
CXLENGINE - A COMPREHENSIVE XML LOOSELY STRUCTURED

SEARCH ENGINE

by

INDHU KRISHNA SIVARAMAKRISHNAN

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2007

ii

ACKNOWLEDGEMENTS

At the outset, I would like to thank Dr.Ramez Elmasri for giving me an

opportunity to work with him. I would also like to thank Dr. Gautam Das and Dr.

Leonidas Fegaras for agreeing to be on my master’s thesis committee and helping me

complete this work.

Next, I would like to thank my parents and sister for their continuous support

and words of encouragement.

My heartfelt gratitude to Mr. Kamal Taha for his invaluable suggestions and

constant guidance throughout this work.

Finally, I would like to thank my friends for always being there for me.

November 19, 2007

iii

ABSTRACT

CXLENGINE - A COMPREHENSIVE XML LOOSELY STRUCTURED

SEARCH ENGINE

Publication No. ______

Indhu Krishna Sivarmakrishnan, M.S

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Ramez Elmasri

XML keyword search has been a widely researched area. [15] has proposed an

XML semantic search engine called OOXSearch, which answers loosely structured

queries. The framework of OOXSearch takes into account the semantic relationship

between nodes based on their contexts. The context of a node is determined by its

parent node. The label “name”, for example, could mean the name of a book and could

also mean the name of the book’s author. If we try to consider the relationship between

these two nodes without considering their parent nodes, we would be drawing the

incorrect conclusion that these two nodes represent the characteristics of two entities

belonging to the same type. Thus, the OOXSearch framework treats a parent and its

iv

leaf nodes as a single unified entity. The OOXSearch Engine works well for all types of

XML trees, except for one scenario where a parent and its child node belong to the

same type and are both having leaf children nodes. In this thesis, we propose an

extension to the OOXSearch Engine that handles the above mentioned case. We

experimentally evaluated the extended search engine and compared the results with

other systems.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iii

LIST OF ILLUSTRATIONS... vii

LIST OF TABLES... ix

Chapter

1. INTRODUCTION……… ... 1

2. XML…………………………. .. 5

2.1 Origin of XML………………………………………………………. 5

2.2 Why XML…………………………………………………………… 6

2.3 XML Syntax……………….. 7

2.4 DTD…………………… .. 9

2.5 Querying in XML….. ... 11

2.5.1 XPath……….. .. 11

2.5.2 XQuery………… ... 12

3. KEYWORD BASED SEARCH.. 14

3.1 Keyword Search for Relational Databases ... 14

3.2 Keyword Search for XML Databases ... 14

4. OVERVIEW OF OOXSEARCH .. 24

vi

4.1 Definitions……………………... 24

4.2 Computation of Immediate Relative of Canonical Trees 30

5. CXLENGINE - A COMPREHENSIVE XML
 LOOSELY STRUCTURED SEARCH ENGINE... 42

5.1 Motivation…………………………………………………………... 42

5.2 Algorithm…………………………………………………………… 42

5.3 System Implementation .. 59

5.4 Experimental Results .. 61

5.4.1 Recall and Precision Evaluation ... 61

2.5.2 Search Performance Evaluation.. 63

6. CONCLUSION…………….. ... 64

7. FUTURE WORK………….. .. 65

REFERENCES .. 66

BIOGRAPHICAL INFORMATION... 69

vii

LIST OF ILLUSTRATIONS
Figure Page

1.1 Graduate School Publications XML tree
(publication.xml) ... 3

2.1 Sample XML Document ... 9

2.2 Sample DTD.. 10

3.1 A graduate school’s authors and coauthors
bibliography XML tree.. 17

3.2 A fragment of XML doc taken from the web.. 20

3.3 Taken from the Use Cases of W3C [19] ... 20

3.4 Taken from the Use Cases of W3C [19] ... 21

3.5 A fragment of XML doc taken from [8] ... 21

4.1 Canonical Tree Representation ... 26

4.2 A graduate school’s authors and coauthors
bibliography XML tree.. 28

4.3 Canonical Trees graph of the XML
tree presented in Figure 4.2 ... 29

4.4 A “paper” and an “article” Canonical Trees .. 33

4.5 C. Trees located in the same path ... 35

4.6 IRT8 ... 38

4.7 IRT10 .. 38

4.8 IRT2 ... 41

viii

5.1 Graduate School Publications XML tree
(publication.xml) .. 43

5.2 Canonical Tree Graph for the XML tree
in Figure 5.1 ... 44

5.3 Algorithm ComputeIR .. 46

5.4 Subroutine Rename .. 46

5.5 Subroutine DetermineIRs ... 47

5.6 IRT1 ... 48

5.7 IRT2 ... 49

5.8 IRT3 ... 50

5.9 IRT4 ... 51

5.10 IRT5 ... 52

5.11 IRT6 ... 53

5.12 IRT7 ... 54

5.13 IRT8 ... 55

5.14 IRT9 ... 56

5.15 IRT10 .. 57

5.16 IRT11 .. 58

5.17 CXLEngine system architecture ... 60

5.18 Average Recall ... 62

5.19 Average Precision .. 62

5.20 Average Query Execution Time ... 63

ix

LIST OF TABLES

Table Page

4.1 Ontology Labels and OLAs of parent
nodes in Figure 4.2 .. 27

5.1 Hash Table TBL
TOL
1

... 47

5.2 Hash Table TBL
TOL

2
... 49

5.3 Hash Table TBL
TOL 3 ... 50

5.4 Hash Table TBL
TOL 4 ... 51

5.5 Hash Table TBL
TOL 5 ... 52

5.6 Hash Table TBL
TOL 6 ... 53

5.7 Hash Table TBL
TOL 7 ... 54

5.8 Hash Table TBL
TOL 8 ... 55

5.9 Hash Table TBL
TOL 9 ... 56

5.10 Hash Table TBL
TOL 10 ... 57

5.11 Hash Table TBL
TOL 11 ... 58

1

CHAPTER 1

INTRODUCTION

Keyword Search is a widely used search technique since it has the advantage

that the user need not be aware of the structure of the data underneath. One more reason

for using keyword search is that the user need not know any query language in order to

be able to get the required data.

There has been lots of research related to keyword search in databases.

Research in the area of keyword search in relational databases was studied extensively

in [3], [4] and [11]. These papers considered the relational database as a graph with the

edges representing the relationships between the nodes where the nodes represent the

tuples in the database. The result is returned as a sub-graph which contains the keyword

search terms.

There has been extensive research on Keyword Search in XML

databases. Out of these, the papers most related to our thesis are [9], [12] and [18]

which employ search techniques based on semantic relationships between nodes. The

basic notion shared by these papers is the concept of the Least Common Ancestor

(LCA) of the search term nodes.

A closely related work is [15]. In this paper, an XML search engine is proposed

that answers loosely structured queries. The search queries consist of search terms of

the form “label=keyword” and return elements have the form “label”. For example, a

2

user wanting the year a book named “JAVA” was written could submit a query of the

form “name=JAVA” and the return element will be of the type “year”. The motivation

behind [15] is that the context of a node should be taken into consideration while

considering the semantic relationship between nodes. For example, two nodes might be

having the same label “name”. But one label could be referring to the name of a book

while the other one could be referring to the name of the author who wrote that book.

The authors of [15] reiterate that the parent node’s characteristics will also need to be

taken into consideration. Thus, the context of a node is determined by its parent node.

[15] considers the parent and its leaf children nodes as a single unified entity. This

entity is termed a Canonical Tree. For example, consider the nodes title and year in

[Figure 1.1]. They represent some of the characteristics of their parent node article. The

nodes article, title and year together represent a meaningful entity. Each such entity can

be modeled as a Canonical Tree. There could be some confusion due to the labeling.

For example, there could be two different entities with the same label – name – where

the name could refer to either the name of the book or the name of the author who wrote

that book. One more case where there could be some ambiguity is when there are two

entities which have different names but belong to the same type. For example, there

could be 2 entities with the names “school” and “university”. Both belong to the type

“institution”. To avoid these labeling ambiguities, the authors of [15] introduced the

term clusters which are nothing but groups of canonical trees where the parent nodes

belong to the same ontological concept.

