PANDA MONITORING - A SYSTEM TO MONITOR HIGH PERFORMANCE
COMPUTING FOR THE ATLAS EXPERIMENT DESIGN, DEVELOPMENT,

IMPLEMENTATION AND DEPLOYMENT

By
PREM A THILAGAR

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON
December 2007

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to my
supervising professor, Dr. David Levine for his never ending encouragement and
valuable guidance throughout my research. I am grateful to him for giving me the
opportunity to work under him all this while, in him I saw the inspiration to be cool and
composed. I am also grateful to Dr. Jachoon Yu from the Physics department for giving
me the opportunity to be a part of this great program between University of Texas,
Arlington and Brookhaven National Labs, New York. I am also grateful to the Panda
project’s technical leader, Dr. Torre Wenaus, Brookhaven National Labs. He has
constantly given his suggestions in improving my work during my tenure there.

I would also like to extend my thanks to my committee member Dr. Gergely
Zaruba for his valuable time. I would like to extend my thanks to all my team members
who were also a part of the program and were at Brookhaven National labs with me. I
would like to extend my thanks to Barnett Chiu and Sudhamsh Reddy who were there to
help me out in my research work. I would like to thank the whole Panda team at the
Brookhaven National Lab. My heartfelt thanks go to my father Dr.S.Thilagar my mother
Mrs.S.Sivarani and my friends, this work could not have been accomplished without their
support.

November 26, 2007

il

ABSTRACT
PANDA MONITORING - A SYSTEM TO MONITOR HIGH PERFORMANCE
COMPUTING FOR THE ATLAS EXPERIMENT DESIGN, DEVELOPMENT,

IMPLEMENTATION AND DEPLOYMENT

Publication No:

Prem A Thilagar, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. David Levine

Grid resources are gaining wide importance in the wake of experiments like ATLAS,
they aid in a bigger goal which is to understand the complexities of nature. The need for a
good monitoring system is realized as grid resources are being implemented widely. This
work is an analysis of the existing monitoring system of Panda which is a grid
middleware for the ATLAS experiment running at CERN. The thesis aims at identifying
the key bottlenecks of the current monitor and speaks about the implementation of a new
monitor for the same. The new monitor which is being designed with scalability and
maintainability in mind shows how it will perfectly fit in for the changing needs of the

panda. As panda is moving to the next generation as a generic grid middleware for other

iii

experiments running in the OSG sites in the United States it needs a new monitor which
can efficiently scale and fit the changing needs. The new monitor is designed in Ruby on
Rails and has numerous advantages over the existing one. The thesis deals with the

design, development and implementation of this new monitor.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...t

ABSTRACT ...t

LIST OF ILLUSTRATIONSooiiiiie e

CHAPTERS

1. INTRODUCTION TO MONITORINGcoiiiiiiiiiiniiiieeieeeeeeeeee
1.1 INErOUCHION. . ..ttt ittt
| 5] () o 2SS
1.3 MOMIEOTINE. ..ttt eittes ceeiieeetee et e et e ete e et e e staeesnbaeenabeeesseeennneeennseeas
1.4 MONITOTING AT@AS. ... euttenteenttetee s eeeiieeeieeessireesseeesseeenseeessreesssseens
1.5 Grid MONItOTING. ...\ vttt cieeeiee et et eiee e steeesree e aeeeaaeeenaeeeas

1.5.1 Grid EXperiments.c.oveuiiiiniiiiaie i eiieeieeneennans
1.6 Introduction to Grid COmMPUtiNg.......c.ovvrieiiiiiiiiiiaie i eaeeanan,
1.7 Types Of GIidS......cviinniiiiiiiie e e e e e
1.8 Grid Monitoring ArChitecture.............ovvvviiiiint e
1.8.1 DArectory SeIVICE. .. .ouuieneiieie et eeeeaeennn
L.8.2 Producers.cueineiiiii i
L.8.3 CONSUMETttt

1.9 Grid Monitoring SYSteMIS.uvinettiiieeiieeeieeeireeeieeesreeesreeeereeeareeas

il

il

X

11

13

1.10 Grid MONItOTINGeutiitttiiiieeite ettt ettt

1.10.1 The Need for Monitoring:occcevuiviiiiiniiiinneennnnnn..

.11 MONItOT TYPES . oenneintiet ittt e
1.11.1 Infrastructure MoONitOring.covvvevinieiiiiiniiiieinnenn.

1.11.2 Application MONItOriNg.vvuverueiniiiiiieiiiineiieenenn,
1.12 Current Monitoring SYSTEMS.evuuutniniiiniiieniieenieeeniee e eieees
1.13 What Panda Monitoring Offerscocomiiniiiiniieinieeeiee e,
2. GOAL OF THE THESISoiiitiiiiiieieneeeettete et
2.1 Goal of the Monitoring SYStem...........c.ueerriiiriieeriieeniieeniee e
2.2 Monitoring SyStem TYPES.....couuiiriiiiiiiiit ittt
2.3 Information Retrieval for MONitoring.cooeevieeeniieiniieennneenne
2.4 What t0 MONITOT.oviittiitiitt i
2.4.1 Performance.cooeviuiiiiiiii i,

242 Fault. ..o

2.4.3 ACCOUNTINE. .. uetttiett et e ee e

244 SECUTILY .. uet ettt e

2.5 Monitoring Vs Over-Monitoring.............cooueviiiiiiiiiiiinneneennenenn
2.6 Striking the Balance..............oooiiiiiiiiieeeeee e
2.7 Goals of Panda monitor................ coceeiiiniiirienieeeceeeeeeeeee e

3. THE PANDA ARCHITECTURE.........ccccceiiiiiiiiniinieeeeeeeeeseeee
3.1 Introduction

3.2 Atlas Production SYStem...........covuiiiiiiiiiiiiiiieiieenee et

vi

16

22

27

31

31

33

34

34

35

36

37

37

38

38

40

43

43

44

3.3 Panda ArchifeCture.o.vvuiiiiiitiiiiiieeee et
3.4 A BIIEf OVEIVIEW. ..ottt
3.5 DDM-Distributed Data Management................ccooevviin vevieiniieeenneenne
4. PANDA MONITOR FEATURES........ccootiiiniiirieneeieeeeneee et
4.1 Panda Main Page. ..o
4.2 Production and Analysis Page.........ooueeiuiiiiiiiiiiiniiiinieeriee e
4.3 Cloud Organizations.couen voeeeiieeeiieeniteeeieeesieeesieeesbeeesireeenaeees
4.4 DDM and Features.ccoiuiitiitiniiiiieeenieceesee et
4.5 AULOPIIOL. ..ottt e
4.6 Usage and QUOLAS.evutiiiiiiiitint ettt ettt
AT HIStOTY PLOtS. ...ttt
5. PANDA MONITOR ARCHITECTURE.........cccccceiiiiiiniiniiiinicnecieeeeee
5.1 Monitor Architecture OVEIVIEW............uuirvieriiriieieenreeieenre e
5.2 The Request Handler.............ooiiiiiiiiiiie e
5.3 The Database.c.uiniiiiiiieieeeeeee e
5.4 Logging and UtIItIes.oviiiiiiiiiiiit et
SO HTML UtIHEES. ... veititiiit ettt
5.6 Panda LOGEer. .. .ooniiii it e
6. PROPOSAL FOR A ROBUST MONITOR........ccccccceniiniiiiniineeieneeeene,
6.1 Introduction and Groundwork...............ccceiiniiinieniieeeeeecsee
6.2 Ruby on Rails and MVC Architecture...............c.ocooiiiiiniinneennene.

6.3 Advantages of Ruby on Rails.............oo i,

vii

46

48

54

59

59

60

64

66

68

72

73

75

75

77

78

79

80

80

81

81

85

87

6.4 MVC Panda monitor SCREMA.ovvvvtiiiiiieiieeeiiiiiiiieeeeeeeeviiiiiiieeeeeeee. 89

7. CONCLUSION AND RESULTS.....ccooiiiiiiiiiiiiieeeeeeeeeeee e 93
7.1 Comparison of the tWO SYSIEIMS. ...c.uviuuiitiiiiiii e eeeaeens 93
7.2 Experimental Results............oot i 95

7.3 Process Diagrams for the function history plotsc.ccceceeeeeee. 100

7.4 The Proposed ArchiteCturec. voieriieeniieenieeeee e 103
T.5 Future WOrk ..o 106
Appendix
REFERENCES. e 107
BIOGRAPHICAL INFORMATION. ...ttt 110

viii

Figure
1.1
1.2
1.3

1.4

1.5
1.6
1.7
1.8
1.9
2.1
3.1
32
33
34
3.5
4.1

4.2

LIST OF ILLUSTRATIONS

Page

The Growth of Computer Hosts since Inception of Arpanet.............cccuueenneee. 2
Structure of Virtual Organizations and associated Organization 10
Components of Grid Monitoring Architecture (GMA)ccccceeviiiiiniieinieennne 13
Nagios screenshot showing the different

Operating SYSteIM NOSESeeevuiiieiiieeiieeeiieeeiteeeieeesteeesaeeesebeeesereeeseneeeereeenns 20
A screenshot showing the CPU related information from Monalisa............... 22
A snapshot from Lemon showing disk usage and temperature....................... 24
First page of SAM grid monitor - a geographical access page...........ccc.veee.... 25
A High level Architecture of the Panda monitor...........cccceeeveeviieenieecnneeenen. 28
Snapshot of the Existing Panda Monitor for Analysis JObScc..ccecuernienen. 29
Ilustration of the Panda Monitor interaction at a very high level................... 41
A figure showing the complete ATLAS Production Systemcccueeen..... 45
Figure giving the over all Panda Architecture and its components................. 47
A high level working view of the Panda Server............ccccoeevvvviiieniiecnneeenen. 51
The Panda Server Interaction with DQ2ovvvviiiiiiiiiieiieeeceeieeeee e 53
Architecture of the DDM services (DQ2)uvvvveeiiiiiiiiiieieeiieeeeeeeiieeeee e 56
Startup page for Panda MONItorcocueiiieiiiiiiiinieeieeiceeeceeee e 59
Panda production Operations PAge..........cceeeeveeerveeenuveeesrreesiereenereesseeesnneesnns 60

X

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

5.1

5.2

53

54

6.1

6.2

6.3

6.4

6.5

7.1

Production Page showing subscription and active blocks............ccccveeeuvennee. 62
Analysis Jobs page of the Panda monitor...........c.coecvveeeriiieiiiieniieceiceeee e, 63
Analysis Page showing error codes and Reason for failureccccueeee. 64
A page showing the newly added cloud feature............cccceevvveeriieeniiecnreennee. 65
DDM operations page showing disk space

and information about data bIOCKS...........ccecueiiiiniiriiiniiicccee 67
A snapshot of the newly added autopilot featurecceecveeeviieinieennneennne 68
Autopilot page showing recent or running pilotscceeveiieiniiieiniieennneennne 70
Autopilot page showing queues and tag NaAmMEes...........coecveeeriieenieeenieennneenne 71
A snapshot of the User Quota page listing all USers.........cccecueeeviieiniieinneenne 72
A snapshot of the querying page of History Plots............ccoecueiiniiiiniiinennnne 73
A graph that was generated from the History plots application...................... 74
A detailed architecture view of the existing MONItOrcceevveeerveernneenne 76
Representation of the request handlercoocveeviiiiniiiiniiiiniiceee 77
[lustration of the Database OPerationscceceeervieeeriiieeniieeniiieeniee e 78
A representation to show logging of data to panda central database 79
Architectural view of the Proposed Panda Monitorccccceeviieiniienniennne. 83
The MVC architecture and flow of controlccccceeeeviiiiiiniinneenieneeee. 87
Scheme for the Panda Monitor in the MVC Architecture..........ccoocueeevneennen. 90
[lustration of the View of the Proposed Monitorccoecueeeviieiniieinneennne. 91
A sample Graph from the new MONItOr...........coovuiiiriiieriieiniieeiie e 92
A plot showing time taken to display the analysis jobs page........cc.cccceeuuennee 96

7.2

7.3

7.4

7.5

7.6

7.7

7.8

A graph showing time in seconds for a weekly plotcccceevieriveniinneennne. 97

A graph showing time in seconds for a weekly plot
1N the NEW MONILOT ...ttt 97

A graph showing time taken for a Plot
for 3 days at an interval of 12 hoursccoooviiiiiiiiiiiiinieee e 98

A graph showing time taken for a plot of 3

days at an interval of 12 hours-new monitor t..........ccceeevveervireeniieeenieeerreeennne 98
A plot showing average times recorded for various runscc..cceceeveennen. 99

Process diagram of the existing monitor for History Plots............cccccceuveennee. 101
Flow of controls between functions in the new architectureccccc...e. 104

X1

CHAPTER 1

INTRODUCTION TO MONITORING

1.1 Introduction

The quest for discovery is the driving force behind every new expedition by
mankind. It is the same drive that motivates to explore and find components that can aid
in the quest. The scientific approach to understanding a phenomenon has always resulted
in the need for components that can aid in the bigger goal. The ATLAS experiment is one
such quest which began 20 years ago. High performance computing has existed even
before experiments like ATLAS started using computing resources at an extensive level.
High energy physics experiments always have a reputation for generating huge amounts
of data; the need for a component that can manage all the data and analyze it for valuable
information was realized. This led to grids being deployed extensively, also other areas of
science where there was a need for huge data processing adopted the same. Grids found
their way to gene analysis and even assisted in studies related to extra terrestrial
intelligence. The widespread popularity of the grids eventually led to a point where
resource was directly linked to processing power and time; hence its precise and optimal
operation became an essential need. As grids started sufficing the needs of most

experiments being conducted it became necessary there be a system that could asses the

110

performance of grids. Monitoring became a prime area of importance especially at a point
where grids are being installed throughout the world.
1.2 History

Computers have made significant breakthrough since their commercial inception
in 1951[1] , from being systems that were specifically used for projects related to defense
and projects of strategic importance, computers have come a long way in making a
significant impact in every field they have been used. The significant breakthrough in the
popularity of computers and the Internet today can be attributed to the beginning of
ARPANET [2] (Advanced Research Projects Agency Network) in 1969. ARPANET
changed the view about computers and many academic institutions got together and
started using them in a wide scale for the numerous benefits it offered including fast and

effective data sharing.

Mumber of Internet hests from 1969 to 2006
1e+09 -

B = L= e B R S

L= e

1E+0G i e e e e e

100000 |

Hosts

o . —-s i A

1000

100 E Bt A

e

ST 5 N S T -
F

1
1970 1975 1980 1985 1990 1995 2000 2005
Year

Figure 1.1: The Growth of Computer Hosts since Inception of Arpanet [3]

The formulation of ARPANET is an important milestone since it sparked off the
idea of today’s Internet and also contributed significantly to innovations and
improvisations in many related areas in the computer sciences.

Once the collective power of computers integrated together was illustrated it
sparked off research in many areas that could make computers better such as databases
and networks. As the advancements became widespread the need for systems that could
assess and provide information about the components under study became important.
Since then monitoring systems have played an important role in the development and

assessment of a component that might be associated and working with a computer.

1.3 Monitoring

Monitor can be defined as a device or a piece of software that helps in inspecting
and analyzing key performance constraints of the components of a computing system.
Monitors can exist as an integral part of the computer or as an associated component that
works in tandem. Monitoring in a computer can be classified mainly into two types [4],

® Hardware monitoring
e Software Monitoring

Monitoring in computing systems is not limited to the software alone but also
extends to hardware. Hardware monitors are inconvenient for measuring and monitoring
application programs [4], this is mainly due to the limitations like hardware monitoring is
decoupled and exists separately for each device. The most advanced real-time hardware

monitors are used in in-circuit emulators.

Software monitoring is more of an application-oriented perspective. In most cases
software and hardware monitors work cohesively to facilitate the collection and prompt
processing of the data, for example the calculation of the temperature of the processor
and telling the user the maximum acceptable temperature. Additionally, software
monitoring will explore and provide information about things that cannot be directly
understood with the information from the hardware monitors alone.

Monitoring is a component which has been aiding many of areas in computer
science. The most common of it were network, database and security. Monitoring in these
areas has been a vital component in times when technological advancement was
rudimentary [2]. Components like memory and other hardware were pretty expensive a
few years ago. This cost factor established the idea that software had to be made in a
manner that will enable optimized usage of the hardware; also the importance of using
the established hardware to the fullest was realized. Creating necessary monitoring
software to keep track of how efficiently things are being handled was the solution to
make sure hardware resources are put to full use.

In today’s world with the huge breakthroughs and advancements made in the
semiconductor industry and computer hardware made available at cheaper rates, software
monitoring still holds a prominent place. It has been adapted to the changing needs of the
users. The development of the hardware industry has revolutionized the way people use
computers. Data usage has scaled from a few kilobytes in the first generation of
computers to gigabytes in the most recent ones [3]. The network which had capabilities

of a few kilobytes/sec has also scaled to levels where it can handle huge data with ease.

The need for an efficient monitoring system can also be felt here, since the scale at which
data is being dealt has exponentially increased and it has to be ensured that all these
improvements in technology are being utilized properly.

1.4 Monitoring Areas

The typical areas in computing where monitoring has proven its importance are
networking and databases [3]. Apart from these, monitoring applications also have aided
security systems and intrusion detection systems to establish the effective maintenance of
information integrity. The most common example of a monitoring system on a desktop
can be cited as an intrusion detection firewall, which warns the user of any external
network activity. Monitoring applications have also been very useful in the areas of
distributed computing [3]. As huge amount of hardware resources is involved in
distributed computing, effective and prompt information collection about how the
resources are performing is indispensable.

The various features of a system which are, classical examples for monitoring are
discussed below.

The CPU time monitoring primarily involves calculation of the total time an
application utilizes to complete a certain task. This is commonly measured in the number
of CPU clocks used by the respective process running [3]. It is also a most common
benchmark which will have a direct impact on the performance of the system and thus
looked up in most systems.

Disk monitoring is a feature where we can monitor the free and used space in the

given system. Advanced monitoring systems, in disk monitoring also allow monitoring of

the segments of the memory which are contiguous and those that are fragmented.
Network Bandwidth monitoring is one where we are allowed to monitor traffic
that is going out or coming into the internal network. Network Monitoring, can be done at
two places; extensive monitoring can be done both at the user side and at the ISP
(Internet Service Provider) side. The topics of interest for the user would include the
types of applications that are sending and receiving messages from his desktop while the
provider will typically be more interested in the types of packet losses, the routing of
packets across the network and the congestion at the network nodes to name a few. This
kind of information could prove quite useful when the network is facing high inflow of
network traffic at one particular node; a congestion detected early could be handled
effectively by diverting the incoming traffic of a particular router, through some other
nearby router which could be helpful to avoid high amounts of data and packet losses [4].
Database Monitoring has also proven to be an effective means to make computing
systems more efficient. In a world where database servers handle a few thousand requests
a second, it is very important to make sure we do not overload the server; this ensures the
smooth serving of requests. Ideally there are a few servers (the datacenters) which handle
the requests from the users and service them accordingly. All these datacenters will have
the exact copy of the data and will have the capability to serve user requests in the same
capacity. In certain cases, it might happen that most of the user requests might be routed
to one particular server, resulting on a server overload. An effective monitoring system
with a good load balancing scheme will mitigate the problems caused by overloading,

most of the times this proves very effective in mitigating server outages and reduce the

server downtimes effectively [3].

