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ABSTRACT 

 

SEQUENCES OF BAYES GUASSIAN CLASSIFIERS 

 

Publication No. ______ 

 

Jimy Shah, MS 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Michael T Manry 

A new method for designing sequences of Bayes Gaussian Classifiers is 

presented in this thesis. First, a basic Bayes Gaussian Classifier is designed with an 

assumption of data being Gaussian. Then, we have used the Output Weight 

Optimization-Back Propagation (OWO-BP) technique to iteratively modify the 

coefficients of the classifier, resulting in less classification error. Through use of an 

iterative Gram-Schmidt procedure, to train linear functional link nets, input features are 

ordered from most useful to least useful. Another important development in this thesis 

is the generation of nested feature subsets. This ensures that the curve for error 

percentage versus the number of features is monotonically non-increasing. Based upon 

this list of ordered features, nested feature subsets are produced, with a Bayes Gaussian 

Classifier designed for each subset. These classifiers exhibit reduced probability of error 
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as the subset size (number of selected inputs) increases. Various real world data have 

been used to test and verify the classifier’s performances. 
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CHAPTER 1 

INTRODUCTION 

In a pattern recognition system the given sensor data is segmented and the 

features are extracted from it. Using these features in an input vector, a classifier is 

designed. Based on a decision rule, an estimate is made of the class the data belongs to. 

Actual pattern recognition systems may be more complicated and may have many more 

elements. A simplified block diagram of a recognition system is presented below with 

all its main functional blocks.  

 

 

Figure 1.1 Recognition system with classifier 
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1.1 Classifier application 

There are countless pattern recognition applications where classifiers are used. 

Some examples are given here: 

In automatic form reading, character recognition techniques are used to read the 

forms and identify their content. In automatic mail processing for example, all the 

different regions of interest on the envelope are segmented such as main address, return 

address, barcode etc. Out of all these, the zip code is the main region of interest. Face 

recognition is another developing application which is often used to restrict building 

access to authorized people. Here we have a database which contains faces of those 

individuals who are to have access. When a person seeks access, the recognition system 

extracts features from the face image and decides whether the face is similar to one of 

the stored ones. Fingerprint processing is similar, but it’s a bit simpler and more 

practical since fingerprints are almost two-dimensional. 

Automatic target recognition is a defense related application where we try to 

locate man-made objects and classify them as friend or foe. Bottle cap recognition is 

used by various airlines where they need to sort out different beverages bottles 

automatically.  

1.2 Classifier design approach 

The task of a classifier is to use the feature vector provided by the feature 

extractor (fig 1.1) and to assign it to the correct class. We can split a typical classifier 

design problem into two categories, training and validation. Usually the process of 

providing data to the classifier and allowing it to adapt itself is called training. The most 
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effective methods for developing classifiers involve learning from a set of example 

patterns that have already been classified. This type of learning is called supervised 

learning [10, 11] and the set of example patterns are referred to as the training dataset.  

A training dataset usually consists of Nv labeled feature vectors Xp, each of dimension 

N. Each feature vector has its class label, ic(p), defined, where p is the pattern number 

and 1≤ p ≤ Nv. The goal is to design a classifier that estimates ic(p) from Xp, given the 

training data (Xp, ic(p)). Learning can also be unsupervised [10,11], in the sense that the 

system is not given a-priori information about patterns. Instead it establishes the classes, 

based on the statistical properties of the patterns.  Validation of the classifier is 

extremely important to ensure that the classifier can perform on unseen real world data 

as well. It also gives us feedback of what changes should be made in the classifier to 

make it perform better. Sometimes a complex system may allow perfect classification 

of the training samples, but it may not perform well on new patterns during validation. 

This situation is known as overfitting [10].  

 

1.3 Commonly used classifiers 

  Usually classifiers like the Bayesian classifiers [1], k-Nearest 

Neighborhood classifier (k-NNC) [33], Piecewise Linear Network classifier (PLNC) 

[34] and Neural Networks classifiers [35, 36, 42] are used.  

The k-NNC classifies objects based on the closest training examples in the N-

dimensional feature space. In the training phase, the feature space is divided into 

convex polygons or clusters based on the class labels of the various training patterns. 
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This leads to partitioning of the input space into a Voronoi tessellation [20] as shown in 

fig. 1.1. In the classification phase, distances from the new test vector to all the stored 

vectors are computed and the k closest samples are selected. The new vector is 

predicted to belong to the most numerous class labels within this set. The best choice of 

k depends on the data; generally larger values reduce the effect of noise on 

classification but make the decision boundaries less distinct. The algorithm is easy to 

implement, but can get computationally intense, especially when the size of the training 

set increases. 

Several artificial neural networks have also been used for classification 

purposes.  Neural nets can typically undergo supervised learning [1,19]. In supervised 

learning, there exist the input feature vector, Xp and the feature vector’s class label, 

ic(p). Multi-layer Perceptrons (MLP) [16], radial basis function (RBF) networks [21] 

and support vector machines (SVM) [17,18] are trained using supervised learning 

techniques. Neural net classifiers are usually trained to minimize the Mean-Square Error 

(MSE) over the number of iterations. 

 

1.4 Introduction to Bayes Gaussian Classifier 

A Bayes classifier is a probabilistic classifier that makes decisions by 

combining two sources of information, i.e., the prior and the likelihood, to form a 

posterior probability using Bayes' rule [22]. When the feature vectors are jointly 

Gaussian, the result is the Bayes Gaussian Classifier (BGC). 
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Unfortunately real world feature data is not often Gaussian and data statistics 

are not known with accuracy. Also, it is not known which subset of the extracted 

features provides the best performance. In this thesis we try to solve these problems by 

integrating feature selection & training into the BGC in order to improve its 

performance. 

 

 

Figure 1.2 Voronoi tessellation of a two-dimensional space 

 

1.5 Chapter flow 

In Chapter II we discuss various types of classifiers and their limitations. In 

Chapter III we discuss the Bayes Gaussian Classifier, its limitations and our approaches 

for improving its performance. We also discuss a training technique for the classifier. In 

Chapter IV we discuss at length the Gram-Schmidt orthonormalization algorithm and its 

implementation. We show how this orthonormalization technique is used for feature 
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ordering. Also, various different forms of this ordering are discussed. In Chapter V we 

compare the performance of our modified BGC with other available classifiers. In 

Chapter VI we conclude the thesis and discuss future work.  
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CHAPTER 2 

REVIEW OF CLASSIFIERS 

2.1 Bayes Classifier 

2.1.1 Introduction 

 A classifier calculates discriminant functions for each class and makes the 

decision according to which class’s discriminant is largest or smallest.  

Bayes Classifier is a simple probabilistic classifier based on the Bayes rule [22].  

This classifier can be designed if statistical information of the system including 

conditional probability density of the feature vectors is available and well defined. 

