
DISTINCT VALUE ESTIMATION BY SAMPLING ON  

UNSTRUCTURED PEER TO PEER NETWORKS 

 

by 

 

ZUBIN MATTHEW JOSEPH 

 

Presented to the Faculty of the Graduate School of 

The University of Texas at Arlington in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

MASTER OF SCIENCE IN COMPUTER SCIENCE & ENGINEERING 

 

 

THE UNIVERSITY OF TEXAS AT ARLINGTON 

December 2007



 ii 

 

 

ACKNOWLEDGEMENTS 

 

 

I would like to thank my advisor, Dr. Gautam Das, who guided, motivated and 

encouraged me while working on this thesis. His patience and understanding are valued 

greatly along with all the time and effort spent in discussing and analyzing the 

challenges that this research problem has posed.  

I would also like to express my gratitude to my defense committee, Dr. Nan 

Zhang and Dr. Leonidas Fegaras, who also played a major part in this work right from 

the inception of this research problem. 

I’d also like to thank Benjamin Arai for the tips that helped me successfully run 

the experiments and simulations.  

I’d also like to thank my family, my friends and my trusty laptop for always 

being there for me. I also owe a special thank you to everyone from the DBX lab for 

their constant support. 

November 8, 2007 

 



 iii 

 

 

ABSTRACT 

 

DISTINCT VALUE ESTIMATION BY SAMPLING ON  

UNSTRUCTURED PEER TO PEER NETWORKS 

 

Publication No. ______ 

 

Zubin Matthew Joseph, MS 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Gautam Das  

Peer-to-Peer networks have become very popular on the Internet, with millions 

of peers all over the world sharing large volumes of data. The sheer scale of these 

networks has made it difficult to gather statistics that could be used for building new 

features. This thesis presents a technique of obtaining estimations of the number of 

distinct values matching a query on the network. The method is then analyzed by 

considering simulation results that demonstrate its effectiveness and flexibility in 

supporting a variety of queries and applications. 

  

   

 



 iv 

 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS....................................................................................... ii 

 

ABSTRACT .............................................................................................................. iii 

 

LIST OF ILLUSTRATIONS..................................................................................... vii 

 

Chapter 

 

 1. INTRODUCTION ........................................................................................  1 

 

  1.1 Potential Applications.............................................................................. 2 

 

  1.2 Challenges ..............................................................................................  3 

 

  1.3 Contributions ........................................................................................... 4 

  

 2.  RELATED WORK ....................................................................................... 6 

  

 3.  DISTINCT VALUE ESTIMATOR FOR P2P NETWORKS ...................... 8 

 

   3.1 Distinct Value Estimators .................................................................. 9 

 

     3.1.1 Guaranteed Error Estimator ............................................ 9 

 

     3.1.2 Adaptive Estimator.......................................................... 9 

 

   3.2 Network Traversal ............................................................................. 10 

 

     3.2.1 Flooding ......................................................................... 10 

 

     3.2.2 Random Walks ............................................................... 11 

 

   3.3 Block-level Sampling on P2P Networks ............................................ 14 

 

   3.4 Sub-Sampling Strategies at Nodes ..................................................... 16 

 

   3.5 Implementation Issues ....................................................................... 17 



 v 

 

     3.5.1 Threshold Technique ...................................................... 18 

 

   3.6 Pseudo-Code ....................................................................................... 19 

 

   3.7 Assumptions........................................................................................ 21 

 

 4.  DISCUSSION................................................................................................ 23 

    

   4.1 Supporting Different P2P Network Characteristics............................ 23 

 

   4.2 Supporting Different Data Distributions............................................. 24 

 

     4.2.1 Effect of Distribution of Node Sizes............................... 24 

 

     4.2.2 Effect of Clustering of Data ............................................ 25 

 

     4.2.3 Effect of Data Skew ........................................................ 26 

 

   4.3 Supporting Different Queries.............................................................. 27 

 

 5.  EXPERIMENTATION ................................................................................. 28 

    

   5.1. Implementation ................................................................................. 28 

     

     5.1.1 Generation of P2P Networks........................................... 28 

 

     5.1.2 Generation of Node Databases........................................ 29 

 

   5.2. Input Parameters ............................................................................... 29 

 

     5.2.1 P2P Network Parameters ................................................ 30 

 

     5.2.2 Node Database Generation Parameters........................... 30 

 

     5.2.3 Algorithm Input Parameters............................................ 31 

 

   5.3. Evaluation Metrics ............................................................................. 31 

 

   5.4. Experiments and Results.................................................................... 32 

 

     5.4.1 Node Sub-Sample Ratio.................................................. 32 

 

     5.4.2 Data Sampling Ratio ....................................................... 33 



 vi 

 

     5.4.3 Clustering Level .............................................................. 34 

 

     5.4.4 Data Skew ....................................................................... 35 

 

     5.4.5 Number of Distinct Values ............................................. 36 

 

     5.4.6 Burn-In Period................................................................. 38 

 

 6.  CONCLUSION AND FUTURE WORK ..................................................... 39 

 

REFERENCES .......................................................................................................... 41 

 

BIOGRAPHICAL INFORMATION......................................................................... 45 



 

 vii 

LIST OF ILLUSTRATIONS 

Figure Page 

 

 1 Random Walker with jump size = 2................................................................  12 

 

 2 COLLAPSE on P2P Networks........................................................................  15 

 

 3 Pseudo-code for P2P network traversal ..........................................................  20 

  

 4 Pseudo-code for sampling a node....................................................................  21 

 

 5 Average Ratio Error vs. Node Sub-Sampling Ratio .......................................  33 

 

 6 Average Ratio Error vs. Data Sampling Ratio ................................................  34 

 

 7 Average Ratio Error vs. Clustering Level.......................................................  35 

 

 8 Average Ratio Error vs. Zipf Data Skew ........................................................  36 

 

 9 Average Ratio Error vs. Number of  

  Distinct Elements using the Adaptive Estimator.............................................  37 

 

 10 Average Ratio Error vs. Number of  

  Distinct Elements using the Guaranteed Error Estimator ...............................  37 

 

 11 Average Ratio Error vs. Burn-In Period..........................................................  38 

 

 
 

 



 

 1 

 

 

CHAPTER 1 

INTRODUCTION 

 

Peer-to-Peer (P2P) networks are highly popular medium for sharing CPU 

processing power, storage space, and/or content in the form of text documents and 

various forms of media. Popular networks such as Gnutella [17] and KazaA [25] often 

share music files, while applications such as Skype [7] even use P2P networks for 

Voice over IP (VoIP) telephony.  

