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ABSTRACT 

 

STRESS DISTRIBUTION AND STRENGTH PREDICTION 

OF COMPOSITE LAMINATES WITH 

MULTIPLE HOLES 

 

 

Publication No. ______ 

 

Brian Esp, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Wen S. Chan  

The major purpose of this study was to investigate failure of composite 

laminates with multiple unloaded holes in close proximity.  The least square boundary 

collocation method for anisotropic materials was utilized to determine the state of 

stress.  The approach utilized collocation on both the internal and external boundaries, 

making it relatively easy to implement.  The method compared favorably to both 

published and finite element solutions. 

A failure prediction approach for an infinite, symmetric and balanced laminate, 

with two holes in close proximity was presented.  The baseline material for 
 iv



 v

consideration was IM7/977-3, a carbon fiber/epoxy lamina.  The failure prediction 

method was an extension of the Whitney-Nuismer point stress failure criterion and was 

flexible enough to account for an arbitrary characteristic dimension value.  Conditions 

for holes oriented transverse to the load and in-line with the load were considered.  Both 

the “hole interaction effect” and “hole size effect” were simultaneously included in the 

failure prediction.  Multiple hole spacings, hole size ratios, and layups were considered 

for stress distribution and strength prediction.  For two equal holes oriented transverse 

to the load, the predicted strength was at least 95.0% of the single hole strength when 

the center to center distance divided by diameter, or l/D, was ≥ 3.5.  For this same 

condition, the strength prediction response was nearly layup independent for l/D ≥ 3.0.  

The presented failure prediction approach was compared to published experimental data 

and was shown to have good correlation.  A series of design curves were presented that 

allow for the quick determination of a structure’s strength with two holes by only 

requiring the characteristic dimension for a single hole. 

Two approaches to approximately determine the orthotropic stress concentration 

factor by using only two parameters were presented.  Ten composite materials were 

investigated to determine the accuracy of the approximation for a variety of material 

systems.  The results showed that a good approximation to the orthotropic stress 

concentration factor can be obtained by using only the parameters Ex/Ey and Ex/Gxy, 

regardless of the material system. 

 



 

 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS....................................................................................... iii 
 
ABSTRACT .............................................................................................................. iv 
 
LIST OF ILLUSTRATIONS..................................................................................... x 
 
LIST OF TABLES..................................................................................................... xiii 
 
Chapter 
 
 1. INTRODUCTION.......................................................................................... 1 
 
  1.1 Background.............................................................................................. 1 
 
  1.2 Research Problem and Approach............................................................. 4 
 
  1.3 Objective and Hypothesis ........................................................................ 5 
 
  1.4 Outline of Dissertation............................................................................. 6 
 
 2.  LITERATURE REVIEW.............................................................................. 7 
 
  2.1 Stress Distribution of Composites with Cutouts...................................... 7 
 
   2.1.1 Closed Form Methods...................................................................... 7 
     
   2.1.2 Numerical Methods.......................................................................... 8 
 
    2.1.2.1 Series Solutions ..................................................................... 9 
 
    2.1.2.2 Finite Element Methods......................................................... 12 
 
    2.1.2.3 Other Methods ....................................................................... 13 
 
  2.2 Strength Prediction of Composites with Cutouts..................................... 14 
 

 vi



   2.2.1 Point Stress and Average Stress Failure Criteria ............................. 16 
 
   2.2.2 Other Failure Criteria....................................................................... 19 
  
 3.  LAMINATE CHARACTERIZATION......................................................... 21 
 
  3.1 Laminate Systems.................................................................................... 22 
  
  3.2 Stress Concentration Approximations ..................................................... 27 
 
   3.2.1 Curve Fit Approach.......................................................................... 28 
   
   3.2.2 Parameter Combination Approach................................................... 33 
 
  3.3 Discussion................................................................................................ 38  
 
 4.  STRESS DISTRIBUTION METHOD.......................................................... 40 
  
  4.1 Least Square Boundary Collocation Method........................................... 41 
 
  4.2 Field Equations ........................................................................................ 42 
 
  4.3 Numerical Procedure ............................................................................... 44 
 
  4.4 Convergence ............................................................................................ 52 
 
  4.5 Comparison to Published and FEM Solutions......................................... 56 
 
  4.6 Discussion................................................................................................ 58 
 
 5.  STRENGTH PREDICTION OF LAMINATES WITH 
       MULTIPLE HOLES...................................................................................... 60  
   
  5.1 Geometric Parameters.............................................................................. 62 
    
  5.2 Stress Concentrations for Multiple Holes................................................ 64 
 
   5.2.1 Holes Oriented Transverse to the Load ........................................... 64 
 
   5.2.2 Holes Oriented In-line with the Load .............................................. 67 
 
  5.3 Stress Profile............................................................................................ 69 
 
   5.3.1 Holes Oriented Transverse to the Load ........................................... 69 
 vii



 
   5.3.2 Holes Oriented In-line with the Load .............................................. 72 
 
  5.4 Strength Prediction .................................................................................. 74  
 
   5.4.1 Holes Oriented Transverse to the Load ........................................... 75 
 
   5.4.2 Holes Oriented In-line with the Load .............................................. 82 
 
  5.5. Comparisons to Experimental Data ........................................................ 85  
 
  5.6 Discussion................................................................................................ 90 
  
 6.  CONCLUSIONS AND RECOMMENDATIONS........................................ 92 
 
  6.1 Conclusions.............................................................................................. 92 
 
  6.2 Recommendations.................................................................................... 95 
 
Appendix 
 
 A.  STRESS DISTRIBUTION FOR A SINGLE CUTOUT.............................. 97  
 
 B. REFERENCE APPROXIMATION TO ORTHOTROPIC 
      STRESS CONCENTRATION FACTOR ..................................................... 101 
 
 C. STRESS DISTRIBUTION COMPARISONS 
      TO PUBLISHED SOLUTIONS.................................................................... 103 
 
 D. STRESS DISTRIBUTION COMPARISONS 
      TO FINITE ELEMENT MODELS .............................................................. 119 
 
  D.1 Model with Equal Holes ......................................................................... 122 
 
  D.2 Model with Unequal Holes ..................................................................... 124 
  
 E. STRESS PROFILE AND NORMALIZED 
      STRESS PROFILE DIAGRAMS ................................................................. 131 
 
 F.  STRENGTH PREDICTION DIAGRAMS................................................... 142 
 
 G. STRESS DISTRIBUTION COMPARISON USED FOR 
      EXPERIMENTAL STRENGTH PREDICTION.......................................... 148 
 
 viii



 ix

 H. STRESS DISTRIBUTION AT HOLE BOUNDARY .................................. 150 
 
REFERENCES .......................................................................................................... 155 
 
BIOGRAPHICAL INFORMATION......................................................................... 164 



 

 

 
 

LIST OF ILLUSTRATIONS 

Figure Page 
 
1.1 Approximate failure theories...........................................................................  3 
 
2.1 Stress profile for a uniaxially loaded plate with a circular hole......................  8 
 
2.2 Various failure modes at different scales ........................................................  15 
 
2.3 Stress profiles for two different sized holes in a uniaxally loaded, 
  isotropic material.............................................................................................  17 
 
2.4 (a) Point stress criterion (b) Average stress criterion......................................  18 
 
3.1 Carpet plot of apparent axial modulus for IM7/977-3 ....................................  25 
 
3.2 Carpet plot of apparent shear modulus for IM7/977-3....................................  26 
 
3.3 Carpet plot of apparent Poisson’s ratio for IM7/977-3 ...................................  26 
 
3.4 Carpet plot of apparent orthotropic stress concentration 
  factor for IM7/977-3........................................................................................  27 
 
3.5 Approximate orthotropic stress concentration factor ......................................  30 
 
3.6 Exact value of Poisson’s ratio for IM7/977-3 .................................................  34 
 
3.7 Approximation of Poisson’s ratio for IM7/977-3 where  
  **

xyν = C1Gxy/Ey = (2/3)(Gxy/Ey) .........................................................................  34 
 
3.8 Carpet plot of **

xyν / xyν for IM7/977-3 ..............................................................  35 
 
4.1 Stress components on the internal contour.  σθ – circumferential stress, 
  σr – radial stress, σrθ – tangential shear stress .................................................  50 
 
4.2 Error control points .........................................................................................  53 
 
4.3 Sample contour plot ........................................................................................  59 

 x



 

5.1 Geometric parameters for holes oriented transverse to load ...........................  62 
 
5.2 Geometric parameters for holes oriented in-line with the load.......................  63 
 
5.3 Stress concentration for two equal holes. 
  Holes oriented transverse to the load ..............................................................  65 
 
5.4 Stress concentration for two holes, b/a = 5.0. 
  Holes oriented transverse to the load ..............................................................  65 
 
5.5 Stress concentration for two holes, b/a = 10.0. 
  Holes oriented transverse to the load ..............................................................  66 
 
5.6 Stress concentration for various hole size ratios. 
  (25/50/25) laminate, holes oriented transverse to the load..............................  66 
 
5.7 Stress concentration for two equal holes.   
  Holes oriented in-line with the load ................................................................  68 
 
5.8 Stress concentration for two holes, b/a = 10.0. 
  (25/50/25) laminate, holes oriented in-line with the load ...............................  68 
 
5.9 Stress profile for (25/50/25) laminate, equal holes.   
  Holes oriented transverse to the load ..............................................................  70 
 
5.10 Normalized stress profile for (25/50/25) laminate, equal holes. 
  Holes oriented transverse to the load ..............................................................  71 
 
5.11 Stress profile for (25/50/25) laminate, equal holes. 
  Holes oriented in-line with the load ................................................................  73 
 
5.12 Normalized stress profile for (25/50/25) laminate, equal holes. 
  Holes oriented in-line with the load ................................................................  73 
 
5.13 Two hole strength prediction for (25/50/25) laminate, equal holes. 
  Holes oriented transverse to the load ..............................................................  76 
 
5.14 Two hole strength prediction for (50/0/50) laminate, equal holes. 
  Holes oriented transverse to the load ..............................................................  77 
 
5.15 Two hole strength prediction for (0/100/0) laminate, equal holes. 
  Holes oriented transverse to the load ..............................................................  78 
 
 
 xi



 

 xii

5.16 Two hole strength prediction for three laminates, equal holes. 
  Holes oriented transverse to the load.  Low s/a values ...................................  79 
 
5.17 Two hole strength prediction for three laminates, equal holes. 
  Holes oriented transverse to the load.  High s/a values ..................................  80 
 
5.18 Two hole strength prediction for (25/50/25) laminate, b/a = 5.0. 
  Holes oriented transverse to the load ..............................................................  81 
 
5.19 Two hole strength prediction for (50/0/50) laminate, b/a = 5.0. 
  Holes oriented transverse to the load ..............................................................  81 
 
5.20 Two hole strength prediction for (0/100/0) laminate, b/a = 5.0. 
  Holes oriented transverse to the load ..............................................................  82 
 
5.21 Two hole strength prediction for (25/50/25) laminate, equal holes. 
  Holes oriented in-line with the load.  Low s/a values.....................................  83 
 
5.22 Two hole strength prediction for (25/50/25) laminate, b/a = 5.0. 
  Holes oriented in-line with the load ................................................................  85 
 
5.23 Two hole strength prediction for T800/924C, (50/50/0) laminate.  
  Holes oriented transverse to the load ..............................................................  87 
 
5.24 Comparison of strength prediction method to experimental 
  data for holes oriented transverse to the load..................................................  87 
 
5.25 Two hole strength prediction for T800/924C, (50/50/0) laminate. 
  Holes oriented in-line with the load ................................................................  89 
 
5.26 Comparison of strength prediction method to experimental 
  data for holes oriented in-line with the load....................................................  90 
 
 



 

 

 
 

LIST OF TABLES 

 

Table Page 
 
3.1 Lamina properties............................................................................................  31 
  
3.2 Comparison of to  for various material systems ...................................  32 *

tK ∞
tK

 
3.3 Comparison of to  for various material systems, C1 = 2/3 ..................  37 **

tK ∞
tK

 
5.1 Relationship between s/a and l/D....................................................................  64 
 
5.2 Maximum permissible values of d0/a for (25/50/25) laminate, 
  equal holes.  Holes oriented in-line with the load...........................................  83 
 
5.3 Maximum permissible values of d0/a for T800/924C, (50/50/0) 
  laminate, equal holes.  Holes oriented in-line with the load ...........................  89 

 xiii



 

 

 
CHAPTER 1 

INTRODUCTION 

 

Composite laminates are used in many industries because they may possess high 

stiffness to weight ratios, high strength to weight ratios, resistance to fatigue and 

corrosion, and low coefficients of thermal expansion.  Composites have been used in 

military aircraft for many years to increase performance in many respects.  Commercial 

aircrafts have increasingly incorporated composites for use as primary structure.  The 

Boeing 787 is expected to be the first large commercial aircraft with a predominately 

composite primary structure.  While composite usage continues to grow in the 

aerospace industry, their behavior remains less understood and more complicated than 

conventional metallic materials.   

1.1 Background 

Many practical composite applications require the presence of a hole for 

mechanically fastened joints, accessibility, and to lighten the structure.  The proximity 

and size of these holes with respect to each other can affect the stress distribution and 

strength of the structure.  A “hole interaction effect” occurs when the stress field from 

one hole interacts with the stress field from an adjacent hole.  Holes may be spaced far 

apart, such that the interaction of the stress field is not significant.  However, due to 

errors in the production of structural parts, a smaller hole spacing than desired may exist 
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and this situation should be understood.  In addition, closely spaced holes may be 

desired to lighten parts or meet interface requirements.  In these events, an in-depth 

understanding of the interacting stress field and structure strength is needed.  

Though composites have many advantages over conventional metallic materials, 

they often exhibit notch sensitivity.  In the presence of a hole, crack, or other 

discontinuity, the strength reduction of a composite from its unnotched strength, can be 

very severe.  The reduction of strength due to a hole is often the critical design driver 

and therefore failure prediction is of significant practical importance.   

The presence of a hole has little effect on the static fracture strength of a notch 

insensitive or ductile material, but a notch sensitive or brittle material’s strength will be 

significantly reduced.  The behavior of typical laminated composites, in the presence of 

a hole, cannot be classified as either ductile or brittle.  Instead, experimental data has 

shown that the fracture strength is a function of the size of the hole.  This phenomenon 

is termed the “hole size effect”.  While this effect is not fully understood, much research 

has been dedicated to predict the behavior of composites in the presence of a 

discontinuity.  

Whitney and Nuismer (1974) proposed two failure criteria to account for the 

hole size effect in composites.  These models were called the point stress and average 

stress failure criteria, also known as the W-N failure criteria.  Figure 1.1 compares the 

notch insensitive, notch sensitive, and the point stress failure theories.  
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Figure 1.1 Approximate failure theories. 

 

 

The stress concentration for an anisotropic laminate behaves differently than 

would an isotropic material.  For an infinite isotropic plate loaded axially, the stress 

concentration is 3.0.  However, the SCF (stress concentration factor) for an anisotropic 

material is a function of its stiffness properties.  Lekhnitskii (1968) used the complex 

variable method to solve for the state of stress in an infinite, anisotropic plate with an 

elliptical cutout; the solution is presented in appendix A. 
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For an infinite laminate treated as an orthotropic homogeneous material with 

apparent properties Ex, Ey, Gxy, and νxy, the orthotropic stress concentration factor  

can be determined.  The three parameters

∞
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1.2 Research Problem and Approach 

The research problem was to predict failure for composites with multiple holes 

when both the “hole size effect” and “hole interaction effect” were considered.  In 

addition, the problem of defining the orthotropic stress concentration factor, using a 

minimum number of parameters, was considered. 

An approximate method of determining the orthotropic stress concentration 

factor using the two parameters 
y

x

E
E

 and 
xy

x

G
E  was found by curve fitting the results of a 

specific laminate.  A second approximation was found by combining the two 

parameters.  Both of these approaches reduced the number of necessary parameters 

from three to two. 

A unique formulation of the least square boundary collocation method was 

developed to determine the stress distribution for multiple holes in composite laminates.  

This method was then used to determine stress distributions for a variety of laminate 

configurations.  The point stress criterion, normally used to determine failure of a single 
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cutout, was extended to laminates with multiple equal and unequal cutouts to determine 

failure.  Symmetric and balanced laminates that can be treated as homogeneous 

orthotropic materials were considered.   

1.3 Objective and Hypothesis 

There were three distinct, but related objectives for this research.  The first 

objective was to determine a method of expressing laminates in a simpler manner than 

currently exists.  It was hypothesized that by using the formula for the orthotropic stress 

concentration factor, an approximate formulation could be developed to determine the 

stress concentration in terms of only two parameters.     

The second objective was to create a relatively simple, highly accurate, and 

parametric method of determining the stress distribution in a laminate when at least two 

holes were present.  It was hypothesized that by using the least square boundary 

collocation method, with an appropriate complex potential function, and by applying 

collocation to all boundaries, that a method could be developed to meet these criteria. 

The third objective was to understand the effect of multiple holes as it relates to 

failure in an orthotropic material.  It was hypothesized that the stress field would 

become altered due to the presence of multiple holes and that the volume of material 

under the highly stress region would also becomes altered.  It was thought this alteration 

would in turn affect the structure’s strength.  The objective was to enhance failure 

prediction for holes in close proximity by accounting for both the hole interaction effect 

and the hole size effect.  By using only the data from single hole strength predictions, a 

multiple hole strength prediction was sought.  Using a proposed failure criterion, the 
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goal was to then create a series of curves that would allow the designer to quickly 

determine the strength of composites with two holes in close proximity.   

1.4 Outline of Dissertation 

Chapter 2 reviews the previous research relevant to this study.  Several methods 

for determining the state of stress are discussed and common approaches to strength 

predictions are presented.  Chapter 3 presents an approximate method for determining 

the stress concentration of a laminate based upon two laminate parameters.  Chapter 4 

presents the least square boundary collocation method used in this research in order to 

determine the stress distribution of composites with multiple holes.  This method was 

then used in chapter 5 for subsequent strength prediction.  Chapter 5 presents a failure 

criterion for failure of two holes in close proximity and compares the results to 

experimental data.  



