

SEQUENCES OF BAYES GAUSSIAN CLASSIFIERS

by

JIMY SHAH

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2007

 ii

ACKNOWLEDGEMENTS

My various experiences as a graduate student at University of Texas have

instilled much stronger personality in me than I could ever have hoped for. I could not

have achieved much at UTA were it not for the support given to me by certain

individuals, who I will like to acknowledge.

My foremost appreciation goes to Dr. Michael Manry, my advisor, who has

been a great source of inspiration throughout my graduate school years. He saw the

work from inception to fruition and provided all the help to make this work possible. I

admire his subject expertise, contribution and devotion to the field of Neural Networks,

and incessant help to his students in various forms viz. teaching, regular laboratory

visits, immediate feedback and motivation to better understand the field of Neural

Networks. He patiently directed me through my research, and taught me all I know

about critical reasoning and analysis, presentation of work done and even basic

requirements. I believe he is the best counselor one can ever hope for. I thank Dr

Stephen Gibbs and Dr. Bernard Svihel for reviewing my work and also for agreeing to

serve on my thesis committee.

The EE coursework at UTA and my undergraduate institute Gujarat University

in India provided the fillip and toolkit to weave the pieces of this work together. Hence

a sincere thanks to all the teachers who selflessly strive to spread education to whom I

dedicate this work.

 iii

Finally, I must express my sincere gratitude to my family for all their love and

support. My parents, Mr. Vallabh Shah and Mrs. Smita Shah, for all their love, faith and

support. My sister and my brother-in-law, Jeny and Jashmin, for being there for me

whenever I needed them. Specially Mr. Jashmin Shah, whose ideas influenced my way

of thinking and changed my approach towards graduate studies and research activities.

He has been and will be a role model for me.

November 26, 2007

 iv

ABSTRACT

SEQUENCES OF BAYES GUASSIAN CLASSIFIERS

Publication No. ______

Jimy Shah, MS

The University of Texas at Arlington, 2007

Supervising Professor: Michael T Manry

A new method for designing sequences of Bayes Gaussian Classifiers is

presented in this thesis. First, a basic Bayes Gaussian Classifier is designed with an

assumption of data being Gaussian. Then, we have used the Output Weight

Optimization-Back Propagation (OWO-BP) technique to iteratively modify the

coefficients of the classifier, resulting in less classification error. Through use of an

iterative Gram-Schmidt procedure, to train linear functional link nets, input features are

ordered from most useful to least useful. Another important development in this thesis

is the generation of nested feature subsets. This ensures that the curve for error

percentage versus the number of features is monotonically non-increasing. Based upon

this list of ordered features, nested feature subsets are produced, with a Bayes Gaussian

Classifier designed for each subset. These classifiers exhibit reduced probability of error

 v

as the subset size (number of selected inputs) increases. Various real world data have

been used to test and verify the classifier’s performances.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT .. iv

LIST OF FIGURES ... ix

Chapter

 1. INTRODUCTION ... 1

 1.1 Classifier application ... 2

 1.2 Classifier design approach... 2

 1.3 Commonly used classifiers .. 3

 1.4 Introduction to Bayes Gaussian Classifier... 4

 1.5 Chapter flow .. 5

 2. REVIEW OF CLASSIFIERS.. 7

 2.1 Bayes Classifier .. 7

 2.1.1 Introduction ... 7

 2.1.2 Derivation of Bayes classifier... 7

 2.1.3 Common forms of Bayes discriminant 8

 2.2 Nearest Neighborhood Classifier.. 9

 2.2.1 Operation .. 9

 2.2.2 Design methods .. 10

 vii

 2.2.3 Theory... 11

 2.3 Piecewise Linear Network Classifier.. 12

 2.3.1 Operation .. 12

 2.3.2 Design ... 14

 2.3.3 Theory... 15

 2.4 Neural Networks Classifiers ... 16

 2.4.1 Operation .. 17

 2.4.2 Training... 18

 2.4.3 Theory... 21

 2.5 Support Vector Machines ... 22

 2.5.1 Operation .. 22

 2.5.2 Theory... 23

 2.6 Problems with Classifiers ... 25

 3. BAYES GAUSSIAN CLASSIFIER .. 27

 3.1 Derivation of Bayes discriminant ... 27

 3.2 Limitations of BGC... 28

 3.3 Iterative improvement of the BGC ... 28

 3.3.1 Derivation and algorithm for the back propagation technique . 29

 3.3.2 Performance analysis .. 31

 4. FEATURE SELECTION ... 35

 4.1 Feature selection using Autocorrelation function 35

 4.1.1 Calculation of Mean Square Error (MSE) 37

 viii

 4.1.2 Detecting the linearly dependent basis functions 38

 4.2 Feature selection using the Covariance function 39

 4.2.1 Generating single order vector for all the classes 39

 4.2.2 Generating separate order vector for each class 41

 5. PERFORMANCE COMPARISON .. 42

 5.1 Error curves for feature selection using the autocorrelation approach 42

 5.2 Error curves for feature selection using the covariance approach 45

 6. CONCLUSION AND FUTURE WORK.. 49

 6.1 Conclusion .. 49

 6.2 Future work.. 50

Appendix

 A. GRAM SHMIDT ALGORITHM.. 51

REFERENCES .. 56

BIOGRAPHICAL INFORMATION... 63

 ix

LIST OF FIGURES

Figure Page

1.1 Recognition System with classifier ... 1

1.2 Voronoi tessellation of a two dimensional space .. 5

2.1 Nearest Neighborhood Classifier .. 11

2.2 Piecewise Linear Network Classifier .. 16

2.3 Structure of a Multi-Layer Perceptron .. 19

2.4 Support Vector Machine with RBF kernel.. 23

2.5 Possible boundaries to a sample classification problem 24

2.6 A maximum margin hyper plane for a support vector machine...................... 25

3.1 Training error percentage versus iteration number, Nit for grng..................... 31

3.2 Training error percentage versus iteration number, Nit for gongtrn................ 32

3.3 Training error percentage versus iteration number, Nit for comf18................ 34

5.1 Error percentage versus N for grng using autocorrelation method 42

5.2 Error percentage versus N for gongtrn using autocorrelation method............ 43

5.3 Error percentage versus N for comf18 using autocorrelation method 44

5.4 Error percentage versus N for grng using covariance method. 45

5.5 Error percentage versus N for gongtrn and gongtst using covariance method. 46

5.6 Error percentage versus N for comf18 using covariance method. 48

 1

CHAPTER 1

INTRODUCTION

In a pattern recognition system the given sensor data is segmented and the

features are extracted from it. Using these features in an input vector, a classifier is

designed. Based on a decision rule, an estimate is made of the class the data belongs to.

Actual pattern recognition systems may be more complicated and may have many more

elements. A simplified block diagram of a recognition system is presented below with

all its main functional blocks.

Figure 1.1 Recognition system with classifier

Input Segmentation Feature

Extraction

Discriminant

Function

Calculator

Decision Making

System
Estimated Class

 2

1.1 Classifier application

There are countless pattern recognition applications where classifiers are used.

Some examples are given here:

In automatic form reading, character recognition techniques are used to read the

forms and identify their content. In automatic mail processing for example, all the

different regions of interest on the envelope are segmented such as main address, return

address, barcode etc. Out of all these, the zip code is the main region of interest. Face

recognition is another developing application which is often used to restrict building

access to authorized people. Here we have a database which contains faces of those

individuals who are to have access. When a person seeks access, the recognition system

extracts features from the face image and decides whether the face is similar to one of

the stored ones. Fingerprint processing is similar, but it’s a bit simpler and more

practical since fingerprints are almost two-dimensional.

Automatic target recognition is a defense related application where we try to

locate man-made objects and classify them as friend or foe. Bottle cap recognition is

used by various airlines where they need to sort out different beverages bottles

automatically.

1.2 Classifier design approach

The task of a classifier is to use the feature vector provided by the feature

extractor (fig 1.1) and to assign it to the correct class. We can split a typical classifier

design problem into two categories, training and validation. Usually the process of

providing data to the classifier and allowing it to adapt itself is called training. The most

 3

effective methods for developing classifiers involve learning from a set of example

patterns that have already been classified. This type of learning is called supervised

learning [10, 11] and the set of example patterns are referred to as the training dataset.

A training dataset usually consists of Nv labeled feature vectors Xp, each of dimension

N. Each feature vector has its class label, ic(p), defined, where p is the pattern number

and 1≤ p ≤ Nv. The goal is to design a classifier that estimates ic(p) from Xp, given the

training data (Xp, ic(p)). Learning can also be unsupervised [10,11], in the sense that the

system is not given a-priori information about patterns. Instead it establishes the classes,

based on the statistical properties of the patterns. Validation of the classifier is

extremely important to ensure that the classifier can perform on unseen real world data

as well. It also gives us feedback of what changes should be made in the classifier to

make it perform better. Sometimes a complex system may allow perfect classification

of the training samples, but it may not perform well on new patterns during validation.

This situation is known as overfitting [10].

1.3 Commonly used classifiers

 Usually classifiers like the Bayesian classifiers [1], k-Nearest

Neighborhood classifier (k-NNC) [33], Piecewise Linear Network classifier (PLNC)

[34] and Neural Networks classifiers [35, 36, 42] are used.