These networks usually operate over the Internet and consist of thousands, and 

millions of peers that can be located anywhere in the world. P2P networks are designed 

to be scalable, fault-tolerant and dynamic with no central point of failure. In the 

unstructured peer-to-peer networks that we focus on in this thesis, peers do not make 

any assumptions about the location of other peers, the distribution of data, or of the 

network topology. Each peer maintains connections to a small set of neighbors that are 

usually accessed over the Internet through their IP addresses. All peers are considered 

‘equal’, in that they can be either servers or clients, depending on the services or 

resources that they provide or access from other peers. With the vast number of 

participating peers, all of which are free to join and leave the network at any time, it is 

difficult to keep track and gather statistics on the large volumes of the data available on 

the P2P network. This thesis focusses on a technique that samples a subset of peers in 



 

 2 

order to estimate the total number of distinct tuples that match a query on the network. 

This is a well known problem in the domain of databases and it is especially important 

for query optimization, especially in the construction of histograms [9, 10, 12, 20]. 

Histograms use the number of distinct values of an attribute (in a table/bucket) to 

maintain statistics such as the density, which is the average number of duplicates per 

distinct value. 

1.1 Potential Applications 

Having distinct value (DV) estimation techniques available for P2P networks 

would not only allow histogram construction in the future, but would also enable 

management, administration, monitoring, and report generation features to be built into 

such systems.  

The capability of obtaining estimations to answer queries placed at any node in 

the network allows trends in popularity to be gathered by making use of density and 

duplication values. This could be extended to top-k ranking, and even for estimating 

term frequencies and statistics on keywords in documents in a P2P database. Consider 

an IR application where each document is considered as a node. For a search term X, it 

is possible to estimate the total number of distinct words in the entire system that appear 

in the same document as X. Our algorithm is even more applicable in this case if the 

documents can have links to each other, as with the web. Having knowledge of a value 

like this can help to assess popularity, importance and relevancy of a word. For 

example, common terms will have a high number of distinct values, but more specific 



 

 3 

words will have a lower number of distinct words that they are associated with, 

indicating their relevancy. 

Other new and exciting applications become possible. Consider a peer-to-peer 

(P2P) network where each user at a peer submits queries to the network or to a 

database. Distinct value estimation can be used to assess the query logs of users and 

discover the number of unique queries about a certain topic or subject. This can be used 

to assess overall trends in queries. Furthermore, the technique can be used to assess IP 

and access logs across peers so that patterns in network or user behavior and can be 

deduced. 

1.2 Challenges 

Distinct value estimation on unstructured P2P networks is a new problem that 

has not been investigated yet to the best of our knowledge.   

We view the P2P network as a large database table that is conceptually 

partitioned (with overlap) and distributed across a large number of peers. Answering 

distinct value queries on such a system is challenging because we aim to answer queries 

executed on unstructured P2P networks, where each peer only knows information about 

the location of its neighbors.  Without any knowledge of the network, the naïve 

approach to answering distinct value queries is to query each peer in the system by 

flooding the entire P2P network. Each peer individually sends all its distinct tuples to 

the query initiator (sink). The sink then performs a union of all the tuples from all the 

peers and then eliminates duplicates. The size of this set is the number of distinct values 

on the network. Although this approach is exact, it is obviously prohibitively expensive 



 

 4 

in terms of time, space and the associated network costs of accessing and retrieving data 

from all the nodes on the network. 

A variety of approximate techniques such as sketches [13] can be used to make 

operations such as these more space efficient. However, accessing all the data on all the 

nodes on the network would still take too much time. It is thus evident that any solution 

to this problem would need to allow sampling a small subset of the data on such 

networks. One of the most apparent difficulties with this is that distinct value estimation 

in a centralized data repository itself is known to be a hard problem, as proved in [9]. A 

variety of estimators [9, 12, 20] exist, but currently none provide guaranteed error 

bounds for a uniform-random sample of tuples in the column of a table [10]. 

The potential clustering of similar data at peers adds another interesting 

dimension to the problem. Clustering can arise because sharing and duplication of data 

is more likely to occur between neighboring or close-proximity nodes. For example, 

nodes located in France may share data that is only popular in France. With such 

constraints, it is a challenge for any peer on the network to obtain a uniform random 

sample so that a distinct value estimator can be applied. Furthermore, the calculations 

for gathering such estimates may require parameters that are unavailable to a peer, such 

as the total size of the data available on the network.  

 

1.3 Contributions 

This thesis presents an algorithm for distinct value estimation on P2P networks. 

It is effective because: 



 

 5 

• It does not require that peers exchange calculations or global constants governing 

algorithm behavior. 

• It reduces preprocessing and needs minimal knowledge of the P2P network properties. 

• It minimizes the information that a node needs to maintain about its neighbors. 

• It is largely independent of the connectivity, clustering and/or data distribution 

characteristics of the P2P network. 

• It allows the flexibility of changing distinct value estimators. 

