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ABSTRACT 

 

A POTENTIAL FIELD APPROACH FOR DISTRIBUTED CONTROL OF 

DISCRETE ACTUATOR AND SENSOR ARRAYS 

 

Publication No. ______ 

 

Pritpal S. Dang, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Frank L. Lewis  

This dissertation presents new methods of distributed sensing, classification and 

actuation using potential field and neural network approaches. Humanoid robot serves 

as an excellent tool to implement the strategies developed for sensing, classification and 

actuation. Achieving dexterity in human-machine interaction or human look-a-like 

robot helps in better understanding of dynamic and complex environment. This work 

deals with the issues related to gain autonomy and adaptability through distributed 

sensing, classification and actuation capabilities. The work presented here starts by 

mentioning novel strategies employed for morphing a flexible structure to achieve the 



desired expressions on the artificial skin and then moves on to classification of facial 

expressions for humanoid robot and the final part mentions about the strategies for 

sensing and localization of mobile platforms. 

A complete humanoid robot is one which not only is able to classify expressions 

but also achieve the required expression by morphing the flexible surface (artificial 

skin). In this work, a control law is designed using a certain potential field for morphing 

flexible structures with and without model parameter uncertainties and it also presents a 

novel method called as Extended Orthogonal Least Square (EOLS) method to select the 

actuators that needs to controlled. The EOLS method achieves the desired shape of the 

flexible surface by optimally activating the microactuators embedded in the flexible 

surface. 

This work also presents a novel and robust method to classify expressions using 

a two stage neural network. Expression classification plays a major role to increase 

human-machine interfacing. It also serves as a tool for humanoid robots to gain more 

realistic behavior. A new approach termed as semi-decoupled extended Kalman filter is 

proposed for 3D object pose estimation. This approach helps in gaining robust 

classification when a human face is under motion.  

Distributed sensing has received considerable attention in the field of 

localization of mobile platforms. The mobile platforms could be aerial vehicles, 

humanoid robots or ground vehicles. This work presents a novel approach based on 

dynamics localization to estimate the relative and absolute position of the mobile 

platforms. 
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CHAPTER 1 

INTRODUCTION 

A complete system is defined as one which can know of its surroundings, 

classify from various activities and then take a particular action to perform the classified 

activity. Robustness, adaptability and autonomy are the standard paradigms for an 

engineer to achieve in a complete system. Engineering designs are always inspired from 

nature and prefer complete functionality. Therefore, this research lays out an approach 

to attain robustness, adaptability and autonomy to attain a complete system.  

In the scope of the research work presented here, a system is defined with 

multiple actuators and sensors, which are termed as discrete actuator and sensor arrays. 

Therefore, in order to perform a task, the system should have control over the discrete 

actuator and sensor arrays. In this work, a distributed control scheme is developed based 

on a certain potential field concept to gain control over the multiple actuator and sensor 

arrays. While recent technological developments have enabled to put multiple actuators 

and sensors in one system, the full benefit will only be utilized when they can be used in 

an optimal manner to achieve adaptability and autonomy. That is, the measurements 

from multiple sensors could be used in an efficient way such that maximum information 
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could be drawn about the system and with minimum use of the actuators in the system a 

certain task could be performed. 

As mentioned earlier, the distributed control algorithms are determined using a 

certain potential field function. Potential field methods [1 - 5] have been widely applied 

in the field of mobile robot path planning and navigation. These methods gained 

popularity because of its mathematical simplicity and elegance, since they require only 

local gradient information which also makes them easy to be implemented in real time. 

The concept of potential field methods is to create a minimum at the goal configuration 

(attractive potential field) while taking into account the effect of all the obstacles 

(repulsive potential field) present in the environment. Some of the potential fields based 

on this idea are given in [3, 4, 6 - 10]. 

In this research work, the potential field methods are explored further and 

applied in the field flexible surface morphing having discrete actuators 

embedded/bonded on the surface. The application of the flexible surface morphing is in 

the field of artificial skin morphing for generating different facial expressions by a 

humanoid robot. The humanoid robot should be able classify the facial expressions in 

order to generate the correct expression, therefore an algorithm for expression 

classification based on a two-stage neural network is also presented in this research 

work. 

In addition to the control of discrete actuators, the potential field methods are 

also used to localize the wireless sensor nodes randomly deployed in an unknown 

terrain. The localization of wireless sensor nodes using the potential field method is 
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widely applicable to stationary and mobile platforms such as humanoid robots, 

unmanned aerial vehicles (UAVs), autonomous ground robots, etc. 

One of the major drawbacks of the potential field method is that it gives rise to 

problem pertaining to local minimum. The local minimum arises due to the 

superposition of the attractive and repulsive potential field. Due to existence of local 

minima, the solution of the problem might get stuck up into the wrong solution or even 

no solution. In this research, based only on the range or position measurements, a 

certain potential field is created for distributed control of actuator and sensor arrays and 

the problem related to the local minima are addressed effectively. 

The work presented over here starts with the problem description and then 

presents a review of the related work in the field of distributed control of discrete 

actuators and sensor arrays. 

1.1 Problem Statement  

In this research, we investigate the problem of developing distributed control 

algorithms for the control of discrete actuator and sensor arrays applicable to flexible 

surface shape morphing and localization of autonomous mobile/stationary platforms, 

respectively. The emphasis is on the  

(i) Mathematical formulation for the system with multiple actuators and 

sensors. 

(ii) Development of control strategies for efficient shape morphing. 

(iii) Development of expression classification algorithm to get desired 

shape to be used for shape morphing with pose estimation. 
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(iv) Development and implementation of control architecture for 

localization sensor nodes. 

1.2 Review of Related Work 

1.2.1 A Potential Field Approach for Distributed Control of Discrete Actuators 

Recent technological developments have lead to a growing interest in the field 

of shape morphing of flexible surface. With the availability and development of 

microactuators, it has become possible now to embed/bond these microactuators on a 

flexible surface and attain shape morphing phenomenon. The research in shape 

morphing is inspired by nature, where it is observed by the wings of birds as they travel 

at different maneuver and also by human beings to represent different expressions. The 

proposed research extends this biological inspiration to develop an efficient 

methodology for achieving the desired shape morphing autonomously. 

To efficiently achieve shape morphing, the problem pertaining to distributed 

control of discrete actuator arrays needs to be addressed. The basic premise of shape 

control algorithm is the force transmission via elastic deformation with 

embedded/bonded actuators. The benefit of having a distributed control algorithm is 

that it will provide advantages in application requiring robustness and adaptability and 

will aid in achieving energy efficiency and size reduction of the structure. 

Flexible structures are used in many applications such as artificial skin 

morphing, wing morphing for aircrafts, surgical instruments, space robotic systems, 

space antennas, etc. A lot of research has been done to deal with the effects of structural 

vibration and improve the performance [11 – 13], whereas the shape control of 2-D 
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flexible structure is relatively new area and a lot of effort is being put on designing  

robust and optimal control methods [11, 13, 14]. The advantage of having a shape 

control system with microactuators is that a precise structural deformation could be 

obtained which also allows the weight of the flexible structure to be reduced by 

controlling only few actuators. 

Active shape control of flexible structures through distributed networks of 

microactuators has been an active area of research. Recent technological developments 

have enabled to embed or bond microactuators to the flexible structures for its shape 

control. Flexible structures have widespread applications in the field of satellite 

communication antennae, space robotic systems and humanoid robotic systems, etc. 

The desire to control the shape of flexible structures is one of the major concerns to 

achieve accuracy and precision, during its operation. Various approaches for shape 

control algorithm are presented in [11 - 14]. 

Optimal actuator placement and the number of actuators used is also the key to 

gain shape control for the flexible structures, to be light in weight and operate under 

minimum power consumption. The main contribution of this research work is the 

determination of the optimal number and placement of microactuators, along with the 

control input law designed using the potential field concept. 

Considerable research has been devoted to actuator placement methods for 

vibration control of a 2D structure. Various methods such as energy-based approach 

[15], genetic Algorithms (GA) [16, 17], have been proposed for vibration suppression 

of 2-Dimensional structures. These methods could also be applied for shape control, but 
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they prove out to be computationally complex to implement. In [18], a method based on 

binary variables is used to determine the actuator layout and number of actuators to be 

used. Another method for actuator placement based on finite element (FE) method is 

given in [19]. In [20] and [21], methods based on Tabu Search and Simulated Annealing 

are discussed, respectively. Simulated annealing method given in [21] is combined with 

Monte Carlo approach to estimate the actuator positions. Another method based on 

genetic algorithm, to determine sensor and actuator locations and feedback gains 

simultaneously, is given in [22]. Genetic algorithm is combined with finite element 

analysis for actuator position in [23]. All these methods tends to have low convergence 

rate and high computation cost. 

1.2.2 Expression Classification 

The development of man-machine interfaces has been an active area of research. 

One of the key features for modern day human-like robots is to have the capability of 

imitating human-like facial expressions. In order to enhance the communication 

between man and human-like robots, it is very important to recognize and understand 

facial expressions. Facial expressions serve as an excellent tool for non-verbal 

communication and human interaction. Since facial expressions are responsible for 55% 

for communicating emotions as mentioned in [29], therefore it becomes imperative to 

recognize facial expressions in order to enhance the communication between man and 

humanoid robots. The design of intelligent algorithms for facial expression 

methodology achieves artificial sociability and enables the development of natural 

adaptive interfaces. Intelligent facial expression recognition systems have wide 
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applications in the field of surveillance and security systems, man-machine interface 

and biomedical field. 

The facial expression recognition problem has been addressed by many 

researchers using various approaches. Facial action coding system (FACS) has been a 

standard tool for expression recognition methods being developed. FACS was 

developed by Ekman [30] and is based on analyzing muscle motion for various 

expressions in terms of action units (AUs). Some of the approaches making use of 

FACS are listed in [31, 32]. In [31], an expression recognition system based on optical 

flow and a hidden Markov model is proposed. The approach in [31] relies on analyzing 

only the upper face to extract the key feature points for expression recognition.. [32] 

proposes a method to recognize the facial action dynamics based on FACS. Another 

method utilizing the FACS concept proposed in [33] uses a three step approach for 

expression classification. This method uses principal components for dimension 

reduction, feature selection and linear discriminant analysis (LDA) for expression 

classification. Various approaches based on kernel methods have proposed in [34, 35] 

for facial expression recognition. In [34], kernel based method on support vector 

machines (SVM) is proposed for expression classification and [35] proposes a method 

based on kernel canonical correlation analysis (KCCA). These methods have been 

effective, but there have been issues related to the computational cost-effectiveness and 

operating time.  

In order to achieve high computational efficiency, statistical methods needs to 

be avoided and recursive methods such as neural networks need to be employed. 
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Various facial expression recognition schemes based on neural networks have also been 

addressed in [36 - 40]. Neural networks methods are very interesting and promising, 

since when trained properly, they easily map the extracted feature space to facial 

expression space and are able to form distinct decision boundaries. As compared to the 

expression classification based on statistical method in [31 - 35], neural network 

methods are more robust and have a high percentage of correct classification rate.  

Designing an effective neural network has always been a challenging task. In 

[36], a back-propagation and radial basis function (RBF) neural network is proposed for 

expression classification and they reported a classification rate of 71.8% and 73.2% for 

backpropagation and RBF, respectively. In the neural network approach mentioned in 

[36] the whole face image was analyzed for classification which could lead to a time 

consuming process, if the image size is large. In [37], a backpropagation neural network 

is given for classification and it uses different attributes of the face image to classify 

various expressions, but the image size is initially reduced which destroy the accuracy 

of achieving high classification rate. A constructive feed-forward neural network is 

proposed in [39], which uses the discrete cosine transform (DCT) in image data pre-

processing. This approach needs an image corresponding to neutral expression of a 

person to classify other expressions. Another approach based on radial basis function 

neural network is given in [40], which also uses FACS methodology and achieves a 

classification rate of 88%. The aim of this research is to propose a recursive recognition 

method based on neural network which is computationally effective and has higher 

classification rate.  
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A complete facial expression recognition system consists of image data 

preprocessing system and expression classification system. The research presented here 

concentrates on developing adaptive algorithms based on neural network technique for 

data preprocessing and expression classification, under the assumption that the image 

acquired is a well-framed face image for analysis. The first stage neural network 

consists of several parallel NN banks [41] to estimate the principal components of 

certain sub-images of the facial image. The inputs to the individual NN banks describe 

key attributes of the face image. The neural network banks allow the system to be more 

robust in the case of two different facial expressions that have similar characteristics; 

for example, a person might have the same movement of muscles near the eye region 

for two different expressions. In this scenario several neural networks banks are helpful. 

The advantage of using NN instead of statistical based method is that it gives the 

flexibility of online adaptive reformulation and using NN for PC estimation does not 

require having all the information at once i.e. batch processing is avoided. As the 

images are assimilated one by one, the PC are updated sequentially. The estimated 

principal components of the key attributes of the face and the second stage of neural 

network are used to classify the facial expressions such as happy, sad, fear, anger, 

surprise, disgust or neutral. 

1.2.3 3D Object Pose Estimation 

In order to obtain expression classification from a moving human face, it is 

important to know the pose of the human head i.e. the position and orientation of the 

human head. Therefore, in this research, pose estimation of 3D objects (human face) is 
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proposed using the concept of Extended Kalman filter approach. The role of vision 

guided control is important and in a wide range of applications such as humanoid 

robots, manufacturing environments, satellite and missile control and creating 

augmented reality motion. Recently, due to the technical advancements and increased 

availability of camera systems, robotic cameras are routinely used in surveillance [58], 

on movie sets [59], or in industrial robotics. One of the main issues related to the vision 

guided control system is the evaluation of the position and orientation vector of an 

object from the camera field of view, the so-called pose estimation problem. The pose 

estimation is also combined with the visual servoing method for object tracking and 

increased field of view. Visual servoing is typically achieved using an image based 

Jacobian, or a combination of position and image [60, 61] based methods. Certain 

applications, such as automated space-station docking, or the interaction between 

humans and humanoid robots require the estimation of an object pose in 6D, and visual 

tracking of the object based on that pose. Even more challenging, applications can 

sometimes provide a single “eye-in-hand” camera view, as opposed to stereo vision, 

leading to the so-called 2 1/2D vision servoing problem [62]. The corresponding pose 

determination problem is to calculate the three-dimensional (3D+3D) position and 

orientation of an object from a set of feature points captured by two-dimensional (2D) 

images.  

Considerable research has already been conducted [63-66] and various 

approaches have been proposed to determine the pose of an object using robot cameras. 

In [63], an approach based on active appearance model (AAM) is proposed, which is 
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based on model matching. A neural network method to determine the pose of an object 

is proposed in [64], which requires offline training of the neural network and it fails if 

the object is cubical in shape. In [65], a geometric based approach is given, which uses 

4 features points to obtain the pose parameters and an averaging method is used to deal 

with system noise. Another method based on hypothesis-testing logic is proposed in 

[66], which also uses more than 6 feature points.  

