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ABSTRACT 

THERMAL STRESSES OF COMPOSITE BEAMS WITH RECTANGULAR 

AND TUBULAR CROSS-SECTIONS 

 

 

Publication No. ______ 

 

Chia-Wei Su, M.S. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Wen S. Chan  

Closed-form analytical solutions for laminated composite beams with tubular 

and rectangular cross-sections are developed for evaluating the thermal induced 

stresses. The derivations are based on modified lamination theory and parallel axis 

theorem. The present approach includes variation of ply stiffness along the contour of 

the cross-section. The interlaminar shear stress of cantilever composite beam with 

rectangular cross-section under a transverse load is analytically proved to be 

independent of temperature change in uniform temperature environment. Three-

dimensional finite element models for computing thermal stresses of both cross-sections 

are developed using commercial software package ANSYS 10. The results obtained 

from analytical solutions give an excellent agreement to finite element results.  



 vii 

The effects of stacking sequence and fiber orientation on the in-plane thermal 

stresses of laminate are studied by using present methods. It is found that fiber 

orientation plays a significant role on the thermal induced stresses between and within 

laminas.     
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CHAPTER 1 

INTRODUCTION 

1.1 Background       

The fiber-reinforced composite material has been widely used in aerospace and 

military industrials for almost half century, due to its high specific stiffness and 

strength, good corrosion resistance, low density, and low coefficients of hygrothermal 

expansion. Initially, it was just applied to the secondary structures. With extensive 

researches and developments, composite materials have turned into the primary 

constituents of the major structures, such as fuselage and wings, of many aircrafts. 

Furthermore, during the past decade, it has also been put into everyday-used 

applications such as civil structures, sporting and recreational equipments, and 

automotive parts. 

Among numerous applications of fiber reinforced composite materials, thin 

walled structures, such as circular tube and rectangular tube, are the most commonly 

used ones, due to their high stiffness/strength-weight ratio. Tubular structure with 

circular cross-section is ideally used as the basis for many applications since it has 

symmetrical geometry without edges. As a result, stresses at the free edge are 

eliminated. The legendary automaker Automobili Lamborghini SpA designed an engine 

subframe constructed by carbon/epoxy tubes and joints instead of steel subframe using 

on their new open-cockpit supercar, Murcielago Roadster. This design not only 
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successfully added back the loosing torsion stiffness caused by removal of its steel roof, 

but also reduced 17.7 lb of weight compare to using steel subframe. 

Furthermore, the structure members are often exposed to the environments with 

temperature change during their service life. It has already been known that the thermal 

behaviors of the laminated composite materials are more pronounced than that of 

isotropic materials. Moreover, thermal stresses induced within and between laminas 

even without any global constraint. This is because of the thermal expansion mismatch 

between layers of different fiber orientations. 

Due to its anisotropic material properties, the design of composite structures is 

quite complicated, and expensive tools are needed. Finite element analysis is one of the 

approaches that are often used in the analysis of laminated composite structures, and 

able to make accurate prediction of structural behaviors. However, it is still not an 

efficient and handy method since the analysis is structural configuration dependant and 

time consuming. Furthermore, the finite element analysis of composite structures is not 

a cost effective way to conduct the parametric study during design practice. Hence, in 

order to effectively design composite structure, simple but yet sufficiently accurate 

analytical models are needed to be developed, particularly in the preliminary design 

stage. 

 

1.2 Literature Survey 

In the past decades, considerable of good researches in laminated composite 

beam structures have been published. Extensive have been made to understand the 
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structural behaviors, such as bending stiffness, of the laminated composite thin-wall 

structure under various load condition. Several different analytical models have been 

developed to obtain simple close-form solutions for laminated composite structures. 

Among them, equivalent stiffness of the wall laminate of the thin-walled structures has 

been used. 

Chan and Demirhan [1] have developed two analytical closed-form solutions, 

laminated plate approach and laminated shell approach, to evaluate stiffness matrices 

and bending stiffness of the laminated composite circular tube. The derivations are 

based on conventional lamination theory and parallel axis theory. Analytical results are 

compared with the results obtained from the smear property approach and finite element 

analysis. Lin and Chan [2] extended the former tube model to analyze laminated 

composite tubes with elliptical cross-section under bending. The obtained analytical 

results show an excellent agreement with finite element method results. Rao [3] has 

developed closed-form expressions based on modifying the laminated plate approach to 

determine the displacement and twisting angle of tapered composite tube under axial 

tension and torsion.  

Sims and Wilson [4] have derived an approximate elasticity solution for the 

transverse shearing stresses in a multilayered anisotropic composite beam. The 

distribution of shear stresses through the laminate thickness obtained from analytical 

solution has been validated by experimental data. Syed and Chan [5] have developed an 

analytical model to analyze the bending stiffness matrices for laminated composite 

beam with hat cross-section. The thermal induced ply stresses and the location of 



 

 4 

centroid and shear center of the hat sectional composite beam have also been included 

in his study. 

Other researches have been focused on induced stresses between and within 

laminas while laminated composite structures are subjected to temperature change. 

Boley and Weiner [6] describe the general theory of thermal stresses of beam structures 

in their published book. 

Using finite element method to analyze the behavior of laminated composite 

structure under temperature environment is one of the common approaches. Naidu and 

Sinha [7] have studied the large deflection and bending behavior of composite 

cylindrical shell panels subjected to hygrothermal environment using nonlinear finite 

element analysis. Seibi and Amatcau [8] have researched on the use of the laminated 

plate theory (LPT) to optimize the architecture of laminated ceramic matrix composite 

tube processing high thermal cracking resistance. They have developed a method to 

estimate the induced thermal residual stresses of laminated composite tube under 

significant temperature change using finite element modeling program ANSYS. 

Shariyat [9] has studied for thermal buckling analysis of rectangular composite 

multilayered plate under uniform temperature rise using a layerwise plate theory to 

determine the buckling temperature. 

However, finite element analysis is still not an efficient method because of 

structural configuration dependent. Hence, some other efforts have been made on 

developing analytical models and close-form expressions for thermal analysis of 

composite laminates. Kim, B., Kim, T., Byun, and Lee [10] have derived a close-form 
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solution for composite/ceramic tube to calculate the shrink fit stresses, the stresses due 

to internal pressure and thermal stresses due to temperature differences between the 

inside and outside of the tube. Khdeir [11] has developed an exact analytical solution of 

refined beam theories to obtain the critical buckling temperature of cross-ply beam 

subjected to uniform temperature distribtion with various boundary conditions. 

Additionally, Syed, Su, and Chan [12] have presented simple analytical expressions for 

computing thermal stresses in fiber reinforced composite beam with rectangular and hat 

cross-sections under uniform temperature environment. In-plane stresses and 

interlaminar shear stress were also analyzed. 

For designing composite beam structure, the developing of analytical method 

not only provide accurate evaluation of sectional properties for better prediction of 

structure behaviors, but also can be much easier used for parametric study.          

          

1.3 Objective and Approach of the Thesis 

In the present research, the primary objective is to develop closed-form 

solutions for laminated composite circular tube, and rectangular beam to determine their 

thermal induced load and moment matrices, based on lamination theory, parallel axis 

theory, and laminated plate approach [1]. In-plane stresses and interlaminar shear stress 

through the thickness of the laminate are also studied. Results are compared and 

validated by performing finite element analysis of fully three-dimensional constructed 

models. The finite element models are developed in the commercial software package 

ANSYS 10, and verified by first applying properties of isotropic material on them. In 
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this study, the composite material Carbon/Epoxy AS4/3501-6 is chosen for both cases. 

Further, the parametric studies are conducted to study the stacking sequence and fiber 

orientation effects on the thermal induced in-plane stresses. 

 

 1.4 Outline of the Thesis    

In Chapter 2, the analytical solution for rectangular composite beam is derived, 

and the lamination theory is reviewed. The analytical solution for composite circular 

tube and the review of stiffness matrices based on laminated plate approach are 

described in Chapter 3. Chapter 4 describes two three-dimensional finite element 

models used to validate analytical approach. Further, comparisons between the results 

obtained from analytical solutions and finite element models are listed in Chapter 5. 

Parametric studies are also included in this chapter. Finally, the conclusions are 

summarized in Chapter 6. The details of derivations, MATLAB codes, and ANSYS 

batch files are presented in Appendix section. 
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CHAPTER 2 

ANALYTICAL SOLUTION FOR RECTANGULAR COMPOSITE BEAM 

UNDER TEMPERATURE ENVIRONMENT 

In this chapter, an analytical method for thermal analysis of a rectangular 

composite beam is presented. Since all the derivations are based on conventional 

lamination theory, it is also briefly reviewed. The geometry of the rectangular 

composite beam is first defined in the next section. 

      

2.1 Geometry of Composite Beam 

The composite beam studied here is a rectangular cross-section beam with the 

width, d and the height, h.  The length, L of the composite beam is significantly longer 

than its width and height. In all the derivations, the cross-sectional plane of the beam 

remaining plane after deformation is assumed. 

 

 
Fig. 2.1 Geometry of composite beam 
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2.2 Review of Laminated Constitutive Equation 

 
Fig. 2.2 Composite laminate with n layers 

Composite laminate consists of a set of multiple layers with different fiber 

orientations stacking together as shown in Fig. 2.2. When laminate is subjected to load, 

each layer exhibits different stresses. It is very cumbersome to analyze this problem 

based on layer by layer analysis. To circumvent this tedious approach, the laminate is 

often analyzed based upon its mid-plane axes as a reference axis. In doing so, the 

properties of each layer are transformed to the reference axis.   

