside the Voronoi cell of a particular sensor, we find out

the least protected point. This has to be either of the two endpoints of this segment -

For example, (u, v) intersects the Voronoi cell of m at the points a and b, so either a

or b is the least protected point for this segment, and the cover value of the segment

is max(||am||, ||bm||). We compute the cover value of all such segments that belong to

(u, v), and the maximum of these values is the cover value of (u, v), which gets assigned

as the weight of (u, v). Once this weighted visibility graph has been constructed, we run

the Bellman-Ford algorithm [44] to compute the best coverage path between s and t.

The algorithm is formally described in Algorithm-2.
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Algorithm 2 Calculate Exact BCP (S, O, s, t) for Transparent Obstacles

1: Construct the visibility graph of n sensor nodes and m line obstacles, the starting

point s and end point t. Let E be the edge set of the visibility graph.

2: Construct the (normal) Voronoi diagram of the n sensor nodes.

3: for each edge (u, v) ∈ E do

4: Partition (u, v) into segments (u = a1, b1), (a2, b2), . . . , (ar′ , br′ = v) where each

segment (ai, bi) lies wholly within a Voronoi cell of sensor S ′i, say Cell(S ′i).

5: for each segment (ai, bi) do

6: Find the least protected point of that segment, which is either ai or bi.

7: maxpiecei = max(||(S ′iai||, ||S ′ibi||)
8: end for

9: weight((u, v)) = max(maxpiece1, . . . , maxpiecer′),

10: end for

11: Run the Bellman-Ford algorithm on this weighted visibility graph starting at point

s and ending at point t to compute the BCP (s, t).

12: For the computed BCP (s, t) path, the value of Cover =

max(weight(e1), weight(e2), . . . , weight(er)), where e1, e2, . . . , er are the edges

of the best coverage path, BCP (s, t).

Theorem 2 An exact BCP (s, t) for transparent obstacles is contained within the con-

structed visibility graph.

Proof 3: As in the proof of Theorem 1, the idea here is to show that a best coverage

path that lies outside the visibility graph can be “transformed” into one that only uses

the visibility edges. A best coverage path that does not follow the visibility edges means

that the path makes some bend either:

• Case 1: Inside a Voronoi cell, or

• Case 2: At a Voronoi bisector, or
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Figure 5.1. Weighing of a visibility edge uv.

• Case 3: At a Voronoi vertex

We describe the transformations necessary for bends of the type Case 1. Consider

Figure 5.2, which shows a best coverage path from s to t that crosses through the Voronoi

cell of sensor Si but that does not follow visibility graph edges (the line obstacles are

shown as solid thick lines, and the best coverage path is shown as a wriggly path).

Consider two points a and b along this path inside the cell. Clearly the cover value

of the portion of the path from a to b is at least max ||Sia||, ||Si, b||. Thus if we replace

the portion from a to b by the straight line segment (a, b), it is easy to see that the cover

value of the transformed path will not have increased.

Thus, if we apply this “tightening” operations to the best coverage path, we shall

be able to eliminate all bends of the type described in Case 1. The resulting portion of

the best coverage path within the Voronoi cell for Si will be eventually transformed to

as shown in Figure 5.2. As can be seen, other than the two points on the boundary of

the cell (i.e., vertices of type Case 2 or Case 3), the rest of the vertices of the path in the

interior of the cell will be obstacle endpoints.
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Figure 5.2. Eliminating bends within Voronoi cells.

If we apply the above transformation to all Voronoi cells, we can eliminate all

vertices of type Case 1 from the path.

Next, we illustrate the case 2 type bend elimination with Figure 5.4. As shown

in the Figure, Consider two points a and b along this on the Voronoi bisector. Clearly

the cover value of the path from Si to Sj is at least 1/2||SiSj||. Thus, if we replace the

portion from a to b by the straight line segment (a, b), it is easy to see that the cover

value of the transformed path will not have increased.

Thus, if we apply this “tightening” operations to the best coverage path on the

bisector, we shall be able to eliminate all bends of the type described in Case 2. The

resulting portion of the best coverage path from Voronoi cell Si to Sj will be eventually

transformed to as shown in Figure 5.5. So, with elimination of case 1 and case 2 bends,

the other bends would only be those which bends at Voronoi vertex.