Since visual measurements are highly affected by the system noise due to lens 

distortion, lighting and background inconsistency, inconsistency in image processing 

algorithms, etc, the pose estimation algorithm may produce large errors. This issue of 

system noise could be significantly avoided by the use of a Kalman filter, which 

improves the accuracy of the estimation process. Various approaches using Kalman 

filter for pose determination have been effectively adopted in [67 - 72]. In [67, 68], an 

approach based on Kalman filter is proposed, which uses 5 non-coplanar feature points 

with a single camera. Use of multiple cameras with Kalman filter has been proposed in 

[69, 72]. These methods use more than 4 non-coplanar feature points for accurately 

determining the pose parameters. 

Since the 2D camera measurements are related through a nonlinear projection 

relationship with the pose parameters, an Extended Kalman filter (EKF) is needed. The 

EKF is an extension of linear Kalman Filter for nonlinear dynamical systems. The EKF 

plays an important role in dealing with noise and predicting the output in case the 

measurements are not available.  It is well-known that such filters are sensitive to state 

vector and covariance matrix initial conditions. Inappropriately chosen parameters 
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could produce large errors or even to the divergence of the estimates. For more on the 

divergence of the extended Kalman Filter see [73]. 

In this research we propose and experimentally validate an efficient, semi-

decoupled EKF-based 6D pose estimation algorithm and combine it with object 

tracking with a robotic camera. The semi-decoupled pose estimation algorithm uses two 

separate filters, one for object 3D position and one for object 3D orientation vectors. 

We call it “semi-decoupled” because only the position vector is passed to the 

orientation filter, and not vice-versa. This scheme makes the pose estimates less 

sensitive to image depth, and as a result, smaller tracking errors and improved 

robustness to initial conditions are obtained compared to a fully coupled 6D filter. In 

addition, this implementation is more computationally efficient because of reduced 

matrix dimensions. Furthermore, pose estimation using the proposed approach is 

accomplished with only 3 non-colinear feature points. The semi-decoupled EKF method 

was found to be robust to large initial condition errors and noise through the set of 

experiments conducted for the current experimental setup. 

1.2.4 A Potential Field Approach for Distributed Control of Discrete Sensors 

Distributed sensing capabilities are used to localize the mobile platforms in an 

unknown terrain. The mobile platforms could be aerial vehicles, humanoid robots or 

ground vehicles. In this work, autonomous aerial vehicles are taken as a platform to 

highlight the effectiveness of the proposed approach.  

The role of autonomous surveillance has proven to be important and applicable 

to a wide range of applications such as target location, map building, border security, 
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pollution monitoring and control, and battle damage assessment. UAV (unmanned 

aerial vehicles) fit into the scenario of autonomous surveillance perfectly as they 

involve a low risk factor and facilitate technological advancements, making their use 

feasible in real world scenarios. UAV are generally classified by their flight altitude, 

launch and recovery methods as detailed in [106]. 

UAV, together with randomly deployed stationary unattended ground sensors 

(UGS) can further enhance the performance of the autonomous surveillance tasks 

mentioned above. Since the information collected from UGS is of limited use if no 

information about the sensor position is available, the task of localizing the sensor 

nodes is of prime importance for sensor network applications. In this paper we discuss 

an air-ground localization scheme in which UGS nodes, with the aid of UAV having on 

board GPS, generate their optimal position estimates. 

Localization is classified in two categories: relative and absolute localization. In 

relative localization the sensor nodes are localized using the distances measured among 

the nodes with respect to an arbitrary internal coordinate system. Absolute localization, 

on the other hand localizes the network with respect to a known specified coordinate 

system. 

An important development is an air-ground localization scheme, which 

performs relative and absolute localization of stationary UGS network with the aid of 

UAV. The UGS nodes are simple and support local sensing, communication and 

computation. It becomes impractical to have GPS capability on UGS nodes due to 
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energy and cost constraints. UAV having GPS can be used to localize the UGS network 

absolutely. 

The UGS node localization problem has been addressed by many researchers 

using various approaches. In [103] a distributed algorithm is proposed, where a fraction 

of nodes are already localized. Other schemes for localization such as SHARP, virtual 

force algorithm (VFA) and self-localization have been proposed in [85, 99, 107] 

respectively. Other methods using fixed beacons with known positions are proposed in 

[88, 89, 102, 106]. Various approaches involving RSSI, TOA, AOA, signal pattern 

matching are explained in [90]. A detailed introduction to localization in sensor 

networks is given in [86]. Cooperative localization methods have been developed for 

relative localization in [100]. 

Air-ground localization schemes based on terrain-aided navigation have been 

addressed in [94 – 96, 101]. These algorithms are known as Simultaneous Localization 

and Mapping (SLAM). Other airborne localization algorithms involving regular 

broadcast of UAV location have been proposed in [92]. These localization schemes are 

dependent on the path of UAV with respect to the deployed nodes and are restricted by 

power consumption and network congestion problems due to the regular broadcasts of 

UAV positions. In [98], problem of localizing vehicles where GPS signals are often 

unavailable is described. 

With no priori terrain information available the problem of localization is 

extremely challenging and various approaches based on the Extended Kalman filter 

(EKF) have been proposed in [96, 97, 101]. The EKF is a recursive estimation 
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technique based on first-order linearization of the nonlinear system, and can yield large 

estimation errors and even divergence of the filter. Thus, these techniques are sometime 

not very effective. For more on the divergence of the Kalman filter, see [73]. 

The research presents an alternative method of relative and absolute localization 

based on a potential field method [93]. Two algorithms are given: relative localization 

algorithm and absolute localization algorithm. A dynamical model for each sensor node 

estimates the relative positions by employing a correction term based on a certain 

fictitious virtual force. In the relative localization algorithm the stationary UGS nodes 

are localized with respect to an internal coordinate frame. The relative localization 

algorithm proposed in the work assumes that distance (i.e. range) measurements 

between sensor nodes are available. For absolute localization, it is assumed that some 

nodes have GPS absolute position information.  Specifically, herein, the UGS nodes are 

localized with respect to a global frame provided using the absolute positions of several 

UAV with GPS as shown in Figure 1.1. 

 

Figure 1.1 Air Ground Sensor Network Configuration 
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1.3 Dissertation Layout  

The dissertation is organized in the following way: Chapter 2 presents the 

methods developed for distributed control of discrete actuator arrays along with any 

model uncertainties of the flexible surface. In Chapter 3, a novel method is developed 

for selction/placement of microactuators to morph a physical flexible structure. Chapter 

4 proposes a two stage neural network for expression classification to acquire a desired 

shape. Chapter 5 outlines the approach of acquiring the expression under the influence 

when the body is mobile. The distributed control of sensor arrays for localization is 

mentioned in Chapter 6.  

1.4 Mathematical Preliminaries and Notations  

This section describes the basic definitions and background material related to 

the control of dynamical systems. More details are described in [83, 84].  

1.4.1. Norm of a Vector 

The p-norm for any vector nx ℜ∈  is given as, 

p
n

i

p

ip
xx

/1

1









= ∑

=

 
(1.1) 

and for 2=p , the norm is defined as a Euclidian norm. 

1.4.2 Quadratic Form 

If nnQ ×ℜ∈  is a positive semi-definite matrix then for any vector nx ℜ∈  then 

the following inequality holds and is defined as quadratic form 

2

max

2

min )()( xQQxxxQ T σσ ≤≤  (1.2) 
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where minσ  and maxσ  are the minimum and maximum eigenvalues of the matrix Q , 

respectively. 

1.4.3 Stability 

Stability is a performance requirement for closed loop systems. For the 

dynamical system given as  

),( txfx =&  (1.3) 

where nx ℜ∈ , a state ex  is an equilibrium point of the system if 0),( =txf e , 0tt ≥ . 

Therefore, an equilibrium point ex  is stable in the sense of Lyapunov (SISL) at 0t  if for 

every 0>ε  there exists a 0),( 0 >tεδ  such that ),( 00 txx e εδ<−  implies that 

ε<− exx0  for 0tt ≥ .  

An equilibrium point ex  is asymptotically stable at 0t  if there exists a compact 

set nS ℜ⊂  such that, for every initial condition Sx  0ε , one has 00 →− exx  as 

∞→t . 
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CHAPTER 2 

A POTENTIAL FIELD APPROACH FOR ACTIVE SHAPE CONTROL OF 

FLEXIBLE STRUCTURES 

 

This chapter presents a methodology for modeling, analyzing and controlling 

the dynamics of shape morphing for a flexible structure. This paper is organized in the 

following way: Section 2.1 outline the procedure to derive a generic dynamic model for 

flexible structure embedded/bonded with microactuators and then gives the approximate 

mathematical model to be considered for control algorithm design. In Section 2.2, the 

foundation of deriving the control law for relative and absolute pixel points 

(micriactuator points) is established. Section 2.3 derives the control law with model 

uncertainties in the system. The effectivenss of the proosed control law is shown by the 

simulation results given in Section 2.4. Finally, the conclusion is presented in Section 

2.5. 

2.1 System Overview 

For deriving any control law, a mathematical model of the system is required. 

The approach towards obtaining the mathematical model of a flexible structure with 

embedded/bonded structure and deriving the control input for shape control is 

mentioned. The approach adopted in here is to consider each microactuator point as one 
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pixel as shown in Figure 2.1 and then control individual pixel to create local 

deformation, which in turn causes the global deformation of the flexible surface. 

Collocated PZT 
Actuator & Sensor
Collocated PZT 

Actuator & Sensor

 

Figure 2.1 Flexible surface with embedded/bonded actuators 

 

Each pixel (microactuator point) has either the information about the desired 

relative distance it needs to maintain with the other pixels or it has the desired co-

ordinate information of where it needs to be. The pixels with relative distance 

information are termed as relative pixel points and the pixels with desired co-ordinate 

point informaiton are termed as absolute pixel points. 

Since the research results presented here emphasize the design of the control 

input, the mathematical model of the flexible structure is approximated with a series of 

inter-connected mass-spring damper system. This mass-spring-damper system imitates 

the behavior of the actual flexible surface, which serves as an excellent tool to test the 

effectiveness of the designed control algorithm. The section begins with deriving the 

mathematical model of the system using Lagrange’s equation of motion and then 
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develops the approximated model of the flexible structure based on inter-connected 

mass-spring-damper.  

2.1.1. Exact System Model 

Extensive literature exists for the modeling of the flexible structure with 

embedded/bonded actuators and sensors. Some of the work regarding the modeling of 

the system with respect to shape control and vibration suppression could be found in [11 

- 15]. The approximation is done to highlight the effectiveness of a novel control 

algorithm presented later in the research work.  

The flexible structure is a general collection of deformable bodies, rigid bodies 

and particles. Their mathematical model is derived in the form of differential equations 

which forms the basis of their equations of motion. These equations of motion are 

constructed using Hamilton’s principle and Lagrange’s equations. In general, the 

Hamilton’s principle is given by 

0)(
2

1

1

1

=+− ∫∫
t

t

t

t

WdtdtVT δδ  
(2.1) 

where T  is the kinetic energy, V  is the potential energy (including strain energy and 

potential energy of external forces), ()δ  is the virtual displacement operator and W  is 

the virtual work done by the damping forces and the external forces (not taken into 

account in V ). For the flexible structure with embedded/bonded actuators, the kinetic 

energy is given as a function of mass density and volumes of the flexible structure. The 

potential energy is given as a function of stress and strain vectors of the structure, 

material stiffness properties, electric and field displacement. Therefore, using the 
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energy functions and the Hamilton’s principle defined in (2.1), equations of motion are 

constructed by 

τ=
∂
∂

−








∂
∂

ii q

L

q

L

dt

d

&
 

(2.2) 

where the Lagrangian L  is defined as 

VTL −=  (2.3) 

and iq  are the generalized coordinates and τ  are the generalized forces. 

It has been shown in [11 - 13] that using (2.1) and (2.2), the system model could 

be reduced in the form given as 

τ=++ iiiiii qqKqqqCqM )(),( &&&&  (2.4) 

where M  is the structural inertia matrix, ),( ii qqC &  accounts for the velocity effects like 

viscous friction, centrifugal and coriolis effects, )( iqK  represents the elastic effects due 

to spring, bending stiffness and gravity, and τ  is the force acting on the system by the 

embedded/bonded actuators. Since the task over here is to show the effectiveness of the 

novel control algorithm approach, therefore an approximated version of the flexible 

surface is derived in the next subsection.  

2.1.2. Approximate System Model 

As given in Section 2.1.1, the elastic nature of the flexible structure can also be 

represented by a series of inter-connected mass-spring-damper system as shown in 

Figure 2.2. The equations of motion derived for this system are also in the same 

structure form as given in (2.4). This approximation of the flexible structure is done to 
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highlight the effectiveness of the control algorithm proposed further in the research 

work. Each spring-damper system labeled as jN  has the following parameters, Spring 

constant as jK , Damping co-efficient as jC  and spring length as jR  for 12.....,2,1=j . 

 

Figure 2.2 Approximated model of flexible structure with inter-connected mass-spring-damper 

system 

 

Using the Newton’s law of motion to derive the equation of motion for the 

approximated flexible structure in two dimensional (2D), the dynamics of every point 

mass mode is given as, 

xFxxCRxxKxm 1121112111 )()( +−+−−= &&&&  (2.5) 

 

yFyyCRyyKym 1143314311 )()( +−+−−= &&&&  (2.6) 
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where 1x  and 1y  are the x-y coordinates for the point mass position estimate, and xF1 , 

yF1  are the force acting in x and y direction. Similarly the dynamical equation 

representing every point mass model could be formulated in the standard form given as, 

i

D

iiiiiii FKZKZCZM
r

&&& =+++  (2.7) 

for Ni .....,2,1=  where N  is the total number of point mass to be considered (for ex. in 

this case 9=N ), iZ  is the position vector for an actuator node given as [ ]Tiii yxZ = , 

iM  is the mass matrix, iC  is the coriolis matrix, iK  is the stiffness matrix, D

iK  is the 

vector containing spring lengths and iF
r
 is the force vector given as [ ]Tiyixi FFF =

r
. 

2.2 Controller Design for Dynamic Shape Morphing 

In the previous section, the mathematical model of a flexible structure is 

derived. Now, in this section, a control methodology is developed for the shape control 

of flexible structures with embedded/bonded actuators.  

There are two types of actuators points in the system, which are classified as  

1) Absolutely actuated mass points  

2) Relatively actuated mass points. 

Absolutely actuated mass points are the ones which have information about their 

desired co-ordinates points, whereas relatively actuated mass points only have 

information about the distance they need to maintain between the corresponding mass 

actuator points. The dynamic controller designed in this section takes into account the 

effects of both the absolute actuator mass points and relative actuator mass points on 



 

 24 

shape morphing. The following subsections describe the controller design procedure for 

the two different mass actuator points. 

2.2.1. Dynamic Controller Design for Relatively Actuated Mass Points  

The dynamical model of the structure developed in (2.7) is rewritten in the form 

given as, 

)(1 D

iiiiiiii KZKZCFMZ −−−= − &
r

&&  (2.8) 

This is done to represent the system model in (2.7) in the state variable representation. 