 

2.1.2 Derivation of Bayes classifier 

Let Pi denote the probability that a feature vector X is from the i
th

 class and let Pe denote 

the probability of classification error. Our goal in Bayes classifier design is to develop 

the discriminant function that minimizes Pe. First, Pe is written as 

 Pe =X
i = 1

Nc

P (error and X is from i
th

 class)                                                                    (2.1) 

where Nc is the total number of classes. Continuing, we get 

X
i = 1

Nc

P error | i
b c

P i
           (2.2) 

This can be expanded as  
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X
i = 1

Nc Z
Z i

c

f X | i
b c

dX P i
          (2.3) 

where, f(X|i) is the conditional density of X given that it comes from the i
th

 class. Zi is 

the region or subset of R
N
 where we decide class i and Zi

C
 is the region or subset of R

N
 

where we decide a class other than the i
th

 one. Continuing, 

 Pe =X
i = 1

Nc

P i 1@ Z
Z

i

f X | i
b c

dX

H
LJ

I
MK= 1@X

i = 1

Nc

P i
Z
Z

i

f X | i
b c

dX        (2.4) 

The regions Zi and Zi
C
 are disjoint. Interchanging the summation and integral in the 

right hand side of (2.4), we get, 

 1@Z
S

P
X i
` a f X | i X

` ab c
dX = P e                                                                                    (2.5) 

Minimize Pe by maximizing the integral, which is done by maximizing the integrand, 

given a value of X. In other words, given X, evaluate the scalar numbers g(i) = Pif(X|i)  

for 1 ≤ i ≤ Nc. Choose i such that g(i) is maximum. This value of i is ic
'
(p). In order to 

construct this form of Bayes discriminant, we need to estimate Pi and f(X|i). 

 

2.1.3 Common forms of Bayes discriminant 

We decide the class number of a pattern based on the value of the discriminant function 

that reduces the classification error (Pe). Three well known types of Bayes discriminant 

are given as follows. 

 (B1)  g(i) = Pi f (X|i): Find the maximum value of discriminant to minimize Pe 
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(B2)   d(i) = func (Pi f (X|i)): Find the maximum value, of discriminant to minimize Pe, 

if func () is   an increasing function or 

(B3)  h(i) = P (i|X): Find the maximum value of discriminant to minimize Pe 

 

2.2 Nearest Neighbor Classifiers 

In practical pattern recognition applications, the nearest neighbor classifier 

(NNC) is often applied because it does not require an a priori knowledge of the joint 

probability density of the input feature vectors. Among the various methods of 

supervised statistical pattern recognition, the nearest neighbor rule achieves consistently 

high performance. It involves a training set with patterns from each class. A new sample 

is classified by calculating the distance to the nearest training case. Fig 2.1 gives a 

diagrammatic representation of a NNC. 

 

2.2.1 Operation 

(1) For the i
th

 class we will have Ki clusters, and each cluster will have mean or 

center vectors mik where 1≤ k ≤Ki. 

(2) Now, for a given test vector X, find i such that, the distance between the test 

vector and the mean vector,  d(X,mik), is minimum. This value of i is the estimated class 

ic'. 

(3) The classification is correct if ic
'
 = ic. 

The distance of the input vector X from the mean vector, mik, of k
th

 cluster for i
th 

class is 

given as 
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d X,mik

b c
=X

n = 1

N

X n
` a
@m

ik
n
` ab c2

        (2.6) 

for the Euclidean distance and 

d X,mik

b c
=X

n = 1

N X
m = 1

N

X n
` a
@m

ik
n
` ab c
A a

i
n,m
` a

A X m
` a
@m

ik
m
` ab c

      (2.7) 

for the Mahalanobis distance, where ai(n,m) is the element of the inverse covariance 

matrix (Ai) for the i
th

 class. The covariance matrix (Ci) element ci(n,m) is calculated as, 

ci n,m
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

X n
` a
@mi n

` ab c
A X m
` a
@mi m

` ab c
     (2.8) 

for 1≤ n ≤ N and 1≤ m ≤ N. The inverse of Ci is denoted by Ai. 

 

2.2.2 Design methods 

Three general approaches for obtaining the center vectors mik are described here. 

(1) Use all example data to form center vectors mik. 

(2) Cluster example or training data Xp separately for each class, to form  center vectors 

mik,  where p denotes the pattern number such that, 1≤ p ≤ Nv. 

(3) Cluster all Xp together to get center vectors mk. Then assign a class number to each 

mk as follows. For each cluster mean or center vector mk, look at class numbers of Xp 

closest to mk. Use the plurality rule to assign the class numbers ic(p). 

 

2.2.3 Theory 

As the number of example vectors and the cluster numbers are increased, the 

error probability of the NNC comes closer to the error probability of Bayesian classifier 
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[10]. However, at the same time the computational complexity of the NNC increases. 

Also, for a small number of example vectors, training of the NNC is not optimal since 

clustering algorithms are used to produce the required center vector. 

 

Theorem 1: For a NNC, as the number of clusters, K,  approaches infinity we have, 

    P
eB

≤ P
e NNC
` a ≤ 2 AP

eB
       (2.9) 

where Pe(NNC) and PeB respectively denote the NNC and Bayes probabilities of error. 

For a proof of Theorem 1 refer to [44]. 

 

Figure 2.1 Nearest Neighborhood Classifier 

 

X(1) 

X(2) 

X(3) 

X(N) 

d(X,M11) 

d(X,M13) 

MIN 

MIN 

MIN 

d1(X) 

d2(X) 

d3(X) 
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The k nearest neighbor classifier (k-NNC) is another version of NNC with some 

different characteristics and features. Here k is the number of nearest training vectors or 

samples to the test sample X. An interesting theorem on the k-NNC is presented below. 

 

Theorem 2 [10]: As k and (Nv/k) approach infinity, the k-NNC can be viewed as an 

attempt to estimate the a-posteriori probabilities from the training samples. Under this 

condition, k-NNC hence becomes optimal and 

 lim
kQ 1

P
e k@ NNC
` a = P

eB
     (2.10) 

As k increases, the probability of error gets closer to the lower bound – the Bayes rate. 

In the limit as k goes to infinity, the two bounds meet and the k-NNC becomes optimal. 

We want to use a large value of k to obtain a reliable estimate. On the other hand, we 

want all of the k neighbors to be very near to the test sample, X. This forces us to 

choose a compromise k that is a small fraction of the total number of training samples, 

Nv. It is only in the limit as Nv goes to infinity that we can be assured of the nearly 

optimal behavior of the k-NNC. 

 

2.3 Piecewise Linear Network Classifier 

2.3.1 Operation 

A piecewise linear network classifier (PLNC) divides the given data into K 

different clusters and then processes each cluster as a separate linear network. Piecewise 

linear networks (PLNs) have long been used for function approximation and 
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classification tasks [53,54] where speed of operation and simplicity are very important. 