3

Figure 1.1 : Graduate School Publications XML tree (publication.xml)

For example, if we take the canonical tree rooted at “Student” and the canonical tree

rooted at “Professor”, both of them belong to the “person” cluster. If we take the

canonical tree rooted at “School”, it will belong to the “Institution” cluster. Thus, even

though both the trees rooted at “Student” and “School” have a node with the same label

– “name” – we can see that these two name nodes are semantically different as they

4

represent a characteristic of two entities of different types. The main conclusions of the

study in [15] are as follows:

• Modeling an XML scenario in terms of canonical trees helps us in

finding for each canonical tree Ti the canonical trees that are related and

relevant to Ti in a most efficient manner.

• If canonical tree Tj is related and relevant to canonical tree Ti, it follows

that all the leaf children nodes of Tj are also related and relevant to the

leaf children nodes of Ti. Thus computational overhead is reduced.

• The structure of canonical trees can be considered analogous to the

Object Oriented Model. Each canonical tree can be modeled as an object

and its nodes can be the attributes of the object. Hence, we can construct

a class for each canonical tree. We can also model the concept of

inheritance in Object Oriented concept by designing the Ontological

label of the cluster to be the superclass. Thus, each canonical tree under

this cluster can be a subclass. For example, both the “School” and

“University” classes can be subclasses of the superclass “Institution” and

can inherit the “name” attribute from the superclass.

The OOXSearch model works well for all types of XML trees except for one

case where a parent and its child node belong to the same type and are both having leaf

children nodes. In this thesis, we propose to extend the OOXSearch framework so that it

works for the above mentioned case. The motivation behind this work is to make the

OOXSearch framework a fully fault-free one.

5

CHAPTER 2

XML

2.1 Origin of XML

XML stands for "Extensible Markup Language". It is basically a markup

language. As users can specify their own tags, it is also termed an extensible language.

It started as a subset of Standard Generalized Markup Language (SGML). The work

began in 1996 and Version 1.0 Recommendation was released in 1998. XML is

recommended by World Wide Web Consortium (W3C). The formal definition from

W3C glossary at http://www.w3.org/TR/DOM-Level-2-Core/glossary.html is as

follows:

"Extensible Markup Language (XML) is an extremely simple dialect of SGML.

The goal is to enable generic SGML to be served, received, and processed on the Web

in the way that is now possible with HTML. XML has been designed for ease of

implementation and for interoperability with both SGML and HTML. "

XML is a way to store structure and metadata onto a web page. It allows users to

specify tags which make the information stored more powerful and flexible.

6

2.2 Why XML

This section outlines with the reasons for XML’s popularity. XML is widely

used for Web applications. There are various benefits to working with XML. Some of

them are as follows:

 Simplicity

Information specified in XML is easy for human and computer

understanding and processing.

 Extensibility

The tag set is not fixed in XML. New tags can be created as and when

needed.

 Self-description

XML documents do not need any schema information to be stored as the

XML documents themselves contain metadata. Metadata is stored in

XML via tags and attributes.

 Openness

XML is recommended by the World Wide Web Consortium (W3C). It is

a fee-free open standard and is widely endorsed by the industry.

 Machine Readable Context Information

The context information in XML is provided by means of the tags and

attributes and these can be used to arrive at the content information of

7

the data. This feature enables for the development of intelligent data

mining techniques.

 Support multiple data types

Any data type like sound, image, video, JAVA applets, etc can be stored

in XML documents.

 Portability

XML documents can be shared between different systems like PC, PDA,

etc without loss of information.

 Interoperability

One of the main benefits of XML is its interoperability which makes it

possible for disparate systems to share information easily.

2.3 XML Syntax

This section deals with the syntax of XML documents. Before looking at the

syntax, there are two important definitions to be covered. XML documents can have the

following 2 levels of correctness:

 Well-formed documents

Well-formed XML documents are those that conform to the syntax rules.

For example, in a well-formed document, all the opening tags are

matched with an equal number of closing tags and there is no case such

that an outer element has its closing tag appearing before the closing tag

of the inner nested element.

8

 Valid documents

A valid XML document conforms to a set of semantic rules. These rules

could be specified by means of a Document Type Definition (DTD) or

could be specified by the user. Valid documents will contain no

undefined tags.

Most XML documents an XML declaration. This specifies the version of XML and

sometimes, also specifies the character encoding used.

<?xml version="1.0" encoding="UTF-8"?>

As XML documents are hierarchical in nature, the main requirement is that there is

exactly one root element. The child elements are nested inside the root element. The

elements could also have attributes. A typical element with attributes would look like

this:

<element name attribute1 = “attribute value” attribute2 = “attribute value” ……

attribute n = “attribute value” > element text </element name>

Attribute values must be given in double quotes and an attribute name can appear in an

element only once.

9

A sample XML document is given below:

Figure 2.1 Sample XML Document

2.4 DTD

DTD stands for Document Type Definition. DTD represents the schema of an

XML document. It defines the structure of the XML document with a set of allowed

attributes and elements. A DTD is associated with an XML document by using a

Document Type Declaration. This usually comes right after the XML declaration in the

XML document. An example declaration is follows:

<!DOCTYPE department SYSTEM "filename.dtd">

An example DTD is as follows:

<?xml version="1.0"?>

<!DOCTYPE department SYSTEM "bib.dtd">

<department>

 <author >

 <name>Mary Jones</ name>

 <URL>www.mjones.org</URL>

<address>SanFrancisco,

CA</address>

 </author>

</department>

10

Figure 2.2 Sample DTD

The explanation for the DTD is as follows:

 The first line specifies the root element – department and the ELEMENT tag

specifies that this is an element node.

 The data following the root element is the name of the element nested inside the

root element – author.

 The (+) means that it is valid to have 1 or more “author” elements inside the

“department” element.

 The second line gives the schema of the “author” element. It specifies that it has

3 elements nested inside – “name”, “URL” and “address”.

 The next 3 lines give the data type of the name, URL and address elements.

PCDATA specifies a string data type.

<!ELEMENT department (author+)>

<!ELEMENT author (name,URL,address)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT URL (#PCDATA)>

<!ELEMENT address (#PCDATA)>

11

2.5 Querying in XML

There are a wide variety of query languages used to query XML documents.

Some of these are XPath, XQuery, XQL, YaTL, etc. As XPath and XQuery have

already been recommended by W3C, those two will be the focus in this thesis.

2.5.1. XPath

XPath is a query language used to extract parts of the XML document according

to user specifications. XPath models the XML document as a set of nodes – element

nodes, text nodes, etc. The basic premise used in an XPath query is an expression.

Every expression evaluates to one of the following types:

 NodeSet – an unordered collection of nodes with no duplicates

 Number – a floating point number

 String – a sequence of characters

 Boolean – TRUE or FALSE

XPath uses path expressions to navigate in XML documents. A path expression is

represented as a sequence of steps to arrive at a node or a set of nodes from the current

node. The series of steps are delimited by ‘/’. A typical step has the following three

components:

 Axis Specifier

The axis specifier gives the direction in which the navigation has to proceed.

Some example axis specifiers are child, descendant (//), parent (..), ancestor,

following, preceding, self, etc.

12

 Node Tests

Node tests contain node names or general expressions.

 Predicates

Expressions are specified in square brackets and these have to evaluate to TRUE

before the preceding node can be matched. There can be an unlimited number of

predicates in a step.

An example XPath expression is as follows:

//department[@name=”CSE”]/student[@gpa=”4.0”]/lastname

The above XPath Query gives the last name of the students in the CSE department with

a GPA of 4.0.

