

PANDA MONITORING – A SYSTEM TO MONITOR HIGH PERFORMANCE

COMPUTING FOR THE ATLAS EXPERIMENT DESIGN, DEVELOPMENT,

IMPLEMENTATION AND DEPLOYMENT

By

PREM A THILAGAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2007

 ii

ACKNOWLEDGEMENTS

 I would like to take this opportunity to express my sincere gratitude to my

supervising professor, Dr. David Levine for his never ending encouragement and

valuable guidance throughout my research. I am grateful to him for giving me the

opportunity to work under him all this while, in him I saw the inspiration to be cool and

composed. I am also grateful to Dr. Jaehoon Yu from the Physics department for giving

me the opportunity to be a part of this great program between University of Texas,

Arlington and Brookhaven National Labs, New York. I am also grateful to the Panda

project’s technical leader, Dr. Torre Wenaus, Brookhaven National Labs. He has

constantly given his suggestions in improving my work during my tenure there.

 I would also like to extend my thanks to my committee member Dr. Gergely

Zaruba for his valuable time. I would like to extend my thanks to all my team members

who were also a part of the program and were at Brookhaven National labs with me. I

would like to extend my thanks to Barnett Chiu and Sudhamsh Reddy who were there to

help me out in my research work. I would like to thank the whole Panda team at the

Brookhaven National Lab. My heartfelt thanks go to my father Dr.S.Thilagar my mother

Mrs.S.Sivarani and my friends, this work could not have been accomplished without their

support.

November 26, 2007

 iii

ABSTRACT

PANDA MONITORING – A SYSTEM TO MONITOR HIGH PERFORMANCE

COMPUTING FOR THE ATLAS EXPERIMENT DESIGN, DEVELOPMENT,

IMPLEMENTATION AND DEPLOYMENT

Publication No: ______

Prem A Thilagar, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. David Levine

Grid resources are gaining wide importance in the wake of experiments like ATLAS,

they aid in a bigger goal which is to understand the complexities of nature. The need for a

good monitoring system is realized as grid resources are being implemented widely. This

work is an analysis of the existing monitoring system of Panda which is a grid

middleware for the ATLAS experiment running at CERN. The thesis aims at identifying

the key bottlenecks of the current monitor and speaks about the implementation of a new

monitor for the same. The new monitor which is being designed with scalability and

maintainability in mind shows how it will perfectly fit in for the changing needs of the

panda. As panda is moving to the next generation as a generic grid middleware for other

 iv

experiments running in the OSG sites in the United States it needs a new monitor which

can efficiently scale and fit the changing needs. The new monitor is designed in Ruby on

Rails and has numerous advantages over the existing one. The thesis deals with the

design, development and implementation of this new monitor.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT... iii

LIST OF ILLUSTRATIONS... ix

CHAPTERS

 1. INTRODUCTION TO MONITORING .. 1

 1.1 Introduction………….. 1

 1.2 History…………………….. 2

 1.3 Monitoring……………. .. 3

 1.4 Monitoring Areas……………………... 5

 1.5 Grid Monitoring……………... 7

 1.5.1 Grid Experiments………….…………………………………. 8

 1.6 Introduction to Grid Computing……………………………………….. 9

 1.7 Types of Grids…………….. 11

 1.8 Grid Monitoring Architecture…………………….................................. 13

 1.8.1 Directory Service…………………………….………………. 13

 1.8.2 Producers……………………………………………………... 14

 1.8.3 Consumer…………………………………………………….. 14

 1.9 Grid Monitoring Systems……………... 15

 vi

 1.10 Grid Monitoring …………….. 16

1.10.1 The Need for Monitoring: …………..………………………. 16

 1.11 Monitor Types ……………... 18

 1.11.1 Infrastructure Monitoring………………………………….... 19

 1.11.2 Application Monitoring…………………………………….. 21

 1.12 Current Monitoring Systems…………….. 22

 1.13 What Panda Monitoring Offers ……………... 27

 2. GOAL OF THE THESIS ... 31

 2.1 Goal of the Monitoring System………….. 31

 2.2 Monitoring System Types…………………….. 33

 2.3 Information Retrieval for Monitoring…………….................................. 34

 2.4 What to Monitor……………………... 34

 2.4.1 Performance………………………………………………….. 35

 2.4.2 Fault………………………………………………………….. 36

 2.4.3 Accounting…………………………………………………... 37

 2.4.4 Security………………………………………………………. 37

 2.5 Monitoring Vs Over-Monitoring……………………………………..... 38

 2.6 Striking the Balance……………………... 38

 2.7 Goals of Panda monitor……………. .. 40

 3. THE PANDA ARCHITECTURE.. 43

 3.1 Introduction…………….. 43

 3.2 Atlas Production System…………………….. 44

 vii

 3.3 Panda Architecture……………………... 46

 3.4 A Brief overview…………….. 48

 3.5 DDM-Distributed Data Management……………………. 54

 4. PANDA MONITOR FEATURES... 59

 4.1 Panda Main Page………….. 59

 4.2 Production and Analysis page…………………….................................. 60

 4.3 Cloud Organizations……………. ... 64

 4.4 DDM and Features……………………... 66

 4.5 Autopilot……………. ... 68

 4.6 Usage and Quotas……………………. ... 72

 4.7 History Plots……………... 73

 5. PANDA MONITOR ARCHITECTURE... 75

 5.1 Monitor Architecture Overview…………... 75

 5.2 The Request Handler…………………….. 77

 5.3 The Database…………….. 78

 5.4 Logging and Utilities……………………. .. 79

 5.5 HTML Utilities……………. ... 80

 5.6 Panda Logger……………………. .. 80

 6. PROPOSAL FOR A ROBUST MONITOR... 81

 6.1 Introduction and Groundwork…………….. 81

 6.2 Ruby on Rails and MVC Architecture……………………..................... 85

 6.3 Advantages of Ruby on Rails……………. ... 87

 viii

 6.4 MVC Panda monitor schema……………... 89

 7. CONCLUSION AND RESULTS... 93

 7.1 Comparison of the two systems………………………………………… 93

 7.2 Experimental Results……………. .. 95

 7.3 Process Diagrams for the function history plots ……………................. 100

 7.4 The Proposed Architecture ……………. .. 103

 7.5 Future Work …………….. 106

Appendix

REFERENCES……………………………………………………………………. 107

BIOGRAPHICAL INFORMATION……………………………………………….. 110

 ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 The Growth of Computer Hosts since Inception of Arpanet........................... 2

1.2 Structure of Virtual Organizations and associated Organization 10

1.3 Components of Grid Monitoring Architecture (GMA)................................... 13

1.4 Nagios screenshot showing the different

 Operating system hosts ... 20

1.5 A screenshot showing the CPU related information from Monalisa............... 22

1.6 A snapshot from Lemon showing disk usage and temperature....................... 24

1.7 First page of SAM grid monitor - a geographical access page........................ 25

1.8 A High level Architecture of the Panda monitor... 28

1.9 Snapshot of the Existing Panda Monitor for Analysis Jobs 29

2.1 Illustration of the Panda Monitor interaction at a very high level................... 41

3.1 A figure showing the complete ATLAS Production System 45

3.2 Figure giving the over all Panda Architecture and its components................. 47

3.3 A high level working view of the Panda Server.. 51

3.4 The Panda Server Interaction with DQ2 ... 53

3.5 Architecture of the DDM services (DQ2) ... 56

4.1 Startup page for Panda Monitor .. 59

4.2 Panda production operations page... 60

 x

4.3 Production Page showing subscription and active blocks............................... 62

4.4 Analysis Jobs page of the Panda monitor.. 63

4.5 Analysis Page showing error codes and Reason for failure 64

4.6 A page showing the newly added cloud feature.. 65

4.7 DDM operations page showing disk space

 and information about data blocks.. 67

4.8 A snapshot of the newly added autopilot feature .. 68

4.9 Autopilot page showing recent or running pilots .. 70

4.10 Autopilot page showing queues and tag names... 71

4.11 A snapshot of the User Quota page listing all users.. 72

4.12 A snapshot of the querying page of History Plots... 73

4.13 A graph that was generated from the History plots application 74

5.1 A detailed architecture view of the existing monitor 76

5.2 Representation of the request handler ... 77

5.3 Illustration of the Database operations .. 78

5.4 A representation to show logging of data to panda central database 79

6.1 Architectural view of the Proposed Panda Monitor .. 83

6.2 The MVC architecture and flow of control ... 87

6.3 Scheme for the Panda Monitor in the MVC Architecture............................... 90

6.4 Illustration of the View of the Proposed Monitor ... 91

6.5 A sample Graph from the new monitor... 92

7.1 A plot showing time taken to display the analysis jobs page 96

 xi

7.2 A graph showing time in seconds for a weekly plot 97

7.3 A graph showing time in seconds for a weekly plot

 in the new monitor .. 97

7.4 A graph showing time taken for a Plot

 for 3 days at an interval of 12 hours ... 98

7.5 A graph showing time taken for a plot of 3

 days at an interval of 12 hours-new monitor t ... 98

7.6 A plot showing average times recorded for various runs 99

7.7 Process diagram of the existing monitor for History Plots..............................101

7.8 Flow of controls between functions in the new architecture104

110

CHAPTER 1

INTRODUCTION TO MONITORING

1.1 Introduction

 The quest for discovery is the driving force behind every new expedition by

mankind. It is the same drive that motivates to explore and find components that can aid

in the quest. The scientific approach to understanding a phenomenon has always resulted

in the need for components that can aid in the bigger goal. The ATLAS experiment is one

such quest which began 20 years ago. High performance computing has existed even

before experiments like ATLAS started using computing resources at an extensive level.

High energy physics experiments always have a reputation for generating huge amounts

of data; the need for a component that can manage all the data and analyze it for valuable

information was realized. This led to grids being deployed extensively, also other areas of

science where there was a need for huge data processing adopted the same. Grids found

their way to gene analysis and even assisted in studies related to extra terrestrial

intelligence. The widespread popularity of the grids eventually led to a point where

resource was directly linked to processing power and time; hence its precise and optimal

operation became an essential need. As grids started sufficing the needs of most

experiments being conducted it became necessary there be a system that could asses the

 2

performance of grids. Monitoring became a prime area of importance especially at a point

where grids are being installed throughout the world.

1.2 History

 Computers have made significant breakthrough since their commercial inception

in 1951[1] , from being systems that were specifically used for projects related to defense

and projects of strategic importance, computers have come a long way in making a

significant impact in every field they have been used. The significant breakthrough in the

popularity of computers and the Internet today can be attributed to the beginning of

ARPANET [2] (Advanced Research Projects Agency Network) in 1969. ARPANET

changed the view about computers and many academic institutions got together and

started using them in a wide scale for the numerous benefits it offered including fast and

effective data sharing.

Figure 1.1: The Growth of Computer Hosts since Inception of Arpanet [3]

 3

The formulation of ARPANET is an important milestone since it sparked off the

idea of today’s Internet and also contributed significantly to innovations and

improvisations in many related areas in the computer sciences.

 Once the collective power of computers integrated together was illustrated it

sparked off research in many areas that could make computers better such as databases

and networks. As the advancements became widespread the need for systems that could

assess and provide information about the components under study became important.

Since then monitoring systems have played an important role in the development and

assessment of a component that might be associated and working with a computer.

1.3 Monitoring

Monitor can be defined as a device or a piece of software that helps in inspecting

and analyzing key performance constraints of the components of a computing system.

Monitors can exist as an integral part of the computer or as an associated component that

works in tandem. Monitoring in a computer can be classified mainly into two types [4],

• Hardware monitoring

• Software Monitoring

Monitoring in computing systems is not limited to the software alone but also

extends to hardware. Hardware monitors are inconvenient for measuring and monitoring

application programs [4], this is mainly due to the limitations like hardware monitoring is

decoupled and exists separately for each device. The most advanced real-time hardware

monitors are used in in-circuit emulators.

 4

Software monitoring is more of an application-oriented perspective. In most cases

software and hardware monitors work cohesively to facilitate the collection and prompt

processing of the data, for example the calculation of the temperature of the processor

and telling the user the maximum acceptable temperature. Additionally, software

monitoring will explore and provide information about things that cannot be directly

understood with the information from the hardware monitors alone.

Monitoring is a component which has been aiding many of areas in computer

science. The most common of it were network, database and security. Monitoring in these

areas has been a vital component in times when technological advancement was

rudimentary [2]. Components like memory and other hardware were pretty expensive a

few years ago. This cost factor established the idea that software had to be made in a

manner that will enable optimized usage of the hardware; also the importance of using

the established hardware to the fullest was realized. Creating necessary monitoring

software to keep track of how efficiently things are being handled was the solution to

make sure hardware resources are put to full use.

In today’s world with the huge breakthroughs and advancements made in the

semiconductor industry and computer hardware made available at cheaper rates, software

monitoring still holds a prominent place. It has been adapted to the changing needs of the

users. The development of the hardware industry has revolutionized the way people use

computers. Data usage has scaled from a few kilobytes in the first generation of

computers to gigabytes in the most recent ones [3]. The network which had capabilities

of a few kilobytes/sec has also scaled to levels where it can handle huge data with ease.