 

 

 
CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Stress Distribution of Composites with Cutouts 

There are several methods to determine the stress distribution of plates with 

cutouts.  Some aspects to consider are the effect of finite geometry, multiple hole 

interaction, anisotropy, computational expense, parameterization, and data extraction.  

The stress distribution can then be used to compare with various failure criteria to 

determine laminate strength. 

2.1.1 Closed Form Methods 

The exact solution for an infinite, anisotropic laminate with an elliptical cutout 

was determined by Lekhnitskii (1968) and Savin (1961) using the complex variable 

method and can be developed in closed form.  A detailed solution using Lekhnitskii’s 

method is presented in appendix A.   

For the loading condition shown in figure 2.1, Konish and Whitney (1975) 

found the stress along the direction perpendicular to the loading can be approximated by 
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Figure 2.1 Stress profile for a uniaxially loaded plate with a circular hole. 
 

A closed form, exact solution for the stress distribution of a finite plate has not 

been found.  Tan (1988b) considered an anisotropic material and approximated the 

effect of finite width with a closed form solution. 

2.1.2 Numerical Methods 

A simple, exact solution for the stress distribution of infinite plates with 

multiple holes in close proximity does not exist.  However, numerical methods can be 

used to solve problems with multiple holes, finite geometry, and arbitrary loading 

conditions.  One common approach is to use a series solution with a complex potential 

function.  Another common approach is the finite element method (FEM).  Various 

other methods have also been successfully used. 
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2.1.2.1 Series Solutions 

Several series solution methods have been developed to solve for the state of 

stress of isotropic and anisotropic plates with a cutout where the loading is in the plane.  

These approaches generally are very accurate with relatively low computational 

expense.  In addition, the ability to parameterize the inputs makes the method attractive 

for trade studies. 

Initial investigation of the interaction of two holes was done for isotropic 

material properties.  Ling (1948) developed the state of stress for an infinite, isotropic 

plate with two equal sized circular holes using bipolar coordinates.  With respect to the 

hole spacing, consideration was given to loads that were transverse, parallel, and equal 

biaxial. Kosmodamianskii and Chernik (1981) solved the problem of an infinite, 

isotropic plate with two identical holes using a complex potential function.  Haddon 

(1967) investigated the infinite, isotropic plate with two unequal circular holes using the 

Muskhelishvili (1975) complex potentials.  Haddon’s solution was extended for 

arbitrary loading conditions on the external boundary, provided the load on the edge 

was uniform.   

Lin and Ueng (1987) extended these approaches to an infinite, orthotropic plate 

with two identical elliptical holes.  A complex potential function, developed by 

Lekhnitskii (1968), was solved via Maclaurin series expansion.  While the results were 

accurate for holes with relatively large spacing, the accuracy diminished with smaller 

hole spacing.  Fan and Wu (1988) also used a similar complex potential to solve the 

same problem, but the problem was solved using a Faber series expansion.  Both of 
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these solutions were limited to the case where the roots of the characteristic equation 

were purely imaginary and the elliptical cutouts were of identical size.    

While the previous approaches were effective at solving several problems with 

multiple holes, they were restricted to infinite geometry.  In addition, certain loading 

conditions, material properties, and hole size ratios could not be solved.  Alternatively, 

another series solution method called the “boundary collocation method” was found to 

be flexible enough to handle finite boundaries and was not limited by loading, material 

properties, or hole size ratios. 

Bowie (1956) used “direct boundary collocation” by exactly satisfying the 

boundary at a specified number of boundary points.  This consisted of using boundary 

collocation with a conformal mapping function to solve for the problem of cracks 

emanating from a circular hole.  Hamada et al. (1974) used the boundary collocation 

method to solve for problems with several holes in an infinite, isotropic medium.  

Varying hole size ratios and orientations with respect to the load were considered. 

Bowie and Neal (1970) used a “modified mapping collocation” technique to 

solve for the problem of an internal crack with an external circular boundary.  The 

modified method consisted of using a mapping function for the boundaries and 

specifying more collocation points than necessary and approximately satisfying them in 

a least square sense.  Newman (1971) also used a modified boundary collocation 

method in order to satisfy problems with cracks emanating from a circular hole.  

Because of the added accuracy of approximately satisfying the boundary in a least 
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square sense, many subsequent researchers have used the least square boundary 

collocation method rather than the direct boundary collocation method. 

Ogonowski (1980) used the least square boundary collocation method to solve 

for a finite anisotropic plate with a single elliptical hole.  Both the internal and external 

boundary conditions were enforced using the boundary collocation method.  The 

complex potential function was evaluated as a truncated Laurent series.  Lin and Ko 

(1988) used this same method as Ogonowski (1980) to solve for the stress field and 

subsequently predict failure. 

Woo and Chan (1992) used the least square boundary collocation method to 

solve for the full field stress state of an isotropic plate with multiple arbitrary cutouts 

and arbitrary external boundary.  Madenci, Ileri, and Kudva (1993) used the modified 

mapping collocation method to solve for finite, anisotropic problems where both 

external forces and displacements were applied.  Because the displacement boundary 

conditions were applied, conditions of symmetry could be achieved.  The stress field for 

symmetric holes was addressed in this manner.  Madenci, Sergeev, and Shkarayev 

(1998) extended this approach to a multiply connected set of domains.  The interaction 

of holes and cracks was studied by connecting one region to another and divided by a 

common partition that satisfied the common boundary conditions. 

Xu, Sun and Fan (1995a) used the least square boundary collocation method to 

solve for a finite anisotropic plate with a single elliptical hole.  The boundary 

collocation was only applied to the external boundary while the interior hole contour 

was satisfied using a Faber series.  Xu, Sun, and Fan (1995b) further extended this 
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approach to multiple holes by nesting the summations in the complex potential function, 

in a similar fashion to Woo and Chan (1992).  Xu, Sun and Fan noted that when the 

center to center distance was greater than or equal to 4.5 times the diameter that the hole 

interaction effect was very small.  Xu, Yue, and Man (1999) again extended the 

approach by allowing for the multiple holes to be loaded, demonstrating the flexibility 

of the least square boundary collocation method.   

2.1.2.2 Finite Element Methods 

The finite element method (FEM) has been used extensively to solve for the 

state of stress for problems with cutouts.  Finite geometry, multiple cutouts, general 

loading, and material anisotropy can all be addressed with relative ease.   

Soutis, Fleck, and Curtis (1991) used 2D finite elements to determine the hole 

spacing where no stress interaction occurs and validated laminate strength with 

experimental data.  They reported that the hole centers should be spaced at least four 

diameters apart to avoid interaction.  Henshaw, Sorem, and Glaessgen (1996) modeled 

the individual plies of a laminate with multiple holes using FEM.  They studied the 

boundary stresses for conditions where holes were in close proximity, were of varying 

hole size ratios, and at varying angular orientations.  Polar plots were presented to 

effectively determine the state of stress at the boundaries.  Sorem, Glaessgen, and 

Tipton (1993) studied the hole interaction effects and noted reasonable correlation 

between finite element analysis and strain gage data was shown.  Bhattacharya and Raj 

(2003) used FEM to determine the peak stress multipliers for arrays of holes in very 

close proximity.  They compared FEM stresses to photoelastic experiments and the 
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results were shown to have good correlation.  Neelakantan, Shah, and Chan (1997) used 

the FEM to investigate the effect of a stringer placed around multiple holes in a shear 

panel.   

Blackie and Chutima (1996) used FEM to study the stress distributions in multi-

fastened composite plates.  The state of stress for fastened plates was significantly 

different than for traction free holes due to fastener load distribution, friction, contact, 

hole clearance, etc.  Therefore, the hole spacing results for loaded holes may not be 

directly relevant to traction free holes.  

2.1.2.3 Other Methods 

Hafiani and Dwyer (1999) used the edge function method (EFM) to study stress 

concentrations when multiple holes and cracks were in close proximity.  Mahajerin and 

Sikarskie (1986) developed a boundary element method (BEM) for a loaded hole in an 

orthotropic plate.  They found that computational expense was significantly reduced 

compared to the finite element method.  Russell (1991) used a Rayleigh-Ritz method to 

solve for the state of stress for finite composite plates with circular and elliptical 

cutouts.  Integral padups around the cutout were considered.  Tong (1973) used a hybrid 

element to solve for the state of stress for cracks in an anisotropic body.  The hybrid 

element was combined with regular elements and was determined to be highly efficient 

and accurate.  Gerhardt (1984) also used a hybrid/finite element approach to solve for 

stress intensity factors at notches, fillets, cutouts and other geometric discontinuities in 

an anisotropic material.    
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2.2 Strength Prediction of Composites with Cutouts 

Failure prediction for laminates with cutouts is considerably more difficult than 

failure prediction of unnothced lamina.  This is due in part because of the 3D state of 

stress that can affect failure.  Interlaminar shear and interlaminar normal components 

present in the state of stress can not be neglected.  In addition, localized subcritical 

damage in the highly stressed region may occur.  Awerbuch and Madhukar (1985) 

noted that local damage on the microscopic level occurs in the form of fiber pull-out, 

matrix micro-cracking, fiber-matrix interfacial failure, matrix serrations and/or 

cleavage, and fiber breakage.  The stated that on the macroscopic level, damage occurs 

via delamination, matrix cracking, and failure of individual plies.  These localized 

damage mechanisms act to reduce notch sensitivity and increase the part strength.  

Ochoa and Reddy (1992) depicted some of the failure modes, and their interactions, as 

shown in figure 2.2.   
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Figure 2.2 Various failure modes at different scales. 

 

The strength of a composite if affected by the size of the hole, which can be 

described as the “hole size effect”.  Waddups, Eisenmann, and Kaminsi (1971) found 

that introduction of a 0.015” diameter hole did not significantly reduce fracture strength.  

They found that for hole diameters greater than about 1.0”, the fracture strength was 

significantly reduced.  The strengths of a 1.0” hole diameter and of a 3.0” hole diameter 

were found to be similar.  Daniel and Ishai (1994) reported that the presence of a hole 

less than 0.060” in diameter did not reduce the strength of a [02/±45]s carbon/epoxy 

plate under uniaxial tensile loading.   
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Two distinct categories of failure prediction approaches for notches exist; semi-

empirical methods and damage progression methods.  The semi-empirical methods only 

partially explain the physical phenomenon and rely on curve fitting of test data.  The 

advantage is that rigorous examination of the failure modes demonstrated in figure 2.2 

is not required.  The damage progression method uses a numerical analysis to determine 

the current stress field and combines this with failure criterion that describes the 

localized failure modes.  As an incremental load is applied, the local damage and stress 

fields are continually updated until the part has determined to fracture.  The advantage 

of this approach is that the physical behavior is included and therefore any laminate, 

loading condition, etc., can theoretically be solved.  Two significant disadvantages exist 

though.  The first is that there are no well accepted failure criteria that will predict all 

known failure modes and the exact damage progression is not known.  Therefore, 

assumptions for failure criteria and the damage process must be made.  The second 

significant disadvantage is that a nonlinear solution may be required which can be 

computationally expensive and requires significant expertise. 

2.2.1 Point Stress and Average Stress Failure Criteria 

A semi-empirical method used to determine strength of laminates with holes 

and cracks was developed by Whitney and Nuismer (1974).  In an attempt to explain the 

hole size effect, they stated that because a larger hole had a larger volume of material 

under the highly stressed region, the probability of having a large flaw was greater.  For 

an infinite, isotropic plate, loaded in the x-direction, figure 2.3 graphically demonstrates 

the difference of volume under the high stress region for two hole sizes.  In addition, 
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they stated that the smaller hole had greater ability to redistribute the stress, leading to 

increased strength.   
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Figure 2.3 Stress profiles for two different sized holes in a uniaxally loaded, isotropic 

material. 
 

Whitney and Nuismer proposed two failure criteria, the point stress criterion and 

average stress criterion, also known as the W-N failure criteria.  The point stress criteria 

(PSC) states that the laminate will fracture when the stress at a characteristic distance 

from the edge of the hole is equal the unnotched strength.  Similarly, the average stress 

criteria (ASC) states the laminate will fracture when the average stress at characteristic 

distance from the edge of hole is equal to the unnotched strength.  In both cases, only 
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the stress component parallel to the load is considered.  The characteristic distance is 

denoted as d0 for the point stress criteria and a0 for the average stress criteria.  The 

unnotched strength is defined as σ0.  Both models are presented in graphical form in 

figure 2.4.   
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Figure 2.4 (a) Point stress criterion (b) Average stress criterion. 

 

 

Both the PSC and ASC are “two parameter” models that require the unnotched 

strength and the characteristic dimension to determine fracture strength.  Whitney and 

Nuismer initially suggested the characteristic dimension might be a material property.  

Awerbuch and Madhukar (1985) concluded that for uniaxial tensile loading, the 

characteristic dimension must be determined for each material system and laminate 

configuration.  Whitney and Nuismer (1974) stated that values of d0 = 0.04” and a0 = 

 18



 

0.15” gave good results for the laminates considered.  Nuismer and Whitney (1975) 

studied additional specimens and came to the same conclusion as Whitney and Nuismer 

(1974) for the values of d0 and a0.   

2.2.2 Other Failure Criteria 

Waddoups, Eisenmann, and Kaminski (1971) proposed a LEFM (linear elastic 

fracture mechanics) based criterion, also called the WEK criterion, which was effective 

provided certain requirements were met.  They treated the local region of high stress as 

a fictitious crack and applied linear elastic fracture mechanics.  The fictitous crack 

length is also considered the “inherent flaw size”.  Prabhakaran (1979) stated that the 

inherent flaw size was approximately twice that of the point stress characteristic 

dimension.  However, Awerbuch and Madhukar (1985) state that the usage of LEFM 

can only be applied in limited cases. Mar and Lin (1977) proposed a fracture mechanics 

based failure criterion that was less restrictive than the WEK criterion.  However, the 

Mar-Lin criterion required extensive testing to determine the necessary parameters and 

the parameters were unique for each material system.     

The Whitney-Nuismer failure criteria were developed for uniaxial loading.  Tan 

(1988a) used a similar concept as Whitney and Nuismer, but extended it for multi-

directional loading.  Tan’s point strength model (PSM) and minimum strength model 

(MSM) were shown to have good agreement to experimental data.  Chan (1989) studied 

damage characteristics of laminates with a hole in an attempt to relate the 0° ply to 

failure.  
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Chang and Chang (1987) used a progressive damage model and nonlinear finite 

element analysis to determine fracture strength of a composite laminate with a hole.  

Excellent agreement was obtained with experimental data.  Tan (1991) used a similar 

approach towards damage progression as Chang and Chang.  Tan used the Tsai-Wu 

(1971) failure criterion at the lamina level, as opposed to the modified Yamada-Sun 

failure criterion used by Chang and Chang.  Tay et al. (2005) used a novel approach to 

progressive damage via element failure method (EFM) combined with the strain 

invariant failure theory (SIFT).  The damage patterns were in agreement with 

experimental results. 



 

 

 
CHAPTER 3 

LAMINATE CHARACTERIZATION 

 

A common carbon fiber/epoxy material system, IM7/977-3, was the baseline 

material for this study.  A common approach for engineering applications is to classify 

laminates in terms of ply percentages with respect to the loading direction.  For this 

study, ply percentages in the 0°, +45°, -45°, and 90° orientations were considered and 

laminates were treated as homogeneous, orthotropic materials.  Therefore, the 

interlaminar normal and interlaminar shear stress components were not considered 

when determining the stress field.   

The orthotropic stress concentration factor is a function of three parameters, 

y

x

E
E

,
xy

x

G
E  and νxy, as shown in equation 1.1.  By visual inspection of carpet plots for the 

orthotropic stress concentration factor, it was observed that the lamina property ν12 had 

little effect on the value of .  It was therefore hypothesized that only two parameters 

were necessary to approximately determine .  An approximate method of 

determining the orthotropic stress concentration factor using only two parameters, 

∞
tK

∞
tK

y

x

E
E

 

and 
xy

x

G
E , was found by curve fitting the results of several laminates.  A second 

approximation was found by combining the two parameters. 
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3.1 Laminate Systems 

Provided the laminate is balanced and symmetric, the ply

A laminate’s in-plane properties can be expressed in terms of ply percentages.  

 percentages can then be 

transformed into an equivalent pparent” properties.  By using 

classica

 

set of orthotropic or “a

l lamination theory, Jones (1974), the apparent properties can be determined.  

The lamina stiffness properties are first represented in equation 3.1.  The subscripts 1 

and 2 represent the lamina properties in the fiber direction and transverse direction, 

respectively. 
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For the symmetric layup, where { }σ  is the average stress through the thickness, 
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he values of [A] can be determined from the following relationships 
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The percentage of plies in each of the major directions is defined as follows. 

  =    Percentage of plies in the 0° orientation. 
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 t0 = total thickness of plies in the 0° orientation 

 t45 = total thickness of plies in the +45° and -45° orientation 

t
(3.5)

 

and t e apparent in-plane pro be expressed as 
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The result is that carpet plots can be used to easily determine apparent 

properties for a specific material.  In addition, the orthotropic stress concentration factor 

may be

e baseline lamina of consideration.  

Daniel 

 described in terms of apparent properties.   

A common carbon fiber/epoxy tape lamina used for more than a decade in the 

aerospace industry, IM7/977-3, was chosen as th

and Ishai (2005) reported this lamina as having the following properties: E1 = 

27.7 Msi, E2 = 1.44 Msi, G12 = 1.13 Msi, ν12 = 0.27.  Carpet plots of apparent properties 

for this material are shown in figures 3.1 through 3.4. 
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Figure 3.1 Carpet plot of apparent axial modulus for IM7/977-3. 
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Figure 3.2 Carpet plot of apparent shear modulus for IM7/977-3. 
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Figure 3.3 Carpet plot of apparent Poisson’s ratio for IM7/977-3. 
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Figure 3.4 Carpet plot of apparent orthotropic stress concentration factor for IM7/977-3. 

 
 
 

3.2 Stress Concentration Approximations 

Two approaches for approximating the stress concentration factor are presented.  