• The quality of estimates, in some cases, approaches that of a uniform random sample 

of the entire dataset of the network. 

The rest of this thesis is organized as follows. In Section 2 we discuss related 

work. In Section 3 we describe our algorithm for computing distinct values over P2P 

databases. In Section 4 we discuss how our algorithm can be applied for answering 

queries on a P2P network with different data distribution properties. In Section 5 we 

describe a comprehensive set of experiments that demonstrate the effectiveness of our 

approach. We conclude in Section 6.  

 



 

 6 

 

 

CHAPTER 2 

RELATED WORK 

 

A variety of search and node traversal techniques for both structured and 

unstructured peer-to-peer networks are surveyed and described in great detail in [1, 36].  

Extensive studies have been done on random walks including [16, 30]. The 

Metropolis-Hastings algorithm is discussed [5], and is used to execute a random walk 

over documents indexed by a search engine. Alternatives such as the Random Weight 

Distribution method are suggested in [3] but this requires support from the underlying 

P2P network. [35] suggests a modification to the Metropolis-Hastings sampler that 

makes it suitable for dynamic graphs. In this thesis however, we only address static 

graphs. We leave handling highly dynamic cases as future work. 

Using sampling for estimating query results is a well known problem that has 

received a large amount of attention in [19, 22, 23, 29]. Sampling has also been used for 

approximate query processing in centralized databases [4, 9, 10, 11, 12, 16].  

Additionally, several authors have looked into approximation-type queries for 

P2P networks, including using random walks over the web in [6], and aggregations over 

unstructured P2P networks as in [2]. Alternative gossip-style techniques of computing 

aggregates have been suggested by [26], but require participation of every node in the 

system. Techniques utilizing structured P2P networks have addressed the problem of 



 

 7 

sampling random peers [27], approximations [32]. There is a large body of work on 

these types of networks but we target unstructured P2P networks, which require a 

different approach. 

In statistical literature, cluster sampling is a concept considered similar to block-

level sampling [10]. In this thesis we consider this technique of sampling, originally 

proposed in [22, 23]. An analysis of block-level sampling on databases is discussed in 

[10], where block-level estimates are used to construct histograms and perform distinct 

value estimation. The authors in [12] consider this and also suggest an optimal error 

distinct value estimator. Other Distinct Value Estimators have been proposed, such as 

the Adaptive Estimator [9], the Goodman Estimator [18] and other estimators in [8, 20, 

34]. The authors in [13] use probabilistic methods to count the number of distinct 

elements in a set of data. The technique involves constructing sketches that can be 

combined from multiple sources. This is well suited to large databases and data streams. 

The use of sketches requires a pass over the entire dataset in order to build the sketch. 

Thus they are not practical in the P2P scenario, where all the data elements at every 

node on the network would need to be accessed to construct and maintain a sketch.  The 

authors in [15] proposes maintaining a distinct sample that can be used for distinct value 

estimates, but this also has the drawback of requiring at least one pass over all the data 

on the network. Additionally, the techniques in [13, 15] cannot be combined with a 

random walk as they produce an estimate of distinct values already encountered during 

the walk. The techniques cannot in any way factor in an estimate of the number of 

distinct values at nodes that are not selected during the walk.  



 

 8 

 

 

CHAPTER 3 

DISTINCT VALUE ESTIMATOR FOR P2P NETWORKS 

 

We first provide the foundations of our approach to solving this novel problem. 

We then discuss and provide a concise definition of our algorithm. 

In this thesis, we model the P2P network as a graph G with peers as nodes and 

edges connecting nodes to their neighbors. We therefore refer to nodes and peers 

interchangeably throughout this thesis. We assume that each peer Pi has a local database 

Di, and refer to the total data D on the network including duplicates, as a multi-set as it 

is the union of all the sets of data residing at each peer in the network. For example, on 

Gnutella each peer stores a local database of songs, and the data stored on the entire 

network may be viewed as a multi-set due to the existence of duplicates. We consider 

SQL-like queries of the form “SELECT COUNT (DISTINCT *) FROM D WHERE 

<selection condition>”. Our objective is to obtain the best estimates of distinct values 

possible, preferably within a given bound on the cost (or latency) of executing the 

query. In general, the cost of query execution is dependent on the cost of traversing the 

network to sample peers, as well as the cost of sampling the local databases and sending 

the data back to the originating peer for the result estimation. 

 

 



 

 9 

3.1 Distinct Value Estimators 

We first consider two distinct value estimators, the Guaranteed-Error Estimator 

(GEE) [12] and the Adaptive Estimator [9].  Both of these estimators require a uniform-

random sample and the counts (fi values) of the elements that occur i times in the 

sample of r elements. In order to estimate the total number of distinct elements ( D̂ ), 

both of these estimators only scale the number of single occurrences of elements in a 

uniform-random sample. Multiple occurrences of an element are not scaled.  

 

3.1.1. Guaranteed Error Estimator 

The Guaranteed Error Estimator (GEE) [9, 12] is an estimator with optimal 

error and a bias of at most 
)/1( qO

  [9, 10, 12].  

∑
=

+=
r

j

jff
r

n
D

2

1
ˆ

 

where fi is the number of distinct elements in the sample that occur i times. It 

requires that the value of n is known, where n is the size of the set that contains all the 

values of an attribute in a table, including all duplicates. In our case, n refers to the total 

number of data tuples in the entire network.  

   

3.1.2. Adaptive Estimator 

The Adaptive Estimator (AE) [9] is a heuristic distinct value estimator. It takes 

on the form:  



 

 10 

dKfD i +=ˆ
 

K is an appropriate scaling factor that is computed from the sample and d is the 

number of distinct values in the sample, given by: 

∑
=

=
r

i

ifd
1

 

In order to estimate the total number of distinct elements ( D̂ ), both of these 

estimators only scale the number of single occurrences of elements in sample. Multiple 

occurrences of an element are not scaled. AE, unlike GEE, does not require a value for 

n (the total size of the multi-set). However, both estimators require a uniform-random 

sample and the counts (fi values) of the elements that occur i times in a sample of r 

elements. We now discuss techniques of obtaining such a sample from an unstructured 

P2P network. 