 5

The need for an efficient monitoring system can also be felt here, since the scale at which

data is being dealt has exponentially increased and it has to be ensured that all these

improvements in technology are being utilized properly.

1.4 Monitoring Areas

The typical areas in computing where monitoring has proven its importance are

networking and databases [3]. Apart from these, monitoring applications also have aided

security systems and intrusion detection systems to establish the effective maintenance of

information integrity. The most common example of a monitoring system on a desktop

can be cited as an intrusion detection firewall, which warns the user of any external

network activity. Monitoring applications have also been very useful in the areas of

distributed computing [3]. As huge amount of hardware resources is involved in

distributed computing, effective and prompt information collection about how the

resources are performing is indispensable.

The various features of a system which are, classical examples for monitoring are

discussed below.

The CPU time monitoring primarily involves calculation of the total time an

application utilizes to complete a certain task. This is commonly measured in the number

of CPU clocks used by the respective process running [3]. It is also a most common

benchmark which will have a direct impact on the performance of the system and thus

looked up in most systems.

Disk monitoring is a feature where we can monitor the free and used space in the

given system. Advanced monitoring systems, in disk monitoring also allow monitoring of

 6

the segments of the memory which are contiguous and those that are fragmented.

Network Bandwidth monitoring is one where we are allowed to monitor traffic

that is going out or coming into the internal network. Network Monitoring, can be done at

two places; extensive monitoring can be done both at the user side and at the ISP

(Internet Service Provider) side. The topics of interest for the user would include the

types of applications that are sending and receiving messages from his desktop while the

provider will typically be more interested in the types of packet losses, the routing of

packets across the network and the congestion at the network nodes to name a few. This

kind of information could prove quite useful when the network is facing high inflow of

network traffic at one particular node; a congestion detected early could be handled

effectively by diverting the incoming traffic of a particular router, through some other

nearby router which could be helpful to avoid high amounts of data and packet losses [4].

Database Monitoring has also proven to be an effective means to make computing

systems more efficient. In a world where database servers handle a few thousand requests

a second, it is very important to make sure we do not overload the server; this ensures the

smooth serving of requests. Ideally there are a few servers (the datacenters) which handle

the requests from the users and service them accordingly. All these datacenters will have

the exact copy of the data and will have the capability to serve user requests in the same

capacity. In certain cases, it might happen that most of the user requests might be routed

to one particular server, resulting on a server overload. An effective monitoring system

with a good load balancing scheme will mitigate the problems caused by overloading,

most of the times this proves very effective in mitigating server outages and reduce the

 7

server downtimes effectively [3].

Web based monitoring by web sites for user information is a new paradigm of

monitoring. User information has turned out to be a prime area of interest since this has

begun to generate revenue based on the number of people who visit the site. There are

quite a few monitoring tools, which allow the site administrators to gather information

about the demographics of the users who are interested in the information posted in their

web site. This information is later used to target the user with a specific item which might

be of interest to him/her. This kind of information is considered vital to many of

companies in the e-commerce world today, and they continuously keep monitoring the

items that are of interest to the users and present the user with a wide variety of similar or

associated products.

Monitoring as discussed in the examples above ranges from assessing how good a

hardware is performing which could for example be keeping track of the CPU cycles [2]

to more high level data such as the web pages a particular person is interested in. Each of

these monitoring aspects has its own importance in specific areas associated to them.

1.5 Grid Monitoring

 Monitoring, as in all the other areas, also plays a key role in computing grids.

Grid-based monitoring becomes a very important feature since the resources for any grid

are distributed over a wide area and all of them have to be efficiently monitored to see if

they are working in the right fashion, moreover, if a problem occurs at one particular

 8

cluster, it is highly likely the other clusters may suffer the same problem. If a proper

monitoring system is in place the outage when it happens at one cluster could be

identified and the other systems could be adjusted in a manner that they are able to

overcome the problem, thus saving valuable processing time [15].

1.5.1. Grid Experiments

 Grid computing started gaining popularity with the beginning of new

experiments. All the experiments mentioned below are increasingly using the services

from grids in order to actually understand better their respective areas of research.

The famous ones among them being:

AMANDA [26] - (Antarctic Muon And Neutrino Detector Array), it is a telescope

buried under the South Pole and helps in finding important information about the

universe around us. Neutrinos have a really interesting characteristic for astronomers -

they traverse long distances without being deflected, scattered or absorbed by interstellar

magnetic fields, starlight or dust. The experiment studies Neutrinos.

LHC [7] -The Large Hadron Collider at CERN, Switzerland has been initiating a

number of experiments, these would start rolling on a full scale once the LHC comes into

production late 2008.A few of the experiments being hosted there are

ATLAS[7],CMS[7], ALICE [7], LHCP [7] and TOTEM [7]. These experiments are all

concentrated on various specific areas of particle physics and to understand the functional

constructs of matter and the forces between them.

PET - Positron Emission Tomography, PET is a new technology for medical

imaging using positron scatter. Small animals like mice and rats have always been used

 9

to test new medication because their genetic code is close to the human genetic code.

PET allows studying all the effects of new medications without the need of dissecting

animals-thus reducing the number of animals being used for study.

1.6 Introduction to Grid Computing

 Grid computing can be viewed at a high level as one where computing becomes

pervasive and the user or the client applications gain access to resources such as

processors, storage, data etc, with little or no knowledge of where those resources are

located or what the underlying technologies, hardware and operating system is. [3]

A grid can also been seen as a concept by which a cluster of computers are

connected over the Internet, where each individual computer is purchased individually

and combined together with the use of middleware and other software can produce

similar computing resources as a many-CPU supercomputer, and at a lower cost [6].

 10

Figure 1.2: Structure of Virtual Organizations and associated Organization

Grids can functionally be classified into three types [6], Computational grids

which are focused primarily on computationally intensive tasks, Data grids where the

focus is on the controlled sharing and management of large amounts of data resources

and Equipment grids, which have a primary piece of equipment, and where the

surrounding grid is used to control the equipment remotely and aid in analyzing the data

produced from the equipment [5].

The figure depicts the setup of VO’s with the affiliate organizations, There are 3

Vo’s shown and organizations 1,2,3 are associated with VO 1,also organization 3 is a part

of VO 2 and we have organizations 3,4,5,6 where 4 is also a part of VO 3.

VO 1

O 1

O 2 O 3

VO 2

O 4

O 5 O 6

VO 3

O 7 O 8 O 9

VO (1-3)-Virtual Organization

O (1-9)-Affiliate Organizations

 11

The resources in a grid are shared across various organizations by means of

associating themselves with a Virtual Organization (VO). In grids, sharing of available

resources is the main goal and hence there need to be rules formulated on what kind of

resources need to be shared, who is allowed to share and under what conditions the

sharing occurs [6]. VO takes this responsibility for coordination of these activities and

makes sure certain rules are adhered to by each of the organization that is associated with

the particular Virtual Organization. VO’s are typically formed with respect to a particular

experiment that makes use of the resources. For example, the ATLAS experiment has its

own VO under the same name and all the organizations that are contributing resources

towards the experiment must comply with certain rules set by the ATLAS VO. The

organizations could be individuals or organizations that hold the resources necessary for

sufficing the computing needs of the experiment. UTA, for example is an organization

which adheres to the rules set by the ATLAS VO and is a part of the ATLAS experiment.

One particular organization may be affiliated with many VO’s and may participate in

more than one experiment.

1.7 Types of Grids

Grids can be categorized into various types such as:

• Computational grids

• Scavenging grids

• Data Grids

 12

Computational grids define an infrastructure which will solve complex

computational problems and will be able to handle operations which are highly CPU

intensive; these are often used for very large problems needing huge amounts of CPU and

memory resources [6].

Scavenging grid is most commonly used with large numbers of desktop machines.

It is responsible for using all the resources have signed up to be a part of the system and

use their services for resource intensive tasks [6]. Typically in scavenging grids the whole

system is not overloaded with intensive tasks instead the tasks are split across a huge

network, and jobs given to systems are quite small that the user will not even realize they

are going on in the background. A classical example could be one where you can sign up

your system to be a part of a SETI (Search for Extraterrestrial Intelligence), program in

which idle resources of your system are responsibly used to process information

pertaining to the program.

Data grids give a common interface for all data repositories through which large

amount of distributed data can be queried, managed and secured. They are often

combined with computational grids. High-energy physics experiments fall under this

category and will generate terabytes of data per day and around a petabyte per year [12],

in such an environment, working without a common interface that can handle all this data

effectively will be difficult.

 13

1.8 Grid Monitoring Architecture

Figure 1.3: Components of Grid Monitoring Architecture (GMA) [6]

 Grid monitoring architecture is a common scheme for the implementation of any

grid monitoring service it is constituted by a consumer, producer and directory service.

As shown in figure 3, GMA consists of three components [6]:

1. Directory service, which is like a coordinator which maintains information

2. Producer, which make monitoring information available

3. Consumer, who requests the producer for information that is of interest to them

1.8.1 Directory Service

The directory service [3] can be synonymous to registry, maintains information

about where the producers and consumers are located and all information about where

any specific information related to the system could be found.

At a high level the directory service will also have access rules and schemes that

are concerned with producers and consumers. Transfer of information, primarily requests

and responses from the producers and consumers have to go through the directory service

 14

to be initiated, however it will be direct once a connection is established using the

directory service. The directory service typically provides functionalities like adding,

editing and deleting entries into the directory under categories they belong.

1.8.2 Producers

A producer is any component that can send monitored data to the consumer. One

producer might have multiple producer interfaces, each acting independently and linking

to different kinds of measurement data sources such as hardware or software sensors, a

database with historical data or other monitoring systems. [11]

A producer will have some basic responsibilities, which include:

• Updating the directory services about itself all the information available with it

currently.

• Keep receiving subscriptions and queries from a consumer and keep servicing the

consumers in a timely fashion.

• Termination of service between producer and consumer should be two way and

can be initiated by any one, hence the producer should facilitate it.

1.8.3 Consumer

A consumer is any component that uses producers to receive monitored data .One

consumer can receive data from different producers. There are different kinds of

consumers; some may store the received data, some may collect monitoring data in real

time the, while others collect information from different sources to make decisions.

The basic responsibilities of a consumer include,

 15

• Updating the directory services about itself all the information available with it

currently.

• Find a required producer by browsing the directory service, and initiating

subscriptions with them if necessary.

• Query and store incoming data according to its needs from the producer.

• Manage subscription termination requests from producers appropriately.

1.9 Grid Monitoring Systems

Grid monitoring has been incorporated as integral part of grid workload

management systems such as Condor and Globus. They are workload management

middleware developed for grids [13]; they provide services such as CPU management

storage management, security provisioning, data movement, monitoring [13] and usually

a toolkit that also allows custom development of small applications.

Grid monitoring is also established by external monitoring systems called Nagios.

Nagios is basically a Network monitoring application software which is used to monitor

network hosts and services [12]; it is used sometimes with grid computing monitoring

applications so as to obtain extra information about network usage which cannot be

provided by the typical work load managers [12].

Grid finds its application wherever there is a potential need for large CPU and

memory resources. Analysis of DNA and genes is a computer intensive task and needs

more CPU power. High-energy physics is one such area where grids have been used for a

long time. These experiments usually demand huge computational power and hence

 16

monitoring of the resources becomes indispensable.

Grid based monitoring provides information with respect to the jobs that are

running across the various job sites or resources. This information could be simple ones

ranging from the number of jobs running across the resource to others such as error codes

and reasons if by any chance a job fails across the resource. Information, such as, why a

job fails while running across a specific site alone could be useful, if the problem is most

likely to also occur at other grid sites; counter measures could be taken. Moreover if

monitoring was not established , finding out what went wrong where could just be a

hassle and would actually involve manually debugging to figure out the problem also

resulting in wastage of man hours in the process. For reasons cited above and many other

reasons, monitoring for a distributed system like a grid becomes an important aspect in

grid computing.

1.10 Grid Monitoring

1.10.1 The Need for Monitoring:

Grids are a new area in computational science and could actually create a

dynamic change in the way computation is currently done. They allow on-demand access

and composition of computational resources provided by multiple independent sources

[13]. While providing many of advantages, the heterogeneity of the grid, the distribution

of resources at various locations and the need to traverse through all these administrative

domains pose new challenges which need to be addressed effectively. [11]

 17

These technical challenges can be categorized into two separate areas that need

attention they are;

• Fault diagnosis

• Failure management strategy.

When a failure occurs in a complex system such as a grid, it is quite difficult to

zero down the problem to one particular component. This is typically the case in many

instances. The problem could be with the user side and that it is missing some necessary

configuration components or it could be due to a grid certificate, since grid certificates

are a necessary to gain access to the resources hosted by the organization and they have

to be obtained from the VOs. The problem could have also been due to a first time

configuration problem on the resource organization’s side and might need the attention of

a system administrator for it to be resolved, or it could have also occurred due to a disk

crash in any of the system that the user is requesting access to. In most of the cases the

error messages for these problems are quite abstruse and will require some level of

understanding of the grid structure to decipher the problem effectively.