The first approach makes use of fitting the data to a series of curves.  The curves are 

then fit to a function to describe the orthotropic stress concentration factor.  The second 

approach demonstrates an approximation to νxy by describing νxy as a function of 
y

x

E
E

 

and 
xy

x

G
E . 

 

 

 27



 

3.2.1 Curve Fit Approach 

A curve fit solution between the two parameters 
y

x

E
E

,
xy

x

G
E  and is presented.  

General laminate stiffness properties are characterized by the lamina properties E1, E2, 

G12, ν12, lamina fiber orientation, and the lamina stacking sequence.  For the symmetric 

and balanced laminate treated as a homogeneous material, the number of defining 

properties can be reduced to Ex, Ey, Gxy, νxy.  These four properties can be used to define 

the infinite orthotropic stress concentration factor as shown in equation 1.1. 

∞
tK

 
xy

x
xy

y

x
t G

E
E
EK +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=∞ ν21 (1.1)

The three parameters
y

x

E
E

,
xy

x

G
E , are νxy are necessary to exactly define .  As 

shown in figure 3.3, the Poisson’s ratio can vary considerably.  Therefore, if νxy were 

assumed to be constant, the approximation to  would have a relatively large error as 

shown in appendix B.   
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By using the relation 
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11

A
A

E
E

y

x = , the following equation for a symmetric and 

balanced laminate can be developed. 
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This solution can be alternatively expressed as 
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By holding 
y

x

E
E

 constant, a corresponding set of values for and  can be 

found for a given material system.  In turn, the laminate properties 

0P 45P

xy

x

G
E  and  can 

then be found.  Utilizing the above approach, the approximate solution for  was 

found for graphite/epoxy, GY-70/934, E1 = 42.7, Msi, E2 = 0.92 Msi, G12 = 0.71 Msi, 

ν12 = 0.23, Daniel and Ishai (2005).  GY-70/934 was chosen since it covered a wide 

range of values for

∞
tK

∞
tK

y

x

E
E

, 
xy

x

G
E , and .  The result is presented in figure 3.5.  ∞

tK
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Figure 3.5 Approximate orthotropic stress concentration factor. 

 

By fitting the curves in figure 3.5, the following approximate relation was found. 
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*
tK  is the approximation to  for the GY-70/934 lamina.  While the 

approximate solution was developed from the GY-70/934 material system, it was 

hypothesized that the approximation was valid for other composite material systems.  

∞
tK

*
tK
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Ten different material systems, Daniel and Ishai (2005), were considered in order to 

compare the solution of  to , as indicated in table 3.1. *
tK

na

 (AS4 / 3501-6)

 / APC2)

M7 / 977-3)

M6G / 3501-6)

 (GY-70/934)

5.6 / 5505)

∞
tK

 (Mod 1 / WRD9371)

 
Table 3.1 Lamina properties.  

 
Lami E1, [Msi] E2, [Msi] G12, [Msi] ν12

E-Glass / Epoxy 6.0 1.50 0.62 0.28

S-Glass / Epoxy 6.5 1.60 0.66 0.29

Carbon / Epoxy 21.3 1.50 1.00 0.27

Carbon / PEEK (AS4 19.9 1.27 0.73 0.28

Carbon / Epoxy (I 27.7 1.44 1.13 0.35

Carbon / Epoxy (I 24.5 1.30 0.94 0.31

Carbon / Polyimide 31.3 0.72 0.65 0.25

Graphite / Epoxy 42.7 0.92 0.71 0.23

Kevlar / Epoxy (Aramid 49 / Epoxy) 11.6 0.80 0.31 0.34

Boron / Epoxy (B 29.2 3.15 0.78 0.17  
 

To evaluate the accuracy of , a comparison between  and  was made 

for ten different material systems.  Combinations of  and  at 5.0° increments were 

considered.  A restriction was placed such that a minimum of at least 10.0% of plies in 

each of the 0°, +45°, -45°, and 90° orientations existed, yielding 64 data points to be 

evaluated per lamina system.  Hart-Smith (1988) stated that a minimum of 12.5% plies 

in each of the four standard orientations, 0°, +45°, -45°, and 90°, should exist in the 

design of composite laminates.  Therefore, the imposed limitation of a 10.0% minimum 

*
tK *

tK ∞
tK

0P 45P
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in each direction was not seen as a significant penalty.  The result of the comparison is 

shown in table 3.2. 

 

Table 3.2 Comparison of to for various material systems. *
tK ∞

tK

Lamina Avg % error Peak % Error

E-Glass / Epoxy 0.16 0.44

S-Glass / Epoxy 0.20 0.42

Carbon / Epoxy (AS4 / 3501-6) 0.19 0.69

Carbon / PEEK (AS4 / APC2) 0.22 0.66

Carbon / Epoxy (IM7 / 977-3) 0.20 0.58

Carbon / Epoxy (IM6G / 3501-6) 0.20 0.56

Carbon / Polyimide (Mod 1 / WRD9371) 0.27 0.81

Graphite / Epoxy (GY-70/934) 0.31 0.96

Kevlar / Epoxy (Aramid 49 / Epoxy) 0.52 1.23

Boron / Epoxy (B5.6 / 5505) 0.43 1.06
  

 

Table 3.2 demonstrates that the average error between and is less than 

1.0% for all ten lamina systems, provided at least 10.0% of plies exists in each of the 

major ply directions.  The results indicated that only two parameters,

*
tK ∞

tK

y

x

E
E

 and 
xy

x

G
E , were 

needed to approximately define .  Furthermore, this suggested that a satisfactory 

approximate relationship between

∞
tK

y

x

E
E

, 
xy

x

G
E and νxy exists. 
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3.2.2 Parameter Combination Approach 

While the previous solution demonstrated that a relationship between
y

x

E
E

, 
xy

x

G
E  

and xyν exists, the solution to is cumbersome.  In addition, no direct relationship 

between 

*
tK

y

x

E
E

, 
xy

x

G
E  and xyν can be determined.  Alternatively, the following approximate 

relationship between 
y

x

E
E

, 
xy

x

G
E and xyν was developed. 
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By choosing a value of C1 = 2/3, and limiting  to 75.0, the difference between 45P xyν and 

**
xyν  for is observed in the following diagrams. 
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Figure 3.6 Exact value of Poisson’s ratio for IM7/977-3. 
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Figure 3.7 Approximation of Poisson’s ratio for IM7/977-3 where  

**
xyν = C1Gxy/Ey = (2/3)(Gxy/Ey). 
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Figures 3.6 and 3.7 demonstrate that provided there is a maximum of 75.0% 

plies in the +/-45° orientation, or 45P ≤  75.0, then **
xyν  closely approximates xyν for all 

ply percentages.  Figure 3.8 shows the relationship between **
xyν  and xyν .  If the 

approximation was exact, **
xyν / xyν would be equal to unity for all ply percentages. 
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Figure 3.8 Carpet plot of **

xyν / xyν for IM7/977-3. 
 
 

Figure 3.8 demonstrates that **
xyν  closely resembles xyν for  up to about 80.0.  

When  is less than 15.0, the Poisson’s ratio is relatively low.  In turn, when

45P

45P **
xyν  is 

inserted into the equation for , the error is also relatively low.  Therefore, the 

Poisson’s ratio approximation,

∞
tK

**
xyν , is most significant error when  is greater than 45P
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about 75.0.  For many practical laminates,  is less than 60.0; therefore, an imposed 

restriction that the approximation be limited to  

45P

45P ≤  75.0 was not considered a 

significant penalty.  The approximation to the infinite, orthotropic stress concentration 

factor can then be expressed as 

 xytK ⎜
⎜
⎝

⎛
+= *** 21 ν

y

x

E
E

− +⎟
⎟
⎠

⎞
*

0P

xy

x

G
E

(3.11)

To evaluate the accuracy of , a comparison between and  was made 

for ten different material systems.  Combinations of and  at 5.0° increments were 

considered for the lamina systems shown in table 3.1.  A restriction was placed such 

that  75.0, yielding 119 data points to be evaluated per lamina system.  The result 

of the comparison is shown in table 3.3. 

**
tK **

tK ∞
tK

45P

45P ≤
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Table 3.3 Comparison of to for various material systems, C1 = 2/3. **
tK ∞

tK

Lamina Avg % Error Peak % Error

E-Glass / Epoxy 0.43 0.83

S-Glass / Epoxy 0.43 0.82

Carbon / Epoxy (AS4 / 3501-6) 0.25 0.63

Carbon / PEEK (AS4 / APC2) 0.38 0.96

Carbon / Epoxy (IM7 / 977-3) 0.32 0.81

Carbon / Epoxy (IM6G / 3501-6) 0.32 0.83

Carbon / Polyimide (Mod 1 / WRD9371) 0.41 1.20

Graphite / Epoxy (GY-70/934) 0.47 1.40

Kevlar / Epoxy (Aramid 49 / Epoxy) 0.70 1.59

Boron / Epoxy (B5.6 / 5505) 0.57 1.38
 

 

The results of table 3.3 indicate that a simple approximate relationship shown in 

equation 3.11 provides an approximation of less than 1.0% average error for all 

laminates considered, provided a maximum of 75.0% +/-45° plies exists.  By inserting 

equation 3.10 into equation 3.11,  becomes a function of only two parameters, **
tK

y

x

E
E

and 
xy

x

G
E .   

To demonstrate the effectiveness of  and , appendix B provides an 

approximation of  by using a constant value of 

*
tK **

tK

∞
tK xyν = 0.3.  It was shown that both  

and  provided significantly more accurate results than the simple approach where 

*
tK

**
tK

xyν = 0.3. 
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3.3 Discussion 

An approximate solution for the orthotropic stress concentration factor using 

only two parameters was presented.  For studies that contain holes in composite 

laminates, this may allow for a more convenient way of expressing laminates than 

currently exists.  In general, the physical properties for laminates, and their 

relationships, may not be immediately recognizable.  The use of the approximate two 

parameter solution may provide a more recognizable relationship of governing 

properties.  In addition, since there are only two parameters, a simple 2D plot can 

provide a visual representation of the stress concentration, as shown in figure 3.5.   

Many studies exist that involve the use of orthotropic stress concentration 

factors.  The results of one study may not be applicable to another because different 

material systems were used.  With the use of or , it is possible to translate one 

material system to another.  

*
tK **

tK

For the current approximation approach, C1 = 2/3 was chosen to satisfy a wide 

range of laminates as well as numerical convenience.  However, several approaches to 

enhancing accuracy are possible.  By restricting the range of ply percentages and/or 

restricting the solution to a certain material type, the value of C1 can be modified to 

yield a more accurate solution.  In addition, alternative combinations of the two 

parameters
y

x

E
E

and 
xy

x

G
E , may yield more accurate solutions.  However, this would likely 
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come at the expense of a more complex solution, thereby defeating the approach to 

develop a simple relationship between
y

x

E
E

, 
xy

x

G
E  and xyν . 

 



 

 

 

CHAPTER 4 

STRESS DISTRIBUTION METHOD 

                                                                                                                                                                 

In order to apply the Whitney-Nuismer failure criteria, an accurate prediction of 

the stress field is required.  Industry standard finite element codes utilize h-elements.  

While they can be used to solve for the state of stress, the approach may be 

cumbersome for trade studies.  This is because each geometric configuration may 

require a separate finite element model.  In order to meet desired convergence 

conditions, a mesh refined model may need to be compared to the original model.  

Stress result extraction may be limited to the nodes; therefore, determination of the 

stress profile may be inconvenient.  Codes that use p-elements can allow for parametric 

inputs and automatic convergence, but their availability and usage remains less than that 

of h-elements.  The least square boundary collocation method can be fully 

parameterized, convergence can be easily determined, and stress extraction at arbitrary 

points is easily accomplished. 

For this study, the full field stress solution for multiple holes was found by 

using the least square boundary collocation method.  Boundary collocation applied to 

both internal and external boundaries was employed and an appropriate complex 

potential function was used.  By using different orders for the positive and negative 

terms in the complex potential function, the accuracy was further improved.  A 
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convergence condition specific to a very large plate with multiple interacting holes was 

utilized.  A similar approach to Xu, Sun, and Fan (1995b) was used.  Xu, Sun, and Fan 

used a Faber series to describe the internal boundary conditions, but for this approach 

boundary collocation was used for both the internal and external boundaries.  Woo and 

Chan (1992) successfully used least square boundary collocation on the internal and 

external boundaries for multiple holes in an isotropic material, demonstrating the 

viability of applying collocation to both internal and external boundaries. 

4.1 Least Square Boundary Collocation Method 

Least square boundary collocation, a variant of boundary collocation, is a 

technique that imposes boundary conditions to specific points on the boundary of a 

body.  Arbitrary loading conditions can then be applied to the points.  In addition to the 

problem of the unloaded hole, problems such as pin loaded holes and lugs can be solved 

with the technique.  Furthermore, problems with finite geometry can also be solved.  

The usage of the least square boundary collocation method incorporates a complex 

potential function to satisfy the stress field.  Equilibrium and compatibility are fully 

satisfied via the field equations, while the boundary conditions are approximately 

satisfied.  The boundary to be satisfied via boundary collocation can be an internal 

boundary such as a hole, an external boundary such as a rectangular plate, or both 

boundaries.  This makes the boundary collocation method suitable for a wide range of 

problems.   
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4.2 Field Equations 

The field equations for plane stress analysis can be developed by satisfying 

equilibrium and compatibility, subjected to all boundary conditions internal and 

external.  The boundary conditions have prescribed values for their normal and 

tangential traction forces.  The equilibrium equations for a plane stress problem in the 

absence of body forces can be expressed as 

 0=
∂

∂
+

∂
∂

yx
xyx σσ

 0=
∂

∂
+

∂

∂

yx
yxy σσ

 (4.1)

The following function, F(x,y), known as Airy’s stress function, will satisfy equilibrium 

provided the conditions of equation 4.2 are met. 
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Differentiation of the three relevant strain-displacement relationships in equation 4.3, 

will yield the compatibly equation shown in equation 4.4. 
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 (4.4)

By substituting the stress-strain relationship of an anisotropic material into the 

compatibility equation and expressing the stress components in terms of Airy’s stress 

function, F(x,y), Lekhnitskii (1968) developed the following relation.  The laminate 

properties a11, a22, a12, a16, a26, a66 are defined in the next section. 
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A transformation from the real coordinates x,y onto the complex plane is accomplished 

as follows. 

 yxz jj μ+=      ( j = 1,2) (4.6)

The characteristic equation that solves for the principal roots, μ1 and μ2, is shown in 

equation 4.7. 

 02)2(2 2226
2

6612
3

16
4

11 =+−++− aaaaaa μμμμ  (4.7)

Airy’s stress function can be defined as 

 [ ])()(Re2),( 2211 zFzFyxF += (4.8)

The two complex potential functions can be defined as 

 
1

11
11

)()(
dz

zdFz =φ  
2

22
22

)()(
dz

zdFz =φ  (4.9)

The stress field can then be determined from the following equations. 

 [ ])()(Re2 22
2
211

2
1 zzx φμφμσ ′+′=  

 [ ])()(Re2 2211 zzy φφσ ′+′=  

 [ ])()(Re2 222111 zzxy φμφμσ ′+′−=

(4.10)

The displacement field, without rigid body motion, can be determined from equation 

4.11. 
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 [ ])()(Re2 222111 zpzpu φφ +=  

 [ ])()(Re2 222111 zqzqv φφ +=  

 jjj aaap μμ 1612
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11 −+=  

 26
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12 aaaq
j

jj −+=
μ

μ  

( j = 1,2) (4.11)

In the event the material is isotropic, both roots μ1 and μ2 will be equal to i 

= 1− .  Airy’s stress function for an isotropic material can then be described using the 

complex conjugate, z , as shown in equation 4.12. 

 [ ])()(Re2),( 12111 zFzzFyxF += (4.12)

This same function can be alternatively expressed as the Muskhelishvili (1975) 

potential shown below. 

 [ ])()(Re),( zzzyxF χγ +=  (4.13)

4.3 Numerical Procedure 

CLT, classical lamination theory, was employed, Jones (1975).  For the case of 

a symmetric laminate, the in-plane stress-strain relationship is found to be 
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where [a] is the compliance matrix, t is the laminate thickness, and { }σ  is the average 

stress through the thickness.  If the laminate is balanced, then a16 and a26 are equal to 
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zero.  When the laminate is symmetric, balanced, and treated as a homogeneous 

material, the apparent properties are defined as follows. 
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In order to use the boundary collocation method, a transformation from the x, y 

plane into the complex plane must be made.  This is achieved by using equation 4.6.  

The principal roots of the characteristic equation can be found from equation 4.7 or 

equation 4.16. 
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Three possible cases for the roots exist as shown below. 
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xy
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E
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G
E

K 22 −−= ν  (4.17)

Case 1: K > 0.  The roots will be unequal and purely imaginary 

Case 2: K = 0.  Both roots will be equal to i and the material will be isotropic. 

Case 3: K < 0.  The roots will obey the following equation, 12 μμ −=  

If exact isotropic properties are inserted into the solution, it will become 

indeterminate.  However, properties that are very close to isotropic will be solvable.  

The roots of an isotropic material are found to be exactly equal to i = 1− .  A study 

was performed that showed that a laminate with 25.0% 0° plies, 49.99% +/-45° plies, 
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and 24.99% 90° plies, abbreviated as (25/49.99/24.99), gave an accurate approximation 

to an isotropic, or (25/50/25), laminate.  Tung (1985) noted that if the roots are equal to 

i, then the solution becomes indeterminate.  Tung stated that either of the following sets 

of roots would yield accurate results. 

 s1, s2 = ± .01 + 1.00005i 

 s1, s2 = 1.01005i, .99005i 
(4.18)

The collocation points define the external and internal boundaries.  These points 

must first be transformed into the complex plane via equation 4.6.  Ogonowski (1980) 

used 72 evenly spaced points on the internal boundary and 60 points on the external 

boundary.  Xu, Sun and Fan (1995b) used 32 collocation points on the external 

boundary.  Woo and Chan (1992) used a 8:1 ratio of the number of points on the 

internal boundary to the number of points on each external edge of a rectangle.  

Madenci, Sergeev, and Shkarayev (1998) used up to 360 collocation points on the 

internal boundary. 