One design approach is training an MLP having piecewise linear activations [55,56].  

The network structure is shown in fig. 2.2. The PLNC consists of three layers 

with input elements in the first layer, the hidden units in the second and the output units 

in the third. The feature vector elements are first normalized as 

                                         X pnP
X pn@µ

n

σn

ffffffffffffffffffffffffffff
  , for 1≤ p ≤ Nv and 1≤ n ≤ N                (2.11) 

where the means and standard deviations of the feature vector elements Xp are 

respectively µn and σn, where 1 ≤ n ≤ N. This N-dimensional vector Xp forms the input 

to the PLNC. The hidden layer consists of K clusters, each cluster having its N-

dimensional cluster mean vector mc, where 1 ≤ c ≤ K.  Given an input vector Xp, we 

find c such that d(Xp, mc) is minimized. The normalized feature vector is then 

augmented as  

 X paP X p

T
:1

b cT

           (2.12) 

to form the (N+1) dimension vector, Xpa, to the PLNC. Each cluster also has a weight 

matrix Ac of dimension Nc by (N+1), where Nc is the number of classes in the 

classification problem.  

The output discriminant vector of the network, yp has Nc elements. The vector 

yp is calculated by multiplying the input vector with the weight matrix of the cluster it 

has been assigned to. Thus we form the output vector, yp, as  

                                   yp = Ac A X pa                                         (2.13) 

The estimate of the correct class ic is given by, 
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 ic. p
` a

= arg max y pi

B C
i

            (2.14) 

where ypi is the i
th

 element of the output vector yp and 1 ≤ i ≤ Nc. 

 

2.3.2 Design   

A classification problem typically involves a feature space with numerous 

feature vectors or samples that have to be classified into various class labels. In 

supervised learning, the training dataset includes the feature vector Xp and the class 

label, ic(p), for each of the Nv feature vectors. The label is transformed into an Nc-

dimensional target vector tp such that 

( )        

      otherwise

c

pi

b i i p
t

b

+ =
= 

−
    (2.15) 

where 1 ≤ p ≤ Nv, 1 ≤ i ≤ Nc and b is any positive integer. Before the network can be 

used for classification itself, it has to be trained. Training involves designing the PLNC 

weight matrices given numerous training patterns.  

The process of training a PLNC is divided into two parts. The first part involves 

partitioning of the input feature space into K clusters. The second part involves the 

calculation of the network weights by solving a set of linear equations whose solution 

minimizes the MSE of the network, 

 E =
1

N v

fffffffffX
k = 1

K X
p:i c p

b c
= k

N v k
b c

t p@ A
k
A X pa

NNN
NNN

2

                (2.16) 

We can calculate the weights of the network Ac such that it minimizes the error in 

(2.16). 
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2.3.3 Theory 

Now we consider the relationship between the PLNC and NNC. As K, the 

number of clusters approaches infinity, the convex Voronoi cells in the feature space get 

smaller in volume and the optimal decision boundaries in each cluster become linear. 

Hence each cluster can have its own linear discriminant and overall, a more complex 

decision boundary is achieved. Therefore, for a given value of K, the PLNC should 

perform better than the NNC. PLNC could be used over NNC where speed of operation 

and simplicity are very important as NNC converges slowly towards the Bayes 

probability of error. Fig 2.2 gives a diagrammatic representation of a piecewise linear 

network classifier. 

 

Theorem 3: If a PLNC and a NNC have the same distance measure and identical 

cluster mean vectors, then as K approaches infinity, 

      ( ) ( )eB eBe PLNC e NNC
P  P   P   2 P≤ ≤ ≤ ⋅    (2.17) 

where Pe(PLNC), Pe(NNC) and PeB respectively denote the PLNC, NNC and Bayes 

probabilities of error. 

For a proof of Theorem 3 refer to [44]. 

 

Theorem 4: As the cluster number (K) and the number of patterns belonging to that 

cluster (Nv(c)) approach infinity, the output of a PLNC approximates the a-posteriori 
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probability functions of the class labels, given the input vector. Under this condition, the 

PLNC hence becomes optimal and   

                                                    
( ) e(PLNC) eB

,
lim P = P

vK N c →∞
.                                             (2.18) 

For a proof of Theorem 4 refer to [44]. 

 

 

Figure 2.2 Piecewise Linear Network Classifier 

 

2.4 Neural Network Classifiers 

There are many types of neural network classifiers, including the multilayer 

perceptron (MLP) [37], radial basis function (RBF) network [35] and the support vector 

 

 

d(·) 

c = 1 

c = 2 

c = K 

A1 

A2 

AK 
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machine (SVM) [36]. In this section we investigate the operation, training and theory of 

a multilayer perceptron.  

 

2.4.1 Operation 

As the name suggests this classifier consists of multiple layers of functional 

units usually interconnected in a feed-forward way. In many applications the hidden 

units of these networks apply a sigmoid function as an activation function at the unit’s 

output. The structure of the multi-layer perceptron (MLP) is shown in fig. 2.3. The 

output of a MLP can be computed as, 

 y i
` a

= θo i
` a

+X
k = 1

N
h

w
ho

i,k
b c

AO k
` a

+X
n = 1

N

w
io

i,n
` a
AX n
` a

                                              (2.19) 

where θo(i) is the threshold of the i
th

 output, who(i,k) is the weight connected from the k
th 

hidden unit to the i
th

 output unit, wio(i,n) is the weight connected from the n
th

 input unit 

to the i
th

 output unit and O(k) is the output of the k
th

 hidden unit with sigmoidal 

activation.  

O k
` a

=
1

1 + e@ NET k
` a

ffffffffffffffffffffffffffffffffffff
     for 1 ≤ k ≤ Nc             (2.20) 

NET k
` a

= θ k
` a

+X
n = 1

N

w k,n
b c

AX n
` a

   for 1 ≤ k ≤ Nc             (2.21) 

where θ(k) is the threshold of the k
th

 hidden unit and w(k,n) is the weight connecting the 

n
th

 input unit to the k
th

 hidden unit. 

Output weights are calculated and trained using any gradient technique, while 

the hidden weights are trained using back propagation [7, 23] technique. In back 
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propagation, the computed output values are compared with the desired output to 

calculate the value of an error function. The error is then fed back through the network, 

which is then reduced by adjusting the weights by a general optimization technique like 

the conjugate gradient [24]. A multilayer perceptron with one hidden layer is shown in 

fig 2.3. 

 

2.4.2 Training 

First of all we initialize all the network weights with random numbers. Then we 

train these weights iteratively to get better performance of MLP. Training of MLP is 

divided into two parts, training of output weights and training of hidden weights. Let us 

look at each one separately. 