The general load-deformation relation of laminate is given as: 
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Where [ ]0ε  and [ ]κ  matrices are mid-plane strain and curvature, respectively.  

[ ]N  and [ ]M  are given as: 
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[ ]N  and [ ]M  are the equivalent applied load and moment, respectively. They can be 

written as: 
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[ ]TN  and [ ]TM  are the thermal induced force and moment which are given as: 
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In the above equations, kyx ][ −α is the coefficient of thermal expansion, CTE, of 

th
k  ply transforming from material 1-2 coordinate system to the laminate x-y 

coordinate system. T∆  is the change of environmental temperature. kh  is the 
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coordinate of the top of th
k  ply (see Fig. 2.2). The transformation of CTE, kyx ][ −α , is 

given in the Appendix. 

Furthermore, [ ]A , [ ]B , and [ ]D  matrices in equation 2.1 are the extensional 

stiffness, extensional-bending coupling stiffness, and bending stiffness, respectively. 

They are the properties evaluated per unit width of the laminate, and can be expressed 

as: 
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Where [ ]
k

Q  is obtained from the transformation of the reduced stiffness matrix, 

[ ]Q  of the laminate. kz  refers to the z coordinate of th
k  interface measured from the 

mid-plane of the laminate. The reduced stiffness matrix, [ ]Q  is the stiffness of thin layer 

of orthotropic material. [ ]Q  matrix represents the relationship of stress and strain in its 

material coordinate system, which can be written as: 
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and [ ]Q  matrix is defined as: 
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Where 1E  and 2E  are the elastic moduli of lamina along and transverse to the 

fiber direction, respectively. 12G  is the shear modulus lamina in 1-2 plane, and 12ν  is 

the poisson’s ratio of lamina for the loading along the fiber direction.  

 

2.3 In-Plane Stresses 

The total strain at any point in the th
k  ply of the laminate can be obtained 

from the mid-plane strain, ][ 0ε , the curvature, ][κ , and the coordinate in z 

direction measured from the mid-plane. It can be determined using the following 

relationship: 
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Note that the strain obtained from the equation above is the total strain 

contributed by both mechanical loads and thermal expansion. Hence, the strain 

due to thermal expansion needs to be subtracted from the total strain in the 

calculation of the in-plane stresses, which can be expressed as below: 
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              k

T
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Where kyx ][ −ε  and k

T

yx ][ −ε  represent strain of the th
k  ply of the laminate due to 

mechanical loads and thermal expansion, respectively.  

 

2.4 Interlaminar Shear Stress of the Beam under Transverse Load 

In this section, an analytical solution for the interlaminar shear stresses of 

the laminated composite beam subjected to a transverse load developed by Sims 

and Wilson [4] is first reviewed. The effect due to thermal induced force and 

moment in the interlaminar shear stresses is then discussed. In the derivation of 

the analytical solution, two assumptions are made: 1. the stresses do not depend 

on y direction. 2. zσ , yzτ  are small and can be neglected. The geometry of the 

beam model and coordinate axes are shown in Fig. 2.3. 
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Fig. 2.3 Laminated composite beam under transverse load. 

 

2.4.1 Derivation of Interlaminar Shear Stress Equation 

The equation of equilibrium for the th
k  layer of the laminate is given as: 
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It is known that in the conventional lamination theory, the lamina is assumed to 

be under plane stress condition. That means, the stresses zσ , yzτ , and xzτ  are assumed 

to be zero. Therefore, interlaminar stress components will not be obtained directly from 

the lamination theory. However, these stresses can only be obtained from equation of 

equilibrium as shown in equation 2.12. Since the free edge stresses is not the focus of 

this study, the rise of zσ , yzτ , and xzτ  due to the free edge is ignored. In addition, since 
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the beam is narrow, the stresses are assumed to be independent of y. Then, equation 

2.12 can be reduced to: 
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For multiple layers laminate with 00 =xzτ , we have 
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Based on the conventional lamination theory, the laminated constitutive 

equation including thermal effect is given as: 
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Where, 
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Since the cantilevered rectangular beam is under a transverse shear load, q, the 

in-plane forces are not considered on the beam. Furthermore, in this derivation, the 

cantilever beam is considered as a narrow beam. Hence, we have: 

0===== xyyxyyx MMNNN                                                 

and, 
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q
x

M x −=
∂

∂
                                                            (2.18) 

Note that q is the transverse load per unit width. Then, equation 2.16 becomes: 
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 Substituting equation 2.11, 2.19 into equation 2.15, we get: 
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 Since ][ TN and ][ TM  for this case do not depend on x, their partial derivatives 

are eliminated. Hence, equation 2.20 becomes: 
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It is noted that the above expression of xzτ  does not induce any properties that 

depends on temperature. Therefore, the thermal induced force and moment do not affect 

the result of interlaminar shear stresses of a laminated composite beam under transverse 

load. 
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CHAPTER 3 

ANALYTICAL SOLUTION FOR COMPOSITE TUBULAR BEAM 

UNDER TEMPERATURE ENVIRONMENT 

In this chapter, an analytical method for thermal analysis of a circular composite 

tube is presented. Additionally, an analytical solution of stiffness matrices of laminated 

composite tube developed by Chan and Demirhan [1] is reviewed. The parallel axis 

theorem used in the derivation is also described. Then, the geometry of the circular 

composite tube that is considered in this study is described in the next section.   

 

3.1 Geometry of Composite Tube  

The composite tube studied here is a hollow circular cross-section tube with 

inner radius, iR , and outer radius, oR . The length, L of the composite tube is 

significantly longer than its diameter. This minimizes the short tube effect. In all the 

derivations, the cross-sectional plane of the tube will always remain plane after 

deformation is assumed.  

 
Fig. 3.1 Geometry of Composite Tube 
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3.2 Review of the Parallel Axis Theorem     

In lamination theory, the reference axis is often set at the mid-plane of laminate. 

However, in structural modeling, the reference axis is not always in the mid-plane of the 

laminate. Hence, the stiffness matrices of the whole structure can be obtained by 

translating the stiffness of the laminate according to parallel axis theorem. The stiffness 

matrices referring to a new axis can be written as: 

 

[ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]AdBdDD

AdBB

AA

⋅+⋅+=

⋅+=

=

22'

'

'

                                         (3.1) 

 

where d is the distance from new axis to the original axis as shown in Fig 3.2. 

 

 
Fig. 3.2 Translation of laminate axis 
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3.3 Stiffness Matrices of Tubular Composite Beam    

Two analytical methods, laminated plate approach and laminated shell 

approach, for evaluating stiffness matrices of circular composite tube were developed 

by Chan and Demirhan [1]. Plate approach is chosen here because of its simplicity. 

Both of these two approaches were derived based on the conventional lamination theory 

and translation of laminate axis. 

 
Fig. 3.3 Infinitesimal plate element of composite tube  

 

In this approach, an infinitesimal plate element of laminated composite tube is 

considered. The infinitesimal element, which is inclined an angle, θ , with respect to the  

axis of the tube, z, is rotated about the x’’ axis as shown in Fig. 3.3. Thus, the reduced 

stiffness matrix of lamina, [ ]Q  needs to be first transformed about x’’ axis with an 

angle, θ , then transformed about z’ axis with the angle of fiber orientation of the ply. 
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The transformed reduced stiffness matrix of  th
k  ply is represented as kQ]ˆ[ . The 

transformation of the kQ]ˆ[  is given in Appendix A. Then, the stiffness matrices of the 

infinitesimal plate element of the composite tube become: 

)(ˆ
1

1

−
=

′−′=∑ k

n

k

k

k

ijij zzQA                                                                            

)(ˆ 2

1

1

2

−
=

′−′=∑ k

n

k

k

k

ijij zzQB                                                                (3.2) 

)(ˆ 3

1

1

3

−
=

′−′=∑ k

n

k

k

k

ijij zzQD                                                                         

 

Base on the parallel axis theorem, the stiffness matrices of the infinitesimal 

plate element of the composite tube, ][A , ][B ,and ][D , have to be translated to the 

reference axis of the tube. Hence, the stiffness matrices per unit width of the tube, ]'[A , 

]'[B ,and ]'[D , can be expressed as below:    

[ ] [ ]AA ='                                                                                               

[ ] [ ] [ ]ARBB ⋅⋅+= θcos'                                                               (3.3) 

[ ] [ ] [ ] [ ]ARBRDD ⋅⋅+⋅⋅+= 2)cos(cos2' θθ                                         

             

Then, the overall stiffness matrices of the circular composite tube are obtained 

by integrating the stiffness matrices per unit width of the tube, [ ]'A , [ ]'B , and [ ]'D , over 

its entire length of the circumference. They are expressed as: 
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[ ] [ ]
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∫

∫

∫

2

0

2
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2

0

'

'

'

                                                             (3.4) 

 

Fig. 3.4 illustrates the computing procedure for obtaining the stiffness matrix of 

composite tubular structures. 