2.5.2. XQuery

XQuery is an extension of XPath. It adds to XPath with a construct similar to

SQL. This is the FLWOR expression and is named for its clauses – FOR, LET,

WHERE, ORDER BY and RETURN. XQuery also allows XML syntax which helps in

the creation of new XML documents. If the element and attribute names are known in

advance, tags can be added to the result. As XQuery is similar to XPath in a lot of

aspects, it too models the XML document as a collection of nodes. The nodes could be

element nodes, attribute nodes, text nodes, etc. An example XQuery query is as follows:

for $b in doc("bib.xml")//book

where $b/b_ISBN = "0-9752298-0-X"

13

return $b/b_price

The above query returns the price of the book whose ISBN number is “0-9752298-0-

X”.

14

CHAPTER 3

KEYWORD BASED SEARCH

Keyword search is a widely researched area. The main advantage of keyword

search is that the user is not required to know the schema of the underlying data. Also, it

is not necessary to have knowledge of any query language. Both the above points make

keyword search a major success with end users. Keyword search has been studied for

both relational databases and for XML databases.

3.1 Keyword Search for Relational Databases

Research in the area of keyword search in relational databases was studied

extensively in [3], [4], [11] and [23]. These papers considered the relational database as

a graph with the edges representing the relationships between the nodes where the

nodes represent the tuples in the database. The result is returned as a sub-graph which

contains the keyword search terms. While [3], [11] and [23] construct a set of join

expressions from the database and then form the tuple trees from these join expressions,

[4] creates the tuple trees directly from the database. [3], [4] and [11] use AND

semantics for the result whereas [23] uses OR semantics.

3.2 Keyword Search for XML Databases

There has been extensive research on Keyword Search in XML databases. [9],

[12] and [18] employ search techniques based on semantic relationships between nodes.

The above mentioned studies concentrate on the computation of the Least Common

15

Ancestor (LCA) of the search term nodes. [9] proposed the interconnection relationship

between a set of nodes n1,n2,…..,nk which specifies that the relationship tree of n1, n2,

….., nk does not contain two nodes with the same label or that the only nodes with the

same label in the relationship tree of n1, n2, ….., nk are among n1, n2, ….., nk. [12]

introduced the concept of Meaningful Lowest Common Ancestor (MLCA). The MLCA

of a set of nodes it the most specific XML structure in which the nodes are related. Two

nodes “a” and “b” are meaningfully related if their LCA (Lowest Common Ancestor)

node ‘c’ is not an ancestor of some other node ‘d’ which is an LCA of node “b” and

some other node that has the same label as node “a”. [18] came up with the notion of

Smallest Lowest Common Ancestor (SLCA). The SLCA of keywords is a set of nodes

that contain the keywords either in their labels or in the labels of their descendant nodes

and there are no descendant nodes that also contain all the keywords.

[6] and [10] concentrate on modeling the XML document as a graph. [6]

considers the XML tree as a labeled graph and the edges correspond to the element-sub

element relationships and the IDREFs. The XML data is stored in a relational database

for fast and efficient access which leads to smaller response times. The key contribution

of this paper is in the prevention of information flow and the user-interface feature

where users are allowed to navigate in the result. The user can expand the available

result so as to see more relevant results. [10] models the XML scenario as a rooted

directed graph. Nodes are represented as objects that have a label (also a value,

sometimes). Edges represent element nesting and IDREFs. The authors of [10] propose

2 types of interconnection semantics – implicit (derived) and explicit. Users can specify

16

the interconnection semantics explicitly by manually specifying the patterns. In the

implicit way of defining the interconnection semantics, conditions that characterize the

pattern can be specified.

A number of recent studies [9, 12, 18] employ semantic search over XML docs

modeled as trees, which makes them the closest to our work. Despite their success they

suffer recall and precision limitations as a result of basing their techniques on building

relationships between data nodes based solely on their labels and proximity to one

another while overlooking their contexts. As a result, the proposed search engines may

return faulty answers especially if the XML document contains more than one node

having the same label but representing different types, or having different labels but

belonging to the same type. We are going to demonstrate below the recall and precision

limitations of each of the three proposed search engines by using samples of queries

selected from the ones used in the experiments. Recall is the ratio of the number of

relevant records retrieved to the total number of relevant records in the database, and

precision is the ratio of the number of relevant records retrieved to the total number of

irrelevant and relevant records retrieved. We will denote below each faulty recall by RF

(which stands for Recall Fault) and each faulty precision by PF (Precision Fault).

17

Figure 3.1: A graduate school’s authors and coauthors bibliography XML tree

The paper (node 4) was authored by a student (node 1) and coauthored by a contributing student (node 9)
and a reviewing professor (node 20). The publications (node 11) were authored by the contributing
student (node 9 only). The publications (node 22) were authored by the reviewing professor (node 20)
only. Note that the XML tree is exaggerated for the purpose of demonstrating all the concepts proposed in
this thesis.

Recall and precision faults of XSEarch [9]:

In XSEarch if the relationship tree of nodes a and b (the path connecting the two nodes)

contains two or more nodes with the same label, then the two nodes are unrelated;

otherwise, they are related.

18

PF: Consider Figure 3.1 and the query “what is the research interest area of Tom

Wilson”. Instead of returning node 32 only, [9] will return also nodes 19 and 30,

because the relationship trees of nodes 2 and 19 and of nodes 2 and 30 do not contain

two or more nodes having the same labels. If [9] employs the ontological concepts we

are proposing, it would have discovered that the first relationship tree contains nodes

contributor and student which belong to the same type and the second relationship tree

contains nodes reviewingProf and student which also belong to the same type.

RF: On the flip side, consider Figure 3.2 and the query “who is the coauthor of the

publication authored by Julie”. Instead of returning node 2 “Tom”, [9] will return null,

since the relationship tree of nodes 4 and 2 contains two nodes having the same label

(nodes 1 and 3, which have the same label “author”).

PF: Consider the XML doc in Figure 3.3 and the query “what is the customer’s name,

who placed an order on 5/20/06”. Instead of returning “David” only, [9] will return also

“UPS”, because [9] can’t determine that the two nodes labeled “name” refer to two

entities having different types.

Recall and precision faults of Schema- Free XQuery [12]:

In [12], nodes “a” and “b” are NOT meaningfully related if their LCA, node ‘c’ is an

ancestor of some node “d”, which is a LCA of node “b” and another node that has the

same label as “a”. Consider for example nodes 2, 10, and 19 in Figure 3.1. Node 19

(area) and node 2 (name) are not related, because their LCA (node 1) is an ancestor of

node 9, which is the LCA of nodes 19 and 10, and node 10 has the same label as node 2.

19

Therefore, node 19 is related to node 10 and not to node 2. Node 9 is considered the

Meaningful Lowest Common Ancestor (MLCA) of nodes 19 and 10.

RF: Consider Figure 3.4 and the query “get the image presented in the section titled

“Introduction”. The correct answer is node 6, but [12] will return null. The reason is

that the LCA of nodes 3 (which contains the keyword Introduction) and 6 is node 2, and

node 2 is an ancestor of node 4, which is the LCA of nodes 6 and 5 (which has the same

label as node 3). Therefore, [12] considers node 6 is related to node 5 and not to node 3.

RF: Consider if we prune node 30 (area) from Figure 3.1 and we have the query (what

is the area of expertise of “Joe Smith”). Instead of returning null, [12] will return node

19 (area).

PF: Consider Figure 3.5 and the query “what is the work-shop’s subject title on July

28”. Instead of returning node 3 only, [12] will return also nodes 4 and 5, which are

irrelevant (titles of papers). As another example, consider Figure 3.1 and the query

(what are the publications’ titles authored by “Tom Wilson”). [12] will return nodes 5,

13, and 25. But, nodes 13 and 25 are irrelevant.

RF: Consider Figure 3.1 and the query “who are the coauthors of the publication, where

one of its authors is “Tom Wilson”. The correct answer is nodes 10 and 21, but [12] will

return null. The reason it does not return node 10 is because node 1 is the LCA of nodes

2 (which contains the keyword “Tom Wilson”) and node 10 and it is also an ancestor of

node 4, which is the LCA of nodes 10 and 21 and the label of node 21 is the same as the

label of node 2. Therefore, [12] considers node 10 is related to node 21 and not to node

2 and that node 4 is the MLCA of nodes 10 and 21. Similarly and in the same token,

20

Figure 3.2: A fragment of XML doc taken from the web.