Web based monitoring by web sites for user information is a new paradigm of
monitoring. User information has turned out to be a prime area of interest since this has
begun to generate revenue based on the number of people who visit the site. There are
quite a few monitoring tools, which allow the site administrators to gather information
about the demographics of the users who are interested in the information posted in their
web site. This information is later used to target the user with a specific item which might
be of interest to him/her. This kind of information is considered vital to many of
companies in the e-commerce world today, and they continuously keep monitoring the
items that are of interest to the users and present the user with a wide variety of similar or
associated products.

Monitoring as discussed in the examples above ranges from assessing how good a
hardware is performing which could for example be keeping track of the CPU cycles [2]
to more high level data such as the web pages a particular person is interested in. Each of

these monitoring aspects has its own importance in specific areas associated to them.

1.5 Grid Monitoring

Monitoring, as in all the other areas, also plays a key role in computing grids.
Grid-based monitoring becomes a very important feature since the resources for any grid
are distributed over a wide area and all of them have to be efficiently monitored to see if

they are working in the right fashion, moreover, if a problem occurs at one particular

cluster, it is highly likely the other clusters may suffer the same problem. If a proper
monitoring system is in place the outage when it happens at one cluster could be
identified and the other systems could be adjusted in a manner that they are able to
overcome the problem, thus saving valuable processing time [15].

1.5.1. Grid Experiments

Grid computing started gaining popularity with the beginning of new
experiments. All the experiments mentioned below are increasingly using the services
from grids in order to actually understand better their respective areas of research.

The famous ones among them being:

AMANDA [26] - (Antarctic Muon And Neutrino Detector Array), it is a telescope
buried under the South Pole and helps in finding important information about the
universe around us. Neutrinos have a really interesting characteristic for astronomers -
they traverse long distances without being deflected, scattered or absorbed by interstellar
magnetic fields, starlight or dust. The experiment studies Neutrinos.

LHC [7] -The Large Hadron Collider at CERN, Switzerland has been initiating a
number of experiments, these would start rolling on a full scale once the LHC comes into
production late 2008.A few of the experiments being hosted there are
ATLAS[7],CMS[7], ALICE [7], LHCP [7] and TOTEM [7]. These experiments are all
concentrated on various specific areas of particle physics and to understand the functional
constructs of matter and the forces between them.

PET - Positron Emission Tomography, PET is a new technology for medical

imaging using positron scatter. Small animals like mice and rats have always been used

to test new medication because their genetic code is close to the human genetic code.
PET allows studying all the effects of new medications without the need of dissecting
animals-thus reducing the number of animals being used for study.

1.6 Introduction to Grid Computing

Grid computing can be viewed at a high level as one where computing becomes
pervasive and the user or the client applications gain access to resources such as
processors, storage, data etc, with little or no knowledge of where those resources are
located or what the underlying technologies, hardware and operating system is. [3]

A grid can also been seen as a concept by which a cluster of computers are
connected over the Internet, where each individual computer is purchased individually
and combined together with the use of middleware and other software can produce

similar computing resources as a many-CPU supercomputer, and at a lower cost [6].

VO 1 VO 2

VO (1-3)-Virtual Organization
VO3 | 0 (1-9)-Affiliate Organizations

Figure 1.2: Structure of Virtual Organizations and associated Organization

Grids can functionally be classified into three types [6], Computational grids
which are focused primarily on computationally intensive tasks, Data grids where the
focus is on the controlled sharing and management of large amounts of data resources
and Equipment grids, which have a primary piece of equipment, and where the
surrounding grid is used to control the equipment remotely and aid in analyzing the data
produced from the equipment [5].

The figure depicts the setup of VO’s with the affiliate organizations, There are 3
Vo’s shown and organizations 1,2,3 are associated with VO 1,also organization 3 is a part

of VO 2 and we have organizations 3,4,5,6 where 4 is also a part of VO 3.

10

The resources in a grid are shared across various organizations by means of
associating themselves with a Virtual Organization (VO). In grids, sharing of available
resources is the main goal and hence there need to be rules formulated on what kind of
resources need to be shared, who is allowed to share and under what conditions the
sharing occurs [6]. VO takes this responsibility for coordination of these activities and
makes sure certain rules are adhered to by each of the organization that is associated with
the particular Virtual Organization. VO’s are typically formed with respect to a particular
experiment that makes use of the resources. For example, the ATLAS experiment has its
own VO under the same name and all the organizations that are contributing resources
towards the experiment must comply with certain rules set by the ATLAS VO. The
organizations could be individuals or organizations that hold the resources necessary for
sufficing the computing needs of the experiment. UTA, for example is an organization
which adheres to the rules set by the ATLAS VO and is a part of the ATLAS experiment.
One particular organization may be affiliated with many VO’s and may participate in

more than one experiment.

1.7 Types of Grids

Grids can be categorized into various types such as:
e Computational grids
e Scavenging grids

e Data Grids

11

Computational grids define an infrastructure which will solve complex
computational problems and will be able to handle operations which are highly CPU
intensive; these are often used for very large problems needing huge amounts of CPU and
memory resources [6].

Scavenging grid is most commonly used with large numbers of desktop machines.
It is responsible for using all the resources have signed up to be a part of the system and
use their services for resource intensive tasks [6]. Typically in scavenging grids the whole
system is not overloaded with intensive tasks instead the tasks are split across a huge
network, and jobs given to systems are quite small that the user will not even realize they
are going on in the background. A classical example could be one where you can sign up
your system to be a part of a SETI (Search for Extraterrestrial Intelligence), program in
which idle resources of your system are responsibly used to process information
pertaining to the program.

Data grids give a common interface for all data repositories through which large
amount of distributed data can be queried, managed and secured. They are often
combined with computational grids. High-energy physics experiments fall under this
category and will generate terabytes of data per day and around a petabyte per year [12],
in such an environment, working without a common interface that can handle all this data

effectively will be difficult.

12

1.8 Grid Monitoring Architecture

Producer | Register
S~ location
Transfer
Data -
- .
PLe Directory
. = “Lookup Service

Consumer F~ location

Figure 1.3: Components of Grid Monitoring Architecture (GMA) [6]

Grid monitoring architecture is a common scheme for the implementation of any
grid monitoring service it is constituted by a consumer, producer and directory service.
As shown in figure 3, GMA consists of three components [6]:

1. Directory service, which is like a coordinator which maintains information

2. Producer, which make monitoring information available

3. Consumer, who requests the producer for information that is of interest to them
1.8.1 Directory Service

The directory service [3] can be synonymous to registry, maintains information
about where the producers and consumers are located and all information about where
any specific information related to the system could be found.

At a high level the directory service will also have access rules and schemes that
are concerned with producers and consumers. Transfer of information, primarily requests

and responses from the producers and consumers have to go through the directory service

13

to be initiated, however it will be direct once a connection is established using the
directory service. The directory service typically provides functionalities like adding,

editing and deleting entries into the directory under categories they belong.

1.8.2 Producers

A producer is any component that can send monitored data to the consumer. One
producer might have multiple producer interfaces, each acting independently and linking
to different kinds of measurement data sources such as hardware or software sensors, a
database with historical data or other monitoring systems. [11]

A producer will have some basic responsibilities, which include:
e Updating the directory services about itself all the information available with it
currently.
e Keep receiving subscriptions and queries from a consumer and keep servicing the
consumers in a timely fashion.
¢ Termination of service between producer and consumer should be two way and
can be initiated by any one, hence the producer should facilitate it.
1.8.3 Consumer

A consumer is any component that uses producers to receive monitored data .One
consumer can receive data from different producers. There are different kinds of
consumers; some may store the received data, some may collect monitoring data in real
time the, while others collect information from different sources to make decisions.

The basic responsibilities of a consumer include,

14

e Updating the directory services about itself all the information available with it
currently.

e Find a required producer by browsing the directory service, and initiating
subscriptions with them if necessary.

® Query and store incoming data according to its needs from the producer.

e Manage subscription termination requests from producers appropriately.

1.9 Grid Monitoring Systems

Grid monitoring has been incorporated as integral part of grid workload
management systems such as Condor and Globus. They are workload management
middleware developed for grids [13]; they provide services such as CPU management
storage management, security provisioning, data movement, monitoring [13] and usually
a toolkit that also allows custom development of small applications.

Grid monitoring is also established by external monitoring systems called Nagios.
Nagios is basically a Network monitoring application software which is used to monitor
network hosts and services [12]; it is used sometimes with grid computing monitoring
applications so as to obtain extra information about network usage which cannot be
provided by the typical work load managers [12].

Grid finds its application wherever there is a potential need for large CPU and
memory resources. Analysis of DNA and genes is a computer intensive task and needs
more CPU power. High-energy physics is one such area where grids have been used for a

long time. These experiments usually demand huge computational power and hence

15

monitoring of the resources becomes indispensable.

Grid based monitoring provides information with respect to the jobs that are
running across the various job sites or resources. This information could be simple ones
ranging from the number of jobs running across the resource to others such as error codes
and reasons if by any chance a job fails across the resource. Information, such as, why a
job fails while running across a specific site alone could be useful, if the problem is most
likely to also occur at other grid sites; counter measures could be taken. Moreover if
monitoring was not established , finding out what went wrong where could just be a
hassle and would actually involve manually debugging to figure out the problem also
resulting in wastage of man hours in the process. For reasons cited above and many other
reasons, monitoring for a distributed system like a grid becomes an important aspect in

grid computing.

1.10 Grid Monitoring

1.10.1 The Need for Monitoring:

Grids are a new area in computational science and could actually create a
dynamic change in the way computation is currently done. They allow on-demand access
and composition of computational resources provided by multiple independent sources
[13]. While providing many of advantages, the heterogeneity of the grid, the distribution
of resources at various locations and the need to traverse through all these administrative

domains pose new challenges which need to be addressed effectively. [11]

16

These technical challenges can be categorized into two separate areas that need

attention they are;
e Fault diagnosis
¢ Failure management strategy.

When a failure occurs in a complex system such as a grid, it is quite difficult to
zero down the problem to one particular component. This is typically the case in many
instances. The problem could be with the user side and that it is missing some necessary
configuration components or it could be due to a grid certificate, since grid certificates
are a necessary to gain access to the resources hosted by the organization and they have
to be obtained from the VOs. The problem could have also been due to a first time
configuration problem on the resource organization’s side and might need the attention of
a system administrator for it to be resolved, or it could have also occurred due to a disk
crash in any of the system that the user is requesting access to. In most of the cases the
error messages for these problems are quite abstruse and will require some level of
understanding of the grid structure to decipher the problem effectively.

Monitoring of the grid resources will prove to be a very useful step here to avoid
necessity of heavy staffing, also it is to be noted that the downtime of any grid resource is
the loss to the experiment and the virtual organizations hosting it. If fault diagnosis is one
motivation for establishing a good monitoring system, failure management strategy and
failure mitigation the next time are other factors which further emphasize the need for a
good monitoring system. Also with a good monitoring system, failures can be detected

early and steps can be taken to make sure the same type of failure does not occur in the

17

other clusters that are associated with the same organization, or even across different
organizations. This kind of failure mitigations strategy will make sure the resources are
put to full use and that a small glitch does not stall the whole system; resulting in reduced

outputs and longer processing times.

1.11 Monitor Types

Two main types of monitoring can be identified in any monitoring system
¢ Infrastructure monitoring
® Application monitoring

Infrastructure monitoring aims at collecting information about grid resources; it
can also maintain the history of observations in order to perform retrospective analysis.
Application monitoring aims at enabling the observation of a particular execution of an
application; the collected data can be useful to the monitor application activity or for
visualizing its behavior of it when running in a distributed environment. [14]

As listed above at a very high level these are the two prime areas that need to be
monitored in a grid. In Infrastructure monitoring the areas that need monitoring will
typically be the ones like CPU consumption on each of the nodes, disk space usage
monitoring, cache level alert etc. CPU consumption is the ratio of the CPU’s currently in
use to the CPU’s available. This is to avoid overloading of a few nodes alone. Monitoring
the CPU usage will give crucial information whether the load is evenly distributed or if a
particular cluster is getting overloaded with numerous requests.

Disk usage monitoring will assure that we do not end up with the disks being full

18

which will result in the system entering a state where it will hang eventually and will not
be able to accept incoming requests. This might lead to a restart and will result in the loss
of data which might prove quite costly especially when huge amounts of data are
transmitted over the Internet.

Cache management is also an interesting area that needs monitoring when we are
dealing with distributed systems. Since effective handling of data plays a major part in
grid computing, it is important that we make sure that most commonly used data is
readily available to the jobs coming in. We have to ensure that the response time for
requested data, for a particular job coming to the grid site, is kept as low as possible so as
to achieve maximum efficiency.

1.11.1 Infrastructure Monitoring

Network monitoring is probably one of the most important areas that will need
efficient monitoring when we are dealing with grids. Networks are almost an integral part
of a grid system, since we are dealing with distributed systems the Internet becomes an

inevitable component for effective functioning of the grid.

19

¥ Nagios - Netscape

File Edit View Go Commuricator Help

W 9 A B e @ S & B

Back Fuwad Relbad Home Seach Melscape Fint Seeuiy Shop

il

Giop

o T Bookmaks A Goto

| @17 What's Related

® Status Map
©3.D Status Map

®Service Problems
® Network Outages

#View Config

|Document Dane

Figurel.4: Nagios screenshot showing the different Operating system hosts [12]

The monitoring of the network that is associated with the grid may be a part of the load

manager system or it might sometimes be integrated with the grid middleware that is

developed separately in order to suffice the monitoring features not available in the load-

manager. Alternatively, it is also sometimes achieved by means of autonomous tools

designed specifically to monitor networks, these systems are integrated with the grid

middleware or sometimes operate totally in an individual fashion to gather the vital

information to monitor the health of the network that supports the grid. One example of

such system is Nagios. Nagios is an open source framework for monitoring network hosts

20

and services with the purpose of failure detection. Nagios has a core which is responsible
for most of the information processing and automatic recovery of the system, it gets most
of its help from the network sensors which work in tandem with the core to process all
the important pointers which tell how effective the network is doing [11].

1.11.2 Application Monitoring

The next type of monitoring can be categorized as application monitoring. This is
specific to the kind of experiment using the grid resource. The user will usually be
interested in having a look at the individual type of jobs that were submitted by him, so
the monitoring system usually has facilities for querying specifying job by means of
identifiers. Application monitoring also includes monitoring performance of a particular
grid site. This information comes in handy to the system administrators, it would be
convenient to get a consolidated data sheet or graph indicating the daily, weekly or
monthly performance of the particular grid site.

Application monitoring is hence very flexible and can be customized to any level
based on the user preferences; it is usually embedded in the middleware and has to be
customized by small applications which will aid in providing the information the user
may be interested. This might range from simple information such as the state of the job
the individual has submitted to more important information such as reasons if a job

suddenly failed.

21

1.12 Current Monitoring Systems

Monalisa [13], - (Monitoring Agents using a Large Integrated Services
Architecture), provides integrated monitoring for many of grid sites individually and
collectively for separate VOs also. The framework is based on Dynamic Distributed
Service Architecture and is able to provide complete monitoring, control and global

optimization services for complex systems. [13]

ﬁii o O
- < stem

[st QJ CPU
& cpu]
@ vemory
& Disk
B Disk, 1O
B | nad
B Processes
@ Metwark

{3},&pru1|:un
d'h Modules

v
v| CFU Idle 46,9 &

B |

ETEX‘[mode

Exit

Figurel.5: A screenshot showing the CPU related information from Monalisa

The system is designed as an ensemble of autonomous multi-threaded, self-

describing agent-based subsystems which are registered as dynamic services [13], and are

22

able to collaborate and cooperate in performing a wide range of information gathering
and processing tasks. These agents can analyze and process the information in a
distributed manner, to provide optimization decisions in large scale distributed
applications. An agent-based architecture provides the ability to invest the system with
increasing degrees of intelligence, to reduce complexity and make global systems
manageable in real time. The scalability the system derives is from the use of
multithreaded execution engine to host a variety of loosely coupled self-describing
dynamic services or agents and the ability of each service to register itself and then to be

discovered and used by any other services, or clients that require such information.[13]

The Lemon (LHC Era Monitoring) is a client server based monitoring solution for
distributed systems [14]. Developed by CERN as part of the ELFms tool suite [14]
(Extreme Large Fabric management system) this toolkit is now used by many grid sites in
production, in CERN it is deployed at over 2500 nodes. System administrators and
developers are participating in service and data challenges. Lemon works in a way, where
on each monitored node an agent is running, and it launches and communicates using a
push-pull protocol with sensors which are responsible for retrieving monitoring

information [14].

23

s - [EE oampubang conber ik

Pl G e Tack
QBeck = v o] gl fu| S D Prote £ 00 g av BB
L i e —r i g ekt e vl bl G 3004 sl Dt raioniest,_upd e ol o Sto Shodes st ore—1 = Bl ik =iy -
N FErEEs S T= S == Jf /P S —— Wl &=
m R [=] = EI]
[NI e R0 s L mE Gm BARIRFRISMET wAn RAR mE MR e L0
ol ey AT farn AR
H
o =
T} Vane dry - Swen reesl per w Gweraged Vank day - Swep wriie per u {meeraged
| Cria: o ey Rt i pest A : :
my
B T
=
g 3 £ LR L
= 3 : |E
= & m | 4 L
- JLL E.].. R
|5 fE | SN A o bl 1
3] = i o = i
e " T P T WA WTRIMSRCERE sMr R M STRAD mE S
DT T T TR
Disk 1/0
fmss day - Dink e {aversgel last ey - Wik free (mmrage)
a B e A e S el Y S| i i O T st e A
" e 18 -5
| b = 30
L]
x o e um =m T
o TiieEEY werae: Sed me Ese min B WA MTETRRITENE A WeOe M I e EnDw
o & sl T
et dow - Rasd rte Ceverse) Tawt g3y - WritE wabe [Mweragel
mhy ' 4w 1 ' v
PR ! 4 2
3 i 5w 1 1
£ ik 4 %
f TR EEE S tEEEESEsSsESSE . e i
o =) a:em e wica
N OPOTITSEEET weesel ALA el S e mie gom O_STITRRERITIEN Errap TEASE MG IMLER W me
pary ERPR TRk
Tempearaturea
Vasi dowy — Emcimm Ersperatare Lrverage) Rast day - Hinises treperature Cswvemoe] =
¥ n . T % + >
e N T O T il R Qi o e e b =z
] T A Lk
#.‘iwﬂ b] | o 2 o .g‘m‘-‘-am-h) CEFN Hamdbaring Web = st Frond Fage:] S

Figure 1.6: A snapshot from Lemon showing disk usage and temperature [14]

The extracted samples are stored on a local cache and forwarded to a central
Measurement Repository using UDP (User Datagram Protocol) or TCP (Transmission
Control Protocol). The Measurement Repository can interface to a relational database or

a flat-file backend for storing the received samples.

The Sam Grid [27] is the grid assisting the DO experiment going on in Fermi Lab
and it has its own monitoring system customized to provide the necessary information for

its users. The monitoring system attempts at providing the user with site level monitoring,

24

the grid-job submission level monitoring, and the progress of execution of the job at the

execution site, among other important information pertinent to the entire grid. [15].

Among other nice features it has a geographical map, which serves as an anchor
to the execution sites (as shown in Figure 7), there is also a hyperlink to monitor the
submission sites on the grid. The monitoring system can be launched to monitor a
particular site by clicking on the available hyperlink on the map. The information from

the execution sites at a particular monitoring site is retrieved from the information servers

deployed at the monitoring site itself.

 Dklshoms

bt iy Ihuguenque
Wi g

y 1l [B
o L . -
B A d Sl
I 3 o ! Gulf of mexico
& Mnnl:ri[.r! . Hav:
w0 Matrein | g

= g e 10

= ot A
T

& DO

Figure 1.7: First page of SAM grid monitor - a geographical access page.