 
Fig. 3.4 Procedure flow chart for computing stiffness matrix 
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3.4 Thermal Induced Force and Moment 

 

3.4.1 Transformation of the Coefficient of Thermal Expansion 

The coefficient of thermal expansion of  th
k  ply of the composite beam in its 

structural x-y coordinate system, kyx ][ −α  is obtained from transforming the coefficient 

of thermal expansion of the lamina in 1-2 coordinate, ][ 21−α . Referring to Fig. 3.3, it is 

first rotated about the x axis with an angle θ , then, rotated about z axis with the angle 

of fiber orientation, - β . The transformation of the thermal expansion coefficient can be 

written as:    

[ ] [ ]2121 )(]'[ −− ⋅= αθα εT                                                                   

[ ] [ ]21')(][ −− ⋅−= αβα ε kkyx T                                                   (3.5) 

 

In the above equation, [ ]εT  matrices are the strain transformation matrices 

transforming about x and z axis, respectively. They are provided in Appendix A.  

 

3.4.2 Unit Thermal Induced Force and Moment  

Similar as deriving stiffness matrices with laminated plate approach, an 

infinitesimal plate element is considered as shown in Fig.3.3. The thermal induced force 

and moment of the element are obtained by integrating thermal strain through the 

thickness of lamina, and can be written as: 
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where k

ijQ̂  is the transformed reduced stiffness matrix, and T∆  is the change of the 

temperature.  

 

3.4.3 Parallel Axis Theorem Applied to Transfer Thermal Induced Loads   

The forces and moments obtained using equation 3.6 and 3.7 act along the mid 

plane of the lamina. In order to transfer these resultants to the reference axis of the tube 

structure, the parallel axis theorem is applied. In the present case, as shown in Fig.3.3, 

the distant from new reference axis to the original axis, d is equal to θcos⋅R . Then, the 

thermal induced force and moment per unit width of the tube become: 
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The equations above can also be written as: 
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The above equations confirm that the thermal induced forces remain the same 

and the thermal induced moments contain a part of moments due to axis translation. 

 

3.4.4 Overall Thermal Induced Force and Moment 

To obtain the overall thermal induced force and moment of the composite 

circular tube, the equations above need to be integrated over the entire length of the 

circumference of the tube. They are expressed as: 
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Then, the closed form solution of overall thermal induced force of the composite 

tubular beam is provided in Appendix A. 

 

3.5 In-Plane Stress Calculation 

The ply total strain is obtained using mid-plane strain, ][ 0ε  plus mid-plane 

curvature, ][κ  multiplying by the ply coordinate. Then, the mechanical strain is 

acquired by subtracting the thermal strain from the total strain. Finally, the ply stress 

can be obtained by multiplying the ]ˆ[Q  matrix of the ply with the mechanical strain. It 

can be expressed as below: 

][cos)'(][][ 0 κθεε ⋅⋅++=− zRk

Total

yx                                             (3.13) 

Tkyxk

Total

yxk

M

yx ∆⋅−= −−− ][][][ αεε                                                   (3.14) 

[ ] k

M

yxkkyx Q ][][ −− ⋅= εσ
)

                                                             (3.15) 

 

The computing procedure of the thermal induced stresses of composite tubular 

structures is shown in the following flow chart, Fig. 3.5. 
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Fig. 3.5 Procedure flow chart of in-plane stress calculation.  
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CHAPTER 4 

FINITE ELEMENT ANALYSIS 

In order to confirm the accuracy of the present method, finite element method 

was used here to make the comparison of the results obtained from the analytical close 

form solution. In general, the behavior of the structures subjected to various loadings 

can be well defined using finite element analysis, as long as the element type, meshing, 

and boundary conditions are set up appropriately. In this chapter, two 3-D finite element 

models were generated using commercial software, ANSYS 10.0. One is for rectangular 

beam, the other for tubular beam. The models are created as an input ANSYS code, 

which is provided in Appendix C.   

 

4.1 Composite Tubular Beam Model  

The 3D model shown in Fig. 4.1 is built using SOLID 46, which is a 3D 8-node 

layered structural solid element shown in Fig. 4.2. The element is designed to model 

layered thick shells or solids, and allows up to 250 various material layers. The element 

has three degrees of freedom on each node: translations on nodal x, y, and z directions. 
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Fig.4.1 The mesh and boundary condition of the finite element tube model 

 
Fig. 4.2 SOLID 46 Element Geometry  
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4.1.1 Model Description  

This 3D model fully contains 11,520 8-node brick elements and 12,852 nodes. 

Refer to Fig. 4.1, for the laminate thick direction, one element represents a single layer 

of laminate of the tube. As shown in Fig. 4.1, the circumference was divided to 36 

elements, and 20 elements were used in the length direction of the tube on each layer.   

 

4.1.2 Boundary Condition 

The boundary condition of the tube was set up as a cantilever beam structure. 

All the nodes on the cross-section at one end were constrained for all three degrees of 

freedom to prevent rigid body motion. On the other end, a 10 lb point load downward to 

the z direction is applied on the node located in the top of the circumference. To ensure 

plane remaining plane after deformation, all the nodes on this surface is coupled to the 

node, which the load applied to, in z direction using CP command. 

 

4.2 Composite Rectangular Beam Model 

This 3D composite rectangular beam model is similarly generated using SOLID 

46 element.  

 

4.2.1 Model Description  

As shown in Fig. 4.3, the model is constructed by 6,400 8-node brick elements 

with total 7,667 nodes. Identical to the tube model, each element represents one layer of 
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the laminate in the thickness direction. Furthermore, there are 10 by 40, in width and 

length direction respectively, elements in each layer of the laminate.  

 

 
Fig. 4.3 Mesh and Boundary Condition of the Finite Element Beam Model 

 

4.2.2 Boundary Condition 

Similar to the circular tube model, all nodes on the cross-sectional surface in the 

fixed end of the cantilever beam are constrained in three degrees of freedom, UX, UY, 

and UZ, in order to avoid the rigid body motion. Further, a point load upward to z 

direction is applied on the node located in the middle of the cross sectional plane in the 
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free end. All the nodes on the plane with load application are coupled together using CP 

command to enforce the movement in the z direction.     

 

4.3 Verification of Finite Element Model 

In order to correctly make comparison with the analytical results, the validity of 

the finite element model has to be first checked. The solution of the maximum 

displacement for cantilever beam made of isotropic material under a transverse load at 

its free end is known in literature. Hence, it is suitable to compare the maximum 

displacement of the finite element model using isotropic material. The maximum 

displacement of a cantilever beam under transverse load is given as: 
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where              
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In the above equations, E is the elastic modulus of the material, I is the moment 

of inertia, P is the applied load, L is the length of the beam, G is the shear modulus of 
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the material, and A is the area of the cross section. Data and material properties of the 

isotropic material are given in Table 4.1. 

 

 

Table 4.1 Data and Properties of the Model Using Isotropic Material  

Properties Circular Tube Rectangular Beam 

Elastic Modulus, E  (Msi) 30 

Shear Modulus, G  (Msi) 11.6 

Poisson's Ratio, v 0.3 

Applied Load, P  (lb) 10 

Length, L  (in) 10 

Radius, R*  (in) from 1.0 to 0.25   

Width, b  (in)  from 1.5 to 0.5 

Thickness, t  (in) 0.08 

Element Type SOLID 46 

          * 
2

io RR
R

+
=  

 

A comparison of the results between FEM and the present method is listed in 

Table 4.2 and Table 4.3. The difference between analytical results and finite element 

method results is no more than 2%. This clearly proves the validity of the finite element 

model using isotropic material, and gives confidence enough to apply these two models 

in composite materials. 
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Table 4.2 Comparison of Free-end Displacement between Analytical 

Solution and FEM results for the Tube 

Displacement in free end (in) radius, R 

(in)  Analytical solution FEM result 
% Difference 

1 -4.67E-04 -4.73E-04 1.29% 

0.75 -1.08E-03 -1.08E-03 0.49% 

0.5 -3.57E-03 -3.56E-03 -0.03% 

0.25 -2.77E-02 -2.76E-02 -0.30% 

  

Table 4.3 Comparison of Free-end Displacement between Analytical 

Solution and FEM results for the Rectangular Beam 

Displacement in free end (in) 
width, b (in)  

Analytical solution FEM result 
% Difference 

1.5 -1.74E+00 -1.70E+00 1.91% 

1.25 -2.08E+00 -2.05E+00 1.65% 

1 -2.60E+00 -2.57E+00 1.39% 

0.75 -3.47E+00 -3.43E+00 1.14% 

0.5 -5.21E+00 -5.16E+00 0.88% 
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CHAPTER 5 

RESULTS COMPARISON AND PARAMETRIC STUDIES 

In this chapter, in order to confirm the accuracy of present methods, the 

comparison between the results obtained from analytical solution and finite element 

solution is made. In addition, the geometries of the beam and the tube, fiber orientation, 

and stacking sequence play an important role in the stiffness of the composite 

structures. The effects of these on the distribution of in-plane stresses and interlaminar 

stress are also discussed. In this study, Carbon/Epoxy AS4/3501-6 is chosen as the 

material of both rectangular beam and circular tube. Its material properties are shown in 

Table 5.1. 

 

Table 5.1. Material properties of composite laminate  

Carbon/Epoxy AS4/3501-6 [15] 

Carbon/Epoxy AS4/3501-6 

1E  21.3 E6  psi 

32 EE =  1.5 E6   psi 

231312 ννν ==  0.27 

231312 GGG ==  1.0 E6   psi 

1α  -0.5 E-6   
F

inin
°

/  

32 αα =  15E-6   
F

inin
°

/  

plyt  0.005   in 
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5.1 In-Plane Stresses of Rectangular Laminated Composite Beam 

  The in-plane stresses of the rectangular composite beam with temperature 

effect can be obtained by using the approach presented in Chapter 2. This beam is 

cantilevered in one end, and a transverse force, q = 1 lb/in, is applied upward in the 

other end. Additionally, the stacking sequence of the laminate is 

S]45/0/90/0/90/45[ ±± , and the temperature is assumed 50 F°  higher than the 

stress-free temperature(assumed to be at the room temperature). The comparison of the 

results between analytical solution and finite element analysis is shown in Fig. 5.1. The 

deformation and the contour plot of the axial stress distribution of the composite beam 

are shown in Fig. 5.2. 