(1) Training of output weights: 

 The error function can be expressed as  

 E =X
i = 1

N c

E i
` a

                                (2.22) 

 E i
` a

=
1

N v i
` afffffffffffffffff X

p:i c p
b c

= i

N v i
b c

t p i
` a
@ y p i

` aNNN
NNN

2

  for 1 ≤ i ≤ Nc                (2.23) 

where Nv is the total number of patterns, Nv(i) is the total number of patterns belonging 

to the i
th

 class, tp(i) is the desired output for the i
th

 class and yp(i) is the actual calculated 

output for the i
th

 class and Nc is the total number of classes. Now let L, the number of 

basis functions, be N+Nh+1. The  new basis functions are X(k) for k between 1 and N, 

X(N+k) = O(k) for k between 1 and Nh, and X(L)= 1. Taking the partial of error, for the 
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i
th

 output, with respect to the output weight and equating it to zero we get a set of linear 

equations as, 

C1 m,i
` a

=X
k = 1

L

wo i,k
b c
A r k,m
b c

           for 1 ≤ m ≤ L and 1 ≤ i ≤ Nc             (2.24) 

where wo(i,k) is the weight from the k
th

 basis function to the i
th

 output. Also the 

autocorrelation and cross correlation elements are given as,   

r k,m
b c

=
1

N v

fffffffffX
p = 1

N v

X p k
` a
A X p m

` a
   for 1≤ k, m ≤ L 

C
1

m,i
` a

=
1

N v

fffffffffX
p = 1

N v

t p i
` a
A X p m

` a
   for 1≤ m ≤ L and 1 ≤ i ≤ Nc 

From (2.24) we have L equations in L unknowns. Since the equations are often ill-

conditioned, meaning that the determinant of R is close to 0, it is often unsafe to use 

Gauss-Jordon elimination [58], so the SVD [57] or the conjugate gradient [10] 

approaches are better. 
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Figure 2.3 Structure of a Multi-Layer Perceptron 

In the conjugate gradient approach the direction vector for the i
th

 class is initialized to 

zero and is updated on every iteration as, 

p(m) = -g(m) + B2 p(m) , for 1≤ m ≤ L                (2.25) 

where the gradient and the B2 are calculated as, 

g m
` a

=@ 2 AC1 i,m
` a

+ 2 AX
k = 1

L

wo i,k
b c
A r k,m
b c

 , for 1≤ i ≤ Nc and 1≤ m ≤ L             (2.26)  
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X
m = 1

L

p m
` a

C
1

i,m
` ab c

@X
k = 1

L

wo i,k
b c

A r k,m
b cH

J
i
k

X
m = 1

N c X
k = 1

L

p m
` a
A p k
` a
A r k,m
b c

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  , for 1≤ i ≤ Nc and 1≤ m ≤ L      (2.27) 

Now the output weights are updated as, 

wo i,k
b c

= wo i,k
b c

+ B2A p k
` a

 , for 1≤ k ≤ L and 1≤ i ≤ Nc              (2.28) 
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(2) Training of hidden weights: 

In the earlier step we just updated the weights from input to output and hidden unit to 

output. But the weights from input to hidden unit are still unchanged. So here we try to 

update these hidden weights such that it reduces the MSE. For training of hidden 

weights of MLP we generally use Output Weight Optimization-Back Propagation 

(OWP-BP) [10]. This technique is discussed at length in section 3.3.1. 

 

2.4.3 Theory 

MLPs are very popular and exhibit good performance in classification as well as 

estimation problems. Lets look at few established theorems on MLP. 

 

Theorem 4: When neural net classifiers are trained to minimize the mean-squar error 

(MSE), the MSE approaches a constant value plus the expected squared error between 

the neural net output and Bayes discriminant, as the number of training patterns 

approaches infinity.  Specifically, 

 lim
N vQ 1

1

N v

fffffffffX
p = 1

N v X
i = 1

N c

t p i
` a
@ y p i

` aB C2
=X

i = 1

N c

E h i
` a
@ y i
` ab c2F G

+ C                              (2.28) 

where C is a constant, independent of p, tp(i) is the i
th

 desired output for the p
th

 pattern, 

and yp(i) is the i
th

 output of the network. The Bayes discriminant h(i), is the probability 

that the i
th

 class is correct, given X, which is written as P(i|X) and Nc is the total number 

of classes. For a proof of Theorem 4 refer to [43]. 
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2.5 Support Vector Machines 

Support vector machines (SVMs) [42] are a set of related supervised learning 

networks used for classification and regression. They usually consist of a feature 

extractor containing the Radial Basis Function (RBF) hidden units, followed by a 

classifier that makes decisions based on a linear combination of features. A special 

property of SVMs is that they minimize the empirical classification error and maximize 

the geometric margin between the various classes.  

 

2.5.1 Operation 

Let the dimension of feature space be hsvm, which is also the number of Support 

Vectors (SVs). Note that hsvm is equivalent to number of hidden units in a MLP. Figure 

2.4 shows a diagram of an SVM. 

Let  Xp , d p

R S
p = 1

N v

  be the training dataset. Let Φ
j

X
` aR S

j = 1

h svm

 denote a nonlinear 

transformation from input space to feature space. In our case, they represent the RBF. 

                                 Φ j X
` a

= exp @
1

2σ2

fffffffffff
X@X j

NNN
NNN

2
f g

                                 (2.29) 

for 1 ≤ j ≤ hsvm. These Φj(X) are equivalent to the hidden unit activation functions in the 

MLP. The output of the SVM is given by 

                                                 s p =X
j = 1

h svm

w
j
Φ

j
X p

b c
+ b  , for 1 ≤ p ≤ Nv                  (2.30) 

where wj is the weight and b is the threshold of the hidden unit. 
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The main structural differences between MLPs and SVMs are 

• Unlike MLPs, bypass weights are not present in case of SVMs (weights 

connecting inputs directly to outputs) 

• There is only one output for SVMs whereas MLPs can handle multiple outputs. 

 

Figure 2.4 Support Vector Machine with RBF kernel. 

2.5.2 Theory 

A typical classification problem involves separating N-dimensional data into different 

classes by an (N-1)-dimensional hyperplane. This could be done using a typical form of 

linear classifier. Possible boundaries for such a classification problem are shown in fig. 

2.5. However, if it is also desired to achieve maximum separation between the different 

classes, this could be obtained using an SVM or other maximal margin classifier [11].  

Output 
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Bias 

RBF Kernel (Support Vectors) 



 

 24 

By maximizing this margin, SVMs avoid overfitting. A maximum-margin hyperplane 

for an SVM trained with samples from two classes is shown in fig. 2.6. Samples along 

the hyperplanes are called the support vectors. 

The parameters of the maximal margin hyperplane are commonly derived by 

solving a quadratic programming (QP) optimization problem using Platt’s Sequential 

Minimal Optimization (SMO) algorithm [27,28]. This algorithm breaks the problem 

down into 2-dimensional sub-problems that may be solved analytically, eliminating the 

need for a numerical optimization algorithm such as the conjugate gradient method 

[29]. 