Monitoring of the grid resources will prove to be a very useful step here to avoid

necessity of heavy staffing, also it is to be noted that the downtime of any grid resource is

the loss to the experiment and the virtual organizations hosting it. If fault diagnosis is one

motivation for establishing a good monitoring system, failure management strategy and

failure mitigation the next time are other factors which further emphasize the need for a

good monitoring system. Also with a good monitoring system, failures can be detected

early and steps can be taken to make sure the same type of failure does not occur in the

 18

other clusters that are associated with the same organization, or even across different

organizations. This kind of failure mitigations strategy will make sure the resources are

put to full use and that a small glitch does not stall the whole system; resulting in reduced

outputs and longer processing times.

1.11 Monitor Types

Two main types of monitoring can be identified in any monitoring system

• Infrastructure monitoring

• Application monitoring

Infrastructure monitoring aims at collecting information about grid resources; it

can also maintain the history of observations in order to perform retrospective analysis.

Application monitoring aims at enabling the observation of a particular execution of an

application; the collected data can be useful to the monitor application activity or for

visualizing its behavior of it when running in a distributed environment. [14]

As listed above at a very high level these are the two prime areas that need to be

monitored in a grid. In Infrastructure monitoring the areas that need monitoring will

typically be the ones like CPU consumption on each of the nodes, disk space usage

monitoring, cache level alert etc. CPU consumption is the ratio of the CPU’s currently in

use to the CPU’s available. This is to avoid overloading of a few nodes alone. Monitoring

the CPU usage will give crucial information whether the load is evenly distributed or if a

particular cluster is getting overloaded with numerous requests.

Disk usage monitoring will assure that we do not end up with the disks being full

 19

which will result in the system entering a state where it will hang eventually and will not

be able to accept incoming requests. This might lead to a restart and will result in the loss

of data which might prove quite costly especially when huge amounts of data are

transmitted over the Internet.

Cache management is also an interesting area that needs monitoring when we are

dealing with distributed systems. Since effective handling of data plays a major part in

grid computing, it is important that we make sure that most commonly used data is

readily available to the jobs coming in. We have to ensure that the response time for

requested data, for a particular job coming to the grid site, is kept as low as possible so as

to achieve maximum efficiency.

1.11.1 Infrastructure Monitoring

Network monitoring is probably one of the most important areas that will need

efficient monitoring when we are dealing with grids. Networks are almost an integral part

of a grid system, since we are dealing with distributed systems the Internet becomes an

inevitable component for effective functioning of the grid.

 20

Figure1.4: Nagios screenshot showing the different Operating system hosts [12]

The monitoring of the network that is associated with the grid may be a part of the load

manager system or it might sometimes be integrated with the grid middleware that is

developed separately in order to suffice the monitoring features not available in the load-

manager. Alternatively, it is also sometimes achieved by means of autonomous tools

designed specifically to monitor networks, these systems are integrated with the grid

middleware or sometimes operate totally in an individual fashion to gather the vital

information to monitor the health of the network that supports the grid. One example of

such system is Nagios. Nagios is an open source framework for monitoring network hosts

 21

and services with the purpose of failure detection. Nagios has a core which is responsible

for most of the information processing and automatic recovery of the system, it gets most

of its help from the network sensors which work in tandem with the core to process all

the important pointers which tell how effective the network is doing [11].

1.11.2 Application Monitoring

The next type of monitoring can be categorized as application monitoring. This is

specific to the kind of experiment using the grid resource. The user will usually be

interested in having a look at the individual type of jobs that were submitted by him, so

the monitoring system usually has facilities for querying specifying job by means of

identifiers. Application monitoring also includes monitoring performance of a particular

grid site. This information comes in handy to the system administrators, it would be

convenient to get a consolidated data sheet or graph indicating the daily, weekly or

monthly performance of the particular grid site.

Application monitoring is hence very flexible and can be customized to any level

based on the user preferences; it is usually embedded in the middleware and has to be

customized by small applications which will aid in providing the information the user

may be interested. This might range from simple information such as the state of the job

the individual has submitted to more important information such as reasons if a job

suddenly failed.

 22

1.12 Current Monitoring Systems

Monalisa [13], - (Monitoring Agents using a Large Integrated Services

Architecture), provides integrated monitoring for many of grid sites individually and

collectively for separate VOs also. The framework is based on Dynamic Distributed

Service Architecture and is able to provide complete monitoring, control and global

optimization services for complex systems. [13]

Figure1.5: A screenshot showing the CPU related information from Monalisa

The system is designed as an ensemble of autonomous multi-threaded, self-

describing agent-based subsystems which are registered as dynamic services [13], and are

 23

able to collaborate and cooperate in performing a wide range of information gathering

and processing tasks. These agents can analyze and process the information in a

distributed manner, to provide optimization decisions in large scale distributed

applications. An agent-based architecture provides the ability to invest the system with

increasing degrees of intelligence, to reduce complexity and make global systems

manageable in real time. The scalability the system derives is from the use of

multithreaded execution engine to host a variety of loosely coupled self-describing

dynamic services or agents and the ability of each service to register itself and then to be

discovered and used by any other services, or clients that require such information.[13]

The Lemon (LHC Era Monitoring) is a client server based monitoring solution for

distributed systems [14]. Developed by CERN as part of the ELFms tool suite [14]

(Extreme Large Fabric management system) this toolkit is now used by many grid sites in

production, in CERN it is deployed at over 2500 nodes. System administrators and

developers are participating in service and data challenges. Lemon works in a way, where

on each monitored node an agent is running, and it launches and communicates using a

push-pull protocol with sensors which are responsible for retrieving monitoring

information [14].

 24

 Figure 1.6: A snapshot from Lemon showing disk usage and temperature [14]

The extracted samples are stored on a local cache and forwarded to a central

Measurement Repository using UDP (User Datagram Protocol) or TCP (Transmission

Control Protocol). The Measurement Repository can interface to a relational database or

a flat-file backend for storing the received samples.

The Sam Grid [27] is the grid assisting the D0 experiment going on in Fermi Lab

and it has its own monitoring system customized to provide the necessary information for

its users. The monitoring system attempts at providing the user with site level monitoring,

 25

the grid-job submission level monitoring, and the progress of execution of the job at the

execution site, among other important information pertinent to the entire grid. [15].

Among other nice features it has a geographical map, which serves as an anchor

to the execution sites (as shown in Figure 7), there is also a hyperlink to monitor the

submission sites on the grid. The monitoring system can be launched to monitor a

particular site by clicking on the available hyperlink on the map. The information from

the execution sites at a particular monitoring site is retrieved from the information servers

deployed at the monitoring site itself.

Figure 1.7: First page of SAM grid monitor - a geographical access page.

 26

GridIce [16] is a distributed monitoring tool designed for grid systems which is

being developed in the framework of the EGEE project [17] [18]. The design is based on

the different abstraction level of a Grid:

• Virtual Organization level

• Grid Operation Center level

• Site Administration level

• End-User level.

The system uses LEMON to collect the host related metrics on each site and

enable a publishing service next to each LEMON server. GridIce offers a standard

interface to publish the monitoring data at the Grid level, different aggregations and

partitions of monitoring data are provided based on the specific needs of different user’s

categories like VO, site. From being able to start from summary views and to drill down

to details, it is possible to verify the composition of virtual pools or to sketch the sources

of problems. A complete history of monitoring data is also maintained to deal with the

need for retrospective analysis. [16]

R-GMA [20] is a monitoring and information management service for distributed

resources based on GMA (Grid Monitoring Architecture). It has a relational model with

SQL support to provide static and dynamic information about grid resources. Note that R-

GMA doesn’t provide a general distributed RDBMS but is relational in the sense that

producers announce what they have to publish with a sql create table statement and

publish with a sql insert and that consumers use a sql select to collect the information

they need.

 27

1.13 What Panda Monitoring Offers

Panda is a Grid middleware system developed to meet the data processing needs

of the ATLAS experiment in the United States. ATLAS processing of data, places

challenging requirements on throughput, scalability, robustness, minimal operations

manpower, efficient integrated data management and processing management. The

current estimate for the number of jobs is 200-300 thousand for a day in the United States

alone when the experiment begins to run on a full scale. Panda is also a system that is

slowly evolving into a generic high level workload manager for the OSG (Open Science

Grid) experiments and can be used by other experiments running on the OSG sites in the

United States.

Such important improvements to panda, place it at a very important position to

have a good monitoring system so as to completely understand the effectiveness with

which all the sites are running jobs. Monitoring in Panda again varies from giving simple

information in the form of the number of jobs running collectively at any given instance

of time across the sites, to more important attributes such as the reason why some jobs

might have failed. It is also responsible to give error codes if for some reason a job has

been waiting at a particular site without getting started even though there may be

resources available. These are just a few high level functionalities of the Panda

Monitoring system.

The current version of panda monitor is developed in Python. The whole system

runs on Python, Apache and Mysql, where Mysql databases implement the job queue, all

 28

metadata and monitoring repositories. The monitoring server works with the Mysql DBs,

including a logging DB populated by system components recording incidents via a simple

web service behind the standard python logging module, to provide web browser based

monitoring and browsing of the system and its jobs and data

Figure 1.8: A High level Architecture of the Panda Monitor

The information collection for Panda is handled by a module called the Panda

logger; it is most critical component since it records all the information to a central server

which the monitor uses to process user and system queries, to present the requested

information by means of a web interface. The module makes use of the standard python

logging module. The logger service runs off of the same Apache server as the monitor.

The logger service receives HTTP logging messages from clients and registers them in a

Request

Handler

Various Monitor

Components DB Utils

DB Panda Logger

VIEW

Various Grid sites of ATLAS VO

 29

logging DB in Mysql. The logger makes its entries into the repositories from where the

monitor picks up the necessary information. The Figure 8 above gives a very high level

description of the Panda monitor without going into the interaction aspects of each of the

components. The components mentioned in the above diagram can be defined at a high

level as the most important ones needed to get a monitor page running

Figure 1.9: Snapshot of the Existing Panda Monitor for Analysis Jobs.

The current Panda monitor helps in monitoring important information such as the

number of jobs running collectively under panda in a given period of time. The same can

be assessed individually for every individual site; this turns out to be an important factor

in determining the individual performance of every site. It is also helpful in monitoring

user information in terms of quotas which provides information about the limit available

for every user to submit jobs. The existing monitor is also responsible for monitoring the

 30

information about the pilots that are submitted, it gives the current state of the pilot in the

system such as submitted, scheduled, running, finished, failed. Additionally it also gives

error messages to understand why the pilot failed, if it went to a failed state. These error

messages play a key role in determining the potential problems that might arise in other

sites due to similar outages and helps in mitigating the resource downtime before if can

occur.

 31

CHAPTER 2

GOAL OF THE THESIS

2.1 Goal of the Monitoring System

 It was elaborated in detail in the previous chapter about the Grid infrastructure

and the various kinds of monitoring available in general and a brief introduction to grid

monitoring was given.

 Increasing number of components in computing environments, due to the

computing needs in society and the low prices of hardware, has led to many techniques

and tools being developed to help system administrators to manage their computing

resources. Monitoring is one of the most important ones of those that evolved in this

paradigm, and involves the use of software mainly to track computer activities and

hardware sensors to certain extent to collect other data. Monitoring may include tracking

of network activities and security threats, alert resource failures as well as keeping check

on Internet usage, data entry, e-mail and other computer applications used from by

individual users or computers. The need for a good monitoring system becomes

indispensable, considering the numerous components associated with the grid.

 There are a few important factors that have to be considered before looking into

the design and deployment of monitoring structure, as described below

 32

Monitored data should have a certain determined lifetime. Depending on the

volume of monitored data and the space available on hard disks, it will be necessary to

define how long the data will be required.

Data storage is an important area, certain parameters need to be stored directly

while some others will always have to go through some processing before they can

actually make sense or provide useful information to monitor. Both the cases have to be

handled efficiently.

 Update frequency varies depending on the data that is being recorded and it will

have to be altered according to the importance of the data and how long the recorded

value is legitimate. For more critical data the update frequency is maintained in small

numbers so that it can be made sure that the information is in synchronization with the

actual values.

Network data rate is another important aspect, in most of the monitoring systems

information has to be preserved in more than one place; the availability of the World

Wide Web has facilitated this easily. As this is the case at most places, a monitoring

system needs to be backed up by a strong networking system, the data rate should be

rapid enough to transfer the latest monitored information to the monitoring repository in a

prompt fashion.

Latency can be defined as the amount of time taken for a packet to travel from

source to destination. It includes transmission and processing time taken at both the

source and at the destination. This is heavily dependent on the network’s performance

and the processing power of monitoring system. Latency which is commonly called as

 33

lag should be tried and kept at its bare minimal always because, it proves to be a huge

problem when scaling any system.