25

GridIce [16] is a distributed monitoring tool designed for grid systems which is
being developed in the framework of the EGEE project [17] [18]. The design is based on
the different abstraction level of a Grid:

e Virtual Organization level
e @Grid Operation Center level
e Site Administration level

e End-User level.

The system uses LEMON to collect the host related metrics on each site and
enable a publishing service next to each LEMON server. Gridlce offers a standard
interface to publish the monitoring data at the Grid level, different aggregations and
partitions of monitoring data are provided based on the specific needs of different user’s
categories like VO, site. From being able to start from summary views and to drill down
to details, it is possible to verify the composition of virtual pools or to sketch the sources
of problems. A complete history of monitoring data is also maintained to deal with the
need for retrospective analysis. [16]

R-GMA [20] is a monitoring and information management service for distributed
resources based on GMA (Grid Monitoring Architecture). It has a relational model with
SQL support to provide static and dynamic information about grid resources. Note that R-
GMA doesn’t provide a general distributed RDBMS but is relational in the sense that
producers announce what they have to publish with a sql create table statement and
publish with a sql insert and that consumers use a sql select to collect the information

they need.

26

1.13 What Panda Monitoring Offers

Panda is a Grid middleware system developed to meet the data processing needs
of the ATLAS experiment in the United States. ATLAS processing of data, places
challenging requirements on throughput, scalability, robustness, minimal operations
manpower, efficient integrated data management and processing management. The
current estimate for the number of jobs is 200-300 thousand for a day in the United States
alone when the experiment begins to run on a full scale. Panda is also a system that is
slowly evolving into a generic high level workload manager for the OSG (Open Science
Grid) experiments and can be used by other experiments running on the OSG sites in the
United States.

Such important improvements to panda, place it at a very important position to
have a good monitoring system so as to completely understand the effectiveness with
which all the sites are running jobs. Monitoring in Panda again varies from giving simple
information in the form of the number of jobs running collectively at any given instance
of time across the sites, to more important attributes such as the reason why some jobs
might have failed. It is also responsible to give error codes if for some reason a job has
been waiting at a particular site without getting started even though there may be
resources available. These are just a few high level functionalities of the Panda

Monitoring system.

The current version of panda monitor is developed in Python. The whole system

runs on Python, Apache and Mysql, where Mysql databases implement the job queue, all

27

metadata and monitoring repositories. The monitoring server works with the Mysql DBs,

including a logging DB populated by system components recording incidents via a simple

web service behind the standard python logging module, to provide web browser based

monitoring and browsing of the system and its jobs and data

Request
Handler

4

A

VIEW

Various Monitor

Components DB Utils

[Panda Logger

Various Grid sites of ATLAS VO

Figure 1.8: A High level Architecture of the Panda Monitor

The information collection for Panda is handled by a module called the Panda

logger; it is most critical component since it records all the information to a central server

which the monitor uses to process user and system queries, to present the requested

information by means of a web interface. The module makes use of the standard python

logging module. The logger service runs off of the same Apache server as the monitor.

The logger service receives HTTP logging messages from clients and registers them in a

28

logging DB in Mysql. The logger makes its entries into the repositories from where the
monitor picks up the necessary information. The Figure 8 above gives a very high level
description of the Panda monitor without going into the interaction aspects of each of the
components. The components mentioned in the above diagram can be defined at a high

level as the most important ones needed to get a monitor page running

Confiquration Dashboards: Production DOM AutoPilot Sites & Grids Analysis Physics data Usage & Quotas Plots ProdDash DOMDash

Update Mot logged in, Lis
Pandamonitor Panda job information for analysis jobs

Quick guide, twiki
Userinf : T : _—
= Summary of | analysis |¥ jobs for the last 3 daysin | any v/ state atlany | site
Jobs - search
Recert tunring, 957 jobs. Click job number to see detals.
activated, wating, States: defined 0 assigned 0 waiting.0 activated 2 unning:1 transferring: 1 holding:0 finished:554 failed: 399
assigned, defined, Users: Dietrich Liko:1 Dirnitris Fassouliatis:4 Diparjan Roy: 14 Fabiola Glanatti50 Milind Y Purchit® Nenad Vranjes:d Murcan Ozturk7 PerHansson202 Seth Zenz:4 TARRADE
finizhed, falled jobs Fabien:d Tadachi Maenn52 Vikas Bansal 48 akiva shibsta3 chisting potterS6 jule kik2
Select anclisls, — Releases: Atlas-1205857
production, 1861035 Sites: AMALY BNL_ATLAS 1803 AMALY LONG BNL_ATLAS147 BNL ATLAS test4 OU_OCHER_SWT21 PROD_SLAC test?

Datasets used by selected jobs

Quick search

a Job et

Dataset . e o 5 . -

Task User]ohID | Created ‘ Latest ‘ Jobs | Pre-run | Runnmg Holding | Finished Failetl buildJob Site

Pl ek D? 020811 | 07020816 \ 7 | [1 i 1 2084263 hbDS ANALY LONG BhL ATLAS
" |Julie kirk:20 = ;

Summaries iIn m\saH el 017500 P\(th\aB bbmuB}(d\m it.R00. vWZDDSWE 1id004372 Qutiuser. uheklrkmsaH chZDWSDD P\(hlaB hbmuEX dlmt RDO JTh test

Ems df;’; i oo | oot ent | 4t | | I | B s ibs el e ATAS ©

Modes: days M iIn tr|q1 migall me12.006400. SUti jimmy_susy.recon AOD v12000601 UdDDE?Ed OutuserchnstmaputterSU& G400 MZDE TestMedmmE\e

Dal usage | chiistina [D?D 1041 1 ‘ 0701 1247 ‘ i | | | ' £9 6 | 07246 fibDS ANALY BNL ATLASW

Tasks - search ‘M In trig] misall mel2 005178, Zb acer p\(!h\a TRCOM. AOD y12000801 tidd0B70R Uutuser chrlstmaputterleWE MZDE TestMed\umE\e

Figure 1.9: Snapshot of the Existing Panda Monitor for Analysis Jobs.

The current Panda monitor helps in monitoring important information such as the
number of jobs running collectively under panda in a given period of time. The same can
be assessed individually for every individual site; this turns out to be an important factor
in determining the individual performance of every site. It is also helpful in monitoring
user information in terms of quotas which provides information about the limit available

for every user to submit jobs. The existing monitor is also responsible for monitoring the

29

information about the pilots that are submitted, it gives the current state of the pilot in the
system such as submitted, scheduled, running, finished, failed. Additionally it also gives
error messages to understand why the pilot failed, if it went to a failed state. These error
messages play a key role in determining the potential problems that might arise in other
sites due to similar outages and helps in mitigating the resource downtime before if can

occur.

30

CHAPTER 2
GOAL OF THE THESIS

2.1 Goal of the Monitoring System

It was elaborated in detail in the previous chapter about the Grid infrastructure
and the various kinds of monitoring available in general and a brief introduction to grid
monitoring was given.

Increasing number of components in computing environments, due to the
computing needs in society and the low prices of hardware, has led to many techniques
and tools being developed to help system administrators to manage their computing
resources. Monitoring is one of the most important ones of those that evolved in this
paradigm, and involves the use of software mainly to track computer activities and
hardware sensors to certain extent to collect other data. Monitoring may include tracking
of network activities and security threats, alert resource failures as well as keeping check
on Internet usage, data entry, e-mail and other computer applications used from by
individual users or computers. The need for a good monitoring system becomes
indispensable, considering the numerous components associated with the grid.

There are a few important factors that have to be considered before looking into

the design and deployment of monitoring structure, as described below

31

Monitored data should have a certain determined lifetime. Depending on the
volume of monitored data and the space available on hard disks, it will be necessary to
define how long the data will be required.

Data storage is an important area, certain parameters need to be stored directly
while some others will always have to go through some processing before they can
actually make sense or provide useful information to monitor. Both the cases have to be
handled efficiently.

Update frequency varies depending on the data that is being recorded and it will
have to be altered according to the importance of the data and how long the recorded
value is legitimate. For more critical data the update frequency is maintained in small
numbers so that it can be made sure that the information is in synchronization with the
actual values.

Network data rate is another important aspect, in most of the monitoring systems
information has to be preserved in more than one place; the availability of the World
Wide Web has facilitated this easily. As this is the case at most places, a monitoring
system needs to be backed up by a strong networking system, the data rate should be
rapid enough to transfer the latest monitored information to the monitoring repository in a
prompt fashion.

Latency can be defined as the amount of time taken for a packet to travel from
source to destination. It includes transmission and processing time taken at both the
source and at the destination. This is heavily dependent on the network’s performance

and the processing power of monitoring system. Latency which is commonly called as

32

lag should be tried and kept at its bare minimal always because, it proves to be a huge
problem when scaling any system.

Robustness is an important characteristic for any system, should a failure happen
to the monitoring system, monitored data should still be able to reach the destination
without trouble. Loss in information cannot be tolerated in any system, especially in a
monitoring system. Usually robustness is achieved by acting in a proactive manner and
making copies of the data before it is transmitted anywhere and once there is an
acknowledgement for the data to have reached safely, the backed up data is processed
accordingly.

Security of the monitored information is very important, hence effective storage
of the data in secure locations and usage of encryption techniques while sending the data
over the Internet, or even between a LAN’s is an important step to ensure safe

transmission.

2.2 Monitoring System Types

Two main types of monitoring can be reported they are. [21]

® Time Driven Monitoring

e Event Driven Monitoring

This technique is based on acquiring periodic status information to provide an
immediate view of the behavior of the objects being monitored. This may extend over a
prolonged period of time frame and could be used to study the performance of the system

over a long time.

33

This approach is based on obtaining information about the occurrence of interesting
events. This is a dynamic pattern of monitoring since only events evoking special
interests to a set of people are monitored. It could be trigged by any special case

occurrence or anomalies that may be stumbled upon.

2.3 Information Retrieval for Monitoring

Retrieval of information from a monitoring system can also be classified into two
types. They are [22].
e Passive
® Active
Passive monitoring is like a wait and watch mode model, here any relevant
information is not requested specifically but is sent in a periodical fashion by the device
itself. The incoming data from the specific sensors or devices are recorded in a database
and used later to be processed individually or with other data.
Active monitoring is a demand and serve model. Periodical requests are sent in
the form of external signals to the monitored system, and it follows the requests and

measures the requested values and reports back.

2.4 What to Monitor

There are various areas which can be monitored and a few of them can be given
as [23]:

e Performance

34

e Fault
e Accounting

e Security

2.4.1 Performance
In the above mentioned monitoring areas, performance is an important aspect of
any system. A monitoring system’s performance can be measured various factors like,
® Availability
e Response time
e Throughput
e Utilization
Availability of a system could be given simply as the percent of time the system is
available for a user. Availability is based on the reliability of the system. If a system
consists of more than one component, then the reliability is the collective reliability of all
the components. The reliability is calculated by the probability that a component will
perform its specified function for a specified time under specified conditions. It can be
expressed by:

Availability= MTBF*100/ (MTBF+MTTR)

Where MTBF is Mean Time Between Failures and represents the component
failure and MTTR for Mean Time to Repair. Hence as the number of components

comprising a system grows, calculation of availability becomes relatively complex.

35

Response time is the time it takes for a system to respond to a given user input or
query. Shorter response times are desirable in all systems and creating a monitoring
system is focused towards achieving optimized response times.

Throughput can be defined as the rate at which application oriented events occur.
This is an interesting performance analysis area and could even be useful to predict the
demand that could be there for the system at a given time. This is done by collection of
historical data which could be used to predict times when the system will be overloaded.
Throughput usually helps us give an estimate demand that will exist for the system given
certain conditions.

Utilization is a parameter which can give the percentage of time the system was
used as against the total time it was up and running. It could also help in probability
analysis to say the most likely times during which the system is to be overloaded .It is a
fairly simple but effective tool which can measure network efficiency like parameters.
2.4.2. Fault

Fault monitoring is mainly done with fault mitigation in aim. Fault monitoring
aims to identify faults as quickly as possible and to identify cause of such occurrences.
Speedy fault detection enables remedial actions to be taken reducing the overhead caused
but this has certain problems.

® Some devices do not have an effective fault detection mechanism.
e Late response from a monitored resource may mean even just network congestion

but could give an impression that the device is faulty.

36

® Some times failure patterns that occur could not be detected with just one or a few
occurrences and could lead to a situation where the problem could still not be
tackled.

Failures can be anticipated by defining thresholds and by sending notification
when the monitored values cross the set limits. This is a proactive way to effectively
isolate and diagnose various faults
2.4.3 Accounting

The goal of accounting is to record information on resources and service usage of
the system. The accounted resources are usually hardware usage, communication
facilities or services. It is mainly done for policy purposes to enforce certain rules on a
organization or user. This is a kind of Application monitoring that was discussed in the
types of monitoring and has lower significance than an Infrastructure monitoring.

2.4.4 Security

Monitoring can be used to check the security of the system. Deploying a
monitoring solution enables the identification of unofficial services or servers. It can also
be a precious tool in helping to detect network security violation such as intrusions or
compromised host. Detecting suspicious activity and cutting it off immediately is of
prime importance since the data that we are dealing is usually of high importance and its

integrity cannot be compromised.

37

2.5 Monitoring Vs Over-Monitoring

The maximum parameters monitored in a system, the better can be the
understanding of the same. When designing a monitoring system, it is often tempting to
monitor everything. This can prove to be a costly affair as too much information makes it
hard to see what is important and might cripple the service. That’s why it is crucial to
carefully choose the services to monitor, depending on needs and goals.

Monitoring is one such area where redundant information can infiltrate easily and
can actually reduce the efficiency with which a monitoring system can actually service
the users. It is very easy to slip in that zone which starts using the resources available for

monitoring which will otherwise be used to do process the actual jobs.

2.6 Striking the Balance

It 1s highly important that we clearly categorize what is crucial for the current
system to be monitored, so that it results in better performance ,we have to have the users
high level requirements in mind to look at what we are monitoring. Striking the perfect
balance between crucial, necessary and redundant data is an important aspect of a good
and efficient monitoring system.

Consider a simple case of IP packet sniffing for security purposes over a network.
By default, assume all packet level transactions are recorded as a part of security
measures, and the system suddenly detects a suspicious activity, a good monitoring

system should be able to detect the spurious activity and be able to automatically shut

38

down the source from accessing the system further, but how a monitoring systems
achieves this depends on the architect who laid the plans for it.

A normal system would just start logging the spurious activity once it starts
picking it up ,on top of the information it is already recording previously and utilize a few
other resources to come to the conclusion that something is wrong. An efficiently
designed system would not log the redundant information again and once it picks up a
suspicious activity would probably just report the IP address from where it is picking it
up to the system, which is already logging all this information. This system should be
able to successfully process all this information without disturbing other resources which
might be serving other requests, and must still be able to shut down the source of the
suspicious activity.

Over-monitoring has various disadvantages; a few of them can be listed as
wastage of resources which will otherwise be involved in processing the requests, also it
results in added burden to the database of the system when excessive data is collected by
overlooking. The added overhead to the network lines that carry this entire excessive
payload should also be noted. These are just a few disadvantages enumerated, much
trouble is caused by over monitoring and it is in the best interest of the system to plan
ahead and monitor the crucial and necessary data alone, this helps in establishing a robust

system.

39

2.7 Goals of Panda Monitor

The Panda Monitor is a grid middleware monitoring system which is a classical
example of an infrastructure monitor and an application monitor which works in tandem.

The current version of Panda Monitor is developed completely in Python. The
whole system runs on Python Apache and Mysql, where Mysql databases implement the
job queue and all metadata and monitoring repositories. A monitoring server works with
the Mysql DBs, including a logging DB populated by system components recording
incidents through a simple web service, it provides web browser based monitoring and
browsing of the system for its jobs and related data. Though this proves very much fine
right now, it is the common opinion that it will not scale well once the original jobs start
coming into the system to the tune of 300,000 jobs a day. The current version of Panda
only runs 3000-4000 jobs everyday. The current monitor response times range between
23 to 84 seconds depending on the query. This lag and greater response time can be
attributed to the clear non compliance with a clean Model View Controller (MVC)
architecture by most of the code which is responsible for the Panda monitor; this
especially proves vital when we are dealing with web based applications.

The Figure below illustrates a high level interaction scheme of the Panda monitor
with all the other components of the Panda, the python logging scripts which are
responsible for collecting all the information can be seen in orange.

There is a python monitor logger server which is centralized and picks up all the

information about different sites from its head nodes and also interacts with the Data

40

manager which is responsible for providing information about the status of the respective
DQ2 datasets which are specific to each site. A more elaborate description and the
individual working components of the monitor will be discussed in detail in the sections
to come.

The current Panda monitors important information such as the number of jobs
running collectively under Panda in a given period of time, the same can be assessed
individually for every individual site, this turns out to be an important factor in

determining the individual performance.

onitor
Logging

Figure 2.1: Illustration of the Panda Monitor interaction at a very high level
It is also helpful in monitoring user information in terms of quotas which provides

information about the limit available for every user to submit jobs. The existing monitor

41

is also responsible for monitoring the information about the pilots that are submitted, it
gives the current state of the pilot in the system such as submitted, scheduled, running,
finished and failed. Additionally it also gives error messages to understand why the pilot
failed, if incase it went to a failed state. These error messages play a key role in
determining the potential problems that might arise in other sites due to similar outages

and help in mitigating the resource downtime before if can occur.

42

CHAPTER 3

THE PANDA ARCHITECTURE

3.1 Introduction

In ATLAS experiment where we deal with heavy nuclei collision and proton-
proton collision, data collected from LHC could reach several petabytes [28] a year from
the detector into the production system. To deal with huge amount of data, we need
collaboration of clusters of computers from many different places. Panda (Production and
Distributed Analysis System) as a grid middleware is designed to effectively handle the
data from the ATLAS production system and send them to the computer cluster that has
enough resource, right capability to process and also to facilitate data analysis.

Panda is an effort by the US ATLAS to meet the requirements of the ATLAS
experiment for full scale production and distributed analysis processing. Current
estimates of the number of jobs that could come in every day into the USA are placed at
200,000 — 300,000 [28] and the actual number could be more as the experiment begins.
This huge amount of jobs requires a system that is scalable, robust and has efficient
integrated data/processing management. Panda was built with all these requirements in

mind.

43

3.2 Atlas Production System

In the ATLAS production system, Panda functions as a regional executor for the
OSG sites, interacting with an ATLAS production system supervisor like the Ewoyn, to
receive and report production work. Panda also operates as an efficient executor system
to serve both production and analysis workloads.
The Architecture of the ATLAS Prodsys can be given by four major components [28]:
e Supervisor: The supervisor is the first level where the interaction occurs with the
collection of the data, an example of a supervisor is Eowyn (second generation)
¢ ProdDB: Production data base is the one where the raw data from the colliders are
collected.
e DDM: Distributed data management system DQ2
e Executors: Capone can be cited as an example for Executors. Panda is one which

1s moving in as a generic executor in the OSG sites.

44

ATLAS Production System

CE

¢

Open Science Grid

Figure 3.1: A figure showing the complete ATLAS Production System [12]

Jobs are submitted to Panda through a simple python client interface by which
users define job sets, their associated datasets and the input/output files. Job specifications
are transmitted to the Panda server through HTTP, with submission information returned to
the client. This client interface has been used to implement Panda front ends for ATLAS
production (Python Executor Interface) distributed analysis (Pathena) [28] and US regional

production.