The k-NNC classifies objects based on the closest training examples in the N-

dimensional feature space. In the training phase, the feature space is divided into

convex polygons or clusters based on the class labels of the various training patterns.

 4

This leads to partitioning of the input space into a Voronoi tessellation [20] as shown in

fig. 1.1. In the classification phase, distances from the new test vector to all the stored

vectors are computed and the k closest samples are selected. The new vector is

predicted to belong to the most numerous class labels within this set. The best choice of

k depends on the data; generally larger values reduce the effect of noise on

classification but make the decision boundaries less distinct. The algorithm is easy to

implement, but can get computationally intense, especially when the size of the training

set increases.

Several artificial neural networks have also been used for classification

purposes. Neural nets can typically undergo supervised learning [1,19]. In supervised

learning, there exist the input feature vector, Xp and the feature vector’s class label,

ic(p). Multi-layer Perceptrons (MLP) [16], radial basis function (RBF) networks [21]

and support vector machines (SVM) [17,18] are trained using supervised learning

techniques. Neural net classifiers are usually trained to minimize the Mean-Square Error

(MSE) over the number of iterations.

1.4 Introduction to Bayes Gaussian Classifier

A Bayes classifier is a probabilistic classifier that makes decisions by

combining two sources of information, i.e., the prior and the likelihood, to form a

posterior probability using Bayes' rule [22]. When the feature vectors are jointly

Gaussian, the result is the Bayes Gaussian Classifier (BGC).

 5

Unfortunately real world feature data is not often Gaussian and data statistics

are not known with accuracy. Also, it is not known which subset of the extracted

features provides the best performance. In this thesis we try to solve these problems by

integrating feature selection & training into the BGC in order to improve its

performance.

Figure 1.2 Voronoi tessellation of a two-dimensional space

1.5 Chapter flow

In Chapter II we discuss various types of classifiers and their limitations. In

Chapter III we discuss the Bayes Gaussian Classifier, its limitations and our approaches

for improving its performance. We also discuss a training technique for the classifier. In

Chapter IV we discuss at length the Gram-Schmidt orthonormalization algorithm and its

implementation. We show how this orthonormalization technique is used for feature

 6

ordering. Also, various different forms of this ordering are discussed. In Chapter V we

compare the performance of our modified BGC with other available classifiers. In

Chapter VI we conclude the thesis and discuss future work.

 7

CHAPTER 2

REVIEW OF CLASSIFIERS

2.1 Bayes Classifier

2.1.1 Introduction

 A classifier calculates discriminant functions for each class and makes the

decision according to which class’s discriminant is largest or smallest.

Bayes Classifier is a simple probabilistic classifier based on the Bayes rule [22].

This classifier can be designed if statistical information of the system including

conditional probability density of the feature vectors is available and well defined.

2.1.2 Derivation of Bayes classifier

Let Pi denote the probability that a feature vector X is from the i
th

 class and let Pe denote

the probability of classification error. Our goal in Bayes classifier design is to develop

the discriminant function that minimizes Pe. First, Pe is written as

 Pe =X
i = 1

Nc

P (error and X is from i
th

 class) (2.1)

where Nc is the total number of classes. Continuing, we get

X
i = 1

Nc

P error | i
b c

P i
 (2.2)

This can be expanded as

 8

X
i = 1

Nc Z
Z i

c

f X | i
b c

dX P i
 (2.3)

where, f(X|i) is the conditional density of X given that it comes from the i
th

 class. Zi is

the region or subset of R
N
 where we decide class i and Zi

C
 is the region or subset of R

N

where we decide a class other than the i
th

 one. Continuing,

 Pe =X
i = 1

Nc

P i 1@ Z
Z

i

f X | i
b c

dX

H
LJ

I
MK= 1@X

i = 1

Nc

P i
Z
Z

i

f X | i
b c

dX (2.4)

The regions Zi and Zi
C
 are disjoint. Interchanging the summation and integral in the

right hand side of (2.4), we get,

 1@Z
S

P
X i
` a f X | i X

` ab c
dX = P e (2.5)

Minimize Pe by maximizing the integral, which is done by maximizing the integrand,

given a value of X. In other words, given X, evaluate the scalar numbers g(i) = Pif(X|i)

for 1 ≤ i ≤ Nc. Choose i such that g(i) is maximum. This value of i is ic
'
(p). In order to

construct this form of Bayes discriminant, we need to estimate Pi and f(X|i).

2.1.3 Common forms of Bayes discriminant

We decide the class number of a pattern based on the value of the discriminant function

that reduces the classification error (Pe). Three well known types of Bayes discriminant

are given as follows.

 (B1) g(i) = Pi f (X|i): Find the maximum value of discriminant to minimize Pe

 9

(B2) d(i) = func (Pi f (X|i)): Find the maximum value, of discriminant to minimize Pe,

if func () is an increasing function or

(B3) h(i) = P (i|X): Find the maximum value of discriminant to minimize Pe

2.2 Nearest Neighbor Classifiers

In practical pattern recognition applications, the nearest neighbor classifier

(NNC) is often applied because it does not require an a priori knowledge of the joint

probability density of the input feature vectors. Among the various methods of

supervised statistical pattern recognition, the nearest neighbor rule achieves consistently

high performance. It involves a training set with patterns from each class. A new sample

is classified by calculating the distance to the nearest training case. Fig 2.1 gives a

diagrammatic representation of a NNC.

2.2.1 Operation

(1) For the i
th

 class we will have Ki clusters, and each cluster will have mean or

center vectors mik where 1≤ k ≤Ki.

(2) Now, for a given test vector X, find i such that, the distance between the test

vector and the mean vector, d(X,mik), is minimum. This value of i is the estimated class

ic'.

(3) The classification is correct if ic
'
 = ic.

The distance of the input vector X from the mean vector, mik, of k
th

 cluster for i
th

class is

given as

 10

d X,mik

b c
=X

n = 1

N

X n
` a
@m

ik
n
` ab c2

 (2.6)

for the Euclidean distance and

d X,mik

b c
=X

n = 1

N X
m = 1

N

X n
` a
@m

ik
n
` ab c
A a

i
n,m
` a

A X m
` a
@m

ik
m
` ab c

 (2.7)

for the Mahalanobis distance, where ai(n,m) is the element of the inverse covariance

matrix (Ai) for the i
th

 class. The covariance matrix (Ci) element ci(n,m) is calculated as,

ci n,m
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

X n
` a
@mi n

` ab c
A X m
` a
@mi m

` ab c
 (2.8)

for 1≤ n ≤ N and 1≤ m ≤ N. The inverse of Ci is denoted by Ai.

2.2.2 Design methods

Three general approaches for obtaining the center vectors mik are described here.

(1) Use all example data to form center vectors mik.

(2) Cluster example or training data Xp separately for each class, to form center vectors

mik, where p denotes the pattern number such that, 1≤ p ≤ Nv.

(3) Cluster all Xp together to get center vectors mk. Then assign a class number to each

mk as follows. For each cluster mean or center vector mk, look at class numbers of Xp

closest to mk. Use the plurality rule to assign the class numbers ic(p).

2.2.3 Theory

As the number of example vectors and the cluster numbers are increased, the

error probability of the NNC comes closer to the error probability of Bayesian classifier

 11

[10]. However, at the same time the computational complexity of the NNC increases.

Also, for a small number of example vectors, training of the NNC is not optimal since

clustering algorithms are used to produce the required center vector.

Theorem 1: For a NNC, as the number of clusters, K, approaches infinity we have,

 P
eB

≤ P
e NNC
` a ≤ 2 AP

eB
 (2.9)

where Pe(NNC) and PeB respectively denote the NNC and Bayes probabilities of error.

For a proof of Theorem 1 refer to [44].

Figure 2.1 Nearest Neighborhood Classifier

X(1)

X(2)

X(3)

X(N)

d(X,M11)

d(X,M13)

MIN

MIN

MIN

d1(X)

d2(X)

d3(X)

 12

The k nearest neighbor classifier (k-NNC) is another version of NNC with some

different characteristics and features. Here k is the number of nearest training vectors or

samples to the test sample X. An interesting theorem on the k-NNC is presented below.

Theorem 2 [10]: As k and (Nv/k) approach infinity, the k-NNC can be viewed as an

attempt to estimate the a-posteriori probabilities from the training samples. Under this

condition, k-NNC hence becomes optimal and

 lim
kQ 1

P
e k@ NNC
` a = P

eB
 (2.10)

As k increases, the probability of error gets closer to the lower bound – the Bayes rate.

In the limit as k goes to infinity, the two bounds meet and the k-NNC becomes optimal.

We want to use a large value of k to obtain a reliable estimate. On the other hand, we

want all of the k neighbors to be very near to the test sample, X. This forces us to

choose a compromise k that is a small fraction of the total number of training samples,

Nv. It is only in the limit as Nv goes to infinity that we can be assured of the nearly

optimal behavior of the k-NNC.

2.3 Piecewise Linear Network Classifier

2.3.1 Operation

A piecewise linear network classifier (PLNC) divides the given data into K

different clusters and then processes each cluster as a separate linear network. Piecewise

linear networks (PLNs) have long been used for function approximation and

 13

classification tasks [53,54] where speed of operation and simplicity are very important.