In order to control the point mass position, a two step design procedure is used where 

the system dynamics in (2.8) are further reduced using the preliminary feedback 

linearization technique [83], given as 

ii uZ =&&  (2.9)

where ][1 D

iiiiiiii KZKZCFMu −−−= − &&&
r

 

In the two step design, the first step involves selecting a feedback control )(tu  

that stabilizes the point mass positions and the second step computes the required force 

using the inverse relation given as  

D

iiiiiii KZKZCtuMF +++= &
r

)(  (2.10)

The control law in (2.10) is a nonlinear feedback control that guarantees the 

convergence of the mass point positions. The control law is derived using a certain 

potential field to be introduced later in the section, so that the mass point positions 

reaches steady-state values.  The control structure for the feedback control design is 

shown if Figure 2.3. 
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Figure 2.3 Two step Controller Design for flexible surface shape morphing 

 

It is not always necessary to actuate all the actuators of the flexible surface, 

therefore a novel approach to select which actuators needs to be controlled is given in 

Chapter 3. The method described in Chapter 3 selects the mass point that needs to be 

controlled in order to achieve the desired shape of the flexible surface with minimum 

error.  

For the first step of the control design procedure, the control input )(tui  is 

designed using the concept of potential field, which is given as 

∑∑
= =

−=
N

i

N

j

ijijij rrKV
1 1

2)(
2

1
 

(2.11)

where 2
1

22
])()[( jijiij yyxxr −+−=  is the calculated distance and ijr  is the actual 

measured distance between thi  and thj  mass points. By defining the potential function 

for a single mass point i , (2.11) can be written as 

∑
≠
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−=
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(2.12)
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Now by calculating the gradient of the potential function with respect to the mass point 

position vector iZ , the direction and the magnitude at which the control input needs to 

be applied is obtained, which is given as 

∑∑
≠
=

≠
=

−∇−=−∇=∇=
∂

∂ N

ji
j

ijijijijij

N

ji
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2

1 rrr
 

(2.13)

which on further simplification is written as  
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(2.14)

where ijji rZZ =−  

Theorem 2.1: Consider the position dynamics (2.9) for each relatively actuated 

mass point im  in the mass-spring-damper system. Let the control input )(tui  for point 

mass im  be given as, 

iv

N

ji
j ji

ji

ijijiji ZK
ZZ

ZZ
rrKtu &−

−

−
−−= ∑

≠
=1

)(
)()(  

(2.15)

Then the position vector iZ  reaches steady-state of the actual point mass 

positions in the sense that the potential function V  is minimized. 

Proof: Define the Lyapunov function 

∑
=
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N

i

i

T

i ZZVL
1 2

1 &&  
(2.16)

Differentiate to obtain 
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∑∑∑
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One can compute 
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and on substituting (2.9) and (2.18), we obtain 
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Further, substituting the control input from (2.15) yields 

∑
=

−=
N

i

iv

T

i ZKZL
1

&&&  
(2.20)

which on observation clearly states that, ∀  0>vK , 0≤L&  and the vector [ ]Tii ZZ &  is 

bounded which shows that the position estimate dynamics is SISL. Evaluating L&&  yields 
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(2.21)

and on substituting (2.15), we obtain 
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Using the result obtained from Lyapunov analysis, it can be seen that the vector 

[ ]Tii ZZ &  is bounded and yields L&&  in (2.15) to be bounded. By Barbalat’s Lemma 

[105] we deduce that 0→L&  as ∞→t , which yields 0→iZ&  as ∞→t . Therefore (2.9) 
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shows that )(tui  goes to zero i∀ . Finally (2.13) and (2.14) show that i
Z

V

i

∀→
∂
∂

,0 , so 

V  reaches a minimum.        ■ 

After obtaining the design of the control input using the potential field concept, 

the required force vector is obtained using the inverse control law given as, 

D

iiiiiiii KZKZCtuMF +++= &
r

)(  (2.23)

 

2.2.2. Controller Design for Dynamic Absolutely Actuated Mass Points  

In the previous subsection, a control law for relative mass points was proposed, 

whereas in this section, a control law for absolute mass points is proposed. In the 

absolute mass points, the information about their desired co-ordinates is available 

together with the distance information between the corresponding mass points.  

Here, the mass points from the flexible surface modeling are divided into two 

sets, one containing the relative mass points and the other containing the absolute mass 

points. Let the total number of mass points to be considered for flexible surface 

morphing N  indexed by a set iZ , where { }Ni ,.......3,2,1= . From this set, let the number 

of absolute mass points be m , indexed by a set a

i p
Z , where { }mp ,.....,2,1=  such that 

i

a

i ZZ
p
⊂  and the relative mass points are indexed by

piZ , where  { }Nmp ,.....,1+=  

such that ii ZZ
p
⊂ . 

From (2.9), the position vector 
piZ  dynamics are given as 
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pp ii uZ =&&  (2.24)

where [ ]Tiii ppp
yxZ = , 

pi
x  and 

pi
y  are the x-y coordinates of the relative mass point 

and 
piu  is a control input to be specified. 

Extending the same concept of forming the dynamics, the absolte mass point 

dynamics are given as 

a

i

a

i pp
uZ =&&  (2.25) 

where [ ]Ta

i

a

i

a

i ppp
yxZ = , a

i p
x  and a

i p
y  are the x-y coordinates of the absolute mass 

points  and a

i p
u  is a control input to be specified. 

The potential function given in (2.11) is modified to include the information 

about the desired co-ordinates of absolute mass points and is given as  
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where [ ] 2
1
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yxxxe −+−=  and [ ]Ta

i

a

i

a

i ppp
yxZ =  is the desired co-ordinates 

of the mass point a

iZ . Now, the total potential function of the mass points containing 

relatively and absolutely actuated mass points is given as  

VVV a

p +=  (2.27)

which on substitution of (2.11) and (2.26) is written as  
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where j
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By defining the potential field for a single absolute mass point a

pi  as 
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and calculating the gradient of the potential with respect to the absolute mass point 

position vector a

i p
Z  given as,  
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(2.30)

one can compute the control input to be applied to the absolute mass points. 

Theorem 2.2: Consider the position dynamics (2.24) for each relative point 

mass im  in the mass-spring-damper system and (2.25) for each absolute point mass a

im  

Let the control input )(tu
pi  for relative point mass im  and the control input a

i p
u  for 

absolute mass point a

im  be given as 
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Then the mass point position reaches steady-state values in the sense that pV  is 

minimized. 

Proof: Define the Lyapunov function as 
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Differentiate to obtain 
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One can compute 
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and on substitution of (2.30), (2.32) and (2.46) in (2.45) we get 
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Further substituting the control input mentioned in (2.31) and (2.32) yields 
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clearly, ∀  0),( >a

vv KK , 0≤pL&  and the vector [ ]Tii pp
ZZ &  and [ ]Ta

i

a

i pp
ZZ &  is 

bounded which shows that the system is SISL. Evaluating pL&&  yields 
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which on substitution of (2.28) and (2.30) gives 
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Using the result from the Lyapunov analysis that the vector [ ]Tii pp
ZZ &  and 

[ ]Ta

i

a

i pp
ZZ &  is bounded also yields that pL&& is also bounded. By Barbalat’s Lemma [105] 

we deduce that 0→pL&  as ∞→t , which yields 0→a

ip
Z&  and 0→

pi
Z&  as ∞→t . 

Therefore (2.28) shows that 
pi

u  goes to zero pi∀  with no absolute position information 

and (2.30) shows that a

ip
u  goes to zero a

pi∀  with absolute position information. Finally 

(2.37) and (2.38) shows that 0→
∂

∂

p

p

i

i

Z

V
 and 0→

∂

∂
a

i

a

i

p

p

Z

V
 respectively, so pV  reaches a 

minimum.          ■ 

From the control input derived in equation (2.31) and (2.32), the force acting on 

relatively and absolutely actuated mass points is given in (2.40) and (2.41), respectively. 
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2.3 Controller Design for Dynamic Shape Morphing with Parameter Uncertainty 

In the previous section, a dynamic shape control algorithm is derived for 

flexible structure without consideration of model uncertainties. In reality, model 

uncertainties always exist in the mathematical model derived, therefore consideration of 

model uncertainties leads into designing an effective control algorithm. In this section, 

the control algorithm developed in section 2.2 is modified to include the uncertainties in 

the model parameters. Generally, the common uncertainties include the unknown mass 

points parameters such as mass, spring constant and damping co-efficient. The control 

structure with model uncertainties is shown in Figure 2.4. 

 

Figure 2.4 Control Structure with model uncertainties 

 

One way of dealing with these model uncertainties is to use the control law 

derived in Section 2.2 with some fixed estimate of the unknown parameters in place of 
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the actual parameters. This leads to the approximate version of the force input, which is 

given as  

D

iiiiiiii KZKZCuMF ˆˆˆˆˆ +++= &
r

 
(2.42)

where iM̂ , iĈ ¸ iK̂  and D

iK̂  are the unknown actual parameters. Analyzing the property 

of the system model derived, it is clear that the parameters appear linearly in the model. 

That is, the flexible surface dynamics can be written in the form given as 

ϕ),,( iiii ZZZWF &&&
r

=  (2.43)

where ),,( iii ZZZW &&&  is an qn×  matrix of known functions termed as regression matrix 

and ϕ  is an 1×q  vector of unknown constant parameters. This linear in the parameter 

property is very crucial in the design of the adaptive control law to be introduced later 

in the section.  

The first step in the design of the adaptive control law is to rewrite (2.42) in the 

form given by  

D

iiiiiiiiiii KZKZCZMZMuMF ˆˆˆˆˆˆˆ ++++−= &&&&&
r

 
(2.44)

which is obtained by adding and subtracting ii ZM &&ˆ  in (2.42), yielding  

ϕ̂)(ˆˆ
WZuMF iii +−= &&

r
 

(2.45)

where D

iiiiiii KZKZCZMW ˆˆˆˆˆ +++= &&&ϕ . Now rewriting the mass point position 

dynamics from (2.45) as  

)ˆ(ˆ 1 ϕWFMuZ iii −−= −
r

&&  (2.46) 
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and on substitution of (2.43) yields 

ϕ~ˆ 1−−= ii MuZ&&  (2.47)

where ϕϕϕ ˆ~ −=  is the parameter error. The required task is now to determine a tuning 

law which would guarantee the convergence of parameter error ϕ~ , which is shown by 

the following theorem. The theorem shows the convergence result for the relative mass 

point, whereas the analysis will be same for the absolute mass points. 

Theorem 2.4: Consider the relative mass point position estimate dynamics 

(2.47) for each point mass im  in the mass-spring-damper system. Let the control input 

)(tui  be given as 
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≠
=1
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(2.48)

and the parameter tuning give as  

ii

T ZMW && 1ˆˆ −Γ−=ϕ  (2.49)

Then the relative mass point position reaches steady-state values in the sense 

that the potential function V  is minimized. 

Proof: Define the Lyapunov function 

)~~(
2

1 1

1 ϕϕ −Γ+= TLL  
(2.50)

where ),.......,,,( 321 qdiag λλλλ=Γ  and si 'λ  are the positive scalar constants. 

Differentiating (2.50), yields 
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and on substitution of L&  form (2.17) gives 
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which on further substitution for iZ&&  from (2.47), yields 
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From (2.53), it is clearly seen that the first two terms on the right hand side of 

the equation the Lyapunov derivative function given in (2.19), which is rewritten in the 

form given as,  

ϕϕϕ &&&& ~~~ˆ 1
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T

i MZLL  
(2.54)

which on further simplification can be rewritten as  

)~ˆ(~ 11

1 ϕϕ &&&& −− Γ−−= ii

TT ZMWLL  (2.55)

From Theorem 2.1, it has been shown that L&  is negative semi-definite, therefore 

in order for 1L  to be negative semi-definite  

ii

T ZMW && 1ˆ~ −Γ=ϕ  (2.56)

which results in a tuning law given as,  

ii

T XMW && 1ˆˆ −Γ−=ϕ  (2.57)

since ϕ&  is equal to zero because the unknown parameters are constant. On substitution 

of (2.57) into (2.55), yields 
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LL && =1  (2.58)

and it has been shown that 0→iu  as ∞→t  and hence 0→iZ& , therefore 01 →L&  as 

∞→t , which means the system is SISL. 

2.4 Simulation Results 

In this section, the results of morphing the flexible structure are presented with 

the proposed control law using the potential field method. Figure 2.5 shows the result 

when the surface is morphed to have the desired shape given by red star points, whereas 

the actual shape is given by the blue circle points.  

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
2
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Morphed

 

Figure2.5 Shape morphing result where red star shows the desired position and blue circle is the 

actual position of the mass points 

 

Figure 2.6 shows the response of the position of the mass points under the 

influence of the control law given in (2.40) and (2.41). 
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Figure 2.6 Response of the x-y positions of the mass points under the influence of the control 

law designed using the potential field method 

 

2.5 Conclusion 

In this chapter of the research work, an efficient algorithm for shape control of 

flexible structure is given. With the simulation results presented in the chapter the 

effectiveness of the algorithm is highlighted. The result in this chapter lays out the 

foundation for shape control of flexible structure. It becomes very important to 

select/place the microactuators for optimal shape control of flexible structure, since it 

aids in reducing the weight of the flexible structure and low power consumption. The 

following chapter presents the novel algorithm developed for the optimal 

selection/placement of the microactuators on the flexible structure. 
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CHAPTER 3 

OPTIMAL SELECTION/PLACEMENT OF MICROACTUATORS FOR 

DISTRIBUTED CONTROL USING NEURAL NETWORKS 

 

In the previous chapter, a control law was designed to achieve shape morphing 

where all the actuators are controlled. Practically, it is not viable to control all the 

actuators since energy is one of the major constraints, therefore it becomes necessary to 

develop an algorithm which can select the relevant actuators that need to be controlled 

in order to achieve the desired shape of the structure with minimum error. This chapter 

proposes an algorithm which selects the actuators which need to be controlled using the 

concept of neural networks. The overall block diagram of the scheme is shown in 

Figure 3.1 

 



 

 40 

 

Figure 3.1 Block diagram with control law using potential field and actuator selection/placement 

 

This chapter is organized in the following way: Section 3.1 discusses the 

problem to be dealt when morphing the flexible structure. Section 3.2 describes the 

system architecture which includes the description of the RBF NN, choice of the rdial 

basis function for morphing and also the modified RBF NN to be used for actual surface 

morphing. Section 3.3 describes the standard OLS method and how it is modified to 

determine the actuator positions through a novel method called as EOLS method 

proposed in this research. Section 3.4 presents the simulation results of EOLS method. 

Finally, we conclude the chapter in section 3.5.  

3.1 Problem Formulation 

RBF NN is a nonlinear interpolation tool, used to map the input vector space to 

the output vector space. Since the numbers of neurons required in the RBF NN are 

decided by the number and positions of centers, the design parameters in the RBF NN 

are the number of centers, positions of centers and the output weights. An RBF NN 
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could be designed to map a 2D field from an arbitrary shape to a desired shape, by 

appropriately designing the NN parameters. In this research, the center positions of the 

NN represent the optimal position of the microactuators and the number of centers 

represents the actual number of microactuators to be used for morphing the flexible 

structure. 

For example, to morph a 2D grid consisting of 100 points, to a desired shape as 

shown in Figure 3.2, only 10 points (actuators) can be actuated to bring the grid to the 

desired shape. These actuator positions and the number of actuators (10 points) are 

decided by the RBF NN. The actuator positions represented can be viewed as the center 

positions of the RBF NN. Therefore the problem of determining the actuator 

selection/placement becomes the question of how to best determine the center positions 

of the RBF NNs to provide the required deformation. 