The elimination of vertices of type Case 3 follow similar arguments and we omit

discussing them in this work. Thus, we conclude that the visibility graph contains a best

coverage path.
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Figure 5.3. “Tightening” paths within Voronoi cells.

We now analyze the running time of the algorithm.

Lemma 2 The running time of the Exact BCP (s, t) algorithm for transparent obstacles

is O(nm2 + n3).

Proof 4: There exists output sensitive algorithm [37] to compute the visibility

graph. In our case the running time will be O((m + n) log(m + n) + x), where x is the

number of edges in visibility graph. Constructing the Voronoi diagram of n nodes can also

be done in O(n log n) time. Assigning weights to each visibility edges take O(n) times, as

we have to partition each edge into pieces that lie wholly within a cell and compute the

covers of each piece. So, assigning edge weights to all O(m2+n2) edges takes O(nm2+n3)

time. Running the Bellman-Ford algorithm will take O((m + n) log(m + n)) time. So,

overall the running time of this algorithm is dominated by weight assignment of all edges.

5.2 Approximated BCP (s, t) Algorithm for Transparent Obstacles

We design an approximation algorithm for the BCP (s, t) problem for transparent

obstacles using the k-spanner of the visibility graph [29]. The outline of this algorithm is

exactly same as the exact BCP (s, t) algorithm for transparent obstacles, with the change
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Figure 5.4. Eliminating bends on the bisector.

only in the use of the spanner graph rather than the visibility graph. The algorithm is

described below.

Algorithm 3 Calculate Approximated BCP(S, O, s, t) for transparent obstacles

1: Construct the bounded degree k spanner of Visibility Graph of n sensor nodes and

m line obstacles. For that, we follow the same strategy as it is been done on the

[18].The graph has linear number of edges and is O(m + n).

2: Repeat all 2− 12 steps of Algorithm 2.

Theorem 3 The approximation factor of the algorithm Approximated

BCP (s, t) for transparent obstacle is O(nk).

Proof 5: Let us explain the notion of spanner with the help of figure 5.6. Accord-

ing to the definition, the distance from vertices u to v in a spanner is at most k times the

distance from u to v in the visibility graph (where k is a constant, known as the stretch

factor of the spanner).

The worst case arises when all n sensors have the same influence on the coverage

of a single line. In Figure 5.7, we consider that case, where
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Figure 5.5. “Tightening” paths on the bisector.

• u and v are two points and the distance between them is ||uv||
• The dark line in the picture is a long obstacle which is just above the points u and

v, and is extended from u to v.

• Right on the top of the obstacle, all n sensor nodes have been placed equidistant

from one another, and the distance between them is 2b, where b is some positive

value.

Therefore, here the best coverage value is b, and the dotted line is the spanner path

for going from u to v which is at most k.||uv|| in length.

Now,

||uv|| = 2bn (5.1)

, where b is the Coverage Value

The bounded degree k-spanner path is the dotted path, where the relationship is

Spanneruv = k.(shortestpathuv). Using the property of spanners, we can see that

Spanneruv = k.(||uv||) (5.2)
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Figure 5.6. The spanner path (dotted) line is k times longer than the shortest path ||uv||.
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Figure 5.7. The Stretch Factor of Best Coverage of the spanner - A worst case scenario.

Substituting the value of ||uv|| from Equation-(5.1), we see that

k.(||uv||) = k.2bn ⇒ b.(k2n) (5.3)

thus it is proved that the approximation factor is O(nk).

Next we analyze the running time of the approximation algorithm.

Lemma 3 The running time of the Approximated BCP (s, t) for transparent obstacle is

O(nm + n2).

Proof 6: The only difference between this approximation algorithm and its exact

version is the difference in the constructed graph. While the visibility graph has a

quadratic number of edges, the k-spanner has a linear number of edges. Similar to the
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exact algorithm, the running time here is dominated by the edge weighing step. Thus

the overall running time of this algorithm is O(nm + n2).

5.3 Summary

In this Chapter, we proposes two algorithms in the computation of BCP (s, t)

for transparent of obstacles; one exact algorithm and one approximation algorithm. In

separate sections, we outline each of these two algorithms, illustrate the edge weighing

policy, illustrate the algorithm. We conclude each of these cases by proving its correctness

and analyzing the running time. In addition to that, we calculate the approximation

factor of our proposed approximation algorithm.