 

Figure 2.5 Possible boundaries to a simple classification problem 

L1 

L2 

L3 
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Figure 2.6 A maximum margin hyper plane for a support vector machine 

 

2.6 Problems with classifiers 

In Bayes Classifiers the required conditional probability densities are usually 

not available. Only approximations from parametric and non-parametric modeling 

approaches are available. 

The k-Nearest Neighbor classifier is quite simple, but very computationally 

intensive to design.  Even for simple classification problem it requires many distance 

calculations, which makes the classification a complex process. Theorems on 

convergence to Bayes error do exist for nearest neighbor classifiers (NNCs) and k-

NNCs [10,11], which also have the advantage of being easy to design in a short period 

of time. However, the NNC and k-NNC are rarely used because they are very time-

consuming to apply. 
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Neural net classifiers have several problems. Typical problems of the back 

propagation algorithm in MLP training are the speed of convergence and the possibility 

of ending up in a local minimum of the error function. Training time for MLP and RBF 

classifiers can be long and they may suffer from over fitting [10]. SVM classifiers avoid 

over fitting but usually require several orders of magnitude more hidden units than RBF 

and MLP networks. Also, MLP can suffer from memorization problems subjected to 

number of patterns provided during training. SVMs frequently require hundreds or 

thousands of parameters, and can take too long to apply. For satisfactory performance 

SVM’s require large numbers of support vectors.  
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CHAPTER 3 

BAYES GUASSIAN CLASSIFIER 

The Bayes Gaussian Classifier (BGC) is a Bayes classifier where the conditional 

pdf f(X|i) is assumed to be Gaussian. Most of the data available in the real world is 

Gaussian because of the “Central Limit Theorem” [48], so this classifier is applicable in 

many real world applications. 

3.1 Derivation of Bayes discriminant 

The conditional probability density is given as, 

 f X | i
b c

=
1

2π
` aN

2

fffffff
|C i |

1

2

fff
ffffffffffffffffffffffffffffffffffff

e
@

1

2

fffff
X@ m

i

b cT

A
i

X@m
i

b c

       for 1≤ i ≤ Nc                                     (3.1) 

where, Ai is the inverse covariance matrix and Ci is the covariance matrix calculated as, 

C i n,m
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

X p n
` a
@mi n

` ab c
X p m
` a
@mi m

` ab c
, for 1≤ n ≤ N and 1≤ m ≤ N 

Here Nv(i) is the number of patterns belonging to the i
th

 class and mi is the mean input 

vector belonging to  the i
th

 class and is calculated as , 

 mi n
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

X p n
` a

                         for 1≤ n ≤ N    (3.2) 

The type B1 discriminant is calculated as, 

g i
` a

=
P i A exp @
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ffffX@mi
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b cD E

2π
` aN
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fffffff
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fff
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   for 1 ≤ i ≤ Nc                                       (3.3) 

where Pi is the probability for occurrence of the i
th

 class. 
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Now, for the type B2 discriminant, use d(i) = -2·ln (g(i)), which is a decreasing function, 

where g(i) is the type B1 discriminant. We get 

 d i
` a

= X@mi

b c
. Ai X@mi

b c
+ Bi

          for 1 ≤ i ≤ Nc                 (3.4) 

Where the constant term Bi is given as,  

Bi = N ln 2π
` a N

2

ffffffffff
+ ln |C i |

b c
@ 2 ln P i

b c
       for 1 ≤ i ≤ Nc    (3.5)   

For the type B2 discriminant, we find the value of i such that d(i) is minimum. The 

resulting value of i is our estimate of ic. 

 

3.2 Limitations of BGC 

One of the most important requirements for the BGC which may be considered 

as its limitation is that the distribution of the given data needs to be Gaussian. However, 

the covariance matrix is often singular (non-invertible), which causes problems during 

calculation of the inverse covariance matrix required in the discriminant function. The 

features might not be arranged in order of their importance. So, the error curve might 

not be monotonically non-increasing. Also the weights calculated by the statistical 

information of the data might not be exact.   

 

3.3 Iterative improvement of the BGC 

 Various parameters calculated from the statistical information of the data might 

not be optimal as noted in section 3.2. So now we will try to modify few important 

parameters so that it improves the overall classifier performance. In this thesis we are 
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modifying the constant term (Bi) in the discriminant function. We will be using the 

gradient and the back propagation technique to accomplish our goals. 

There are various weights associated with the BGC, such as, mean vector, 

covariance matrix, inverse covariance matrix and constant term. Out of all these weights 

only the constant term is the one that is independent of all the classes. All other weights 

are function of a class. So the first step towards training was to train the constant term 

and try to modify it such that it improves the performance of the BGC. 

 

3.3.1 Derivation and algorithm for the back propagation technique 

Here we derive the equations for the gradient and the learning factor. These equations 

are required in the back propagation technique which is used to iteratively improve the 

constant term. 

Converting the type B2 discriminant, given in (3.3), to the type B1 discriminant, 

 g i
` a

= e
@

1

2

fffff
d i
` a

       for 1 ≤ i ≤ Nc      (3.6) 

where g(i) is the type B1 discriminant and d(i) is the type B2 discriminant. Converting 

the type B1 discriminant to the type B3 discriminant we get, 

 h i
` a

=
g i
` a

X
j = 1

N c

g j
b c

fffffffffffffffffffffffffffff
       for 1 ≤ i ≤ Nc                  (3.7) 

where h(i) is the type B3 discriminant. The mean square error between the desired and 

the estimated output is calculated as, 

       (3.8) 
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where hp(i) is h(i) for the p
th

 pattern and the i
th

 class, and tp(i) is the i
th

 desired output for 

the p
th

 pattern, defined as   

tp(i) = δ(i-ic)     for 1≤ i ≤ Nc               (3.10) 

where ic is the correct class number obtained from the training data file. Now we want to 

get the value of Bi such that it gives the minimum error. Thus we need to find the 

gradient of error with respect to Bi 

 #
∂E
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fffffffffff
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  for 1 ≤ i ≤ Nc            (3.11) 

Also, after few mathematical steps we calculated  
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∂B
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     for 1 ≤ i ≤ Nc            (3.12) 

Algorithmic description of OWO-BP: 

1. Initialize network weights, Pold = 10
20

, Z= 0.01 

2. Calculate Pe. If Pe < Pold, replace Pold with Pe and save the constant term Bi. Also, 

increment Z by 10%.  

3. If Pe ≥ Pold, read back old Bi and do not save the currently calculated Bi. Also                     

decrement Z and Z1 by 10%. Skip the next step of updating the Z1 and go to 5. 