(a)
(b)

(a)
(b)

 

Figure 3.2 Morphing of a flexible structure (a) original shape of the plate (b) deformed shape of 

the plate 

Various methods for center selection of RBF NN exist. One of the methods is 

the clustering method that consists of input-output clustering [24 - 26]. These input-

output clustering algorithms involve methods such as k-means, recursive k-means, 

mean tracking clustering. These methods result in the selection of large number of 
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hidden neuron centers. Another method based on genetic algorithm is proposed in [27], 

though it produces a smaller size of hidden centers and has a large computational cost. 

One of the most commonly used methods to select the centers is the orthogonal 

least square (OLS) algorithm. The OLS algorithm is used as a tool to select both the 

center positions of the RBF and output weight matrix. One of the basic advantages of 

this method is that it avoids the inversion of matrices. In this research the standard OLS 

algorithm is modified to include the displacement and rotation effects, which are needed 

to fully describe the morphing of 2D flexible structures. This requires the determination 

of additional parameters which cannot be provided by the OLS method. To accomplish 

the complete deformation of the flexible structures, a novel method called Extended 

Orthogonal Least Square (EOLS) is introduced.  

3.2 System Description 

In this section an RBF NN is presented to estimate the number and positions of 

the microactuators. Before a new model of RBF NN is presented, the standard RBF NN 

in outlined to get familiarized with the changes to be made in the modified RBF NN.  

This section also lays out the reason to choose Thin-Plate Spline as the radial 

basis function. The modified RBF NN developed here, forms the fundamental step to be 

used in the new proposed Extended Orthogonal Least Square (EOLS) method in the 

following section. 
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3.2.1. RBF Network Modeling 

A standard RBF network performs a non-linear mapping between the input and 

the output vector space. It is used as an interpolation tool in the output vector space. A 

typical RBF architecture is shown in Figure 3.3. 
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Figure 3.3 Radial basis Function Neural Network 

 

The RBF mapping is given via the transformation 

∑
=

−==
M

k

kikii cpwpfy
1

)()( φ  
(3.1)

where 2×ℜ∈ np  is the input to the network, M  is the number of neurons in the 

network, kc  is the RBF center, 
2

. is the euclidean distance, iw  is the neural network 

weight, and (.)φ  is the radial basis function. There are several choices of the RBF 

( (.)φ ) in the network. Some of the typical choices of RBF are 

1) Cubic spline ( 3)( xx =φ ), 

2) Gaussian Function ( )exp()(
2

2

σ
φ

x
x −= ), where σ  is the spread parameter,  

3) Thin Plate spline ( )ln()( 2 xxx =φ ).  

The choice of RBF is an important factor in setting up the mapping function. 

Therefore, the following discussion sets up the foundation on choosing the RBF. 
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3.2.2. Choice of Radial Basis Function 

In this research Thin Plate Spline (TPS) is used as an interpolant function and 

forms the basis of the NN. The choice of TPS function lies on the fact that the TPS 

function represents the bending motion of a 2D flexible structure. The bending motion 

of a 2 dimensional structure is governed by a biharmonic equation given as  

02 =∆ g  (3.2)

where ∆  is the Laplacian operator and g  is the function to be solved. The solution of 

g  is obtained by rewriting (3.2) as 

0)( =∆∆ g  (3.3)

where 2∇=∆  and ∇  is the gradient operator given as 

z
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(3.4)

Considering only ),( θr  and substituting (3.4) in (3.3), yields, 
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(3.5)

For the thin-plate spline the function g  is only dependent on the ),( yx  co-ordinates 

given as )),(()(
2

yxfrfg == . Therefore, 
θ∂
∂

 is zero and equation (3.5) is written as 
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(3.6)

Now, integrating equation (3.6) twice, yields  

21 )ln( CrCg +=  (3.7)
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To solve the second Laplacian operator, equation (3.7) is again integrated twice yielding 

43

22121 )ln(
44

)ln(
4

CrCr
CC

rr
C

g ++







−−=  

(3.8)

where 1C , 2C , 3C  and 4C  are constants. The equation (3.8) could be approximated to 

get the TPS deformation given as  

)ln(2 rrg =  (3.9)

The RBF network explained in Section 3.1, is capable of estimating the actuator 

positions whenever there is bending, stretching or compression of a flexible structure. In 

order to estimate the actuator positions and unknown RBF parameters under the 

influence of tilting or just linear transformation together with bending, stretching or 

compression, the RBF network needs to be modified, as explained in the following 

section. 

3.2.3. Modified RBF Network Modeling 

Since the RBF network presented in Section 3.1 represents only the bending 

energy of the flexible structure, it is not sufficient to determine the actuator positions 

and the unknown RBF NN parameters under the effect of tilting and transformation of 

the flexible structure. When a physical flexible structure is merely tilted or changed 

from level to oblique, it does not bend. In tilting, energy forces work against gravity and 

not against the elasticity. In order to take into account the effect of tilting and 

transformation, the RBF network in equation (3.1) has to be modified to include an 

extra term known as the affine transformation. Therefore the new RBF model is given 

as  
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where )( pλ  is the affine transformation term given as  
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(3.11)

The architecture of the modified RBF NN is shown in Figure 3.4.  
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Figure 3.4 Modified Radial Basis Function Neural Network 

 

The RBF given in Section 3.2 takes into account he effect of the normal and the 

in-plane transformation of the flexible structure. One of the concerns in RBF design is 

to select the centers appropriately from the data set. Proper selections of center positions 

yields in accurate performance of the interpolation and also in reduce size of the RBF 

network, since large RBF networks results in computational complexity and numerical 

ill-conditioning. One of the most common methods to select the center position is 

orthogonal least square (OLS) method mentioned in [28, 51]. A brief introduction to the 

OLS method is presented here in the following section in order to justify the use of 
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Extended Orthogonal Least Square (EOLS) method, which is the main contribution of 

the paper. 

3.3 Extended Orthogonal Least Square Method 

As mentioned earlier in Section 3.1, the actuator number and position basically 

represents the center positions of the RBF NN. Therefore the problem of actuator 

placement determination becomes the question of how to determine the center positions 

of the RBF NN. Therefore in this section, the method to estimate the center position 

using a novel Extended Orthogonal Least Square (EOLS) method is presented. is laid 

out.  

Before presenting the EOLS method, the standard OLS method is briefly 

explained, to get a better understanding of EOLS method and how the actuator number 

and positions are determined. 

3.3.1. Standard Orthogonal Least Square Method 

In the standard OLS method, the RBF network is seen as a linear regression 

model given as  

ePd += θ
~

 (3.12)

where 2~ ×ℜ∈ Nd  is the set containing the output measurement data 

and MNP ×ℜ∈  is the radial basis function matrix (regression matrix) given as  
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(3.13)
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2×ℜ∈ Mθ  is the weight matrix given as, 
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(3.14)

The standard OLS method allows the selection of RBF centers so that an 

adequate RBF network size could be obtained. In the OLS method, as mentioned in [28, 

51], the problem of selecting a center is equivalent to the selection of significant 

regressors from a given data set. Each regressor in the data set forms a set of basis 

vector. At each step of the OLS method, a new center is selected by decomposing the 

regression matrix given by P , into a set of orthogonal basis vectors. On decomposition 

of the regression matrix (P ) matrix, the calculation of each basis vector towards the 

maximization of the desired output variance is obtained. 

Using the Gram-Schmidt orthogonalization method, the regression matrix P is 

decomposed as 

WAP =  (3.15)

where MNW ×ℜ∈  is the orthogonal matrix and MMA ×ℜ∈  is an upper triangular matrix. 

Since the vector space spanned by the set of orthogonal basis vectors iw  is the same 

vector space spanned by the columns of the regression matrix P , the estimated model 

given in (3.12) can be written as  

gWWAd ˆˆˆ == θ  (3.16)

where θ̂ˆ Ag = . To estimate ĝ , the cost function is defined as  
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ˆ gWdgWdJ T

g −−=  
(3.17)

Now, using the necessary condition to achieve the global minimum of the quadratic 

function, ĝ  could be obtained as 

dWWWg TT ~
)(ˆ 1−=  (3.18)

In order to choose the center position, the output energy is analyzed, which is given as  
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where iĝ  is the thi  vector of ĝ , given as  

i

T
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i
ww
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g

~
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(3.20)

Since there is a one-to-one correspondence between the center positions ( ic ) 

and the elements of the regressor vector iĝ , each term in ∑
=

M

i

i

T

ii wwg
1

2
 represents an 

increment in the energy due to the inclusion of the thi  center ( ic ). Therefore, an error 

reduction ratio is defined to select a center ( ic ) given as  

dd

wwg
err

T

i

T

ii
i

2

][ =  
(3.21)

The selection of the RBF NN center position is performed in a forward regression 

manner. Therefore, at every step of the OLS method, an RBF center is selected so that 

the error reduction ratio is maximized. For the details on the step-by-step approach, 

please refer to [28, 51]. 
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3.3.2. Extended Orthogonal Least Square Method 

The EOLS method is designed to estimate the actuator positions, unknown RBF 

network weights and the unknown terms corresponding to the affine transformation. An 

outline of the EOLS method is given here together with the mathematical analysis. The 

model to be considered is an extension of the OLS model given in (3.12), which is 

given as  

eQBPd ++= θ
~

 (3.22)

where 2~ ×ℜ∈ Nd  is the set containing the output measurement data, NNP ×ℜ∈  and 

2×ℜ∈ Nθ  are same as defined in (3.13) and (3.14) respectively, 3×ℜ∈ NQ  is the input 

training set given as 
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and 23×ℜ∈B  is the matrix with affine transformation terms given as, 
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The method of estimating the unknown weight matrix and the affine 

transformation term is divided into two steps. The two step procedure is based on the 

fact that the flexible structure has different effects during tilting and bending. The first 

step of the ELOS takes into account the effect of tilting only, whereas the second step 

takes into account both the tilting and bending of the flexible structure. 
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3.3.3. Determination of Affine Transformation Term 

The affine transformation term is responsible for the motion corresponding to 

the tilting of the flexible structure. Since during the tilting of the flexible structure, the 

effect of the nonlinear terms in (3.22) is negligible, the model in (3.22) could be 

approximated as 

BQd ˆˆ =  (3.25)

In order to include the information of the RBF NN to update the affine transformation 

term, the performance index is defined as  
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where MMP ×ℜ∈1  is the regression matrix formed from the selected center positions 

obtained from OLS method and given as 
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(3.27)

and α  is the tuning parameter chosen as 
))(max(

1

1Pλ
α = , s'λ are the eigenvalues of 

the regression matrix ( 1P ), BQddde
B

ˆ~ˆ~
ˆ −=−=  is the error between the true and the 

estimated output and I  is an identity matrix of dimension NN×ℜ  
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Taking the gradient of (3.16) with respect to the unknown affine transformation 

term ( B̂ ), yields 

))(ˆ2          

)(
~

2(
2

1

ˆ

1

1

1

1

ˆ

QPIQB

QPId
B

J

TT

TB

−

−

++

+−=
∂

∂

α

α

 

(3.28)

Equating (3.28) to zeros by satisfying the necessary condition of global minimum and 

then solving for B̂ , yields 

dPIQQPIQB TT ~
)())((ˆ 1

1

11

1

−−− ++= αα  (3.28)

The reason for selecting the cost function which includes the regression matrix term is 

to update the affine transformation term each time a new center is selected, since there 

is one-to-one correspondence between the center position and the regression matrix. 

Since P  is not a positive definite matrix, α  is introduced to make the term )( 1

1

−+ PI α  

positive definite. 

3.3.4. EOLS Algorithm Description 

In this section, a complete outline of the EOLS method is tabulated in order to 

determine the RBF neural network parameters and obtain the interpolant function given 

in (10). The EOLS algorithm is tabulated in table 3.1, given below. 

Table 3.1 EOLS Algorithm 

Step 1: For 1=k , Ni ≤≤1  

Initialize i

i pw =)(

1  
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iTi
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k
ww

dw
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Compute the error reduction ratio of the thi  center as  
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Select the center 1i  for which the ierr 1][  is maximum 
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Step 3: After selection of the center positions, form 1P  given by (27). 

Use (29) to determine B̂  given as 
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3.4 EOLS Algorithm Application Examples 

In this section, the results of morphing the flexible structure are presented and 

compared with the principal wrap method presented in [46]. Figure 3.5 and 3.6 shows 

the result of morphing with 10 and 15 actuators respectively, selected using the EOLS 

method. Figure 3.7 plots the error and compares the error between the EOLS method 

and the Principal Wrap (PW) method. From the plot it is clearly seen that the EOLS 

method performs efficiently and reaches the desired shape more accurately. EOLS 
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method gives the flexibility of choosing the actuator position, whereas for the PW 

method the actuator positions have to be known a priori. 

(a) (b)

(c) (d)

(a) (b)

(c) (d)
 

Figure 3.5 Morphing result using 10 Actuators (a) original grid points (b) morphing using EOLS Method 

(c) morphing using PW method (d) comparison of EOLS and PW method 
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(a) (b)

(c) (d)

(a) (b)

(c) (d)
 

Figure 3.6 Morphing result using 15 Actuators (a) original grid points (b) morphing using EOLS Method 

(c) morphing using PW method (d) comparison of EOLS and PW method 
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Figure 3.7 Error plot comparing the morphing error between EOLS method and Principal Wrap 

Method 

 

3.5 Conclusion 

An efficient algorithm for obtaining the optimal actuator placement method is 

presented, together with the mathematical analysis. The extended orthogonal least 



 

 56 

square (EOLS) method developed takes into account the factors of tilting, linear 

transformation and bending of a flexible structure. The simulation results obtained 

validates the high efficiency of the EOLS method by comparing it with the principal 

warp method. More work is being pursued to include the dynamics and the stiffness of 

the physical flexible structure. This chapter completes the overall control scheme given 

in Figure 3.1, where the optimal selection/placement of the microactuators is done 

through the EOLS algorithm and the control input is derived as given in Chapter 2.  

Until now we have developed algorithms for shape control of flexible structure 

and optimal selection/placement of the microactuators on the flexible structure. It 

becomes imperative even to obtain the desired shape for the flexible structure, therefore 

the next chapter presents the expression classification algorithm to obtain the desired 

shape for the flexible structure. A twp-stage neural network algorithm is developed for 

the expression classification procedure. 
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CHAPTER 4 

TWO STAGE NEURAL NETWORK FOR EXPRESSION CLASSIFICATION 

 

This chapter is organized in the following manner, Section 4.1 gives an 

overview of the system architecture and highlights the steps necessary to carry out the 

expression classification process. Section 4.2 discusses the feature (landmark grid) 

extraction and the normalization process. Section 4.3 presents the first stage of the 

neural network to estimate the principal components for dimension reduction. Section 

4.4 discusses the second stage of neural network for expression classification. In 

Section 4.5, experimental results are presented on the image database obtained from 

Yale University [42]. The algorithm performance is presented via a confusion matrix 

and receiver operating characteristic (ROC) curves. 

4.1 System Architecture 

This section presents the system architecture being used for the face expression 

recognition methodology. The key steps involved in the methodology are 1) 

Normalization 2) Landmark grid extraction 3) Estimation of principal components using 

neural network for the landmark grids 4) Expression classification using a neural 

network. 