3.2 Network Traversal 

We first discuss how we can traverse the P2P network in order to obtain a 

random sample of nodes to sample from. In this section, we review a few approaches 

for traversing an unstructured P2P network, where no peer has any knowledge of the 

rest of the network, except for network connections to a small subset of neighbors. 

   

3.2.1. Flooding 

The obvious method of sampling the set of peers is to use flooding, where the 

query initiator sends out messages to all its neighbors. These in turn pass the message 



 

 11 

on to their neighbors till the message spreads throughout the network to every node. It 

places great load on participants and on the network [30] due to repeated messages and 

cycles. 

 

3.2.2. Random Walks 

A popular technique is to use a random walk, where each node picks out only a 

random neighbor (or subset) to pass each message it receives. Although this process has 

a high latency, it allows a chain of nodes to be gathered as messages pass from one 

neighbor to the next. Random Walks are far less resource intensive than more 

exhaustive techniques such as flooding the network, where all the nodes in the system 

are accessed. The random walk offers a good way for us to collect a sample of random 

nodes from the network. 

3.2.2.1 Random Walks and Clusters     

In real-world peer-to-peer networks it is inevitable that nodes form clusters. 

These clusters may consist of peers that have similar data residing on the network. 

Alternatively, these clusters may form because the nodes may all be in the same 

geographical area or because of characteristics of the P2P network. If clusters form for 

any reason on the network and there is a small cut between clusters, then a random walk 

has a high chance of getting stuck repeatedly sampling nodes from within a cluster, 

rather than from across the entire network. In [2], the effect of this clustering is reduced 

by setting a jump size j for the walk, as shown in Figure 1. Only nodes that occur after 



 

 12 

j=2 hops are taken into the sample. Setting larger jump sizes during a walk also has the 

advantage of reducing the correlation between successively sampled peers. 

 

Figure 1: Random Walker with jump size = 2 

 

3.2.2.2 Random Walks and Varying Node Degree     

Different nodes in the network may have a different number of neighbors. In 

Gnutella, some peers may collect many neighbors (called ultrapeers) [1, 36]. Others 

may just maintain one link to a larger, well-connected node. Because of these 

differences in node degree, the random walk has a higher probability of visiting a node 

that has a large degree, over one that has a smaller degree. This results in a non-uniform 

sample with a higher chance of duplicates of such nodes. Since a random walk has a 

higher chance of picking out well-connected nodes for sampling in this manner, the 

varying degree of nodes also poses a problem.  



 

 13 

The effect of this can be reduced by using the Metropolis-Hastings (MH) 

algorithm [5]. This changes the way a node chooses a neighbor to move to during the 

random walk process. If deg(X) is defined as the total number of neighbors (edges) of 

node X, the MH algorithm defines an acceptance probability r(X,Y): 









=
)deg(

)deg(
,1min),(

Y

X
YXr  

Consider a Node X that randomly chooses a neighbor Y as the next node in the 

random walk. X then performs a coin-toss, where the walk moves to Y with probability 

of r(X,Y), otherwise it stays at the same peer and picks out another neighbor.  Thus, the 

path of the walker is governed by the acceptance probability, which is such that a higher 

preference is given to moving towards nodes with lower degree as there is a higher 

chance of accepting a move to such a node. The result is a sample of nodes that are not 

necessarily selected because they have a higher degree. It results in random walks that 

are more random-uniform since they are less dependent on degree. 

Just as the technique described in [2] samples nodes after every j hops, the MH 

algorithm uses the burn-in period b and samples the current node after b coin-tosses 

during the walk (see [5, 21, 31]). Depending on the result of each coin toss, the number 

of actual accepted hops between sampled nodes ranges from 0 to b. Setting a higher 

burn-in period makes it less likely that the random walker will get stuck sampling nodes 

within a cluster and also reduces the correlation between successively sampled nodes. 

The Metropolis-Hasting method of traversal thus allows us to obtain a random-

uniform sample of peers from the network and even allows us to flexibly control the 



 

 14 

sampling using parameters such as the burn-in. We now discuss how to sample the local 

databases at each node selected for sampling via a Metropolis Hastings random walk. 

We also suggest how to process these samples for DV estimation. 

 

3.3 Block-Level Sampling on P2P Networks 

By viewing the local databases of peers as blocks in a traditional database, we 

propose a technique of applying block level sampling methods [10] to nodes on P2P 

networks. While this technique is originally applied to centralized databases, it offers a 

variety of benefits that are applicable to P2P networks. 

As shown in Figure 2, we sample the local databases of peers chosen for 

sampling using the MH random walker. These samples are processed by the 

COLLAPSE algorithm by removing all the duplicates from records that pass the query 

selection condition at a peer. The resulting duplicate-free dataset is sent over the 

network to the query initiator (sink). The sink forms the union of all the sets it receives. 

The resulting set is then used with a suitable DV estimator to produce estimations for 

the entire P2P network.  

Thus the resulting set contains duplicates from across peers, but no duplicates 

from within the same peer. This is the sample that is considered to be a sample of the 

entire data on the network. Once the frequencies of the elements in the sample are 

counted, the DV estimators normally scale only the number of single occurrences in 

order to come up with an estimate for the total number of distinct values in the entire 

database. 



 

 15 

 

 

Figure 2: COLLAPSE on P2P Networks 

 

The original block-level sample size is maintained by the algorithm for keeping 

track of the overall sampling ratio.  Thus, the value for the total sample size that we use 

for distinct value estimation must be this original pre-collapsed size of the sample, and 

not the size of the duplicate-free sample [10].  