One design approach is training an MLP having piecewise linear activations [55,56].

The network structure is shown in fig. 2.2. The PLNC consists of three layers

with input elements in the first layer, the hidden units in the second and the output units

in the third. The feature vector elements are first normalized as

 X pnP
X pn@µ

n

σn

ffffffffffffffffffffffffffff
 , for 1≤ p ≤ Nv and 1≤ n ≤ N (2.11)

where the means and standard deviations of the feature vector elements Xp are

respectively µn and σn, where 1 ≤ n ≤ N. This N-dimensional vector Xp forms the input

to the PLNC. The hidden layer consists of K clusters, each cluster having its N-

dimensional cluster mean vector mc, where 1 ≤ c ≤ K. Given an input vector Xp, we

find c such that d(Xp, mc) is minimized. The normalized feature vector is then

augmented as

 X paP X p

T
:1

b cT

 (2.12)

to form the (N+1) dimension vector, Xpa, to the PLNC. Each cluster also has a weight

matrix Ac of dimension Nc by (N+1), where Nc is the number of classes in the

classification problem.

The output discriminant vector of the network, yp has Nc elements. The vector

yp is calculated by multiplying the input vector with the weight matrix of the cluster it

has been assigned to. Thus we form the output vector, yp, as

 yp = Ac A X pa (2.13)

The estimate of the correct class ic is given by,

 14

 ic. p
` a

= arg max y pi

B C
i

 (2.14)

where ypi is the i
th

 element of the output vector yp and 1 ≤ i ≤ Nc.

2.3.2 Design

A classification problem typically involves a feature space with numerous

feature vectors or samples that have to be classified into various class labels. In

supervised learning, the training dataset includes the feature vector Xp and the class

label, ic(p), for each of the Nv feature vectors. The label is transformed into an Nc-

dimensional target vector tp such that

()

 otherwise

c

pi

b i i p
t

b

+ =
= 

−
 (2.15)

where 1 ≤ p ≤ Nv, 1 ≤ i ≤ Nc and b is any positive integer. Before the network can be

used for classification itself, it has to be trained. Training involves designing the PLNC

weight matrices given numerous training patterns.

The process of training a PLNC is divided into two parts. The first part involves

partitioning of the input feature space into K clusters. The second part involves the

calculation of the network weights by solving a set of linear equations whose solution

minimizes the MSE of the network,

 E =
1

N v

fffffffffX
k = 1

K X
p:i c p

b c
= k

N v k
b c

t p@ A
k
A X pa

NNN
NNN

2

 (2.16)

We can calculate the weights of the network Ac such that it minimizes the error in

(2.16).

 15

2.3.3 Theory

Now we consider the relationship between the PLNC and NNC. As K, the

number of clusters approaches infinity, the convex Voronoi cells in the feature space get

smaller in volume and the optimal decision boundaries in each cluster become linear.

Hence each cluster can have its own linear discriminant and overall, a more complex

decision boundary is achieved. Therefore, for a given value of K, the PLNC should

perform better than the NNC. PLNC could be used over NNC where speed of operation

and simplicity are very important as NNC converges slowly towards the Bayes

probability of error. Fig 2.2 gives a diagrammatic representation of a piecewise linear

network classifier.

Theorem 3: If a PLNC and a NNC have the same distance measure and identical

cluster mean vectors, then as K approaches infinity,

 () ()eB eBe PLNC e NNC
P P P 2 P≤ ≤ ≤ ⋅ (2.17)

where Pe(PLNC), Pe(NNC) and PeB respectively denote the PLNC, NNC and Bayes

probabilities of error.

For a proof of Theorem 3 refer to [44].

Theorem 4: As the cluster number (K) and the number of patterns belonging to that

cluster (Nv(c)) approach infinity, the output of a PLNC approximates the a-posteriori

 16

probability functions of the class labels, given the input vector. Under this condition, the

PLNC hence becomes optimal and

() e(PLNC) eB

,
lim P = P

vK N c →∞
. (2.18)

For a proof of Theorem 4 refer to [44].

Figure 2.2 Piecewise Linear Network Classifier

2.4 Neural Network Classifiers

There are many types of neural network classifiers, including the multilayer

perceptron (MLP) [37], radial basis function (RBF) network [35] and the support vector

d(·)

c = 1

c = 2

c = K

A1

A2

AK

 17

machine (SVM) [36]. In this section we investigate the operation, training and theory of

a multilayer perceptron.

2.4.1 Operation

As the name suggests this classifier consists of multiple layers of functional

units usually interconnected in a feed-forward way. In many applications the hidden

units of these networks apply a sigmoid function as an activation function at the unit’s

output. The structure of the multi-layer perceptron (MLP) is shown in fig. 2.3. The

output of a MLP can be computed as,

 y i
` a

= θo i
` a

+X
k = 1

N
h

w
ho

i,k
b c

AO k
` a

+X
n = 1

N

w
io

i,n
` a
AX n
` a

 (2.19)

where θo(i) is the threshold of the i
th

 output, who(i,k) is the weight connected from the k
th

hidden unit to the i
th

 output unit, wio(i,n) is the weight connected from the n
th

 input unit

to the i
th

 output unit and O(k) is the output of the k
th

 hidden unit with sigmoidal

activation.

O k
` a

=
1

1 + e@ NET k
` a

ffffffffffffffffffffffffffffffffffff
 for 1 ≤ k ≤ Nc (2.20)

NET k
` a

= θ k
` a

+X
n = 1

N

w k,n
b c

AX n
` a

 for 1 ≤ k ≤ Nc (2.21)

where θ(k) is the threshold of the k
th

 hidden unit and w(k,n) is the weight connecting the

n
th

 input unit to the k
th

 hidden unit.

Output weights are calculated and trained using any gradient technique, while

the hidden weights are trained using back propagation [7, 23] technique. In back

 18

propagation, the computed output values are compared with the desired output to

calculate the value of an error function. The error is then fed back through the network,

which is then reduced by adjusting the weights by a general optimization technique like

the conjugate gradient [24]. A multilayer perceptron with one hidden layer is shown in

fig 2.3.

2.4.2 Training

First of all we initialize all the network weights with random numbers. Then we

train these weights iteratively to get better performance of MLP. Training of MLP is

divided into two parts, training of output weights and training of hidden weights. Let us

look at each one separately.

(1) Training of output weights:

 The error function can be expressed as

 E =X
i = 1

N c

E i
` a

 (2.22)

 E i
` a

=
1

N v i
` afffffffffffffffff X

p:i c p
b c

= i

N v i
b c

t p i
` a
@ y p i

` aNNN
NNN

2

 for 1 ≤ i ≤ Nc (2.23)

where Nv is the total number of patterns, Nv(i) is the total number of patterns belonging

to the i
th

 class, tp(i) is the desired output for the i
th

 class and yp(i) is the actual calculated

output for the i
th

 class and Nc is the total number of classes. Now let L, the number of

basis functions, be N+Nh+1. The new basis functions are X(k) for k between 1 and N,

X(N+k) = O(k) for k between 1 and Nh, and X(L)= 1. Taking the partial of error, for the

 19

i
th

 output, with respect to the output weight and equating it to zero we get a set of linear

equations as,

C1 m,i
` a

=X
k = 1

L

wo i,k
b c
A r k,m
b c

 for 1 ≤ m ≤ L and 1 ≤ i ≤ Nc (2.24)

where wo(i,k) is the weight from the k
th

 basis function to the i
th

 output. Also the

autocorrelation and cross correlation elements are given as,

r k,m
b c

=
1

N v

fffffffffX
p = 1

N v

X p k
` a
A X p m

` a
 for 1≤ k, m ≤ L

C
1

m,i
` a

=
1

N v

fffffffffX
p = 1

N v

t p i
` a
A X p m

` a
 for 1≤ m ≤ L and 1 ≤ i ≤ Nc

From (2.24) we have L equations in L unknowns. Since the equations are often ill-

conditioned, meaning that the determinant of R is close to 0, it is often unsafe to use

Gauss-Jordon elimination [58], so the SVD [57] or the conjugate gradient [10]

approaches are better.

 20

Figure 2.3 Structure of a Multi-Layer Perceptron

In the conjugate gradient approach the direction vector for the i
th

 class is initialized to

zero and is updated on every iteration as,

p(m) = -g(m) + B2 p(m) , for 1≤ m ≤ L (2.25)

where the gradient and the B2 are calculated as,

g m
` a

=@ 2 AC1 i,m
` a

+ 2 AX
k = 1

L

wo i,k
b c
A r k,m
b c

 , for 1≤ i ≤ Nc and 1≤ m ≤ L (2.26)

B2 =

X
m = 1

L

p m
` a

C
1

i,m
` ab c

@X
k = 1

L

wo i,k
b c

A r k,m
b cH

J
i
k

X
m = 1

N c X
k = 1

L

p m
` a
A p k
` a
A r k,m
b c

fff
 , for 1≤ i ≤ Nc and 1≤ m ≤ L (2.27)

Now the output weights are updated as,

wo i,k
b c

= wo i,k
b c

+ B2A p k
` a

 , for 1≤ k ≤ L and 1≤ i ≤ Nc (2.28)

y(2)

y(1)

y(3)

y(Nc)

X(1)

X(2)

X(3)

X(N)

O(1)

O(Nh)

NET(1)

NET(Nh)

who(1,1)

who(Nc,Nh)

w(1,1)

w(Nh,N)

wio(Nc,N)

wio(1,1)

 21

(2) Training of hidden weights:

In the earlier step we just updated the weights from input to output and hidden unit to

output. But the weights from input to hidden unit are still unchanged. So here we try to

update these hidden weights such that it reduces the MSE. For training of hidden

weights of MLP we generally use Output Weight Optimization-Back Propagation

(OWP-BP) [10]. This technique is discussed at length in section 3.3.1.