CHAPTER 6

CONCLUSION

In this work, we model the presence of line segment obstacles and its impact in

the computation of a exposure-based path in Wireless Sensor Networks. Precisely, in

presence of a set of obstacles, we investigate the computation of Best Coverage Path,

denoted as BCP (s, t), between a source s and destination point t in the sensing field.

We have shown that obstacles complicate the problem. In this work, we illustrate the idea

of two different variations of obstacles - opaque and transparent obstacles. Depending on

these two variants, we define two separate problems, the BCP (s, t) for opaque obstacles

and the BCP (s, t) for transparent obstacles.

We have proposed an O((m2n2 + n4) log(mn + n2))) time algorithm for computing

BCP (s, t), given n sensor nodes and m opaque line obstacles. The algorithm is based

on constructing a special dual of the Constrained Voronoi Diagram; the time complexity

of this algorithm is dominated by the quartic combinatorial structure of the diagram

itself. For transparent obstacles, we design two solutions; an exact algorithm and a more

time-efficient approximation algorithm. The exact BCP (s, t) for transparent obstacles

takes O(nm2 + n3) time for computation. This algorithm is based on constructing the

visibility graph of the sensors and obstacles (with special weights assigned to edges). The

approximation algorithm for computing BCP (s, t) takes O(nm+n2) time. This algorithm

is based on constructing a k-spanner of the visibility graph. In addition, we derive the

approximation factor of the cover value of the computed path for this algorithm. We as

well analytically prove the correctness of our proposed solutions. These constitute the

main results of this thesis in brief.

As future scope of this research work, we intend to extend these ideas for modeling

more complex obstacles, such as polygonal obstacles. As well, we like to investigate the
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best coverage path in presence of polygonal/line segment obstacles for heterogeneous

sensor network. In addition to that, we plan to investigate practical techniques such

as heuristics and randomized algorithms for solving these problems efficiently which can

reduce the running time. A nice improvement of this work can be to construct/pre-

process the constrained Voronoi diagram and then design an incremental algorithm as

queries at run time to compute the best coverage path. Furthermore, the Worst Coverage

Path problem amidst obstacles is an interesting problem for future research.



BIBLIOGRAPHY

[1] A. Baltsan and M. Sharir, ”On shortest paths between two convex polyhedra.” J.

ACM 35, 267-287, 1988.

[2] A. Howard, M. J. Matari, and G. S. Sukhatme. ”An incremental self-deployment

algorithm for mobile sensor networks.” Autonomous Robots Special Issue on Intel-

ligent Embedded Systems, 13(2):113-126, 2002.

[3] A. Howard, M. Mataric and G. Sukhatme, ” Mobile sensor network deployment

using potential fields: A distributed scalable solution to the area coverage problem,

” In Proceedings of the 6th International Symposium on Distributed Autonomous

Robotic Systems - DARS02, pages 299-308, Fukuoka, Japan, June, 2002.

[4] A. Lingas. ”Voronoi diagrams with barriers and their applications.” Inform. Process.

Letters, 32:191–198, 1989.

[5] Amitabha Ghosh, Sajal K. Das, “Distributed Greedy Algorithm for Connected Sen-

sor Cover in Dense Sensor Networks”,International Conference on Distributed Com-

puting in Sensor Systems, June 2005.

[6] Amitabha Ghosh and Sajal K. Das, ” Coverage and Connectivity Issues inWireless

Sensor Networks”. Book Chapter.

[7] B. Aronov. ”On the geodesic Voronoi diagram of point sites in a simple polygon.”

Algorithmic 4, 109140, 1989.

[8] B. Liu and D. Towsley. ” On the coverage and detectability of wireless sensor net-

work.” Proc. of WiOpt’03: Modeling and Optimization in Mobile, Ad Hoc and

Wireless Networks, 2003.

[9] C. A. Wang and Y. H. Tsin. ”Finding constrained and weighted voronoi diagrams

in the plane.” Computational Geometry: Theory and Applications, 10(2):89 – 104,

MAY 1998.

57



58

[10] C. A. Wang and L. Schubert, ” An optimal algorithm for constructing the Delaunay

triangulation of a set of line segments.” Proc. 3rd Ann . ACM Symp. Computational

Geometry, 223 - 232, 1987 .