Robustness is an important characteristic for any system, should a failure happen

to the monitoring system, monitored data should still be able to reach the destination

without trouble. Loss in information cannot be tolerated in any system, especially in a

monitoring system. Usually robustness is achieved by acting in a proactive manner and

making copies of the data before it is transmitted anywhere and once there is an

acknowledgement for the data to have reached safely, the backed up data is processed

accordingly.

Security of the monitored information is very important, hence effective storage

of the data in secure locations and usage of encryption techniques while sending the data

over the Internet, or even between a LAN’s is an important step to ensure safe

transmission.

2.2 Monitoring System Types

Two main types of monitoring can be reported they are. [21]

• Time Driven Monitoring

• Event Driven Monitoring

This technique is based on acquiring periodic status information to provide an

immediate view of the behavior of the objects being monitored. This may extend over a

prolonged period of time frame and could be used to study the performance of the system

over a long time.

 34

This approach is based on obtaining information about the occurrence of interesting

events. This is a dynamic pattern of monitoring since only events evoking special

interests to a set of people are monitored. It could be trigged by any special case

occurrence or anomalies that may be stumbled upon.

2.3 Information Retrieval for Monitoring

Retrieval of information from a monitoring system can also be classified into two

types. They are [22].

• Passive

• Active

Passive monitoring is like a wait and watch mode model, here any relevant

information is not requested specifically but is sent in a periodical fashion by the device

itself. The incoming data from the specific sensors or devices are recorded in a database

and used later to be processed individually or with other data.

Active monitoring is a demand and serve model. Periodical requests are sent in

the form of external signals to the monitored system, and it follows the requests and

measures the requested values and reports back.

2.4 What to Monitor

There are various areas which can be monitored and a few of them can be given

as [23]:

• Performance

 35

• Fault

• Accounting

• Security

2.4.1 Performance

 In the above mentioned monitoring areas, performance is an important aspect of

any system. A monitoring system’s performance can be measured various factors like,

• Availability

• Response time

• Throughput

• Utilization

 Availability of a system could be given simply as the percent of time the system is

available for a user. Availability is based on the reliability of the system. If a system

consists of more than one component, then the reliability is the collective reliability of all

the components. The reliability is calculated by the probability that a component will

perform its specified function for a specified time under specified conditions. It can be

expressed by:

 Availability= MTBF*100/ (MTBF+MTTR)

 Where MTBF is Mean Time Between Failures and represents the component

failure and MTTR for Mean Time to Repair. Hence as the number of components

comprising a system grows, calculation of availability becomes relatively complex.

 36

Response time is the time it takes for a system to respond to a given user input or

query. Shorter response times are desirable in all systems and creating a monitoring

system is focused towards achieving optimized response times.

Throughput can be defined as the rate at which application oriented events occur.

This is an interesting performance analysis area and could even be useful to predict the

demand that could be there for the system at a given time. This is done by collection of

historical data which could be used to predict times when the system will be overloaded.

Throughput usually helps us give an estimate demand that will exist for the system given

certain conditions.

Utilization is a parameter which can give the percentage of time the system was

used as against the total time it was up and running. It could also help in probability

analysis to say the most likely times during which the system is to be overloaded .It is a

fairly simple but effective tool which can measure network efficiency like parameters.

2.4.2. Fault

 Fault monitoring is mainly done with fault mitigation in aim. Fault monitoring

aims to identify faults as quickly as possible and to identify cause of such occurrences.

Speedy fault detection enables remedial actions to be taken reducing the overhead caused

but this has certain problems.

• Some devices do not have an effective fault detection mechanism.

• Late response from a monitored resource may mean even just network congestion

but could give an impression that the device is faulty.

 37

• Some times failure patterns that occur could not be detected with just one or a few

occurrences and could lead to a situation where the problem could still not be

tackled.

 Failures can be anticipated by defining thresholds and by sending notification

when the monitored values cross the set limits. This is a proactive way to effectively

isolate and diagnose various faults

2.4.3 Accounting

The goal of accounting is to record information on resources and service usage of

the system. The accounted resources are usually hardware usage, communication

facilities or services. It is mainly done for policy purposes to enforce certain rules on a

organization or user. This is a kind of Application monitoring that was discussed in the

types of monitoring and has lower significance than an Infrastructure monitoring.

2.4.4 Security

Monitoring can be used to check the security of the system. Deploying a

monitoring solution enables the identification of unofficial services or servers. It can also

be a precious tool in helping to detect network security violation such as intrusions or

compromised host. Detecting suspicious activity and cutting it off immediately is of

prime importance since the data that we are dealing is usually of high importance and its

integrity cannot be compromised.

 38

2.5 Monitoring Vs Over-Monitoring

The maximum parameters monitored in a system, the better can be the

understanding of the same. When designing a monitoring system, it is often tempting to

monitor everything. This can prove to be a costly affair as too much information makes it

hard to see what is important and might cripple the service. That’s why it is crucial to

carefully choose the services to monitor, depending on needs and goals.

 Monitoring is one such area where redundant information can infiltrate easily and

can actually reduce the efficiency with which a monitoring system can actually service

the users. It is very easy to slip in that zone which starts using the resources available for

monitoring which will otherwise be used to do process the actual jobs.

2.6 Striking the Balance

 It is highly important that we clearly categorize what is crucial for the current

system to be monitored, so that it results in better performance ,we have to have the users

high level requirements in mind to look at what we are monitoring. Striking the perfect

balance between crucial, necessary and redundant data is an important aspect of a good

and efficient monitoring system.

Consider a simple case of IP packet sniffing for security purposes over a network.

By default, assume all packet level transactions are recorded as a part of security

measures, and the system suddenly detects a suspicious activity, a good monitoring

system should be able to detect the spurious activity and be able to automatically shut

 39

down the source from accessing the system further, but how a monitoring systems

achieves this depends on the architect who laid the plans for it.

A normal system would just start logging the spurious activity once it starts

picking it up ,on top of the information it is already recording previously and utilize a few

other resources to come to the conclusion that something is wrong. An efficiently

designed system would not log the redundant information again and once it picks up a

suspicious activity would probably just report the IP address from where it is picking it

up to the system, which is already logging all this information. This system should be

able to successfully process all this information without disturbing other resources which

might be serving other requests, and must still be able to shut down the source of the

suspicious activity.

Over-monitoring has various disadvantages; a few of them can be listed as

wastage of resources which will otherwise be involved in processing the requests, also it

results in added burden to the database of the system when excessive data is collected by

overlooking. The added overhead to the network lines that carry this entire excessive

payload should also be noted. These are just a few disadvantages enumerated, much

trouble is caused by over monitoring and it is in the best interest of the system to plan

ahead and monitor the crucial and necessary data alone, this helps in establishing a robust

system.

 40

2.7 Goals of Panda Monitor

The Panda Monitor is a grid middleware monitoring system which is a classical

example of an infrastructure monitor and an application monitor which works in tandem.

The current version of Panda Monitor is developed completely in Python. The

whole system runs on Python Apache and Mysql, where Mysql databases implement the

job queue and all metadata and monitoring repositories. A monitoring server works with

the Mysql DBs, including a logging DB populated by system components recording

incidents through a simple web service, it provides web browser based monitoring and

browsing of the system for its jobs and related data. Though this proves very much fine

right now, it is the common opinion that it will not scale well once the original jobs start

coming into the system to the tune of 300,000 jobs a day. The current version of Panda

only runs 3000-4000 jobs everyday. The current monitor response times range between

23 to 84 seconds depending on the query. This lag and greater response time can be

attributed to the clear non compliance with a clean Model View Controller (MVC)

architecture by most of the code which is responsible for the Panda monitor; this

especially proves vital when we are dealing with web based applications.

The Figure below illustrates a high level interaction scheme of the Panda monitor

with all the other components of the Panda, the python logging scripts which are

responsible for collecting all the information can be seen in orange.

There is a python monitor logger server which is centralized and picks up all the

information about different sites from its head nodes and also interacts with the Data

 41

manager which is responsible for providing information about the status of the respective

DQ2 datasets which are specific to each site. A more elaborate description and the

individual working components of the monitor will be discussed in detail in the sections

to come.

The current Panda monitors important information such as the number of jobs

running collectively under Panda in a given period of time, the same can be assessed

individually for every individual site, this turns out to be an important factor in

determining the individual performance.

Figure 2.1: Illustration of the Panda Monitor interaction at a very high level

It is also helpful in monitoring user information in terms of quotas which provides

information about the limit available for every user to submit jobs. The existing monitor

http

The ATLAS

Production

Interface

Panda

Monitor

server

PY

Logger

Server

http

Monitor

Logging

DB

D

B

D

B

Task Buffer

PY

Broker

Data ser

Dispatch

PY Logging

Panda

DB

D

B

D

B

DQ 2

Manager

http

 42

is also responsible for monitoring the information about the pilots that are submitted, it

gives the current state of the pilot in the system such as submitted, scheduled, running,

finished and failed. Additionally it also gives error messages to understand why the pilot

failed, if incase it went to a failed state. These error messages play a key role in

determining the potential problems that might arise in other sites due to similar outages

and help in mitigating the resource downtime before if can occur.

 43

CHAPTER 3

THE PANDA ARCHITECTURE

3.1 Introduction

In ATLAS experiment where we deal with heavy nuclei collision and proton-

proton collision, data collected from LHC could reach several petabytes [28] a year from

the detector into the production system. To deal with huge amount of data, we need

collaboration of clusters of computers from many different places. Panda (Production and

Distributed Analysis System) as a grid middleware is designed to effectively handle the

data from the ATLAS production system and send them to the computer cluster that has

enough resource, right capability to process and also to facilitate data analysis.

Panda is an effort by the US ATLAS to meet the requirements of the ATLAS

experiment for full scale production and distributed analysis processing. Current

estimates of the number of jobs that could come in every day into the USA are placed at

200,000 – 300,000 [28] and the actual number could be more as the experiment begins.

This huge amount of jobs requires a system that is scalable, robust and has efficient

integrated data/processing management. Panda was built with all these requirements in

mind.

 44

3.2 Atlas Production System

In the ATLAS production system, Panda functions as a regional executor for the

OSG sites, interacting with an ATLAS production system supervisor like the Ewoyn, to

receive and report production work. Panda also operates as an efficient executor system

to serve both production and analysis workloads.

The Architecture of the ATLAS Prodsys can be given by four major components [28]:

• Supervisor: The supervisor is the first level where the interaction occurs with the

collection of the data, an example of a supervisor is Eowyn (second generation)

• ProdDB: Production data base is the one where the raw data from the colliders are

collected.

• DDM: Distributed data management system DQ2

• Executors: Capone can be cited as an example for Executors. Panda is one which

is moving in as a generic executor in the OSG sites.

 45

Figure 3.1: A figure showing the complete ATLAS Production System [12]

Jobs are submitted to Panda through a simple python client interface by which

users define job sets, their associated datasets and the input/output files. Job specifications

are transmitted to the Panda server through HTTP, with submission information returned to

the client. This client interface has been used to implement Panda front ends for ATLAS

production (Python Executor Interface) distributed analysis (Pathena) [28] and US regional

production.

ProdDB

CE

CE

NG exe

ATLAS Production System

super

OSG exe LCG exe

super
super

CE

“Panda”

DMS (DQ2)

SE/RLS SE/RLS SE/RLS

 46

3.3 Panda Architecture

Panda has a number of components the important ones are

• Panda Server

• Panda Job Scheduler

• Panda Pilot

• Distributed Data Management

Panda was designed with the aim to support all job sources like ATLAS

production, regional, group and user production. It facilitates interactive and distributed

analysis. It is a system that is tightly integrated with the ATLAS DDM (DQ2).The

scheme for data management is clearly a data driven and dataset based workflow. The

data is pre-staged at the grid site before the job is dispatched; this is one of the most

important characteristics of Panda which makes it reliable. It can be said with certainty

that the data will be available to the site before any processing will even begin and it can

be assured that the resources at the other end will not sit idle waiting for data to arrive.

 47

Figure 3.2: Figure giving the over all Panda Architecture and its components [28]

Job scheduling and assignments are taken care of internally within Panda itself and

hence it does not need any external help in the form of middleware to achieve job

scheduling. The same is the case with job dispatching, which makes the design more

congruent where similar tasks grouped together before dispatching thereby lowering the

burden of grid.

 48

3.4 A Brief Overview

 The working of the Panda system can be understood better by having a brief

overview in the hierarchy of the systems that are involved in the ATLAS experiment.

The main center of the system is classified as Tier0 [7] CERN (Center of

European Union Nuclear Research). It is responsible for archiving and distribution of raw

data from event filter (EF) [29]. This is the first level of prompt reconstruction of

calibration.

The next level in the hierarchy are called the Tier 1 sites .There are many

organizations in Tier 1 and Brookhaven National Labs is one among them .BNL hosts

and provides long-term access and archiving to a subset of the raw data, and reprocessing

of raw data.