While the number of boundary collocation points will not necessarily affect 

accuracy, a minimum number of points is needed to properly define the boundary.  

Since hole size ratios of up to 10:1 were considered, the area of stress interaction may 

subtend a relatively small angle for the large hole.  Therefore, the relatively large 

number of 200 evenly spaced points on the hole boundaries, designated the internal 

boundaries, was used for this approach.  This was found to yield accurate results as 

shown in appendices C and D.  Since the geometry of the external rectangular boundary 
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lacked curvature, 20 evenly spaced collocation points on each edge of the plate was 

used.  

Since the cutouts may not be centered on the rectangular plate, the mapping 

takes the following form.  The subscript m refers to the mth ellipse.  is the location of 

center of the mth hole.  The terms a and b are the ellipse dimensions.  When considering 

a circle, a and b are equivalent to radius R. 
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The inverse mapping function for a hole with radius R can be expressed as 
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2222)()(
( j = 1,2) (4.20)

The sign in equation 4.20 can be determined by meeting the following condition. 

 1≥jmξ  (4.21)

A generic form of the complex potential function, along with the conditions for 

single valued displacements, is shown in equation 4.22.  Note that the terms ajmk and bjk 

in equation 4.22 are the initial unknowns to be determined and not the ellipse 

dimensions.  H represents the number of holes.   
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Provided the hole is traction free, the logarithmic term is not needed. The condition of 

single value displacements is also not required because of the absence of the 

logarithmic term.  If only stress, and not displacement, boundary conditions and results 

are considered, the following truncated complex potential function is suitable. 
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The function shown in equation 4.23 is very similar to that used by Xu, Sun and Fan 

(1995b) with the notable exception that order of the positive terms is independent of the 

order of the negative terms. 

In expression 4.23, the coefficients ajmk and bjk are initially unknown.  By 

satisfying the boundary conditions in a least square solution approach, the coefficients 

can be developed for a particular problem.  Once the coefficients are solved and 

inserted into the complex potential function, the full field stress result can then be 

found. 

For this research, the specific case of two holes was considered, yielding a value 

of H = 2.  While the solution technique is flexible enough to incorporate any number of 

holes, accuracy may be lost with the increase of number of holes.  The external 

boundary is assumed to be rectangular with axis of symmetry aligned with the global 
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system.  Because of this, the normal and shear stress components on the external 

boundary are also aligned with the global system.  At each collocation point, two 

equations will be developed; one for the normal component of stress and one for the 

shear component of stress.  It should be noted that while a rectangle with uniform 

loading on the edge is considered in this approach, any arbitrary shape and loading can 

be considered by defining the collocation point’s geometry and normal and shear 

components of stress.   

The case considered is for an unloaded internal boundary.  The boundary 

conditions are such that the radial stress, σr, and the tangential shear, σrθ, are both equal 

to zero on the contour.  This can be mathematically described by the following 

equations and the components of zero stress are shown in figure 4.1. 

 θθσθσθσσ cossin2sincos0 22
xyyxr ++==  

 ( ) ( )θθσθθσσσ θ
22 sincoscossin0 −+−== xyyxr  

(4.24)

These expressions can be combined with equation 4.10 to yield the following 

relationships. 
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Figure 4.1 Stress components on the internal contour.  σθ – circumferential stress, σr – 

radial stress, σrθ – tangential shear stress. 
 
 

By passing the normal and tangential boundary condition stresses through the 

defined complex potential function, each collocation point will generate two equations.  

For the case with Ne collocation points along each edge of a rectangle and Ni collocation 

points on each hole, 2[4(Ne) + H(Ni)] equations will be developed.  Since the 4 corner 

points of the external boundary share the same shear stress value, 2[4(Ne) + H(Ni)] - 4 

unique equations will be found for the generic case.  However, if symmetry is present, 

many of these equations may be linearly dependent.   

By expanding the complex potential function in 4.23, there will be [H*N1 + N2] 

complex unknowns of ajmk and bjk.  By applying the boundary conditions and solving 
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for the coefficients of ajmk and bjk, the state of stress can be determined for the entire 

field.  The number of collocation points is chosen such that the system will be over-

determined.  For this reason, a least square solution is used to approximately satisfy the 

equations.  The following {2[4(Ne) + H(Ni)] - 4 } x {[H*N1 + N2] }matrix will be 

formed when the boundary conditions are inserted into the complex potential function.  

For an example case with two holes, Ne=20, Ni=200, N1=30, N2=5, then a 956 x 65 over 

determined matrix will exist.  For this study, Ne=20 and Ni=200 were always used, but 

N1 and N2 were allowed to vary in order to meet convergence conditions, as shown in 

the next section.  The matrix [C] represents the coefficients of the complex potential 

after the boundary conditions have been applied.  The matrix [x] represents the 

unknown coefficients ajmk and bjk that are to be solved. 

 ( ) ][]][[Re bxC = , [b] = load vector (4.26)

Since the unknowns [x] are in general complex and only the real component of the 

matrix on the left hand side is desired, the matrix is first decomposed as follows. 

 ][]][[ bdD = , ]]Im[];[Re[][ CCD −= ,
⎭
⎬
⎫

⎩
⎨
⎧

=
]Im[
]Re[

][
x
x

d  (4.27)

In order to solve for the least square solution, both sides of the matrix are first 

pre-multiplied by the matrix .  This will yield the following square matrix system 

that can be solved by conventional methods. 

TD][

 ][][]][[][ bDdDD TT =  (4.28)

After the real matrix [d] has been solved, the proper terms must be combined to yield 

the complex matrix [x].  At this point, the complex values of ajmk and bjk will be known 
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and will be inserted into the complex potential function.  The complex potential 

function can then be used to deduce the full field state of stress. 

4.4 Convergence 

Accuracy can be improved by increasing the order of the solution.  However, 

very large orders of the solution can lead to numerical instability.  Therefore, the 

accuracy of the solution has some practical limitations and techniques to increase the 

convergence capability may be necessary.  With the usage of the provided mapping 

function for the internal boundaries, the rate of convergence can be increased.     

Since the boundary conditions are approximately satisfied, the solution will only 

be as accurate as the ability to satisfy these boundary conditions.  After the complex 

potential function has been found for the specific problem, the stress result is evaluated 

at the collocation points as well as an intermediate point halfway in between the 

collocation points.  The summation of these points will be termed the “error control 

points”, shown in figure 4.2.  The stress value determined from the complex potential 

function is then compared to the prescribed value. 
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Figure 4.2 Error control points. 

 

The prescribed conditions at error control points were shown to be more 

difficult to satisfy in the area where there was an interaction between interior contours 

or between an interior contour and an exterior contour.  The accuracy of the solution 

was generally dictated by the ability to satisfy the prescribed conditions in the region of 

interaction.  For this reason, the convergence condition was based on the maximum 

deviation from prescribed conditions rather than considering an average of all error 

control points.  For example, a large plate may have a significant number of collocation 

points that may be accurately satisfied in the region away from the interaction.  If only a 

small number of error control points had a large deviation, an averaging method would 

indicate the solution may still be accurate.  However, since the small number of error 

control points may drive the solution accuracy, an averaging approach may yield 

deceptive results. 

 

 53



 

The following relations were used to define the level of accuracy. 

 
LoadAppliedMaximum

DeviationMax
E

*100
=  

 Max Deviation = maximum deviation of all error control points of interest 

 Max Applied Load = maximum value of any external applied load  

 Deviation = ABS (prescribed boundary value – value returned from solution) 

(4.29)

The value of E can be computed independently for the external and internal 

contours and is defined as Ee for the external contour and Ei for the internal contour.  Ei 

is generally dictated by N1, the order of the negative power terms in the series solution.  

Ee is generally dictated by N2, the order of the positive power terms in the series 

solution.  In general, a value of Ee less than 1.0 and Ei less than 0.5 will yield stress 

results that are in error of less than about 1.0%. 

To achieve adequate accuracy, Ogonowski (1980) truncated the Laurent series 

of the complex potential to 20 terms for positive powers and 20 terms for the negative 

powers.  Lin and Ko (1988) used 12 terms in the series solution.  Xu, Sun and Fan 

(1995b) took the partial sum to the 10th order.  Madenci, Sergeev, and Shkarayev (1998) 

used orders of 10, 20, and 30 depending on the geometry investigated. 

Since there must be a sufficient number of terms to represent the stress field, 

low solution orders may not yield accurate results.  At higher orders, accuracy may be 

lost due to numerical instability.  One approach would be to solve for all orders of 

practical importance and select the solution that minimized Ee and Ei.  However, this 
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may be impractical due to large solve times.  Section 4.5 discusses the accuracy of the 

stress result associated with Ee and Ei and their corresponding orders, N1 and N2. 

For this study, it was found that separating the order of the positive terms and 

negative terms yielded the most accurate results.  As the positive terms largely control 

the external boundary, it was found that N2 = 1 was sufficient for a very large plate that 

simulated infinite geometry.  In turn, this allows the value of N1 to reach high levels 

without numerical instability.  Since the focus of the research was on the interaction of 

the holes, and the value of N1 controls hole interaction accuracy, this was highly 

desirable.  However, for geometry where the finite size has a significant effect, the 

value of N2 must be increased to higher levels in order to maintain accuracy.  In turn, 

this will limit the value of N1 before the solution becomes unstable.   

Since a mapping function exists for a circle, the stress interaction due to closely 

spaced holes was dealt with in relative ease.  The notable exception was when the ratio 

of hole sizes became very large, approximately 10:1.  On the other hand, when an 

interaction of the external boundary and the internal boundary was significant, accuracy 

was generally difficult to achieve.  It was suspected that this was due to the lack of a 

mapping function for the rectangular external boundary. 

If the value of E was within the specified range, the solution was expected to be 

accurate.  However, not every problem could meet the specified requirements, even as 

the order was increased.  This was due to instability of the solution with high orders.  

Regardless of this limitation, many problems of practical importance be solved using 

the least square boundary collocation method. 
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4.5 Comparison to Published and FEM Solutions 

In order to validate the proposed method, several comparisons to existing 

solutions were made.  Initial comparisons were made for an infinite, isotropic plate 

solved by Ling (1948) and for an infinite, orthotropic plate solved by Fan and Wu 

(1988).  Ling presented data for all around tension, longitudinal tension, and transverse 

tension is presented.  Fan and Wu (1988) presented data for longitudinal tension, 

transverse tension and shear loadings.  The detailed tabular results, and corresponding 

geometric definitions, are provided in appendix C.     

For the least square boundary collocation solution, a radius of 1.0 was arbitrarily 

chosen and the plate was chosen to have a width and height of 1000.0 to simulate an 

infinite plate.  For the approximation to the hole spacing of infinite value, a value of L/R 

= 100.0 was chosen.  The boundary collocation parameters were defined to have 20 

collocation points on each external edge and 200 collocation points each internal 

boundary.  The order of the negative powers, N1 was chosen to be 12 while the order of 

the positive powers N2 was chosen to be 1.  In addition, the condition that E should be 

less than 0.5 for all internal and external contours was required to be satisfied. 

The average difference between Ling’s (1948) solution and the presented least 

square boundary collocation method was less than one tenth of one percent or <0.1%.  

The average difference between Fan and Wu’s (1988) solution and the presented least 

square boundary collocation method was less than one tenth of one percent or <0.1%.   

Several configurations of equal and unequal holes using the presented least 

square boundary collocation method were compared to the solution of Haddon (1967) 
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for an infinite, isotropic material.  For equal sized holes, N1 was chosen to be 30 and N2 

was chosen to be 1.  This was done to achieve greater accuracy when the holes are in 

very close proximity.  For the configurations where the hole size ratio was 5:1 and 10:1, 

N1 was chosen to be 50 and N2 was chosen to be 1.  This was necessary because of the 

unequal hole size and close proximity.  In addition, the condition that E should be less 

than 0.5 for all internal and external contours was required to be satisfied.   

In general, most of the results showed less than one tenth of one percent or 

<0.1% difference. Tabular results are provided in appendix C.  For hole ratios of 5:1 

and 10:1, the value of Ei could not be satisfied to less than 0.5 for all values of s.  For 

these conditions, “N.S.” or “No Solution” was reported.  While most of the results 

showed a difference of less than 0.1%, some of the results had a relatively large 

difference.  These results are shown in appendix C.  A finite element solution of these 

specific cases indicated that the presented least square boundary collocation method 

solution was correct and that Haddon’s (1967) solution appeared to be erroneous. 

Published solutions exist for several problems with multiple holes, but are 

limited to selected problems.  The finite element method (FEM) can be used to solve a 

generic problem and was used to compare problems for which published solutions do 

not exist.  Two FEM models were created in order to verify three effects for which no 

published results were available.  These effects are due to finite geometry, presence of 

multiple unequal holes for orthotropic materials, and the stress resultant at locations 

other than the hole boundary.  
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A finite element model with equal holes was created to compare the result of 

holes in close proximity with finite geometry to the result using the presented least 

square boundary collocation method.  Three laminate configurations were evaluated 

consisting of “hard”, “soft”, and quasi-isotropic effective properties as shown in 

appendix D.  The presented least square boundary collocation method showed less than 

a 1.0% peak difference compared to the finite element model, as shown in appendix D. 

A second, more extensive model was used to compare unequal sized holes in 

very close proximity.  Three laminate configurations were solved.  The stress resultant 

was collected at many points between the holes in addition the hole boundary.  The 

presented least square boundary collocation method showed less than a 2.0% peak 

difference compared to the finite element model, as shown in appendix D. 

4.6 Discussion 

The method that was presented is relatively straightforward since it employs 

boundary collocation on both the internal external boundaries.  Since the inputs are 

parametric, the method is particularly suitable for trade studies.  The solution approach 

also provides full field stress results and the stress profile can be easily obtained.   

When the solution met the specified convergence criteria, it was shown to yield 

very accurate results. The values Ee and Ei were consistent gages to determine how well 

the boundary conditions were satisfied.  Provided the values of Ee and Ei were within 

specified limits, the accuracy of the solution was expected to be very high.  In general, 

it was easier to achieve high levels of accuracy for problems with simulated infinite 

geometry than for problems where finite geometry was a significant effect.  Accuracy 
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was also easier to achieve for equal size holes and became more difficult for large hole 

size ratios.  The closer the hole proximity was, the more difficult it became to meet 

convergence conditions. 

 The least square boundary collocation approach, as constructed, was 

determined to be highly accurate and effective for the study of the stress interaction of 

multiple holes.  Other techniques, such as finite element models, may be considerably 

more time consuming to construct and evaluate. 

With the use of the presented method, figure 4.3 shows a sample contour plot of 

the stress for two holes in close proximity.  The figure shows the interaction of stress 

and demonstrates that the stress functions are continuous. 

 

 
Figure 4.3 Sample contour plot. 



 

 

 

CHAPTER 5 

STRENGTH PREDICTION OF LAMINATES WITH MULTIPLE HOLES 

 

While extensive research exists that characterizes the hole interaction effect and 

the hole size effect independently, there is little research that takes both of the effects 

into account simultaneously.  For the previous efforts that have accounted for both 

effects, the focus was usually on hole spacing that has little interaction or when the 

characteristic dimension, d0, had been assumed to be a constant.   

Since the characteristic distance is a function of the material and laminate, it 

was felt that strength evaluation based upon a single characteristic dimension lacked 

flexibility.  The objective for this chapter was to study both the hole interaction effect 

and hole size effect simultaneously.  Equal and unequal holes in close proximity were 

considered and a two hole strength prediction was made for arbitrary values of the 

characteristic distance, d0.   

The point stress criterion, applied at the laminate level, was considered due to 

its ease of use and accuracy for single hole strength predictions.  Although the point 

stress criterion relies on curve fitting to determine the characteristic distance, there is 

also a physical basis for the criterion as discussed in chapter 2.  It was hypothesized that 

the extension of the criterion to multiple holes may be effective since the altered state of 

stress is accounted for.   
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The stress distributions shown in this chapter were determined via the method 

presented in chapter 4.  The convergence conditions were such that Ee and Ei were a 

maximum of 0.5.  The boundary collocation parameters were defined to have 20 

collocation points on each external edge and 200 collocation points each internal 

boundary.  The   IM7/977-3 material presented in chapter 3 was considered with the 

exception of the comparisons to experimental data shown in section 5.5.  In-plane 

uniaxial loading for an infinite plate with holes oriented transverse to the load and in-

line with the load were considered.  Although the tension case was graphically depicted, 

the results were valid for both tension and compression.  This was because the results 

were normalized by the remote stress.  Laminates were considered to be symmetric, 

balanced, and to have homogeneous, orthotropic stiffness properties.  Laminates were 

described in ply percentages of 0°, ±45°, and 90° plies.  For example, a laminate with 

25% 0° plies, 50% ±45° plies, and 25% 90° plies was abbreviated as (25/50/25).  Three 

primary laminate configurations were considered.  They consisted of the “quasi-

isotropic” or (25/50/25) laminate, the (50/0/50) or fiber dominated laminate, and the 

(0/100/0) or matrix dominated laminate.  These particular laminates were chosen 

because they have dramatically different apparent properties.  The three hole size ratios, 

1:1, 5:1, and 10:1 were considered.  Infinite geometry was exclusively considered for 

the results.  To simulate the infinite boundary, a rectangular plate of height and width 

equal to 2000.0” was chosen and the smallest hole was chosen to be of radius equal to 

1.0”.   
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5.1 Geometric Parameters 

Figures 5.1 and 5.2 show the geometric parameters for the cases with holes 

oriented transverse to the load and in-line with the load, respectively.  The external 

boundary was treated as infinite.  The edge to edge spacing, s, and smaller hole radius, 

a, are used to classify the hole spacing.  The relevant term is s/a.  For the case where the 

holes are of equal size, i.e. a = b, the center to center distance, l, and hole diameter, D, 

can also be used to classify hole spacing.  The relevant term is l/D.   
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Figure 5.1 Geometric parameters for holes oriented transverse to the load. 
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Figure 5.2 Geometric parameters for holes oriented in-line with the load. 
 