Axial In-Plane Stress Distribution at X=L/2
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Fig. 5.1 Normalized xσ distribution across the thickness of the beam.  
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As shown in Fig. 5.1, the in-plane stress of each layer obtained by finite element 

method and the present analytical method agree very well. Fig. 5.1 also indicates that 

the in-plane stress is symmetric with respect to the mid-plane of the laminate. However, 

with temperature included, the stress distribution across the thickness is no longer 

symmetric with respect to the mid-plane of the laminate. Moreover, it is also found that 

the outer °0 -ply exhibits higher temperature induced stress compared to the inner °0 -

ply. 

 

 
Fig. 5.2 Contour plot of axial in-plane stress distribution 
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5.2 Interlaminar Shear Stress of Rectangular Laminated Composite Beam 

In Chapter 2, it is concluded that thermal induced force and moment do not 

affect the distribution of interlaminar shear stresses of the rectangular composite beam, 

which is cantilevered in one end, and under a transverse load in the other end. The 

transverse load, q here is assumed to be 1 lb/in, and the laminate is with 

S]45/0/90/0/90/45[ ±±  lay-up. Further, 50 F°  of temperature change is assumed. 

Fig. 5.3 shows a comparison of the results between FEM model and analytical model.  
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Fig. 5.3 Normalized xzτ distribution across the thickness of the beam. 
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5.3 Axial In-Plane Stresses of Tubular Laminated Composite Beam 

The in-plane stress of the laminated composite tube along the axial direction (x-

direction) under temperature environment is discussed in Chapter 3. In this case, the 

stacking sequence of the composite tube is S]45/0/90/0/90/45[ ±± .Further, the tube 

is cantilevered on one side, and subjected a transverse load, q = 10 lb on the free end. 

The comparisons about xσ  of different layers of the laminate obtained from the finite 

element model and analytical solution are shown in following figures. Fig. 5.4 through 

5.7 shows the in-plane stresses of °45 , °− 45 , °90 , and °0  ply around the 

circumference of the tube, respectively. Fig. 5.8 through 5.11 depicts the stress contour 

of xσ  for each ply. As shown, the higher stress is located at the upper surface of °0  ply 

for any given x position. It is also noted that all of the stresses without temperature are 

zero at °= 90θ  and °270  where the neutral axis is located.  
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Fig. 5.4 xσ in °45  ply of the laminate around the circumference of the tube 
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Fig. 5.5 xσ in °− 45  ply of the laminate around the circumference of the tube 
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Fig. 5.6 xσ in °90  ply of the laminate around the circumference of the tube 
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Fig. 5.7 xσ in °0  ply of the laminate around the circumference of the tube 
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Fig. 5.8. Contour plot of the xσ  distribution for °45  ply with F°50  

  
 Fig. 5.9 Contour plot of the xσ  distribution for °− 45  ply with F°50  



 

 43 

  
Fig. 5.10 Contour plot of the xσ  distribution for °90  ply with F°50  

 
Fig. 5.11 Contour plot of the xσ  distribution for °0  ply with F°50  
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5.4 Stacking Sequence Effect 

In this section, the effect of stacking sequence of the laminate on the axial in-

plane stress is studied for both rectangular beam and circular tube by using the present 

analytical model. To examine the effects, three laminates with the same fiber 

orientations, but different stacking sequences are considered. S]45/0/90/0/90/45[ ±± , 

S]0/45/90/45[ 22 ±± , and T222 ]0/45/90/45[ ±±  are the three different lay ups chosen 

for study. The various results of the in-plane stresses for these three cases are observed. 

 

5.4.1 Rectangular Beam  

Fig. 5.12 through 5.14 shows axial in-plane stresses across the thickness of the 

beams with the three different lay-ups described above. The results indicate that the 

higher stress occurs in laminate with more °0  ply placed away from the mid-plane of 

the laminate. 
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Axial In-Plane Stress Distribution at x=L/2
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Fig. 5.12 Normalized xσ  distribution for S]45/0/90/0/90/45[ ±±  lay-up 
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Fig. 5.13 Normalized xσ  distribution for S]0/45/90/45[ 22 ±±  lay-up 
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Axial In-Plane Stress Distribution at x=L/2
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Fig. 5.14 Normalized xσ distribution for T222 ]0/45/90/45[ ±±  lay-up 

5.4.2 Tubular Beam 

Since the composite tubular cantilever beam studied here is subjected a 

downward transverse load on the free end, the maximum tensile stress is known 

occurring on the upper half part of the tube with 0=θ  in θ  domain. Hence, the 

variation of the axial in-plane stress across the thickness of the laminate in 0=θ  due to 

thermal effect is taken to be observed. The increased axial in-plane stress due to thermal 

expansion for three laminates with various stacking sequences is shown in Fig. 5.15, 

5.16, and 5.17, respectively. 
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Axial In-Plane Stress Distribution

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

-1.8 -1.5 -1.2 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 1.2 1.5 1.8

(ksi)

P
ly

Analytical Result

w temp. effect

Analytical Result
w/o temp. effect

 
Fig. 5.15 xσ distribution for tube with S]45/0/90/0/90/45[ ±±  lay-up  
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Fig. 5.16 xσ distribution for tube with S]0/45/90/45[ 22 ±±  lay-up. 
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Axial In-Plane Stress Distribution
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Fig. 5.17 xσ distribution for tube with T222 ]0/45/90/45[ ±±  lay-up 

 

From the above results, it is observed that varying stacking sequence does affect 

the magnitude of axial in-plane stress in each ply for the rectangular beam.   For the 

tubular bean, xσ  stress variation across the wall thickness is small since the bending is 

with respect to the mid-axis of the tube. It is also shown in the figures that the 

significant xσ  is induced in °0  and °90  plies when under temperature environment. 

Little thermal stresses are induced in °± 45  plies. In addition, the increased in-plane 

stresses due to thermal expansion are little affected by stacking sequence since the 

inducing of in-plane thermal stresses are due to the mismatch of the axial thermal 

expansion between each ply of the laminate. 
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5.5 Fiber Orientation Effect 

The directional dependence of laminated composite material is one of the 

important properties in the design of composite structure. In this section, the effect of 

fiber orientation of laminate on the axial in-plane stress is studied. Four symmetric lay-

ups with °±θ  and °0  are considered. °60 , °70 , °80 , and °90  are chosen as the value  

of fiber orientations of the laminate. The following figures represent the axial in-plane 

stresses of the tubes with these four different fiber orientations.  
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Fig. 5.18 xσ distribution for tube with S]0/60[ 42±  lay-up. 
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Fig. 5.19 xσ distribution for tube with S]0/70[ 42±  lay-up. 
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Axial In-Plane Stress Distribution
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Fig. 5.20 xσ distribution for tube with S]0/80[ 42±  lay-up. 
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Fig. 5.21 xσ distribution for tube with S]0/90[ 42±  lay-up. 

Table 5.2 Comparison of increased stresses in °0  ply due to thermal effect 

Stacking 

sequence 

Max. tensile stress 

with thermal effect 

Max. tensile stress 

w/o thermal effect 

Increased in-plane stress 

due to thermal effect 

S]0/60[ 42±  841.39 psi 393 psi 448.39 psi 

S]0/70[ 42±  1190.6 psi 399.1 psi 791.5 psi 

S]0/80[ 42±  1385.9 psi 401.18 psi 984.72 psi 

S]0/90[ 42±  1448.1 psi 401.69 psi 1046.41 psi 
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The results indicate that the fiber orientation of the laminate plays an important 

role in the thermal induced in-plane stresses. From the results, it is seen that the 

constituent of °0  and °90  plies exhibits the greatest significant thermal effect.     
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CHAPTER 6 

CONCLUSIONS 

Analytical closed-form expressions to analyze thermal induced stresses for 

laminated composite beams with rectangular and tubular cross-sections were developed. 

All derivations were based on modification of conventional lamination theory by using 

parallel axis theorem. For the circular composite tube, the stiffness matrices and thermal 

induced loads and moments were derived. The variation of stiffness along the contour is 

included. For rectangular beam, the narrow width of the beam is considered. All results 

of thermal stresses obtained from analytical model were compared with results obtained 

from finite element model built with the commercial software package, ANSYS 10. 

From this study, the following conclusions can be made. 

 

For cantilevered composite beams with rectangular cross-section, we have  

� The axial in-plane stresses of each ply obtained by the current developed 

method exhibit an excellent agreement with the results obtained from 

finite element analysis. 

� The interlaminar shear stresses of each ply calculated from present 

method are in a good agreement with the results obtained from finite 

element analysis. 
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� The interlaminar shear stress due to the transverse load does not appear 

to have any influence by the presence of uniform temperature. 

� While the set of plies is given, the stacking sequence of the laminate does 

not significantly affect the increased axial in-plane stress of the 

rectangular beam due to the thermal effect. 

 

For cantilevered composite beams with tubular cross-section, we obtain 

� The thermal induced stresses obtained by the present method give an 

excellent agreement with the finite element results. 