The next level in the hierarchy is the Tier 2 sites which provide calibration

constant, simulation and analysis. These also play an important part since they have more

information about DDM data and can prove to be vital while we are trying to access

information about the whereabouts of a particular datasets. Sites which are relatively big

in size are the ones which fall under this category. For example, UTA is a Tier 2 site and

is responsible for job management in its zone and also will house a major portion of the

datasets.

The last level in the structure is smaller organizations which have a few grids

established and contribute to the processing of data. There are many such organizations

throughout the United States in the form of universities or independent organizations

 49

which interact with their Zonal Tier 2 sites to obtain jobs in order to process the data at

their end.

DDM provides services for data cataloging and data transfers between Atlas sites.

Datasets comes from [32]

• RAW data flowing into T0

• Managed production of ESD, and AOD

• Simulation production all yield datasets

The supervisor has a number of responsibilities; some of them include translating

job descriptions held in DB into appropriate scripts or commands. This is in the form of

XML since transactions are through a HTTPS by using XML. The supervisor is also

responsible for submitting jobs, validating a job when it finishes and resubmitting job in

case of failure. The supervisor is also responsible for updating the production database to

make sure all logging of the available datasets are the current information.

The Supervisor sends a request for the number of jobs wanted to the executor (for

example Panda) and then it responds with a default number say 1000 jobs .Since Panda is

a data driven model, and it follows a execution pattern where data is already deposited

before the job arrives, the supervisor gets data from production DB (ATLAS production

system) and then sends it to executor in the form of XML code. Then the executor parses

the XML, puts the job description to a proper data structure and then sends it to task

buffer

 The task buffer after obtaining the job transfers control to the Brokerage unit from

where the brokerage unit makes a request to Task buffer to send jobs over and groups

 50

according to certain preferences like locality of distribution of datasets, this is where the

DDM or data services of Panda gains importance. They collectively group datasets in a

pattern where they are closely associated and they also choose sites to this group of jobs

based on the DDM data blocks. Then it transfers control to its own Data service to

organize a file transfer through DDM. The brokerage unit is also responsible for updating

the Task buffer about transfers that just happened.

 The Panda server by itself has other important components they can be given as

• Panda Task buffer

• Panda Brokerage

• Panda Job Dispatcher

• Panda Data Service

The Panda server can be described as the central Panda hub composed of several

components that make up the core of Panda; it is implemented as a stateless REST

(Representational State Transfer) web service.

The Panda server receives work from these front ends into a global job queue,

upon which a brokerage module operates to prioritize and assign work on the basis of job

type, priority, input dataset and its locality, and available CPU resources. Allocation of

job blocks to sites is followed by the dispatch of input data to those sites, handled by a

data service interacting with the ATLAS distributed data management system [32]. Data

pre-placement is a strict precondition for job execution; jobs are not released for

processing until the data arrives at the processing site. When data dispatch completes,

jobs are made available to a job dispatcher.

 51

Figure 3.3: A high level working view of the Panda Server [32]

An independent subsystem manages the delivery of pilot jobs to worker nodes

through a number of scheduling systems. A pilot once launched on a worker node

contacts the dispatcher and receives an available job appropriate to the site. If no

appropriate job is available, the pilot may immediately exit or may pause and ask again

later, depending on its configuration. Minimal latency from job submission to launch is

important, is that the pilot dispatch mechanism bypasses any latency in the scheduling

system for submitting and launching the pilot itself.

 The Data service is one of the most important components in Panda in the

execution sequence. It is responsible for requesting and selecting groups of jobs from task

 52

buffer. It also takes in account lists of available sites before doing such an assignment of

jobs and grouping them. The data service also requests the list of available sites from the

brokerage and is also responsible for requests DDM to reserve and move blocks of data

these are the input files which come from the Brokerage and Tier 1 sites. The data

services are also responsible for checking the status of the group of jobs in task buffer

and it also receives notification from DDM on completion of transfer to trigger

downstream actions. The data services also requests DDM to move and archive output

files.

 The dispatcher is responsible for making sure the specific requirement for the jobs

are directed to the right site where there are enough resources available. Moreover it

should also be made sure that the load balancing is achieved in a proper manner so that

simple jobs are not directed to sites with excess resources. This might result in other

bigger jobs being blocked.

 Firstly the dispatcher requests the task buffer for the highest priority job which

meets site requirements and whose input files had already been pre-staged [32] .The

availability of data at the site which is being explored for job execution is a major

requirement in Panda and hence it has to be met before jobs can be sent to any specific

sites.

This is the pattern in which execution happens in Panda, finally to have an

overview jobs flow through executor interface, task buffer and brokerage in a continuous

manner.

 53

Figure 3.4: The Panda Server Interaction with DQ2

So while new jobs keep coming into task buffer, some of them are already being

processed by the brokerage and ready for taking input files and those corresponding jobs

in. Task Buffer ready for input files are maintained in such a manner that they are of

higher priority than the other jobs being processed by the Dispatcher. The next step is to

create executable job wrapper send it across to the specific site that was designated to it

based on availability of resources, it then monitors progress of jobs and updates the Task

Buffer [31].

The executor then sends a query to the Task Buffer to find out the status of the

job. This is the final stage where the status of the job is recorded if it went through or it is

in the waiting state.

The Panda brokerage is also a part of the server and it works closely with all the

other components of the server like the task buffer and job dispatcher to make sure jobs

Apache (mod_python) Job info, etc

Client

Job submitter

Pilot

DQ2 callback

Monitor

Child process DB

DQ2

Python interpreter

Python interpreter

HTTP/HTTP

MySQL API

HTTP/HTTPS

 54

are handled properly. The main work of the brokerage is to manage where jobs and

associated data are sent based on job characteristics, data locality, priorities, user/group

role, and site. It does the important job of keeping track of which job goes where and is

also responsible for making some important decisions as to where the job has to go based

on information of resources available in each site. The brokerage makes the decisions

based on the resources and capacities matched to job needs, and dynamic site

information. Also the proximity of the datasets to the site if some of them are not

available already is a deciding factor for all the decision.

3.5 DDM-Distributed Data Management:

 DDM is an important component which is responsible for moving the data around

for the effective working of Panda; the main aim of the DDM is to provide a service for

data cataloguing and data transfer between Atlas sites .The new DDM software is called

DQ2 (Don Quixote 2) [29].At a very high level DDM can be given by two major

components

• Catalogue Services which can be further divided into

o Catalogue client

o Catalogue server

• Site Services

The Catalogue services are responsible for tracking data movement across the

grid sites. Large amount of files are grouped into dataset based on attributes (e.g. physics

 55

characteristics, chronological productions and so on). Data are only moved or replicated

in units of data blocks (immutable datasets). Also, the cataloguing services allow dataset

based lookup and it is achieved in a manner where it is reliable without complex

mechanisms to maintain global consistency of the data .A separate catalog is used to map

dataset into its constituent files.

The site services are responsible for moving data from site to site .The decisions

on how to move datasets between sites is achieved by interacting with the global

catalogue and the local dataset to facilitate the moving of data across. A very brief

overview of the working of DQ2 is provided below to have an understanding of the

component.

The DQ2 system can be given as two major components at a very high level as

shown in the architecture diagram they are the [32]:

• Global catalog

• Local catalog

The global catalog has partial repository of all the objects in the local catalogs

The important components of the DQ2 system are:

• Content Catalog: This component is responsible for mapping each dataset to its

constituent files

• Dataset Repository: This holds all dataset names and unique IDs representing

them along with the system metadata.

• Subscription Catalog: This stores subscriptions of datasets to sites

 56

• Location Catalog: This is one of the major components which have the actual

physical location of the datasets.

Figure 3.5: Architecture of the DDM services (DQ2) [32]

The Dataset repository is a catalog of datasets; it also serves as a principle catalog

and look-up source for datasets but this is not the place where users perform queries to

retrieve datasets. The Dataset-selection-catalogue provides detailed information by

adding descriptive, query able content (physics metadata: physics attributes e.g.

luminosity) [32].

 57

The next step in the process is looking into a dataset select catalogue which is

followed by dataset content catalogue where the actual mapping from a dataset to its

constituent logical files happens. This process retrieves metadata which are nothing but

the dataset Id and any other names given to it, then it looks into the content files with the

metadata obtained in the previous stage and figures out which site the files are physically

present .It is always possible that some of the files are not always located at one

particular grid site and are actually distributed. It looks up the location catalog to locate

these files on the other sites and pulls them up together. The location catalogue provides

look-up of the sites where copies of those data blocks can be found.

Data block is the unit of data replication and transfer in DDM. Those logical

representations of files and grouping of files can be thought of as points or indices to the

actual physical storage of those files. DDM’s in higher tier has all the logical pointers or

indices to those physical files stored in the DDM’s of the lower tiers.

 The site services provide logical files, physical data files which are the actual

contents. Client subscription specifies which data to be transferred to which specific local

sites. DQ2 local site service finds subscriptions and pulls the requested data to local site

so that client subscribes can trigger dataset replication to local site.

Datasets are grouped together with rules defined by their content, hierarchy (from

general to specific), location and other parameters these rules are pre-defined through

data coming from production jobs. The datasets will go from top tiers to lower tiers

necessary and will be stored in their DDM systems as required; later these datasets will

be categorized and organized by those respective DDM systems through catalog.

 58

Dataset repository provides a nice data presentation through Data selection

catalog so that end user can choose desired datasets more easily, an interface to facilitate

data selections

 Subscription services in Panda is an important activity that makes sure the

datasets that are much in requirement are replicated properly and put up at various sites

where they will be used widely for jobs. In this process a T1 facility like BNL subscribes

to a group of datasets, and then T0 locates those datasets, make a replica of the dataset

and sends it to T1.

 Data subscription is associated with production jobs that have all the rules for

grouping datasets. The user then finds what they want and send subscriptions for the

specific data. Catalog service then checks content, hierarchy and location catalog then

gets back to end user with datasets available for use with proper dataset.

 59

CHAPTER 4

PANDA MONITOR FEATURES

4.1 Panda Main Page

 The figure below is that of the introductory page to the Panda monitor. It gives a

brief description of the various features that are available in the panda monitor and the

various kinds of information you can obtain related to ATLAS experiment from it. We

will explore some of the features that Panda monitor offers in detail.

Figure 4.1: Startup page for Panda Monitor

 60

4.2 Production and Analysis page

Panda monitor extensively allows the monitoring of production and analysis jobs.

The top part of the monitor which is called the dashboard has quick links to the most

frequently browsed information on the panda monitor. It has various links which we will

explore in detail, the first of them being production and analysis. A click on production

redirects to a collective information page on the production sites in United States.

Figure 4.2: Panda production operations page

Dash Board

Production Sites Regional Groups

 61

The production page allows you to have a look at all production sites at a glance

and it also allows the production sites to be seen region wise for example the production

sites in the United States alone or in Canada alone could be retrieved separately.

It also gives information about the pilot job requests in the last 3 hours throughout

the productions sites in United States. It also gives you more specific information in

numbers about the status of the jobs running at each site like running, pending, failed and

so on. This helps in collectively seeing if all sites are doing good or if at some place there

are failures they can be immediately inspected.

The production job page also provides information about the subscriptions for

panda in the last 3 hours and the production blocks of datasets that have been active for

the past 12 hours, both these features are illustrated in the image above. Clicking on the

respective links will give more information about the dataset in the form of Panda Id

which has been assigned to it the time it was created and other information pertinent to it.

 62

Figure 4.3: Production Page showing subscription and active blocks

The analysis job page is equally important as that of the production page and it is

specifically the page where jobs submitted by users are put. This helps them in easily

traversing to the specific jobs that they submitted and having a look at its status. The

figure below gives a snapshot of the analysis page of the panda monitors and gives a

preview of the options available to obtain relevant information.

Subscriptions in the last 12 hrs Production Blocks active in

last 12 hours

 63

Figure 4.4: Analysis Jobs page of the Panda monitor

This page allows a user to specifically traverse to an analysis site where the user

might be interested to see the performance of even a particular node of an organization

that he might be affiliated to .For example if a person from UTA wants to see the number

of jobs running at a particular node for a given analysis job he could find that information

in this page. It gives the finished or running jobs on a particular node and if further

information is needed to see the name of the jobs that can also be obtained by just

clicking on the number and it would give the jobs running at that particular node at UTA.

Analysis Job Sites

 64

Furthermore the actual error codes for the jobs that failed at a particular site can

also be obtained at this page. For example, the snapshot below reveals the failed job

codes in the site ANALY_BNL_ATLAS_1. This is made even mode transparent in the

recent version of the monitor by giving the explanation for the failure codes just by their

side. This greatly helps in site administrators and people submitting jobs to inspect it if

failure becomes redundant due to a same error and corrective action can be taken

immediately.