Because peers on a P2P network are autonomous, they can enter, leave and add 

or remove shared resources at any time. Thus any peer can potentially be an adversary 



 

 16 

by inserting duplicates or multiple tuples that match a query on a particular attribute. An 

algorithm that can handle this susceptibility is crucial. Our adaptation of the original 

COLLAPSE algorithm addresses this concern as it can handle such adversarial models 

[10] because it factors out the duplications within a block and only deals with 

duplication of data across blocks. Furthermore, because data within a peer can be highly 

correlated, the duplicate-removal step makes the algorithm less vulnerable to repeatedly 

counting similar tuples from within a peer. 

The block-level sampling technique is a simple algorithm that requires few 

additional input parameters. Since it makes no assumption on the size of each block, it 

can be used on different-sized blocks, making it suitable to be applied to P2P networks 

where nodes have local repositories of varying sizes. 

 

3.4 Sub-Sampling Strategies at Nodes 

Because peers can have databases of any size, at some nodes we may have too 

many tuples to send across the network to the query initiator (sink), unless some sort of 

compression/hashing technique is used. Thus, it becomes necessary to obtain a uniform 

random sub-sample from each sampled node’s local repository. It is not possible to set a 

constant size for the sample from each node as this would result in a non-uniform 

sample of the multi-set. This is intuitive, because if sample size is s and node A is of 

size s and node B is of size 10s, then the probability of selecting a tuple at node A is 1, 

but at node B it is 0.1. This means that not all tuples have the same chance of entering 

the sample.  



 

 17 

Although it may be possible to use different sampling ratios at peers depending 

on their degrees, we instead opt for a simple sampling technique that uses a constant 

sub-sampling ratio for nodes sampled during the random walk. This ensures that all the 

tuples residing on a sampled node are sampled by the algorithm in a fair manner. 

 

3.5 Implementation Issues 

We consider some of the implementation issues that must be considered in order 

to run the algorithm.  

One of the first issues to consider is that the random walker must be designed 

carefully so that it has a stopping condition; otherwise it would continue executing 

infinitely. A straightforward solution is to execute the walk until the total accumulated 

sample size reaches a specified ratio of the total data size on the network. If we choose 

to use an estimator such as GEE (3.1.1), we can assume that a value for n is already 

available as it is also required for estimation. This value must either be estimated from a 

preprocessing step or already be known for a particular network, query or application. 

The only potential issue of using this technique of bounding the walk is that if large-

sized peers are sampled, then the total required sample size might be reached quickly 

and sampling will not occur across a large number of peers. This affects the quality of 

samples as the more peers are sampled, the higher the quality of the final sample. This 

would introduce an additional error in our estimations. Furthermore, if all the peers are 

small, it may result in a walk that is very long as it samples more peers. This would 

result in longer wait times in order to get results. 



 

 18 

Alternatively, the stopping condition can be set to sample a ratio of the nodes on 

the P2P network. Since nodes can have databases of different sizes, the technique may 

also be prone to error as there is no way to be sure of how much data is being sampled 

during the walk. This can lead to poor samples if the walk only samples smaller peers. 

Additionally, the number of peers on the network may also need to be assumed. 

We now consider a possible method of providing a bound to the random walk 

by controlling the overall data sampling ratio and the node sampling ratios. We refer to 

it as the threshold technique. 

 

3.5.1. Threshold Technique 

The threshold operates by assuming that we have a cost function combining the 

time and network costs of reaching a sampled node (via the random walk) and the 

corresponding costs for sending back samples across the network from source to sink. 

Once we model this overall cost of sampling nodes using the walker, the user can define 

an acceptable threshold cost T at which the walk should terminate, i.e., so that once the 

cost exceeds the threshold, the walk stops. This approach allows the additional 

flexibility of setting the walker to sample nodes by controlling of the total length of the 

walk and the amount of data sampled and sent back to the sink from each sampled node.  

Thus, a lower sub-sampling ratio results in a longer walk that samples more 

nodes but a larger sub-sampling ratio samples fewer nodes but on a shorter walk that 

yields lower quality estimates. Similarly, the estimate improves as the overall data 

sampling ratio increases. However, as the ratio increases, the cost in sending back 



 

 19 

samples also increases. Thus, depending on the threshold and the modeled network 

characteristics, it should be possible to choose both of these ratios so as to get the best 

possible results for a query within a defined threshold time/cost. 

A further investigation of this technique and the possibility of dynamically 

choosing sub-sampling ratios for sampling nodes is left for future work. 

 

3.6 Pseudo-Code 

We provide simple pseudo-code that defines our algorithm. We first provide the 

code for the random walk sampler. The pseudo-code makes calls to COLLAPSE [10], 

the Metropolis-Hastings sampler [5] and distinct value estimators.   

The random walk is executed over the P2P network, starting with the query 

initiator node. Note that the sample_size variable is the accumulated value of the 

original node sample sizes, before applying COLLAPSE. Only the collapsed sample is 

used for distinct value estimation.  

The pseudo-code for the random walk is provided in Figure 3. 