 

Equation 5.1 shows the relationship between s/a and l/D, provided the holes are 

equal.  Some values relevant to this study are shown in table 5.1.   

 sal += 2 ,  aD 2=  

 
2

)/(1/ asDl +=  
(5.1)
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Table 5.1 Relationship between s/a and l/D. 

s /a l /D

0.30 1.15

0.50 1.25

1.00 1.50

2.00 2.00

3.00 2.50

4.00 3.00

5.00 3.50

6.00 4.00

7.00 4.50
 

 

 

5.2 Stress Concentrations for Multiple Holes 

The stress concentration of a composite with two holes is a function of hole size 

ratio (b/a), hole spacing, hole orientation, plate size, and laminate configuration.  The 

stresses at the hole edge, or boundary, were considered in this section.  The stress 

concentration factors for a single hole for the (50/0/50), (25/50/25), and (0/100/0) 

laminates are 4.86, 3.00, and 2.04, respectively. 

5.2.1 Holes Oriented Transverse to the Load 

The case where the holes are oriented transverse to the load is shown in figure 

5.1.  Figures H.2 and H.3 demonstrate that the x-component of stress at point A is 

greater than at point B for unequal hole sizes.  The x-component of stress at point A is 

shown in figures 5.3 to 5.6.   
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Figure 5.3 Stress concentration for two equal holes.  Holes oriented transverse to the 

load. 
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Figure 5.4 Stress concentration for two holes, b/a = 5.0.  Holes oriented transverse to 

the load. 
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Figure 5.5 Stress concentration for two holes, b/a = 10.0.  Holes oriented transverse to 

the load. 
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Figure 5.6 Stress concentration for various hole size ratios.  (25/50/25) laminate, holes 

oriented transverse to the load. 
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The stress concentration was highest for the (50/0/50) laminate and lowest for 

the (0/100/0) laminate for all configurations studied.  As the hole size ratio increased, so 

did the stress concentration, as shown in figure 5.6.  If d0 is treated as a constant, the 

stress at d0 will be closer to the stress at the edge as the physical hole size increases. 

Therefore, the x-component of stress at the boundary, or point A, is thought to be most 

relevant for strength prediction when a is relatively large.     

For b/a = 1.0, or equal holes, figure 5.6 demonstrates that there was little 

interaction for s/a > 1.5, but below this value the stress rapidly increased.  Conversely, 

for the larger hole size ratios of 5:1 and 10:1, the interaction was still significant at a 

value of s/a > 1.5 and the rate of stress decrease for s/a < 1.5 was much less than for the 

equal holes.  In general, the stress was amplified when the hole proximity was 

decreased.  

5.2.2 Holes Oriented In-line with the Load 

The stress concentration for holes orientated in-line with the load, as shown in 

figure 5.2, was considered.  Figure 5.7 shows that the x-component of stress at point A 

was reduced as the equal holes became closer to one another.  For the cases where b/a = 

5.0 and b/a = 10.0, only the stress for the larger hole was considered.  This was because 

the largest magnitude of the x-component stress occurred at the larger hole as shown in 

figure 5.8 and appendix H.  Since subsequent strength prediction was performed on the 

maximum stress, the smaller hole with a lower stress was given less consideration.        
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Figure 5.7 Stress concentration for two equal holes.  Holes oriented in-line with the 

load. 
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Figure 5.8 Stress concentration for two holes, b/a = 10.0.  (25/50/25) laminate, holes 

oriented in-line with the load.  
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The stress concentration was reduced for equal sized holes as the hole proximity 

was decreased.  The level of reduction was significantly less than the level of increase 

in stress for the case where the holes were oriented transverse to the load.  For the case 

where the hole size ratio was 10:1, the stress at the larger hole was nearly identical to 

that of the single hole configuration.  Figure 5.8 shows that the stress concentration is 

nearly 3.0 for all hole spacings for the (25/50/25) laminate.      

5.3 Stress Profile 

For this study, the stress profile is defined as the x-component of stress, in 

between the holes, that lies along the line x = 0.0.  For holes in close proximity, the 

stress profile was altered from the single hole stress profile.  

5.3.1 Holes Oriented Transverse to the Load  

The load condition where the hole orientation was transverse to the load was 

considered first.  Figure 5.9 shows the stress profile for the quasi-isotropic, or 

(25/50/25) laminate, with two equal holes.  This figure demonstrates two significant 

effects about the stress profile.  First, the magnitude of stress was found to be higher as 

the holes were spaced closer, as anticipated due to the results shown in section 5.2.  

Second, the shape of profile was affected.  Further plots with varying hole size ratios 

and laminates configurations are shown in appendix E.     
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Figure 5.9 Stress profile for (25/50/25) laminate, equal holes.  Holes oriented transverse 

to the load. 
 

The shape of the stress profile can be more clearly seen if the stress is 

normalized by the magnitude of the maximum stress, as shown in the following 

equation and figure.   
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Figure 5.10 Normalized stress profile for (25/50/25) laminate, equal holes.  Holes 

oriented transverse to the load. 
 

 

Since the shape of the stress profile was changed, the strength prediction 

according to the point stress criterion was subsequently affected.  Two phenomena were 

observed that affected strength prediction.  The first was that the magnitude of stress at 

the hole boundary was affected by hole proximity and hole size ratio.  This was due to 

the hole interaction effect.  The second was that the shape of the stress profile was 

changed.  This again was due to the hole interaction effect, but also affects the strength 

prediction when the hole size effect is simultaneously considered.  For the condition 

shown in figure 5.10, it was observed that the volume of material that was highly 

stressed continued to increase as the hole spacing became smaller.  Additional stress 
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profile and normalized stress profiles for various laminates and hole size ratios are 

presented in appendix E.  The profiles of the three considered laminates were distinctly 

different.  For equal holes, the normalized stress profile for the (25/50/25) laminate had 

a similar shape as that of the (50/0/50) laminate and both had a “U” shaped profile.  

However, the (0/100/0) normalized profile had an upside down “U” shaped profile for 

lower values of s/a.  The (0/100/0) also exhibited two inflections points for most of the 

considered s/a values, whereas the (25/50/25) and (50/0/50) laminates exhibited either a 

single inflection point or no inflection points for the s/a values considered.   

5.3.2 Holes Oriented In-line with the Load  

The load condition where the holes were in-line with the load was considered.  

As shown in figure 5.11, the magnitude of hole interaction is less significant than for 

the case when the holes are oriented transverse to the load.  Figure 5.12 shows that the 

normalized stress profile was affected less than the case when the load was transverse to 

the holes.  Similar results were shown for all of the laminates studied, as shown in 

appendix E. 
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Figure 5.11 Stress profile for (25/50/25) laminate, equal holes.  Holes oriented in-line 

with the load. 
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Figure 5.12 Normalized stress profile for (25/50/25) laminate, equal holes.  Holes 

oriented in-line with the load. 
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5.4 Strength Prediction 

The strength prediction for two holes was compared to the strength prediction 

for a single hole.  The point stress criterion was extended to multiple holes and 

compared to the point stress criterion applied to a single hole.  The predictions were 

valid for either uniaxial tension or uniaxial compression.  The result was a “correction 

factor” that relates the two hole strength to the single hole strength in an infinite plate.  

Provided d0 was known for a given laminate, the strength reduction for two holes could 

then be quickly found.   

The x-component of stress was thought to dictate failure for two holes and was 

therefore used in the same way as the failure prediction for a single hole.  Appendix H 

demonstrates that, for the two studied loading conditions, the maximum x-component of 

stress is comparable to the maximum circumferential component of stress at the hole 

edge.  The maximum x-component is larger than both the largest y-component and xy-

component of stress. The term Strength Ratio, a function of d0/a, is described as the 

strength of two holes with respect to the strength of a single hole.  Strength Ratio is 

mathematically defined as    

 
Strength Ratio = 2

1

x

x

σ
σ

 

 1
xσ = x-component of stress at (x = 0.0, y = d0/a) for a single hole in an infinite plate 

 2
xσ = x-component of stress at (x = 0.0, y = d0/a) for two holes in an infinite plate 

(5.3)
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The stress distribution for a single hole was found by using Lekhnitskii’s 

solution as shown in appendix A.  An approximation to the Lekhnitskii solution may be 

found by using equation 2.1. 

The term  d0/a is in effect the “notch sensitivity parameter” since a decrease in 

d0 and an increase in a will both increase the notch sensitivity of the structure.  The 

“notch sensitivity parameter” accounts for the hole size effect witnessed in composite 

materials.  The terms s/a and l/D can be considered the “hole interaction parameters”.  

Both of these parameters govern the hole spacing and the effect of interaction in the 

stress field due to multiple holes.  The usage of Strength Ratio for failure prediction, as 

presented, simultaneously accounts for both of these effects. 

5.4.1 Holes Oriented Transverse to the Load  

Figure 5.13 shows the strength prediction for a quasi-isotropic laminate with the 

holes oriented transverse to the load.  The strength prediction was based on the stress 

near the smaller hole, if applicable, since the x-component of stress was greater for the 

smaller hole.  Figures H.2 and H.3 demonstrate that for b/a = 5, the maximum x-

component of stress was greater for the smaller than for the larger hole. 

Figure 5.9 shows the stress profile has an inflection point at y/a = (s/a)/2.  The 

point (s/a)/2 represents the point half way in between the hole edges.  For equal sized 

holes, a d0/a value greater than (s/a)/2 would yield a stress result closer to the adjacent 

hole rather than the hole of interest.  Therefore, the Strength Ratio curve was truncated 

at d0/a = (s/a)/2 for equal sized holes.  For unequal sized holes, a corresponding 

truncation value was less clear.  Figure F.3 demonstrates that the strength prediction has 
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the potential to “cross over”.  In figure F.3, the value of s/a = 0.5 crosses the curve for 

s/a = 1.0.  Similarly, s/a = 1.0 crosses over s/a = 2.0.  It was thought this was not 

physically reasonable since the holes were spaced farther apart and should interact less.  

Therefore, the following criterion was utilized to determine the maximum permissible 

d0/a value for holes oriented transverse to the load. 
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Figure 5.13 Two hole strength prediction for (25/50/25) laminate, equal holes.  Holes 

oriented transverse to the load. 
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In figure 5.13, the line d0/a = 0.0 represents the strength prediction if the x-

component of stress at the edge of the hole is considered.  For a given s/a value, a 

horizontal line would indicate that the shape of the stress profile would be identical to 

that of a single hole.  Any deviation from horizontal indicates a shape change to the 

stress profile.  In figure 5.13, s/a = 4.0 shows that the line is nearly horizontal, 

indicating that the spacing is far enough apart to have relatively little hole interaction.  

Figures 5.13 through 5.15 show that a strength prediction for d0/a = 0.0 and s/a = 2.0 is 

nearly unity.  However, as d0/a is increased to 1.0, Strength Ratio becomes significantly 

less than unity.   
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Figure 5.14 Two hole strength prediction for (50/0/50) laminate, equal holes.  Holes 

oriented transverse to the load. 
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Figure 5.15 Two hole strength prediction for (0/100/0) laminate, equal holes.  Holes 

oriented transverse to the load. 
 
 

Strength Ratio for the three considered laminates with equal holes had similar 

shapes and trends.  For all cases, an increase in d0/a indicated a reduction of strength.  

However, the rate of decrease in strength was different for the three laminates.  Figure 

5.16 compares the strength prediction for the three laminates.  Although the three 

laminates had dramatically different stiffness properties, Strength Ratio was relatively 

similar for s/a = 0.5, 2.0, and 4.0.  Figure 5.17 shows Strength Ratio for higher values of 

s/a.  The response was nearly identical for all laminates considered, indicating that for 

s/a ≥ 4.0, or l/D ≥ 3.0, the response is nearly independent of the layup.  Since the three 

considered laminates had dramatically different orthotropic properties, but the response 

was similar, it was hypothesized that the response would be largely independent of the 
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material system as well.  For s/a ≥ 5.0, or l/D ≥ 3.5, the two hole strength was at least 

95.0% of the single hole strength.   
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Figure 5.16 Two hole strength prediction for three laminates, equal holes.  Holes 

oriented transverse to the load.  Low s/a values. 

 79



 

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

d0/a

St
re

ng
th

 R
at

io

(25/50/25), s/a = 3.0

 (50/0/50), s/a = 3.0

(0/100/0), s/a = 3.0

s/a = 4.0

s/a = 5.0

s/a = 6.0

s/a = 7.0

 
Figure 5.17 Two hole strength prediction for three laminates, equal holes.  Holes 

oriented transverse to the load.  High s/a values. 
 

For the case where b/a = 5.0, Strength Ratio is shown in figures 5.18 through 

5.20.  As d0/a increased, Strength Ratio was found to either increase or decrease.  This 

was in contrast to the case with equal holes since Strength Ratio decreased with 

increasing d0/a for all cases.  For the case where s/a = 0.3, the effect of increasing d0/a 

showed an increase or a very small decrease in strength.  It was hypothesized that this 

was due to the fact that while the peak stress is very large, it is more localized at the 

boundary than for the case of equal sized holes.  Since the high stress region dissipated 

quickly as shown in figure E.5, it seemed reasonable that an increase in d0/a would 

indicate an increase in strength.  For the case where s/a = 4.0, the effect of increasing 

d0/a was more significant than for the case where the holes were equal size.   
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Figure 5.18 Two hole strength prediction for (25/50/25) laminate, b/a = 5.0.  Holes 

oriented transverse to the load. 
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Figure 5.19 Two hole strength prediction for (50/0/50) laminate, b/a = 5.0.  Holes 

oriented transverse to the load. 
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Figure 5.20 Two hole strength prediction for (0/100/0) laminate, b/a = 5.0.  Holes 

oriented transverse to the load. 
 
 

5.4.2 Holes Oriented In-line with the Load  

Figure 5.21 shows the strength prediction where the hole orientation is in-line with the 

load.  Figures 5.8, H.5, and H.6 demonstrate that for a hole size ratio of 5:1, the stresses 

at the smaller hole are smaller than at the larger hole.  Therefore, the strength prediction 

was based on the stress near the larger hole, if applicable, since the x-component of 

stress was greater for the larger hole.  Figure 5.21 demonstrates that the lines “crossed 

over” one another at some value of d0/a.  Since a decrease in hole spacing was thought 

to increase strength, the use of Strength Ratio for a d0/a value greater than the cross 

over point was thought to be physically unreasonable.  As s/a increased, so did the 
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corresponding cross over point.  The cross over point for a given s/a was defined as the 

intersection between the curve of interest and the curve with the next lowest s/a value.  

The cross over points in figure 5.21 are shown in table 5.2. 
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Figure 5.21 Two hole strength prediction for (25/50/25) laminate, equal holes.  Holes 

oriented in-line with the load.  Low s/a values.  
 

 

Table 5.2 Maximum permissible values of d0/a for (25/50/25) laminate, equal holes.  
Holes oriented in-line with the load. 

 
s / a Cross over point = max (d0/a)

0.5 0.39

1.0 0.55

2.0 0.77

4.0 1.18
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Figure 5.21 shows that Strength Ratio is relatively flat for d0/a less than about 

0.3.  Compared to figure 5.13 and considering d0/a < 0.5, Strength Ratio for the in-line 

orientation was generally flatter than for the transverse hole orientation.  This was 

anticipated since the normalized stress profile shown in figure 5.12 was affected less by 

hole interaction than the normalized stress profile shown in figure 5.10.  However, it 

should be noted that a significant difference in scale exists between figures 5.21 and 

5.13. 

Figures 5.21, F.4, and F.5 indicate that the response is relatively different 

between the three laminates for low s/a values.  Figures F.6 to F.8 show that response 

between the three laminates is relatively different for high s/a values as well.  This was 

in contrast to the load condition where the holes were oriented transverse to the load.   

Figure 5.22 shows Strength Ratio for a 5:1 hole size ratio.  The state of stress for 

the larger hole was not significantly affected, as confirmed by figure 5.8.  Since the 

strength prediction is based on the hole with the larger stress, Strength Ratio was nearly 

unity for all hole spacings and d0/a ratios that were considered. 
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Figure 5.22 Two hole strength prediction for (25/50/25) laminate, b/a = 5.0.  Holes 

oriented in-line with the load. 
 
 

5.5 Comparisons to Experimental Data 

Soutis, Fleck, and Curtis (1991) tested the fracture strength for a composite with 

two equal holes in close proximity under compression loading.  The considered 

laminate was symmetric and balanced with a S])0/45[( 32± layup.  The T800/924C 

carbon fiber/epoxy lamina had properties of E1 = 24.37 Msi, E2 = 1.34 Msi, G12 = 0.87 

Msi, and ν12 = 0.34.  The effective properties were Ex = 13.83 Msi, Ey = 3.843 Msi, Gxy 

= 3.555 Msi, and νxy = 0.707.  The specimen width was approximately 2.0” and the hole 

diameter was approximately 0.2”.  They noted that for the case with the holes oriented 

transverse to the load that the failure strength for two holes did not correspond to the 
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ratio of stress concentration factors.  While the authors reported this discrepancy, no 

attempt at failure prediction was made. 

The experimental results of Soutis, Fleck, and Curtis were compared to 

analytical predictions using Strength Ratio.  To develop the state of stress, the method 

presented in chapter 4 was used.  Since adequate accuracy and convergence was not 

obtained by using the actual test geometry, an infinite plate was simulated.  In order to 

validate this approach, finite element models with the actual test geometry were 

compared to the least square boundary collocation method with infinite geometry.  The 

results were in agreement to about 1.0% as shown in appendix G.  Soutis, Fleck, and 

Curtis’s experiment used a W/D, or width divided by hole diameter, of 10.0.  Xu, Sun, 

and Fan (1995a) stated that when W/D  10.0 that stress result was close to that of an 

infinite plate.  Figures 5.23 and 5.24 were used to compare the experimental results to 

analytical predictions for holes oriented transverse to the load. 