Figure 4.5: Analysis Page showing error codes and Reason for failure

4.3 Cloud Organizations

This is currently a new feature that is introduced in the Panda monitor. It allows

monitoring of sites and tasks in the form of organization they belong to. A snapshot of

Error Codes Reason for Failure

 65

the page is given below. Firstly they are displayed region wise where they are grouped

according to the continents and inside that classification we have the big umbrella

organizations which have collective information on all the tasks they are assigned. The

snapshot shows BNL, UT Arlington, UT Dallas and a few other organizations are

represented under the cloud organizations in the United States. Also clicking on the

specific cloud organization will give information about the organization about all the

queues that are operational with the cloud organization. It also gives some additional

information about the number of running, failed and finished jobs.

Figure 4.6: A page showing the newly added cloud feature

Cloud of US sites

 66

4.4 DDM and Features

DDM operations monitoring is also supported in Panda, it provides information

about the DDM operations going on in between the Panda sites operating in the United

States. It also has internal links within the same page to link to ATLAS DDM dashboard

which provides collective information about the DDM operations across the globe. A

snapshot of the page which pops up for DDM operations is presented below; it provides a

comprehensive tabulation of the space available in each of the sites that house DQ2

datasets. UTA is one such site and the snapshot also shows UTA listed there with the

available disk space in terms of gigabytes.

Also information related to subscriptions received in each of the sites is put up in

a comprehensive manner. It provides figures which indicate the number of dispatch

blocks and destination blocks at each of these sites and allow a user to get a snapshot

overview of the status.

There is also another feature associated with the DDM operation is the Panda

dashboard it provides a link called Panda mover. This provides a detailed status report of

the datasets being moved around from site to site mostly the main source here being the

Brookhaven National Laboratories keeps moving data around various Tier 2 sites which

have enough resources available with them. It shows a concise table where collective

numerical information is logged pertinent to the total of the datasets being moved around.

This also give a concise snapshot on the status of the DQ2 moving by standard status

messages such as done, transFail ,fileExists, maxAttempt, run, active. There is also a

 67

detailed description of each of these subscriptions that went to specific sites with the

Panda Id, source, destination, status,

Figure 4.7: DDM operations page showing disk space and information about data blocks

dataset Id and name among other information. This helps a user in understanding the

status of the subscriptions submitted and database replication going on related to the

subscriptions made.

Disk space at each site

Dispatch, Destination

Blocks

 68

4.5 Autopilot

Auto-Pilot is a simple and generic implementation of Panda pilot and pilot-scheduler for

use in more varied environments than the production pilots and schedulers currently in

use with Panda.

Figure 4.8: A snapshot pf the newly added autopilot feature

The pilot is a lightweight execution environment used to prepare the computing

resources, request the actual payload (a production or user analysis job) from Panda

Snapshot information

Detailed information

 69

server, execute it, and clean up when the payload has finished. The pilots are broadcasted

from the pilot scheduler to the batch systems and the grid sites. The actual payload is

scheduled when a CPU becomes available, leading to a low latency for analysis tasks. For

robustness, the pilot jobs can be submitted either through Condor-G or locally.

Auto-Pilot provides an pilot implementation that contains no US ATLAS or

ATLAS specific content, such that it can be used in a wide range of contexts: within

ATLAS but outside OSG, within OSG but outside US ATLAS, from an 'off-grid' laptop

or workstation or batch queue, etc.

Firstly, different PANDASITE labels are presented as links. These links lead to

pages that give a list of all recently scheduled pilots with that particular site.

 70

Figure 4.9: Autopilot page showing recent or running pilots

This page also provides information about current or recent active Pilot

schedulers. Information like ID, name of the machine hosting this scheduler instance, the

pandasite that the pilots being scheduled contain, queue or tag (group of queues) the

pilots are being scheduled to by this scheduler, who started the scheduler, state of the

scheduler etc. PANDASITE is a very important criterion while deciding a computing

node for a payload or a job.

Current or recent

active Pilot

Links to Sites

 71

 Links to pages listing queues in different geographical location

Link to pages for each queue

Figure 4.10: Autopilot page showing queues and tag names

. Link to the tag

definitions

 72

4.6 Usage and Quotas

Another feature that panda monitor allows is to see the allotted quota of resources

for each user who submits analysis and production jobs. As production jobs start coming

in, once the experiment begins it will become inevitable to restrict people from

submitting excessive jobs subscriptions based on their role in the experiment. The quotas

for submission will be varied according to the user’s organization. To monitor resource

management issues, a page is put up where a user’s utilization of the grid resources is

tabulated in daily, weekly and monthly figures for analysis and production jobs. This

feature not only allows the individual user to monitor his available quota for the day but

also allows grid administrators to monitor the usage of each person individually.

Figure 4.11: A snapshot of the User Quota page listing all users

 73

4.7 History Plots

 This feature allows plotting of graphs for specific intervals which are obtained as

inputs from the user, the user is allowed to query for the present day, yesterday, a week or

month based on his requirements. The inputs are collected from the user as to if he

wishes to see the graphs plotted for specific sites or if he wishes to collectively monitor

the performance of all sites in which case he chooses the All Sites option from the drop

down box. Alternatively the user is allowed to specify his own dates which he is

interested in to see the graphs for and he can also choose an interval limit in which he like

to see the plots like a typical query could look like weekly plots for UTA-Dpcc at an

interval of 1 day .

Figure 4.12: A snapshot of the querying page of History Plots

 74

The above figure shows a snapshot of the page which allows the user to choose

the different options that are available for querying.

Below, is a graph given which is obtained as a result of a query of collective

running jobs on all sites for the past week at an interval of 1 day.

Figure 4.13: A graph that was generated from the History plots application

 75

CHAPTER 5

PANDA MONITOR ARCHITECTURE

5.1 Monitor Architecture Overview

The following diagram represents a detailed architecture view of the Panda

monitor and gives an account of its major components .The major components of the

Panda monitor can be given as:

• Request handler

• DB utils

• Panda monitor tils

• HTML utils

• Panda logger

• Database

Each of the above components is elaborated below illustrating their specific roles in

the effective building up of the panda monitor.

 76

Figure 5.1: A detailed architecture view of the existing monitor

Request Handler

 HTML

 Panda Monitor

Panda Logger

 Database

BNL_

ATLAS_1

ANALY_BN

L_ATLAS_1
BNL_

ATLAS_2

ANALY

_BNL_A

TLAS_2

 DB Utils

 Login Module

Graph

Dashboard

 Job Query

 Panda Overview

 77

5.2 The Request Handler

Figure 5.2: Representation of the Request Handler

The current Panda monitor helps in monitoring important information such as the

number of jobs running collectively in Panda during a given period of time; the same can

be assessed individually for every site. This turns out to be an important factor in

determining the individual performance.

The request handler module acts as the main gateway for the entire Panda

monitor. This module allows interaction between the various modules that are the

building components of Panda monitor. To access the different modules, the Panda

monitor user interface provides links that helps in passing different parameters to

differentiate the modules to be accessed. Based on the parameters passed from the user

interface of the Panda monitor, the request handler routes the calls to the various modules

like job query, dashboard, and graph generation. The request handler acts like an abstract

layer that encompasses all the different module invocations. In the process, basic steps

Request Handler

 Login Module

Panda Overview

JobQueryModule

Dashboard Module

Graph Generation

 78

like retrieving the result from the respective modules, building the html result page are

also handled. Eventually, this module, acts as a pivotal module, thereby ensuring layered

architecture for the Panda monitor.

 Each of the above modules (in green), have a specific action to be performed.

These modules are self sufficient and hence, contain all the associated functions in it.

Panda overview module aids in generating the initial index pages for all the modules

involved in the specific layer. It acts as an under lying module for the dashboard module

and the job query module. Apart from these, there are enormous functionalities of the

Panda overview; they help in viewing the log files, error handling and all search related

functionalities. Hence, Panda overview module guarantees all the basic functionalities

panda monitor to be ported as a web page

The login module is also found in this application. This module provides/restricts

access for the users of the system, by which the security of the system is ensured.

5.3 The Database

Figure 5.3: Illustration of Database operations

 DBUtils

 Database Panda Monitor Utils Request Handler

 79

 The DB utilities module provides the necessary interface to interact with the

database involved in the Panda monitor. The Panda monitor utilities; module is the one

where the database results are linked on the result page to be displayed for any call to the

Panda monitor. This generated resultant page is passed over to the request handler

module, which in turn displays it in the browser. Thus, it is evident that Panda monitor

utilities module acts in lower level to ensure the seamless working of the system. The

entire page rendering functions and dataset typecasting functions are handled in this

module. This module also checks the server status and monitors the configuration settings

for the application.

 As it is the case with all the application systems, there is a centralized database,

which collectively holds all the necessary data for the Panda monitor. This acts as a back

bone for this complete application.

5.4 Logging and Utilities

Figure 5.4: A representation to show logging of data to panda central database

 Database Panda Monitor Utils

Panda Monitor Logging HTML Utils

BNL_

ATLAS_1

ANALY_BNL

_ATLAS_1

BNL_

ATLAS_2

ANALY_BNL

_ATLAS_2

 80

5.5 HTML Utilities

This module aids in forming link displays in the pages, links to the pages and also

acts as a style sheet to the elements in the HTML pages used in the application. This

helps in customizing the user interface and serves as a necessary utility to build the

outline of the panda monitor

5.6 Panda Logger

The Panda monitor has an extensive logging facility. This is done using the

module, Panda logger. Logging is done using the HTTP handler for each page and also

the respective locks required for such transactions are also ensured.

 81

CHAPTER 6

PROPOSAL FOR A ROBUST MONITOR

6.1 Introduction and Groundwork

Panda monitor when created, served the needs of the scientists and grid

administrators efficiently. But as it kept evolving, many problems were slowly being

uncovered with the current monitor. One of the major concerns with the existing monitor

was that it was responding very slowly to even normal queries to the system. Queries

such as information about running or assigned jobs sometimes take close to a minute to

build all the information needed for that page. This time delay is unacceptable; however

the major concern was due to the fact that the monitor was just being tested with around

6000-8000 test jobs per day at the moment. This number could go as high as 200,000 jobs

when the experiment begins. This raised the alarm and indicated that current monitor will

not scale well once the experiment begins. The scalability issue with the current monitor

could be attributed to group of factors.

The first thing that could be noted down in the current version of the monitor is

the absence of any kind of features incorporated in the web such as JavaScript and XML

to deal with the huge amount of information .The content in each page is relatively large

to a normal web based service since the experiment demands it that way. Also the way in

which information was organized in each of the pages posed a problem. A clear

 82

differentiation between users and administrators could not be made. A simple example

could be cited as, if a person would like to access the page for running, defined or

finished jobs, for example, he will be provided with all the information related to the kind

of job he or she requested which was submitted by all panda users. Usually this kind of

information spans to a large number of pages and will also be difficult for the user to

scroll down to look into selective information that he or she is interested in. A person

usually accessing such a page will be more interested in his/her jobs submitted or jobs

related to his/her organization.

This kind of user level filter was not in the goal of Panda monitor when it was

designed initially. Collective information such as the one described above proved to be

very useful to system administrators or super administrators who would like to see all the

information in one click.

Panda is evolving faster than it was originally expected to; plans are ongoing to

make it common grid middleware which could help experiments using OSG sites. One

such experiment which already took to using Panda for their purposes is CHAARM

(Chemistry at HARvard Molecular Mechanics). When experiments are using Panda to be

their new grid middleware and when panda is moving to the next level as a successful

grid manager middleware, there is an absolute need for a customized and scalable

monitor which can appeal to more experiments to use panda as a part of their grid

management needs.

 83

Figure 6.1: Architectural view of the Proposed Panda Monitor

The first obvious conclusion that could be arrived is to make the existing monitor

more scalable with the use of the new generation of web paradigm called AJAX which is

an acronym for Asynchronous Java and XML, the use of this kind of feature in a page

which has to deal with huge amounts of information, could actually reduce the amount of

information fetched every time without actually reloading the currently available content

in the page. So the idea is pretty simple as the user is still going through the information

 Populates

 Data

Sends Query Receives Response

 PANDA MONITOR VIEW

 Dash board

 View &

 Helper

 Job Query

 View &

 Helper

 Graph Gen

 View &

 Helper

 Login

 View &

 Helper

 PANDA MONITOR CONTROLLER

 Dash Board

 Controller

 Job Query

 Controller

 Graph Gen

 Controller

 Login

 Controller

 Login

 Model

 Graph Gen

 Model

 Dash Board

 Model

 Job Query

 Model

Displays View

Invoking Controller

Access Data

 Sends a request to Web Server

Web Server

 (Apache)

 Database

PANDA USER

 84

in the page, any thing new that he requests will actually be made available without

reloading the page. This could be a potentially apt solution for making the monitor quiet

responsive in terms of turn around time and interactivity.

However when Panda wants to scale to another level by implementing more

interactivity in the form of graphs and better ways of representation other than just text,

the current monitor could still pose a problem since it was written in Python and there are

not many options which offer good scalability in the web.

The next thing that was discussed to overcome the problem was to adapt user

based logins for Panda and give a set of default options in the start up page where the

user will have a fixed set of links which might be of interest to him. Hence pages for

general users and administrators could be kept separate and users will also be given the

option of actually customizing their pages according to their needs. This could also be

coupled with implementing sessions so that the pattern of search of each user could be

tracked and a set of default pages that he browsed previously could be automatically be

loaded in the background without the user knowledge; so that if he tries to access the

same pages now, he will feel them load faster. This could considerably improve the

performance of the current architecture of Panda monitor.