The proposed approach makes use of an architecture that consists of a two stage 

neural network to classify different face expressions. The scheme employed in the 
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approach is shown in Figure 4.1, and is detailed in subsequent sections and outlined 

below.  

Landmark 

Grid Extraction

E1

E2

E3

NN Classification:

Learning Vector Quantization

1st Neural Network Stage

For Dimension Reduction

2nd Neural Network Stage

For Expression 

Classification

NN Bank # 1

Adaptive PC

Estimation (GHA)

Normalization
Image

Acquisition

RE

LE

M

NN Bank # 3

Adaptive PC

Estimation (GHA)

NN Bank # 2

Adaptive PC

Estimation (GHA)

Landmark 

Grid Extraction

Landmark 

Grid Extraction

E1E1

E2E2

E3E3

NN Classification:

Learning Vector Quantization

NN Classification:

Learning Vector Quantization

1st Neural Network Stage

For Dimension Reduction

2nd Neural Network Stage

For Expression 

Classification

NN Bank # 1

Adaptive PC

Estimation (GHA)

NormalizationNormalization
Image

Acquisition

Image

Acquisition

RE

LE

M

NN Bank # 3

Adaptive PC

Estimation (GHA)

NN Bank # 2

Adaptive PC

Estimation (GHA)

 

Figure 4.1 System Architecture 

 

The second step in the approach is data pre-processing which involves the 

normalization of images in order to make it independent of factors like lighting, position 

and scale. Details involving image normalization are given in Section 4.2.1. 

The first step of the methodology involves the extraction of landmark points and 

grids. The landmark points are used in a normalization procedure, whereas the landmark 

grids are used as inputs to the first stage of the neural network. Since most of the face 

image consists of skin, it becomes redundant to input the entire face image. Therefore, 

only the grids around the key feature points (i.e. eyes, mouth) are considered as input to 

the system. This step reduces the number of inputs required for the first stage of the 

neural network. The method used to obtain the grid around the landmark points is 

explained in section 4.2.1.  

The third step given in the proposed approach involves the dimension reduction 

of the image using Principal Component Analysis (PCA) by the first stage of the neural 

network. This stage consists of a bank of three neural networks for three landmark 
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grids. Each neural network bank is based on a Gradient Hebbian Learning rule, which is 

used to estimate the principal components of the landmark grids instead of using an 

original matrix algebra method. This feature gives us the flexibility of updating the 

principal components online as new faces comes in. If one were to use the original 

matrix algebra method then this would require the task of obtaining the mean and co-

variance of the image set, which must be performed offline. Once the principal 

components are estimated, the projection of the actual landmark grid is taken to reduce 

the dimension of the data. Details on the use of a neural network to estimate the 

principal component and hence obtain a reduced dimension dataset are given in section 

4.3. 

The last and the main step of classifying different expressions are obtained from 

the second stage of neural network. The second stage of neural network is based on 

supervised competitive learning. Supervised Learning Vector Quantization (LVQ) 

network is trained using kohonen learning rule to classify various expressions. The use 

of LVQ network to obtain classification is explained in section 4.4.  

4.2 Data Preprocessing 

One of the important aspects in facial expression technique has been data 

preprocessing. A lot of research has been done to optimize the amount of data to be 

processed in order to classify various expressions. Computation time for classification 

increases if the whole face data is considered. To encounter this problem, the image 

data is processed to reduce the dimension of the data such that only relevant information 

is considered for classification. The reduced dimension data is obtained using principal 
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component analysis method. Instead of using the standard matrix algebra based 

principal component analysis method, the neural network technique is used to estimate 

the principal components.  

Before the details on the use of neural network is presented, the methods 

pertaining to making the face image light, pose and scale independent and landmark 

grid extraction are presented. This section begins with the steps necessary to carry out 

the normalization and landmark grid extraction process. 

This section presents the step necessary to carry out the landmark grid 

extraction and normalization process. Key attribute selection procedure is performed on 

the images to extract the landmark points and grids. Images taken under different 

conditions of lighting, pose, and scale effect the performance of the classification 

algorithm. In order to avoid these effects the images are normalized with respect 

lighting, pose and scale.  

4.2.1. Normalization to Avoid Lighting Effects 

The images have to be consistent in terms of lighting, scale, pose and image size 

for them to be classified correctly. Variations in any of these factors could lead into 

incorrect expression classification. To avoid the effect of inconsistent lighting, the 

images are normalized with respect to the intensity values using histogram equalization 

method. Histogram equalization method is a non-linear mapping which assigns the 

intensity values of pixels in the input image such that the output image contains a 

uniform distribution of intensities. For more on the histogram equalization method, see 

[43].  
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4.2.2. Landmark Point Extraction 

In this section, the method to obtain the landmark points (eyes, mouth forehead) 

and grids around them is explained. Using standard image processing techniques such 

as horizontal, vertical gradient and projection methods, circular Hough transform [44] 

and probability distribution of skin color [44], the position of eyes and mouth are 

obtained. The position of the forehead point is obtained geometrically by locating it in 

between the eyes. Complete formulation of this procedure is given in [44, 45]. The 

landmark feature points obtained using this procedure is shown in Figure 4.2 

 
Figure 4.2 Image with landmark points 

 

4.2.3. Normalization to Avoid Scale and Pose Inconsistencies 

The landmark grid points obtained from the above section are used to avoid 

scale and pose inconsistencies in the image. Variation in scale leads to inconsistent head 

size and mouth expression. Scale invariance and constant image size are achieved by 

interpolating the face images to a standard position. The interpolation is performed 

using the Thin Plate Spline (TPS) method defined in [46], which takes into account the 

effect of transition, scaling, and rotation. To begin with the TPS transformation, four 

landmark points (eyes, mouth, forehead) on the face image are determined as mentioned 
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above, and are then mapped to a standard pixel position of these landmark points of a 

2D face model, which are pre-allocated. TPS transformation helps in achieving exact 

geometric orientation so that the key facial features are located in the same region of 

every image, which is useful in landmark grid extraction process. 

The TPS transformation is given as 
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, A , B  and iw  are of size )2,2( , )1,2( , 

),2( n , respectively. iP  is the position of the landmark points, n  is the number of 

landmark points which in our case is 4 and )log()( 22 rrrU =  where 222 yxr += . 

Initially A , B , iw  are unknowns, whose co-efficient are determined by knowing the 

mapping of four landmark points to a standard pixel position. The method to determine 

the unknowns is explained in [46]. Once these unknowns are determined, the other pixel 

positions whose mapping is unknown are mapped using the transformation mentioned 

in (1). The result of TPS transformation applied on a face image is shown in Figure 4.3. 

The green squares shown in fig. 4.3 (a) are the standard position of the landmark points, 

which are pre-determined and the red circles are the feature (landmark) points detected 

using landmark point and grid extraction method described in 4.2.1. The results of 

applying the TPS interpolation method are shown in fig. 4.3 (a) and 4.3 (b). 
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(a) (b)(a) (b)
 

Figure 4.3 Thin Plate Spline Transformation (a) original image (b) after TPS transformation 

 

4.2.4. Landmark Grid Extraction 

Once the landmark feature points are located and normalized to avoid scale and 

pose inconsistencies, a grid of pixel size )50,35( , )50,35( , )80,30(  is formed around the 

right eye, left eye and mouth region, respectively. This grid size was selected by hit and 

trial for the image data obtained from Yale University [42]. The result of this process is 

shown in Figure 4.4. The grid size may vary depending upon what image size is being 

considered for expression analysis. 

 

Figure 4.4 Image with landmark grids 

 

4.3 First Stage Neural Network for Principal Component Estimation 

The normalization and landmark grid extraction process yields the data to be 

analyzed for principal component estimation. The estimation of principal components is 

done by the Hebbian learning rule neural network. The details on the use of neural 

network to estimate principal components are explained further in this section. Before 
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the neural network estimation process is mentioned, a brief introduction to the principal 

component method is given. 

Principal component analysis (PCA) is one of the oldest and well-known 

techniques employed in image processing. PCA also known as Karhunen-Loeve 

Transform (KLT) is used for dimensionality reduction. PCA is a statistical method used 

for data compression by determining a linear transformation matrix )( nmW nm <ℜ∈ × , 

which compresses the data 1×ℜ∈ nX  to yield a lower dimension data given as 

WXy =  (4.2)

where 1×∈ mRy  

The concept of PCA is to reduce the number of features representing a data by 

discarding the ones which have small variance and retains only those terms that have 

large variance. PCA method uses standard matrix algebra method in calculating the 

eigenvectors of the co-variance matrix formed by analyzing the image data. Only those 

eigenvectors are chosen which gives the maximum information about the data. These 

chosen eigenvectors form the W  matrix. The details on obtaining the transformation 

matrix W  are given in [48, 49] 

To show the advantage of neural network over statistical based approaches, an 

example to calculate the principal components is shown using the landmark grids 

obtained above. The dimension of a landmark grid (for ex. landmark grid corresponding 

to mouth) extracted from the face image is TTQP ]80,35[],[ =  and the total number of 

landmark grids are 21=M  (i.e. total number of face images are 21=M ). All the 
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landmark grids extracted are converted into 1D vector given by iτ , corresponding to the 

landmark grid i . The dimension of iτ  is }1,{N  where 2800=×= QPN . The mean of 

the landmark grids is obtained by 

[ ]M
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(4.3)

and subtracting the mean from the original landmark grid yields the difference image 

given as  

ψτφ −= ii  (4.4)

where Mi ,....,3,2,1= . The difference landmark grids obtained in (4.4) are accumulated 

into a set given as  

[ ]MA φφφφ ............  321=  (4.5)

where the dimension of A  is ]21,2800[ . Now, the co-variance matrix C  is obtained for 

the difference images obtained in (5), given as 
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(4.6)

and then the eigenvectors of C  are computed to form the basis of the transformation 

matrix W .  Since the dimension of the co-variance matrix C  is },{ NN , it becomes 

computationally inefficient to obtain the N eigenvectors. Since the number of possible 

eigenvectors that would yield the maximum information about the dataset, is equal to 

the number of face images in the training set, therefore only M  eigenvectors are taken 

into account to form the W  matrix. To compute M  eigenvectors, following method is 

adopted, where a new matrix is constructed, given as 
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AAL T=  (4.7)

The dimension of L  is },{ MM  and let its eigenvalues be iµ  and eigenvectors be iϑ . 

Therefore we get 

iiiL ϑµϑ =  (4.8)

Substituting for L  in (4.8), yields  

iii

T AA ϑµϑ =  (4.9)

Multiplying (4.9) by A  gives  

iii

T AAAA ϑµϑ =  (4.10)

Since TAAC = , therefore iAϑ  are the eigenvectors of matrix C . Through this way, 

only M  eigenvectors are computed instead of computing N  eigenvectors. Following 

the process mentioned from equations (4.3)-(4.10), a transformation matrix W  is 

constructed for dimension reduction. 

The approach mentioned in equations (4.3)-(4.10) is based on batch processing, 

where all the information needs to be known a priori for the construction of W  matrix. 

If a new face is added to the data set, a new matrix must be formed by adding that face 

to the others, and the entire computation for the PCs mentioned in (4.3)-(4.10) must be 

redone. In order to avoid this problem, neural networks are used in stage 1 to estimate 

the principal components of the image data, instead of the original matrix algebra 

method, based on batch computation. The advantage of using NN instead of batch 

matrix computation to calculate the principal component, is that it gives the flexibility 

of online adaptive reformulation. That is, the PCs are modified as each new face is 
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presented to the NN based only on the new face data. By contrast, using batch 

computation methods, one must form a matrix that contains all the faces in the dada set. 

Using NN for PC estimation does not require having all the information at once 

i.e. batch processing is avoided. As the images are assimilated one by one, the PC are 

updated sequentially. If a new face appears to the system architecture shown in Figure 

4.1, its size is reduced by the PC estimated earlier after going through normalization and 

landmark grid extraction process. This reduced image size of the new face is used for 

expression classification and at the same time, the earlier estimated PC are updated with 

this new face image.  

From Section 4.2.2, the landmark grids obtained in the form of matrix are 

converted into vectors. These landmark grid vectors are the inputs to this stage of neural 

network. Instead of combing all the different landmark grid vectors into one feature 

vector and using one neural network, the proposed algorithm uses three banks of neural 

network for each landmark grid as shown in Figure 4.5. The advantage of using 

different NN banks is that the system becomes robust, i.e. even if the left and right eye 

muscle movement are similar for two different expressions, the information obtained 

from the principal component of mouth region could be used to classify the expressions 

correctly. 
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Figure 4.5 NN bank for each landmark vector 

 

The Structure of neural network deployed in NN banks is shown in Figure. 4.6 

and Sanger’s rule based on Generalized Hebbian Algorithm (GHA) is used to estimate 

the principal component of the landmark region. The weight update equation for the 

neural network is given as  
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where mi ,.....,2,1=  and nj ,.....,2,1= , m  is the number of principal components to be 

estimated and n  is the number of input vectors (i.e. the length of the landmark grid 

vectors). The weight update equation in (4.11) is derived by defining a performance 

index given as  
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and minimizing the performance index defined above (4.12) with respect to W  and 

using the steepest descent approach [50], the weight update equation is given as,  
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The weight update equation defined in (4.11) is written in the scalar form of (4.13), 

using the symmetricity of Tyy . In [51, 52], further variations of the update rules are 

given. 

The reason of using GHA is that it extracts the m  actual principal eigenvectors 

as those obtained from original matrix algebra method 
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Figure 4.6 NN structure for estimating PC 

 

4.4 Second Stage Neural Network for Expression Classification 

In this section, a second stage neural network is presented to classify different 

expressions such as happy, sad, fear, anger, surprise, disgust or normal, where the 

output of the first stage neural network becomes the input to the second stage neural 

network. The classification step only requires distinguishing between different classes 

(happy, sad, fear, anger, surprise, disgust or neutral) by modeling the class boundaries. 

This type of learning is called as discriminative learning [53] and it does not require 

estimating the class feature densities. To achieve discriminative learning a supervised 

learning vector quantization network is used. LVQ is a hybrid network and uses a self 
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organizing map approach. It is based on winner-take-all policy and uses training vector 

to distinguish the different categories of the input. Since LVQ network tends to have 

shorter training time then the backpropogation or RBF, and processing time being an 

important constraint in the approach mentioned, LVQ network proves to be 

advantageous over backpropogation and RBF. In reference [54], the performance of 

these networks have been compared 

The supervised LVQ network is trained using standard kohonen learning rule. 

More details on this rule are given in [51]. In LVQ network each neuron in the first 

layer is assigned to a class and then each class is assigned to one neuron in the second 

layer. The second stage neural network is a supervised learning vector quantization 

network which is shown in Figure 4.7  
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Figure 4.7 LVQ Network 

 

The first layer of the LVQ network is the competitive layer followed by a second layer 

of linear network. The output of the first layer of network is given as  

)( 11 pwcompeta i −=  (4.14)

where p is the inputs with a dimension of 1×R  elements and 1W  are the weights of the 

first layer of neural network. The output of the second layer of network is given as  
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122 aWa =  (4.15)

which has 2S  number of neurons, equal to the number of classes and 2W  are the 

weights of the second layer of neural network. The supervised LVQ network is trained 

using standard Kohonen learning rule given in [51].  