� The fiber orientation of the plies plays an important role on the thermal 

induced in-plane stresses. This is mainly caused by the thermal induced 

moments. The induced moments are due to the mismatch of the axial 

thermal expansion between each ply of the laminate. 

 

It is well understood that the analysis of moisture effect for laminated beam is 

analog to the thermal effect. Hence, the present method is also applicable for the 

analysis of moisture effect of laminated composite structure. 
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APPENDIX A 

 

 

TRANSFORMATIONS OF STIFFNESS MATRIX AND CTE  
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A.1 Transformation Matrices 

In this section, transformation matrices for stress and strain rotated about x-axis 

and z-axis are listed, respectively. 

A.1.1 Stress Transformation Matrices 

3D stress transformation matrix rotated a positive angle θ  about x-axis is given 

as: 


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T θσ                                           (A.1) 

where θcos=xc  and θsin=xs . 

For plane stress condition, the 2D stress transformation matrix can be reduced 

into: 




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
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=

x

2
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Additionally, 3D stress transformation matrix rotated a positive angle β  about 

z-axis is given as: 
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where βcos=zc  and βsin=zs  

2D stress transformation matrix can be written as: 
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A.1.2 Stain Transformation Matrices 

3D strain transformation matrix rotated a positive angle θ  about x-axis is given 

as: 
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where θcos=xc  and θsin=xs . 

For plane stress condition, the 2D stress transformation matrix can be reduced 

into: 
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Additionally, 3D strain transformation matrix rotated a positive angle β  about 

z-axis is given as: 
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where βcos=zc  and βsin=zs  

2D stress transformation matrix can be written as: 
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A.2 Stress and Strain Transformation from Material (1-2) Coordinate System to 

Laminate (x-y) Coordinate System  

 

The transformation of stress and strain from the laminate (x-y) coordinate 

system to the material (1-2) coordinate system can be expressed as:  
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Rewriting equation A.9, we have: 
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A.2 Transformation of Stiffness Matrices from Material (1-2) Coordinate System to 

Laminate (x-y) Coordinate System   

 

The relationship between stress and strain can be written as: 

yxyx Q
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εσ

                                                               (A.11) 

Where, ][Q  and ][Q  are the reduced stiffness matrices of lamina which represent the 

stress/strain relationship with respect to material (1-2) coordinate system and laminate 

(x-y) coordinate system, respectively. 

From equation A.9, A.10, and A.11, we have: 

yxyx TQTQT −
−

−
−

− ⋅⋅⋅=⋅⋅= ][][][][][][][][ 1

21

1 εεσ εσσ                        (A.12) 

Then, comparing equation A.11 and A.12, the general transformation equation of 

stiffness matrix from material to laminate coordinate system is obtained, and can be 

written as: 

 ][][][][ 1

εσ TQTQ ⋅⋅= −                                                          (A.13) 
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A.3 Transformation of Stiffness Matrix for the Lamina that First Rotated θ  about X-

Axis, then β  about Z-Axis 

 

The stiffness matrix is first rotated an angle θ  about x-axis. It can be written as: 
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The transformed stiffness matrix ][Q  is then rotated an angle β  about z-axis. It 

can be expressed as: 
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A.4 Transformation of Coefficient of Thermal Expansion 
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A.5 Closed-Form Solution of Overall Thermal Induced Load of the Tubular Beam 
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Where βcos=zc  and βsin=zs .    
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APPENDIX B 

 

 

MATLAB CODES FOR ANALYTICAL SOLUTIONS
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B.1 Main Program for Rectangular Beam 

 

 

clear all 

close all 

clc 

global angle nply tply q Q11 Q12 Q22 Q66 k abd a1 a2 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Define the Input Variables 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

syms theta 

angle=[0 0 -45 45 90 90 -45 45 0 0 -45 45 90 90 -45 45]*(pi/180); 

nply=16; 

tply=0.005; 

q=1; 

delT=0; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Define Material Properties 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

E1=21.3E6; 

E2=1.5E6; 

v12=0.27; 

G12=1.0E6; 

a1=-0.5E-6; 

a2=15E-6; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Q Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

v21=(v12*E2)/E1; 

Q11=E1/(1-v12*v21); 

Q12=(v12*E2)/(1-v12*v21); 

Q22=E2/(1-v12*v21); 

Q66=G12; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of A Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

A11=0; 

A12=0; 

A16=0; 

A22=0; 
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A26=0; 

A66=0; 

 

for k=1:nply 

     A11=A11+Qb11(k)*(h(k)-h(k-1)); 

end 

for k=1:nply 

     A12=A12+Qb12(k)*(h(k)-h(k-1)); 

end 

for k=1:nply 

     A16=A16+Qb16(k)*(h(k)-h(k-1)); 

end 

for k=1:nply 

     A22=A22+Qb22(k)*(h(k)-h(k-1)); 

end 

for k=1:nply 

     A26=A26+Qb26(k)*(h(k)-h(k-1)); 

end 

for k=1:nply 

     A66=A66+Qb66(k)*(h(k)-h(k-1)); 

end 

 

A=[A11 A12 A16; 

      A12 A22 A26; 

      A16 A26 A66]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of B Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

B11=0; 

B12=0; 

B16=0; 

B22=0; 

B26=0; 

B66=0; 

 

for k=1:nply 

    B11=B11+(1/2)*Qb11(k)*(h(k)^2-h(k-1)^2); 

end 

for k=1:nply 

     B12=B12+(1/2)*Qb12(k)*(h(k)^2-h(k-1)^2); 

end 

for k=1:nply 

     B16=B16+(1/2)*Qb16(k)*(h(k)^2-h(k-1)^2); 
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end 

for k=1:nply 

     B22=B22+(1/2)*Qb22(k)*(h(k)^2-h(k-1)^2); 

end 

for k=1:nply 

     B26=B26+(1/2)*Qb26(k)*(h(k)^2-h(k-1)^2); 

end 

for k=1:nply 

     B66=B66+(1/2)*Qb66(k)*(h(k)^2-h(k-1)^2); 

end 

 

B=[B11 B12 B16;  

      B12 B22 B26;  

      B16 B26 B66]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of D Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

D11=0; 

D12=0; 

D16=0; 

D22=0; 

D26=0; 

D66=0; 

 

for k=1:nply 

     D11=D11+(1/3)*Qb11(k)*(h(k)^3-h(k-1)^3); 

end 

for k=1:nply 

     D12=D12+(1/3)*Qb12(k)*(h(k)^3-h(k-1)^3); 

end 

for k=1:nply 

     D16=D16+(1/3)*Qb16(k)*(h(k)^3-h(k-1)^3); 

end 

for k=1:nply 

     D22=D22+(1/3)*Qb22(k)*(h(k)^3-h(k-1)^3); 

end 

for k=1:nply 

     D26=D26+(1/3)*Qb26(k)*(h(k)^3-h(k-1)^3); 

end 

for k=1:nply 

     D66=D66+(1/3)*Qb66(k)*(h(k)^3-h(k-1)^3); 

end 
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D=[D11 D12 D16; 

      D12 D22 D26; 

      D16 D26 D66]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Thermal Induced loads and Moments 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

NTx=0; 

NTy=0; 

NTxy=0; 

MTx=0; 

MTy=0; 

MTxy=0; 

 

for k=1:nply 

    NTx=NTx+(delT*(h(k)-h(k-1))*(Qb11(k)*alphax(k)+Qb12(k)*alphay(k) 

+Qb16(k)*alphaxy(k))); 

end 

for k=1:nply 

    NTy=NTy+delT*(h(k)-h(k-1))*(Qb12(k)*alphax(k)+Qb22(k)*alphay(k) 

+Qb26(k)*alphaxy(k)); 

end 

for k=1:nply 

    NTxy=NTxy+delT*(h(k)-h(k-1))*(Qb16(k)*alphax(k)+Qb26(k)*alphay(k) 

+Qb66(k)*alphaxy(k)); 

end 

 

for k=1:nply 

    MTx=MTx+((1/2)*delT*((h(k))^2-(h(k-1))^2)*(Qb11(k)*alphax(k) 

+Qb12(k)*alphay(k)+Qb16(k)*alphaxy(k))); 

end 

for k=1:nply 

    MTy=MTy+((1/2)*delT*((h(k))^2-(h(k-1))^2)*(Qb12(k)*alphax(k) 

+Qb22(k)*alphay(k)+Qb26(k)*alphaxy(k))); 

end 

for k=1:nply 

    MTxy=MTxy+((1/2)*delT*((h(k))^2-(h(k1))^2)*(Qb16(k)*alphax(k) 

+Qb26(k)*alphay(k)+Qb66(k)*alphaxy(k))); 

end 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Mid-Plane Strain and Curvature 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ABD=[A B; B D]; 
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abd=inv(ABD); 

a=[abd(1,1) abd(1,2) abd(1,3); 

     abd(2,1) abd(2,2) abd(2,3); 

     abd(3,1) abd(3,2) abd(3,3)]; 

b=[abd(1,4) abd(1,5) abd(1,6); 

      abd(2,4) abd(2,5) abd(2,6); 

      abd(3,4) abd(3,5) abd(3,6)]; 

bt=[abd(4,1) abd(4,2) abd(4,3); 

       abd(5,1) abd(5,2) abd(5,3); 

       abd(6,1) abd(6,2) abd(6,3)]; 

d=[abd(4,4) abd(4,5) abd(4,6); 

     abd(5,4) abd(5,5) abd(5,6); 

     abd(6,4) abd(6,5) abd(6,6)]; 

    

NM=[0; 0; 0; -5; 0; 0]; 