4.  Calculate Z1 as,  Z
1

=
Z AP e

X
i = 1

N c

∂E

∂Bi

ffffffffffffd e2

fffffffffffffffffffffffffffffffff
                                                                  (3.13) 

5.  Update Bi as, Bi= Bi + (Z1 . 
∂E

∂B
i

fffffffffff
 )                                                                 (3.14) 
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6. Go to 2. 

3.3.2 Performance analysis 

 Here we show the plot of error percentage versus iteration number, Nit, for the 

BGC. This curve shows how training of constant term improves the classifier 

performance at each iteration. It takes into account all the features in its natural order, as 

given in training data file. 

 (1) GRNG: This file is a geometric shape recognition data file consists of four 

geometric shapes, ellipse, triangle, quadrilateral, and pentagon. Each shape consists of a 

matrix of size 64x64. For each shape, 200 triangle patterns were generated using 

different degrees of deformation. The deformations include rotation, scaling, 

translation, and oblique distortion. The feature set is ring-wedge energy (RNG), and it 

has 16 features [33].  

  

 Figure 3.1 Training error percentage versus iteration number, Nit for grng  

The plot in fig 3.1 is for the grng training data which has 16 inputs and 4 classes. 

It shows percentage error for varying number of iterations. The curve indicates that 

there is improvement in the error percentage in most of the iterations. At the end of 25 

iterations, the final error percentage comes out to be 2.5%, which is 50% of the initial 

error. 

 

(2) GONGTRN: The raw data consists of images from hand printed numerals collected 

from 3,000 people by the Internal Revenue Service. We randomly chose 300 characters 
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from each class to generate 3,000 character training data. Images are 32 by 24 binary 

matrices. An image scaling algorithm is used to remove size variation in characters. The 

feature set contains 16 elements. The 10 classes correspond to 10 Arabic numeral [37]. 

 

Figure 3.2 Training error percentage versus iteration number, Nit for gongtrn  

 

The plot in fig 3.2 is for the gongtrn training data which has 16 inputs and 10 

classes. It shows percentage error for varying number of iterations.  The curve indicates 

that there is improvement in the error percentage in most of the iterations. At the end of 

25 iterations, the final error percentage comes out to be 9.27% which is 25% of the 

initial error. There is more improvement on this training file as compared to the grng 

file.  
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(3) COMF18: This training data file is generated segmented images. Each segmented 

region is separately histogram equalized to 20 levels. Then the join probability density 

of pairs of pixels separated by a given distance and a given direction is estimated. We 

use 0, 90, 180 and 270 degrees for the directions and 1, 3, and 5 pixels for the 

separations. The density estimates are computed for each classification window. For 

each separation, the co-occurrences for the four directions are folded together to form a 

triangular matrix. From each of the resulting three matrices, six features are computed: 

angular second moment, contrast, entropy, correlation, and the sums of the main 

diagonal and the first off diagonal. This results in 18 features for each classification 

window [38]. 

 

 

Figure 3.3 Training error percentage versus iteration number, Nit for comf18  
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The plot in fig 3.3 is for the comf18 training data which has 18 inputs and 4 

classes. It shows percentage error for varying number of iterations.  The curve indicates 

that there is improvement in the error percentage at every iteration. At the end of 25 

iterations, the final error percentage comes out to be 5.4% which is 80% of the initial 

error.
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CHAPTER 4 

FEATURE SELECTION 

 The features in their natural order might not be arranged according to their 

contribution in reducing the Mean Square Error (MSE). This might result in the error 

curve not decreasing fast enough. This says that, some of the important features are not 

in the best position in the feature vector. Due to this problem Structural Risk 

Minimization [46] might not result in its best performance. To get the best result with 

the smallest possible classifier structure, we need to arrange the features in order of 

their contribution to minimize the MSE. 

 

4.1 Feature selection using autocorrelation function 

Now, we want to develop a feature selection technique, to reduce the MSE, using the 

autocorrelation function of the input vectors.  Thus we would order the features such 

that the performance is better for smaller classifiers. MSE to be reduced is given by, 

                      (4.1) 

where Nc is the total number of classes, Nv(i) is the total number of patterns belonging 

to i
th

 class, tp(i) is the desired output for the i
th

 class defined by (3.10) and yp(i) is the 

estimated output for the i
th

 class, calculated as,  
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where w(i,n) is the output weight and Xp is the input feature vector. Now to get the 

network weights we will calculate the gradient of error with respect to the weights and 

equate it to zero. 
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 (4.3) 

for 1≤ i ≤ Nc  and 1 ≤ m ≤ N. Simplifying (4.3) further and equating it to zero we get,  

C
1

= R AW
T
             (4.4) 

where R is the auto-correlation matrix defined as,  
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fffffffffX
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  for 1 ≤ k ≤ N and 1 ≤ i ≤ N     (4.5) 

and C1 is the cross-correlation matrix defined as,  

C
1
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fffffffffX
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t p k
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X p i
` a

  for 1 ≤ i ≤ N and  1 ≤ k ≤ Nc               (4.6) 

The expression in (4.4) represents the sets of linear equations which we will solve to get 

the weights of the network. 

Now, in Gram-Schmidt procedure we order the inputs according to their 

usefulness. J is the order vector which will store the index of the inputs in order of their 

contribution to reduce MSE. 

Ji = i , for 0 ≤ i ≤ N . The m
th

 orthonormal basis function X’m can be given as: 
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     for 1 ≤ m ≤ N                                   (4.7) 
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where a(m,i) is the element of the orthonormalizing triangular matrix A. The first basis 

function can be defined as, 

 X . 0
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= a 0,0
b c

X J 0

b c
         (4.8) 

Here  a(0,0) is being calculated as,  
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Now, for 1≤ i ≤ N-1, perform the following operations 
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4.1.1 Calculation of Mean Square Error (MSE) 

When the basis function elements of X are transformed into X', the system is 

mapped into new weights W'(k,i) for the k
th

 estimated output yp(k) and i
th

 orthonormal 

basis function X'(i) for given training dataset with Nv patterns. 
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The MSE in terms of the new weights for Nv desired values of t(k) can be written as  
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where, e1 referred as the energy of the system is given by, 
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and, e2 referred as the power function is given by, 

 e2 = X
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                                       (4.19) 

The desired new order of basis functions, J, that reduces the MSE is thus obtained by 

maximum value of P(k) and is given by, 

PJ (0) ≥ PJ (1) ≥ PJ (2) ≥ ……PJ (N-1) 

 

4.1.2 Detecting the linearly dependent basis functions 

If any element of the matrix A (a(m,i)) is very large or close to infinity, it means 

that the orthonormal projection of that corresponding basis function will be zero. Hence 

we can conclude that that basis function does not contain any unique and useful 

information. We can derive that basis function by any linear combination of other basis 

functions.  
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4.2 Feature selection using the covariance function 

Here we would like to bring some variations in the Gram-Schmidt procedure 

discussed in 4.1, such that it improves the performance of the classifier. For this reason, 

we tried using the covariance information of the input vectors. 