Figure 3.3: Taken from the Use Cases of W3C [19]

purchaseOrder

customer date shippingCompany

name address

05/20/06
David

name shippingFee

UPS

coauthors

author(1) author(3)

name(2) affiliation

Tom

name(4) affiliation

Julie

21

Figure 3.4: Taken from the Use Cases of W3C [19].

Figure 3.5: A fragment of XML doc taken from [8]

coauthors

title(1) author sec(2) sec.

title(3) figure(4)

Introduction title(5) image(6)

workshop(1)

date(2)
title(3) editor

proceedings

July 28

title(4)

paper paper

title(5)
author

22

[12] does not return node 21, because it considers it related to node 10 and not to node

2.

Recall and precision faults of XKSearch [18]:

[18] returns a subtree rooted at a node called the Smallest Lowest Common Ancestor

(SLCA), where the nodes of the subtree contain all query’s keywords and they have no

descendant node(s) that also contain all keywords. Consider for example Figure 3.1 and

that node 13 contains “XML” instead of “XQuery”. Now consider the query Q(“XML”,

“Julie Smith”). Since the keyword “XML” is contained in both nodes 5 and 13, the

answer subtree will be the one rooted at node 9 and contains nodes 10 and 13, and not

the one rooted at node 4 and contains nodes 5 and 10.

RF: Consider Figure 3.1 and the query Q(“Joe Smith”, “XQuery”). The answer should

be null, since Joe Smith didn’t author nor coauthor the publication titled “XQuery”.

However, [18] will return the subtree rooted at node 4 and containing nodes 13 and 21.

PF: Consider Figure 3.1 and the query Q(“Smith”, “XML”, “VLDB”). The query asks

for information about an author, whose last name is “Smith” and who authored a

publication titled “XML”, which appeared in a “VLDB” conference proceedings or

journal. [18] will return two answer subtrees, one is a correct answer and the other is

incorrect. The first one is rooted at node 4 and contains the three keywords in nodes 5,

10, and 15. The second one is rooted at node 20 and contains the three keywords in

nodes 21, 25, and 27. The first answer is incorrect, because the publication titled

“XML” (node 5) and authored by “Julie Smith” was published in an “EDBT”

23

conference proceedings (node 7) and not in a “VLDB”, and her publication titled

“XQuery” (node 13) is the one published in “VLDB” proceedings. The second answer

is correct, because “Joe Smith” (node 21) authored a publication titled “XML” (node

25), which appeared in a “VLDB” journal (node 27).

PF: Consider Figure 3.1 and the query: Q(“Joe Smith”, “XML”, “EDBT”). [18] will

return the subtree rooted at node 4. As can be seen the subtree contains too much

irrelevant information.

24

CHAPTER 4

OVERVIEW OF OOXSEARCH

In this section, we present the key definitions and notations used in [15]. The

XML documents are modeled as rooted and labeled trees. A node in the tree

corresponds to an element in the XML document. Nodes are numbered for easy

reference. This section also deals with the properties and lemmas used in [15].

The OOXSearch engine takes as input queries in the XQuery syntax. The basic

prototype of a query is as follows:

for $d in doc(“XML document name”) where $d//node’s label = “keyword”

return $d//node’s label

Each label-keyword pair in the where clause is considered to be the search term and the

label element in the return statement is the result element. The where clause may

consist of more than one search term. Similarly, the return clause may also contain

more than one result term. As mentioned already, the user need not be aware of the

schema of the underlying XML document. He/she needs to know only the label and

value of the search term and the label of the return element.

4.1 Definitions

In this section, we present the key definitions used in [15].

25

Definition 4.1 Ontology Label (OL):

 If we cluster parent nodes (interior nodes) in an XML doc based on their reduced

characteristics and cognitive qualities, the label of each of these clusters is an Ontology

Label (OL). Table 4.1 shows the Ontology Labels and clusters of parent nodes in the

XML tree in Figure 4.2. We abbreviate each OL to a letter called an Ontology Label

Abbreviation (OLA). Table 4.1 shows also the OLA of each OL in the table.

Definition 4.2 Canonical Tree:

If we fragment an XML tree to the simplest semantically meaningful fragments, each

fragment is called a Canonical Tree and it consists of a parent node and its leaf children

data nodes. That is, if a parent node has a leaf child (or children) data node(s), the

parent node along with its children data nodes constitute a Canonical Tree. In Figure 4.2

for example, the parent node student(1) and its leaf child data node name(2) constitute a

Canonical Tree, whose ID is T1 (see Figure 4.3). Similarly, the parent node paper(4)

and its child data node title(5) constitute a Canonical Tree, whose ID is T2. Since node

paper(4) is a descendant of node student(1) and there is no interior node in the path

between student(1) and paper(4) that has a child data node, therefore Canonical Tree T2

is a child of Canonical Tree T1 (see Figure 4.3). Leaf children data nodes represent the

characteristics of their parents. The Ontology Label of a Canonical Tree is the Ontology

Label of the parent node component in the Canonical Tree. For example, the Ontology

Label of Canonical Tree T1 in Figure 4.3 is the Ontology Label of the parent node

student(1), which is “person”. Each Canonical Tree is labeled with two labels as the

26

Figure below shows. The label on top of the rectangle is the Ontology Label of the

Canonical Tree. The second label is located inside the rectangle in the upper left side

and has the form Ti, which represents the numeric ID of the Canonical Tree, where 1 i

|T|. Figure 4.3 shows the Canonical Trees graph representing the XML tree in Figure

4.3. For example, the Ontology Label of the root Canonical Tree is “person” and its

numeric ID is T1. We sometimes use the abbreviation “C. Tree” to denote “Canonical

Tree”.

Figure 4.1: Canonical Tree Representation

Definition 4.3 Keyword Context (KC):

KC is a Canonical Tree containing one or more of a query’s keywords.

Definition 4.4 Intended Answer Node (IAN):

When a user submits a keyword query, he is usually looking for data that is relevant to

the query’s keywords. Each one of the data nodes containing this data is called an

Intended Answer Node (IAN). Consider for example Figure 4.2 and that a user

submitted the query Q(“Julie Smith”, “VLDB”). As the semantics of the query implies,

data node(s)

Ontology Label

Numeric ID

27

the user wants to know information about the publication(s) authored by Julie Smith

and appeared in a “VLDB” conference proceedings. This information is contained in

nodes 13 and 16. Therefore, each of these two nodes is called an IAN.

Table 4.1: Ontology Labels and OLAs of parent nodes in Figure 4.2

Parent nodes (with their IDs) Ontology Label (OL) OLA
paper (4,12), article (17, 24), book

(23)
publication B

student (1), contributor (9),
reviewingProf (20)

Person P

researchInterest (18, 31), expertise
(29)

Field F

conference (6), journal (26) proceedingsSponsor S

28

Figure 4.2: A graduate school’s authors and coauthors bibliography XML trees

The paper (node 4) was authored by a student (node 1) and coauthored by a contributing student (node 9)
and a reviewing professor (node 20). The publications (node 11) were authored by the contributing
student (node 9 only). The publications (node 22) were authored by the reviewing professor (node 20)
only. Note that the XML tree is exaggerated for the purpose of demonstrating all the concepts proposed in
this thesis.

29

Figure 4.3: Canonical Trees graph of the XML tree presented in Figure 4.2

30

4.2 Computation of Immediate Relative of Canonical Trees

In this section, we present the key definitions used in [15].

Each Canonical Tree represents a real-world entity. A Canonical Trees graph

(see Figure 4.3) depicts the hierarchical relationships between the entities represented

by the Canonical Trees. A relationship between two Canonical Trees could be described

as either immediate or extended. The Immediate Relatives of C.Tree Ti are Canonical

Trees that have strong and close relationships with Ti, while its Extended Relatives have

weak relationships with it.