In LVQ network each neuron in the first layer is assigned to a class and then 

each class is assigned to one neuron in the second layer. 

4.5 Performance Analysis 

In this section the confusion matrix and the receiver operating characteristics are 

tabulated and plotted to choose the number of eigenvectors, to look at the effect of 

normalization process and to look at the generalization of the algorithm. Before the 

experimental results are presented, the terms associated with confusion matrix and ROC 

is explained. 

4.5.1. Confusion Matrix 

Confusion matrix is a visualization tool used in supervised learning for performance 

evaluation. Figure 4.8 shows an example of the confusion matrix and the terms 

associated with it are explained below.  

 
Figure 4.8 Confusion Matrix 
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True Positive is the number of correct predictions that’s an instance is positive 

i.e. hits; False Positive is the number of incorrect predictions that an instance is positive 

i.e. false alarm; False Negative is the number of incorrect predictions that an instance is 

negative i.e. misses; True Negative is the number of correct predictions that an instance 

is negative i.e. correct rejections. For more details on the confusion matrix, see [55]. 

Two of the important terms associated with confusion matrix are True Positive rate 

(Sensitivity) = 
FNTP

TP

+
 and False Positive Rate (Specificity)= 

TNFP

FP

+
 which are 

used in to visualize the performance through receiver operating characteristics (ROC), 

explained in the next section.  

4.5.2. Receiver Operating Characteristics 

It is a plot of the classifier’s true positive rate (sensitivity) against the false 

positive rate (specificity) explained in 4.5.1. High sensitivity means that the classifier 

identifies most of the positive samples and the desired performance of the classifier is 

good. High specificity means that the classifier identifies most of the negative samples 

and the performance of the classifier is not good.  
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Figure 4.9 Receiver Operating Characteristic 

As shown in Figure 4.9, the best performance is achieved near the point )1,0(  

and the worst performance near the point )0,1( . In our case the multi-class task learning 

vector quantization is reduced to the binary decision i.e. either it belongs to a desired 

class or it doesn’t belongs to it, no matter how many other classes there are. The results 

for the two stage neural network architecture proposed in this literature are visualized 

using ROC which is calculated by tabulating confusion matrix. For the different 

experiments conducted, the confusion matrix is tabulated and then the sensitivity and 

specificity are calculated to plot the ROC. For more details on ROC, see [56]  

4.5.3.Experimental Results 

The performance analysis of the proposed algorithm is performed by looking at 

the confusion matrix and by plotting receiver operating characteristics (ROC). The 

image database is taken from [42] and consists of 11 face image datasets, each of the 11 

facial images having 4 expressions- normal, happy, sad, surprise. In this study we only 

used the images for normal, happy, and surprised expressions. We conducted two 
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different tests to validate the use of the proposed algorithm in this paper. The first test 

experiment was conducted for only classification test and the second one for 

generalization test.  

4.5.3.1 Classification Test 

For the classification test, all the 11 images per expression (normal, happy, 

surprised) were taken into account for training (i.e. 33  images). For each expression, 

classification performance was tested for different number of eigenvectors estimated 

using 1
st
 stage of NN. 

The performance of the classification test is tabulated and plotted using 

confusion matrix and ROC,. respectively. For the choice of 3  number of eigenvectors, 

there are 16511

3 =C  combinations possible. Out of 165  combinations, 20  combinations 

of choosing 3  eigenvectors out of 11 were taken and classification step was performed 

for all the 11 image dataset ( 33  images). Due to the space constraint, the confusion 

matrix shown in Figure 4.8, is shown only for the 7  eigenvectors case and for only 1 

combination in Table 4.1. For other choice on the number of eigenvectors, ROC is 

plotted as shown in Figure. 4.10.  

Table 4.1 Confusion Matrix corresponding to 7 eigenvectors for Training Dataset 

 Normal Happy Surprised 

Normal 11 0 0 

Happy 0 11 0 

Surprised 0 0 11 
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Figure 4.10 Classification Performance to choose number of eigenvectors 

 

From the results shown in Figure 4.10 choice of 7 number of eigenvectors yields a 

classification rate of 100%. 

4.5.3.2 Generalization Test 

The generalization test was conducted to validate the versatility of the proposed 

algorithm. For the generalization test 7 images per expression (normal, happy, 

surprised) were taken into account for training (i.e.21 images). The remaining 4 image 

datasets (i.e. 12 images) were used to check the performance of the proposed 2 stage 

neural network.  

Out of 33011

7 =C  combinations possible to choose for training and testing 

image set, 20 different combinations of 7 training image-set and 4 testing image-set 

were chosen. Due to the space constraint, the confusion matrix for testing image dataset 

in shown in table 4 for only 1 combination out of the chosen 20 different combinations. 

The ROC is plotted in fig. 4.11 for all the 20 combinations chosen.  
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Table 4.2 Confusion Matrix for Testing Dataset 

 Normal Happy Surprised 

Normal 4 0 0 

Happy 0 3 1 

Surprised 0 0 4 

 

Figure 4.11 also presents the generalization result of linear discriminant analysis 

(LDA) algorithm proposed in [33, 57] With the neural nwtwork (NN) algorithm 

proposed in this paper, classification rate of 91.67% is achieved as compared to the 

classification rate of 83.33% by the LDA algorithm proposed in [33].  
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Figure 4.11 Classification performance with generalization 

 

Figure 4.12 shows the performance of the algorithm in terms of the classification rate 

with and without normalization of the images. When normalization in terms of lighting, 

scale and pose is performed then we achieve a classification rate of 91.67% for testing 

image dataset as compared to a classification rate of 85.71% with no normalization.  
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Figure 4.12 Classification performance with and without Normalization 

 

4.6 Conclusion 

Automating the analysis of facial expressions is important to achieve dexterity 

in non-verbal communication. In this paper, an approach based on neural network is 

presented for facial expression classification. Some of the important characteristics of 

the proposed algorithm are the following: 

• The presented approach provides a simpler and easy to implement method for 

facial expression classification 

• This paper provides a method which estimates and recursively updates the 

principal components to increase the computational efficiency. 

The proposed algorithm also takes into account various factors such as lighting, 

scale, and pose inconsistencies to improve the performance of the facial expression 

classification. 

This chapter presented the method for expression classification, which forms the 

basis to obtain the desired shape for flexible structure to morph. Until now, we have 
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developed an algorithm which can obtain the desired shape using expression 

classification algorithm and then achieve the desired shape using the shape control 

algorithms presented in Chapter 2 and 3. In order to make the process of obtaining the 

desired shape of an object, it is important to have a method which takes into account the 

effect of any pose variations of the object. Therefore, the next chapter lays out the 

foundation to consider the pose of an object. 
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CHAPTER 5 

POSE ESTIMATION OF 3D OBJECTS USING SEMI-DECOUPLED 

EXTENDED KALMAN FILTER 

 

In Chapter 4, a two stage neural network algorithm was proposed to classify 

expressions. In order to achieve a robust classification procedure , the pose of the 

human face needs to be determined. Therefore, in this chapter an approach towards 

obtaining the pose of a 3D object (human head) is proposed. The chapter is organized in 

the following way: in Section 5.1, the transformation used for pose estimation is 

discussed. Section 5.2 presents the semi-decoupled EKF method for position and 

orientation vectors with only three non-collinear feature points. In Section 5.3, 

experimental results are presented highlighting the performance of the semi-decoupled 

EKF over a coupled 6D filter. Finally, the conclusion is presented in Section 5.4. 

5.1 System Description 

In this section, an introduction to the pose estimation algorithm is given which 

includes the approach to be adopted for pose estimation. A set of feature points on the 

images acquired by humanoid robot vision system are used to estimate the pose of the 

human. The feature points selected for this purpose are left eye, right eye and the 

location of the mouth. These feature points are extracted using standard image 

processing techniques such as horizontal and vertical gradient methods, circular Hough 
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transform and probability distribution of skin color [76 - 78]. The relative coordinates of 

the feature points (left eye, right eye, mouth) are nominally known a priori. In our 

previous work [79], we presented an efficient two stage neural-network based approach 

for feature extraction and expression classification. 

In this research work we test a target pose-estimation algorithm from 

face/feature recognition. For this purpose, we use a simple 3D object as target instead of 

a human. A much simpler image processing is performed on colored markers placed on 

the 3D object. Figure 5.1 shows the geometry of the system where the camera and the 

rigid object coordinate frames are represented. The feature point coordinates are related 

to the image frame (row, column) through a standard transformation written as: 
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(5.1)

where ],[ rc  are the image coordinates of the feature point, ],,[ ccc ZYX  are the feature 

point coordinates in the camera frame, ),( fyfx  are the intrinsic camera parameters 

defining the focal length and pixel dimensions and 
],[ 00 rc
 is the principal point of the 

camera frame in the image plane. 

 
Figure 5.1 Geometric model of the object-camera-image reference frame 
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The feature point coordinates are determined in the camera frame using the 

transformation, given as:  
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(5.2)

where ],,[ ooo ZYX  is the known coordinate vector of the feature points in the object 

frame, ],,[ ZYX  is the unknown translation vector of the object and R  is the rotation 

matrix of unknown orientation angles (roll )(φ , pitch )(θ  yaw )(ϕ ) of the object, given 

by: 
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(5.3)

where )(    );(    );( ϕθφ ϕθφ CosCSinSCosC ===  

The transformation given in (5.1) and (5.2) forms the basis to estimate the 

position ( ],,[ ZYX ) and orientation (roll )(φ , pitch )(θ , yaw )(ϕ ) vectors. These 

unknown parameters are estimated using a semi-decoupled EKF method proposed in 

the following section with respect to the camera frame. 

5.2 Position and Orientation Estimation Using Semi-Decoupled Extended 

Kalman Filter 

 

In this section, a semi-decoupled EKF approach is presented for 6D pose 

estimation. We call this estimator “semi-decoupled” because two separate filters are 

designed, one for estimation of position and the other one for orientation vectors, as 

shown in Figure 5.2. 
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Figure 5.2 Semi-Decoupled Kalman filter approach for object position and orientation vector 

(pose) estimation 

 

For the estimation of position vector over a sampling step, no knowledge of 

orientation angles is required i.e. 0=φ , 0=θ , 0=ϕ . Therefore, the rotation matrix 

(R ) for position vector EKF block is equal to identity. Whereas, for the orientation 

vector EKF block, the full nonlinear rotation matrix (R ) given in (5.3) is used. The 

process of imaging 3D objects from single camera 2D images makes the transformation 

in (1) sensitive to depth information. Since estimation of orientation vector deals with 

the nonlinearity of the rotation matrix, it is sensitive to the position of the object, 

therefore the current estimates of the position vector are used in the orientation vector 

EKF block.  

Another advantage of the proposed algorithm over the coupled EKF approach is 

that the matrix dimensions used in computations is reduced, and therefore improves the 

efficiency of the pose estimation process. The semi-decoupled approach also makes the 

estimation process more robust to large errors in initial condition, as shown by the 

experimental results.  

As features used are image measurement points for the Kalman filter, we use 

only three non-collinear points, instead of 4, 5 or more used by others. It has been 
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shown in [80, 81] that with three feature points, a given 3D object with known 

dimensions can be uniquely located in a 3D space with at most 4 distinct ambiguous 

solutions. In our case this ambiguity does not exist if the initial triangle pose estimate is 

close to the correct pose, or if the initial triangle pose estimate is roughly perpendicular 

to the camera line of sight. This is obvious because of the EKF state update and 

propagation from close to a correct estimate would yield the correct pose while the 

object is undergoing motion. 

 
Figure 5.3 Illustration of three non-collinear points producing different pixel measurements as 

the object moves between ambiguous poses 

 

For example, consider the triangle shown in Figure 5.3, with three vertices as 

the selected feature points. Points B′  and B ′′  are produced by the rotation along 

axisAC −  by an angle ϕ . Even though these two points would yield same pixel 

measurements, the estimation process yields the incremental rotations the object has 

undergone from B′  to B ′′ . The whole trajectory is still ambiguous, but if we can 

distinguish B′  to B ′′  at the beginning of the estimation process, we never lose track of 

the right pos. Because we use only 3 feature points, we do not require having the feature 
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points in any particular special configuration to estimate the correct pose of the object, 

as is the case in other papers (for instance [82]). 

The experimental results presented in Section V also demonstrate that we can 

track three non-collinear feature points through the proposed semi-decoupled EKF 

approach with high performance and convergence better than a full 6D coupled filter, 

such as the one in [67, 68].  

The Kalman filter requires a dynamical model and a measurement model. For 

the dynamical model, it is assumed that the object moves with a constant velocity over a 

defined sampling time, which is certainly the case at low speeds, typical of natural 

human motions during conversations with a robot. The measurement model for the EKF 

is given by (5.1) and (5.2), as detailed in the following subsections. 

5.2.1. Position Vector Estimation 

For the estimation of position vector, the position dynamical model is defined as 

01 =S&&  (5.4)

where [ ]TZYXZYXS &&&=1 . Converting the continuous model in (5.4) to the 

discrete time model, yields 

kkk
SAS 1111 1

γ+=
+

 (5.5)

where kγ  is the disturbance noise of the discrete time dynamical model described as 

Gaussian with zero mean and a noise covariance of 1Q  and the plant matrix is given as 
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where 3O and 3I  are the 3x3 zero and identity matrices respectively, and T  is the 

sampling time. The measurement model for estimation of position vector is defined by 

(5.1) and (5.2), where the rotation matrix R  is taken to be identity. The Extended 

Kalman filter is defined by the following equations 

Model: 

kkk
SAS 1111 1

γ+=
+

 (5.6)
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Propagation: 

−− =
+ kk

SDS 11
ˆˆ

1
 (5.11)

 

kkk
QAPAP T

11111 1
+= +−

+
 (5.12)

This position vector estimate from this Kalman filter is now fed into a second 

filter used for estimating the orientation vector in the following subsection. 

5.2.2. Orientation Vector Estimation 

For the estimation of the orientation vector, we define the dynamical model as: 

02 =S&&  (5.13)

where [ ]TS ϕθφϕθφ &&&=2 . Converting the continuous model in (5.13) to the 

discrete time model, yields 

kkk
SAS 2222 1

γ+=
+

 (5.14)

where 
k2

γ  is the disturbance noise of the discrete time dynamical model described as 

Gaussian with zero mean and a noise covariance of 
k

Q2  and the plant matrix is 

12 AA = . The Extended Kalman filter update and propagation equations remain the 

same as before, with the difference being in the states to be used for estimation. The 

Jacobian matrix for the orientation vector estimation is given as 
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where 
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5.3 Implementation Results of Pose Estimation Using Semi-Decoupled 

Extended Kalman Filter 

 

The performance of the proposed algorithm is demonstrated in this section 

through several experiments we conducted. The first set of experiment compares the 

performance of the semi-decoupled EKF with the 6D coupled filter when the camera is 

stationary.  The second set of experiments combines the pose estimator and visual 

tracker. 

In the experiments conducted, the camera parameters values 

are 300−=fx , 300=fy , 830 =c , 1130 =r , 04.0=T . The sampling time T  is based 

on the measured frames per second rate, which was 26 fps. Figure 5.4 shows the object 

that was used for pose estimation and tracking, while undergoing different sets of 

motion.  