[11] C. A. Wang, ” A new generalization of Voronoi diagrams in the plane.” Ph .D .

Thesis, Univ . of Alberta, Canada, 1987 .

[12] C. Burnikel, K. Mehlhorn, and S. Schirra. ” How to compute the Voronoi diagram

of line segments: Theoretical and experimental results.” manuscript.

[13] C. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. Srivastava. ”Coverage

problems in wireless ad-hoc sensor networks.” Infocom., APRIL 2001.

[14] D. Tian and N. D. Georganas, ”A CoveragePreserving Node Scheduling Scheme

for Large Wireless Sensor Networks.” Proc. of the 1st ACM Workshop on Wireless

Sensor Networks and Applications, 2002.

[15] D. W. Gage. ”Command control for many-robot systems.” Nineteenth Annual

AUVS Technical Symposium, Reprinted in Unmanned Systems Magazine., 10(4):28–

34, JANUARY 1992.

[16] F. Aurenhammer and G. Stckl. ” On the peeper’s voronoi diagram.” SIGACT News.,

22(4):50–59, 1991.

[17] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric data

structure. ACM Comput. Surv., 23(3):345-405, Sept. 1991.

[18] G. Das. ” The visibility graph contains a bounded-degree spanner.” Proc. 9th Canad.

Conf. Computational Geometry,1997.

[19] G. Das. ” Approximation Schemes in Computational Geometry”. Ph.D Thesis, Univ

. of Wisconsin-Madison, 1990 .

[20] G. S. Sukhatme and M. J. Mataric, ” Embedding Robots into the Internet.” Comm.

ACM, vol. 43, pp. 67–73, May 2000.

[21] G. Veltri, Q. Huang, G. Qu, and M. Potkonjak. ”Minimal and maximal exposure

path algorithms for wireless embedded sensor networks. ” In Proceedings of the 1st



59

International Conference on Embedded Networked Sensor Systems - Sensys03, pp.

40-50, Los Angeles, CA, Nov 2003.

[22] H. Gupta, S. R. Das, Q. Gu,” Connected Sensor Cover: Self-Organization of Sensor

Networks for Efficient Query Execution ”, MobiHoc, June 2003.

[23] H. A. E. Gindy and D. Avis, ”A linear algorithm for computing the visibility polygon

from a point.”, J. Algorithms, 2 (1981), pp. 186–197.

[24] J. Hershberger and S. Suri, ” Efficient Computation of Euclidean Shortest Path in

the Plane. ” In Proc. of 34th Annual IEEE Sympos. Found. Comput. Sci. , 508–517,

1993.

[25] J. ORourke. ”Art gallery theorems and algorithms.” Oxford University Press, Inc.,

Oxford, 1987.

[26] J. S. B. Mitchell, ” Shortest Paths Among Obstacles in the Plane.”, In Proc. 9th

Annual ACM Sympos. Computational Geometry, 308–317, 1993.

[27] J. Urrutia. ” Art gallery and illumination problems.” In Handbook on Computa-

tional Geometry, Elsevier Science Publishers, J.R. Sack and J. Urrutia, eds, 973–

1026, 2000.

[28] K. J. Supowit. The Relative Neighborhood Graph With An Application To Mini-

mum Spanning Tree., Journal of Associate Computing Machine, no 30, 1983.

[29] K. Clarkson. ” Approximation algorithms for shortest path motion planning.” Proc.

of the nineteenth annual ACM conf. on Theory of computing, 56-65, 1987.

[30] L. P. Chew. ”Constrained delaunay triangulations.” Proceedings of the third annual

symposium on Computational geometry, 215–222, 1987.

[31] L. P. Chew,”Constrained Delaunay triangulations .” Algorithmica 4, 97 -108, 1989 .

[32] L. P. Chew, ” There are planar graphs as good as the complete graph. ” Journal of

Computer and System Sciences, 39, 205–219, 1989.

[33] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications. Springer, 1997.



60

[34] M. Cardei, D. MacCallum, X. Cheng, M. Min, X. Jia, D. Li, and D. Z. Du, ”Wireless

Sensor Networks with Energy Efficient Organization.”, Journal of Interconnection

Networks, Vol 3, No 34, pp 213-229, Dec 2002.