NTMT=[NTx; NTy; NTxy; MTx; MTy; MTxy]; 

NMb=NM+NTMT; 

 

E0K=abd*NMb 

E0=[E0K(1,1); E0K(2,1); E0K(3,1)]; 

K=[E0K(4,1); E0K(5,1); E0K(6,1)]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of In-Plane Stresses 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

for k=1:nply 

    stress=([Qb11(k) Qb12(k) Qb16(k); Qb12(k) Qb22(k) Qb26(k); Qb16(k) Qb26(k) 

Qb66(k)]*((E0+h(k)*K)-delT*[alphax(k); alphay(k); alphaxy(k)])+[Qb11(k) 

Qb12(k) Qb16(k); Qb12(k) Qb22(k) Qb26(k); Qb16(k) Qb26(k) 

Qb66(k)]*((E0+h(k-1)*K)-delT*[alphax(k); alphay(k); alphaxy(k)]))/2 

end 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Interlaminar Shear Stresses 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Tfirst=0; 

Tsecond=0; 

for k=1:nply 

    Tfirst=Tfirst+QBb(k)*(h(k)-h(k-1)); 

    Tsecond=Tsecond+(1/2)*(QDb(k)*(h(k)^2-h(k-1)^2)); 

    Txz(:,:,k)=-q*(Tfirst+Tsecond); 

end 
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B.2 Main Program for Circular Tube 

 

 

clear all 

close all 

clc 

syms theta 

global angle nply tply R Q11 Q12 Q22 Q66 k a1 a2  

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Define the Input Variables 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

angle=[45 -45 90 0 90 0 45 -45 -45 45 0 90 0 90 -45 45]*(pi/180); 

nply=16; 

tply=0.005; 

R=1; 

delT=50; 

length=10; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Define Material Properties 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

E1=21.3E6; 

E2=1.5E6; 

v12=0.27; 

G12=1.0E6; 

a1=-0.5E-6; 

a2=15E-6; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Q Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

v21=(v12*E2)/E1; 

Q11=E1/(1-v12*v21); 

Q12=(v12*E2)/(1-v12*v21); 

Q22=E2/(1-v12*v21); 

Q66=G12; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of A-Bar Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

A11=0; 

A12=0; 

A16=0; 
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A22=0; 

A26=0; 

A66=0; 

 

for k=1:nply 

    A11=A11+R*(h(k)-h(k-1))*(quad('Qh11',0,2*pi)); 

end 

for k=1:nply 

    A12=A12+R*(h(k)-h(k-1))*(quad('Qh12',0,2*pi)); 

end 

for k=1:nply 

    A16=A16+R*(h(k)-h(k-1))*(quad('Qh16',0,2*pi)); 

end 

for k=1:nply 

    A22=A22+R*(h(k)-h(k-1))*(quad('Qh22',0,2*pi)); 

end 

for k=1:nply 

    A26=A26+R*(h(k)-h(k-1))*(quad('Qh26',0,2*pi)); 

end 

for k=1:nply 

    A66=A66+R*(h(k)-h(k-1))*(quad('Qh66',0,2*pi)); 

end 

 

A=[A11 A12 A16; 

      A12 A22 A26; 

      A16 A26 A66]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of B-Bar Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

B11=0; 

B12=0; 

B16=0; 

B22=0; 

B26=0; 

B66=0; 

 

for k=1:nply 

    B11=B11+(R/2)*(h(k)^2-h(k-1)^2)*(quad('Qh11',0,2*pi))+(R^2)*(h(k)-h(k-1)) 

*(quad('cQh11',0,2*pi)); 

end 

for k=1:nply 

    B12=B12+(R/2)*(h(k)^2-h(k-1)^2)*(quad('Qh12',0,2*pi))+(R^2)*(h(k)-h(k-1)) 

*(quad('cQh12',0,2*pi)); 
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end 

for k=1:nply 

    B16=B16+(R/2)*(h(k)^2-h(k-1)^2)*(quad('Qh16',0,2*pi))+(R^2)*(h(k)-h(k-1)) 

*(quad('cQh16',0,2*pi)); 

end 

for k=1:nply 

    B22=B22+(R/2)*(h(k)^2-h(k-1)^2)*(quad('Qh22',0,2*pi))+(R^2)*(h(k)-h(k-1)) 

*(quad('cQh22',0,2*pi)); 

end 

for k=1:nply 

    B26=B26+(R/2)*(h(k)^2-h(k-1)^2)*(quad('Qh26',0,2*pi))+(R^2)*(h(k)-h(k-1)) 

*(quad('cQh26',0,2*pi)); 

end 

for k=1:nply 

    B66=B66+(R/2)*(h(k)^2-h(k-1)^2)*(quad('Qh66',0,2*pi))+(R^2)*(h(k)-h(k-1)) 

*(quad('cQh66',0,2*pi)); 

end 

 

B=[B11 B12 B16;  

      B12 B22 B26;  

      B16 B26 B66]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of D-Bar Matrix 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

D11=0; 

D12=0; 

D16=0; 

D22=0; 

D26=0; 

D66=0; 

 

 

for k=1:nply 

    D11=D11+(R/3)*(h(k)^3-h(k-1)^3)*(quad('Qh11',0,2*pi))+(R^2)*(h(k)^2-h(k-1)^2) 

*(quad('cQh11',0,2*pi))+(R^3)*(h(k)-h(k-1))*(quad('ccQh11',0,2*pi)); 

end 

for k=1:nply 

    D12=D12+(R/3)*(h(k)^3-h(k-1)^3)*(quad('Qh12',0,2*pi))+(R^2)*(h(k)^2-h(k-1)^2) 

*(quad('cQh12',0,2*pi))+(R^3)*(h(k)-h(k-1))*(quad('ccQh12',0,2*pi)); 

end 

for k=1:nply 

    D16=D16+(R/3)*(h(k)^3-h(k-1)^3)*(quad('Qh16',0,2*pi))+(R^2)*(h(k)^2-h(k-1)^2) 

*(quad('cQh16',0,2*pi))+(R^3)*(h(k)-h(k-1))*(quad('ccQh16',0,2*pi)); 
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end 

for k=1:nply 

    D22=D22+(R/3)*(h(k)^3-h(k-1)^3)*(quad('Qh22',0,2*pi))+(R^2)*(h(k)^2-h(k-1)^2) 

*(quad('cQh22',0,2*pi))+(R^3)*(h(k)-h(k-1))*(quad('ccQh22',0,2*pi)); 

end 

for k=1:nply 

    D26=D26+(R/3)*(h(k)^3-h(k-1)^3)*(quad('Qh26',0,2*pi))+(R^2)*(h(k)^2-h(k-1)^2) 

*(quad('cQh26',0,2*pi))+(R^3)*(h(k)-h(k-1))*(quad('ccQh26',0,2*pi)); 

end; 

for k=1:nply 

    D66=D66+(R/3)*(h(k)^3-h(k-1)^3)*(quad('Qh66',0,2*pi))+(R^2)*(h(k)^2-h(k-1)^2) 

*(quad('cQh66',0,2*pi))+(R^3)*(h(k)-h(k-1))*(quad('ccQh66',0,2*pi)); 

end 

 

D=[D11 D12 D16; 

      D12 D22 D26; 

      D16 D26 D66]; 

 

ABD=[A B; 

            B D]; 

 

NM=[0; 0; 0; 50; 0; 0]; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Thermal Induced loads and Moments 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

NTxp=0; 

NTyp=0; 

NTxyp=0; 

MTxp=0; 

MTyp=0; 

MTxyp=0; 

 

for k=1:nply 

    NTxp=NTxp+delT*(h(k)-h(k-1))*(Qh11(theta)*alphax(theta) 

+Qh12(theta)*alphay(theta)+Qh16(theta)*alphaxy(theta)); 

end 

for k=1:nply 

    NTyp=NTyp+delT*(h(k)-h(k-1))*(Qh12(theta)*alphax1(theta) 

+Qh22(theta)*alphay1(theta)+Qh26(theta)*alphaxy1(theta)); 

end 

for k=1:nply 

    NTxyp=NTxyp+delT*(h(k)-h(k-1))*(Qh16(theta)*alphax(theta) 

+Qh26(theta)*alphay(theta)+Qh66(theta)*alphaxy(theta)); 
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end 

 

for k=1:nply 

    MTxp=MTxp+(1/2)*delT*((h(k))^2-(h(k-1))^2)*(Qh11(theta)*alphax(theta) 

+Qh12(theta)*alphay(theta)+Qh16(theta)*alphaxy(theta)); 

end 

for k=1:nply 

    MTyp=MTyp+(1/2)*delT*((h(k))^2-(h(k-1))^2)*(Qh12(theta)*alphax1(theta) 

+Qh22(theta)*alphay1(theta)+Qh26(theta)*alphaxy1(theta)); 

end 

for k=1:nply 

    MTxyp=MTxyp+(1/2)*delT*((h(k))^2-(h(k-1))^2)*(Qh16(theta)*alphax(theta) 

+Qh26(theta)*alphay(theta)+Qh66(theta)*alphaxy(theta)); 

end 

 

NTx=NTxp; 

NTy=NTyp; 

NTxy=NTxyp; 

MTx=MTxp+R*cos(theta)*NTxp; 

MTy=MTyp+R*cos(theta)*NTyp; 

MTxy=MTxyp+R*cos(theta)*NTxyp; 

 

NTxb=int(NTx*R,theta,0,2*pi); 

NTyb=int(NTy*R,theta,0,2*pi); 