The need for a rapid application development model was also discussed since it

was understood that all requirements for an experiment with the enormity such as

ATLAS could not be met upfront; this raised the need for a system which will allow

applications to be rolled out of the door within a few days of request, the current model

 85

proved to be a hassle for such flexibility in terms of time. This requirement raised the

need for a new architecture with proven scalability in terms of the Internet.

The search was on for a system which would curb the problems in the current

version of the monitor by adapting to changing needs and the necessity for rapid

application development in the monitor.

A decision was made to adopt a completely new Technology which is well

formulated for web based applications, one which was already proven to scale well in

handling huge amounts of information.

The other things that were looked into for the implementation of the Panda

monitor resulted in the need for an inherent compliance to the new emerging Web

standards cross compatibility and seamless performance across all browsers.

The need for maintenance of code was realized and a system which would enforce

clean coding practices and will also allow easy maintenance of the code after

development was the one which would fit the bill.

Ruby on Rails was considered as a potential candidate and was finally decided to

be employed in the creation of the new generation of the Panda monitor.

6.2 Ruby on Rails and MVC Architecture

 Ruby on Rails is a new Web application framework which facilitates good

programming practices, this eventually leads to neatly structured and efficient code

among many other benefits some of them are discussed below.

 86

Much of the power of Rails comes from the Ruby programming language. Ruby's

unique design makes it easy to create domain-specific languages and to do

metaprogramming. Rails takes full advantage of this.

Rails is an MVC (model, view, controller) framework where Rails provides all the

layers and they work together seamlessly. Other frameworks often implement only part

of the solution, requiring the developer to integrate multiple frameworks into the

application and then coerce them into working together. For example, a Java developer

might use Hibernate, Struts, and Tiles to get full MVC support. This was exactly the

problem with the old version of the Panda monitor it was not strictly designed to confirm

to the MVC architecture. This resulted in a big problem at a later stage, since it did not

confirm to code practices of the object oriented world and this eventually led to a code

maintainability problem at the later stages of the current monitor.

The below diagram is drawn to represent the flow of control in the MVC

architecture. The MVC architecture is gaining a lot of momentum recently, it clearly

gives a cutting edge over any other suggested architectures since it enforces strict coding

practices and flow of control in a sequential manner. This eventually reduces the lines of

code that needs to be typed to create any application, not only saving time while creating

them but also leads to easy code maintainability. In the above diagram, we can see the

model view and controller clearly sketched out, The model is responsible for interacting

with the databases; any transaction to the databases should always go through the model

.The controller is responsible for actually interacting with the users through a web page

 87

from which it takes user requests and directs them accordingly to the model or to internal

controller applications.

user

View

Web Server (Apache
or Lighttpd)

Controller

Model

Access the data

QueriesResponse

Populates data

Sends a Reques t to web server

Displays a View

This is conventional MVC
architecture which is given by
Model,View,Controller (this is
sugges ted model to create web
applications which will act like
desktop ones in future).

DB

Figure 6.2: The MVC architecture and flow of control

6.3 Advantages of Ruby on Rails

Convention over configuration means an end to verbose XML configuration files

in Rails; a Rails application uses a few simple programming conventions that allow it to

figure everything out through reflection and discovery. For example, Rails uses

intelligent reflection to automatically map database tables to Ruby objects. Your

 88

application code and your running database already contain everything Rails needs to

know.

Rails programming conventions does more than just eliminate the need for

configuration files. It also means that Rails can automatically handle myriad lower level

details without you having to tell it to do so. This facilitates the writing fewer lines of

code to implement the application. When fewer lines of code are used to develop an

application it implies faster development and fewer bugs, which make code easier to

understand, maintain, and enhance.

Rails use of runtime reflection and metaprogramming eliminates much of the

boilerplate code that you would otherwise have to create. Using the built-in generator

scripts to create most of the conventional stuff cuts the development time by many times.

It is so easy to create a controller with just one line of running the script. This gives more

time to concentrate on the logic of the application that need to be created instead of

spending more time on the configuration to get a small thing running.

The typical development cycle for either creating or testing a change to a web app

has steps such as configure, compile, deploy, reset, and test. This is time consuming and

also a tedious process in most of the currently available web application frameworks.

Rails combine all these steps again into one small command to regressively test and

deploy the application. This reduces the turn around time to see changes where

conventional frameworks could take a few hours to even show the out. Rails is so

seamless that it does not even require a server restart to see the changes.

 89

Rails can automatically create a full set of CRUD (Create, Retrieve, Update, and

Delete) operations and views on any database table. This scaffolding can get you up and

running quickly with manipulating your database tables. To start off with this could be a

really quick way to show people how a base line of their application could look like. This

option enhances the interactivity of the user at every level and introduces a spiral mode of

software development where every change can be incrementally added on to the system

with user feedbacks.

These are few of the many advantages that Ruby on Rails offers and hence this

was decided to be an optimal platform on which the next generation of Panda monitor

could sit comfortable. Also Ruby on Rails offers inbuilt adaptability to scripting packages

such as Scrip.aculo.us and Prototype.js. Also the session management features in it made

it a clear choice for the next generation of the monitor. All these factors made Ruby on

Rails a clear choice for implementing the panda monitor.

6.4 MVC Panda monitor schema

 The architecture for the Panda monitor was maintained to be in very close lines

with that of the Ruby on Rails architecture of the Model View Controller, the schema for

the Panda monitor based on MVC architecture will be as illustrated below in the diagram.

The dashboard links and the links will each have a corresponding view. For example the

link for the generic Panda Monitor will have a template view and each of the links like

Production, Clouds, Jobs, and Analysis will have an individual view each. All these

views have a corresponding controller to talk to; this setup allows interaction with the

 90

server from the controller and also between controllers when the user requests

information. The controllers rely heavily on the models to interact with any required

databases to fetch any information that may be needed to process the user request.

 The models are the key to interact with the databases; the flow of control is as

illustrated in diagram. The models are the only ones who can talk to the databases.

---------------------Views --

----------------------Co ntro llers ---

------------------------Models ---

The Panda Monitor View

The Panda Monitor Controller

The Panda Monitor Model

DataBases DataBases

Graphs

Graphs

Graphs

Quotas

Quotas

Quotas

Analys is

Analys is

Analys is

Analys is

Figure 6.3: Scheme for the Panda Monitor in the MVC Architecture

They talk to the controllers and extract the required data from the databases and process

them according to the user requests. The models provide a mapping to the objects in the

 91

Ruby on rails paradigm to each of the tables. The clean structuring of control keeps

context switching at its minimal. Context switch in software which is also referred to as

process switch is the mechanism by which the CPU resource gets switched between

processes or threads during the course of execution [].Context switches occur in the

kernel space and the user space, it is quiet common with sloppy programming practices to

introduce a heavy context switch in the user space. Ruby on rails avoids this by forcing a

certain methodology of coding yet not making it too difficult for the programmer to

conform to the standards.

 The Panda monitor view is going to be very important part of the evolving

architecture, unlike the current monitor view it is going to distribute and share with the

controller and the model the load of presenting the data to the user.

A s imple RHTML view
A RJS based view which

will a llow Javascript
based operations

Controller

Model

DB

A schematic repesentation
of the view depicting the
s tages of development
where the RHTML will be in
the firs t phase and RJS will
s tart replacing it.

Figure 6.4: Illustration of the View of the Proposed Monitor

 92

 The current monitor does not employ any other aided features like XML or

JavaScript which can greatly improve its performance. A schematic representation of the

proposed monitor view is given in the block diagram above. The initial phase of

development for the monitor will just be a RHTML(Ruby Hyper Text Mark up

Language).This unlike the normal HTML has added advantages by itself, also the fact

that it can be seamlessly integrated with any additional plug-in that may be of use to

improve the performance. RHTML is the standard in which the initial monitor. This

initial setup will enable continuous user feedback and will allow the flexibility to add

changes effectively. More over the page mapping scheme in Ruby on Rails is consistent

with the controller mapping scheme and hence the pages are effectively mapped by

means of simple naming conventions. [23].

A sample of the graph that was obtained in the new monitor scheme not only does it takes

things fast. It also provides a wider variety of options.

Figure 6.5: A sample Graph from the new monitor

 93

CHAPTER 7

CONCLUSION AND RESULTS

7.1 Comparison of the two systems

 The two systems can be compared in various levels to understand the effective

working of the new system and the possible flaws with the earlier system. A simple

parameter to compare could be the lines of code metric, this metric is considered just a

simple metric which could give a high level overview of the system, though it does not

reflect the effective working of the system in anyway, lines of code could still point to be

an indicator that can give some good information about the whole system.

 The old monitor code ranges easily around 6200 lines, and is growing at a much

faster rate as new applications are being added everyday. The base framework that will

be needed to bring a basic page online is near to 3400 lines in the existing monitor. In the

new Ruby on Rails monitor that is being created this was cut down to less than 800 lines

of code to bring a working monitor code for a graph generating application and was just

around 580 lines to actually get the basic framework for the monitor up and running.

 The next benefit that we immediately get by reducing the Lines of code heavily

is that that code becomes easily maintainable. Software maintainability is defined as the

ease of finding and correcting errors in the software. It is analogous to the hardware

quality of Mean-Time-To-Repair, or MTTR.[24].Maintainability often cannot be directly

 94

measured in terms of numerical values but it can be roughly understood by finding the

reliability of a software, this is mainly due to the fact that maintainability often associated

with modularity, self or internal documentation, code readability, and structured coding

techniques. These same attributes also improve sustainability, the ability to make

improvements to the software.

 For a system like Panda which is expected to evolve and be around for a

number of years code maintainability becomes imperative. If software reaches a point

after which it becomes too cumbersome to maintain or make changes it will eventually be

replaced by another system.

 The existing version of the Panda monitor could make it quite difficult for new

code to be added at a later point in time when the experiment. This can be attributed the

design since to even get something simple running entries have to be made into multiple

files to let all the other components inside the monitor know that something new has been

added. In the new version of the monitor this can be cleverly avoided, for any new

application to be up and running there just needs to be a view, a corresponding controller

and finally a model which can talk to the databases and make sure everything goes on

smoothly.

 This model will allow easy and custom applications to be made and added

according to an individual’s needs without much effort and extensive knowledge about

coding.

 95

7.2 Experimental Results

A number of pages were considered in the old monitor to check for typical

response times or turn around times for a web page to turn up. The time ranges were from

4 seconds in a few pages up to 38 seconds in certain pages which dumped in more

information to the user than actually necessary. A typical example that could be

suggested is the Page for Analysis Jobs that has been shown in Figure 39, this page took

an average of 26 seconds while it was queried at various time periods in a day ranging

from low traffic to average traffic. Similar results were obtained for other pages too and

the actual time to traverse through all the information in the currently displayed page was

also huge for the user. Another place where the old system showed a great lag in response

was in the graphs. The system responded quiet slowly for graphs that were even

generated for a few days. The ideal time for graph generation for a period of 3 days at a

sampling interval of 12 hours was around 14 seconds. The system took almost 24 seconds

for the generation of a graph for a week at a sampling interval of 1 day. This delay in

response can be clearly seen as an overhead and is a flaw with the way the old monitor

was done.

 To understand the impact Ruby on rails will make on the new monitor, this same

sampling application was taken as benchmark and was recreated in Ruby on rails, the

system scaled remarkably well and brought down response time to less than 3 seconds

even for graphs that were generated for a month at a sampling interval of a day. The

graphs for days less than a week were even faster, putting the response times between 1

 96

and 2 seconds typically. Ruby on rails was found to bring remarkable reduction in turn

around time in the page that was considered to be time intensive.

Graphs are plotted depicting the time that each monitor took for respective pages.

A query of Analysis Jobs

22

32

34

26

28

22

0

5

10

15

20

25

30

35

40

6 9 12 15 18 21

Hours of the Day

T
im

e
 t

a
k

e
n

 i
n

 S
e
c

o
n

d
s

Figure 7.1: A plot showing time taken to display the analysis jobs page

The above graph is a representation of the time taken for the page containing the

collective summary of the analysis jobs to be displayed in the current monitor which is in

python. Samples were taken at varied times during the day to account for the traffic

inflow to the monitor. It shows the simple query taking between 22 to 34 seconds at

varied times during the day, this is also at a time when the total number of jobs

submitted to the system ranging between 3000 -3500 jobs a day, whereas in real time

when the experiment kicks off there will be easily around 200,000 jobs a day.