45

3.3 Panda Architecture

Panda has a number of components the important ones are

® Panda Server

¢ Panda Job Scheduler

e Panda Pilot

¢ Distributed Data Management

Panda was designed with the aim to support all job sources like ATLAS

production, regional, group and user production. It facilitates interactive and distributed
analysis. It is a system that is tightly integrated with the ATLAS DDM (DQ2).The
scheme for data management is clearly a data driven and dataset based workflow. The
data is pre-staged at the grid site before the job is dispatched; this is one of the most
important characteristics of Panda which makes it reliable. It can be said with certainty
that the data will be available to the site before any processing will even begin and it can

be assured that the resources at the other end will not sit idle waiting for data to arrive.

46

ATLAS
ProdDB

Executor
Interface

ATLAS production interface’ Regional usage interfaces

~, d
Task management

(Iazk Burle; B - Manitaring info sources
job queue Serv
o=’

Site
capability
service

Job resource
manager

Condor, LSF,
LCG, ...

Site info
sefvices

Grid Scheduler

Figure 3.2: Figure giving the over all Panda Architecture and its components [28]

Job scheduling and assignments are taken care of internally within Panda itself and
hence it does not need any external help in the form of middleware to achieve job
scheduling. The same is the case with job dispatching, which makes the design more
congruent where similar tasks grouped together before dispatching thereby lowering the

burden of grid.

47

3.4 A Brief Overview

The working of the Panda system can be understood better by having a brief
overview in the hierarchy of the systems that are involved in the ATLAS experiment.

The main center of the system is classified as Tier0 [7] CERN (Center of
European Union Nuclear Research). It is responsible for archiving and distribution of raw
data from event filter (EF) [29]. This is the first level of prompt reconstruction of
calibration.

The next level in the hierarchy are called the Tier 1 sites .There are many
organizations in Tier 1 and Brookhaven National Labs is one among them .BNL hosts
and provides long-term access and archiving to a subset of the raw data, and reprocessing
of raw data.

The next level in the hierarchy is the Tier 2 sites which provide calibration
constant, simulation and analysis. These also play an important part since they have more
information about DDM data and can prove to be vital while we are trying to access
information about the whereabouts of a particular datasets. Sites which are relatively big
in size are the ones which fall under this category. For example, UTA is a Tier 2 site and
is responsible for job management in its zone and also will house a major portion of the
datasets.

The last level in the structure is smaller organizations which have a few grids
established and contribute to the processing of data. There are many such organizations

throughout the United States in the form of universities or independent organizations

48

which interact with their Zonal Tier 2 sites to obtain jobs in order to process the data at
their end.

DDM provides services for data cataloging and data transfers between Atlas sites.
Datasets comes from [32]

e RAW data flowing into TO

e Managed production of ESD, and AOD

¢ Simulation production all yield datasets

The supervisor has a number of responsibilities; some of them include translating
job descriptions held in DB into appropriate scripts or commands. This is in the form of
XML since transactions are through a HTTPS by using XML. The supervisor is also
responsible for submitting jobs, validating a job when it finishes and resubmitting job in
case of failure. The supervisor is also responsible for updating the production database to
make sure all logging of the available datasets are the current information.

The Supervisor sends a request for the number of jobs wanted to the executor (for
example Panda) and then it responds with a default number say 1000 jobs .Since Panda is
a data driven model, and it follows a execution pattern where data is already deposited
before the job arrives, the supervisor gets data from production DB (ATLAS production
system) and then sends it to executor in the form of XML code. Then the executor parses
the XML, puts the job description to a proper data structure and then sends it to task
buffer

The task buffer after obtaining the job transfers control to the Brokerage unit from

where the brokerage unit makes a request to Task buffer to send jobs over and groups

49

according to certain preferences like locality of distribution of datasets, this is where the
DDM or data services of Panda gains importance. They collectively group datasets in a
pattern where they are closely associated and they also choose sites to this group of jobs
based on the DDM data blocks. Then it transfers control to its own Data service to
organize a file transfer through DDM. The brokerage unit is also responsible for updating
the Task buffer about transfers that just happened.

The Panda server by itself has other important components they can be given as

e Panda Task buffer

e Panda Brokerage

e Panda Job Dispatcher
¢ Panda Data Service

The Panda server can be described as the central Panda hub composed of several
components that make up the core of Panda; it is implemented as a stateless REST
(Representational State Transfer) web service.

The Panda server receives work from these front ends into a global job queue,
upon which a brokerage module operates to prioritize and assign work on the basis of job
type, priority, input dataset and its locality, and available CPU resources. Allocation of
job blocks to sites is followed by the dispatch of input data to those sites, handled by a
data service interacting with the ATLAS distributed data management system [32]. Data
pre-placement is a strict precondition for job execution; jobs are not released for
processing until the data arrives at the processing site. When data dispatch completes,

jobs are made available to a job dispatcher.

50

Production system
-

|
.| Panda Server

ProdDB

'\ Y~ L
Submitter . \ N

s -

User 3.
u D Pilots

Each pilot runs on a worker node
1. send a request
2. receives a job
3. runs the job

Figure 3.3: A high level working view of the Panda Server [32]

An independent subsystem manages the delivery of pilot jobs to worker nodes
through a number of scheduling systems. A pilot once launched on a worker node
contacts the dispatcher and receives an available job appropriate to the site. If no
appropriate job is available, the pilot may immediately exit or may pause and ask again
later, depending on its configuration. Minimal latency from job submission to launch is
important, is that the pilot dispatch mechanism bypasses any latency in the scheduling

system for submitting and launching the pilot itself.

The Data service is one of the most important components in Panda in the

execution sequence. It is responsible for requesting and selecting groups of jobs from task

51

buffer. It also takes in account lists of available sites before doing such an assignment of
jobs and grouping them. The data service also requests the list of available sites from the
brokerage and is also responsible for requests DDM to reserve and move blocks of data
these are the input files which come from the Brokerage and Tier 1 sites. The data
services are also responsible for checking the status of the group of jobs in task buffer
and it also receives notification from DDM on completion of transfer to trigger
downstream actions. The data services also requests DDM to move and archive output
files.

The dispatcher is responsible for making sure the specific requirement for the jobs
are directed to the right site where there are enough resources available. Moreover it
should also be made sure that the load balancing is achieved in a proper manner so that
simple jobs are not directed to sites with excess resources. This might result in other
bigger jobs being blocked.

Firstly the dispatcher requests the task buffer for the highest priority job which
meets site requirements and whose input files had already been pre-staged [32] .The
availability of data at the site which is being explored for job execution is a major
requirement in Panda and hence it has to be met before jobs can be sent to any specific
sites.

This is the pattern in which execution happens in Panda, finally to have an
overview jobs flow through executor interface, task buffer and brokerage in a continuous

manner.

52

Job info, etc

/ Apache (mod_python) \

— Child process MySQL API

;(Python interpreter

Client HTTP/HTTP

Job submitter
Pilot

DQ2 callback
Monitor

Python interpreter

B
HTTP/HTTPS

. /

Figure 3.4: The Panda Server Interaction with DQ2

So while new jobs keep coming into task buffer, some of them are already being
processed by the brokerage and ready for taking input files and those corresponding jobs
in. Task Buffer ready for input files are maintained in such a manner that they are of
higher priority than the other jobs being processed by the Dispatcher. The next step is to
create executable job wrapper send it across to the specific site that was designated to it
based on availability of resources, it then monitors progress of jobs and updates the Task
Buffer [31].

The executor then sends a query to the Task Buffer to find out the status of the
job. This is the final stage where the status of the job is recorded if it went through or it is
in the waiting state.

The Panda brokerage is also a part of the server and it works closely with all the

other components of the server like the task buffer and job dispatcher to make sure jobs

53

are handled properly. The main work of the brokerage is to manage where jobs and
associated data are sent based on job characteristics, data locality, priorities, user/group
role, and site. It does the important job of keeping track of which job goes where and is
also responsible for making some important decisions as to where the job has to go based
on information of resources available in each site. The brokerage makes the decisions
based on the resources and capacities matched to job needs, and dynamic site
information. Also the proximity of the datasets to the site if some of them are not

available already is a deciding factor for all the decision.

3.5 DDM-Distributed Data Management:

DDM is an important component which is responsible for moving the data around
for the effective working of Panda; the main aim of the DDM is to provide a service for
data cataloguing and data transfer between Atlas sites .The new DDM software is called
DQ2 (Don Quixote 2) [29].At a very high level DDM can be given by two major
components

e (atalogue Services which can be further divided into
o Catalogue client
o Catalogue server

e Site Services

The Catalogue services are responsible for tracking data movement across the

grid sites. Large amount of files are grouped into dataset based on attributes (e.g. physics

54

characteristics, chronological productions and so on). Data are only moved or replicated
in units of data blocks (immutable datasets). Also, the cataloguing services allow dataset
based lookup and it is achieved in a manner where it is reliable without complex
mechanisms to maintain global consistency of the data .A separate catalog is used to map
dataset into its constituent files.

The site services are responsible for moving data from site to site .The decisions
on how to move datasets between sites is achieved by interacting with the global
catalogue and the local dataset to facilitate the moving of data across. A very brief
overview of the working of DQ2 is provided below to have an understanding of the
component.

The DQ2 system can be given as two major components at a very high level as
shown in the architecture diagram they are the [32]:

® (Global catalog
e Local catalog
The global catalog has partial repository of all the objects in the local catalogs
The important components of the DQ2 system are:
e (Content Catalog: This component is responsible for mapping each dataset to its
constituent files
e Dataset Repository: This holds all dataset names and unique IDs representing
them along with the system metadata.

e Subscription Catalog: This stores subscriptions of datasets to sites

55

e Location Catalog: This is one of the major components which have the actual

physical location of the datasets.

Production
bookkeeping [Net

Dataset repository part

Dataset selection
catalog

Dataset location
catalog (Slte SEs)

Dataset content

catalog (LFNs) Subscription

services

Space Claims catalog Dateset subscription Local replica catalog
manager (File usage, lifetime) fqueue (LFN == PFN)

Figure 3.5: Architecture of the DDM services (DQ2) [32]

The Dataset repository is a catalog of datasets; it also serves as a principle catalog
and look-up source for datasets but this is not the place where users perform queries to
retrieve datasets. The Dataset-selection-catalogue provides detailed information by
adding descriptive, query able content (physics metadata: physics attributes e.g.

luminosity) [32].

56

The next step in the process is looking into a dataset select catalogue which is
followed by dataset content catalogue where the actual mapping from a dataset to its
constituent logical files happens. This process retrieves metadata which are nothing but
the dataset Id and any other names given to it, then it looks into the content files with the
metadata obtained in the previous stage and figures out which site the files are physically
present It is always possible that some of the files are not always located at one
particular grid site and are actually distributed. It looks up the location catalog to locate
these files on the other sites and pulls them up together. The location catalogue provides
look-up of the sites where copies of those data blocks can be found.

Data block is the unit of data replication and transfer in DDM. Those logical
representations of files and grouping of files can be thought of as points or indices to the
actual physical storage of those files. DDM’s in higher tier has all the logical pointers or
indices to those physical files stored in the DDM’s of the lower tiers.

The site services provide logical files, physical data files which are the actual
contents. Client subscription specifies which data to be transferred to which specific local
sites. DQ2 local site service finds subscriptions and pulls the requested data to local site
so that client subscribes can trigger dataset replication to local site.

Datasets are grouped together with rules defined by their content, hierarchy (from
general to specific), location and other parameters these rules are pre-defined through
data coming from production jobs. The datasets will go from top tiers to lower tiers
necessary and will be stored in their DDM systems as required; later these datasets will

be categorized and organized by those respective DDM systems through catalog.

57

Dataset repository provides a nice data presentation through Data selection
catalog so that end user can choose desired datasets more easily, an interface to facilitate
data selections

Subscription services in Panda is an important activity that makes sure the
datasets that are much in requirement are replicated properly and put up at various sites
where they will be used widely for jobs. In this process a T1 facility like BNL subscribes
to a group of datasets, and then TO locates those datasets, make a replica of the dataset
and sends it to T1.

Data subscription is associated with production jobs that have all the rules for
grouping datasets. The user then finds what they want and send subscriptions for the
specific data. Catalog service then checks content, hierarchy and location catalog then

gets back to end user with datasets available for use with proper dataset.

58

CHAPTER 4

PANDA MONITOR FEATURES

4.1 Panda Main Page

The figure below is that of the introductory page to the Panda monitor. It gives a

brief description of the various features that are available in the panda monitor and the

various kinds of information you can obtain related to ATLAS experiment from it. We

will explore some of the features that Panda monitor offers in detail.

@ -2 -0 ®

Configuration

Panda monitor

Panda wiki

Jobs - search
Recent running,
activated, waiting,
azsigned, defined,
finished, failed jobs
Select analysis,
production, test jobs

Quick search
Job

Dataset
Task
File

Summaries
Blocks days
Errors days
Modes days
Daily usage

Tasks - search
Generic Task Reg
EvGen Task Reg
CTHBsim Task Reqg
Task list

Tazk browser

Datasets - search
Dataset browser
Iew datasets
Aborted MC datasets
Panda subscriptions

Datasets Distribution

Conditians DS
DE Releases
Yalidation Samples
Eunctional Tests
M5 M5 T1

Sites - see all
BIL BU IU DU SLAC

UC UMICH UTA LCG

Applications
CHARMM

Logging monitor

O hetp: ffgriduio Has.bri.gov: 258860, x| B G-

Production Clouds DOM P AutoPilet Sites & Grids Analysis Physics data Usage & Quotas Plots ProdDash DDMDash

Quick guide to the Panda monitor

Reporting problems: Report Panda problems of any sort to the Panda Savannah ticketing system

Top bar

Production: Panda Production Operations Dashboard. Summary of Panda production status
Clouds: Organization and task assignment of clouds (Tier 1 + Tier 2/3s) processing Panda jobs

DDM: Summary of DDM systems information and tools

PandaMover: Panda D@2 dataset mover status. Monitars Panda jobs that replicate datasets using d2_cr.
AutoPilot: Pilot submission system serving all of OSG and LCG

Sites & Grids: Collection of grid-wide and site-level monitaring links

Analysis:information on Panda-based analysis using pathena

Physics data: ATLAS data discovery and access info and tools for physicists

Usage & Quotas CPU usage by user

Plots: History piots of Panda performance

ProdDash: Link to the ARDA ATLAS production dashboard

DDMDash: Link to the ARDA ATLAS DDM dashboard

List users: On extreme right, lists Panda users and gives access to your Panda page

Left bar

Mot logged in. List users

Jobs running in Panda: Job links at left list the running, activated (ready for pickup by a pilat), waiting (waiting for input data availability), assigned (brokered and waiting for completion of
input data transfer to processing site), defined (awaiting brakerage), finished and failed jobs. Analysis jobs (as opposed to managed production jobs) can be listed separately. The 'old archive'

contains all finished/filed jobs older than 3 days.

Quick searches: Enter 2 Panda job name or ID, dataset name or 1D, of task name or D into the appropriate field and hit return in order to do a quick lookup

Summaries: Enter a day count in the desired summary field and it return to bring up a summary covering the last N days. The blocks' summary shows the production datablocks (datasets)
currently being processed in the production system, with details on where they are being processed, job states etc. The ‘errors’ summary shows overall production status at all Panda sites

with defails of the error conditions encountered. The nodes’ summary shows worker nodes active at all production sites with statistics on processed jobs and states

Tasks: Task reguest forms are provided for entering generic, event generation and CTB tasks. The full task list gives statistics on tasks by grid and a listing of all tasks. The task browser
allows selection of tasks based on their metadata (physics type, production series, release, output type, etc.) with navigation to datasets associated with the task, where data availability and

access information is provided. Task browser, list and request forms cover aif of ATLAS, not just Panda/OSG/US.

Datasets: The dataset browser allows browsing of D@2 datasets based on dataset metadata and site selections. Dataset searches can be done with the search form (with wildcards) or quick
search (by name, no wildcards). Listings are awailable for input datasets (a shart list; the datasets which are inputs to the tasks processed by Panda), output datasets (very long - the
datasets produced by Panda production — but the task browser is more convenient for navigating to produced data), dispatch blocks (Panda intemal), and all datasets. Long lists are truncated

and useful only ta get the overall count and a sample list

Datasets distribution: Dataset replication requests, operational displays from ATLAS DDM Ops for distribution of AODs, RDOs, conditions data, real DAQ data, etc

Shows DG2 15 managed by Panda, which handle Panda's data movement. ‘Dispatch blocks' are used to dispatch data to processing sites in advance of

processing; destination blocks are used to route outputs to archival storage

Sites: Configuration details of sites. Site pages provide access to monitors, jobs running at the site, D@2 configuration, etc

Logging monitor: Summary of the incident logging sent by Panda components to record Panda actiity. Shows job requests (analysis and production) from pilots, by site

Panda system config)
summary and stats.

Bookmark URL: htp.pands. atlascomp.org
In case of problems redirect to recormmended monitor instance or check senvices list

Figure 4.1: Startup page for Panda Monitor

59

on and status: Configuration link, top left, gives system configuration parameters and server status. The system statistics page at left gives owerall production

4.2 Production and Analysis page

Panda monitor extensively allows the monitoring of production and analysis jobs.
The top part of the monitor which is called the dashboard has quick links to the most
frequently browsed information on the panda monitor. It has various links which we will
explore in detail, the first of them being production and analysis. A click on production

redirects to a collective information page on the production sites in United States.

Dash Board

@ - - & 44 [l heepuigriduioz.usatlas bl govi 25380, —p i
Configuration Production Clouds DOM PandaMowver AutoPilot Sites & Grids Ang, ‘ T UZafe & Quotas Plots ProdDash DDMODZ
4 min old Update Mot logged in. List users

Panda monitor Panda Production Operations Dashboard

Quick guide, twiki Panda shift guide calendar mailing list

Jobs - search Servers: Panda:0K Panda-dev:0K Logger:0K Pilot job requests per hour, last 3 hours
Recent nning, Tasks assigned to 0SG Production Analysis
activated, waiting,

assigned, defined, Jobs updated >12 hrs age: activated:2493 runningnone AGLT2 18

finished, failed jobs Jobs updated >36 hrs ago: transferring:2758 ALBERTA 245

Select analysis, g] ANALY_AGLT2 228
P;QTD_E'U;UU”J?AJWS ce ‘;‘_"“" \o:at s";‘;s' oot ANALY_BNL_ATLAS 1 358
. e fte ° ANALY_LONG_BNL_ATLAS 31
iy - AGLT2 O\ iz iea BNL ATLAS, 1 o

T EU ATLAS Tier2 {1170 11-12 18:24 ENL_ATLAS_DOM s i
File BU_ATLAS Tier2a \187 11-12 18:41 BU_ATLAS Tier2 =

e MWT2 1U 58304 11-12 17:47 BU_ATLAS TieiZo 73

Blocks days MWT2 UG S1E31 11-1218:41 GLASGOW 17

Enmars days SLAGYRD 1345 11-12 18:41 i 19

Bln?es days UTA-DPCC-pbs 11-12 18:39 LYON 128
alingie UTA SwWT2 B9 1112 18:42 MARC 107

Tasks - search WMWT2_I L

Generic Task Req MWT2 UG 64

EvGen Task Reg 2

CTEsim Task Req RAL “n

IEnE SLACKRD 22

Task browser TRIUMF 229
Datasets - search uBC e

Dataset browser uTA-DRCC 19

HNew datasets UTA_SWT2 42

Abored MC datasets uvIc 12

Fanda subscriptions
Datasets Distribution Production job summar
DDM Reg Cloud Information Nod}
Req list

last 12 hours (Details: errors, nodes)
Jobs Latest defined assigned waiting activated running holding transferring finished failed tot tif other

Qggz Overall Production 3m3 S096 11-12 18:42 [nf B4g. 214 6207 3856 681 S441 B561 1487 18% 0% 18%
Conditions DS . 730 211121842 0 5 0 awmEs oms 253 2852 /B 523 12% 0% 12%
DE Releases US Region

“alidation Samples

;A;n::;n_;\ Tests CA Region 572 77 11-12 18:42 [uf 127 [uf 2614 1062 181 563 2718 461 15% 0% 15%

\1-12 18:42 0 a 0 828 336 243 0 12 264 9E% 0% 96%

&5

Sites - see all
EHL BU IU DU SLAC
UC UMICH UTA LCG,

UK Region 112 18:41 [uf 43 [uf 7 85 4 1968 15 173 92% 0% 92%

Applications

CHARMM Analysis job sum errors, nades)

[T ST defined assigned waiting activated running holding transferring finished ~failed tot uf other
Al 1631 470 g 0 2276 424 16% 3% 13%
ANALY AGLT2

AMALY AL BERTA

Production Sites Regional Groups

Figure 4.2: Panda production operations page

60

The production page allows you to have a look at all production sites at a glance
and it also allows the production sites to be seen region wise for example the production

sites in the United States alone or in Canada alone could be retrieved separately.