NTxyb=int(NTxy*R,theta,0,2*pi); 

 

MTxb=int(MTx*R,theta,0,2*pi); 

MTyb=int(MTy*R,theta,0,2*pi); 

MTxyb=int(MTxy*R,theta,0,2*pi); 

 

NTb=[NTxb; NTyb; NTxyb]; 

 

MTb=[MTxb; MTyb; MTxyb]; 

 

NMTb=[NTb; MTb]; 

NMb=NM+NMTb; 

 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

% Calculation of Mid-Plane Strain and Curvature 

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

midstrain=vpa(inv(ABD)*NMb,5) 

 

E0=[midstrain(1,1); midstrain(2,1); midstrain(3,1)]; 

K=[midstrain(4,1); midstrain(5,1); midstrain(6,1)]; 
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B.3 Functions Used in Main Programs 

 

 

function y=h(x) 

global nply tply 

y=-(nply/2)*tply+x*tply; 

 

function y = Qb11(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^4*Q11+sin(angle(k)).^4*Q22+2*(Q12+2*Q66)*cos(angle(k)).^2 

*sin(angle(k)).^2; 

 

function y = Qb12(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^2*sin(angle(k)).^2*(Q11+Q22-4*Q66)+(cos(angle(k)).^4 

+sin(angle(k)).^4)*Q12; 

 

function y = Qb16(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^3*sin(angle(k))*(Q11-Q12-2*Q66)-cos(angle(k))*sin(angle(k)).^3 

*(Q22-Q12-2*Q66); 

 

function y = Qb22(x) 

global angle Q11 Q12 Q22 Q66 k 

y=sin(angle(k)).^4*Q11+cos(angle(k)).^4*Q22+2*(Q12+2*Q66)*cos(angle(k)).^2 

*sin(angle(k)).^2; 

 

function y = Qb26(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k))*sin(angle(k)).^3*(Q11-Q12-2*Q66)-cos(angle(k)).^3*sin(angle(k)) 

*(Q22-Q12-2*Q66); 

 

function y = Qb66(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^2*sin(angle(k)).^2*(Q11+Q22-2*Q12-2*Q66)+(cos(angle(k)).^4 

+sin(angle(k)).^4)*Q66; 

 

function y = QBb(x) 

global angle Q11 Q12 Q22 Q66 k abd 

y=Qb11(k)*abd(1,4)+Qb12(k)*abd(2,4)+Qb16(k)*abd(3,4); 

 

function y = QDb(x) 

global angle Q11 Q12 Q22 Q66 k abd 

y=Qb11(k)*abd(4,4)+Qb12(k)*abd(5,4)+Qb16(k)*abd(6,4); 
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function y = alphax(x) 

global angle a1 a2 k 

y=a1*cos(-angle(k))^2+a2*sin(-angle(k))^2*cos(-x)^2; 

 

function y = alphay(x) 

global angle a1 a2 k 

y=a1*sin(-angle(k))^2+a2*cos(-angle(k))^2*cos(-x)^2; 

 

function y = alphaxy(x) 

global angle a1 a2 k 

y=-2*a1*cos(-angle(k))*sin(-angle(k))+2*a2*cos(-angle(k))*sin(-angle(k))*cos(-x)^2; 

 

function y = CTExy(x) 

global angle a1 a2 k 

y=[alphax(x); alphay(x); alphaxy(x)]; 

 

function y = Qh11(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^4*Q11+sin(angle(k)).^4*cos(x).^4*Q22+2*cos(angle(k)).^2 

*sin(angle(k)).^2*cos(x).^2*Q12+4*cos(angle(k)).^2*sin(angle(k)).^2*cos(x).^2 

*Q66; 

 

function y = Qh12(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^2*sin(angle(k)).^2*Q11+cos(angle(k)).^2*sin(angle(k)).^2*cos(x).^4

*Q22+(cos(angle(k)).^4+sin(angle(k)).^4)*cos(x).^2*Q12-4*cos(angle(k)).^2 

*sin(angle(k)).^2*cos(x).^2*Q66; 

 

function y = Qh16(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^3*sin(angle(k))*Q11-cos(angle(k))*sin(angle(k)).^3*cos(x).^4 

*Q22+(cos(angle(k))*sin(angle(k)).^3-cos(angle(k)).^3*sin(angle(k)))*cos(x).^2 

*Q12+2*(cos(angle(k))*sin(angle(k)).^3-cos(angle(k)).^3*sin(angle(k)))*cos(x).^2 

*Q66; 

 

function y = Qh22(x) 

global angle Q11 Q12 Q22 Q66 k 

y=sin(angle(k)).^4*Q11+cos(angle(k)).^4*cos(x).^4*Q22+2*cos(angle(k)).^2 

*sin(angle(k)).^2*cos(x).^2*Q12+4*cos(angle(k)).^2*sin(angle(k)).^2*cos(x).^2 

*Q66; 

function y = Qh26(x) 

global angle Q11 Q12 Q22 Q66 k 
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y=cos(angle(k))*sin(angle(k)).^3*Q11-cos(angle(k)).^3*sin(angle(k))*cos(x).^4 

*Q22+(cos(angle(k)).^3*sin(angle(k))-cos(angle(k))*sin(angle(k)).^3)*cos(x).^2 

*Q12+2*(cos(angle(k)).^3*sin(angle(k))-cos(angle(k))*sin(angle(k)).^3)*cos(x).^2 

*Q66; 

 

function y = Qh66(x) 

global angle Q11 Q12 Q22 Q66 k 

y=cos(angle(k)).^2*sin(angle(k)).^2*Q11+cos(angle(k)).^2*sin(angle(k)).^2*cos(x).^4

*Q22-2*cos(angle(k)).^2*sin(angle(k)).^2*cos(x).^2*Q12+(cos(angle(k)).^2 

+sin(angle(k)).^2).^2*cos(x).^2*Q66; 

 

function y = cQh11(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh11(x).*cos(x); 

 

function y = cQh12(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh12(x).*cos(x); 

 

function y = cQh16(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh16(x).*cos(x); 

 

function y = cQh22(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh22(x).*cos(x); 

 

function y = cQh26(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh26(x).*cos(x); 

function y = cQh66(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh66(x).*cos(x); 

 

function y = ccQh11(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh11(x).*cos(x).^2; 

 

function y = ccQh12(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh12(x).*cos(x).^2; 

 

function y = ccQh16(x) 

global angle Q11 Q12 Q22 Q66 k 
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y=Qh16(x).*cos(x).^2; 

 

function y = ccQh22(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh22(x).*cos(x).^2; 

 

function y = ccQh26(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh26(x).*cos(x).^2; 

 

function y = ccQh66(x) 

global angle Q11 Q12 Q22 Q66 k 

y=Qh66(x).*cos(x).^2; 
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C.1 Ansys 10 Batch Code for Rectangular Beam 

 

 

/FILNAM, Composite beam  

/TITLE, Composite Beam 

 

/UNITS,BIN 

/PREP7 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Define the input varianles 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

width=0.5 

length=10 

tply=0.005 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Define Material Properties 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

!Carbon/Epoxy AS4/3501-6 

 

MP,EX,1,21.3E6 

MP,EY,1,1.5E6 

MP,EZ,1,1.5E6 

MP,PRXY,1,0.27 

MP,PRXZ,1,0.27 

MP,PRYZ,1,0.27 

MP,GXY,1,1.0E6 

MP,GXZ,1,1.0E6 

MP,GYZ,1,1.0E6 

MP,ALPX,1,-0.5E-6 

MP,ALPY,1,15E-6 

MP,ALPZ,1,15E-6 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Define Element Type and Real Constants 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

 

ET,1,SOLID46 

 

R,1 

RMODIF,1,1,1,0,0,0,0 
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RMODIF,1,7,0 

RMODIF,1,13,1,45,tply 

 

R,2 

RMODIF,2,1,1,0,0,0,0 

RMODIF,2,7,0 

RMODIF,2,13,1,-45,tply 

 

R,3 

RMODIF,3,1,1,0,0,0,0 

RMODIF,3,7,0 

RMODIF,3,13,1,90,tply 

 

R,4 

RMODIF,4,1,1,0,0,0,0 

RMODIF,4,7,0 

RMODIF,4,13,1,0,tply 

 

R,5 

RMODIF,5,1,1,0,0,0,0 

RMODIF,5,7,0 

RMODIF,5,13,1,90,tply 

 

R,6 

RMODIF,6,1,1,0,0,0,0 

RMODIF,6,7,0 

RMODIF,6,13,1,0,tply 

 

R,7 

RMODIF,7,1,1,0,0,0,0 

RMODIF,7,7,0 

RMODIF,7,13,1,45,tply 

 

R,8 

RMODIF,8,1,1,0,0,0,0 

RMODIF,8,7,0 

RMODIF,8,13,1,-45,tply 

 

R,9 

RMODIF,9,1,1,0,0,0,0 

RMODIF,9,7,0 

RMODIF,9,13,1,-45,tply 

 

R,10 
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RMODIF,10,1,1,0,0,0,0 

RMODIF,10,7,0 

RMODIF,10,13,1,45,tply 

 

R,11 

RMODIF,11,1,1,0,0,0,0 

RMODIF,11,7,0 

RMODIF,11,13,1,0,tply 

 

R,12 

RMODIF,12,1,1,0,0,0,0 

RMODIF,12,7,0 

RMODIF,12,13,1,90,tply 

 