2.4.3 Theory

MLPs are very popular and exhibit good performance in classification as well as

estimation problems. Lets look at few established theorems on MLP.

Theorem 4: When neural net classifiers are trained to minimize the mean-squar error

(MSE), the MSE approaches a constant value plus the expected squared error between

the neural net output and Bayes discriminant, as the number of training patterns

approaches infinity. Specifically,

 lim
N vQ 1

1

N v

fffffffffX
p = 1

N v X
i = 1

N c

t p i
` a
@ y p i

` aB C2
=X

i = 1

N c

E h i
` a
@ y i
` ab c2F G

+ C (2.28)

where C is a constant, independent of p, tp(i) is the i
th

 desired output for the p
th

 pattern,

and yp(i) is the i
th

 output of the network. The Bayes discriminant h(i), is the probability

that the i
th

 class is correct, given X, which is written as P(i|X) and Nc is the total number

of classes. For a proof of Theorem 4 refer to [43].

 22

2.5 Support Vector Machines

Support vector machines (SVMs) [42] are a set of related supervised learning

networks used for classification and regression. They usually consist of a feature

extractor containing the Radial Basis Function (RBF) hidden units, followed by a

classifier that makes decisions based on a linear combination of features. A special

property of SVMs is that they minimize the empirical classification error and maximize

the geometric margin between the various classes.

2.5.1 Operation

Let the dimension of feature space be hsvm, which is also the number of Support

Vectors (SVs). Note that hsvm is equivalent to number of hidden units in a MLP. Figure

2.4 shows a diagram of an SVM.

Let Xp , d p

R S
p = 1

N v

 be the training dataset. Let Φ
j

X
` aR S

j = 1

h svm

 denote a nonlinear

transformation from input space to feature space. In our case, they represent the RBF.

 Φ j X
` a

= exp @
1

2σ2

fffffffffff
X@X j

NNN
NNN

2
f g

 (2.29)

for 1 ≤ j ≤ hsvm. These Φj(X) are equivalent to the hidden unit activation functions in the

MLP. The output of the SVM is given by

 s p =X
j = 1

h svm

w
j
Φ

j
X p

b c
+ b , for 1 ≤ p ≤ Nv (2.30)

where wj is the weight and b is the threshold of the hidden unit.

 23

The main structural differences between MLPs and SVMs are

• Unlike MLPs, bypass weights are not present in case of SVMs (weights

connecting inputs directly to outputs)

• There is only one output for SVMs whereas MLPs can handle multiple outputs.

Figure 2.4 Support Vector Machine with RBF kernel.

2.5.2 Theory

A typical classification problem involves separating N-dimensional data into different

classes by an (N-1)-dimensional hyperplane. This could be done using a typical form of

linear classifier. Possible boundaries for such a classification problem are shown in fig.

2.5. However, if it is also desired to achieve maximum separation between the different

classes, this could be obtained using an SVM or other maximal margin classifier [11].

Output

X(1)

X(2)

X(3)

X(N)

1

hsvm

2

3

Bias

RBF Kernel (Support Vectors)

 24

By maximizing this margin, SVMs avoid overfitting. A maximum-margin hyperplane

for an SVM trained with samples from two classes is shown in fig. 2.6. Samples along

the hyperplanes are called the support vectors.

The parameters of the maximal margin hyperplane are commonly derived by

solving a quadratic programming (QP) optimization problem using Platt’s Sequential

Minimal Optimization (SMO) algorithm [27,28]. This algorithm breaks the problem

down into 2-dimensional sub-problems that may be solved analytically, eliminating the

need for a numerical optimization algorithm such as the conjugate gradient method

[29].

Figure 2.5 Possible boundaries to a simple classification problem

L1

L2

L3

 25

Figure 2.6 A maximum margin hyper plane for a support vector machine

2.6 Problems with classifiers

In Bayes Classifiers the required conditional probability densities are usually

not available. Only approximations from parametric and non-parametric modeling

approaches are available.

The k-Nearest Neighbor classifier is quite simple, but very computationally

intensive to design. Even for simple classification problem it requires many distance

calculations, which makes the classification a complex process. Theorems on

convergence to Bayes error do exist for nearest neighbor classifiers (NNCs) and k-

NNCs [10,11], which also have the advantage of being easy to design in a short period

of time. However, the NNC and k-NNC are rarely used because they are very time-

consuming to apply.

 26

Neural net classifiers have several problems. Typical problems of the back

propagation algorithm in MLP training are the speed of convergence and the possibility

of ending up in a local minimum of the error function. Training time for MLP and RBF

classifiers can be long and they may suffer from over fitting [10]. SVM classifiers avoid

over fitting but usually require several orders of magnitude more hidden units than RBF

and MLP networks. Also, MLP can suffer from memorization problems subjected to

number of patterns provided during training. SVMs frequently require hundreds or

thousands of parameters, and can take too long to apply. For satisfactory performance

SVM’s require large numbers of support vectors.

 27

CHAPTER 3

BAYES GUASSIAN CLASSIFIER

The Bayes Gaussian Classifier (BGC) is a Bayes classifier where the conditional

pdf f(X|i) is assumed to be Gaussian. Most of the data available in the real world is

Gaussian because of the “Central Limit Theorem” [48], so this classifier is applicable in

many real world applications.

3.1 Derivation of Bayes discriminant

The conditional probability density is given as,

 f X | i
b c

=
1

2π
` aN

2

fffffff
|C i |

1

2

fff
ffffffffffffffffffffffffffffffffffff

e
@

1

2

fffff
X@ m

i

b cT

A
i

X@m
i

b c

 for 1≤ i ≤ Nc (3.1)

where, Ai is the inverse covariance matrix and Ci is the covariance matrix calculated as,

C i n,m
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

X p n
` a
@mi n

` ab c
X p m
` a
@mi m

` ab c
, for 1≤ n ≤ N and 1≤ m ≤ N

Here Nv(i) is the number of patterns belonging to the i
th

 class and mi is the mean input

vector belonging to the i
th

 class and is calculated as ,

 mi n
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

X p n
` a

 for 1≤ n ≤ N (3.2)

The type B1 discriminant is calculated as,

g i
` a

=
P i A exp @

1

2

ffffX@mi

b c
. Ai X@mi

b cD E

2π
` aN

2

fffffff
|C

i
|

1

2

fff
fff

 for 1 ≤ i ≤ Nc (3.3)

where Pi is the probability for occurrence of the i
th

 class.

 28

Now, for the type B2 discriminant, use d(i) = -2·ln (g(i)), which is a decreasing function,

where g(i) is the type B1 discriminant. We get

 d i
` a

= X@mi

b c
. Ai X@mi

b c
+ Bi

 for 1 ≤ i ≤ Nc (3.4)

Where the constant term Bi is given as,

Bi = N ln 2π
` a N

2

ffffffffff
+ ln |C i |

b c
@ 2 ln P i

b c
 for 1 ≤ i ≤ Nc (3.5)

For the type B2 discriminant, we find the value of i such that d(i) is minimum. The

resulting value of i is our estimate of ic.

3.2 Limitations of BGC

One of the most important requirements for the BGC which may be considered

as its limitation is that the distribution of the given data needs to be Gaussian. However,

the covariance matrix is often singular (non-invertible), which causes problems during

calculation of the inverse covariance matrix required in the discriminant function. The

features might not be arranged in order of their importance. So, the error curve might

not be monotonically non-increasing. Also the weights calculated by the statistical

information of the data might not be exact.

3.3 Iterative improvement of the BGC

 Various parameters calculated from the statistical information of the data might

not be optimal as noted in section 3.2. So now we will try to modify few important

parameters so that it improves the overall classifier performance. In this thesis we are

 29

modifying the constant term (Bi) in the discriminant function. We will be using the

gradient and the back propagation technique to accomplish our goals.

There are various weights associated with the BGC, such as, mean vector,

covariance matrix, inverse covariance matrix and constant term. Out of all these weights

only the constant term is the one that is independent of all the classes. All other weights

are function of a class. So the first step towards training was to train the constant term

and try to modify it such that it improves the performance of the BGC.

3.3.1 Derivation and algorithm for the back propagation technique

Here we derive the equations for the gradient and the learning factor. These equations

are required in the back propagation technique which is used to iteratively improve the

constant term.