 

 20 

 

 

Inputs: 

 

Rdata  : sampling ratio for multiset  

Rnode : sub-sampling ratio for local repository  

at a node 

n   : size of multiset 

b   : burn-in period 

sink   : initial node in random walk 

 

Variables: 

sample_size : total size of data samples before applying     

  COLLAPSE 

p2p_sample : total sample from sampled nodes 

curr  : current node in random walk 

 

Methods: 

getNextMH(curr,b) { 

Get next node according to Metropolis-  

Hastings, using burn-in period b 

 

} 

 

run_estimator(sample, orig_size) { 

Estimates distinct values in sample  

with orig_size (size without running COLLAPSE) 

} 

 

Algorithm: 

 

1:  curr = sink; 

2:  while(sample_size < n * Rdata) 

3:  { 

4:       curr = getNextMH(curr,b); 

5:       sample(curr, Rnode); 

6:       update sample_size; 

7:       update p2p_sample; 

8:  } 

9:  run_estimator(p2p_sample, sample_size); 

 

Figure 3: Pseudo-code for P2P network traversal 

 



 

 21 

In Figure 4, we provide code for the sampling procedure at a node. The inputs 

have been described already in Figure 3. 

 

 

Variables: 

orig_sample : original uniform-random sample of data at 

a node 

orig_size  : size of original sample 

col_sample : sample after running   COLLAPSE 

 

Algorithm:  

 

1:  Sample(curr, Rnode) { 

2:     orig_sample = uniform-random sample;               

3:     orig_size = size of orig_sample; 

4:     col_sample = collapsed orig_sample; 

5:     return orig_size, col_sample; 

6:  } 

 

Figure 4: Pseudo-code for sampling a node 

 

Because random walks can be slow to yield results as they traverse the network, 

we can increase the response time by having multiple walkers running at the same time 

over the network. This can be a possible addition to our algorithm because assembling 

of node samples can be concurrently built from multiple sources. 

 

3.7 Assumptions 

Our algorithm operates upon various assumptions and constraints. We 

summarize these as follows. 



 

 22 

Firstly, we assume that tuples that match the query are not so rare that a random 

walk fails to find any nodes to sample. We also assume that the data on the network 

does not change drastically during the walk. 

Depending on the random walk stopping condition and the estimator, the 

algorithm may need the total number of tuples or nodes on the network or the total 

original sample size. This may be available, assumed, or approximated in a 

preprocessing phase. As we shall see in the experimentation section, the AE estimator 

performs well and does not require any such information. In cases where a parameter 

describing the network is required, many P2P networks clients (such as in Gnutella) 

have easy access to roughly how many peers are connected to the network at a given 

time. This allows a stopping condition to be set for the walk. 

We also assume that the network cost of retrieving tuple attributes from sampled 

nodes is low. This is a fair assumption since even in P2P networks that are used for 

exchanging multimedia files (such as MP3 files that range between 3-7MB), it is 

sufficient to transfer only ID3 tag information and/or file hashes to identify duplicate 

files, as in [25].  These descriptors are usually text and are only a few kilobytes in size. 

If this is not the case and tuple attributes are too expensive to transfer to the query 

initiator, more advanced stopping conditions such as the threshold technique can be 

used as described in 3.5.1.  



 

 23 

 

 

CHAPTER 4 

DISCUSSION 

 

In this section we discuss the behavior of the algorithm and how it can be 

adapted for different queries and applications by changing the values of the available 

input parameters.  

4.1 Supporting Different P2P Network Characteristics 

Since different topologies can form for unstructured P2P networks, it is 

important that our algorithm be able to handle a variety of topological scenarios that 

may arise.   

As discussed previously, the use of the Metropolis-Hastings algorithm handles 

possible variations in the degree of nodes. Also, increasing of the burn-in period 

reduces the effects of node clustering. It is important to bear in mind that a larger burn-

in period translates to longer wait times though the sample becomes closer to a uniform 

random sample. 

A random sample is obtained much faster if the diameter of the P2P network is 

small [37]. This is intuitive since sampled peers can be further apart on opposite ends of 

the network (in terms of hops) and are less likely to be stuck in the same locality or 

cluster. 



 

 24 

The authors in [37] also suggest possible modifications to the Metropolis-

Hastings algorithm for attaining required node sampling distributions. They also show 

the suitability of the algorithm for several interesting applications and topologies. 

Enhancements such as transition probabilities [37] can also give some nodes preference 

during the walk if this is required by applications.  

Thus considering the design of the Metropolis-Hastings algorithm and the effect 

of changing the burn-in period, one can design the random walk to suit a variety of 

applications. 

4.2 Supporting Different Data Distributions 

Different P2P networks can be considered to form graphs that have different 

data distributions across the nodes. The data distributions can generally be described by 

the amount of skew in the data on the network, the amount of clustering/mixing of data 

across nodes, as well as the variation of sizes of peers on the network. Our algorithm is 

able to handle a variety of distributions with different characteristics. 

 

4.2.1. Effect of Distribution of Node Sizes    

Because peers on a network can have local repositories with different sizes, this 

affects the way samples are gathered from nodes. If all the peers generally have small 

databases, it may sufficient to set high sampling ratios and vice versa.  

The fact that the node sizes can lie in a large range of possible values makes 

sampling at nodes and the choice of sampling ratio an interesting problem. As described 

earlier, our algorithm allows the sub-sampling ratio for a node’s local database to be set 

for each a walk. By tuning this value, one can set an appropriate sampling ratio that 



 

 25 

balances the cost of reaching/accessing nodes and the cost of retrieving samples from 

these nodes via the network. A smaller sampling ratio produces smaller samples from 

nodes, reducing the time taken in transferring samples to the sink. A consequence 

however, is that more samples need to be accessed from more nodes, and the random 

walk becomes longer. Conversely, for larger sampling ratios, the length and cost of 

accessing nodes in the random walk reduces, but because of the high sampling ratio, 

large-size nodes may have correspondingly large samples that are expensive to transfer 

to the sink.  

Thus, depending on the specific application, the network, its scale, the 

distribution of node sizes, and the overall sampling ratio of the entire multi-set, it is 

possible to design a walker with a sampling ratio that strikes the right balance between 

estimation quality and overall network cost and wait times. 

 

4.2.2. Effect of Clustering of Data    

The clustering level of data on the network changes the performance of the 

algorithm.  