≥
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Figure 5.23 Two hole strength prediction for T800/924C, (50/50/0) laminate.  Holes 

oriented transverse to the load. 
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Figure 5.24 Comparison of strength prediction method to experimental data for holes 

oriented transverse to the load. 
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The characteristic dimension, d0, for the laminate in Soutis, Fleck, and Curtis’ 

experiment under compression loading was not determined.  However, some general 

statements about the results can be made.  For reference, Whitney and Nuismer (1974) 

stated that for uniaxial tension that d0 was found to be 0.04” for the material system and 

laminate considered in their experiments.  As another reference, Tan (1994) reported the 

characteristic dimension for laminates in compression.  He found d0 = 0.12” for a 

[±302]s laminate and d0 = 0.15” for a  [±452]s laminate.  The allowable values of s/a for 

strength prediction, shown in figure 5.24, were determined according to equation 5.4.  

Figure 5.24 demonstrates that the strength prediction for d0 = 0.04” was a better fit to 

the data than if d0 = 0.0”; d0 = 0.0” represents the stress at the hole boundary or edge.  

For the value of s/a = 1.0, the strength prediction was notably superior for d0 = 0.04” 

than for the d0 = 0.0”.  For s/a ≥ 2.0, an increase in d0 showed better correlation to the 

experimental data.  All considered values of d0 > 0.0” showed an improved correlation 

to the experimental data.  For d0 = 0.13”, the strength prediction was superior than for 

d0 = 0.0”.  However, for d0 = 0.13”, the valid range of strength prediction did not 

include the data points at s/a = 1.0 and s/a = 2.0.     

Figures 5.25 and 5.26 were used to compare the experimental results to 

analytical predictions for holes oriented in-line with the load.  The maximum 

permissible d0/a values, shown in table 5.3, was used in the comparison.  The results 

showed that the strength prediction appeared to be satisfactory for all values of d0.  For 

s/a ≥ 4.0, the strength prediction results were closer to the experimental data for d0 > 

0.0”.  The results also indicated that the boundary stress was a more accurate predictor 
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for the condition where the holes were oriented in-line with the load than for condition 

where the holes were oriented transverse to the load.    
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Figure 5.25 Two hole strength prediction for T800/924C, (50/50/0) laminate.  Holes 

oriented in-line with the load. 
 
 
 

Table 5.3 Maximum permissible values of d0/a for T800/924C, (50/50/0) laminate, 
equal holes.  Holes oriented in-line with the load. 

 
s / a Cross over point = max (d0/a)

1.0 0.37

2.0 0.56

3.0 0.78

4.0 1.05

5.0 1.32
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Figure 5.26 Comparison of strength prediction method to experimental data for holes 

oriented in-line with the load. 
 
 

5.6 Discussion 

The stress concentration due to interacting holes can be significantly increased 

over that of a single hole.  The laminate configuration was shown to have a significant 

affect on the stress concentration.  The stress profile was significantly altered due to the 

presence of holes in close proximity.  The shape change in the stress profile was more 

pronounced for holes that were oriented transverse to the load than for holes that were 

oriented in-line with the load. 
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The comparison of the two hole extension of the point stress criterion to 

experimental data suggested that the approach may be an effective predictor of strength 

for holes in close proximity.  For strength prediction, the use of the boundary stress may 

be more relevant for holes oriented in-line than for holes oriented transverse to the load.   

The presented approach requires that the single hole strength and characteristic 

dimension, d0, be previously defined.  It was assumed that if multiple holes were to be 

considered that these requirements would be satisfied.  Since Strength Ratio plots cover 

a wide range of possible d0 values, the two hole strength versus single hole strength can 

then be easily determined for a given laminate, geometric configuration, and hole 

orientation.   

Some disadvantages to the strength prediction approach exist.  While a 

recommendation for the limiting value of d0/a was presented, further consideration 

should be given to the presented approach.  The strength prediction approach for holes 

oriented transverse to the load considers the stress that is between the two holes.  It may 

be possible that the region between the two holes could fracture first and a redistribution 

of stress to the “outer” regions could occur that would allow for additional residual 

strength.  This affect was not considered in the strength prediction.  Furthermore, since 

the valid range of d0/a was determined to be limited, an alternative strength prediction 

method is recommended for situations where the range is out of bounds.  



 

 

 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

The orthotropic stress concentration factor was approximately determined by 

only two parameters, Ex/Ey and Ex/Gxy.  The approximate orthotropic stress 

concentration factors,  and , were found to have good correlation to the exact 

orthotropic stress concentration factor, . While  was more accurate,  had a 

more convenient form.  Since composite laminates with holes may require many 

parameters to fully define, the relatively simple approach of defining the laminate by 

only two parameters is a convenient way to describe a laminate.  The approach was 

relatively accurate for ten different material systems and was therefore concluded to be 

material independent. 

*
tK **

tK

∞
tK *

tK **
tK

By applying boundary collocation to both external and internal boundaries, the 

presented least square boundary collocation method was found to be very accurate for 

orthotropic plates with two equal or unequal holes in close proximity.  Since boundary 

collocation was applied to both internal and external boundaries, the implementation of 

the method was relatively straightforward.  By using different orders for the positive 

and negative terms in the complex potential function, the solution accuracy for the 

studied problems was increased.  Comparisons to published solutions and finite element 
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models demonstrated that excellent accuracy was obtained for a wide range of 

problems.  The presented method allowed for parametric inputs for the geometry and 

the stress was able to be recovered at arbitrary points.  This allowed for the convenient 

recovery of stress concentrations and stress profiles.  The method presented was 

determined to be very useful for stress distributions for two holes in an orthotropic 

material. 

For two holes in close proximity, where the holes were oriented transverse to 

the load, the magnitude of the maximum x-component of stress was increased compared 

to that of a single hole.  The shape of the stress profile was also different than for that of 

a single hole.  A change in the stress profile indicated an increase or decrease of the 

volume of material under the highly stressed region.  In turn, these changes were found 

to affect the strength prediction.  By using only the data necessary for single hole 

strength prediction, a two hole strength prediction that utilized the point stress criterion 

method was presented.  Since the strength prediction was a function of d0, the approach 

was flexible enough to cover a wide range of possible d0 values. 

While the presented method allowed for strength predictions to be made for a 

range of d0/a values, certain limitations were recognized.  For equal holes oriented 

transverse to the load, d0/a was allowed to be no greater than (s/a)/2 or the “cross over” 

point indicated as indicated in equation 5.4.  For the condition where the holes were in-

line with the load, d0/a was not allowed to be greater than the “cross over” point as 

indicated in figure 5.21. 
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Figure 5.17 demonstrated that for equal holes oriented transverse to the load, the 

two hole strength prediction for s/a ≥ 5.0, or l/D ≥ 3.5, was at least 95.0% of the single 

hole strength, provided the conditions of equation 5.4 were met.  For equal holes 

oriented transverse to the load, Strength Ratio decreased as the characteristic dimension 

increased.  This indicated that strength prediction based on the ratio of stress 

concentrations, recovered at the hole edge, may yield an unconservative result.  

Furthermore, neglecting the “hole size effect” in the strength prediction for holes in 

relatively close proximity could yield significant error.  The experimental results shown 

in figure 5.24 supported this possibility.   

Figures 5.16 and 5.17 demonstrated that for equal holes oriented transverse to 

load, Strength Ratio was similar for the three laminates although they had dramatically 

different stiffness properties.  For s/a ≥ 4.0, or l/D ≥ 3.0, the response was nearly 

identical for the three laminates, indicating that the response was independent of the 

layup.  It was hypothesized that the response may be material system independent as 

well. 

The presented method for two hole strength prediction was found to have good 

correlation to experimental data, as evidenced by figures 5.24 and 5.26.  This implied 

that both the “hole size effect” and “hole interaction effect” should be simultaneously 

considered for strength prediction of multiple holes in close proximity.  The uses of the 

boundary stress for failure prediction was found to be a more accurate strength predictor 

for holes oriented in-line with the load than for holes oriented transverse to the load.  
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For hole size ratios of 5:1 or greater, Strength Ratio was found to be unity for the 

condition where the holes were oriented in-line with the load.   

By using the methods presented in chapter 4 and chapter 5, a series of design 

curves were generated for a range of hole size ratios, laminate configurations, and hole 

orientations.  The results can then be used to quickly determine part strength when two 

holes are in close proximity.   

6.2 Recommendations 

For the approximation of the stress concentration factor using two parameters, 

the value of C1 should be optimized for accuracy and ease of use.  Additional material 

systems should also be considered.  The physical relationship between the 

approximation and the governing parameters should be further investigated.  A more 

effective approximation approach may exist and should be investigated. 

For the strength prediction of two holes, the average stress criterion should be 

evaluated for effectiveness.  Also, an experimental investigation with different hole 

sizes, hole spacings, hole size ratios, hole orientation, laminate configuration, and 

material systems should be made in order to determine the effectiveness of the proposed 

strength prediction method.  The valid range of d0/a should be further investigated for 

all hole orientations and hole size ratios.  The strength prediction should be expanded to 

include patterns of holes and holes oriented at an angle to the loading direction.  

Specifically, the 45.0° orientation should be considered because of the potential for 

relatively high stress concentrations.  Since the x-component of stress for the 45.0° 

orientation may not be comparable to the circumferential stress, usage of the point stress 
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criterion as the foundation for strength prediction may not be applicable.  Although the 

(50/0/50), (25/50/25), and (0/100/0) laminates were studied to investigate the outer 

boundaries of possible laminate configurations, further layups and materials systems 

should be considered.  For this study, infinite geometry was considered in the strength 

prediction and problems with finite geometry should be considered.   

 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX A 
 
 

STRESS DISTRIBUTION FOR A SINGLE CUTOUT 
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Lekhnitskii (1968) solved the problem of an anisotropic, infinite plate with a 

single elliptical cutout, loaded in the plane.  The following approach was used to 

develop the state of stress for a single cutout.  The transformation equation, A.1, 

transforms any point in the x, y domain into the complex plane.  The definitions for the 

individual terms can be found in chapter 4. 

 yxz jj μ+= ( j = 1,2) (A.1)

The characteristic equation that solves for the principal roots, μ1 and μ2, is expressed as 
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The ellipse in the x, y domain can be mapped into a unit circle in the complex 

plane by using the following mapping function, where a and b are the dimensions of the 

ellipse.  When considering a circle, a and b are equivalent to radius R. 
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The inverse of this mapping function is found to be 
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Since the inverse mapping is multi-valued, the correct sign is obtained by determining 

the sign that meets the following condition. 

 1≥jξ  (A.5)
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Lekhnitskii found the complex potential functions can be expressed as 
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For the case of a circular hole with radius R, without loading on the circular contour, 

and where the material system is aligned with the global system, the following is true.  

 are the applied stresses to the external boundary at infinity.   *** ,, XYYX σσσ
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The expanded form of the derivative of the complex potential functions is expressed as 

a function of zj in the following relations. 
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The stress resultant is composed of an opening term, the first term, and the 

uniform stress field term, the second term, in the following relations.  The stress 

components are then expressed in equation A.9. 
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APPENDIX B 
 
 

REFERENCE APPROXIMATION TO ORTHOTROPIC STRESS 
CONCENTRATION FACTOR 
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An approximation to using a constant value of ∞
tK xyν = 0.3 is provided below.   

 
xy

x

y

xC
t G

E
E
E

K +
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 3.021 (B.1)

While this relationship is also a function of just two parameters, the approximation is 

relatively poor compared to  or .  The approximation  was intended to 

provide a reference data set and to demonstrate the effectiveness of  and .  To 

evaluate the accuracy of , a comparison between and  was made for ten 

different material systems.  Combinations of  and  at 5.0° increments were 

considered.  Table B.1 shows the comparison provided a maximum of 75.0% +/-45° 

plies exists.   

*
tK **

tK C
tK

∞
tK

*
tK **

tK

C
tK C

tK

45P0P

Table B.1 Comparison of versus . ∞
tK C

tK

Lamina Avg % Error Peak % Error

E-Glass / Epoxy 1.60 4.70

S-Glass / Epoxy 1.60 4.70

Carbon / Epoxy (AS4 / 3501-6) 2.40 8.90

Carbon / PEEK (AS4 / APC2) 2.40 8.20

Carbon / Epoxy (IM7 / 977-3) 2.60 10.40

Carbon / Epoxy (IM6G / 3501-6) 2.50 9.80

Carbon / Polyimide (Mod 1 / WRD9371) 2.80 12.90

Graphite / Epoxy (GY-70/934) 2.80 11.60

Kevlar / Epoxy (Aramid 49 / Epoxy) 2.40 8.60

Boron / Epoxy (B5.6 / 5505) 2.20 8.10
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APPENDIX C 
 
 

STRESS DISTRIBUTION COMPARISONS 
TO PUBLISHED SOLUTIONS 

 

 103



 

Several comparisons to the method presented in chapter 4 with published 

solutions were made.  Ling (1942) studied the case with two equal holes in an isotropic, 

infinite plate.  Fan and Wu (1988) studied an infinite plate with a carbon fiber, [04,±45]s 

laminate, with characteristic roots μ1 = 1.1898i and μ2 = 1.9667i.  Haddon (1967) 

studied the case with two unequal holes in an isotropic, infinite plate.  All comparisons 

used an applied unit stress load at infinity.  The designator “B.C.” indicates the usage of 

the least square boundary collocation method as presented in chapter 4.  The relevant 

geometric parameters are shown in figures C.1 and C.2.  The results of the comparisons 

are shown in tables C.1 through C.21. The term %Δ represents the magnitude of the 

percentage difference between the two solutions.  Longitudinal tension is defined as a 

load in the x-direction in diagram C.1 and transverse tension is defined as a load in the 

y-direction. 

 

L L

X

Y

R

θ

Hole 1Hole 2

L L

X

Y

R

θ

Hole 1Hole 2

 
Figure C.1 Geometric parameters for comparison to Ling and Fan and Wu. 
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Table C.1 Circumferential stress, σθ.  Comparison of Ling’s results to boundary 
collocation method, longitudinal tension, θ = ± π/2, hole 1. 

 
L / R Ling B.C. % Δ

1.5 2.623 2.624 0.04

2 2.703 2.704 0.04

3 2.825 2.826 0.04

5 2.927 2.927 0.00

8 2.970 2.971 0.03

∞ 3.000 3.000 0.00
 

 
 
 
 

Table C.2 Circumferential stress, σθ.  Comparison of Ling’s results to boundary 
collocation method, transverse tension, θ = 0, hole 1. 

 
L / R Ling B.C. % Δ

1.5 3.151 3.151 0.00

2 3.066 3.066 0.00

3 3.020 3.020 0.00

5 3.004 3.004 0.00

8 3.001 3.001 0.00

∞ 3.000 3.000 0.00
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Table C.3 Circumferential Stress, σθ.  Comparison of Ling’s results to boundary 
collocation method, transverse tension, θ = π, hole 1. 

 
L / R Ling B.C. % Δ

1.5 3.264 3.264 0.00

2 3.020 3.020 0.00

3 2.992 2.992 0.00

5 2.997 2.997 0.00

8 2.999 2.999 0.00

∞ 3.000 3.000 0.00
 

 
 
 
 

Table C.4 Circumferential stress, σθ.  Comparison of Ling’s results to boundary 
collocation method, all around tension, θ = 0, hole 1. 

 
L / R Ling B.C. % Δ

1.5 2.255 2.255 0.00

2 2.158 2.158 0.00

3 2.080 2.081 0.05

5 2.033 2.033 0.00

8 2.014 2.014 0.00

∞ 2.000 2.001 0.05
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Table C.5 Circumferential stress, σθ.  Comparison of Ling’s results to boundary 
collocation method, all around tension, θ = π, hole 1. 

 
L / R Ling B.C. % Δ

1.5 2.887 2.888 0.03

2 2.411 2.411 0.00

3 2.155 2.155 0.00

5 2.049 2.049 0.00

8 2.018 2.018 0.00

∞ 2.000 2.001 0.05
 

 
 
 
 

Table C.6 Circumferential stress, σθ.  Comparison of Fan and Wu’s result to boundary 
collocation method, L / R = 1.5, hole 1. 

 

θ Fan & Wu B.C. % Δ Fan & Wu B.C. % Δ Fan & Wu B.C. % Δ

0 -0.3778 -0.3784 0.16 2.4845 2.4847 0.01 0.0000 0.0000 0.00

30 -0.1267 -0.1267 0.00 2.3477 2.3479 0.01 -2.2916 -2.2913 0.01

60 1.2927 1.2944 0.13 0.9799 0.9802 0.03 -5.4390 -5.4380 0.02

90 3.4832 3.4860 0.08 -2.0676 -2.0668 0.04 -2.4967 -2.4957 0.04

120 0.5936 0.5948 0.20 1.2230 1.2237 0.06 3.7084 3.7084 0.00

150 -0.2254 -0.2263 0.40 2.5868 2.5872 0.02 3.3809 3.3808 0.00

180 -0.1413 -0.1427 0.99 2.7286 2.7289 0.01 0.0000 0.0000 0.00

σX = 1.0 σY = 1.0 σXY = 1.0
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Table C.7 Circumferential stress, σθ.  Comparison of Fan and Wu’s result to boundary 
collocation method, L / R = 3.0, hole 1. 

 

θ Fan & Wu B.C. % Δ Fan & Wu B.C. % Δ Fan & Wu B.C. % Δ

0 -0.3886 -0.3886 0.00 2.3649 2.3649 0.00 0.0000 0.0000 0.00

30 -0.1396 -0.1396 0.00 2.2137 2.2138 0.00 -2.2314 -2.2314 0.00

60 1.2928 1.2928 0.00 0.8379 0.8380 0.01 -5.0065 -5.0065 0.00

90 3.7535 3.7535 0.00 -2.0561 -2.0561 0.00 -0.5325 -0.5325 0.00

120 1.0540 1.0540 0.00 1.0259 1.0259 0.00 4.8662 4.8662 0.00

150 -0.1582 -0.1582 0.00 2.2524 2.2524 0.00 2.4740 2.4749 0.04

180 -0.2973 -0.2973 0.00 2.3179 2.3179 0.00 0.0000 0.0000 0.00

σX = 1.0 σY = 1.0 σXY = 1.0

 
 
 
 
 

Table C.8 Circumferential stress, σθ.  Comparison of Fan and Wu’s result to boundary 
collocation method, L / R = 4.5, hole 1. 