R,13 

RMODIF,13,1,1,0,0,0,0 

RMODIF,13,7,0 

RMODIF,13,13,1,0,tply 

 

R,14 

RMODIF,14,1,1,0,0,0,0 

RMODIF,14,7,0 

RMODIF,14,13,1,90,tply 

 

R,15 

RMODIF,15,1,1,0,0,0,0 

RMODIF,15,7,0 

RMODIF,15,13,1,-45,tply 

 

R,16 

RMODIF,16,1,1,0,0,0,0 

RMODIF,16,7,0 

RMODIF,16,13,1,45,tply 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Define the Geometry of the Beam 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

*DO,I,1,16,1 

K,1+4*(I-1),0,-width/2,tply*(I-1) 

K,2+4*(I-1),0,width/2,tply*(I-1) 

K,3+4*(I-1),length,width/2,tply*(I-1) 

K,4+4*(I-1),length,-width/2,tply*(I-1) 

A,1+4*(I-1),2+4*(I-1),3+4*(I-1),4+4*(I-1) 
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*ENDDO 

 

*DO,K,1,16,1 

VOFFST,K,-tply 

*ENDDO 

 

NUMMRG,KP,1.0e-4 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Define number of the Element on Each Line 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

ALLSEL 

LSEL,S,LENGTH,,width 

lplot 

LESIZE,ALL,,,10 

 

ALLSEL 

LSEL,S,LENGTH,,10 

lplot 

LESIZE,ALL,,,50 

 

ALLSEL 

LSEL,S,LENGTH,,tply 

lplot 

LESIZE,ALL,,,1 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Mesh the Volumes 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

*DO,I,1,16,1 

ALLSEL 

TYPE,1, 

ESYS,0 

MAT,1, 

REAL,16-(I-1) 

VMESH,I 

*ENDDO 

EPLOT 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Merge All Coincident Nedes,Elements, and Key points 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
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ALLSEL 

NUMMRG,NODE,1.0e-4 

NUMMRG,ELEM,1.0e-4 

NUMMRG,KP,1.0e-4 

EPLOT 

 

CSYS,0 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

! Apply Constraints, Load, and Temperature Change 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

ALLSEL 

NSEL,S,LOC,X,0 

D,ALL,ALL,0 

 

ALLSEL 

NSEL,S,LOC,X,length 

CP,1,UZ,ALL 

 

ALLSEL 

F,4555,FZ,width 

EPLOT 

 

TREF,0 

TUNIF,50 

 

ALLSEL 

/SOLU 

SOLVE 

FINISH 
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C.2 Ansys 10 Batch Code for Circular Tube 

 

 

/FILNAM, Composite Tube  

/TITLE, Composite Tube 

 

/UNITS,BIN 

/PREP7 

 

LOCAL,11,CYLIN,0,0,0,0,90,90 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Define the input varianles 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

tply=0.005 

r=1+tply*8 

length=10 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Define Material Properties 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

!Carbon/Epoxy AS4/3501-6 

MP,EX,1,21.3E6 

MP,EY,1,1.5E6 

MP,EZ,1,1.5E6 

MP,PRXY,1,0.27 

MP,PRXZ,1,0.27 

MP,PRYZ,1,0.27 

MP,GXY,1,1.0E6 

MP,GXZ,1,1.0E6 

MP,GYZ,1,1.0E6 

MP,ALPX,1,-0.5E-6 

MP,ALPY,1,15E-6 

MP,ALPZ,1,15E-6 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Define Element Type and Real Constants 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

 

ET,1,SOLID46 

 

R,1 
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RMODIF,1,1,1,0,0,0,0 

RMODIF,1,7,0 

RMODIF,1,13,1,45,tply 

 

R,2 

RMODIF,2,1,1,0,0,0,0 

RMODIF,2,7,0 

RMODIF,2,13,1,-45,tply 

 

R,3 

RMODIF,3,1,1,0,0,0,0 

RMODIF,3,7,0 

RMODIF,3,13,1,90,tply 

 

R,4 

RMODIF,4,1,1,0,0,0,0 

RMODIF,4,7,0 

RMODIF,4,13,1,0,tply 

 

R,5 

RMODIF,5,1,1,0,0,0,0 

RMODIF,5,7,0 

RMODIF,5,13,1,90,tply 

 

R,6 

RMODIF,6,1,1,0,0,0,0 

RMODIF,6,7,0 

RMODIF,6,13,1,0,tply 

 

R,7 

RMODIF,7,1,1,0,0,0,0 

RMODIF,7,7,0 

RMODIF,7,13,1,45,tply 

 

R,8 

RMODIF,8,1,1,0,0,0,0 

RMODIF,8,7,0 

RMODIF,8,13,1,-45,tply 

 

R,9 

RMODIF,9,1,1,0,0,0,0 

RMODIF,9,7,0 

RMODIF,9,13,1,-45,tply 
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R,10 

RMODIF,10,1,1,0,0,0,0 

RMODIF,10,7,0 

RMODIF,10,13,1,45,tply 

 

R,11 

RMODIF,11,1,1,0,0,0,0 

RMODIF,11,7,0 

RMODIF,11,13,1,0,tply 

 

R,12 

RMODIF,12,1,1,0,0,0,0 

RMODIF,12,7,0 

RMODIF,12,13,1,90,tply 

 

R,13 

RMODIF,13,1,1,0,0,0,0 

RMODIF,13,7,0 

RMODIF,13,13,1,0,tply 

 

R,14 

RMODIF,14,1,1,0,0,0,0 

RMODIF,14,7,0 

RMODIF,14,13,1,90,tply 

 

R,15 

RMODIF,15,1,1,0,0,0,0 

RMODIF,15,7,0 

RMODIF,15,13,1,-45,tply 

 

R,16 

RMODIF,16,1,1,0,0,0,0 

RMODIF,16,7,0 

RMODIF,16,13,1,45,tply 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Define the Geometry of the Beam 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

CSYS,11 

 

*DO,I,1,16,1 

K,1+4*(I-1),r-tply*(I-1),0,0 

K,2+4*(I-1),r-tply*(I-1),90,0 
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K,3+4*(I-1),r-tply*(I-1),180,0 

K,4+4*(I-1),r-tply*(I-1),270,0 

K,65+4*(I-1),r-tply*(I-1),0,length 

K,66+4*(I-1),r-tply*(I-1),90,length 

K,67+4*(I-1),r-tply*(I-1),180,length 

K,68+4*(I-1),r-tply*(I-1),270,length 

L,1+4*(I-1),2+4*(I-1) 

L,2+4*(I-1),3+4*(I-1) 

L,3+4*(I-1),4+4*(I-1) 

L,4+4*(I-1),1+4*(I-1) 

L,65+4*(I-1),66+4*(I-1) 

L,66+4*(I-1),67+4*(I-1) 

L,67+4*(I-1),68+4*(I-1) 

L,68+4*(I-1),65+4*(I-1) 

L,1+4*(I-1),65+4*(I-1) 

L,2+4*(I-1),66+4*(I-1) 

L,3+4*(I-1),67+4*(I-1) 

L,4+4*(I-1),68+4*(I-1) 

*ENDDO 

 

*DO,J,1,16,1 

AL,1+12*(J-1),9+12*(J-1),5+12*(J-1),10+12*(J-1) 

AL,2+12*(J-1),10+12*(J-1),6+12*(J-1),11+12*(J-1) 

AL,3+12*(J-1),11+12*(J-1),7+12*(J-1),12+12*(J-1) 

AL,4+12*(J-1),12+12*(J-1),8+12*(J-1),9+12*(J-1) 

*ENDDO 

 

*DO,K,1,64,1 

VOFFST,K,-tply 

*ENDDO 

 

NUMMRG,KP,1.0e-4 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Define number of the Element on Each Line 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

LSEL,S,,,1,8,1 

*DO,L,1,15,1 

LSEL,A,,,1+12*L,8+12*L,1 

*ENDDO 

lplot 

LESIZE,ALL,,,9 
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LSEL,S,,,9,12,1 

*DO,M,1,15,1 

LSEL,A,,,9+12*M,12+12*M,1 

*ENDDO 

lplot 

LESIZE,ALL,,,20 

 

CSYS,0 

 

LSEL,S,LOC,Z,0 

LSEL,R,LOC,X,0 

LESIZE,ALL,,,1 

 

LSEL,S,LOC,Y,0 

LSEL,R,LOC,X,0 

LESIZE,ALL,,,1 

 

LSEL,S,LOC,Z,0 

LSEL,R,LOC,X,length 

LESIZE,ALL,,,1 

 

LSEL,S,LOC,Y,0 

LSEL,R,LOC,X,length 

LESIZE,ALL,,,1 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Mesh the Volumes 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

ALLSEL 

*DO,N,1,16,1 

TYPE,1, 

ESYS,0 

MAT,1, 

REAL,N 

VMESH,1+4*(N-1),4+4*(N-1),1 

*ENDDO 

EPLOT 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Merge All Coincident Nedes,Elements, and Key points 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
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ALLSEL 

NUMMRG,NODE,1.0e-4 

NUMMRG,ELEM,1.0e-4 

NUMMRG,KP,1.0e-4 

EPLOT 

 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

!Apply Constraints, Load, and Temperature Change 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

NSEL,S,LOC,X,0 

D,ALL,ALL,0 

 

NSEL,S,LOC,X,length 

CP,1,UZ,ALL 

F,11,FZ,-10 

 

TREF,0 

TUNIF,50 

 

EPLOT 

 

ALLSEL 

/SOLU 

SOLVE 

FINISH
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