Converting the type B2 discriminant, given in (3.3), to the type B1 discriminant,

 g i
` a

= e
@

1

2

fffff
d i
` a

 for 1 ≤ i ≤ Nc (3.6)

where g(i) is the type B1 discriminant and d(i) is the type B2 discriminant. Converting

the type B1 discriminant to the type B3 discriminant we get,

 h i
` a

=
g i
` a

X
j = 1

N c

g j
b c

fffffffffffffffffffffffffffff
 for 1 ≤ i ≤ Nc (3.7)

where h(i) is the type B3 discriminant. The mean square error between the desired and

the estimated output is calculated as,

 (3.8)

E =
1

N v

fffffffffX
i = 1

N c X
p:i c p

` a
= i

N v i
` a

t p i
` a
@ hp i

` aNNN
NNN

2

 30

where hp(i) is h(i) for the p
th

 pattern and the i
th

 class, and tp(i) is the i
th

 desired output for

the p
th

 pattern, defined as

tp(i) = δ(i-ic) for 1≤ i ≤ Nc (3.10)

where ic is the correct class number obtained from the training data file. Now we want to

get the value of Bi such that it gives the minimum error. Thus we need to find the

gradient of error with respect to Bi

 #
∂E

∂B
i

fffffffffff
=@ 2 X

p:i c p
` a

= i

N v i
` a

X
i = 1

N c

t p i
` a
@ hp i

` aB C
A
∂hp i
` a

∂B
i

fffffffffffffffffff
 for 1 ≤ i ≤ Nc (3.11)

Also, after few mathematical steps we calculated
∂hp i
` a

∂B
i

fffffffffffffffffff
 as,

∂hp i
` a

∂B
i

fffffffffffffffffff
=

1

2

ffff
g i
` a X

j = 0 , j ≠ i

N c

g j
b c

X
j = 1

N c

g j
b cH

J
I
K

2

ff
 for 1 ≤ i ≤ Nc (3.12)

Algorithmic description of OWO-BP:

1. Initialize network weights, Pold = 10
20

, Z= 0.01

2. Calculate Pe. If Pe < Pold, replace Pold with Pe and save the constant term Bi. Also,

increment Z by 10%.

3. If Pe ≥ Pold, read back old Bi and do not save the currently calculated Bi. Also

decrement Z and Z1 by 10%. Skip the next step of updating the Z1 and go to 5.

4. Calculate Z1 as, Z
1

=
Z AP e

X
i = 1

N c

∂E

∂Bi

ffffffffffffd e2

fffffffffffffffffffffffffffffffff
 (3.13)

5. Update Bi as, Bi= Bi + (Z1 .
∂E

∂B
i

fffffffffff
) (3.14)

 31

6. Go to 2.

3.3.2 Performance analysis

 Here we show the plot of error percentage versus iteration number, Nit, for the

BGC. This curve shows how training of constant term improves the classifier

performance at each iteration. It takes into account all the features in its natural order, as

given in training data file.

 (1) GRNG: This file is a geometric shape recognition data file consists of four

geometric shapes, ellipse, triangle, quadrilateral, and pentagon. Each shape consists of a

matrix of size 64x64. For each shape, 200 triangle patterns were generated using

different degrees of deformation. The deformations include rotation, scaling,

translation, and oblique distortion. The feature set is ring-wedge energy (RNG), and it

has 16 features [33].

 Figure 3.1 Training error percentage versus iteration number, Nit for grng

The plot in fig 3.1 is for the grng training data which has 16 inputs and 4 classes.

It shows percentage error for varying number of iterations. The curve indicates that

there is improvement in the error percentage in most of the iterations. At the end of 25

iterations, the final error percentage comes out to be 2.5%, which is 50% of the initial

error.

(2) GONGTRN: The raw data consists of images from hand printed numerals collected

from 3,000 people by the Internal Revenue Service. We randomly chose 300 characters

 32

from each class to generate 3,000 character training data. Images are 32 by 24 binary

matrices. An image scaling algorithm is used to remove size variation in characters. The

feature set contains 16 elements. The 10 classes correspond to 10 Arabic numeral [37].

Figure 3.2 Training error percentage versus iteration number, Nit for gongtrn

The plot in fig 3.2 is for the gongtrn training data which has 16 inputs and 10

classes. It shows percentage error for varying number of iterations. The curve indicates

that there is improvement in the error percentage in most of the iterations. At the end of

25 iterations, the final error percentage comes out to be 9.27% which is 25% of the

initial error. There is more improvement on this training file as compared to the grng

file.

 33

(3) COMF18: This training data file is generated segmented images. Each segmented

region is separately histogram equalized to 20 levels. Then the join probability density

of pairs of pixels separated by a given distance and a given direction is estimated. We

use 0, 90, 180 and 270 degrees for the directions and 1, 3, and 5 pixels for the

separations. The density estimates are computed for each classification window. For

each separation, the co-occurrences for the four directions are folded together to form a

triangular matrix. From each of the resulting three matrices, six features are computed:

angular second moment, contrast, entropy, correlation, and the sums of the main

diagonal and the first off diagonal. This results in 18 features for each classification

window [38].

Figure 3.3 Training error percentage versus iteration number, Nit for comf18

 34

The plot in fig 3.3 is for the comf18 training data which has 18 inputs and 4

classes. It shows percentage error for varying number of iterations. The curve indicates

that there is improvement in the error percentage at every iteration. At the end of 25

iterations, the final error percentage comes out to be 5.4% which is 80% of the initial

error.

 35

CHAPTER 4

FEATURE SELECTION

 The features in their natural order might not be arranged according to their

contribution in reducing the Mean Square Error (MSE). This might result in the error

curve not decreasing fast enough. This says that, some of the important features are not

in the best position in the feature vector. Due to this problem Structural Risk

Minimization [46] might not result in its best performance. To get the best result with

the smallest possible classifier structure, we need to arrange the features in order of

their contribution to minimize the MSE.

4.1 Feature selection using autocorrelation function

Now, we want to develop a feature selection technique, to reduce the MSE, using the

autocorrelation function of the input vectors. Thus we would order the features such

that the performance is better for smaller classifiers. MSE to be reduced is given by,

 (4.1)

where Nc is the total number of classes, Nv(i) is the total number of patterns belonging

to i
th

 class, tp(i) is the desired output for the i
th

 class defined by (3.10) and yp(i) is the

estimated output for the i
th

 class, calculated as,

y p i
` a

=X
n = 0

N@ 1

w i,n
` a

X p n
` a

 , for 1 ≤ i ≤ Nc (4.2)

E =
1

N v

fffffffffX
i = 1

N c X
p:i c p

b c
= i

Nv i
b c

t p i
` a
@ y p i

` aNNN
NNN

2

 36

where w(i,n) is the output weight and Xp is the input feature vector. Now to get the

network weights we will calculate the gradient of error with respect to the weights and

equate it to zero.

∂E

∂w i,m
` affffffffffffffffffffffffff

=@ 2
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

t p i
` a
@X

n = 1

N

w i,n
` a

X p n
` ai
@mi n

` ab cH
J

I
K X p m

` ai
@mi m

` ab c

 (4.3)

for 1≤ i ≤ Nc and 1 ≤ m ≤ N. Simplifying (4.3) further and equating it to zero we get,

C
1

= R AW
T
 (4.4)

where R is the auto-correlation matrix defined as,

r k,i
b c

=
1

N v

fffffffffX
p = 1

N v

X p k
` a

X p i
` a

 for 1 ≤ k ≤ N and 1 ≤ i ≤ N (4.5)

and C1 is the cross-correlation matrix defined as,

C
1

k,i
b c

=
1

N v

fffffffffX
p = 1

N v

t p k
` a

X p i
` a

 for 1 ≤ i ≤ N and 1 ≤ k ≤ Nc (4.6)

The expression in (4.4) represents the sets of linear equations which we will solve to get

the weights of the network.

Now, in Gram-Schmidt procedure we order the inputs according to their

usefulness. J is the order vector which will store the index of the inputs in order of their

contribution to reduce MSE.

Ji = i , for 0 ≤ i ≤ N . The m
th

 orthonormal basis function X’m can be given as:

 X . m
` a

=X
i = 0

m

a m,i
` a

AX J i

b c
 for 1 ≤ m ≤ N (4.7)

 37

where a(m,i) is the element of the orthonormalizing triangular matrix A. The first basis

function can be defined as,

 X . 0
` a

= a 0,0
b c

X J 0

b c
 (4.8)

Here a(0,0) is being calculated as,

a 0,0
b c

=
1

|| X 0
` a

||
ffffffffffffffffffffffff

=
1

r 0,0
b c1

2

fff
ffffffffffffffffffffff

 (4.9)

Now, for 1≤ i ≤ N-1, perform the following operations

c j
b c

=X
k = 0

j

a j,k
b c

r J k ,J i

b c
 for 0 ≤ j ≤ i-1 (4.10)

b(i) = 1 (4.11)

b j
b c

=@X
k = j

i@ 1

c k
` a

a k,j
b c

 for 0 ≤ j ≤ i-1 (4.12)

a i,k
b c

= b
k

r J i ,J i

b c
@X

l = 0

i@ 1

c l
` a2

H
J

I
K

1

2

fff
ff

 for 0 ≤ k ≤ i (4.13)

 w . k,m
b c

=X
i = 0

m

a m,i
` a

C1 k,J i

b c
 for 0 ≤ k ≤ i (4.14)

4.1.1 Calculation of Mean Square Error (MSE)

When the basis function elements of X are transformed into X', the system is

mapped into new weights W'(k,i) for the k
th

 estimated output yp(k) and i
th

 orthonormal

basis function X'(i) for given training dataset with Nv patterns.