In perfect clustering, similar data is generally found within the same node or 

within the locality around the node. In low clustering cases, data is mixed and 

distributed across the network, resulting in less of a correlation between the data and its 

location on the network. The worst performance is expected for the first case, as each 

node produces a collapsed sample with a relatively small quantity of distinct values. 

Since the distinct value estimators use the original size of the sample before 



 

 26 

COLLAPSE, the estimator often gets fewer actual samples from highly clustered node 

after collapsing. Also, with higher clustering the duplicates are generally located within 

one node thus there will be fewer duplicates across nodes. This leads to more single 

occurrences of elements in the final sample that are then scaled by the DV-estimator, 

often resulting in estimates that are too high. 

Thus, performance improves as clustering reduces since duplicates are 

increasingly scattered throughout the network. This results in higher quality samples as 

the sampler picks up an increasingly random set of values. These counts are scaled 

more accurately to produce better estimates. 

 

4.2.3. Effect of Data Skew   

The skew specifies the shape of the frequency distribution curve. Highly skewed 

data has a small ratio of elements with very high frequencies in the multi-set, and a 

higher ratio of lower-frequency elements in the sample. For high skew data, our random 

walk has a lower chance of sampling the rarer elements in the multi-set. The sample 

will instead have a lot of occurrences of high-frequency values that are duplicates 

across many nodes. This affects the quality of the sample and the distinct value 

estimator becomes more erroneous. Obviously, our algorithm handles data distributions 

with less skew well since it is easier to get accurate samples from such uniform 

distributions. 

Thus, for highly clustered and/or skewed distributions, it is better to choose 

lower sub-sampling ratios at the nodes so that a higher quality sample is obtained by 



 

 27 

accessing more nodes. This however comes with the cost of longer random walks. Thus 

it is important for designers to keep this tradeoff in mind. 

 

4.3. Supporting Different Queries 

Because our algorithm is capable of having different parameters set for each 

random walk, each query can be handled differently. This offers great flexibility for 

supporting different queries.  

When there is a set of known commonly executed queries and the P2P network 

is not highly dynamic, developers can study the properties of the data distribution on the 

P2P network by generating a set of graphs that show the algorithm’s estimation quality 

(as seen in section 6.4). As seen in our experiments section, there is low variance across 

runs of the random walk and the results are fairly consistent. By investigating the 

performance of estimations, developers can choose appropriate values for the input 

parameters of our algorithm, such as the burn-in period and node and data sampling 

ratios. Alternatively, to support more complex and diverse queries, these parameters can 

be defined explicitly for each walk by administrators or power users, depending on the 

accuracy they require and the time constraints for running the query. 



 

 28 

 

 

CHAPTER 5 

EXPERIMENTATION 

 

In this section, we provide experimental validation of our proposed approach. We have 

implemented the algorithms to run on real-world network topologies, with different 

network sizes, different data distributions and various clustering levels. 

 

5.1. Implementation 

Our algorithm was implemented in Java and carried out on Dual 3.00GHz Intel 

Xeon processors with 2GB RAM using the JUNG framework for graph generation [24]. 

The Java maximum heap size was set to 300MB. 

 

5.1.1 Generation of P2P Networks 

The P2P networks for running the algorithm were simulated by loading actual 

topologies of the Gnutella P2P network [17]. These were obtained from real-world data 

collected by M. Ripeanu [33] that was also used by Gunopulos et al. for their 

simulations in [2].   

Our simulator loaded a total of 16.1 million integers onto 24278 peers by a total 

of 62391 edges. Each node was allotted a data set size between 300 and 1500 that 

indicates the size of its local database This distribution is considered to be Zipfian [14, 



 

 29 

38] and several input parameters (described below) control the shape and properties of 

the distribution. It is our intuition that this models the fact that different nodes have 

different sizes and that there are usually fewer nodes with very large databases and a 

greater number of nodes with smaller-sized databases.  

 

5.1.2 Generation of Node Databases 

We use single-attribute tuples for the node databases. A configurable number of 

distinct values (integers) are generated and duplicated so that they follow a Zipfian 

distribution. These numbers are stored in a sorted ‘multi-set’ which contains the entire 

data for the whole P2P system. The multi-set is partitioned and the correct number of 

tuples is allocated during a breadth first traversal of the network. This is done to give 

control of clustering properties of the distribution. We can simulate different levels of 

clustering by shuffling the data in the multi-set before allocation. This changes the 

correlation of data between neighboring nodes. A highly shuffled multi-set has a lower 

level of clustering. This approach is adapted from [2]. 

On a P2P network like Gnutella, which is used for sharing songs and data files, 

some records tend to be more popular compared to others. We generate data for the 

nodes by following the intuition that the distribution of values follows Zipf’s Law [14, 

30, 38].   

5.2. Input Parameters 

A variety of input parameters allow different cases to be simulated to test our 

algorithm and its performance. 



 

 30 

5.2.1 P2P Network Parameters 

These parameters control the node sizes as they are allocated to all nodes in the 

graph.  

• Node Data Size Skew (zsize): Controls the shape of the frequency distribution of 

the data sizes allotted to a node. The skew ranges between 0 and 1. Lower values 

indicate increasingly uniform (flat) Zipfian distributions. 

• Maximum and Minimum Node Data Sizes: The highest and lowest possible 

number of tuples allocated to nodes on the network. 

• Number of Steps in Node Data Sizes: The range of allowed data sizes is divided 

into evenly-spaced steps of increasing sizes, ranging from the minimum to the 

maximum allowable size. Step size is given by: (max_size – min_size)/num_steps. 

Each node is allocated a data size at a step. Expressed simply, it is the distinct 

number of sizes generated within the range of allowed node sizes. 