 

θ Fan & Wu B.C. % Δ Fan & Wu B.C. % Δ Fan & Wu B.C. % Δ

0 -0.4028 -0.4029 0.02 2.3508 2.3509 0.00 0.0000 0.0000 0.00

30 -0.1536 -0.1536 0.00 2.1984 2.1984 0.00 -2.1978 -2.1978 0.00

60 1.3020 1.3020 0.00 0.8128 0.8122 0.07 -4.8503 -4.8502 0.00

90 3.9258 3.9258 0.00 -2.1640 -2.1640 0.00 -0.1827 -0.1827 0.00

120 1.2112 1.2112 0.00 0.8840 0.8884 0.50 4.8191 4.8191 0.00

150 -0.1575 -0.1575 0.00 2.2081 2.2081 0.00 2.2778 2.2778 0.00

180 -0.3705 -0.3705 0.00 2.3312 2.3312 0.00 0.0000 0.0000 0.00

σX = 1.0 σY = 1.0 σXY = 1.0
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Table C.9 Circumferential stress, σθ.  Comparison of Lekhnitskii result to boundary 
collocation method, L / R = ∞, hole 1. 

 

θ Lekh B.C. % Δ Lekh B.C. % Δ Lekh B.C. % Δ

0 -0.4274 -0.4273 0.01 2.3490 2.3489 0.00 0.0000 0.0000 0.00

30 -0.1732 -0.1732 0.00 2.1920 2.1924 0.02 -2.1483 -2.1485 0.01

60 1.3360 1.3359 0.01 0.7705 0.7707 0.03 -4.6848 -4.6852 0.01

90 4.1565 4.1559 0.01 -2.3400 -2.3395 0.02 0.0000 0.0000 0.00

120 1.3360 1.3359 0.01 0.7705 0.7707 0.03 4.6848 4.6852 0.01

150 -0.1732 -0.1732 0.00 2.1920 2.1940 0.09 2.1483 2.1485 0.01

180 -0.4274 -0.4273 0.01 2.3490 2.3489 0.00 0.0000 0.0000 0.00

σX = 1.0 σY = 1.0 σXY = 1.0
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A comparison to Haddon’s (1967) solution for two unequal holes for an infinite, 

isotropic plate was made, as shown in figure C.2.  “N.S.” indicates that the least square 

boundary collocation method could not achieve a solution that met the conditions of Ee 

and Ei ≤ 1.0.  Therefore, no solution was reported. Results shown in bold indicate a 

large deviation from Haddon’s solution.    

X
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θ2

α

α

T = 1

T = 1
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C2

X

Y

R

θ1

1

s

θ2

α

α

T = 1

T = 1

C1

C2

 
Figure C.2 Parameters for two unequal size holes for comparison to Haddon’s solution.  
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Table C.10 Min and max circumferential stress, σθ and corresponding θ on C1.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 1, α = 0°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

2.607 2.608 0.04 84.4 84.4 0.00

-0.970 -0.970 0.00 180.0 180.0 0.00

2.611 2.611 0.00 84.4 84.4 0.00

-0.918 -0.917 0.11 0.0 0.0 0.00

2.619 2.620 0.04 84.6 84.6 0.00

-0.905 -0.904 0.11 0.0 0.0 0.00

2.628 2.629 0.04 84.8 84.8 0.00

-0.899 -0.898 0.11 0.0 0.0 0.00

2.650 2.651 0.04 85.4 85.4 0.00

-0.896 -0.896 0.00 0.0 0.0 0.00

2.715 2.715 0.00 86.8 86.8 0.00

1.908 1.908 0.00 0.0 0.0 0.00

2.827 2.828 0.04 88.7 88.7 0.00

-0.940 -0.939 0.11 0.0 0.0 0.00

2.948 2.949 0.03 89.8 89.8 0.00

-0.979 -0.978 0.10 0.0 0.0 0.00

0.1

0.2

0.4

0.6

1.0

2.0

4.0

10.0
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Table C.11 Min and max circumferential stress, σθ on C1.  Comparison of Haddon’s 
result to boundary collocation method. 

 R = 1, α = 45°. 
 

s σθ - Haddon σθ - B.C. % Δ

6.611 6.612 0.02

-1.240 -1.240 0.00

5.434 5.433 0.02

-1.351 -1.351 0.00

4.494 4.493 0.02

-1.522 -1.521 0.07

4.032 4.032 0.00

-1.525 -1.525 0.00

3.587 3.588 0.03

-1.460 -1.460 0.00

3.263 3.264 0.03

-1.297 -1.297 0.00

3.114 3.115 0.03

-1.137 -1.136 0.09

3.029 3.030 0.03

-1.032 -1.032 0.00

0.1

0.2

0.4

0.6

1

2

4

10
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Table C.12 Min and max circumferential stress, σθ and corresponding θ on C1.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 1, α = 90°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

8.689 8.689 0.00 180.0 180.0 0.00

-1.001 -1.001 0.00 93.1 93.1 0.00

6.106 6.106 0.00 180.0 180.0 0.00

-0.962 -0.962 0.00 91.2 91.7 0.55

4.423 4.423 0.00 180.0 180.0 0.00

-0.924 -0.925 0.11 90.3 90.3 0.00

3.768 3.769 0.03 180.0 180.0 0.00

-0.905 -0.905 0.00 89.6 89.5 0.11

3.264 3.264 0.00 180.0 180.0 0.00

-0.886 -0.886 0.00 88.9 88.9 0.00

3.066 3.066 0.00 0.0 0.0 0.00

-0.883 -0.884 0.11 88.8 88.8 0.00

3.020 3.020 0.00 0.0 0.0 0.00

-0.920 -0.921 0.11 89.4 89.4 0.00

3.003 3.003 0.00 0.0 0.0 0.00

-0.974 -0.975 0.10 89.9 89.9 0.00

0.1

0.2

0.4

0.6

1.0

2.0

4.0

10.0
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Table C.13 Min and max circumferential stress, σθ and corresponding θ on C1.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 5, α = 0°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

0.403 N.S. N/A 77.8 N.S. N/A

-4.577 N.S. N/A 180.0 N.S. N/A

0.597 0.597 0.00 75.3 75.3 0.00

-1.946 -1.945 0.05 180.0 180.0 0.00

0.819 0.819 0.00 73.7 73.8 0.14

-0.861 -0.860 0.12 180.0 180.0 0.00

1.543 1.543 0.00 80.4 80.4 0.00

-0.527 -0.527 0.00 0.0 0.0 0.00

2.303 2.303 0.00 87.5 87.5 0.00

-0.724 -0.723 0.14 0.0 0.0 0.00

0.1

0.4

1.0

4.0

10.0

 
 
 

Table C.14 Min and max circumferential stress, σθ and corresponding θ on C2.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 5, α = 0°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

3.005 N.S. N/A 89.7 N.S. N/A

-1.222 N.S. N/A 0.0 N.S. N/A

3.003 3.004 0.03 89.8 89.9 0.11

-1.011 -1.271 25.72 180.0 7.3 95.94

3.000 3.001 0.03 90.0 90.0 0.00

-1.004 -1.004 0.00 180.0 180.0 0.00

2.990 2.991 0.03 90.2 90.2 0.00

-0.997 -0.996 0.10 180.0 180.0 0.00

2.986 2.987 0.03 90.2 90.2 0.00

-0.995 -0.995 0.00 180.0 0.0 0.00
10.0

0.1

0.4

1.0

4.0
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Table C.15 Min and max circumferential stress, σθ and corresponding θ on C1.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 10, α = 0°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

0.701 N.S. N/A 134.7 N.S. N/A

-6.407 N.S. N/A 180.0 N.S. N/A

0.503 N.S. N/A 106.0 N.S. N/A

-3.069 N.S. N/A 180.0 N.S. N/A

0.399 0.399 0.00 90.3 90.3 0.00

-1.742 -1.742 0.00 180.0 180.0 0.00

0.744 0.744 0.00 77.8 77.9 0.13

-0.468 -0.468 0.00 0.0 0.0 0.00

1.535 1.535 0.00 84.7 84.7 0.00

-0.473 -0.473 0.00 0.0 0.0 0.00

0.1

0.4

1.0

4.0

10.0

 
 
 

Table C.16 Min and max circumferential stress, σθ and corresponding θ on C2.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 10, α = 0°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

3.002 N.S. N/A 89.8 N.S. N/A

-1.010 N.S. N/A 180.0 N.S. N/A

3.001 N.S. N/A 89.9 N.S. N/A

-1.007 N.S. N/A 180.0 N.S. N/A

3.001 3.003 0.07 89.9 90.0 0.11

-1.004 -1.171 16.63 180.0 6.3 96.50

3.000 3.002 0.07 90.0 90.0 0.00

-1.000 -1.000 0.00 180.0 180.0 0.00

2.997 2.999 0.07 90.1 90.1 0.00

-0.999 -0.999 0.00 180.0 180.0 0.00

0.1

0.4

1.0

4.0

10.0
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Table C.17 Min and max circumferential stress, σθ and corresponding θ on C1.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 5, α = 90°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

19.312 N.S. N/A 180.0 N.S. N/A

-1.370 N.S. N/A 128.8 N.S. N/A

9.590 9.590 0.00 180.0 180.0 0.00

-1.035 -1.036 0.10 105.1 105.1 0.00

6.118 6.119 0.02 180.0 180.0 0.00

-0.648 -0.648 0.00 95.7 95.7 0.00

3.480 3.480 0.00 180.0 180.0 0.00

-0.432 -0.432 0.00 88.4 88.4 0.00

3.069 3.069 0.00 0.0 0.0 0.00

-0.680 -0.680 0.00 89.1 89.1 0.00

0.1

0.4

1.0

4.0

10.0

 
 
 

Table C.18 Min and max circumferential stress, σθ and corresponding θ on C2.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 5, α = 90°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

4.596 N.S. N/A 0.0 N.S. N/A

-1.034 N.S. N/A 88.0 N.S. N/A

5.226 5.227 0.02 7.7 7.7 0.00

-1.028 -1.027 0.10 88.7 88.5 0.23

3.663 3.663 0.00 10.5 10.5 0.00

-1.021 -1.022 0.10 89.2 89.2 0.00

3.016 3.016 0.00 180.0 180.0 0.00

-1.004 -1.004 0.00 89.9 89.9 0.00

3.004 3.005 0.03 180.0 180.0 0.00

-0.995 -0.996 0.10 90.1 90.1 0.00

0.1

0.4

1.0

4.0

10.0
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Table C.19 Min and max circumferential stress, σθ and corresponding θ on C1.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 10, α = 90°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

22.650 N.S. N/A 180.0 N.S. N/A

-2.447 N.S. N/A 133.7 N.S. N/A

11.710 N.S. N/A 180.0 N.S. N/A

-2.019 N.S. N/A 106.4 N.S. N/A

7.860 7.862 0.03 180.0 180.0 0.00

-1.395 -1.396 0.07 98.6 98.6 0.00

4.475 4.476 0.02 180.0 180.0 0.00

-0.440 -0.440 0.00 90.9 90.9 0.00

3.333 3.334 0.03 180.0 180.0 0.00

-0.415 -0.415 0.00 89.1 89.1 0.00

0.1

0.4

1.0

4.0

10.0

 
 
 

Table C.20 Min and max circumferential stress, σθ and corresponding θ on C2.  
Comparison of Haddon’s result to boundary collocation method. 

 R = 10, α = 90°. 
 

s σθ - Haddon σθ - B.C. % Δ θ - Haddon θ - B.C. % Δ

3.039 N.S. N/A 180.0 N.S. N/A

-1.007 N.S. N/A 89.3 N.S. N/A

3.029 N.S. N/A 180.0 N.S. N/A

-1.007 N.S. N/A 89.5 N.S. N/A

3.021 4.097 35.62 180.0 6.7 96.28

-1.007 -1.007 0.00 89.6 89.9 0.33

3.009 3.010 0.03 180.0 180.0 0.00

-1.004 -1.005 0.10 89.9 89.9 0.00

3.003 3.004 0.03 180.0 180.0 0.00

-1.001 -1.002 0.10 90.0 90.0 0.00

0.1

0.4

1

4

10
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Table C.21 Circumferential stress, σθ, on C1 and C2.  Comparison of Haddon’s result to 
boundary collocation method. 

 R = 2.5, α = 45°, s = 1.0. 
 

θ1 = θ2 σθ on C1- Haddon σθ on C1- B.C. % Δ σθ on C2- Haddon σθ on C2- B.C. % Δ

0 1.432 1.431 0.07 1.273 1.271 0.16

15 0.159 0.158 0.63 -0.694 -0.694 0.00

30 -0.902 -0.901 0.11 -0.711 -0.710 0.14

45 -1.531 -1.530 0.07 -0.710 -0.710 0.00

60 -1.618 -1.618 0.00 -0.464 -0.464 0.00

75 -1.170 -1.169 0.09 0.207 0.206 0.48

90 -0.282 -0.282 0.00 1.159 1.159 0.00

105 0.900 0.900 0.00 2.128 2.128 0.00

120 2.209 2.209 0.00 2.840 2.840 0.00

135 3.408 3.410 0.06 3.092 3.093 0.03

150 4.101 4.102 0.02 2.811 2.811 0.00

165 3.736 3.735 0.03 2.065 2.064 0.05

180 2.089 2.087 0.10 1.049 1.048 0.10

195 -0.067 -0.067 0.00 0.029 0.029 0.00

210 -1.563 -1.563 0.00 -0.728 -0.728 0.00

225 -1.932 -1.931 0.05 -1.030 -1.029 0.10

240 -1.335 -1.334 0.07 -0.808 -0.807 0.12

255 -0.137 -0.137 0.00 -0.138 -0.139 0.72

270 1.283 1.282 0.08 0.776 0.775 0.13

285 2.585 2.584 0.04 1.667 1.666 0.06

300 3.489 3.490 0.03 2.289 2.289 0.00

315 3.812 3.814 0.05 2.577 2.578 0.04

330 3.501 3.501 0.00 2.862 2.863 0.03

345 2.639 2.638 0.04 3.262 3.262 0.00  
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TO FINITE ELEMENT MODELS
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Two finite element models were used to compare to the solution with the least 

square boundary collocation method presented in chapter 4.  MSC Patran, the pre and 

post processor, and MSC Nastran, the processor, were used to run the models.  Three 

layups were considered, with properties shown in table D.1.  The first was a quasi-

isotropic layup, the second was a “soft” layup, and the third was a “hard” layup.  All 

layups were assumed to be balanced and symmetric and were idealized as 

homogeneous, orthotropic materials.   

In the finite element model, the solution is approximate.  However, a very fine 

mesh will lead to very low error associated with discretization.  Techniques such as 

submodeling can be computationally efficient, but may take longer to construct and 

introduce secondary error due to enforced boundary conditions.  Instead, a very fine 

mesh locally to the hole was chosen and a second model with a further refined mesh 

was computed to ensure convergence.  The refined mesh occurred in a region about one 

diameter away from the hole edge.  Outside of this region, the element size was 

gradually increased.  Baseline models showed excellent correlation in both isotropic and 

orthotropic plates with this method.  

The 4 noded quadrilateral PSHELL element was used.  Orthotropic properties 

shown in table D.1 were in assigned to the elements.  The load distribution along the 

outer edge was constant.  MSC Nastran has the native capability to assign a distributed 

load along the edge.  This ensured that the corner nodes receive only half of what the 

internal nodes receive.  To verify the total load applied was correct, the MSC Patran 
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free body tool was used to determine the total reaction forces at the nodes that were 

constrained. 

The models used the technique of mirroring.  Symmetric boundary conditions 

were enforced as shown in the following figures.  In addition, z-displacement, x-

rotation, and y-rotation degrees of freedom (DOF) were set to zero.   

Three layups were considered.  The first layup, a quasi-isotropic layup, was 

effectively treated as an isotropic material.  The other two laminates, the soft and hard 

layups had properties as found in the following table.  The orthotropic properties Ex, Ey, 

Gxy , and νxy were the inputs for the procedure. 

 

 

Table D.1 Properties for laminates. 
 

Property Soft Layup Quasi - Isotropic Hard Layup

Ex , [Msi] 6.0 10.0 13.0

Ey , [Msi] 6.0 10.0 6.0

Gxy , [Msi] 4.0 3.846 1.5

νxy 0.47 0.3 0.22

Kt (infinite) 2.60 3.00 4.34
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D.1 Model with Equal Holes 

A model with equal holes and finite geometry is shown in the following 

diagrams.  The objective was to compare the finite element solution with the least 

square boundary collocation method presented in chapter 4 for a problem with finite 

geometry.  The plate size was modeled with a height of 6.0” and width of 12.0” to 

simulate a plate that was 12.0” x 12.0”.  Each hole was of diameter 2.0”.  The minimum 

distance between the hole edges was 0.4” to simulate a large degree of interaction.  The 

element size near the external boundary was about 0.15” and the element size between 

the holes was about 0.01” for a total of 9,074 elements. 

σ = 1

X

Y

σ = 1

X

Y  
Figure D.1 Finite element model with equal holes. 
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C DC D  
Figure D.2 Close views of model with equal holes. 

 

The maximum value of Ee was allowed to be 2.0 because of the difficulty in 

satisfying the finite boundary.  This was found to be yield sufficient accuracy for the 

problem.  The value of Ei was allowed to be a maximum of 0.5 for the internal 

boundaries.  The values of N1 = 30 and N2 = 13 were found to yield optimal values of Ee 

and Ei.  For the finite boundary the value of N2 became critical in order to properly 

satisfy the outer boundary.   

The term %Δ represented the magnitude of the percentage difference between 

the finite element solution and the least square boundary collocation solution.  Point C 

was defined at the hole boundary and point D was defined at the half way point between 

the holes as shown in figure D.2.  Results showed less than 1.0% difference between the 

two methods for the x-direction stress.  The contour plot shown in figure D.3 shows the 

stress distribution in the region near the holes. 
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Figure D.3 Contour plot of x-component of stress for quasi-isotropic laminate with 

equal holes.  
 

 
 

Table D.2 Comparison between FEM and boundary collocation method for finite 
geometry model with equal holes. 