 38

y p k
` a

=X
i = 0

N@ 1

w . k,i
b c

X. p i
` a

 for 1 ≤ p ≤ Nv (4.15)

The MSE in terms of the new weights for Nv desired values of t(k) can be written as

E k
` a

=
1

N v

fffffffff
k
` a X

p:i c p
` a

= k

N v k
` a

t p k
` a
@X

i = 0

N@ 1

w . k,i
b c

X. p i
` a

H
J

I
K

2

 for 1 ≤ k ≤ Nc (4.16)

 E =X
k = 1

N c

E k
` a

=X
k = 1

N c

E t k
` a2B C

@X
k = 1

N c X
i = 0

N@ 1

w . k,i
b cD E2

 = (e1) – (e2) (4.17)

where, e1 referred as the energy of the system is given by,

 e1 = X
k = 1

N c

E t k
` a2B C

=
1

N v

fffffffffX
k = 1

N c X
p = 1

Nv

t p k
` a
A t p k
` aB C

 (4.18)

and, e2 referred as the power function is given by,

 e2 = X
k = 1

N c

P k
` a

=X
k = 1

N c X
i = 1

N@ 1

w . k,i
b cD E2

 (4.19)

The desired new order of basis functions, J, that reduces the MSE is thus obtained by

maximum value of P(k) and is given by,

PJ (0) ≥ PJ (1) ≥ PJ (2) ≥ ……PJ (N-1)

4.1.2 Detecting the linearly dependent basis functions

If any element of the matrix A (a(m,i)) is very large or close to infinity, it means

that the orthonormal projection of that corresponding basis function will be zero. Hence

we can conclude that that basis function does not contain any unique and useful

information. We can derive that basis function by any linear combination of other basis

functions.

 39

4.2 Feature selection using the covariance function

Here we would like to bring some variations in the Gram-Schmidt procedure

discussed in 4.1, such that it improves the performance of the classifier. For this reason,

we tried using the covariance information of the input vectors.

4.2.1 Generating single order vector for all the classes

Our aim in this section is to come up with a single order vector, J, at the end of

Schmidt procedure. Still, we would like to check for linear dependency of a feature on

each and every class. If a feature is found linearly dependent, then instead of throwing it

away, we would make its contribution towards the calculation of power term zero. This

means we would make the corresponding row of orthonormalizing matrix, A, to be

zero. By this we are not throwing away a feature if it is detected linearly dependent on

any of the class. The idea behind this is that a feature found dependent for one class

may be useful for other class. So we would save the information in that feature and use

it for all other classes.

Now, let E(i) be the MSE for the i
th

 class, which could be written as,

E i
` a

=
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

t p i
` a
@X

n = 1

N

w i,n
` a

X p n
` ai
@m i n

` ab cH
J

I
K

2

 for 1 ≤ i ≤ Nc (4.20)

where w(i,n) is the element of the weight matrix (W) connecting the n
th

 input to the i
th

output. In minimizing E(i) with respect to the weights, we need the gradient, which is

written as,

 40

∂E

∂w i,m
` affffffffffffffffffffffffff

=@ 2
1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

t p i
` a
@X

n = 1

N

w i,n
` a

X p n
` ai
@mi n

` ab cH
J

I
K X p m

` ai
@mi m

` ab c

 (4.21)

1

N v i
` affffffffffffffffffX

p:i c p
` a

= i

N v i
` a

t p i
` a

X p m
` ai
@m i m

` ab c
=X

n = 1

N

w i,n
` a 1

N v i
` affffffffffffffffff

X p n
` ai
@m i n

` ab c
X p m
` ai
@m i m

` ab c A

(4.22)

Therefore,

 C 2
= C

i
AW

iT
 (4.23)

The expression in 4.23 represents a set of linear equations for the i
th

 class, which needs

to be solved to get the minimum MSE. This is similar to the equations in 4.4, only the

autocorrelation matrix is replaced by the class-covariance matrix. The equation in 4.23

could be also written as,

N v i
` a

N v

ffffffffffffffffff
m

i
= C

i
W

iT
 (4.24)

where the cross correlation vector for the i
th

 class, is given by
N v i
` a

N v

ffffffffffffffffff
Am i
` a

Thus, the new cross correlation matrix can be written as,

 # C2= [
N v 1
` a

N v

ffffffffffffffffff
Am 1
` a

 ;
N v 2
` a

N v

fffffffffffffffffff
Am 2
` a

 ; …… ;
N v N c

b c

N v

ffffffffffffffffffffffffff
Am N c

b c
] (4.25)

Using the equations in (4.23), we solve for the weights and calculate the

orthonormalizing A matrix which would ultimately be useful in generating the order

vector, J, as discussed in section 4.1.

 41

4.2.2 Generating separate order vector for each class

In this approach we are trying to detect linear dependency of each feature on

each class separately. So by the end of this procedure we would have Nc number of

separate order vectors, one for each class. This method is computationally very

inefficient as it requires developing a separate classifier for each class. So the network

becomes more complicated and requires lot more calculations as compared to the

previously described methods.

 We tried using this approach, but the algorithm got too complex during

its implementation and the results were not satisfactory. So we haven’t used this

approach in our final software.

 42

CHAPTER 5

PERFORMANCE COMPARISON

5.1 Error curves for feature selection using the autocorrelation approach

Here we show the plots for error percentage (% error) versus number of features, N, for

various training data files where the autocorrelation method generates the order vector.

Iterative improvement is also used with 23 iterations, after the classifiers are designed.

Figure 5.1 Error percentage versus N for grng using autocorrelation method.

_______: Training

-+-+-+-+: Validation

 43

The plot in fig 5.1 is for the grng data which has 16 inputs and 4 classes. Grng

training and validation data file consists of 400 distinct patterns each. It shows the

percentage error for varying number of features. The curve indicates that there is

improvement in error percentage as the number of features increases and the error

percentage reduces by a significant amount at the end when we use all the features. The

training and validation curves are almost identical; this is because the training and

testing data are very similar statistically.

Figure 5.2 Error percentage versus N for gongtrn and autocorrelation method.

The plot of fig 5.2 is for the gongtrn and gongtst data which has 16 inputs and

10 classes. Training and validation data files consist of roughly 3100 patterns each. The

plot shows the percentage error for varying numbers of features. The curve indicates

_______: Training

-+-+-+-+: Validation

 44

that there is improvement in the error percentage as the number of features increases

and the error percentage reduces by a significant amount at the end when we use all the

features. The training and validation curves are mostly different at all points after the

few initial features. Towards the end while using all the features, training does better

than the validation.

Figure 5.3 Error percentage versus N for comf18 and autocorrelation method.

The plot in fig 5.3 is for the comf18 training data which has 18 inputs and 4

classes. Training and validation data files consist of 1800 patterns each. The plot shows

the percentage error for varying numbers of features. The curve indicates that there is

improvement in the error percentage as the number of features increases and the error

_______: Training

-+-+-+-+: Validation

 45

percentage reduces by a significant amount at the end where we use all the features.

Here the training is better than testing at all times. Thus we can conclude that the

classifier performs well on unseen data but not as good as it performs on the training

data.

5.2 Error curves for feature selection using the covariance approach

Here we show the plots of error percentage (% error) versus N for various training data

files where the covariance method is used. Iterative improvement is also used with 23

iterations, after each classifier is designed.

Figure 5.4 Error percentage versus N for grng using covariance method.

_______: Training

-+-+-+-+: Validation

 46

The plot in fig 5.4 is for the grng data which has 16 inputs and 4 classes.

Training and validation data files consist of roughly 400 patterns each. It shows

percentage error for varying number of features. The curve indicates that there is

improvement in error percentage as the number of features increases and the error

percentage reduces by significant amount at the end when we use all the features. Here

the training is almost similar to testing at most of the points but at few points it does

give different results than training. Also there is not much improvement in this method

as compared to the previous method where we used auto-correlation elements for

ordering. The autocorrelation approach performs better while using less number of

features.

Figure 5.5 Error percentage versus N for gongtrn and gongtst using covariance

method.

_______: Training

-+-+-+-+: Validation

 47

The plot in fig 5.5 is for the gongtrn and gongtst data which has 16 inputs and 10

classes. Training and validation data file consists of roughly 3100 patterns each. It

shows the percentage error for varying number of features. The curve indicates that

there is improvement in error percentage as the number of features increases and the

error percentage reduces by a significant amount at the end when we use all the

features. Here the training is better than testing at all time. This curve show that the

classifier performs better when ordered using cross-correlation elements. Especially for

less number of features this method gives better result when compared to

autocorrelation approach (Figure 5.2). There is significant amount of improvement in

this plot as compared to the one which used autocorrelation elements. For less number

of features this method definitely gives better results as compared to the autocorrelation

one.

 48

Figure 5.6 Error percentage versus N for comf18 using covariance method.