We have to distinguish between two types of queries, query type A and query

type B. In query type A, the search term element’s label is different than the return

element’s label (e.g. the search term element is “name” and the return element is

“title”). In query type B, both the search term element and the return element have the

same label (e.g. the search term element is “name” and the return element is “name”).

Notation 4.1 IRT:

IRT denotes the set of Canonical Trees that are Immediate Relatives of Canonical Tree

T.

Notation 4.2 OLT:

OLT denotes the Ontology Label of Canonical Tree T. In Figure 4.3 for example
1TOL is

“person”.

31

If a query’s keyword k is contained in Canonical Tree T, the IAN should be

contained in either T itself or in IRT. If a query’s keywords k1 and k2 are contained in

Canonical Trees T1 and T2 respectively, the IAN should be contained in T1, in T2,

and/or in the intersect IRT1 IRT2. Therefore, for each Canonical Tree Ti, we need to

determine its Immediate Relatives (IRTi).

Determining IRTi could be done using the combination of intuition and logics

that govern relationships between real-world entities. Consider for example Figures 4.2

and 4.3 and the query Q(XQuery). It is intuitive that the IAN to be data nodes 10, 15,

and/or 16 but it is not intuitive to be, for instance, node 2, since “Tom Wilson” (node 2)

didn’t author the publication “XQuery”. Since “XQuery” is contained in Canonical Tree

T5, then we can determine that each of the Canonical Trees containing nodes 10, 15, and

16 IRT5 while the Canonical Tree containing node 2 IRT5. We present below three

lemmas that help in determining IRTi for query type A. Their proofs are based on

intuition and logics that govern relationships between real-world entities. We are going

to sketch the proofs. We can determine IRTi by pruning all the Extended Relatives of Ti

from the Canonical Trees graph and the remaining ones would be IRTi. We present three

properties inferred from the conclusions of the three lemmas, which regulate the

pruning process. We also present a fourth property for the queries of type B.

Lemma 1:

In order for the answer of a keyword query to be intuitive and meaningful, the IAN

should never be contained in a Canonical Tree whose Ontology Label is the same as the

32

Ontology Label of the KC (the Canonical Tree containing the keyword). It could be

contained in either the KC itself or in a Canonical Tree whose Ontology Label is

different than the Ontology Label of the KC. Therefore, the Immediate Relatives of a

KC have different Ontology Labels than the Ontology Label of the KC, and the

Immediate Relatives of any Canonical Tree T have different Ontology Labels than the

Ontology Label of T.

Proof:

Consider Figure 4.4, which shows a “paper” and an “article” Canonical Trees. They

both have the same Ontology Label “publication”. The two Canonical Trees contain

nodes “title” and “year”, which are characteristics of the “publication” supertype.

However, each of them has its own specific node: “conference” in the “paper” and

”journal” in the “article” Canonical Tree. Consider that Canonical Tree “paper” is KC

and let Nk denote the node containing the keyword. Below are all possible query

scenarios that involve the two Canonical Trees:

Scenario 1: Nk is “title”: If the IAN is “year”, then intuitively this year is the one

contained in the KC and not the one contained in the “article” Canonical Tree. If IAN is

“conference”, then obviously it is the one contained in the KC.

Scenario 2: Nk is “year”: Similar to scenario 1.

Scenario 3: Nk is “conference”: If the IAN is “title” or “year”, then intuitively they are

the ones contained in the KC and not the ones contained in the “article” Canonical Tree.

If, however, the IAN is “journal”, then obviously, the query is meaningless and

unintuitive, since the user wants to know a journal’s name by providing a conference’s

33

name. The query would be unintuitive even if both the “paper” and “article” are

authored by the same author.

As the example scenarios show, the IAN cannot be contained in the “article”

Canonical Tree if the KC is the “paper” Canonical Tree. That is, if the IAN of an

intuitive and meaningful query is contained in Canonical Tree T, then either OLT

OLKC or T is the KC. In other words, the Immediate Relatives of a KC have different

Ontology Labels than the Ontology Label of the KC. The reason is that Canonical

Trees, whose Ontology Labels are the same have common entity characteristics

(because they capture information about real-world entities sharing the same type) and

therefore they act as rivals and do not participate with each other in Immediate Relative

relationships. They can, however, participate with each other in a relationship by being

Immediate Relatives to another Canonical Tree. As an example, Canonical Trees T4 and

T8 in Figure 4.3 have the same Ontology Label “person” and are both Immediate

Relatives to Canonical Tree T2 (the publication contained in T2 is authored by the

authors contained in T4 and T8). Therefore, in the answer for the query Q(XML), where

T2 is the KC, both T4 and T8 will be included as part of the answer subtree.

Figure 4.4: A “paper” and an “article” Canonical Trees

paper
title, year, conference

article
title, year, journal

34

Property 1:

This property is based on lemma 1. When computing IRKC, we prune from the Canonical

Trees graph any Canonical Tree, whose Ontology Label is the same as the Ontology

Label of the KC.

Lemma 2:

The Immediate Relatives of a KC that are located in the same path should have distinct

Ontology Labels. That is, if Canonical Trees T and T are both Immediate Relatives of a

KC and are located in the same path from the KC, then TOL TOL .

Proof:

Consider that Canonical Trees T , T , and T are located in the same path and that T is

a descendant of T while T is a descendant of both T and T . In order for T to be an

Immediate Relative of T , then intuitively T has to be an Immediate Relative of T ,

because T relates (connects) T with T . If T and T have the same Ontology Label,

then T TIR (according to lemma 1), and therefore T TIR . Similarly, consider

Figure 4.5, which shows Canonical Trees located in the same path from the KC. The

letter on top of each Canonical Tree is an OLA (see Def. 4.1 and Table 4.1)

representing the Ontology Label of the C. Tree. In order for T3 to be an Immediate

Relative of the KC, it has to be an Immediate Relative of both T2 and T1 because they

are the ones that connect and relate it with the KC. T3 and T1 have the same Ontology

Label, therefore T3 IRT1 (according to lemma 1). Consequently, T3 IRKC, and T1, T2

 IRKC. Consider as another example Figure 4.3 and that the KC is C. Tree T7. In path

35

 T1 T2 T4 T7, Canonical Trees T1 and T4 have the same Ontology Label.

Therefore, T1IRT7 , and T2, T4 IRT7.

 p b f b s

Figure 4.5: C. Trees located in the same path

Property 2:

This property is based on lemma 2. When computing
KCIR , we prune C. Tree T if there

is another C. Tree T whose Ontology Label is the same as T and it is located between

T and the KC.

Lemma 3:

If Canonical Tree T IRKC and Canonical Tree T is related (connected) to the KC

through T then T IRKC .

Proof:

Every Canonical Tree T has a domain of influence. This domain covers Canonical

Trees, whose degree of relativity to T is strong. Actually, these Canonical Trees are the

Immediate Relatives of T. If by applying property 1 or 2 we have determined that

Canonical Tree T TIR , then the degree of relativity between T and T is weak.

Intuitively, the degree of relativity between any other C. Tree T and T is even weaker

if T relates (connected) to T through T , due to the proximity factor. Consider for

KC
T1

T2 T3 T4

36

example Figure 4.3 and that C. Tree T9 is the KC. By applying property 1, T2
9TIR

because T2 has the same Ontology Label as T9. Canonical Trees T1, T12, T3, T4, T5, T6,

and T7 are connected and related to T9 through T2. As can be seen, the degree of

relativity between each of these C. Trees and T9 is even weaker than that between T2

and T9. Therefore, each of them
9TIR .

Property 3:

This property is based on lemma 3. When computing IRKC, we prune from the Canonical

Trees graph any Canonical Tree that is related (connected) to the KC through a

Canonical Tree T IRKC.

Examples 4.1 and 4.2 below illustrate how properties 1, 2, and 3 are applied for

determining TIR . Recall Figure 4.3 for the examples.