 
σx (Pt. C)- FEM σx (Pt. C)- B.C. % Δ σx (Pt. D)- FEM σx (Pt. D)- B.C. % Δ

Quasi - Isotropic 5.1281 5.1265 0.03 4.3065 4.3082 0.04

Hard Laminate 7.2445 7.2314 0.18 4.2989 4.29 0.21

Soft Laminate 4.5742 4.5637 0.23 4.4109 4.4304 0.44  
 

 

D.2 Model with Unequal Holes 

A more extensive study with unequal holes was used to determine the 

effectiveness of the least square boundary collocation method when the complex 

scenario of finite geometry, unequal holes in very close proximity, and orthotropic 
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materials were all considered.  The plate size was modeled with a height of 40.0” and 

width of 80.0” to simulate a plate that was 80.0” x 80.0”.  The smaller hole had a 

diameter of 2.0” and the larger hole had a diameter of 10.0”.  The minimum distance 

between the hole edges was 0.4” to simulate a large degree of interaction. The element 

size near the external boundary was about 1.5” and the element size between the holes 

was about 0.02” for a total of 3,689 elements.   

Because of the difficulty in convergence for this particular problem, N1 was 

increased to 60.  The value of N2 was varied from 5 to 12 in order to find the value 

which minimized the value of Ee.  The value of Ei was allowed to be a maximum of 0.5 

while the value of Ee was allowed to be a maximum of 3.0. 

σ = 1σ = 1

 
Figure D.4 Finite element model with unequal holes. 
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Y

X

Y

X

 
Figure D.5 Close views of unequal hole model.  

 

The stress resultant for the x, y, and xy-components were compared along the y-

direction where x = 0.0.  Results showed less than 1.0% peak difference between the 

two methods for the x-direction stress for the quasi-isotropic laminate.  Less than 2.0% 

peak difference between the two methods for the x-direction stress for the hard and soft 

laminates was observed as shown in tables D.4 and D.5.  The contour plots shown in 

figure D.6 and D.7 show the stress distribution in the region near the holes. 
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Figure D.6 Overview contour plot of x-component of stress for quasi-isotropic laminate 

with unequal holes. 
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Figure D.7 Detail contour plot of x-component of stress for quasi-isotropic laminate 

with unequal holes. 
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Table D.3 Comparison between the FEM and boundary collocation method for the 
quasi-isotropic laminate. 

 
Y σX - FEM σX - B.C. % Δ σY - FEM σY - B.C. σXY - FEM σXY - B.C.

0.00 3.4355 3.4143 0.6 0.0102 0.0000 -0.0098 0.0000

0.02 3.7169 3.6992 0.5 0.0224 0.0196 -0.0126 0.0000

0.04 3.9800 3.9638 0.4 0.0513 0.0492 -0.0168 0.0000

0.06 4.2273 4.2126 0.3 0.0879 0.0864 -0.0200 0.0000

0.08 4.4633 4.4450 0.4 0.1302 0.1293 -0.0224 0.0000

0.10 4.6918 4.6798 0.3 0.1764 0.1760 -0.0238 0.0000

0.12 4.9164 4.9059 0.2 0.2247 0.2248 -0.0245 0.0000

0.14 5.1409 5.1316 0.2 0.2735 0.2741 -0.0244 0.0000

0.16 5.3686 5.3607 0.1 0.3213 0.3224 -0.0234 0.0000

0.18 5.6031 5.5967 0.1 0.3664 0.3681 -0.0217 0.0000

0.20 5.8480 5.8432 0.1 0.4073 0.4094 -0.0192 0.0000

0.22 6.1072 6.1042 0.0 0.4422 0.4447 -0.0156 0.0000

0.24 6.3851 6.3840 0.0 0.4692 0.4719 -0.0111 0.0000

0.26 6.6864 6.6874 0.0 0.4856 0.4886 -0.0052 0.0000

0.28 7.0187 7.0195 0.0 0.4876 0.4922 0.0026 0.0000

0.30 7.3851 7.3867 0.0 0.4737 0.4796 0.0119 0.0000

0.32 7.7901 7.7959 0.1 0.4406 0.4467 0.0237 0.0000

0.34 8.2485 8.2557 0.1 0.3819 0.3889 0.0379 0.0000

0.36 8.7640 8.7760 0.1 0.2932 0.3004 0.0536 0.0000

0.38 9.3671 9.3688 0.0 0.1655 0.1738 0.0744 0.0000

0.40 10.0650 10.0491 0.2 0.0904 0.0000 0.0911 0.0000  
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Table D.4 Comparison between the FEM and boundary collocation method for the hard 
laminate. 

 
Y σX - FEM σX - B.C. % Δ σY - FEM σY - B.C. σXY - FEM σXY - B.C.

0.00 5.3810 5.3090 1.3 0.0128 0.0002 -0.0146 0.0000

0.02 5.5643 5.4973 1.2 0.0269 0.0254 -0.0167 0.0000

0.04 5.7000 5.6357 1.1 0.0577 0.0566 -0.0179 0.0000

0.06 5.8058 5.7438 1.1 0.0922 0.0914 -0.0186 0.0000

0.08 5.8952 5.8351 1.0 0.1288 0.1282 -0.0188 0.0000

0.10 5.9780 5.9192 1.0 0.1663 0.1658 -0.0186 0.0000

0.12 6.0615 6.0037 1.0 0.2038 0.2034 -0.0181 0.0000

0.14 6.1518 6.0947 0.9 0.2406 0.2404 -0.0173 0.0000

0.16 6.2542 6.1979 0.9 0.2760 0.2760 -0.0162 0.0000

0.18 6.3743 6.3187 0.9 0.3096 0.3098 -0.0147 0.0000

0.20 6.5176 6.4629 0.8 0.3406 0.3409 -0.0127 0.0000

0.22 6.6910 6.6374 0.8 0.3683 0.3688 -0.0103 0.0000

0.24 6.9025 6.8506 0.8 0.3918 0.3924 -0.0071 0.0000

0.26 7.1617 7.1135 0.7 0.4097 0.4103 -0.0026 0.0000

0.28 7.4876 7.4408 0.6 0.4194 0.4210 0.0034 0.0000

0.30 7.8997 7.8537 0.6 0.4195 0.4217 0.0117 0.0000

0.32 8.4222 8.3838 0.5 0.4058 0.4087 0.0241 0.0000

0.34 9.1150 9.0805 0.4 0.3716 0.3759 0.0419 0.0000

0.36 10.0500 10.0267 0.2 0.3064 0.3128 0.0757 0.0000

0.38 11.3900 11.3742 0.1 0.1866 0.2006 0.0000 0.0000

0.40 13.4850 13.4375 0.4 0.1090 0.0000 0.0000 0.0000
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Table D.5 Comparison between the FEM and boundary collocation method for the soft 
laminate. 

 
Y σX - FEM σX - B.C. % Δ σY - FEM σY - B.C. σXY - FEM σXY - B.C.

0.00 2.8650 2.8221 1.5 0.0099 0.0012 -0.0122 -0.0010

0.02 3.1497 3.1077 1.3 0.0218 0.0192 -0.0180 -0.0017

0.04 3.4301 3.3866 1.3 0.0508 0.0486 -0.0173 -0.0024

0.06 3.7048 3.6602 1.2 0.0891 0.0873 -0.0213 -0.0030

0.08 3.9755 3.9298 1.1 0.1346 0.1329 -0.0243 -0.0036

0.10 4.2436 4.1969 1.1 0.1850 0.1835 -0.0265 -0.0040

0.12 4.5107 4.4632 1.1 0.2384 0.2369 -0.0270 -0.0043

0.14 4.7784 4.7302 1.0 0.2924 0.2910 -0.0258 -0.0046

0.16 5.0485 4.9995 1.0 0.3450 0.3439 -0.0236 -0.0048

0.18 5.3224 5.2727 0.9 0.3943 0.3933 -0.0203 -0.0048

0.20 5.6018 5.5516 0.9 0.4381 0.4372 -0.0156 -0.0048

0.22 5.8885 5.8376 0.9 0.4739 0.4732 -0.0098 -0.0047

0.24 6.1843 6.1322 0.8 0.4995 0.4989 -0.0027 -0.0045

0.26 6.4903 6.4369 0.8 0.5123 0.5118 0.0063 -0.0042

0.28 6.8095 6.7528 0.8 0.5081 0.5093 0.0165 -0.0038

0.30 7.1405 7.0810 0.8 0.4858 0.4885 0.0288 -0.0033

0.32 7.4809 7.4223 0.8 0.4432 0.4464 0.0423 -0.0026

0.34 7.8379 7.7770 0.8 0.3759 0.3800 0.0555 -0.0020

0.36 8.2062 8.1453 0.7 0.2812 0.2850 0.0716 -0.0010

0.38 8.5926 8.5265 0.8 0.1547 0.1600 0.0834 0.0000

0.40 9.0307 8.9202 1.2 0.0829 0.0000 0.0000 0.0000  
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STRESS PROFILE AND NORMALIZED 
STRESS PROFILE DIAGRAMS 
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Stress profile and normalized stress profile diagrams for IM7/977-3, determined 

by the method presented in chapter 4, are provided below.  Various laminates, hole size 

ratios, and hole orientations are presented.  Relevant geometric parameters are 

presented in figures 5.1 and 5.2. 
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Figure E.1 Stress profile for (50/0/50) laminate, equal holes.  Holes oriented transverse 

to the load. 
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Figure E.2 Normalized stress profile for (50/0/50) laminate, equal holes.  Holes oriented 

transverse to the load. 
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Figure E.3 Stress profile for (0/100/0) laminate, equal holes.  Holes oriented transverse 

to the load. 
 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

y/a, distance from hole edge

 σ
n

s/a = 0.3

s/a = 0.5
s/a = 1.0

s/a = 2.0

s/a = 4.0

s/a = 500.0

 
 

Figure E.4 Normalized stress profile for (0/100/0) laminate, equal holes.  Holes oriented 
transverse to the load. 
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Figure E.5 Stress profile for (25/50/25) laminate, b/a = 5.0.  Holes oriented transverse to 

the load. 
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Figure E.6 Normalized stress profile for (25/50/25) laminate, b/a = 5.0.  Holes oriented 

transverse to the load. 
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Figure E.7 Stress profile for (50/0/50) laminate, b/a = 5.0.  Holes oriented transverse to 

the load. 
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Figure E.8 Normalized stress profile for (50/0/50) laminate, b/a = 5.0.  Holes oriented 

transverse to the load. 
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Figure E.9 Stress profile for (0/100/0) laminate, b/a = 5.0.  Holes oriented transverse to 

the load. 
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Figure E.10 Normalized stress profile for (0/100/0) laminate, b/a = 5.0.  Holes oriented 

transverse to the load. 

 136



 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

y/a, distance from hole edge

 

s/a = 500.0

s/a = 4.0
s/a = 2.0s/a = 1.0

s/a = 0.5

σ x
 / 
σ∞

 
Figure E.11 Stress profile for (25/50/20) laminate, b/a = 10.0.  Holes oriented transverse 

to the load. 
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Figure E.12 Normalized stress profile for (25/50/25) laminate, b/a = 10.0.  Holes 

oriented transverse to the load. 
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Figure E.13 Stress profile for (50/0/50) laminate, b/a = 10.0.  Holes oriented transverse 

to the load. 
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Figure E.14 Normalized stress profile for (50/0/50) laminate, b/a = 10.0.  Holes oriented 

transverse to the load. 
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Figure E.15 Stress profile for (0/100/0) laminate, b/a = 10.0.  Holes oriented transverse 

to the load. 
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Figure E.16 Normalized stress profile for (0/100/0) laminate, b/a = 10.0.  Holes oriented 

transverse to the load. 
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Figure E.17 Stress profile for (50/0/50) laminate, equal holes.  Holes oriented in-line 

with the load. 
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Figure E.18 Normalized stress profile for (50/0/50) laminate, equal holes.  Holes 

oriented in-line with the load. 
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Figure E.19 Stress profile for (0/100/0) laminate, equal holes.  Holes oriented in-line 

with the load. 
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Figure E.20 Normalized stress profile for (0/100/0) laminate, equal holes.  Holes 

oriented in-line with the load. 
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Strength prediction diagrams for IM7/977-3, determined by the methods 

presented in chapter 4 and chapter 5, are provided below.  Various laminates, hole size 

ratios, and hole orientations are presented.  Relevant geometric parameters are 

presented in figures 5.1 and 5.2. 
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Figure F.1 Two hole strength prediction for (25/50/25) laminate, b/a = 10.0.  Holes 

oriented transverse to the load. 
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Figure F.2 Two hole strength prediction for (50/0/50) laminate, b/a = 10.0.  Holes 

oriented transverse to the load. 
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Figure F.3 Two hole strength prediction for (0/100/0) laminate, b/a = 10.0.  Holes 

oriented transverse to the load. 
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Figure F.4 Two hole strength prediction for (50/0/50) laminate, equal holes.  Holes 

oriented in-line with the load.  Low s/a values. 
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Figure F.5 Two hole strength prediction for (0/100/0) laminate, equal holes.  Holes 

oriented in-line with the load. Low s/a values. 
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Figure F.6 Two hole strength prediction for (25/50/0) laminate, equal holes.  Holes 

oriented in-line with the load.  High s/a values. 
 
 
 

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.

d0/a

St
re

ng
th

 R
at

io

5

s/a = 6.0

s/a = 5.0

s/a = 7.0

s/a = 4.0

 
Figure F.7 Two hole strength prediction for (50/0/50) laminate, equal holes.  Holes 

oriented in-line with the load.  High s/a values. 
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Figure F.8 Two hole strength prediction for (0/100/0) laminate, equal holes.  Holes 

oriented in-line with the load.  High s/a values. 
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STRESS DISTRIBUTION COMPARISON USED FOR 
EXPERIMENTAL STRENGTH PREDICTION 
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The least square boundary collocation method presented in chapter 4 was used 

to determine strength for the data presented by Soutis, Fleck, and Cutis (1999).  

However, since an infinite geometry plate was considered in the boundary collocation 

method, a comparison was made to finite element models with the actual finite 

geometry used in the experiment.  The term “B.C.” is used to represent the least square 

boundary collocation method and the term %Δ is used to represent the magnitude of the 

percentage difference between the finite element solution and boundary collocation 

solution.  The term Strength Ratio is defined in chapter 5.  The finite element models 

and meshes were created in similar manner as shown in appendix D.  

 
 

Table G.1 Comparison between FEM and boundary collocation method used for 
strength prediction. 

1.0 2.0 3.0 4.0 5.0
Strength Ratio @ d0 = 0.00" (FEM) 0.9312 0.9763 0.9837 0.9855 0.9859
Strength Ratio @ d0 = 0.00" (B.C.) 0.9405 0.9863 0.9937 0.9961 0.9972

% Δ 1.0 1.0 1.0 1.1 1.1
Strength Ratio @ d0 = 0.04" (FEM) 0.7575 0.9190 0.9190 0.9190 0.9190
Strength Ratio @ d0 = 0.04"(B.C.) 0.7644 0.9260 0.9260 0.9260 0.9260

% Δ 0.9 0.8 0.8 0.8 0.8
Strength Ratio @ d0 = 0.07" (FEM) N/A 0.8850 0.9435 0.9637 0.9738
Strength Ratio @ d0 = 0.07" (B.C.) N/A 0.8928 0.9519 0.9724 0.9820

% Δ N/A 0.9 0.9 0.9 0.8
Strength Ratio @ d0 = 0.10" (FEM) N/A 0.8383 0.9303 0.9580 0.9702
Strength Ratio @ d0 =0.10" (B.C.) N/A 0.8464 0.9390 0.9670 0.9792

% Δ N/A 1.0 0.9 0.9 0.9

s/a
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APPENDIX H 
 
 

STRESS DISTRIBUTION AT HOLE BOUNDARY 
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Stress components for IM7/977-3, determined by the method presented in 

chapter 4, with various hole size ratios and spacings are presented below.   The values 

of Ee and Ei were allowed to be a maximum of 0.5.  Relevant geometric parameters are 

presented in figures 5.1 and 5.2.  Figures H.1 to H.3 show the condition when the holes 

are oriented transverse to the load. 
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Figure H.1 Stress components at hole edge for (25/50/25) laminate, equal holes, s/a = 

0.25.  Holes oriented transverse to the load. 
 

For equal holes, a symmetric condition exists and therefore only the results for 

the hole with radius a are shown.  The x-component of stress is nearly the same as the 

circumferential component of stress for 150.0° < θa < 210.0°.   

Figures H.2 and H.3 show the edge stress for unequal holes.  The maximum x-

component and circumferential stresses both occur in the smaller hole.  The x-

component of stress is nearly the same as the circumferential component of stress for 
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150.0° < θa < 210.0° in smaller hole.  The maximum x-component of stress for the 

larger hole occurred at θb = 8.0° and 352.0° as opposed to θb = 0.0°. 
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Figure H.2 Stress components at smaller hole edge for (25/50/25) laminate, b/a = 5.0,  

s/a = 0.5.  Holes oriented transverse to the load. 
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Figure H.3 Stress components at larger hole edge for (25/50/25) laminate, b/a = 5.0, 

s/a = 0.5.  Holes oriented transverse to the load. 
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Figures H.4 to H.6 show the condition where the holes are oriented in-line with 

the load.  The maximum magnitude of stress of the x-component is greater than the 

maximum magnitudes of the y-component and xy-component.  The x-component is 

nearly equal to the circumferential component for 150.0° < θa < 210.0° for both the 

equal hole condition and for the larger hole where the holes are unequal.         
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Figure H.4 Stress components at hole edge for (25/50/25) laminate, equal holes, s/a = 

0.25.  Holes oriented in-line with the load. 
 
 

The location of maximum stress does not occur at 0.0° and 180.0°, but rather at 

an angle slightly greater than 0.0° and slightly less than 180.0°.  This was supported by 

the results of Haddon (1967) as shown in table C.10 and Pilkey (1997). 
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Figure H.5 Stress components at smaller hole edge for (25/50/25) laminate, b/a = 5.0,  

s/a = 0.5.  Holes oriented in-line with the load. 
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Figure H.6 Stress components at larger hole edge for (25/50/25) laminate, b/a = 5.0,  

s/a = 0.5.  Holes oriented in-line with the load. 
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