It also gives information about the pilot job requests in the last 3 hours throughout
the productions sites in United States. It also gives you more specific information in
numbers about the status of the jobs running at each site like running, pending, failed and
so on. This helps in collectively seeing if all sites are doing good or if at some place there

are failures they can be immediately inspected.

The production job page also provides information about the subscriptions for
panda in the last 3 hours and the production blocks of datasets that have been active for
the past 12 hours, both these features are illustrated in the image above. Clicking on the
respective links will give more information about the dataset in the form of Panda Id

which has been assigned to it the time it was created and other information pertinent to it.

61

@-»-@ 4 [hetp:figriduinz. usatlas brl.gov: 25860, —p | [C- e
a

Unassigned 0 0 0 0 0 0 0 0 0 0
Summary of Panda subscriptions, |
D02 Files Dispatch blocks Destination blocks Other
med Done Latest Total Defined Running Closing Done Latest Total Defined Running Done Latest
[slev] 12 08 B 11121743 0 O 0 0o 0o 0 0

DOZ Files 702 1) 702 11-1218:34 3638 1709 186 M7 1627 1112 168:41 1230 1170 1) a9
DO2Z Files 24 1) 24 11-1217.09 0 o 1) 1) 1) 1) 1) 1) 1)
Doz 1 1 0 0 a 0 0 0 0 0 0 0
Doz 0 0 0 1 1 0 0 0 2 1 0 1
Doz2 1) 1) 1) 21 17 1 1) 3] 4 2 1) 2
Doz 4 2 2 11121748 0 a 1) 1) 1) 1) 1) 1) 1) i
DQ2 Files 16 1) 16 11-1217.23 0 o 1) 1) 1) 1) 1) 1) 1)
D2 19 0 19 11121334 0 a 0 0 0 0 0 0 0
Doz 0 0 0 &0 24 0 1 25 11121807 3 <) 0 0
SFU Doz2 19 g m 11121427 0 a 1) 1) 1) 1) 1) 1) 1)
DOZ Files 6 1) 6 11121834 0 a 1) 1) 1) 1) 1) 1) 1)
Doz 1) 1) 1) 258 100 1) 13 1112 18:42 4 4 1) 1)
0 15 112122 0 a 0 0 0 0 0 0 0
UTA 0 6 11121821 0 a 0 0 0 0 0 0 0
. 1) 4 1838 0 a 1) 1) 1) 1) 1) 1) 1)
1 a 1) 1) 1) 1) 1) 1) 1)

10 jobs Atlas-11.0.42 From 2007-11-12 To 2007-11-12

10 jobs Atlas-11.0.42 From 2007-11-12 To 2007-11-12

10 jobs Atlag-11.0 42

19 jobs Atlas-13.030 From 2007-11-12 To 2007-11-12

1 jobs Atlas-13.0.30 From 2007-11-12

12 jobs Atlas-13.0.30 From 2007-11-12 To 2007-11-12

13 jobs Atlas-13.0.30 From 2007-11-08 To 2007-11-08

2 jobs Atlas-13.0.30 From 2007-11-12 To 2007-11-12

2 jobs Atlas-13.0.30 From 2007-11-12

running:2
ideal? fastd validl 005015 J6

thia jetjet racon ESD v13003002 tid016031 Atlag-13.030 Fromn 2007-11-12 To 2007-11-12

Subscriptions in the last 12 hrs Production Blocks active in
last 12 hours

Figure 4.3: Production Page showing subscription and active blocks

The analysis job page is equally important as that of the production page and it is
specifically the page where jobs submitted by users are put. This helps them in easily
traversing to the specific jobs that they submitted and having a look at its status. The
figure below gives a snapshot of the analysis page of the panda monitors and gives a

preview of the options available to obtain relevant information.

62

@ - - @ @3 [httpifigriduioz. usatlas.bri.gov 25880/

~| B | |G- S| - =

Configuration
3 min old Update

Production Clouds DDM Pandatdover AutoPilet Sites & Grids Analysis Physics data Usage & Quotas Plots ProdDash DDMDash

Mot logged in. List users

Panda monitor Panda Based Distributed Analysis Dashboard

Quick guide, twiki Information and tools for distributed analysis with Panda

Jobs - search
Recent running,
activated, wailing,
assigned, defined,
firished, failed jobs
Select analysis,

pathena supports user submission ta Panda from the (pathena command line

Analysis jobs: New-style listing of analysis jobs. Old-style listing is here if you prefer it (tell me why!). To lack up a particular Panda job by ID use the quick ssarch at left or click a
PandalD in the job listing.

Analysis users: User list (alsa linked at top right, or abave if youve logged in} shows analysis usage, ordered by most recent. From there you can ga to your page (you're on the list if youve
tun & Panda job); if you log in' youll get easier access to your page from a new menu at the top of the page

production, test jobs
Quick search

Data access: See the physics data page linked abave

File Analysis job summary, last 24 hours (Mode details

Summaries
Blacks:
Errars:
Modes:

Daily usane

days
days
days

Tasks - search
Generic Task Reg

ALBERTA

Sitd, Nodes Jobs Latest
350 4522 11-1219:12

BEWING
BHL

8}

-1205:31

EvGen Task Req
CTBsim Task Reqg
Task list

Task hrowser

Datasets - search
Dataset browser
Hew datasets
Aborted MC dataseth
Panda subscription

Datasets Distributiojn

Caonditions DS

BML ATLAS 1
BML ATLAS 2
BRUNEL

CMNAF
CPPM
FZK

] 134 11-1218:15

CERMN

-1209:35

GLASGOW

DB Releases

Walidation Samples
Functional Tests

11-1219:12

M5 M5 T

Sites - see all

UC UMICH UTA LCG

Applications
CHARMM

Lo monitor

SACLAY
SHEF

This page allows a user to specifically traverse to an analysis site where the user
might be interested to see the performance of even a particular node of an organization
that he might be affiliated to .For example if a person from UTA wants to see the number
of jobs running at a particular node for a given analysis job he could find that information
in this page. It gives the finished or running jobs on a particular node and if further

information is needed to see the name of the jobs that can also be obtained by just

a

o

3 34 11-12 0B:40
ROMANIA o
a
o

cooof ool ooocCco0oO0DOo0C0cOoO0 o000 0OIWw

o ooooooocooooooooooooooo oo

g

CocoooococoOO0OoOoCO0OOoO0O0QOoO0O0O0CO0O0O

1604

ccocorocsoaooosal

=
=]
5]

moceooaooa

Analysis Job Sites

470

w
DDD.:DD\MGDD\EGDDDGDDDGD\%DGDD

19

ooooooocoooooooo

]

cooooooooo|

]

OO0 o0oO0Oo0O0OO0CO0OO0OO0OO0OC0OO0OO0OO0OCO0O0O0O0OOOOO

defined assigned waiting activated running holding transferring finished
a

. © @ N
coococaoocolffocoonroonofonoal
=

Groups: Groups are supparted to organize users by role, physics working groups etc. and support collaborative work, accounting rights ete. (Mot much used yet.)

failed tot tif other

a2

Homoo

7 coocooococooao

(NINTSRYE
\I\‘m

o
=

:D:\gaa\

Figure 4.4: Analysis Jobs page of the Panda monitor

17% 3% 14%

100% 0% 100%

7% 3% 4%

0% 0% 0%

4% 4% 10%
100% 0% 100%
100% 0% 100%
100% 0% 100%
TB% 0% 76%

100% 0% 100%

x

clicking on the number and it would give the jobs running at that particular node at UTA.

63

Furthermore the actual error codes for the jobs that failed at a particular site can
also be obtained at this page. For example, the snapshot below reveals the failed job
codes in the site ANALY_BNL_ATLAS_1. This is made even mode transparent in the
recent version of the monitor by giving the explanation for the failure codes just by their
side. This greatly helps in site administrators and people submitting jobs to inspect it if
failure becomes redundant due to a same error and corrective action can be taken

immediately.

@ - - 2% |1 hetpisiari Has. bri.gov: 25880, -] [C- 2 - O =3
ANALY_ALBERTA
ANALY_BEWING defined:0 assigned:0 waiting:0 activated:0 running:0 holding:0 transferring:0 finished: 0 failed:2
taskBufferErrarCode (2] 2 [aks) 11-12 05:31 102: Expired 6 days after submission
ANALY_BNL
ANALY_BNL_ATLAS_1 defined:0 assigned:0 waiting:0 activated:0 running:88 holding:0 transferring:0 finished:973 failed:73 (7.0%)
1 [aks) 11-12 06:26 1099: DO2 staging input file failed
24 06 11-12 15:54 1102: utout £l

a 01 1112 13:31 B2 get error: mdSsum mismatch on input file

1 oo 11-12 10:07 7149 wget command failed to download tf
pilo 3 04 11-12 16:3 1168 DQ2 get errar: Total file size larger than 5 GB
tasl]EquferErrannde 5y 15 oo 11-12 10:2 100: Job expired and killed six days after submission (or killed by user)
tranbExitCade (40) 1 oo 11-12 09:53 200 Unknown eror code

ExitCode (40) 24 L) 11-1211:50 400 Athena crash - consult log file

defined:0 assigned:0 waiting'D activated:1 running'0 holding'0 transfering'D\ finished: 1 failed:0 (0.0%)

ANALY_LONG_BNL_ATLAS defined0 assigned:0 waiting'0 sctivated: 1600 running'380 holding 19 transferring:y
) 2 oo 11-12 14:34 1154: Failed to register log file

morCode (2) 2 oo 1112 14:34 101: Job recovery failed for three days

o0) 1 oo 1112 11:50 1099 DQ2 staging input file failed

o0) 1 oo 11-12 10014 1145: D@2 get error: mdSsum mismatch on input fil
o0) 33 3538 1112 17:45 1150 Looping job killed by pilot

finished:986 failed: 166 (14 4%)
exeErorCade
jobDispatcherd
pilotErrarCade
pilotErrarCade
pilotErrarCade

pilotErrarCade 55 4171 1112 14:41 1200: Job terminated by unknown kill signal

taskBufferErrarfode) 8 928 11-12 14:01 100: Job expired and killed six days after submission &r killed by user)
transExitCade () 67 441 11-12 0843 400 Athena crash - consult log file

ANALY_LONG |LYON defined:0 assigned:0 waiting'D activated:0 running'0 holding'0 transfering'D finished:0 failkd:1
pilotErrarCade (|1 1 04 11-12 16:10 1137: D@2 put error: Error in copying the file fram job workdyy to lacalSE
ANALY_LPC defined:0 assigned:0 waiting'D activated:D running'0 holding'D transfering'0 finished:0 failed)
pilotErrarCade (1) 1 01 111209014 1137: D@2 put error: Error in copying the file fram job workdir \o lacalSE

taskBufferErrarChde (1) 1 oo 11-12 09:20 100 Job expired and killed six days after submission (or killeY by user)
ANALY_LPNHE defined: 1 assigned:0 waiting'D activated:1 running'0 holding'0 transferring'D finished:0 failed:2
taskBufferErrarChde (2) 2 oo 11-11 20031 102: Expired 6 days after submission

ANALY_LYON
pilotErrarCode (43)

defined:0 assigned:0 waiting' activated:0 running:2 holdingD transferring:0 finished:43 failed: 137\ (76.1%)
40 34.4 11-12 16:25 1137: DQ2 put error. Error in copying the file fram job warkdir to loc\ISE

Error Codes Reason for Failure

Figure 4.5: Analysis Page showing error codes and Reason for failure

4.3 Cloud Organizations

This is currently a new feature that is introduced in the Panda monitor. It allows

monitoring of sites and tasks in the form of organization they belong to. A snapshot of

64

the page is given below. Firstly they are displayed region wise where they are grouped
according to the continents and inside that classification we have the big umbrella
organizations which have collective information on all the tasks they are assigned. The
snapshot shows BNL, UT Arlington, UT Dallas and a few other organizations are
represented under the cloud organizations in the United States. Also clicking on the
specific cloud organization will give information about the organization about all the
queues that are operational with the cloud organization. It also gives some additional
information about the number of running, failed and finished jobs.

@ o @ o l£‘1 {ﬁ LI hittpefaridui0Z, usatlas, bl gov: 25880/server{pandamonjquery?dash=clouds v| . @

Configuration Production Clouds DOM Pandahover AutoPilot Sites & Grids Analysis Physics data Usage & Quatas Plots ProdDash DOMDash

Update Mot logged in. |
Panda monitor ~ Cloud erganization and tasks

Quick guide, twiki

Jobs - gearch Cloud | Sites

Recent running,
activated, wating, CA ALBERTA-LCGZ TORONTO-LCGZ TRIUMF UBC WICTORIALCGZ

M@M FR |BEMING-LCGZ GRIF-DAPMIA INZP3-CCIN2P3-CPPM INZP3-LAPP NZP3-LPC NIPNE TOKYQ-LCGZ

finished, failed jobs

Select analysis, <W ALLCGZ UKHLTZ-Brunel URELT2IC-HER UKLLTZ-OMUL - URENORTHGRID-LANCS-HEP TRH GRID-LIV-HEP UKI-NORTHGRID-MAN-HEP
B

production, test job UKISCOTGRID-GLASGOW

Quick search US |BNL BostonT Tndt L £ 13T} Tehigan UTAdington UTDallas

Job
Dataget
Task
File

Tasks by cloud:

Summaries
Blocks: days
Errars: days

Bfi?yesuzsage e Cloud of US sites

Tasks - zearch
Generic Task Reg
EvGen Task Req

CTBsim Task Req
Task list

Task browser

Datasets - search

Natacot hrawcar

Figure 4.6: A page showing the newly added cloud feature

65

4.4 DDM and Features

DDM operations monitoring is also supported in Panda, it provides information
about the DDM operations going on in between the Panda sites operating in the United
States. It also has internal links within the same page to link to ATLAS DDM dashboard
which provides collective information about the DDM operations across the globe. A
snapshot of the page which pops up for DDM operations is presented below; it provides a
comprehensive tabulation of the space available in each of the sites that house DQ2
datasets. UTA 1is one such site and the snapshot also shows UTA listed there with the

available disk space in terms of gigabytes.

Also information related to subscriptions received in each of the sites is put up in
a comprehensive manner. It provides figures which indicate the number of dispatch
blocks and destination blocks at each of these sites and allow a user to get a snapshot

overview of the status.

There is also another feature associated with the DDM operation is the Panda
dashboard it provides a link called Panda mover. This provides a detailed status report of
the datasets being moved around from site to site mostly the main source here being the
Brookhaven National Laboratories keeps moving data around various Tier 2 sites which
have enough resources available with them. It shows a concise table where collective
numerical information is logged pertinent to the total of the datasets being moved around.
This also give a concise snapshot on the status of the DQ2 moving by standard status

messages such as done, transFail ,fileExists, maxAttempt, run, active. There is also a

66

detailed description of each of these subscriptions that went to specific sites with the

Panda 1d, source, destination, status,

€ -9 - 28 | LI http:faridui0z. usatlas brl.gov:25860/serverfpandamon/query dash=ddm - G- ol - & x

Configuration Production Clouds DDM Pandahbover AutoPilot Sites & Grids Analysis Physics data Usage & Quotas Plots ProdDash DOMDash

6 min old Update Mot logged in. List users

Panda monitor DDM Operations Dashboard

Quick guide, twiki Information and tools for ATLAS distributed data management operations with [

Disk space at each site

Jobs - search

Recent munning, Report DM aperational problems to atlas-t1-ddm-oper@cern ch
activated, waiting, ATLAS DDM Operations
assigned, defined, DDM operations/management FAG

finighed, failed jobs D02 home

Select analysis,
production, test jobs ~ ATLAS DDM ARDA Dashboard

Quick search D02 dataset brawser

Job

Duatagﬂ NETMON between BNL and Tier2 sites
lﬁzk Dataset deletion i i for sites

DQ2 site services information: See site pages linked at left

Summaries

B Dispatch, Destination
Nodes days

Blocks

Daily usane BU ATLAS Tier2 10871 11-1313:04
BU ATLAS TierZo 10870 11-1313:11
WWAT2 U 58169 11-1313.09
WWT2 UC 51153 11-1311:56
SLACKRD 13096 11-13 09:40

UTA-DPCC-phs

Tasks - search
Generic Task Req

CTEsim Task Ry
Task list
Task browser

Datasets - search
Dataset browser
Mew datasets

Aborted MC datasets D02 Files Destination blocks Other

Panda subscriptions Total Defined Done Latest Total Defined Running Cloging Done Latest Total Defined Running Dane Latest
Datasets Distribution ENLPANDA DO2 Files 273 0 273 11131308 3627 1817 183 195 1452 114131371 1093 1078 O 12

DDM Reg BU DG2 Files 46 0 46 1113125 O 0 0 0 0 0 0 0 0

i%ﬂilj'e‘;i‘ GLASGOW D@2 | 10 0o 0 00 00 00

RDOs LYOWDISK DGz 0 0 0 2 M 3 0 0 7 7 0 0 ||
Condttions DS ARG D@z 1 1 0 0 0 0 0 0 0 0 0 0

(2 [MWT2 U DG2Fles 27 0 27 11431308 0 0 0 oo oo oo
Walidation Samples b _—

Functional Tests MWT2 UG DE2 20 2 11131247 0 1] 0 0 0 0 0 0 0

M WE T1 RALDISK DO2 0 0 0 B 6 0 0 10 11130944 12 12 0 0

Sites - see all SFU Daz 16 8 8 11131164 1] 0 0 0 0 0 0 0
BNLBUIUOUSLAC 51 ACKRD D02 Files 27 0 27 11130940 0 a 0 0 0 0 0 0 0
UCLMICHUTALEG o rpisk poz 0 0 0 9% 63 4 0 31 1131246 2 1 0 1
Applications UMICH DOZFiles 35 0 35 11431211 0 0 0 0 0 0 0 0 0
CHARMM

et UTA DOZ Files 3 0 3 11130835 O 0 0 0 0 0 0 0
Logging monitor UTA SWT2 D02 Files 36 0 FE 11-131242 0 o 1} 1} 1} 1} 1} 1} 1}

Panda operations datasets: dispatch blocks, destination blocks

Data handling facilities

Figure 4.7: DDM operations page showing disk space and information about data blocks

dataset Id and name among other information. This helps a user in understanding the
status of the subscriptions submitted and database replication going on related to the

subscriptions made.