Examp1e 4.1: Determination of
8TIR :

By applying property 1, T1 and T4 are pruned, because their Ontology Labels are the

same as the Ontology Label of T8. By applying property 3, T12, T5, T6, and T7 are

pruned because they relate to T8 through either T1 or T4. The remaining C. Trees in the

C. Trees Graph are
8TIR (see Figure 4.6).

37

Examp1e 4.2: Determination of
10TIR :

By applying property 2, T2 is pruned, because it is located in path

T1 T2 T8 T9 T10 and its Ontology Label is the same as the Ontology Label of

T9, which is closer to T10. By applying property 3, T1, T12, T3, T4, T5, T6, and T7 are

pruned, because they relate to T10 through T2. The remaining C. Trees in the C. Trees

Graph are
10TIR (see Figure 4.7).

38

Figure 4.6: IRT8

Figure 4.7: IRT10

T2

T3 T8

T9

T10

T11

T8

T9

T10

T11

39

Let us consider the following 2 queries – both of type A.

Query1:

Q(“Joe Smith”, title)

Here, the search term element is “name = Joe Smith” and the return element is “title”.

We need the title of the publication authored by “Joe Smith”. Since the search term

element is present in the canonical tree T8 (see Figure 4.3), T8 is the STC. The answer

would be either in T8 or in the canonical trees comprising IRT8. For calculation of IRT8,

refer Example 4.1 and Figure 4.6. According to Figure 4.3, the nodes containing the

“title” element which are also part of IRT8 are T2 and T9. T2 represents the title of the

publication which was co-authored by “Joe Smith” and T9 represents the title of the

publication which was authored by “Joe Smith”. Both these nodes represent the correct

answer.

Query2:

Q(“VLDB”, title)

Here, the search term element is “name = VLDB” and the return element is “title”. We

need the title of the publication in the proceedings “VLDB”. Since the search term

element is present in the canonical tree T10 (see Figure 4.3), T10 is the STC. The answer

would be either in T10 or in the canonical trees comprising IRT10. For calculation of

IRT10, refer Example 4.2 and Figure 4.7. According to Figure 4.3, the node containing

the “title” element which is also part of IRT10 is T9. T9 represents the title of the

publication in the proceedingsSponsor “VLDB”. T9 represents the correct answer.

40

Query type B concerns the types of queries where the user knows some

information about something and wants additional information. In this type of query,

the search term element and return element have the same labels. For example a user

who knows that “XML” is a title of one of the books authored by “John” and wants to

know the titles of the other books and articles authored by him could submit a loosely

structured query consisting of the search term “title = XML” and return element “title”.

When answering this query, we ONLY look for Canonical Trees, whose Ontology

Labels are “publication”. So, when answering query type B, we look only for Canonical

Trees, whose Ontology Labels are the same as the Ontology Label of the Canonical

Tree that contains the search term.

Property 4:

When a query’s search term element and return element have the same label, we

get the answer return element node(s) as follows. We look at the Canonical Trees graph

(e.g. Figure 4.3) and the set of IRs. In the Canonical Trees graph and starting from the

Canonical Tree Ti that contains the search term node we search ascending and

descending Ti for the closest Canonical Tree, whose IR contains Ti and also contains at

least one more Canonical Tree, whose Ontology Label is the same as Ti. We call this

Canonical Tree the pivoting entity and its IR contains the query’s answer return

element node.

41

Example 4.3: for $d in doc(“student.xml”)

 where $d//name = “Tom Wilson “

return $d//name.

The query asks for the names of the other authors of the “publication” authored

by Tom Wilson (see Figure 4.3). The keyword “Tom Wilson” is contained in T1. The

closest Canonical Tree to T1, whose IR contains T1 and also contains another Canonical

Tree(s), whose Ontology Label(s) is/are the same as T1, is Canonical Tree T2. So, the

pivoting entity is T2 “publication”. Therefore, we use IRT2 (see Figure 4.8). The answer

is nodes 10 and 21 contained in T4 and T8 respectively.

Figure 4.8: IRT2

T2

T1

T4

 T12

T3 T8

 T11 T7

42

CHAPTER 5

CXLENGINE - A COMPREHENSIVE XML LOOSELY STRUCTURED SEARCH
ENGINE

5.1 Motivation

The main objective of this thesis is to make the OOXSearch a fault free

framework. In an XML scenario where the parent and the child have the same Ontology

Label and are having leaf children nodes, the OOXSearch returns erroneous results. In

Figure 5.1 for example, Canonical Trees T1 and T8 satisfy this condition. Similarly, T8

and T9 also satisfy the above mentioned condition. To illustrate the problem in

OOXSearch, consider a query, whose KC is Canonical Tree T1. According to property

1, T8 and T9 are not Immediate Relatives of T1 and should be pruned. Intuitively, T8 is

an Immediate Relative of T1 and shouldn’t be pruned. Consider the query “what is the

name of the GRA, who is working with James King”. The example shows that T8

(which contains the name of the GRA) is an Immediate Relative of T1 (which contains

the keyword James King). If we use OOXSearch, T8 would get pruned and we would

not get the correct result. We can solve this problem by changing the Ontology Label of

the child Canonical Tree. In this thesis, we propose an extension to the OOXSearch

engine that solves the above mentioned problem.

5.2 Algorithm

We constructed algorithm ComputeIRs for computing IRT of Canonical Tree T.

The algorithm first calls subroutine Rename (line 2), which proceeds as follows. If a

43

Figure 5.1: Graduate School Publications XML tree (publication.xml)

44

 T1

 T2 T3 T8

 T4 T5 T9

 T6 T10 T11

 T7

Figure 5.2: Canonical Tree Graph for the XML tree in Figure 5.1

 person
 name (2)

 field
area (4)

publication
 title (7)

 person
name (23) area (24)

person
name (26)

 field
area (28)

 publication
title (31) ISBN (32) publisher (33)

proceedingsSponsor
Jname (9) date (10)

person
name (13)

 publication
 Title (16)

proceedingsSponsor
Cname (18) date (19)

45

Canonical Tree T’ is adjacent to Canonical Tree T in the Canonical Trees graph (T’ is

either a child or the parent of Canonical Tree T) and if it’s Ontology Label is the same

as the Ontology Label of T(line 2), then the subroutine would relabel the Ontology

Label of T’ by attaching underscore followed by a digit to the Ontology Label of T’

((line 5), and then stores the new label in a hash table called TBL
iTOL (line 6). Otherwise, if

T’ does not satisfy the condition of line 2, the subroutine would store the original

Ontology Label of T’ in table TBL
iTOL (line 7). After the relabeling, algorithm

ComputeIRs then calls subroutine DetermineIRs (line 5) to compute IRT. To compute

IRT, instead of examining each C. Tree in the graph to determine if it satisfies one of the

three properties, subroutine DetermineIRs examines only the C. Trees that are adjacent

to any C. Tree T’ IRT. If the subroutine determines that C. Tree T’ IRT, it will then

examine its adjacent C. Trees. However, if the subroutine determines that T’ IRT, it

will not examine any C. Tree T’’ that is connected to T through T’, because T’’ is

known to be not an Immediate Relative of T, according to property 3. Set T
KCS (line 4)

stores the Ontology Label of each C. Tree located between C. Tree T’ and the KC. In

line 2, if the Ontology Label of T’ is not the same as that of the KC (T’ is not satisfying

property 1) or it is not included in set T
KCS (T’ is not satisfying property 2), then T’

IRT (line 3) and we recursively examine the adjacent C. Trees of T’ (line 5). Otherwise,

if T’ IRT, all C. Tree connected with T through T’ will not be examined. The time

complexity of the algorithm is)
||

1
|(|

T

i iTIRO

46

Figure 5.3: Algorithm ComputeIR

Figure 5.4: Subroutine Rename

ComputeIR
{

1. count 1 /* count is an increment variable*/

2. Rename (T, count) /* call subroutine Rename */

3. T
KCS null /* Set T

KCS contains TOL between T and KC */

4. IRKC null /* IRKC is a set containing the IR of a KC */

5. DetermineIRs (T) } /* call subroutine DetermineIRs */

Rename (T , count) {

1. for each Canonical Tree T {
 /* Check if T is a child/parent of T and if it has the same OL as T */

 2. if (T є Adj[T] & TOL = TOL)

 3. then {

 4. count = count + 1

 5. tempOL TOL + ‘_’ + count /*Change the Ontology
 Label of the child C. Tree
 by attaching “_digit*/

 6. Add tempOL to table TBL

TOL as TOL

 }

 7. else add TOL (the original OL of T) to table TBL
TOL

 }

}

47

Figure 5.5: Subroutine DetermineIRs

Example 5.1: Let’s compute IRT1 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.1.