Three non-collinear feature points ( 1P , 2P , 3P ) were used and their nominal 

coordinates are given (in inches) as ]0,1.2,3[1 −=P , ]0,1.2,3[2 −−=P , ]0,1.2,3[1 −=P . 
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In this case, the object moves while the camera is stationary. Several sets of 

motions of the object with various initial conditions of the unknown parameters were 

conducted, to compare the performance of the semi-decoupled EKF method over the 

coupled EKF method. The result shown here had an object motion sequence involving 

translation along y-axis, z-axis and rotation around z-axis. Since the estimation process 

is sensitive to the depth information, which in this case is the z -coordinate, the initial 

conditions used for the unknown parameters are varied to a large variation in z -

coordinate. The initial pose estimates are TTZYX ]2,1,1[],,[ =  TT ]0,0,0[],,[ =ϕθφ , far 

away in Z from the actual pose TTZYX ]20,0,0[],,[ =  and TT ]0,0,0[],,[ =ϕθφ  

 

 
Figure 5.4 Experimental setup showing the three features points in different poses (red, violet, 

green) 

 

The estimation results are shown in appendix A. From the estimated pixel 

coordinates ( [ ]Trc ) for each feature point, an error function is defined as, 

2/1222/122 )()( rcrce mm +−+=  (5.16)
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where [ ]Tmm rc  are obtained from the measurement set. 

Figure 5.5 plots the error function defined in (5.16) for the semi-decoupled EKF 

approach (solid line) and the coupled EKF approach (dotted line) and the Frobenius 

norm is calculated for semi-decoupled (229.12) and coupled EKF method (667.24).  
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Figure 5.5 Error plot of estimated pixel output comparing Decoupled Kalman filter (3D+3D in solid 

red line) and Coupled Kalman filter (6D, in dashed blue line) 
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Figure 5.6 Position estimates comparing Decoupled Kalman filter (3D+3D in solid red line) and 

Coupled Kalman filter (6D, in dashed blue line) performance 
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Figure 5.7 Orientation estimates comparing Decoupled Kalman filter (3D+3D in solid red line) and 

Coupled Kalman filter (6D, in dashed blue line) performance 

 

These results clearly illustrate the robustness of the semi-decoupled EKF 

approach over the coupled EKF approach. Figure 5.6 and Figure 5.7 plots the position 

and orientation estimates obtained using semi-decoupled and coupled approach. From 

the motion conducted of the object, the estimates obtained from the coupled EKF 

(dotted line) approach have larger variations as compared to the semi-decoupled EKF 

approach (solid line). 

5.4 Conclusion 

An efficient pose estimation was proposed and implemented using a decoupled 

EKF. Two filters, one for position, one for orientation of the object are used instead of a 

single 6D filter. Experimental results clearly show improved tracking accuracy, reduced 

computational load, and better robustness of the semi-coupled filter approach.  

This chapter concludes the first part on the use of the potential field method for 

shape control of flexible structure. A complete system starting from shape control of 

flexible structure to optimally selecting/placing the microactuators to acquiring the 

desired shape under object movement is developed. The next chapter uses the concept 
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of potential field method in the field of wireless sensor network, where the main 

concern is to find the position of the sensor nodes with only the range measurement 

available. 
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CHAPTER 6 

A POTENTIAL FIELD APPROACH FOR DYNAMIC LOCALIZATION OF 

WIRELESS SENSOR NETWORKS 

 

This chapter is organized in the following way: section 6.1 derives the position 

estimate dynamical model and the potential field function to be used for the relative 

localization of a stationary UGS network. Section 6.1.4 discusses the algorithm used for 

relative localization and simulation results are presented and in section 6.1.5, 

experimental results are given. Section 6.2 extends the idea to absolute localization and 

presents the dynamical estimator model and a modified potential field function used for 

absolute localization. Section 6.2.3 discusses the algorithm used for absolute 

localization and simulation results are presented and in section 6.2.5, experimental 

results are given. Finally the conclusion is presented in Section 6.4 

6.1 Virtual Node Dynamics for Relative Localization 

In this section we present a novel method for relative localization of a network 

of stationary unattended ground sensors (UGS). It is assumed that distance (i.e. range) 

measurements between sensor nodes are available, specifically each sensor node 

measures the distance to at least three other nodes. The method uses a dynamical model 

for position estimates of each node that is driven by a fictitious virtual force based on 

range errors. These virtual dynamics have states which are the estimates of the relative 
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positions, and reach a steady-state value that provides an optimal (in a sense to be made 

precise herein) estimate of the relative positions of all nodes in the network. 

The UGS nodes do not physically move, but the virtual dynamics capture the 

available range information to dynamically compute the UGS relative position 

estimates. A certain potential field is introduced to generate optimal position locations 

in a least-squares sense. The potential field is used as a Lyapunov function and a 

Lyapunov proof shows how to generate appropriate virtual forces based on the gradient 

of the potential field. 

6.1.1. System Description 

Here, we describe the virtual dynamics used for generating position estimates of 

the stationary UGS nodes based on range information. The position estimate for the thi  

sensor node is given by  

[ ]Tiii yxX =  (6.1)

where, ix  and iy  are the x-y coordinates for the UGS node position estimate. The 

position estimation dynamics are given as 

ii fX
r

&& =  (6.2)

where, [ ]Ty
i

x
ii fff =

r
 is the virtual force in the x and y directions to be specified. The 

state variable description form for the position estimate of the thi  UGS node is by 
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(6.3)

where, 
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6.1.2. Potential Field for Optimal Position Estimation for Relative Localization 

 A potential field is now introduced to determine the virtual force if
r

 in (6.2) so 

that the position estimates reach a steady-state value that is an optimal estimate for the 

actual UGS node relative positions. Define a potential field as 

∑∑
=

≠
=

−=
N

i

N

ji
j

ijijijugs rrKV

1 1

2)(
2

1
 

(6.4)

where 2
1

22
])()[( jijiij yyxxr −+−=  is the estimated range and ijr  is the actual measured 

range between thi  and thj  UGS nodes. 

Define the potential function for a single UGS node i  by 

∑
≠
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(6.5)

The gradient of the potential with respect to the sensor node state is given by 
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(6.6)

and on further simplification, the gradient is written as 
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(6.7)

where ijji rXX =−  

Theorem 6.1: Consider the position estimate dynamics (6.2) for each sensor 

node i  in the network. Let the virtual force for thi  sensor node be given as 
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iv
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(6.8)

Then the position estimates reach steady-state values that provide optimal estimates of 

the actual relative localization of the nodes in the sense that ugsV  is minimized.  

Proof: Define the Lyapunov function 

∑
=
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N
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i
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iugs XXVL
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(6.9)

Differentiate to obtain 

∑∑∑
==

≠
=

+−=
N

i

i
T

i

N

i

N

ji
j

ijijijij XXrrrKL

11 1

)( &&&&&  
(6.10)

One can compute 
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i
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(6.11)

and on substituting (6.2) and (6.11), we obtain 
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Further, substituting the force (6.8) yields 

∑
=

−=
N

i

iv
T

i XKXL

1

&&&  
(6.13)

clearly, ∀  0>vK , 0≤L&  and the vector [ ]Tii XX & is bounded which shows that the 

position estimate dynamics is SISL. Evaluating L&&  yields 
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and on substituting (6.8) we obtain 
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Using the result obtained from Lyapunov analysis that the vector [ ]Tii XX &  is 

bounded yields that L&&  in (6.15) is also bounded. By Barbalat’s Lemma [105] we deduce 

that 0→L&  as ∞→t , which yields 0→iX&  as ∞→t . Therefore (6.2) shows that if
r
 goes 

to zero i∀ . Finally (6.7) and (6.8) show that i
X

V

i

ugs
∀→

∂

∂
,0 , so ugsV  reaches a minimum.■ 

6.1.3. Relative Localization Scheme for UGS Networks 

 Using the system defined in (6.2) and the force control input defined as in (6.8) 

the wireless sensor network can be relatively localized. However, due to a nonlinear 

mapping between the range ( ijr ) and the x-y coordinates, there are local minima in 

Lyapunov function in (6.9), which could lead to incorrect position estimates for the 

nodes. Though the Lyapunov term defined in (6.9) is positive definite in terms of range 

information, the Lyapunov derivative in (6.13) is independent of the range information 

term and is only dependent on the velocity of position estimates defined in (6.1). In this 

section, we study the problem of local minima and propose an algorithm to ensure that 

the network always converges to a unique solution. 
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6.1.3.1 Study of Local Minima 

The next results show that a unique equilibrium point exists in a 3 sensor node 

configuration, but there exist local minima in a 4 sensor node configuration when the 

virtual force input is given by (6.8). Further in the section, we develop an algorithm that 

always guarantees a unique equilibrium configuration for position estimate system in 

(6.2), for any number of UGS nodes.  

Lemma 6.1: Let there be given 3 stationary UGS nodes (not in a straight line) 

and range measurements between all nodes. Then the position estimate dynamics in 

(6.2) with the virtual force in (6.8) converges to a unique steady-state value, which 

provides an optimal estimate for the relative position in terms of minimum potential 

field in (6.4). 

Proof: Assuming the first node to be at the origin and the second node to be 

along the x-axis, the co-ordinates of first and second nodes are given as )0,0( and 

)0,( 12r  respectively. Referring to Figure 6.1 the co-ordinates of the third node could be 

found which are 

)sin(y     );cos( 133133 θθ rrx ==  (6.16)
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Figure 6.1 Three UGS Node case 

 

Using (6.8) to write down the force equation for node 1 we get 
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(6.17)

and on substituting the co-ordinate values obtained in (16) yields 

)sin()(

)cos()()(

13131

131312121

θ

θ

rrf

rrrrf

y

x

−−=

−−−−=
 

(6.18)

From the proof of theorem 6.1, for the equilibrium point the forces 1f
r
 go to 

zero. Therefore, for 01 =y
f , 1313 rr =  is the only solution since 0)sin( ≠θ  under the 

constraint that the 3 nodes are not in a straight line. Looking back at (6.18) and in order 

to get 01 =x
f , 1212 rr =  is the only solution, which leads us to the unique solution of 

relative localization for 3 nodes.       ■ 

Lemma 6.2: Let there be given 4 stationary UGS (no 3 of which are in a 

straight line) and range measurements between all nodes. Then the position estimate 
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dynamics in (6.2) with the virtual force in (6.8) may not converge to a unique steady-

state value. 

Proof: Referring to Figure 6.2 and writing the co-ordinates for the 4 node case 

we get 
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Figure 6.2 Four UGS Node case 

 

Using (6.8) to write down the force equation for node 1 we get 
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and on substituting the coordinates values from (6.19) yields 

)sin()()sin()(

)cos()()cos()()(

141413131
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rrrrf

rrrrrrf

y

x

 
(6.21) 

The total force applied on node 1 is given as 

2

1

2

1

2

1 )()(
yx

fff +=  (6.22)

and on substitution of (6.21) in (6.22) and simplifying the terms, we get 
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)cos(2)cos(2)cos(22222
1 θθθ ′′+′++++= bcacabcbaf  (6.23)

where 

141413131212      ;     ; rrcrrbrra −=−=−=  (6.24)

However, the force equation in (6.23) can also be obtained with the different 

configuration of nodes shown in Figure 6.3, in which the co-ordinates for the four nodes 

are given as 
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14414

133133

212211

θθ

θθ
′−=′=

==

====
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(6.25)

 

 

Figure 6.3 Alternate configuration for four UGS nodes 

 

Thus, there are 2 minimum configurations for the sensor node to fall into local minima, 

one of which has ijij rr ≠ .        ■ 

6.1.4. Relative Localization Algorithm 

 Existence of local minima as mentioned in Lemma 6.2, with the potential field 

function defined in (6.4) can be resolved by the addition of only one node at a time to 

the sensor network when 4≥N . According to Lemma 6.1, the first 3 nodes to arise in 

the UGS network attain a unique steady-state value for their position estimate. The final 
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coordinates of these first 3 UGS nodes, already relatively localized, are used to 

calculate the initial starting point for the next UGS node to be added in the network. 

The trilateration method [104] is used to obtain the initial starting point for the 

new UGS node. Use of only the trilateration process is inefficient for least-squares 

localization of large wireless sensor nodes since, when a node is added, all other nodes 

may have to change their positions to reduce the potential occurred due to the 

measurement error. Here, trilateration is only used to get an initial position estimate for 

the new UGS node. Once the initial position estimate has been obtained, our algorithm 

is used to relatively localize the network with the control input in (6.8). This allows the 

relative position estimates of all the nodes in the network to be adjusted each time a 

node is added.  

The starting point for UGS nodes when 4≥N  is found using 
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where, ),( jj yx  denotes the current estimate of the location of node j  and 

),(),,(),,(
332211 jjjjjj yxyxyx  denotes the position estimates of the already localized nodes 

321 ,, jjj  respectively. 

6.1.5. Relative Localization Simulation Results 

 The relative localization algorithm mentioned above is simulated with seven 

UGS nodes in the sensor network, where each UGS node is assumed to have range 

measurement information with at least 3 other UGS nodes. The algorithm localizes the 

UGS nodes relative to each other and yields an optimal relative position estimates. The 
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results are shown in Figure 6.4, where the estimates are plotted as a functions of time 

given some incorrect initial conditions.  One node is added at a time, then all the 

estimates in the network are readjusted.  The figure shows that the estimates converge 

to the true relative locations of the UGS. 

Table 6.1 Relative Localization Algorithm 

1 Initialize 3=N  (number of UGS nodes in the network to start 

with the localization process) 

2 Dynamically localize the network with 3=N  using (6.8) with 

range measurement information. 

3 Increment N  by 1 to keep a count of the number of sensor 

nodes 

4 Initialize the next sensor node position using (6.26). 

5 Dynamically localize the network with the new sensor node 

using (6.8) 

6 Repeat steps 3-5 until all the nodes have been localized 
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Figure 6.4 Relative Localization of 7 UGS nodes 

 

6.1.6. Relative Localization Experimental Results 

The relative localization algorithm mentioned in Table 6.1 is implemented using 

the relative localization hardware mentioned in Section 6.1.5. The implementation starts 

by measuring the distance of 3 nodes and localizing it as shown in Figure 6.5 (a). For 
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the simplicity of demonstration of the algorithm in real time scenario, the range 

measurement reading are averaged over a time interval in order to take into account the 

effect of noise. Upon addition of one node at a time, all the estimates in the network are 

readjusted. When the range measurement of 4
th
 sensor node is available, the sensor node 

reconfigures itself to include the 4
th
 sensor node as shown in Figure 6.5(b). Similar 

process is repeated when 5
th
 sensor node range measurement becomes available, as 

shown in Figure 6.5(c). The results for localizing the sensor nodes relatively are shown 

in Figure 6.6. The co-ordinates obtained in the Figure 6.6 are relative to each other and 

the relative localization algorithm results tells about the orientation of the sensor nodes 

and provides the co-ordinates in relative sense to the internal co-ordinate frame. 
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Figure 6.5 Relative Localization of 5 UGS nodes (a) with 3 nodes (b) with 4 nodes (c) with 5 

nodes 
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Figure 6.6 Relative Localization of 5 Cricket nodes (all units are in cm) 

 

Figure 6.7 shows the effect of different values of gain vK  on the convergence of 

position estimates. For higher values of vK  the oscillations are reduced but at the same 

time the convergence time of the position estimates increases. The gain value vK  is 

selected as a trade off between the convergence time and the oscillations. In the 

experimental results presented here, the gain values used are 1=ijK  and .1=vK  
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Figure 6.7 Effect of different values of Kv on position estimates convergence (a) on x-co-

ordinates (b) on y-co-ordinates 

 

6.2 Virtual Node Dynamics for Absolute Localization 

In this section we discuss the absolute localization of the UGS nodes with the 

help of UAV. The UAV are assumed to have their absolute position information 

through on-board GPS or through contact with ground control station (GCS). To the 

potential field defined in (6.4) for relative localization, we add a second potential field 

for absolute localization. The modified potential field is used as a Lyapunov function 

and a Lyapunov proof shows how to generate appropriate virtual forces based on the 

gradient of the modified potential field. 