67

4.5 Autopilot

Auto-Pilot is a simple and generic implementation of Panda pilot and pilot-scheduler for
use in more varied environments than the production pilots and schedulers currently in

use with Panda.

4@ - - @ £ | I hetp:fariduioz, usatlas bril.govi25860)server fpandamon/query Pddm=dash ~| | |G- -8 x
Configuration Production Clouds DDM Pandatover AutoPilot Sites & Grids Analysis Physics data Usage & Quotas Plots ProdDash DOMDash
Update Mot logged in. List users

Panda monitor Panda DQ2 Dataset Mover Status

e by Ilover jobs with modificatie

Set houre: 1224 43 72

Jobs - search

B : ource BNLPANDA RALDISK
ecent running,
activated, waiting, Totals | 1244 1 u

assigned, defined,
finished, failed jobs
Select analysis,

production, test johs
Quick search

128
BNL 4
BNLPANDA 66

128: lisExists(?) maxtitsmpt(?) | activ{18) dons(37) hold(1) run(3)

4: transfail(2) done(1) kill(1)

661: ImaxAttempt{4) ltransfail(222) activ(101) done)g31) hold(3)

el BU 136 | 136: MleExists(?) ImaxAtternpt(2) | iI053) actid18) done(47) hold(3) run(1)
?atiwi MWT2 IU |56 56: Hransfail(15) activ(11) done(30)

as|

File MWT2 UC 56 56: HileExists(1) ImaxAtternpt(1) ftransfail(18) 156(f) activ(@) done (¥

B i il
S SLACXRD 88 |88: ImaxAtterngt(?) Hransfsil(54) done(30) run2

Blocks: days 18 18: Mransfail @) activ(4) done(3) hold(1) runi
5;’3:5 ﬁi 101 |101: MleExists2) transfaili4?] activ21)4
Ll etz BNL ATLAS DDMilgts BNL DDM-condorg

Tasks - search

Generic Task Req
EvGen Task Req ffileExists(7) ImaxAtternpt(11) Rransfail(490) 196(1) activ(181) done(539) holdi@) kill(1) run(10)

Status: {=error)

Snapshot information

CTBsim Task Reg Stage:

Task list digit{1) dispatch{1244) pool(1)

Task browser Format:

Datasets - search RDO(1) rooti1)

Dataset browser Project:

Mew datasets

B i RDO() misall_med2(1)

Aborted MC datasets —— "=~ . . .
Panda stbscriptions ~ Release: Detalled lIlfOI'matIOIl

1(1) ¥12000701(1)
Datasets Distribution

DDM Req Job listing limited to most recent 200 jobs
%DI{‘TSI PandalD | Source Dest Attempt | Status ModTime |Forjofis Priority Dataset
RDOs 4463452 | BMLPAMDA | AGLT2 2all Itransfail 200000 | panda. 2543661 d-a6b8-4bef-bad?-61804d1d602f_dis4461126
% 4463461 | BMLPAMDA | AGLT2 2all Itransfail 200000 | panda. b1eb3fB7-69af-420b- b7 35-277 46047 a673_dis4460962
Walidation Samples 4463007 | BNLPANDA | UTA_SWT2 |2 all Itransfail 200000 | panda 5cbBb350-629b-4030-a7 36-979a07 c5501d_disd4B0828
W 4463254 |BNLPANDA | AGLT2 2all Itransfail 11-13 13:26 | jobs 200000 |panda.dabbiecE-babs-4479-8466-707 a40e040b_dis4460899
) 4466618 | BMLPAMDA | MWT2 U |1 all done 1113 13:26 | jobs 200000 | panda 40326337 aBe-417 4-854d-4b6b9d172b2c_dis4466477
Sites -U%IU glap (ME37S7 | BNLPANDA | BNLPANDA |2 all Itransfail 11-1313:26 | jobs 200000 | panda 77d37594-dab3-4e82-2559-e5ac7 e1264ad_dis4463280
UC UMICH UTA LCG A446BE20 | BMLPANDA | BMLPANDA | 1 all done 11-1313:25 | jobs 200000 | panda, c48fd87 b-e501-46/-9633-250505100260_dis4486490
Applications 4463255 | BMLPANDA | AGLT2 2all Itransfail 11-13 13:25 | jobs 200000 | panda. d14e145d-9ab2-47 ad-acfe-817794ac7 33_dis4460956
LCHARMM 4466615 | BMLPANDA | MWT2_IU |1 all Itransfail 1113 13:23 | jobs 200000 | panda.alb2bb3d-5507-4aad-Be15-63181ab5962b_dis4466353
Logging monitor 4463746 | BMLPAMDA | BMLPANDA | 2 all Itransfail 11-1313:23 | jobs 200000 | panda 467657 4f-4195-4419-97 ee-09938:3809ch_dis4384079
4462881 | BMLPANDA | BU 2all Itransfail 11-13 13:22 | jobs 200000 | panda. dd8a24eb-8025-48e6-03-5307 083 cdd7 _die4480951
A44BBE22 | BMLPAMNDA | UTA_SWT2 |1 all Itransfail 11-13 13:22 | jobs 200000 | panda. 1dfe5f7-bab2-4fc7-9180-51944eacdBel_dis4466577

Figure 4.8: A snapshot pf the newly added autopilot feature

The pilot is a lightweight execution environment used to prepare the computing

resources, request the actual payload (a production or user analysis job) from Panda

68

server, execute it, and clean up when the payload has finished. The pilots are broadcasted
from the pilot scheduler to the batch systems and the grid sites. The actual payload is
scheduled when a CPU becomes available, leading to a low latency for analysis tasks. For

robustness, the pilot jobs can be submitted either through Condor-G or locally.

Auto-Pilot provides an pilot implementation that contains no US ATLAS or
ATLAS specific content, such that it can be used in a wide range of contexts: within
ATLAS but outside OSG, within OSG but outside US ATLAS, from an 'off-grid' laptop

or workstation or batch queue, etc.

Firstly, different PANDASITE labels are presented as links. These links lead to

pages that give a list of all recently scheduled pilots with that particular site.

69

) AutoPilot pilot/scheduler system - Mozilla Firefox

Fle Edi Yiew Higtory

40 Getting Started [Latest Headines

Panda monitor

Quick guide, twiki
Jobs - search
Recent running,
activated, waiting,
assigned, defined,
finished, failed jobs
Select analysis,
production, test johs
Quick search
Job
Dataset
Task
File

Summaries
Blocks: days
Errors: days
Modes: days
Daily usage
Tasks - search

Generic Task Req
EvGen Task Reg

Bookmarks Yshoo! Tooks Help

(5% [hpefjariding.ueatiss bri.gov:25660fserverfpandamenjauerytp=main

AutoPilot pilot/scheduler system

Times are in UTC. Time now: 2007-10-25 00:31 AutoPilot info fORS BOIl Gridview GOC

Recent pilots: Al pilots
AMALY ALBERTAGTA AMALY BML:3279
ANALY LPC 4542 ANALY LVON

ATAZ39 ANALY CPPR 203 ANALY FTIC3260 ANALY LAPPB ANALY LONG LYON:117
PIALY SACLAY.TST AMALY SHEF:1439 ANALY TORYO:BS1 ANALY TORONTO:744 AMALY TRIUMF: 10895

ANALY UBC: 2686 Al 1756 ANALY UTA3299 AMALY WICTORIA 1479 BNL ATLAS DOM:17256 BRUNEL: 1676 CHARMM. 548
GLOWV-ATLAS 3484 LANCS:637 LIv:927 LYON:5345 MANC:5323 RAL2957 SACLAY2
TESTCHARMM: 16 TestPilot:6291 TOKYO:4147 WTEST:2 UTA-DPCC:1889

Pilot errer summary

Recently active services
Last=time since last heard from. Cycle=time to execute one maonitoring/scheduling cycle

1D Host Configuration User | PID |Status| Last |Cycle
98 condor-g-1 pilotScheduler. py —-tag=ck i HARMMR tirr 365 |running|1 1.4
102 gridui03.usatlas.bnl.gov| pilotScheduler. py --rmonitor 2l 12466 |running (0° 1.6
103 gridui03 usatlas.binl gov| pilotScheduler py —-single --all -pandasite=TestPilot wienaus | 12268 | running ;ggé
173 |condarg1 pilotScheduler py —tag=testcharmm —pandasite=TESTCHARMM tim |19141 |running|0* 12
202 |gridui3 usatlas. bl gov| pilatScheduler py ~tageANALY UK —pandasite=ANMALY_UK --pilot=atlasProd wenaus | 30293 |running 0" 1.0
283 |griduil3 usatlas.binl gov| pilotScheduler py ~tag=ANALY SHEF —pand RALY SHEF - pilat=atlasProd wenaus | 30345 |running|0* 1.0

CTBsim Task Ren 296 gridui03 usatlas.binl gov| pilotScheduler py -tag=ANALY LPC —pand: MNALY LPC --pil lasProd s 20104 |running |0 1.0

135:: L‘ST 302 gridui03.usatlas.bnl.gov| pilotSciduler. py —-tag=ANALY FZK --pand MNALY FZK --pil lasProd wenaus 12389 | running |0 1.0

A 305 | gridull3 usatlas. bl gov pilot5Eheduler. py ~tag=ANALY TAIWAN ~pandasite=ANALY_TAIM/AN -pilot=atlasProd wenaus | 22055 | running| 0" o

Datasets - search 306 | gridui03.usatlas.bnl gov, pl\ﬁchaduler py —gueue=BMNL DOM-condor --pandasite=BNL ATLAS DDM --pilot=debugProd Eul 11137 |running 0 1.1

m 307 | gridui03.usatlas.bnl gov, p/mSchadulevpy —tag=ANALY CMAF | MALY CHAF --pil lasProd wenaus | 31566 |running 1 1.1

Aborted MC datasets 313 |griguill3 usatlas. bl gov/filatScheduler py ~tag=ANALY UBC --pandasite=ANALY UBC -plot=atlasProd wenaus | 18358 |running|0 1.0

Panda subscriptions 3328

BS‘AT;? Distribution |45754 | ojcgatiasnz / pilotScheduler py —monitar lancone|8625 | running

Req list

AODs 32755 cclegatlas02.ingh3.fr | pilotScheduler. py —-maonitor lancone (9625 |running

ROO:

CT’V;{\DHS DS 32756 | gridui03. usa%s.bn\ gov| pilotScheduler. py —tag=ANALY BMNL -1 MNALY BML -pi Prod wenaus | 12515 running |1

DE Releases 32757 | gridui03. u#{las.bn\ gov| pilotScheduler. py —tag=ANALY UTA - MNALY UTA —-p Prod wenaus | 12805 | running |0

!jl:g:s?gﬁzgs‘gs 32753 gndu\U3/5atlas.bn\ gov| pilotScheduler.py —~tag=ANALY TRIUMF --pandasite=ANALY TRIUMF —pilot=atlasProd wenaus 11583 running |0* 1.1

M4 W4 T1_ESD 32760 gndu\U/usatlas.bn\ gov|pilotScheduler.py —~tag=ANALY ALBERTA --pandasite=ANALY ALBERTA --pilot=atlasProd wenaus | 13226 | running |1 1.1

61 | griduil3.usatlas.bnl gu\rw' Py —-tag=ANALY YICTORIA --pandasite=ANALY VICTORIA -pilot=atlasProd wenaus | 17026 | running|1" 1.1
32762 | gridyil3.usatlas.bnl.gov | pilot3cheduler pPN{ag=ANALY TORONTO --pand MNALY TOROMNTO —pil lasProd wenaus 12112 |running|0" 1.0
m Q1@ CEIE:neduler py —tady ANALY CERN ~pandasite=ANALY CERN —pilot=atlasProd sm 12562 running 0" [
% cIDiiI‘ﬂ pilotScheduler. pyz NALY SACLAY --pandasite=ANALY SACLAY -pilot=atlasProd lancone (9805 |running ;Béé
1760 e clasintlacnd b ANl TO L BIALY_TOL 1 |anDradd oo 10-24 ™

Figure 4.9: Autopilot page showing recent or running pilots

This page also provides information about current or recent active Pilot

schedulers. Information like ID, name of the machine hosting this scheduler instance, the

pandasite that the pilots being scheduled contain, queue or tag (group of queues) the

pilots are being scheduled to by this scheduler, who started the scheduler, state of the

scheduler etc. PANDASITE is a very important criterion while deciding a computing

node for a payload or a job.

70

. Link to the tag
definitions

Links to pages listing queues in different geographical location

) AutoPilot pilot/scheduler, system - i fozilla Firefox
Eile Edit Bookmatks

Wigw History Yafoo! Tools Help

@ - - @ /u} | T hitp:dgrichinz usatias.brl. gov:25880serverfpandamonjquerytp=main / &)
AP Getting Started [Latest Headines
22911 | condorg tthimi & EI;LTDS;ZtelggIoe;ﬂ’gai:Zﬁs:gﬁ;%cﬁg%%s{feLASGOWﬁwm atlag-lcapbs —debug —ngueue=10 atias |4154 [running 14 | A
32912 condory mu\fca pilotScheduler.py —-gueue=IN2P --ngueus=50 rrpi\m:allaso/ma\ --pandasite=LY ON atlas 14579 [running ;g;g
Queues L
Gatekeepers:304 QNUes:497 Working queues:324 Not working (authorization or job failure): 164 Abort after timeout (3hr wait in scheduled state):25
Regions: with queue count per region
Australia2 Austria2 Brazil:2 Bulgaria:d Canada:1s CERN:37 China3 Cyprus:1 CzechR:2 durrny:l France:32
Gernany: 31 Greece:12 Holland:13 HungaryS Ireland:1 lsraelB ltaly:41 Japan:3 Pakistan:2 Poland9 Portugal2 Romania:2
Russia13 SerbiaMonteneqro:2 Singapore:1 Slovakia:3 Slovenial Spain23 Sweden3 Switzerland:!1 Taiwan:8 Turkey:8 K52 usisg
Queue tags: List of queues in each tag
ANALY ALBERTA1 ANALY BML:2 AMALY CERM:4 ANALY CNAF:T ANALY CPPM:T AMNALY FZK:2 ANALY LAPP:1 AMALY LONG BNL:2
ANALY LONG LYON:1 ANALY LPC:3 AMALY LYON:2 ANALY PIC:T AMALY RAL:B ANALY SACLAYT AMALY SARAT AMALY SHEFA
ANALY TANMAN:1 AMALY TOKYO:2 AMALY TORONTO:1 ANALY TRIUMF:2 ANALY UBC:2 ANALY UKS ANALY UTAN ANALY VICTORIAT
charmm:21 condor3 has worked: 408 ith14 leq:3 leg-oa:362 1s£3
never worked:429 noauth:B no_atlas:0 offline:78 0s0:124 pathena:53 phs:1 prod-atlas:3
prod-usatlas:? rdigtest:1 schedduniv:2 serl testcharmm:3 timeout: 26 tpprod:40 working:316
‘ Queue name ‘ Region: Site |S—ys|em| Status |Que |Run| Fin |Fail |Abort| Latest |TJob
pilots |Australia-ATLAS-aghZ-atlas-legpbs | Australia: Australis ATLAS |icca foniine 5 1024 2031 |6
TestPilot. 5 (&) 10-24 16:15|6'
pilots | Australia-UNIMELB-L CG2-lcg-compute-atlas-legphs ‘Aus(ra\ia Australia-UNIMELB-LCG2 |_\:g£g |Dnhne 5 10-24 20:31|8'
TestPilot: 5 10-24 16:14|6'
UMESHTEST: 06-20 20:17 |5'
pilots | HEPHY-UIBK-gric-atlas-Icgphs | Austria: HEPHY-UIBK [icgca [online 5 10-24 20:31 |7
TestPilot: 5 10-24 16:15|7"
pilots | HEPHY-UIBK-hepxd-atlas-legphs | Austria: HEPHY-UIBK [icgcq [online 10-24 20:31 |5
TestPilot: 10-24 16:14 |5'
pilots|[HEPGRID UERJ-0sgee-atlas-condor |Brazi HEPGRID UERJ [icg-ca oniine 1 10-24 20:31 |5
TestPilot: 1 10-24 16:15|5'
pilots | SPRACE-spgrid-atlas-condor |Brazil SPRACE [ica-co [online 1 10-24 20:31 |B'
TestPilot. 1 10-24 16:10|6'
pilots | BGO1-IPP-ce02-allas-logabs | Bulyaria; BGO1-IPP [ica-co [online 2 10-24 20:31 | 162°
TestPilot. 2 10-24 19:12|182'
pilats. EGD}\%UU?MI%%E@EM | Bulgaria; BGO2-IM |ica-co [online 10-24 20:31 |5
TestPilot. 10-24 18:13|6'
pilots | BGZA-ACAD-col-atlas-sbs |Buluaria; BG04ACAD [lcca [oniine 4 10-24 20:31 |6
TestPilot: 4 10-24 16:10|6'
%ié‘EGDEV‘SUGHd—EEDDWrat\asrlcgghs |Bulueria: BGO5-5UGrid [lcgeq [onfine 2 10-24 2031 |4'
TestPilot: 2 10-24 16:15|4'
pilots | ALBERTA LC G2 legeel? atlas-legpbs |Canada: ALBERTALCG2 iegeg [ox 1 108 10-24 20:31 |14°
ANALY VICTORIA, 1 09-16 02:14 |23
ANALY _ALBERTA: 1 106 |863 |14 10-25 01:23{11"
Tt B PP RTREIETN b

Dane

Link to pages for each queue

Figure 4.10: Autopilot page showing queues and tag names

71

4.6 Usage and Quotas

Another feature that panda monitor allows is to see the allotted quota of resources
for each user who submits analysis and production jobs. As production jobs start coming
in, once the experiment begins it will become inevitable to restrict people from
submitting excessive jobs subscriptions based on their role in the experiment. The quotas
for submission will be varied according to the user’s organization. To monitor resource
management issues, a page is put up where a user’s utilization of the grid resources is
tabulated in daily, weekly and monthly figures for analysis and production jobs. This

feature not only allows the individual user to monitor his available quota for the day but

also allows grid administrators to monitor the usage of each person individually.