Table 5.1: Hash Table TBL
TOL
1

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT1 as shown in Figure 5.6.

T1 person
T2 field
T3 publication
T4 proceedingsSponsor
T5 person
T6 publication
T7 proceedingsSponsor
T8 person_1
T9 person
T10 field
T11 publication

DetermineIRs { /*Compute Immediate Relatives of T */

1. for each Canonical Tree T Adj[T] /*T is adjacent to T */

2. if KCT OLOL && T
T KCSOL
 /*T doesn’t satisfy property 1 & 2*/

3. then { IRKC = IRKC + T /*T IRKC */

4. T
KCS T

KCS + TOL

5. DetermineIRs (T)
 }
}

48

Figure 5.6: IRT1

Example 5.2:

for $d in doc(“publication.xml”)

where $d//name = “James King”

return $d//name

The query asks for the name of the GRA, who works with professor “James King”.

Since the keyword “James King” is contained in Canonical Tree T1, we use IRT1 (recall

Figure 5.6). The answer return element node “name” is node 23, which is contained in

Canonical Tree T8.

We have shown the computation of Immediate Relative for the canonical trees in Figure

4.3. We have also presented the hash table TBL
iTOL for the canonical trees in Figure 4.3.

T1

 T2 T3
 T8

 T4

49

Example 5.3: Let’s compute IRT2 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.2.

Table 5.2: Hash Table TBL
TOL 2

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT2 as shown in Figure 5.7.

Figure 5.7: IRT2

T1 person
T2 field
T3 publication
T4 proceedingsSponsor
T5 person
T6 publication
T7 proceedingsSponsor
T8 person
T9 person
T10 field
T11 publication

T1

T2 T3

T8

 T4 T5

 T6

 T7

 T9

 T11

50

Example 5.4: Let’s compute IRT3 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.3.

Table 5.3: Hash Table TBL
TOL 3

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT3 as shown in Figure 5.8.

Figure 5.8: IRT3

T1 Person
T2 Field
T3 Publication
T4 proceedingsSponsor
T5 Person
T6 Publication
T7 proceedingsSponsor
T8 Person
T9 Person
T10 Field
T11 Publication

T2

T1

T3

 T8

 T4 T5
 T9

 T10

51

Example 5.5: Let’s compute IRT4 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.4.

Table 5.4: Hash Table TBL
TOL 4

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT4 as shown in Figure 5.9.

Figure 5.9: IRT4

T1 Person
T2 Field
T3 Publication
T4 proceedingsSponsor
T5 Person
T6 Publication
T7 proceedingsSponsor
T8 Person
T9 Person
T10 Field
T11 Publication

T2

T1

T3

 T8

T4 T5
 T9

 T10 T6 T11

52

Example 5.6: Let’s compute IRT5 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.5.

Table 5.5: Hash Table TBL
TOL 5

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT5 as shown in Figure 5.10.

Figure 5.10: IRT5

T1 Person
T2 Field
T3 Publication
T4 proceedingsSponsor
T5 Person
T6 Publication
T7 proceedingsSponsor
T8 Person
T9 Person
T10 Field
T11 Publication

T4

T3

T5

 T6

 T7

53

Example 5.7: Let’s compute IRT6 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.6.

Table 5.6: Hash Table TBL
TOL 6

`

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT6 as shown in Figure 5.11.

Figure 5.11: IRT6

T1 Person
T2 Field
T3 Publication
T4 proceedingsSponsor
T5 Person
T6 Publication
T7 proceedingsSponsor
T8 Person
T9 Person
T10 Field
T11 Publication

T5

T6

 T7

54

Example 5.8: Let’s compute IRT7 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.7.

Table 5.7: Hash Table TBL
TOL 7

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT7 as shown in Figure 5.12.

Figure 5.12: IRT7

T1 Person
T2 Field
T3 Publication
T4 proceedingsSponsor
T5 Person
T6 Publication
T7 proceedingsSponsor
T8 Person
T9 Person
T10 Field
T11 Publication

T2

T1

T3

 T8

 T5
 T9

 T10 T6 T11

T7

55

Example 5.9: Let’s compute IRT8 using algorithm ComputeIRs. Line 2 calls subroutine

Rename. This subroutine will return the hash table shown in Table 5.8.

Table 5.8: Hash Table TBL
TOL 8

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT8 as shown in Figure 5.13.

Figure 5.13: IRT8

T1 person_8
T2 Field
T3 Publication
T4 proceedingsSponsor
T5 Person
T6 Publication
T7 proceedingsSponsor
T8 Person
T9 person_8
T10 Field
T11 Publication

T2

T1

T3

T8

 T4
 T9

 T10 T11

56

Example 5.10: Let’s compute IRT9 using algorithm ComputeIRs. Line 2 calls

subroutine Rename. This subroutine will return the hash table shown in Table 5.9.

Table 5.9: Hash Table TBL
TOL 9

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT9 as shown in Figure 5.14.

Figure 5.14: IRT9

T1 person
T2 field
T3 publication
T4 proceedingsSponsor
T5 person
T6 publication
T7 proceedingsSponsor
T8 person_9
T9 person
T10 field
T11 publication

T8

T9

 T11 T10

57

Example 5.11: Let’s compute IRT10 using algorithm ComputeIRs. Line 2 calls

subroutine Rename. This subroutine will return the hash table shown in Table 5.10.

Table 5.10: Hash Table TBL
TOL 10

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT10 as shown in Figure 5.15.

Figure 5.15: IRT10

T1 person
T2 field
T3 publication
T4 proceedingsSponsor
T5 person
T6 publication
T7 proceedingsSponsor
T8 person
T9 person
T10 field
T11 publication

T9

 T11T10

58

Example 5.12: Let’s compute IRT11 using algorithm ComputeIRs. Line 2 calls

subroutine Rename. This subroutine will return the hash table shown in Table 5.11.

Table 5.11: Hash Table TBL
TOL 11

The algorithm would then call subroutine DetermineIRs (line 5). This subroutine would

return IRT11 as shown in Figure 5.16.

Figure 5.16: IRT11

T1 Person
T2 field
T3 publication
T4 proceedingsSponsor
T5 person
T6 publication
T7 proceedingsSponsor
T8 person
T9 person
T10 field
T11 publication

T9

T11T10

59

5.3 System Implementation

Figure 5.17 shows the system architecture. The OntologyBuilder uses an

ontology editor tool to create ontologies and populates them with instances. We used

Protégé ontology editor [14] in the implementation. [13] lists these tools. The XML

schema describing the structure of the XML doc is input to the OntologyBuilder, which

outputs to the GraphBuilder the list of Ontology Labels corresponding to the interior

nodes in the XML schema. Using the input XML schema and the list of Ontology

Labels, the GraphBuilder creates a Canonical Trees graph. The Re-labeler uses

algorithm Rename To re-label the Ontology Labels of the Canonical Trees graph, as

described in section 5.2. For each Canonical Tree Ti , its TBL
iTOL are stored in a hash table

called TBL
iTOL . Using this hash table and the Canonical Trees graph, the IRdeterminer

uses algorithm DetermineIRs to compute for each Canonical Tree Ti its TBL
iTOL , which is

stored in a hash table called IR_TBL. Using the input XML doc and the Canonical

Trees Graph, the IndexBuilder stores in a table called Keyword Table for each keyword

the Canonical Trees containing it. This table is saved in a disk. After the Query Engine

receives a Loosely Structured query, it uses the Keyword Table to locate the KC(s), and

uses the IR_TBL to determine the IAN(s). The data contained in the IAN(s) is extracted

using XQuery Engine.