6.2.1. System Description 

For the absolute localization algorithm the following assumptions are being 

made for UAVs, which are 

1) UAVs have an altitude hold autopilot [91]. 



 

 108 

2) UAVs are operated in hover mode, so that they move over the stationary 

UGS network and assume a fixed position until the localization algorithm to be 

presented has been executed. 

Here, we describe the virtual dynamics used for position estimates of the 

stationary UGS nodes based on range information and absolute position information of 

UAV. Let the total number of UGS nodes and UAV in the air-ground sensor network be 

N indexed by a set iX ; { }Ni ,.......3,2,1= . Let the number of UAV with absolute position 

information be m , indexed by a set
a

ip
X ; { }mp ,.....,2,1=  such that i

a

i XX
p

⊂  and the 

UGS nodes with no absolute position information be indexed by
pi

X ; { }Nmp ,.....,1+=  

such that i

ugs

i XX
p

⊂ . 

The position estimate for UGS nodes with no absolute position information is 

given as 

[ ]Tiii ppp
yxX =  (6.27)

where 
pi

x  and 
pi

y  are the x-y coordinates of the UGS node position estimates. The 

position estimation dynamics are given as 

pp ii fX
r

&& =  (6.28)

where, [ ]Ty
i

x
ii ppp

fff =
r

 is a virtual force in the x and y directions to be specified. 

The position estimate for UAV with absolute position information is given as 

[ ]Ta
i

a
i

a
i ppp

yxX =  (6.29)
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where 
a

ip
x  and 

a

ip
y  are the x-y coordinates of the UAV position estimates. The position 

estimation dynamics are given as 

a
i

a
i pp

fX
r

&& =  (6.30)

where, 

[ ]Tay
i

ax
i

a
i ppp

fff =
r

 (6.31)

is a virtual force in the x and y directions to be specified 

6.2.2. Potential Field for Optimal Position Estimation with Absolute Position 

Information 

 The potential field defined in (6.4) is now modified to incorporate the absolute 

position information available for UAV. A new term is added to the already existing 

potential field for UGS nodes in (6.4) to obtain the potential field for UAVs, which is 

given as 
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(6.32)

where [ ] 2
1

22 )()(
a

i
a

i
a

i
a

i
a

i ppppp
yxxxe −+−=  and [ ]a

i
a

i
a

i ppp
yxX =  is the known absolute 

position of UAV a
pi . Therefore, the new potential field for the air-ground sensor 

network with UAVs and UGS nodes is now defined as 

ugsuavp VVV +=  (6.33)
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where j
a

ij
a

ij
a

i
a

ji XXyyxxr
pppp

−=−+−= 2
1

22 ])()[( . 

Now, define the potential field for a single UAV a
pi  with absolute position 

measurement by 

∑
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(6.35)

The potential 
pi

V  for a single UGS node pi  without absolute position measurement is 

same as in (6.5). The gradient of the potential with respect to the UAV node states a
pi  

is given by 
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(6.36)

where as, the gradient of the potential 














∂

∂

p

p

i

i

X

V
 with respect to the UGS node state pi  is 

same as in (6.7). 

Based on the first assumption we consider only x and y positions of the UAVs 

and the second assumption allows us to consider UAV as a sensor node with absolute 

position information until the absolute localization algorithm has been executed.  



 

 111 

Theorem 6.2: Consider the position estimate dynamics in (6.28) for each UGS 

node and (6.30) for each UAV with absolute position information. Let the virtual force 

for the UGS node and UAVs be given respectively as 
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Then the position estimates reach steady-state values that provide optimal 

estimates of the actual absolute localization of the nodes in the sense that pV  is 

minimized. 

Proof: Define the Lyapunov function as 
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Differentiate to obtain 
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One can compute 
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and on substitution of (6.30), (6.32) and (6.46) in (6.45) we get 
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Further substituting the force inputs mentioned in (6.37) and (6.38) yields 
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clearly, ∀ 0),( >a
vv KK , 0≤pL&  and the vector [ ]Tii pp

XX &  and [ ]Ta

i

a

i pp
XX &  is 

bounded which shows that the system is SISL. Evaluating pL&&  yields 
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which on substitution of (6.28) and (6.30) gives 
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Using the result from the Lyapunov analysis that the vector [ ]Tii pp
XX &  and 

T
a

i
a

i pp
XX 




 &  is bounded also yields that pL&& is also bounded. By Barbalat’s Lemma 

[105] we deduce that 0→pL&  as ∞→t , which yields 0→a
ip

X&  and 0→
pi

X&  as ∞→t . 

Therefore (6.28) shows that 
pi

f
r

 goes to zero pi∀  with no absolute position information 

and (6.30) shows that a
ip

f
r

 goes to zero pi∀  with absolute position information. Finally 
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(6.37) and (6.38) shows that 0→
∂

∂

p

p

i

i

X

V
 and 0→

∂

∂

a
i

a
i

p

p

X

V
 respectively, so pV  reaches a 

minimum.          ■ 

6.2.3. Absolute Localization Algorithm 

 We now present an algorithm to dynamically localize the UGS network and 

uniquely determine the absolute position estimates of all the UGS nodes with the aid of 

at least three UAV with GPS. Before we propose the algorithm, let us look at a potential 

problem of the UGS network being inverted (i.e. upside down) in its configuration.  

In any network, if only one node has GPS information, the network can be 

uniquely localized with respect to an absolute coordinate frame modulo a rotation and 

an inversion (i.e. flip the net over).  If two nodes have GPS, then the rotational 

uncertainty is removed, but the net can still be ‘upside down’.  Adding a third node with 

GPS removes this final uncertainty, and results in a correctly localized net in absolute 

coordinates. 

To solve the ‘upside down’ problem for the sensor network, there must be at 

least 3 UAVs with absolute position information available. Unfortunately, when the 

third node with absolute position information is added to the WSN, the estimated 

positions in the WSN may already correspond to the inverted situation.  

The upside down problem can be confronted as follows.  According to our 

algorithm, one UAV is added at a time to the air-ground sensor network. Let  ththth kji ;;  

be the 3 UAVs to be added in that particular order to the network. Before the thk  UAV 

is added, its initial position co-ordinates obtained from (6.26) using only range 
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measurement is compared with its absolute position information and the error is defined 

as 

a
i

a
i kk

XX −=ε  (6.46)

If Mεε > , (where Mε  is the known maximum range error depending on the types 

of system used), then the network is assumed to have improper position estimates due to 

the estimated network being inverted. To flip the estimated network positions upside 

down to the correct configuration, the orthogonal projection of all the UGS nodes 

already added to the network is taken on the line formed by the known positions of thi  

and thj  UAVs. The projection of the UGS nodes across that line [87] is given as 
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(6.47)

where, ),( yx are the initial points and ),( oo yx are the final points after projection and 

ij yya −= ; ji xxb −= ; iijiij xyyyxxc )()( −−−=  (6.48) 
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Table 6.2 Absolute Localization Algorithm 

1 Relatively Localize the UGS nodes using Algorithm 1 for 

relative localization mentioned in section 6.1.4. 

2 Initialize the UAV position using (6.26) from the range 

measurement information available 

   2.1 Increment i  by 1 to keep a count of the number of UAVs with 

absolute position information 

         2.1.1 if 3=i  

         2.1.2 use (6.46) to calculate ε  

                 2.1.2.1 if Mεε >  

                 2.1.2.2 Take orthogonal projection using (6.47) of UGS 

nodes on the line formed with first 6 UAVs having 

absolute position information 

                 2.1.2.3 Dynamically localize the air-ground sensor 

network with (6.37) as the control input for UGS 

nodes and (6.38) as the control input for the 

thirdUAV. 

                 2.1.2.4 end if 

        2.1.3 else 

        2.1.4 Dynamically localize the air-ground sensor network with 

(6.37) as the control input for UGS nodes and (6.38) as the 

control input for UAV. 

        2.1.5 end if 

7 Repeat step 2 until all the 3 UAVs have been added 

 

6.2.4. Absolute Localization Simulation Results 

Here, we present simulation results for absolute localization. The air-ground 

sensor network model used for simulation consists of 7 UGS nodes and a single UAV 

with on-board GPS. Once the UGS nodes have been relatively localized using the 

algorithm mentioned in Section 6.1.4, the UAV hover over the terrain to absolutely 

localize the sensor network. The UAV stops at 3 different positions and at each position 

it measures the distance with at least 3 UGS nodes as shown in Figure 6.8. 
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Figure 6.9 shows the virtual movement of the UGS nodes when the UAV stops 

at 2 different positions. The UGS nodes move in a way to obtain its absolute 

coordinates. When the UAV moves to a third position, it estimates its position using 

(6.26) and then compares it with its position obtained from GPS. If the error obtained is 

more then Mε  then all the UGS nodes are reflected on the line formed by the points 

when UAV stopped at position 1 and 2 which is shown in Figure 6.10.  

The reflection is done in order to solve the upside-down problem as mentioned 

in Section 6.2.3. Figure 6.11 shows the plot for the potential field function versus the 

number of iterations taken before the potential field converges to zero. The plot shows 

that the absolute localization algorithm estimates the UGS nodes position such that the 

desired distance is achieved. 
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Figure 6.8 Air-Ground Sensor Network 
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Figure 6.9 UAV 1 and 2 with 7 UGS nodes 
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Figure 6.10 Final Configuration of UGS nodes 
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Figure 6.11 Potential field Function Plot 

 

6.2.5. Absolute Localization Experimental Results 

Here, we present the real time implementation result for absolute localization. 

Once the UGS nodes have been relatively localized as mentioned in Section 6.1.4, the 

UAV hovers over the terrain to absolutely localize the sensor network. The UAV stops 

at 3 different positions and at each position it measures the distance with atleast 3 UGS 

nodes as shown in Figure 6.12. 

 

 

 

 

 

 

 



 

 119 

-5

0

5

10

-5

0

5

10
0

0.2

0.4

0.6

0.8

1

z-
ax
is

Air-Ground Sensor Network

y-axis x-axis

UAV 1st
Position

UAV 2nd
Position UAV 3rd

Position

-5

0

5

10

-5

0

5

10
0

0.2

0.4

0.6

0.8

1

z-
ax
is

Air-Ground Sensor Network

y-axis x-axis

UAV 1st
Position

UAV 2nd
Position UAV 3rd

Position

 
Figure 6.12: Air Ground Sensor Network Model 

 

Figure 6.13 shows the virtual movement of the UGS nodes when the UAV stops 

at 3 different known locations to absolutely localize the UGS nodes. Figure 6.14 shows 

the final absolute co-ordinates of the UGS nodes when the 3 UAV hovering positions 

are given as )6.138,3.34( , )9.35,3.167( , )93.42,4.94( −−  cm respectively. 
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Figure 6.13: UAV with 5 UGS nodes (a) with UAV’s 1
st
 position (b) with UAV’s 2

nd
 position 

(c) with UAV’s 3
rd
 position 
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Figure 6.14: Final configuration of UGS nodes with absolute position (all units are in cm) 

 

6.3 Extended Kalman Filter for Relative and Absolute Localization  

In this section an extended Kalman Filter (EKF) is presented to take the effect 

of noise during real time implementation. The EKF is combined with the localization 

algorithm developed earlier in the literature. Figure 6.15 lays out the structure of the 

overall scheme 
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Figure 6.15 UAV Localization scheme combined with EKF 

 

For Kalman filter implementation, a system model and a measurement model is 

required. The system model is derived as  

System Model 

[ ]Tiii yxX =  (6.49)

where, ix  and iy  are the x-y coordinates for the UGS node position estimate. The 

position estimation dynamics are given as 

ii fX
r

&& =  (6.50) 

where, [ ]Ty
i

x
ii fff =

r
 is the virtual force in the x and y directions to be specified. The 

state variable description form for the position estimate of the thi  UGS node is by 



 

 123 




















+
















=








y

i

x
i

i

i

i

i

f

f

I

O

X

X

OO

IO

X

X

2

2

22

22

&&&

&

 
(6.51)

where, 







=

00

00
2O  and 








=
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01
2I  

)(tGwBfAXX iii ++=&  (6.52) 

where ),0(~)( QNtw  

Measurement Model 

2^2^ )()(),( jijiijji yyxxrXXhZ −+−===  (6.53)

where Z  is the set of range measurements and ),0(~)( RNtv . 

Setting up the Kalman Filter yields the following equations for gain, system 

update and propagation.  

Gain 

1)( −−− += k

T

kkk

T

kkk RHPHHPK  (6.54) 

where 
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XXh
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System Update 

]ˆ[ˆˆ ZZKXX kii kk
−+= −+  (6.55)

Covariance Update 

−+ −= kkkk PHKIP )(  (6.56)
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System Propagation 

iii BfXAX += ˆ&̂
 

(6.57)

Covariance Propagation 

TT GQGPAAPP ++=&  (6.58)

Simulating the EKF for 3 node case yields the following equations for 

measurement equation and gain matrix 

[ ]323123211312 rrrrrrZ =  (6.59)
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(6.60) 

The simulation results are shown in the Figure 6.16 and Figure 6.17. The results 

shown below highlights the effectiveness of the EKF implemented on the localization 

method developed in this literature. The blue lines in the plot indicate the measurements 

taken, whereas the red lines indicate the estimated obtained from the EKF method. The 

convergence of the estimate with time indicates the effectiveness of the EKF method 

proposed in the literature. 
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Figure 6.16: Plot of the range estimates (a) final configuration of 3 sensor nodes (b) range estimate r12 

(red) converging to r12d (blue) (c) range estimate r13 (red)converging to r13d (blue) 
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Figure 6.17: Plot of the range estimates (a) range estimate r21 (red)converging to r21d (blue) (b) 

range estimate r23 (red)converging to r23d (blue) (c) range estimate r31 (red)converging to r31d (blue) 

(d) range estimate r32 (red)converging to r32d (blue) 

 

6.4 Conclusion 

Efficient algorithms for relative and absolute localization are presented based on 

potential field methods, together with the mathematical analysis. The algorithms 

mentioned are successfully implemented on a real-time hardware. The results obtained 

validate the efficiency of the relative and absolute localization algorithm proposed. The 

algorithms presented take care that the system does not fall into the local minima. The 

algorithm also takes into account the problem of the network being in an inverted 

configuration during absolute localization.  
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EKF is also developed for relative and absolute localization the sensor nodes 

and is effectively simulated to show the effectiveness of the proposed method. 
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