- -

Configuration
Update

Panda monitor

Guick guide, twiki

4% [l hetp:iaria o

Production Clouds DDM PandaMover AutoPilat Sites & Grids Analysis Physics data Usage & Quotas Plots ProdDash DDMDash

125980,

[=»] [C]

Usage and Quota Table

Q)| - = x
[~

Mot lagged in. List users ”

Jobs - h
e Name 1 Day CPU Usage || 7 Day CPU Usage 30 Day CPU 1 Day CPU Usage |7 Day CPU Usage 30 Day CPU
activated, waiting, I Quota in Hours I Quota in Hours Usage [Quotain in Hours in Hours Usage in Hours
?sswhgn:d% d‘egwi (Analysis) (Analysis) Hours (Analysis) {Production) {Production) (Production)
inished, failed jobs
Select analysis, bob stanek £848.84 / 500 26484.00 /3000 31997 .72 £ o000 0.00 0.00 0.00
production, test jobs
Quick search Antonio Sidoti 10182.25 / 500 10638.93 / 3000 11654.52 / 9000 0.00 0.00 0.00
Job
Dataset Ketevi 2 101.00 ¢ 500 50.50 / 3000 7087 64 / 9000 0.00 0.00 0.00
lﬁj‘ christina potter 0.00 /500 176750 £ 3000 5117 62 / 9000 0.00 0.00 0.00
S Markus Bischofberger 0.00 /500 1027 .60 £ 3000 572575 £ 9000 0.00 0.00 0.00
Bk cERS Andrea Ventura 0.00 /500 0.00 #3000 3505.48 / 5000 0.00 0.00 0.00
Errars: days
Nodes days Anna Phan 0.00 /500 £73.43 / 3000 2419.82 4 9000 0.00 0.00 0.00
Daily usage

Elizabeth S Ptacek 0.71 /500 0.56 /3000 2319.58 4 5000 0.00 0.00 0.00
Tasks - zearch
Generic Task Req jasna dragic 0.41 /500 0.20 /3000 2211.13 4 9000 0.00 0.00 0.00
EvGen Task Reg
el Marija 0.00 7 500 0.00 /3000 15810.60 / 5000 000 000 0.00
Tesk list Emmanuel Turlay 0.00 /500 0.00 3000 1441.90 / 9000 0.00 0.00 0.00
Task browser

Seth Caughron 435.65 / 500 508,05 / 3000 1317.68 4 9000 0.00 0.00 0.00
Datasets - search
Dataset browser Leonarda Carminati 115.70 £ 500 365.24 /3000 762.87 / 9000 0.00 0.00 0.00
MNew datasets
Aborted MC datasets | Yoshio Ishizawa 11.03 /500 5.55 /3000 529,84 / 5000 0.00 0.00 0.00
Panda subscriptions

Anthony Morley 0.00 /500 0.00 /3000 501.30 / 9000 0.00 0.00 0.00
Datasets Distril
DDM Req Dimitrios arouchas 2,63 /500 20.73 £ 3000 445.06 f 5000 0.00 0.00 0.00
Req list
A0Ds Murcan Ozturk 7.45 /500 45.09 £ 3000 569.20 / 9000 0.00 0.00 0.00
E'Snodf(mg o monika wielers 0.00 /500 267,85 / 3000 360.90 / 5000 0.00 0.00 0.00
L8 Peliczzs Kevin Black 0.00 /500 0.00 / 3000 357.46 / 9000 0.00 0.00 0.00
Yalidation Samples —
Functional Tests Moustapha Thioye 0.00 /500 337.24 /3000 337.24 /5000 0.00 0.00 0.00
M5 M5 T1

Jeremiah Goodsan 0.00 /500 0.00 /3000 30264 / 5000 0.00 0.00 0.00
Sites - see all
BUL BU U DU SLAC | Mario Bondiali 0.00 /500 0.00 /3000 284.66 / 5000 0.00 0.00 0.00
UG UMICH UTA LGG

TARRADE Fabien 0.00 /5000 33.81 / 30000 277,60 / 90000 0.00 0.00 0.00
CHARMM Jonathan Ferland 276.78 / 500 276.86 / 3000 276.94 / 9000 0.00 0.00 0.00
ey AT aleq brandt 0.51 7500 0.25 /3000 259.18 / 9000 0.00 0.00 0.00

Pietro Faccioli 0.00 /500 103,28 /3000 204.06 / 000 0.00 0.00 0.00

Gustaaf Brooijmans 0.00 /500 95.30 4 3000 177.76 /9000 0.00 0.00 0.00 o

Figure 4.11: A snapshot of the User Quota page listing all users

72

4.7 History Plots

This feature allows plotting of graphs for specific intervals which are obtained as

inputs from the user, the user is allowed to query for the present day, yesterday, a week or

month based on his requirements. The inputs are collected from the user as to if he

wishes to see the graphs plotted for specific sites or if he wishes to collectively monitor

the performance of all sites in which case he chooses the All Sites option from the drop

down box. Alternatively the user is allowed to specify his own dates which he is

interested in to see the graphs for and he can also choose an interval limit in which he like

to see the plots like a typical query could look like weekly plots for UTA-Dpcc at an

interval of 1 day .

@ - - e]

Configuration
Update

Panda monitor

Quick guide, twiki
Jobs - search
Recent running,
activated, waiting,
assigned, defined,
finished, failed jobs
Select analysis,
production, fest jobs
Quick search

Summaries
Blocks days
Erors days
Modes days
Daily usage

Tasks - search
Generic Task Reg
EvGen Task Reg
CTBsim Task Req
Task list

Task browser

Datasets - search
Dataset browser
Mew datasets
Ahorted MC datasets
Panda subscriptions

Datasets Distribution
DOM Req

Req list

AODs

EDDs

Conditions DS

DE Releases
“alidation Samples
Eunctional Tests

M5 M5 T1

Sites - see all
EML BU [U DU SLAC

UC UMICH UTA LCG

Applications
CHARMM

Logqing moniter

[hetp: fariduinz. usatlas. brl.gov: 25860,

Production Clouds DDM Pandalover AutoPilat Sites & Gride Analysis Physice data Usage & Quotas Plots ProdDash DDMDash

Generate History PLOTS

Time Period

Time Interval

Site Names

Bookmark URL: htpaipand: orgPdash=Fiots

© Date Range From.
Date Format: ¥ YhiMDD
O Last Mdays M value
O Today

O Yesterday

© Last Week

O Last Month

any [Hours

e A
“BML_ITB_Testlb

BU_ATLAS_Tier2
BU_ATLAS Tierzo
IU_0SG

OUHEP_ITB
OU_OCHEP_SwWT2
OU_OSCER_ATLAS
SLACKRD
UC_ATLAS_MWT2
UC_Teraport
UC_Terapor_0SG_ITE
UMICH

UTA-DPCC
UTA-DPCCest
UTA_PAUL_TEST
UTA_SWT2

In case of problems redirect 10 recormmended monitor instance or check services fist

Run by sm

Figure 4.12: A snapshot of the querying page of History Plots

To

73

-

Mot logged in. List users

The above figure shows a snapshot of the page which allows the user to choose
the different options that are available for querying.
Below, is a graph given which is obtained as a result of a query of collective

running jobs on all sites for the past week at an interval of 1 day.

tine

Ao T0aLauy

HIHILIAD TA0L

running
=
-
-

sat SUh Mat Tue Wed Thu Fri sat

Figure 4.13: A graph that was generated from the History plots application

74

CHAPTER 5

PANDA MONITOR ARCHITECTURE

5.1 Monitor Architecture Overview

The following diagram represents a detailed architecture view of the Panda
monitor and gives an account of its major components .The major components of the
Panda monitor can be given as:

e Request handler

e DB utils

e Panda monitor tils

e HTML utils

* Panda logger

e Database

Each of the above components is elaborated below illustrating their specific roles in

the effective building up of the panda monitor.

75

Request Handler

Job Query

Login Module

[Dashboard

)

Panda Overview

Graph

DB Utils

Database

Panda Monitor

ANALY
_BNL_A

Panda Logger

BNL_
ATLAS_2

BNL_
ATLAS_1

HTML

ANALY_BN
L_ATLAS_1

76

Figure 5.1: A detailed architecture view of the existing monitor

5.2 The Request Handler

[Reaquest Handler }

[JobOuervModule } [Login Module }

{ Dashboard Module }

[Panda Overview ‘] [Granh Generation ‘]

Figure 5.2: Representation of the Request Handler

The current Panda monitor helps in monitoring important information such as the
number of jobs running collectively in Panda during a given period of time; the same can
be assessed individually for every site. This turns out to be an important factor in
determining the individual performance.

The request handler module acts as the main gateway for the entire Panda
monitor. This module allows interaction between the various modules that are the
building components of Panda monitor. To access the different modules, the Panda
monitor user interface provides links that helps in passing different parameters to
differentiate the modules to be accessed. Based on the parameters passed from the user
interface of the Panda monitor, the request handler routes the calls to the various modules
like job query, dashboard, and graph generation. The request handler acts like an abstract

layer that encompasses all the different module invocations. In the process, basic steps

77

like retrieving the result from the respective modules, building the html result page are
also handled. Eventually, this module, acts as a pivotal module, thereby ensuring layered
architecture for the Panda monitor.

Each of the above modules (in green), have a specific action to be performed.
These modules are self sufficient and hence, contain all the associated functions in it.
Panda overview module aids in generating the initial index pages for all the modules
involved in the specific layer. It acts as an under lying module for the dashboard module
and the job query module. Apart from these, there are enormous functionalities of the
Panda overview; they help in viewing the log files, error handling and all search related
functionalities. Hence, Panda overview module guarantees all the basic functionalities
panda monitor to be ported as a web page

The login module is also found in this application. This module provides/restricts
access for the users of the system, by which the security of the system is ensured.

5.3 The Database

[DBUtils }

Database Panda Monitor Utils }—)[Request Handler J

Figure 5.3: Illustration of Database operations

78

The DB utilities module provides the necessary interface to interact with the
database involved in the Panda monitor. The Panda monitor utilities; module is the one
where the database results are linked on the result page to be displayed for any call to the
Panda monitor. This generated resultant page is passed over to the request handler
module, which in turn displays it in the browser. Thus, it is evident that Panda monitor
utilities module acts in lower level to ensure the seamless working of the system. The
entire page rendering functions and dataset typecasting functions are handled in this
module. This module also checks the server status and monitors the configuration settings
for the application.

As it is the case with all the application systems, there is a centralized database,
which collectively holds all the necessary data for the Panda monitor. This acts as a back
bone for this complete application.

5.4 Logging and Utilities

Database

Panda Manitor [tils 1

[Panda Manitor l.ossing } [HTMI. Utils }

ANALY_BNL ANALY_BNL
_ATLAS 2 _ATLAS 1

BNL_ BNL_
ATLAS 2 ATLAS 1

Figure 5.4: A representation to show logging of data to panda central database

79

5.5 HTML Utilities

This module aids in forming link displays in the pages, links to the pages and also
acts as a style sheet to the elements in the HTML pages used in the application. This
helps in customizing the user interface and serves as a necessary utility to build the

outline of the panda monitor

5.6 Panda Logger

The Panda monitor has an extensive logging facility. This is done using the
module, Panda logger. Logging is done using the HTTP handler for each page and also

the respective locks required for such transactions are also ensured.

80

CHAPTER 6

PROPOSAL FOR A ROBUST MONITOR

6.1 Introduction and Groundwork

Panda monitor when created, served the needs of the scientists and grid
administrators efficiently. But as it kept evolving, many problems were slowly being
uncovered with the current monitor. One of the major concerns with the existing monitor
was that it was responding very slowly to even normal queries to the system. Queries
such as information about running or assigned jobs sometimes take close to a minute to
build all the information needed for that page. This time delay is unacceptable; however
the major concern was due to the fact that the monitor was just being tested with around
6000-8000 test jobs per day at the moment. This number could go as high as 200,000 jobs
when the experiment begins. This raised the alarm and indicated that current monitor will
not scale well once the experiment begins. The scalability issue with the current monitor
could be attributed to group of factors.

The first thing that could be noted down in the current version of the monitor is
the absence of any kind of features incorporated in the web such as JavaScript and XML
to deal with the huge amount of information .The content in each page is relatively large
to a normal web based service since the experiment demands it that way. Also the way in

which information was organized in each of the pages posed a problem. A clear

81

differentiation between users and administrators could not be made. A simple example
could be cited as, if a person would like to access the page for running, defined or
finished jobs, for example, he will be provided with all the information related to the kind
of job he or she requested which was submitted by all panda users. Usually this kind of
information spans to a large number of pages and will also be difficult for the user to
scroll down to look into selective information that he or she is interested in. A person
usually accessing such a page will be more interested in his/her jobs submitted or jobs
related to his/her organization.

This kind of user level filter was not in the goal of Panda monitor when it was
designed initially. Collective information such as the one described above proved to be
very useful to system administrators or super administrators who would like to see all the
information in one click.

Panda is evolving faster than it was originally expected to; plans are ongoing to
make it common grid middleware which could help experiments using OSG sites. One
such experiment which already took to using Panda for their purposes is CHAARM
(Chemistry at HARvard Molecular Mechanics). When experiments are using Panda to be
their new grid middleware and when panda is moving to the next level as a successful
grid manager middleware, there is an absolute need for a customized and scalable
monitor which can appeal to more experiments to use panda as a part of their grid

management needs.

82

Sends a request to Web Server

Displays View

Job Query Dash board Graph Gen Login .
View & View & View & View & Invoking Controller
Helper Helper Helper Helper

PANDA MONITOR VIEW

Populates
Data

Receives Response Sends Query

|

Access Data

Figure 6.1: Architectural view of the Proposed Panda Monitor
The first obvious conclusion that could be arrived is to make the existing monitor
more scalable with the use of the new generation of web paradigm called AJAX which is
an acronym for Asynchronous Java and XML, the use of this kind of feature in a page
which has to deal with huge amounts of information, could actually reduce the amount of
information fetched every time without actually reloading the currently available content

in the page. So the idea is pretty simple as the user is still going through the information

83

in the page, any thing new that he requests will actually be made available without
reloading the page. This could be a potentially apt solution for making the monitor quiet
responsive in terms of turn around time and interactivity.

However when Panda wants to scale to another level by implementing more
interactivity in the form of graphs and better ways of representation other than just text,
the current monitor could still pose a problem since it was written in Python and there are
not many options which offer good scalability in the web.

The next thing that was discussed to overcome the problem was to adapt user
based logins for Panda and give a set of default options in the start up page where the
user will have a fixed set of links which might be of interest to him. Hence pages for
general users and administrators could be kept separate and users will also be given the
option of actually customizing their pages according to their needs. This could also be
coupled with implementing sessions so that the pattern of search of each user could be
tracked and a set of default pages that he browsed previously could be automatically be
loaded in the background without the user knowledge; so that if he tries to access the
same pages now, he will feel them load faster. This could considerably improve the
performance of the current architecture of Panda monitor.

The need for a rapid application development model was also discussed since it
was understood that all requirements for an experiment with the enormity such as
ATLAS could not be met upfront; this raised the need for a system which will allow

applications to be rolled out of the door within a few days of request, the current model

84

proved to be a hassle for such flexibility in terms of time. This requirement raised the
need for a new architecture with proven scalability in terms of the Internet.

The search was on for a system which would curb the problems in the current
version of the monitor by adapting to changing needs and the necessity for rapid
application development in the monitor.

A decision was made to adopt a completely new Technology which is well
formulated for web based applications, one which was already proven to scale well in
handling huge amounts of information.

The other things that were looked into for the implementation of the Panda
monitor resulted in the need for an inherent compliance to the new emerging Web
standards cross compatibility and seamless performance across all browsers.

The need for maintenance of code was realized and a system which would enforce
clean coding practices and will also allow easy maintenance of the code after
development was the one which would fit the bill.

Ruby on Rails was considered as a potential candidate and was finally decided to

be employed in the creation of the new generation of the Panda monitor.

6.2 Ruby on Rails and MVC Architecture

Ruby on Rails is a new Web application framework which facilitates good
programming practices, this eventually leads to neatly structured and efficient code

among many other benefits some of them are discussed below.

85

Much of the power of Rails comes from the Ruby programming language. Ruby's
unique design makes it easy to create domain-specific languages and to do
metaprogramming. Rails takes full advantage of this.

Rails is an MVC (model, view, controller) framework where Rails provides all the
layers and they work together seamlessly. Other frameworks often implement only part
of the solution, requiring the developer to integrate multiple frameworks into the
application and then coerce them into working together. For example, a Java developer
might use Hibernate, Struts, and Tiles to get full MVC support. This was exactly the
problem with the old version of the Panda monitor it was not strictly designed to confirm
to the MVC architecture. This resulted in a big problem at a later stage, since it did not
confirm to code practices of the object oriented world and this eventually led to a code

maintainability problem at the later stages of the current monitor.

The below diagram is drawn to represent the flow of control in the MVC
architecture. The MVC architecture is gaining a lot of momentum recently, it clearly
gives a cutting edge over any other suggested architectures since it enforces strict coding
practices and flow of control in a sequential manner. This eventually reduces the lines of
code that needs to be typed to create any application, not only saving time while creating
them but also leads to easy code maintainability. In the above diagram, we can see the
model view and controller clearly sketched out, The model is responsible for interacting
with the databases; any transaction to the databases should always go through the model

.The controller is responsible for actually interacting with the users through a web page

86

from which it takes user requests and directs them accordingly to the model or to internal

controller applications.

Sends a Request to web server
user » Web Server (Apache

or Lighttpd)

A

Displays a View

A J

: Populates data
View - Controller

A
Response Queries

This is conventional MVC

architecture which is given by Model
Model, View,Controller (this is
suggested model to create web Access the data

applications which will act like

desktop ones in future). E

Figure 6.2: The MVC architecture and flow of control

6.3 Advantages of Ruby on Rails

Convention over configuration means an end to verbose XML configuration files
in Rails; a Rails application uses a few simple programming conventions that allow it to
figure everything out through reflection and discovery. For example, Rails uses

intelligent reflection to automatically map database tables to Ruby objects. Your

87

application code and your running database already contain everything Rails needs to
know.

Rails programming conventions does more than just eliminate the need for
configuration files. It also means that Rails can automatically handle myriad lower level
details without you having to tell it to do so. This facilitates the writing fewer lines of
code to implement the application. When fewer lines of code are used to develop an
application it implies faster development and fewer bugs, which make code easier to
understand, maintain, and enhance.

Rails use of runtime reflection and metaprogramming eliminates much of the
boilerplate code that you would otherwise have to create. Using the built-in generator
scripts to create most of the conventional stuff cuts the development time by many times.
It is so easy to create a controller with just one line of running the script. This gives more
time to concentrate on the logic of the application that need to be created instead of
spending more time on the configuration to get a small thing running.

The typical development cycle for either creating or testing a change to a web app
has steps such as configure, compile, deploy, reset, and test. This is time consuming and
also a tedious process in most of the currently available web application frameworks.
Rails combine all these steps again into one small command to regressively test and
deploy the application. This reduces the turn around time to see changes where
conventional frameworks could take a few hours to even show the out. Rails is so

seamless that it does not even require a server restart to see the changes.

88

Rails can automatically create a full set of CRUD (Create, Retrieve, Update, and
Delete) operations and views on any database table. This scaffolding can get you up and
running quickly with manipulating your database tables. To start off with this could be a
really quick way to show people how a base line of their application could look like. This
option enhances the interactivity of the user at every level and introduces a spiral mode of
software development where every change can be incrementally added on to the system
with user feedbacks.

These are few of the many advantages that Ruby on Rails offers and hence this
was decided to be an optimal platform on which the next generation of Panda monitor
could sit comfortable. Also Ruby on Rails offers inbuilt adaptability to scripting packages
such as Scrip.aculo.us and Prototype.js. Also the session management features in it made
it a clear choice for the next generation of the monitor. All these factors made Ruby on

Rails a clear choice for implementing the panda monitor.

6.4 MVC Panda monitor schema

The architecture for the Panda monitor was maintained to be in very close lines
with that of the Ruby on Rails architecture of the Model View Controller, the schema for
the Panda monitor based on MVC architecture will be as illustrated below in the diagram.
The dashboard links and the links will each have a corresponding view. For example the
link for the generic Panda Monitor will have a template view and each of the links like
Production, Clouds, Jobs, and Analysis will have an individual view each. All these

views have a corresponding controller to talk to; this setup allows interaction with the

89

server from the controller and also between controllers when the user requests
information. The controllers rely heavily on the models to interact with any required
databases to fetch any information that may be needed to process the user request.

The models are the key to interact with the databases; the flow of control is as

illustrated in diagram. The models are the only ones who can talk to the databases.