 

4.2.1 Generating single order vector for all the classes 

Our aim in this section is to come up with a single order vector, J, at the end of 

Schmidt procedure. Still, we would like to check for linear dependency of a feature on 

each and every class. If a feature is found linearly dependent, then instead of throwing it 

away, we would make its contribution towards the calculation of power term zero. This 

means we would make the corresponding row of orthonormalizing matrix, A, to be 

zero. By this we are not throwing away a feature if it is detected linearly dependent on 

any of the class. The idea behind this is that a feature found dependent for one class 

may be useful for other class. So we would save the information in that feature and use 

it for all other classes. 

Now, let E(i) be the MSE for the i
th

 class, which could be written as, 

E i
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

t p i
` a
@X

n = 1

N

w i,n
` a

X p n
` ai
@m i n

` ab cH
J

I
K

2

   for 1 ≤ i ≤ Nc           (4.20) 

where w(i,n) is the element of the weight matrix (W) connecting the n
th

 input to the i
th

 

output. In minimizing E(i) with respect to the weights, we need the gradient, which is 

written as,  
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∂E
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                    (4.21) 

 

1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a
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` a
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` ai
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` ab c
=X
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X p m
` ai
@m i m
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(4.22) 

Therefore, 

 C 2
= C

i
AW

iT
                     (4.23) 

The expression in 4.23 represents a set of linear equations for the i
th

 class, which needs 

to be solved to get the minimum MSE. This is similar to the equations in 4.4, only the 

autocorrelation matrix is replaced by the class-covariance matrix. The equation in 4.23 

could be also written as, 

  
N v i
` a

N v

ffffffffffffffffff
m

i
= C

i
W

iT
                    (4.24) 

where the cross correlation vector for the i
th

 class, is given by  
N v i
` a

N v

ffffffffffffffffff
Am i
` a

  

Thus, the new cross correlation matrix can be written as, 

 #  C2= [
N v 1
` a

N v

ffffffffffffffffff
Am 1
` a

 ; 
N v 2
` a

N v

fffffffffffffffffff
Am 2
` a

 ; …… ; 
N v N c

b c

N v

ffffffffffffffffffffffffff
Am N c

b c
]                   (4.25) 

Using the equations in (4.23), we solve for the weights and calculate the 

orthonormalizing A matrix which would ultimately be useful in generating the order 

vector, J, as discussed in section 4.1. 
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4.2.2 Generating separate order vector for each class 

In this approach we are trying to detect linear dependency of each feature on 

each class separately. So by the end of this procedure we would have Nc number of 

separate order vectors, one for each class. This method is computationally very 

inefficient as it requires developing a separate classifier for each class. So the network 

becomes more complicated and requires lot more calculations as compared to the 

previously described methods. 

 We tried using this approach, but the algorithm got too complex during 

its implementation and the results were not satisfactory. So we haven’t used this 

approach in our final software. 
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CHAPTER 5 

PERFORMANCE COMPARISON 

5.1 Error curves for feature selection using the autocorrelation approach 

 

Here we show the plots for error percentage (% error) versus number of features, N, for 

various training data files where the autocorrelation method generates the order vector. 

Iterative improvement is also used with 23 iterations, after the classifiers are designed. 

 

Figure 5.1 Error percentage versus N for grng using autocorrelation method. 

 

_______: Training 

-+-+-+-+: Validation 
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The plot  in fig 5.1 is for the grng data which has 16 inputs and 4 classes. Grng 

training and validation data file consists of 400 distinct patterns each. It shows the 

percentage error for varying number of features.  The curve indicates that there is 

improvement in error percentage as the number of features increases and the error 

percentage reduces by a significant amount at the end when we use all the features. The 

training and validation curves are almost identical; this is because the training and 

testing data are very similar statistically.  

 

Figure 5.2 Error percentage versus N for gongtrn and autocorrelation method. 

The plot of fig 5.2 is for the gongtrn and gongtst data which has 16 inputs and 

10 classes. Training and validation data files consist of roughly 3100 patterns each. The 

plot shows the percentage error for varying numbers of features.  The curve indicates 

_______: Training 

-+-+-+-+: Validation 
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that there is improvement in the error percentage as the number of features increases 

and the error percentage reduces by a significant amount at the end when we use all the 

features. The training and validation curves are mostly different at all points after the 

few initial features. Towards the end while using all the features, training does better 

than the validation. 

 

 

Figure 5.3 Error percentage versus N for comf18 and autocorrelation method. 

The plot in fig 5.3 is for the comf18 training data which has 18 inputs and 4 

classes. Training and validation data files consist of 1800 patterns each. The plot shows 

the percentage error for varying numbers of features.  The curve indicates that there is 

improvement in the error percentage as the number of features increases and the error 

_______: Training 

-+-+-+-+: Validation 
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percentage reduces by a significant amount at the end where we use all the features. 

Here the training is better than testing at all times. Thus we can conclude that the 

classifier performs well on unseen data but not as good as it performs on the training 

data.  

 

5.2 Error curves for feature selection using the covariance approach 

 

Here we show the plots of error percentage (% error) versus N for various training data 

files where the covariance method is used. Iterative improvement is also used with 23 

iterations, after each classifier is designed. 

 

 
 

Figure 5.4 Error percentage versus N for grng using covariance method. 

_______: Training 

-+-+-+-+: Validation 
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The plot in fig 5.4 is for the grng data which has 16 inputs and 4 classes. 

Training and validation data files consist of roughly 400 patterns each. It shows 

percentage error for varying number of features.  The curve indicates that there is 

improvement in error percentage as the number of features increases and the error 

percentage reduces by significant amount at the end when we use all the features. Here 

the training is almost similar to testing at most of the points but at few points it does 

give different results than training. Also there is not much improvement in this method 

as compared to the previous method where we used auto-correlation elements for 

ordering. The autocorrelation approach performs better while using less number of 

features. 

 

Figure 5.5 Error percentage versus N for gongtrn and gongtst using covariance 

method. 

 

_______: Training 

-+-+-+-+: Validation 



 

 47 

The plot in fig 5.5 is for the gongtrn and gongtst data which has 16 inputs and 10 

classes. Training and validation data file consists of roughly 3100 patterns each. It 

shows the percentage error for varying number of features.  The curve indicates that 

there is improvement in error percentage as the number of features increases and the 

error percentage reduces by a significant amount at the end when we use all the 

features. Here the training is better than testing at all time. This curve show that the 

classifier performs better when ordered using cross-correlation elements. Especially for 

less number of features this method gives better result when compared to 

autocorrelation approach (Figure 5.2).  There is significant amount of improvement in 

this plot as compared to the one which used autocorrelation elements. For less number 

of features this method definitely gives better results as compared to the autocorrelation 

one. 
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Figure 5.6 Error percentage versus N for comf18 using covariance method. 