The plot in fig 5.6 is for the comf18 training data which has 18 inputs and 4 classes.

Training and validation data file consists of roughly 1800 patterns each. It shows

percentage error for varying number of features. The curve indicates that there is

improvement in error percentage as the number of features increases and the error

percentage reduces by significant amount at the end when we use all the features. Here

the training is better than testing at all time. The training is not as good as it was in the

case when we used autocorrelation elements for ordering (Figure 5.3). There is not

much difference in the training error but the validation curve is definitely better as

compared to the one which used autocorrelation elements.

_______: Training

-+-+-+-+: Validation

 49

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis we discuss how to improve the BGC’s performance by training the

constant term in the discriminant function. A back propagation technique is applied to

train the constant term such that the classification error is reduced. Also we discuss two

methods for developing nested feature sets in the BGC, for the purpose of Structural

Risk Minimization [46]. An important feature introduced in this thesis is development

of nested feature subset instead of separate or different subsets. As the subsets are

nested the error curve for error percentage versus number of features will be

monotonically non-increasing which might not be the case for non-nested feature

subset. In the first method we used the autocorrelation elements for ordering the

features, a monotonically non-increasing curve for error percentage versus the number

of features. In the second method, the idea is to use the individual covariance matrices

to order the features and to check for feature dependencies in each class individually.

This method also gave significant improvement in the error percentage versus N curve.

It can be stated that the BGC usually gives faster and more efficient training than the

NNC, which usually requires a lot more patterns and weights.

 50

6.2 Future Work

Much work remains for improving the BGC.

(1) We can train other classifier coefficients to improve the classifier’s performance.

(2) We can investigate methods for eliminating small elements in the inverse

covariance matrices. We haven’t included this part in our thesis because it is a

heuristic task and there is not an obvious optimal method to do this.

(3) We could apply BRUTE FORCE method to reduce size of inverse covariance

matrix.

(a) Generate set of inverse covariance matrix elements to be candidates for

removal.

(b) Set them to zero.

(c) Measure probability of error.

(d) Save the classifier if it is best for its size (number of coefficients).

This method is optimal but impractical due to combinatorial explosion.

 51

APPENDIX A

GRAM SCHMIDT ALGORITHM

 52

The Gram-Schmidt procedure transforms a set of linearly dependent vectors into an

orthonormal basis vector. It is commonly used for various applications in the field of

neural networks such as (a) To find optimum choice of Radial centers for RBF [32], (b)

Fast computation of weights of RBF network [33], (c) Pruning of MLP [8], and (4)

Feature selection in piecewise classifier [9]. A less know feature of Gram-Schmidt

procedure is that it can order the basis functions in the order of their contribution to

minimize the MSE. Such a network can be represented as a monotonically non-

increasing function of sum of basis functions and achieve a faster rate of convergence.

This method of orthonormalizing basis functions can be used to prune the less important

basis functions. These desirable properties along with the effective representation,

system re-transformation and a fast and distributed iterative solution make it a better

candidate over other learning algorithms.

Normal Schmidt process requires one pass through training file to obtain each new basis

function. Here we discuss a more useful form of Schmidt process, which will let us

express the orthonormal system in terms of autocorrelation and covariance elements.

Consider a vector X (X0, X1, X2… XN-1) whose elements are basis functions and its

corresponding orthonormal mapping is X' (X'0, X'1, X'2… X'N-1) where (X and X') ∈

ℜN
. By the definition of orthonormality, vector X' is orthonormal only if it satisfies the

following condition:

< X'(i) X'(j) > = 0 for i≠j (A.1)

 = 1 for i=j i,j ∈ (0,N-1) (A.2)

 53

where, X'(i) is the i
th

 element of the vector X' and < X'(i) X'(j) > is defined as the inner

product of X'(i) with X'(j).

< X. i
` a

X. j
b c

> =
1

N v

fffffffffX
p = 1

N v

X. p i
` a

X. p j
b c

 (A.3)

Here X'p(i) refers to the p
th

 value of i
th

 orthonormal function X'(i).

Also, X i
` aNNN
NNN is defined as:

 ||X i
` a

|| =
1

N v

fffffffffX
p = 1

N v

X p i
` a2

H
J

I
K

1

2

fffff

 (A.4)

Then by the standard Gram-Schmidt procedure, X'(k) is calculated as:

 X . 0
` a

=
X 0
` a

||X 0
` a

||
ffffffffffffffffffffff

 (A.5)

X . 1
` a

=
X 1
` a
@< X 1

` a
X . 0
` a

> X . 0
` a

|| X 1
` a
@< X 1

` a
X . 0
` a

> X . 0
` a

||
fff

 (A.6)

…

X . k
` a

=

X k
` a
@X

i = 0

k@ 1

< X k
` a

X . i
` a

> X . i
` a

|| X k
` a
@X

i = 0

k@ 1

< X k
` a

X . i
` a

> X . i
` a

||

fff
 for 1 ≤ k ≤ N-1 (A.7)

A General approach towards Gram-Schmidt Procedure

Due to round off errors in computer, Gram-Schmidt procedure is not always

numerically stable. An iterative solution to it is given here. A represents a lower

triangular N x N orthonormal transformation matrix such that:

 54

X' = A • X (A.8)

Thus the m
th

 orthonormal function can be obtained from X and A by

X . m
` a

=X
i = 0

m

a m,i
` a

X i
` a

 for 0 ≤ m ≤ N-1. (A.9)

Let R be the auto-correlation matrix, where its elements r(i,j) is defined as:

 r i,j
b c

=
1

N v

fffffffffX
p = 1

N v

X p i
` a
A X p j

b c
 for 0 ≤ i,j ≤ N-1 (A.10)

Then from (A.8 - A.11),

 a 0,0
b c

=
1

X 0
` aNNN
NNN

ffffffffffffffffffff
=

1

r 0,0
b c1

2

ffff
fffffffffffffffffffff

 (A.11)

X'(0) = a(0,0)·X(0) (A.12)

X . 1
` a

= a 1,0
b c

AX 1
` a

+ a 1,1
b c

AX 1
` a

 (A.13)

Let X'(1) be equal to

X . 1
` a

= Z
1

||Z 1
` a

||
fffffffffffffffffffff

 (A.14)

Then Numerator of X'(1) is

Z(1) = X(1) – b(0)·X'(0) = X(1) – b(0)·a(0,0)·X(0) (A.15)

where b(0) = <X'(0)·X(1)> = a(0,0)·r(0,0) (A.16)

Writing Z(1) as

Z 1
` a

= b 0
` a

X 0
` a

+ b 1
` a

X 1
` a

 (A.17)

Here, b 0
` a

=@ c 0
` a

a 0,0
b c

 (A.18)

b 1
` a

 = 1 (A.19)

Also, || Z 1
` a

|| = || < X 1
` a
@ c 0
` a

X . 0
` a

, X 1
` a
@ c 0
` a

X . 0
` a

>|| (A.20)

 55

||Z 1
` a

|| = r 1,1
b c

@ c 0
` a2D E1

2

fffff

 (A.21)

Equating (A.14) and (A.20)

X . 1
` a

= a 1,0
b c

X 1
` a

+ a 1,1
b c
AX 1
` ad e

=
b 0
` a
AX 0
` a

+ b 1
` a
AX 1
` a

r 1,1
b c

@ c 0
` a2D E1

2

fff
ff

 (A.22)

a 1,0
b c

=
@ c 0
` a

a 0,0
b c

r 1,1
b c

@ c 0
` a2D E1

2

fff
ff

 (A.23)

a 1,1
b c

=
1

r 1,1
b c

@ c 0
` a2D E1

2

fff
ff

 (A.24)

56

REFERENCES

[1] Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall

PTR, 1998.

[2] Saurabh Sureka, Orthonormal Functional Link Net , Thesis presentation, UTA,

2007.

[3] Christopher M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, 1995.

[4] Y.H. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley

Pub, 1989.

[5] Michael T. Manry, Steven J. Apollo, and Qiang Yu, "Minimum Mean Square

Estimation and Neural Networks," Neurocomputing, vol. 13, September 1996, pp. 59-

74.

[6] A. Papoulis, Probability, Random Variables, and Stochastic Processes,

McGraw-Hill Book Company, New York, 1965.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by

back-propagating errors," Nature, 1986, vol. 323, pp. 533-536.

[8] F. J. Maldonado, M. T. Manry, T. Kim, "Finding optimal neural network basis

function subsets using the Schmidt procedure", Proc. of IJCNN, Vol. 1, 2003, pp. 444 -

449.

57

[9] J. Li, M. T. Manry, P. Narasimha, C. Yu, "Feature Selection Using a Piecewise

Linear Network", IEEE Trans. Neural Networks, Vol 17, No. 5, 2006, pp.1101-1115.

[10] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, 2nd Ed,Wiley

Interscience, 2000.

[11] K. Fununaga, Statistical Pattern Recognition, 2nd Ed., Academic Press, NY,

1990.

[12] C.K.I. Williams and D. Barber, “Bayesian Classification with Gaussian

Processes” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 12,

1998, pp. 1342-1351.