 97

Plot for Week site usage graph at interval of 1 day

21

24

26

23

21

20

0

5

10

15

20

25

30

0 5 10 15 20 25

Hours of day

T
im

e
 i
n
 s

e
c
o
n
d
s

Figure 7.2: A graph showing time in seconds for a weekly plot

Plotting for weekly Graphs at an interval of 1 day (ROR)

1

2

3 3

2 2

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25

Hours of the Day

T
im

e
 i
n
 S

e
c
o
n
d
s

Figure 7.3: A graph showing time in seconds for a weekly plot in the new monitor

 98

Plot for a 3 day graph generation with an interval of 12 hours

14

18

16

19

17

15

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25

Hours of the day

T
im

e
 i
n
 s

e
c
o

n
d

s

Figure 7.4: A graph showing time taken for a plot of 3 days at an interval of 12 hours

Plot for 3 day Graph generation with an interval of 12 hours

0.5

1

1.5

2

2.5

1

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25

Hours of the Day

T
im

e
 i
n
 S

e
c
o
n
d
s

Figure 7.5: A graph showing time taken for a plot of 3 days at an interval of 12 hours-

new monitor

 99

 The above two sets of plots are also drawn to illustrate the differences in

performance between the two versions of the monitor for the plotter application which

helps in retrieving history plots. The old version of the monitor can be seen taking much

more time than the new version for the same query. Also it was noted that making

updates to the application according to user requests was a cumbersome process.

Averages for Various Runs

19

16

26

34

74

42

0.5 1 1.5 2

7

4

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Different Runs

T
im

e
 i
n

 s
e
c
o

n
d

s

Figure 7.6: A plot showing average times recorded for various runs

 The above graph was plotted in an attempt to see the performance of the new

monitor against the existing monitor. The figure has two line graphs the green one

representing the new monitor and the old in red.

The various scenarios that were run commonly in both the monitors are as below

1. Usage analysis across all sites for yesterday at an interval of 2 hours.

 100

2. Usage analysis across all sites for 3 days at an interval of 12 hours.

3. Usage analysis across all sites for a week at an interval of 1 day.

4. Usage analysis across all sites for a week at an interval of 12 hours

5. Usage analysis across all sites for a month at an interval of 1 day.

6. Usage analysis across all sites for a specified date range an interval of 1 day.

 The new monitor however was very good on the response time as it can be seen

on the plots and for most queries it did not take more than 3 seconds to generate the

graphs real-time. In the first version of the plotter application the monthly and weekly

graphs were pre generated at midnight to be used for the day. This was due to the fact

that some times these graphs took over a minute to be generated which is not acceptable.

7.3 Process Diagrams for the function history plots

 In an attempt to elucidate clearly the advantages the new monitor will have in

terms of context switches and design, an attempt is made below to give a view of the

process diagram for the application called History plots in the Panda monitor.

 The process diagram is a software engineering attempt to look at the

applications in a better analysis view. Each of the important components that form these

applications is given out and the functions that interact with each other are also given

inside. The diagram can give a fairly deep understanding of the implementation and will

also clearly give an idea of the context switches that will be involved in each of the

systems

 101

HistoryPlots.py

RrdQuery.py InterfaceRrd.py

Figure 7.7: Process diagram of the existing monitor for History Plots

ParamsResolve()
Asses the inputs and makes
a function call specific to the
user inputs

PlotGraphs()
Used to just
display the
predawn
graph

DateRange()
User submits
date range
input

DrawGraps()
Plots graphs for
varied inputs
most queries go
through this

DateRangeGraphs
() queries with date
range by user go
through this
function

DefGraphs()
Plots the def graphs,
monthly, Weekly,
prev day ones every
day at midnight

Cron
job

Query()
This is the Place
where the user
query is analysed
and conrols
passed to obtain
data

Resolve()
This is the Place
where the user
given inputs are
converted to a
format which can

QueryResults()
The converted query
made understandable
MYSQL is used to fetch
actual data and control
goes back to fn Query()

CreateDB()
Used to create the
RRD Database

UpdatedB()
Used to input data
into the RRD db
create in step 1

DrawGraph()
Function which
uses the tool to
draw graphs

Storage area
for all graphs

monitor
display page
all graphs are
shown here

 102

 The above diagram clearly gives an overall picture of the flow of controls

in the existing Panda monitor. In the application, the initial step is to obtain the inputs

from the user using a user interface page. The inputs thus received, are passed on as

parameters in the URL to the underlying code file. Based on the action to be performed

on these parameters, control is transferred to the respective code module via Panda

monitor overview module and request handler.

Let’s consider the control flow in the case of graph generation for the history plots

page of the Panda monitor. The critical file for this module is HistoryPlots.py; this

interacts with the others to understand the user query and to draw the graphs. The prime

responsibility of this file is to parse the parameters and format them to be sent to the RRD

for further processing. In any application, the user inputs must be pre-processed before

passing them onto the underlying code base and this has to be handled at the upper layer.

The function params resolve () aids in categorising the inputs and formatting them. Since

graphs can be generated depending upon various inputs (date range, site types), each of it

has to be handled separately. For the date range inputs, the function date range () is used.

drawgraphs () function routes all these calls to the rrdquery.py, which acts as an abstract

layer and accepts all the graph generation invocation. In this file, function query (), the

parameters are separated and each of it is appropriately placed in the SQL query. The

function query results () is where the actual data from the database are read using the

above constructed SQL. The results thus obtained are passed to the interfacerrd.py file.

At this juncture, the RRD database is created using the results in the function createdb ().

Function drawgraph () invokes the RRD tool, and the graphs are generated. The graphs

 103

thus generated are stored at a specific location. Finally, these pre-drawn graphs are

displayed using the function plot graphs (). This in turn returns an html page, which is

displayed to the user.

It is evident that this existing functional approach has a heavy context switching

involved. The function calling is done at several layers, passing the parameter down to

RRD.

Since, context switching is directly proportional to the response time for any

system, this heavy context switching adversely affects the response time and hence we

observe long response time in the existing Panda Architecture.

7.4 The Proposed Architecture

In the Rails framework, the functional layers are clearly distinguished by the

framework itself. This framework broadly classifies these layers as Models, Views and

Controllers.

Each of these entities has a set of specific actions to be performed. As the number

of entities involved in the proposed architecture is less compared to the existing Python

architecture, we can expect the context switching to go on the lower end, resulting in the

quick response from the new system.

Let’s consider the functional flow for the graph generation module in the new

architecture. The figure below is an illustration of the functional sequence in the new

Ruby on rails architecture.

 104

Figure 7.8: Flow of controls between functions in the new architecture

 plot_page_controller.rb

 Index ()
Populates the
types of jobs

 Sitelist ()
Populates the
sites list from DB

 Interval ()
Populates the
interval ranges

Plot_page / index.rhtml
Index Page for the
Graph Generation

main_controller.rb
Main Page of the
Application is set to
default layout and is
invoked

plot_page.rhtml
Index Page for
the Application

Result_page / result.rhtml
Display Page of the
generated graphs

Graph
Storage

 result_page_controller.rb

 Graph ()
Gruff is invoked
and graphs are
generated

NonProdGraph
()
Used to parse
parameters for

 Result ()
Gets all the
parameters
entered by
the user

Prodgraph ()
Used to parse
parameters for
prod sites

site_history.rb
Table Name is set to

"SiteHistory"

 105

In Figure 47, the entity (site_history.rb) in purple is the model for this graph

generation module. This model is used only when the code contacts the database. The

entities in yellow are the views. These views have fillers which are filled in by their

respective controllers, when they invoke the views to be displayed to the user. The entity

in pink denotes a specific physical location in the system, where the generated graphs are

stored before they are displayed to the user. The entities in light blue are the controllers.

These controllers form the crux of the whole new architecture. They manage the control

flow and also aid in providing the necessary back end support for their respective views.

In this case, main_controller.rb controller aids in displaying the index page for the

whole application. The view plot_page.rhtml is the index page that is initially displayed.

From this index page, links are provided which enable us to access the different features

of the Panda monitor. The view plot page / index.rhtml will be invoked, if the graph

generation module is chosen in the index page. This view is aided by its controller

plot_page_controller.rb; this controller has functions which populates the types of

categories in the graph generation page. After the user chooses the necessary categories

for the graph generation, the controller result_page_controller.rb is invoked. The

parameters entered by the user are accessible in this controller. These parameters are

formatted and categorized in the same controller. The function graph () takes in these

formatted parameters and uses gruff tool to generate the necessary graphs. These graphs

are stored in a temporary location before they are picked by the result_page / result.rhtml

view to display it to the user.

 106

From the above sequence of actions it is apparent that the number of context

switches is less compared to the old architecture. This is the advantage of using the Rails

framework over the Python code base.

7.5 Future Work

The future work in the monitor could involve in making the response times even

faster by bringing the whole monitor into the AJAX paradigm by directly using the

inbuilt libraries in the Ruby on rails framework. This will make the monitor feel more

like a desktop application. New applications need to be developed, which will clearly

marking out between analysis and production jobs in separate views. The newer version

can also include a better navigation scheme for the interface since the current system has

more than necessary information in one single page.

These views have to be more carefully designed to make sure they do not contain

more information than what the user is looking for. This is the case with the current

monitor a whole page with excessive information is built in one generation request. The

enhancement could involve a development of a memory and network usage monitoring as

an integral part of panda monitor itself, rather than the separate monitoring that is now

provided by Nagios. The Monitor should also include a secure session management for

the user who logs in from the same system. Currently the monitor does not include any

security model, the versions that are to be later shipped at a later stage should include a

user login and session tracking model.

 107

REFERENCES

 [1].The first commercial computer http://en.wikipedia.org/wiki/UNIVAC_I

[2].Paul Laskowski, John Chuang-Network Monitors and Contracting systems:

Competition and innovation

[3].IBM: Red Books (Introduction to Grid Computing)

[4].Dieter Wybranietz and Dieter Haban- Monitoring and performance measuring

distributed system during operation.

[5].http://en.wikipedia.org/wiki/Grid_computing

[6].Ian Foster, Carl Kesselman, Steven Tuecke: The Anatomy of Grid-Enabling Scalable

Virtual Organizations

[7].LHC Website. http://lcg.web.cern.ch.

[11]. Emir Imamagic, Dobrisa Dobrenic - Grid Infrastructure Monitoring System Based

on Nagios.

 [2].Larry Roberts, Multiple computer networks and inter computer communication

(ACM Symposium on Operating System Principles. October 1967)

[3].Jean Francois Roche: Grid and Cluster Monitoring-Universite Libre De Bruxelles,

Universite D’Europe

 [12].Nagios -http://nagios.sourceforge.net

[13].The Monalisa Monitoring system-http://monalisa.cacr.caltech.edu/monalisa.htm

 108

[14].The Lemon monitoring system- http://lemon.web.cern.ch/lemon/index.shtml

[15].Abishek.S.Rana- A Globally Distributed Grid monitoring system to facilitate high-

performance computing at D∅/Sam grid.

[16]. GridIce. http://gridice.forge.cnaf.infn.it.

[17]. EGEE - Enabling Grids for E-science. http://public.eu-egee.org.

[18]. Andreozzi, S., Bortoli, N. D., Fantinel, S., Ghiselli, A., Tortone, G., and

Vistoli, C. Gridice: a monitoring service for the grid, 2003.

[19]The Monalisa Monitor-http://monalisa.cacr.caltech.edu/img/

[20] Relational Grid Monitoring Architecture. http://www.r-gma.org.

[21] Al-Shaer, E. S. High-performance monitoring architecture for large-scale distributed

systems using event filtering, 1997.

[22]. Cottrell, R. L. Passive vs. active monitoring, 2001.

[23].CPU Time- http://www.hlrn.de/doc/performance/glossary.html

[24].NASA Software Engineering Page: http://satc.gsfc.nasa.gov/assure/agbsec4.txt

[25] Baranovski, A., Bertram, I., Garzoglio, G., Lueking, L., Terekhov, I., Veseli, S.,

Walker, R. SAM-Grid: Using SAM and Grid middleware to enable full function Grid

Computing.

[26] The AMANDA-http://butler.physik.uni-mainz.de/amanda/homepage/index.html

[27] The SAM GRID- http://www-d0.fnal.gov/computing/grid/

[28] The Panda Twiki- https://twiki.cern.ch/twiki/bin/view/Atlas/Panda

[29] Panda: US ATLAS Production and Distributed Analysis System-Xin Zhao

Brookhaven National Laboratory

 109

[30] Context Switching- http://www.linfo.org/context_switch.html

[31] The ATLAS PANDA-Production and Distributed Analysis system- Torre Wenaus-

http://www.rhic.bnl.gov/RCF/UserInfo/Meetings/Technology/Archive/Mar-13-

2006/200602-panda-tech.pdf

[32] The PANDA DDM integration-Torre Wenaus ,Tadashi Maeno -

https://twiki.cern.ch/twiki/bin/viewfile/Atlas/PanD-ddmbnl-panda-ddm.pdf

110

BIOGRAPHICAL INFORMATION

Prem Anand Thilagar received his Bachelors in Computer Science and

Engineering from the Anna University, Chennai, India in 2005. After working at a

software company in India for 6 months; he started his graduate studies at the University

of Texas at Arlington, USA in spring 2006. He received his Masters of Science in

Computer Science in December 2007.