The plot in fig 5.6 is for the comf18 training data which has 18 inputs and 4 classes. 

Training and validation data file consists of roughly 1800 patterns each. It shows 

percentage error for varying number of features.  The curve indicates that there is 

improvement in error percentage as the number of features increases and the error 

percentage reduces by significant amount at the end when we use all the features. Here 

the training is better than testing at all time. The training is not as good as it was in the 

case when we used autocorrelation elements for ordering (Figure 5.3). There is not 

much difference in the training error but the validation curve is definitely better as 

compared to the one which used autocorrelation elements. 

_______: Training 

-+-+-+-+: Validation 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis we discuss how to improve the BGC’s performance by training the 

constant term in the discriminant function. A back propagation technique is applied to 

train the constant term such that the classification error is reduced. Also we discuss two 

methods for developing nested feature sets in the BGC, for the purpose of Structural 

Risk Minimization [46]. An important feature introduced in this thesis is development 

of nested feature subset instead of separate or different subsets. As the subsets are 

nested the error curve for error percentage versus number of features will be 

monotonically non-increasing which might not be the case for non-nested feature 

subset. In the first method we used the autocorrelation elements for ordering the 

features, a monotonically non-increasing curve for error percentage versus the number 

of features. In the second method, the idea is to use the individual covariance matrices 

to order the features and to check for feature dependencies in each class individually. 

This method also gave significant improvement in the error percentage versus N curve. 

It can be stated that the BGC usually gives faster and more efficient training than the 

NNC, which usually requires a lot more patterns and weights.  
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6.2 Future Work 

Much work remains for improving the BGC. 

(1) We can train other classifier coefficients to improve the classifier’s performance. 

(2) We can investigate methods for eliminating small elements in the inverse 

covariance matrices. We haven’t included this part in our thesis because it is a 

heuristic task and there is not an obvious optimal method to do this. 

(3) We could apply BRUTE FORCE method to reduce size of inverse covariance 

matrix. 

(a) Generate set of inverse covariance matrix elements to be candidates for 

removal. 

(b) Set them to zero. 

(c) Measure probability of error. 

(d) Save the classifier if it is best for its size (number of coefficients). 

This method is optimal but impractical due to combinatorial explosion. 
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APPENDIX A 

 

 

GRAM SCHMIDT ALGORITHM 
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The Gram-Schmidt procedure transforms a set of linearly dependent vectors into an 

orthonormal basis vector. It is commonly used for various applications in the field of 

neural networks such as (a) To find optimum choice of Radial centers for RBF [32], (b) 

Fast computation of weights of RBF network [33], (c) Pruning of MLP [8], and (4) 

Feature selection in piecewise classifier [9]. A less know feature of Gram-Schmidt 

procedure is that it can order the basis functions in the order of their contribution to 

minimize the MSE. Such a network can be represented as a monotonically non-

increasing function of sum of basis functions and achieve a faster rate of convergence. 

This method of orthonormalizing basis functions can be used to prune the less important 

basis functions. These desirable properties along with the effective representation, 

system re-transformation and a fast and distributed iterative solution make it a better 

candidate over other learning algorithms.  

Normal Schmidt process requires one pass through training file to obtain each new basis 

function. Here we discuss a more useful form of Schmidt process, which will let us 

express the orthonormal system in terms of autocorrelation and covariance elements. 

Consider a vector X (X0, X1, X2… XN-1) whose elements are basis functions and its 

corresponding orthonormal mapping is X' (X'0, X'1, X'2… X'N-1) where (X and X') ∈ 

ℜN
. By the definition of orthonormality, vector X' is orthonormal only if it satisfies the 

following condition: 

< X'(i)  X'(j) >  = 0     for  i≠j                  (A.1) 

       = 1   for  i=j i,j ∈ (0,N-1)                (A.2) 
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where, X'(i) is the i
th

 element of the vector X' and < X'(i) X'(j) > is defined as the inner 

product of X'(i) with X'(j). 

 

< X. i
` a

X. j
b c

> =
1

N v

fffffffffX
p = 1

N v

X. p i
` a

X. p j
b c

                  (A.3) 

Here X'p(i) refers to the p
th

 value of i
th

 orthonormal function X'(i).  

Also,  X i
` aNNN
NNN is defined as: 

 ||X i
` a

|| =
1

N v

fffffffffX
p = 1

N v

X p i
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H
J

I
K

1

2

fffff

         (A.4) 

Then by the standard Gram-Schmidt procedure, X'(k) is calculated as:  

 X . 0
` a

=
X 0
` a

||X 0
` a

||
ffffffffffffffffffffff

                     (A.5) 
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X 1
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… 

X . k
` a

=

X k
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@X

i = 0

k@ 1

< X k
` a

X . i
` a

> X . i
` a

|| X k
` a
@X

i = 0

k@ 1

< X k
` a

X . i
` a

> X . i
` a
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fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
                        for 1 ≤ k ≤ N-1  (A.7)    

 

A General approach towards Gram-Schmidt Procedure 

Due to round off errors in computer, Gram-Schmidt procedure is not always 

numerically stable. An iterative solution to it is given here. A represents a lower 

triangular N x N orthonormal transformation matrix such that: 
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X' = A • X          (A.8) 

Thus the m
th

 orthonormal function can be obtained from X and A by 

X . m
` a

=X
i = 0

m

a m,i
` a

X i
` a

                              for 0 ≤ m ≤ N-1.                (A.9) 

Let R be the auto-correlation matrix, where its elements r(i,j) is defined as: 

 r i,j
b c

=
1

N v

fffffffffX
p = 1

N v

X p i
` a
A X p j

b c
                   for 0 ≤ i,j ≤ N-1              (A.10) 

Then from (A.8 - A.11), 

 a 0,0
b c
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1

X 0
` aNNN
NNN

ffffffffffffffffffff
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2

ffff
fffffffffffffffffffff

                      (A.11) 

X'(0) = a(0,0)·X(0)                        (A.12) 

X . 1
` a

= a 1,0
b c

AX 1
` a

+ a 1,1
b c

AX 1
` a

                  (A.13) 

Let X'(1) be equal to 

X . 1
` a

= Z
1

||Z 1
` a

||
fffffffffffffffffffff

                    (A.14) 

Then  Numerator of X'(1) is  

Z(1) = X(1) – b(0)·X'(0) = X(1) – b(0)·a(0,0)·X(0)                  (A.15) 

where b(0) = <X'(0)·X(1)> = a(0,0)·r(0,0)                (A.16) 

Writing Z(1) as 

Z 1
` a

= b 0
` a

X 0
` a

+ b 1
` a

X 1
` a
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a 0,0
b c

                      (A.18) 

b 1
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Equating (A.14) and (A.20) 
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