Analysis ----=--=-----—--- Views ——-——-—-——comee - Quotas ---- Graphs

The Panda Monitor View

A J \ 4 v
Analysis j-=--=--------- Controllers --------------1 Quotas r---- Graphs

The Panda Monitor Controller

/ \ 4 \ /
Analysis f---=--=-==--—--——- Models ---------------- Quotas r---- Graphs

The P%da Monitor Model /
DataBases @ DataBases

Figure 6.3: Scheme for the Panda Monitor in the MVC Architecture

They talk to the controllers and extract the required data from the databases and process

them according to the user requests. The models provide a mapping to the objects in the

90

Ruby on rails paradigm to each of the tables. The clean structuring of control keeps
context switching at its minimal. Context switch in software which is also referred to as
process switch is the mechanism by which the CPU resource gets switched between
processes or threads during the course of execution [].Context switches occur in the
kernel space and the user space, it is quiet common with sloppy programming practices to
introduce a heavy context switch in the user space. Ruby on rails avoids this by forcing a
certain methodology of coding yet not making it too difficult for the programmer to
conform to the standards.

The Panda monitor view is going to be very important part of the evolving
architecture, unlike the current monitor view it is going to distribute and share with the

controller and the model the load of presenting the data to the user.

A RJS based view which
Asimple RHTML vieW | g Will allow Javascript
based operations

. " A schematic repesentation
ontroller of the view depicting the

/ - stages of development
where the RHTML will be in
v the first phase and RJS will
start replacing it.

Model

Figure 6.4: Illustration of the View of the Proposed Monitor

91

The current monitor does not employ any other aided features like XML or
JavaScript which can greatly improve its performance. A schematic representation of the
proposed monitor view is given in the block diagram above. The initial phase of
development for the monitor will just be a RHTML(Ruby Hyper Text Mark up
Language).This unlike the normal HTML has added advantages by itself, also the fact
that it can be seamlessly integrated with any additional plug-in that may be of use to
improve the performance. RHTML is the standard in which the initial monitor. This
initial setup will enable continuous user feedback and will allow the flexibility to add
changes effectively. More over the page mapping scheme in Ruby on Rails is consistent
with the controller mapping scheme and hence the pages are effectively mapped by
means of simple naming conventions. [23].
A sample of the graph that was obtained in the new monitor scheme not only does it takes

things fast. It also provides a wider variety of options.

Site Usage from 06-25 00:00 To 07-02 00:00

Running M Activated M Assigned B Defined M Waiting

SO0 JO J2Wnp

 —— - S — ——————
0

06-25 00 06-26 00 06-27 00 6-28 08-29 00 0B-30 00 07-0100

Figure 6.5: A sample Graph from the new monitor

92

CHAPTER 7
CONCLUSION AND RESULTS

7.1 Comparison of the two systems

The two systems can be compared in various levels to understand the effective
working of the new system and the possible flaws with the earlier system. A simple
parameter to compare could be the lines of code metric, this metric is considered just a
simple metric which could give a high level overview of the system, though it does not
reflect the effective working of the system in anyway, lines of code could still point to be
an indicator that can give some good information about the whole system.

The old monitor code ranges easily around 6200 lines, and is growing at a much
faster rate as new applications are being added everyday. The base framework that will
be needed to bring a basic page online is near to 3400 lines in the existing monitor. In the
new Ruby on Rails monitor that is being created this was cut down to less than 800 lines
of code to bring a working monitor code for a graph generating application and was just
around 580 lines to actually get the basic framework for the monitor up and running.

The next benefit that we immediately get by reducing the Lines of code heavily
is that that code becomes easily maintainable. Software maintainability is defined as the
ease of finding and correcting errors in the software. It is analogous to the hardware

quality of Mean-Time-To-Repair, or MTTR.[24] Maintainability often cannot be directly

93

measured in terms of numerical values but it can be roughly understood by finding the
reliability of a software, this is mainly due to the fact that maintainability often associated
with modularity, self or internal documentation, code readability, and structured coding
techniques. These same attributes also improve sustainability, the ability to make
improvements to the software.

For a system like Panda which is expected to evolve and be around for a
number of years code maintainability becomes imperative. If software reaches a point
after which it becomes too cumbersome to maintain or make changes it will eventually be
replaced by another system.

The existing version of the Panda monitor could make it quite difficult for new
code to be added at a later point in time when the experiment. This can be attributed the
design since to even get something simple running entries have to be made into multiple
files to let all the other components inside the monitor know that something new has been
added. In the new version of the monitor this can be cleverly avoided, for any new
application to be up and running there just needs to be a view, a corresponding controller
and finally a model which can talk to the databases and make sure everything goes on
smoothly.

This model will allow easy and custom applications to be made and added
according to an individual’s needs without much effort and extensive knowledge about

coding.

94

7.2 Experimental Results

A number of pages were considered in the old monitor to check for typical
response times or turn around times for a web page to turn up. The time ranges were from
4 seconds in a few pages up to 38 seconds in certain pages which dumped in more
information to the user than actually necessary. A typical example that could be
suggested is the Page for Analysis Jobs that has been shown in Figure 39, this page took
an average of 26 seconds while it was queried at various time periods in a day ranging
from low traffic to average traffic. Similar results were obtained for other pages too and
the actual time to traverse through all the information in the currently displayed page was
also huge for the user. Another place where the old system showed a great lag in response
was in the graphs. The system responded quiet slowly for graphs that were even
generated for a few days. The ideal time for graph generation for a period of 3 days at a
sampling interval of 12 hours was around 14 seconds. The system took almost 24 seconds
for the generation of a graph for a week at a sampling interval of 1 day. This delay in
response can be clearly seen as an overhead and is a flaw with the way the old monitor
was done.

To understand the impact Ruby on rails will make on the new monitor, this same
sampling application was taken as benchmark and was recreated in Ruby on rails, the
system scaled remarkably well and brought down response time to less than 3 seconds
even for graphs that were generated for a month at a sampling interval of a day. The

graphs for days less than a week were even faster, putting the response times between 1

95

and 2 seconds typically. Ruby on rails was found to bring remarkable reduction in turn
around time in the page that was considered to be time intensive.

Graphs are plotted depicting the time that each monitor took for respective pages.

A query of Analysis Jobs

40

35

20

Time taken in Seconds

Hours of the Day

Figure 7.1: A plot showing time taken to display the analysis jobs page
The above graph is a representation of the time taken for the page containing the
collective summary of the analysis jobs to be displayed in the current monitor which is in
python. Samples were taken at varied times during the day to account for the traffic
inflow to the monitor. It shows the simple query taking between 22 to 34 seconds at
varied times during the day, this is also at a time when the total number of jobs
submitted to the system ranging between 3000 -3500 jobs a day, whereas in real time

when the experiment kicks off there will be easily around 200,000 jobs a day.

96

30

Plot for Week site usage graph at interval of 1 day

25

20

Time in seconds
-
o

3.5

Hours of day

Figure 7.2: A graph showing time in seconds for a weekly plot

Plotting for weekly Graphs at an interval of 1 day (ROR)

25

25

N

7

-
o

n

Time in Seconds

0.5 1

Hours of the Day

Figure 7.3: A graph showing time in seconds for a weekly plot in the new monitor

97

25

Plot for a 3 day graph generation with an interval of 12 hours

Time in seconds
-
o

Hours of the day

Figure 7.4: A graph showing time taken for a plot of 3 days at an interval of 12 hours

Plot for 3 day Graph generation with an interval of 12 hours

25 *25

Time in Seconds
o
4]
N
n

1 + +

0.5 0.5

Hours of the Day

Figure 7.5: A graph showing time taken for a plot of 3 days at an interval of 12 hours-

new monitor

98

The above two sets of plots are also drawn to illustrate the differences in
performance between the two versions of the monitor for the plotter application which
helps in retrieving history plots. The old version of the monitor can be seen taking much
more time than the new version for the same query. Also it was noted that making

updates to the application according to user requests was a cumbersome process.

Averages for Various Runs

80 1

" X
: / N\
50 /N

Time in seconds

40
//34
30

20
Nﬂ\(

7
w4

mos5 : - ; 15 : w2

1 2 3 4 | 5 | 6
Different Runs
Figure 7.6: A plot showing average times recorded for various runs
The above graph was plotted in an attempt to see the performance of the new
monitor against the existing monitor. The figure has two line graphs the green one
representing the new monitor and the old in red.
The various scenarios that were run commonly in both the monitors are as below

1. Usage analysis across all sites for yesterday at an interval of 2 hours.

99

2. Usage analysis across all sites for 3 days at an interval of 12 hours.

3. Usage analysis across all sites for a week at an interval of 1 day.

4. Usage analysis across all sites for a week at an interval of 12 hours

5. Usage analysis across all sites for a month at an interval of 1 day.

6. Usage analysis across all sites for a specified date range an interval of 1 day.

The new monitor however was very good on the response time as it can be seen
on the plots and for most queries it did not take more than 3 seconds to generate the
graphs real-time. In the first version of the plotter application the monthly and weekly
graphs were pre generated at midnight to be used for the day. This was due to the fact

that some times these graphs took over a minute to be generated which is not acceptable.

7.3 Process Diagrams for the function history plots

In an attempt to elucidate clearly the advantages the new monitor will have in
terms of context switches and design, an attempt is made below to give a view of the
process diagram for the application called History plots in the Panda monitor.

The process diagram is a software engineering attempt to look at the
applications in a better analysis view. Each of the important components that form these
applications is given out and the functions that interact with each other are also given
inside. The diagram can give a fairly deep understanding of the implementation and will
also clearly give an idea of the context switches that will be involved in each of the

systems

100

HistoryPlots.py

PlotGraphs()
Used to just
b display the
predawn

ParamsResolve()
Asses the inputs and makes
a function call specific to the

monitor
display page
all graphs are

user inputs
DateRange()
User submits
date range
input
Storage area
for all h
DrawGraps() or all grapns
Plots graphs for

varied inputs
most queries go
through this

range by user go
through this
function

DefGraphs()

Plots the def graphs,
E monthly, Weekly,

prev day ones every

day at midnight

DateRangeGraphs
() queries with date

RrdQuery.py il InterfaceRrd.py
Y
CreateDB
Query() Resolve() Used to create the
This is the Place This is the Place RRD Database
where the user where the user L
query is analysed given inputs are
and conrols converted to a p
passed to obtain farmat whirh ran UpdatedB

Used to input data
into the RRD db
_ create in;step 1

A

QueryResults()

The converted query
made understandable
MYSQL is used to fetch
actual data and control
goes back to fn Query()

i
U

Draw®raph()
Function which
uses the tool to
draw qraphs

Figure 7.7: Process diagram of the existing monitor for History Plots

The above diagram clearly gives an overall picture of the flow of controls
in the existing Panda monitor. In the application, the initial step is to obtain the inputs
from the user using a user interface page. The inputs thus received, are passed on as
parameters in the URL to the underlying code file. Based on the action to be performed
on these parameters, control is transferred to the respective code module via Panda
monitor overview module and request handler.

Let’s consider the control flow in the case of graph generation for the history plots
page of the Panda monitor. The critical file for this module is HistoryPlots.py; this
interacts with the others to understand the user query and to draw the graphs. The prime
responsibility of this file is to parse the parameters and format them to be sent to the RRD
for further processing. In any application, the user inputs must be pre-processed before
passing them onto the underlying code base and this has to be handled at the upper layer.
The function params resolve () aids in categorising the inputs and formatting them. Since
graphs can be generated depending upon various inputs (date range, site types), each of it
has to be handled separately. For the date range inputs, the function date range () is used.
drawgraphs () function routes all these calls to the rrdquery.py, which acts as an abstract
layer and accepts all the graph generation invocation. In this file, function query (), the
parameters are separated and each of it is appropriately placed in the SQL query. The
function query results () is where the actual data from the database are read using the
above constructed SQL. The results thus obtained are passed to the interfacerrd.py file.
At this juncture, the RRD database is created using the results in the function createdb ().

Function drawgraph () invokes the RRD tool, and the graphs are generated. The graphs

102

thus generated are stored at a specific location. Finally, these pre-drawn graphs are
displayed using the function plot graphs (). This in turn returns an html page, which is
displayed to the user.

It is evident that this existing functional approach has a heavy context switching
involved. The function calling is done at several layers, passing the parameter down to
RRD.

Since, context switching is directly proportional to the response time for any
system, this heavy context switching adversely affects the response time and hence we

observe long response time in the existing Panda Architecture.

7.4 The Proposed Architecture

In the Rails framework, the functional layers are clearly distinguished by the
framework itself. This framework broadly classifies these layers as Models, Views and
Controllers.

Each of these entities has a set of specific actions to be performed. As the number
of entities involved in the proposed architecture is less compared to the existing Python
architecture, we can expect the context switching to go on the lower end, resulting in the
quick response from the new system.

Let’s consider the functional flow for the graph generation module in the new
architecture. The figure below is an illustration of the functional sequence in the new

Ruby on rails architecture.

103

main_controller.rb plot_page.rhtml

: Index Page for
Main Page of the N
Application is set to the Application
default layout and is
invoked
plot_page_controller.rb
Index () Sitelist ()
v Populates the Populates the
. types of jobs sites list from DB
Plot_page / index.rhtml
Index Page for the
Graph Generation Interval ()
Populates the
interval ranges

result_page_controller.rb Result_page / result.rhtml
Display Page of the
generated graphs

Result ()

Gets all the
parameters
entered by

tha 1icar

Prodgraph ()
Used to parse

parameters for
nrod sites

Graph
NonProdGraph Graph () >(Storage
0] Gruff is invoked
Used to parse and graphs are
narameters for nanaratand

site_history.rb
.| Table Name is set to
- "SiteHistory"

Figure 7.8: Flow of controls between functions in the new architecture

104

In Figure 47, the entity (site_history.rb) in purple is the model for this graph
generation module. This model is used only when the code contacts the database. The
entities in yellow are the views. These views have fillers which are filled in by their
respective controllers, when they invoke the views to be displayed to the user. The entity
in pink denotes a specific physical location in the system, where the generated graphs are
stored before they are displayed to the user. The entities in light blue are the controllers.
These controllers form the crux of the whole new architecture. They manage the control

flow and also aid in providing the necessary back end support for their respective views.

In this case, main_controller.rb controller aids in displaying the index page for the
whole application. The view plot_page.rhtml is the index page that is initially displayed.
From this index page, links are provided which enable us to access the different features
of the Panda monitor. The view plot page / index.rhtml will be invoked, if the graph
generation module is chosen in the index page. This view is aided by its controller
plot_page_controller.rb; this controller has functions which populates the types of
categories in the graph generation page. After the user chooses the necessary categories
for the graph generation, the controller result_page_controller.rb is invoked. The
parameters entered by the user are accessible in this controller. These parameters are
formatted and categorized in the same controller. The function graph () takes in these
formatted parameters and uses gruff tool to generate the necessary graphs. These graphs
are stored in a temporary location before they are picked by the result_page / result.rhtml

view to display it to the user.

105

From the above sequence of actions it is apparent that the number of context
switches is less compared to the old architecture. This is the advantage of using the Rails

framework over the Python code base.

7.5 Future Work

The future work in the monitor could involve in making the response times even
faster by bringing the whole monitor into the AJAX paradigm by directly using the
inbuilt libraries in the Ruby on rails framework. This will make the monitor feel more
like a desktop application. New applications need to be developed, which will clearly
marking out between analysis and production jobs in separate views. The newer version
can also include a better navigation scheme for the interface since the current system has
more than necessary information in one single page.

These views have to be more carefully designed to make sure they do not contain
more information than what the user is looking for. This is the case with the current
monitor a whole page with excessive information is built in one generation request. The
enhancement could involve a development of a memory and network usage monitoring as
an integral part of panda monitor itself, rather than the separate monitoring that is now
provided by Nagios. The Monitor should also include a secure session management for
the user who logs in from the same system. Currently the monitor does not include any
security model, the versions that are to be later shipped at a later stage should include a

user login and session tracking model.

106

REFERENCES

[1].The first commercial computer http://en.wikipedia.org/wiki/UNIVAC_I

[2].Paul Laskowski, John Chuang-Network Monitors and Contracting systems:
Competition and innovation

[3].IBM: Red Books (Introduction to Grid Computing)

[4].Dieter Wybranietz and Dieter Haban- Monitoring and performance measuring
distributed system during operation.

[5].http://en.wikipedia.org/wiki/Grid_computing

[6].Jan Foster, Carl Kesselman, Steven Tuecke: The Anatomy of Grid-Enabling Scalable
Virtual Organizations

[7].LHC Website. http://Icg.web.cern.ch.

[11]. Emir Imamagic, Dobrisa Dobrenic - Grid Infrastructure Monitoring System Based
on Nagios.

[2].Larry Roberts, Multiple computer networks and inter computer communication

(ACM Symposium on Operating System Principles. October 1967)

[3].Jean Francois Roche: Grid and Cluster Monitoring-Universite Libre De Bruxelles,
Universite D’Europe

[12].Nagios -http://nagios.sourceforge.net

[13].The Monalisa Monitoring system-http://monalisa.cacr.caltech.edu/monalisa.htm

107

[14].The Lemon monitoring system- http://lemon.web.cern.ch/lemon/index.shtml

[15].Abishek.S.Rana- A Globally Distributed Grid monitoring system to facilitate high-

performance computing at D&J/Sam grid.

[16]. GridIce. http://gridice.forge.cnaf.infn.it.

[17]. EGEE - Enabling Grids for E-science. http://public.eu-egee.org.

[18]. Andreozzi, S., Bortoli, N. D., Fantinel, S., Ghiselli, A., Tortone, G., and
Vistoli, C. Gridice: a monitoring service for the grid, 2003.

[19]The Monalisa Monitor-http://monalisa.cacr.caltech.edu/img/

[20] Relational Grid Monitoring Architecture. http://www.r-gma.org.

[21] Al-Shaer, E. S. High-performance monitoring architecture for large-scale distributed
systems using event filtering, 1997.

[22]. Cottrell, R. L. Passive vs. active monitoring, 2001.

[23].CPU Time- http://www.hlrn.de/doc/performance/glossary.html

[24].NASA Software Engineering Page: http://satc.gsfc.nasa.gov/assure/agbsec4.txt

[25] Baranovski, A., Bertram, 1., Garzoglio, G., Lueking, L., Terekhov, 1., Veseli, S.,

Walker, R. SAM-Grid: Using SAM and Grid middleware to enable full function Grid

Computing.

[26] The AMANDA-http://butler.physik.uni-mainz.de/amanda/homepage/index.html

[27] The SAM GRID- http://www-d0.fnal.gov/computing/grid/

[28] The Panda Twiki- https://twiki.cern.ch/twiki/bin/view/Atlas/Panda

[29] Panda: US ATLAS Production and Distributed Analysis System-Xin Zhao

Brookhaven National Laboratory

108

[30] Context Switching- http://www.linfo.org/context_switch.html

[31] The ATLAS PANDA-Production and Distributed Analysis system- Torre Wenaus-
http://www.rhic.bnl.gov/RCF/UserInfo/Meetings/Technology/Archive/Mar-13-
2006/200602-panda-tech.pdf

[32] The PANDA DDM integration-Torre Wenaus ,Tadashi Maeno -

https://twiki.cern.ch/twiki/bin/viewfile/Atlas/PanD-ddmbnl-panda-ddm.pdf

109

BIOGRAPHICAL INFORMATION

Prem Anand Thilagar received his Bachelors in Computer Science and
Engineering from the Anna University, Chennai, India in 2005. After working at a
software company in India for 6 months; he started his graduate studies at the University
of Texas at Arlington, USA in spring 2006. He received his Masters of Science in

Computer Science in December 2007.

110