60

Figure 5.17: CXLEngine system architecture

Due to the resemblance between an object and a canonical tree, OO programming is the

most efficient way to extract answer nodes from the relevant canonical trees. OO

Programming can also be used to extract the instance values from the data nodes. The

relationship between the STC and its IR can be considered as analogous to the

relationship between objects in an OO environment. Every canonical tree is associated

with a class. The canonical trees whose ontology labels are the same behave as

subclasses. These sub classes inherit the common properties and attributes from the

superclass. This superclass has the name of the ontology labels of the subclasses. If we

consider Figure 5.1 and Figure 5.2, the “person” and “publication” classes can be

considered as superclasses and the “researchingProf”, ”GRA”, “book” and “article”

classes can be considered as the subclasses that inherit from the superclasses.

61

5.4 Experimental Results

The implementation of CXLEngine was done in JAVA. The implementation of

[15] was modified and expanded for the implementation of CXLEngine. The

experiments were carried out using a AMD Athlon XP 1800+ processor, with a CPU of

1.53 GHz and 736 MB of RAM. Windows XP Operating system was used. CXLEngine

was evaluated by comparing it with [15].

5.4.1. Recall and Precision Evaluation

Let us look at the definitions of recall and precision that were presented earlier.

Recall is the ratio of the number of relevant records retrieved to the total number of

relevant records in the database, and precision is the ratio of the number of relevant

records retrieved to the total number of irrelevant and relevant records retrieved.

Data models from two different sources were used. The first one is XMark

benchmark [20]. XMark provides 20 queries written in schema aware XQuery

accompanied by a 100 MB XML document. The second is XML Query Use Cases

provided by W3C [19]. The XML documents were generated using [16]. Figure 5.18

and Figure 5.19 show the average recall and precision of OOXSearch and CXLEngine

on the test data. As can be seen from the graphs, the performance of CXLEngine is

better than that of OOXSearch. This is because of the relabeling techniques that were

incorporated in CXLEngine. OOXSearch returns wrong answers for the cases where the

parent and child have the same ontology label and are having leaf children nodes. The

relabeling algorithm proposed in this thesis (Figure 5.4) overcomes this problem and

thus, the recall and precision of CXLEngine is better than that of OOXSearch.

62

Average Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System

R
ec

al
l

CXLEngine

OOXSearch

Figure 5.18: Average Recall

Average Precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System

P
re

ci
si

o
n

CXLEngine

OOXSearch

Figure 5.19: Average Precision

63

5.4.2. Search Performance Evaluation

To evaluate the query execution times of CXLEngine under different document

sizes, we ran queries using different doc sizes (150, 200, 250, and 300 MB) of XMark

[20], and compared it with OOXSearch. We ran 15 queries and obtained the average

query execution time. Figure 5.20 shows the result. As can be seen from the figure, the

query execution time of CXLEngine is higher than that of OOXSearch. This can be

attributed to the fact that CXLEngine has the extra overhead of the relabeling algorithm.

(Figure 5.4). As can be seen from the graph, the execution times of CXLEngine range

around 120% of the execution times of OOXSearch.

Average Query Execution Time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300 350

Document Size (MB)

A
ve

ra
g

e
Q

u
er

y
E

xe
cu

ti
o

n

T
im

e
(m

s)

CXLEngine (ms)

OOXSearch (ms)

Figure 5.20: Average Query Execution Time

64

CHAPTER 6

CONCLUSION

This thesis is an extension of the framework proposed in [15]. The OOXSearch

engine takes into consideration the context of nodes (their parents). The main

contribution of [15] was the employing of semantic relationships between nodes based

on their contexts and also the use of OO programming to extract data from those nodes.

The proposed framework is efficient, robust, and works in heterogeneous data models.

OOXSearch returned faulty recall and precision for one of the data models where the

parent and the child belong to the same type and are having leaf children nodes. The

main contribution of this thesis is that it makes the OOXSearch a fully fault free

framework by proposing a solution for the above mentioned problem.

65

CHAPTER 7

FUTURE WORK

The CXLEngine accepts queries that are loosely structured where the user

knows the search term label and the return term label in addition to the keyword. The

user need not know the structure of the underlying data. In our future work, CXLEngine

can be expanded to be a search engine that accepts the following three kinds of queries

 Fully Structured

User is aware of the entire schema

 Loosely Structured

User need not be aware of the entire schema and is required to know only the

label of the search term element and the return element.

 Keyword

User need not know the schema or any complex query language. He/she just

needs to know the keyword they want to search.

66

REFERENCES

[1] Amer-Yahia, S., Deutsch, Flexible and Efficient XML Search with Complex Full-

 Text Predicates. In SIGMOD 06.

[2] Florescu, D., Manolescu, I. Integrating Keyword Search into XML Query

 Processing. Computer Networks, 33:119-135, 2000.

 [3] Agrawal, C., Das, G. (2002). DBXplorer: a System for Keyword-Based Search Over

 Relational Databases. In ICDE 02.

[4] Aditya, B. and Sudarshan, S. (2002). BANKS: Browsing and Keyword Searching in

 Relational Databases. In VLDB 02.

[5] Balmin, B., Hristidis, V., and Koudas, N. (2003). A System for Keyword Proximity

 Search on XML Databases. In VLDB 2003.

[6] Balmin, A., Hristidis, V., and Papakonstantinon, Y. (2003). Keyword Proximity

 Search on XML Graphs In ICDE 03.

[7] Balmin, B., Hristidis, V., ObjectRank: Authority-Based Keyword Search in

 Databases. In VLDB 04.

[8] Botev, C., Guo, L., Shao, F. (2003). XRANK: Ranked Keyword Search over XML

 Docs. In SIGMOD 03.

[9] Cohen, S., Mamou, J. and Sagiv, Y. (2003). XSEarch: A Semantic Search

 Engine for XML. In VLDB 03.

[10] Cohen, S., Kanza Y. Interconnection Semantics for Keyword Search in XML. In

67

 CIKM 05.

[11] Hristidis, V., Papakonstantinou, Y., DISCOVER: Keyword search in Relational

 Databases. In VLDB 02.

[12] Jagadish, H. and Li, Y., Schema-Free XQuery. In VLDB 04.

[13] List of Ontology editor tools:

 http://www.xml.com/2002/11/06/Ontology_Editor_Survey.html

[14] Protégé ontology editor: http://protege.stanford.edu/

[15] Kamal Taha, Ramez Elmasri, OOXSearch: A Search Engine for Answering

 Loosely Structured XML Queries Using OO Programming. In Proceedings of the

 24th British National Conference on Databases (BNCOD 07), published in LNCS

 4587.

[16] ToXgene, a template-based generator for large XML docs.

 http://www.cs.toronto.edu/tox/toxgene/

[17] TIMBER: http://www.eecs.umich.edu/db/timber/

[18] Xu, Y. and Papakonstantinou, Y., Efficient Keyword Search for Smallest LCAs in

 XML Databases. In SIGMOD 05.

[19] XML Query Use Cases, W3C Working Draft 2006. Available

 at http://www.w3.org/TR/2006/WD-xquery-use-cases-20060608/

[20] XMark — An XML Benchmark Project. Available at

 http://monetdb.cwi.nl/xml/downloads.html

[21] XML Validation Benchmark, Sarvega, Available at:

 http://www.sarvega.com/xml-validation-benchmark.html

68

[22] XQEngine version 0.69, downloaded from

 http://sourceforge.net/projects/xqengine

[23] V. Hristidis, L. Gravano, Y.Papakonstantinou. Efficient IR-Style Keyword Search

 over Relational Databases. VLDB, 2003

69

BIOGRAPHICAL INFORMATION

Indhu Krishna Sivaramakrishnan is a Masters Student in the Department of

Computer Science at the University of Texas, Arlington. She received her Bachelor of

Engineering Degree from Madurai Kamaraj University, Madurai, India. She worked as

a Programmer Analyst in Cognizant Technology Solutions in India prior to her Masters.

Her research interests include XML Keyword Search and Algorithms.