[35] O. Khatib. ”Real-time obstacle avoidance for manipulators and mobile robots.” In-

ternational Journal of Robotics Research, 5(1): pp. 90-98, 1986.

[36] R. Seidel. ”Constrained delaunay triangulations and voronoi diagrams with obsta-

cles.” Rep. 260, IIG-TU Graz, Austria, 178–191, 1988.

[37] S. Ghosh and D. Mount. ” An output sensitive algorithm for computing visibility

graphs.” SIAM Journal of Computing,, 20(5):888–910, 1991.

[38] S. Megerian, F. Koshanfar, M. Potonjak, and M. B. Srivastava. ”Worst and best-case

coverage in sensor networks.” IEEE Transaction for Mobile Computing, 4:84–92,

2005.

[39] S. Meguerdichian, F. Koushanfar, G. Qu, and M. Potkonjak. ” Exposure in wireless

ad hoc sensor networks.” Procs. of 7th Annual International Conference on Mobile

Computing and Networking (MobiCom ’01), 139–150, JULY 2001.

[40] S. Poduri and G. S. Sukhatme. ”Constrained coverage in mobile sensor networks.”

In Proceedings of IEEE International Conference on Robotics and Automation -

ICRA04, pp. 40-50, New Orleans, LA, AprMay 2004.

[41] S. S. Dhillon and K. Chakrabarty, ” Sensor placement for effective coverage and

surveillance in distributed sensor networks”, Proc. of IEEE Wireless Communica-

tions and Networking Conference, vol. 38, no. 9, pp. 1609-1614, 2003.

[42] S. Slijepcevic and M. Potkonjak,” Power Efficient Organization of Wireless Sensor

Networks”, ICC. Helsinki, pp. 472-6, June 2001.

[43] T. Asano, L. J. Guibas, J. Hershberger, and H. Imai, ” Visibility of Disjoint Poly-

gons”. Algorithmica , 1: 49–63, 1986.

[44] T. J. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press and McGraw-Hill, 1990.



61

[45] Tsuy Uki Okabe, Barry Boots and Kokichi Sugihara ” Spatial Tessellations-Concepts

and Applications of Voronoi Diagrams.” Chichester:John Wiley and Sons, 1992.

[46] X. Y. Li, P.-J. Wan, and O. Frieder. ” Coverage problems in wireless ad-hoc sensor

networks.” IEEE Transactions for Computers, 52:753-763, JUNE 2003.

[47] Xiang Yang Li, Peng-Jun Wan, Wang Yu. ” Power Efficient and Sparse Spanner for

Wireless Ad Hoc Networks.” IEEE International Conference on Computer Commu-

nications and Networks (ICCCN01), Scottsdale, Arizona, Oct 15–17, 2001.

[48] Xing, Wang, Zhang, Lu, Pless, and Gill. ” Integrated coverage and connectivity

configuration for energy conservation in sensor networks”, TOSN 1(1), pp. 36-72,

2005.

[49] Y. Zou and K. Chakrabarty. ”Sensor deployment and target localization based on

virtual forces”. In Proceedings of IEEE Infocom - INFOCOM 03, pages 1293-1303,

San Francisco, CA, Apr 2003.

[50] Y. Zou and K. Chakrabarty. ”Sensor deployment and target localization in dis-

tributed sensor networks”. Transactions on IEEE Embedded Computing Systems,

3(1): 61-91, 2004.

[51] Z. Zhou, S. Das, H. Gupta,”Fault Tolerant Connected Sensor Cover with Variable

Sensing and Transmission”,IEEE SECON, 2005.

[52] Zongheng Zhou, Samir Das and Himanshu Gupta.”Variable Radii Connected Sensor

Cover in Sensor Networks”, A Report. Department of Computer science, Stony

Brook University.



BIOGRAPHICAL INFORMATION

Senjuti Basu Roy received her Bachelor of Technology degree in Computer Sci-

ence and Engineering from University Of Calcutta, Calcutta, India, in 2004. She began

her graduate studies in the Department of Computer Science and Engineering at The

University of Texas at Arlington in Fall 2005. She is expected to receive her Master of

Science degree in Computer Science and Engineering from The University of Texas at Ar-

lington in Spring 2007. Her research interest includes Computational Geometry, Sensor

Network, Approximation algorithm, Randomized algorithm, online algorithm etc.

62