[13] D.W. Ruck, S. Rogers, M. Kabrisky, M. Oxley, B. Suter, "The multilayer

perceptron as an approximation to a bayes optimal discriminant function", IEEE Trans.

Neural Networks, 1990, pp. 296-298.

[14] R. G. Gore, J. Li, M. T. Manry, L. M. Liu, C. Yu and J. Wei, "Iterative Design

of Neural Network Classifiers Through Regression", Int. Journal Artificial Intelligence

Tools, Vol 14, Issues 1&2, 2005.

[15] H. C. Yau, M. T. Manry, "Iterative Improvement of a Nearest Neighbor

Classifier", Neural Networks, Vol. 4, 1991, pp. 517-524.

[16] W. H. Delashmit and M. T. Manry, "Recent Developments in Multilayer

Perceptron Neural Networks", Proceedings of the 7th annual Memphis Area

Engineering and Science Conference (MAESC), 2005.

58

[17] Nello Cristianini and John Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-Based Learning Methods, Cambridge University Press,

2000.

[18] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers”, 5th Annual ACM Workshop on COLT, pp. 144-152, Pittsburgh, PA,

ACM Press, 1992.

[19] T. Kohonen, Self-Organization and Associative Memory, 2nd ed., Springer-

Verlag, 1987.

[20] Mohammed Kolahdouzan and Cyrus Shahabi, “Voronoi-Based K Nearest

Neighbor Search for Spatial Network Databases,” Proceedings of the 30
th

 Very Large

Data Bases (VLDB) Conference, Toronto, Canada, 2004.

[21] T. Poggio and F. Girosi, "Networks for approximation and learning," Proc.

IEEE 78 (9), pp. 1484-1487, 1990.

[22] Thomas Bayes, "An Essay towards solving a Problem in the Doctrine of

Chances”, Philosophical Transactions, 1763

[23] Y.Hirose, K.Yamashita, and S.Hijiya, “Back-propagation algorithm which

varies the number of hidden units,” Neural Networks, vol. 4, no. 1, pp. 61-66, 1991.

[24] Jan A. Snyman, Practical Mathematical Optimization: An Introduction to Basic

Optimization Theory and Classical and New Gradient-Based Algorithms. Springer

Publishing, 2005.

[25] L. Fausett, Fundamentals of Neural Networks : architectures, algorithms,and

applications, Prentice-Hall, 1994.

59

[26] L. Prechelt, Automatic Early Stopping Using Cross Validation: Quantifying the

criteria, Neural Networks 11, pp. 761-767, 1998.

[27] J. Platt, “Fast Training of Support Vector Machines using Sequential Minimal

Optimization,” Advances in Kernel Methods - Support Vector Learning, MIT Press,

1998.

[28] J. Platt, “Using Sparseness and Analytic QP to Speed Training of Support

Vector Machines,” Advances in Neural Information Processing Systems 11, MIT Press,

1999.

[29] M. T. Manry, S. J. Apollo, L. S. Allen, W. D. Lyle, W. Gong, M.S. Dawson, and

A. K. Fung," Fast Training of Neural Networks for Remote Sensing," Remote Sensing

Reviews, vol. 9, pp. 77-96, 1994.

[30] Gilbert Strang, Introduction To Linear Algebra, Wesley-Cambridge Press, 1993

[31] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning

algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2,

1991, pp. 302–309.

[32] W. Kaminski and P. Strumillo, "Kernel Orthonormalization in Radial Basis

Function Neural Networks," IEEE Trans. Neural Networks, Vol. 8, No. 5, 1997, pp.

1177-1183.

[33] H.C.Yau and M. T. Manry, “ Iterative Improvement of a Nearest Neighbor

Classifier,” Neural Networks, Vol.4, Number 4, pp.517-524,1991.

60

[34] Abdul A. Abdurrab, Michael T. Manry, Jiang Li, Sanjeev S. Malalur and Robert

G. Gore, “A Piecewise Linear Network Classifier”, Proceedings of International Joint

Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007.

[35] Bors, A.G., Pitas, I., (1996) “Median radial basis functions neural networks,”

IEEE Transaction on Neural Networks, vol. 7, no. 6, pp. 1351-1364. Casdagli, M.

(1989) “Nonlinear prediction of chaotic time series,” Physica D, vol. 35, pp. 335-356.

[36] C.J.C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):955-974, 1998.

[37] W. Gong, H. C. Yau, and M. T. Manry, "Non-Gaussian Feature Analyses Using

a Neural Network," Progress in Neural Networks, vol. 2, 1994, pp. 253-269.

[38] R.R. Bailey, E. J. Pettit, R. T. Borochoff, M. T. Manry, and X. Jiang,

"Automatic Recognition of USGS Land Use/Cover Categories Using Statistical and

Neural Network Classifiers," Proceedings of SPIE OE/Aerospace and Remote Sensing,

April 12-16, 1993, Orlando Florida.

[39] W. H. Delashmit and M. T. Manry, "Recent Developments in Multilayer

Perceptron Neural Networks", Proceedings of the 7th annual Memphis Area

Engineering and Science Conference (MAESC), 2005

[40] Changhua Yu, M. T. Manry, “ A Modified Hidden Weight Optimization

Algorithm for Feed-forward Neural Networks,” the 36
th

 Asilomar Conference on

Signals, Systems, & Computers ’02, pp. 1034 – 1038

[41] Rohani, K. ; Manry, M.T.; “ Nonlinear Neural Network Filters for Image

Processing” the Acoustics, Speech, and Signal Processing, 1992. ICASSP-92.,1992

IEEE International Conference, vol 2, 23-26 March 1992, pp. 373-376

61

[42] Valdimir N. Vapnik, “ An Overview of Statistical Learning Theory,” IEEE

Trans. On Neural Networks, vol. 10, no. 5, September 1999, pp. 988-999.

[43] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Mark E. Oxley and

Bruce W. Suter, “The Multilayer Perceptron as an approximation to a Bayes optimal

discriminant function,” IEEE Trans Neural Networks, TNN-1(4):296-298, 1990.

[44] Abdul Aziz, A Piecewise Linear Classifier , Thesis presentation, UTA, 2007.

[45] Jonathan Richard Shewchuk, “An Introduction to Conjugate Gradient without

the Agonizing Pain” Edition 1 ¼ 1994, Carnegie Mellon University, Pittsburg, PA.

[46] V.Vapnik and A. Chervonenkis, “On the Uniform Convergence of Relative

Frequencies of events to their probabilities,” Theory of Probability and its Applications,

16(2):264-280, 1971.

[47] P.E. Gill, W. Murray, and M.H. Wright, “Practical Optimization,” Academic

Press, New York 1981.

[48] Athanasios Papoulis, “Probability, Random Variables, and Stochastic

Processes”, second edition. New York: McGraw- Hill.

[49] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward Networks

Are Universal Approximators,” Neural Networks, Vol. 2, No. 5, pp. 359-366, 1989.

[50] K. Hornik, M. Stinchcombe, and H. White, “Universal Approximation of an

Unknown Mapping and its Derivatives Using Multilayer Feedforward Networks,”

Neural Networks, vol. 3, pp. 551-560, 1990.

[51] Michael D. Richard and Richard P. Lippman, “Neural Network Classifiers

estimate Bayesian a-posteriori probabilities,” Neural Computation, vol. 3, no. 4, pp.

461-483, 1991.

62

[52] Dennis W. Ruck, Steven K. Rogers, Matthew Kabrisky, Mark E. Oxley and

Bruce W. Suter, “The Multilayer Perceptron as an approximation to a Bayes optimal

discriminant function,” IEEE Trans Neural Networks, TNN-1(4):296-298, 1990.

[53] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and

Regression Trees, Wadsworth, Belmont, CA, 1984.

[54] J. H. Friedman, “Multivariate adaptive regression splines,” Annals of Statistics,

vol. 19, no. 1, pp. 1-141, 1991.

[55] D.R. Hush and B. Horne, “Efficient algorithms for function approximation with

piecewise linear sigmoidal networks,” IEEE Trans. Neural Networks, Vol. 9, No. 6, pp.

1129-1141, 1998.

[56] E.F. Gad, A.F. Atiya, S. Shaheen, A. El-Dessouki, “A new algorithm for

learning in piecewise-linear neural networks,” Neural Networks 13, pp. 485–505, 2000.

[57] Strang G (1998). "Introduction to Linear Algebra". Section 6.7. 3rd ed.,

Wellesley-Cambridge Press. ISBN 0-9614088-5-5.

[58] Strang, Gilbert (2003). Introduction to Linear Algebra, 3rd edition, Wellesley,

Massachusetts: Wellesley-Cambridge Press, 74-76.

63

BIOGRAPHICAL INFORMATION

Jimy Shah was born in Vadodara, India in 1983. He received the Bachelor of

Engineering in Electronics and Communication from Gujarat University in 2005 and

Master of Science in Electrical Engineering from University of Texas at Arlington in

2007.

He has been involved in research activities in Image Processing and Neural Networks

Laboratory (IPNNL) since 2006. His main area of research has been Neural Networks

and Pattern Recognition. He has served as a Graduate Teaching Assistant for the course

of Digital Signal Processing in the Electrical Engineering department of University of

Texas at Arlington (2006-2007).