 

5.2.2 Node Database Generation Parameters 

These parameters control the properties of the distribution of tuples (integers) 

on the P2P network.  

• Number of Distinct Values: The number of distinct data values on the entire P2P 

network. 

• Data Distribution Skew (zdata): The data on the network follows a Zipfian 

frequency distribution. The skew controls the shape of this distribution. Ranging 



 

 31 

from 0 to 1, lower values correspond to increasingly flat (uniform) distributions. 

Larger values have distributions that slant more steeply. 

• Cluster Level (Cl): The level of mixing of the sorted data before it is allocated to 

the nodes. It ranges from 0 to 1 where 0 performs no mixing, and this corresponds 

to a perfectly clustered network, where each node and its neighbors hold very 

similar data.  As the level tends to 1, data is mixed entirely before allocating to 

nodes. 

 

5.2.3 Algorithm Input Parameters 

The following parameters control the algorithm. 

• Burn-In Period (B): The Metropolis-Hastings parameter that controls the number 

of times that the coin is tossed before a node is sampled. The coin toss decides 

whether to move to a node 

• Node Sub-Sampling Ratio (rnode): The sampling ratio for the local repository of a 

node.  

• Data Sampling Ratio (rdata): The overall sampling ratio of the data on the entire 

network. It can provide a stopping condition for the random walk by keeping track 

of the total sample size as samples are accumulated during the walk. 

 

5.3. Evaluation Metrics 

Evaluation of the algorithms is done by assessing the ratio error of the estimates 

[9]. It is given by: 



 

 32 

( )DDDDError /ˆ,ˆ/max=  

 

The ideal estimator has a ratio error of 1. Other evaluation metrics could include 

the number of nodes sampled, the total size of samples collected or the number of 

messages exchanged. 

5.4. Experiments and Results 

We compare the results of a running a Metropolis-Hastings random walker with 

burn-in period of 10 with the results from a random sample of nodes in the system. This 

helps assess the quality of our traversal method. Because the variance across runs was 

low, each result is taken from just ten runs of the algorithm.  

We also compare results with a uniform random sample of the data, taken 

directly from the multi-set. This helps us to assess the estimators to see how close we 

can get our algorithm to match performance on a uniform-random sample. 

 

5.4.1 Node Sub-Sample Ratio 

Figure 5 shows the effect of changing the sub-sampling ratio at a node. The 

overall multi-set data sampling ratio (Rdata) is 3%, with a skew parameter of 0.5 and a 

clustering level (Cl) of 0.7. The number of distinct elements on the system is 500,000 

and we use AE to perform estimations at different sampling ratios. 

At lower node sub-sample ratios, the error of the walk and the random node 

sample methods is close to that of the random data sample from the multi-set (for a 

fixed rdata). As the sub-sampling ratio increases, the sample collected from each node 

becomes more vulnerable to clustering and other data distribution factors. At higher 



 

 33 

sub-sampling ratios, more is sampled from a node and fewer nodes are sampled overall, 

thus the final sample is of lower quality with higher error. 

Average Ratio Error(AE) vs. Node Sub-Sampling Ratio

Rdata = 3%, Skew =0.5, Cl = 0.7, Num  Distinct = 500K 

0.95

1.15

1.35

1.55

1.75

1.95

2.15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Node Sampling Ratio

A
v

e
ra

g
e

 R
a

ti
o

 E
rr

o
r

Random Walk

Random Node Sample

Data Sample

 

Figure 5: Average Ratio Error vs. Node Sub-Sampling Ratio 

 

5.4.2 Data Sampling Ratio 

Figure 6 shows the effect of varying the overall data sampling ratio for the 

multi-set. As expected at lower values (0.5%), the ratio-error is very high. It improves 

significantly and all three sampling strategies have comparable results with the 

sampling ratio greater than 1.5%. The node sub-sampling ratio (Rnode) is 0.5. It can 

also be seen that by setting the data sampling ratio to just 3%, the ratio error is close to 

1 and comparable to a data sample. This gives insight into what ratio can be set when 

designing a walk for a particular application.  



 

 34 

Average Ratio Error (AE) vs. Data Sampling Ratio

Cl=0.7, Rnode = 0.5, Skew=0.5, Num Distinct = 500K

0

1

2

3

4

5

6

7

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Data Sampling Ratio

A
v
e
ra

g
e
 R

a
ti
o

 E
rr

o
r

Random Walk (AE)

Random Node Sample

(AE)

Data Sample (AE)

 

Figure 6: Average Ratio Error vs. Data Sampling Ratio 

 

5.4.3 Clustering Level 

Figure 7 shows the effect of varying the clustering level. As expected there is a 

high ratio error for perfectly clustered data. Estimation quality improves significantly 

when data is less clustered since a better, more varied sample results at the query 

initiator. This illustrates the importance of clustering in our sampling scheme, and that 

our algorithm actually leverages the extent of mixing on the network.  

 



 

 35 

Average Ratio Error (AE) vs. Clustering Level

Rdata=2.5%, Rnode=0.5, Skew=0.8, Num Distinct = 250K

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Clustering Level

A
v

e
ra

g
e

 R
a

ti
o

 E
rr

o
r Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

 

Figure 7: Average Ratio Error vs. Clustering Level  

 

5.4.4 Data Skew 

To demonstrate the performance of the algorithm with different distributions, 

we vary the skew of the data as shown in Figure 8. This shows how for higher skews 

beyond 0.8, the ratio-error of AE increases greatly with a constant node sub-sampling 

ratio of 0.5. This is intuitive, because highly skewed data results in the algorithm 

picking up more duplicates of popular elements while sampling, and therefore fewer 

single occurrences of rarer elements. Since the distinct value estimator scales only 

single occurrences, the final estimate has a higher chance of error. 

 



 

 36 

Average Ratio Error (AE) vs. Data Skew

Cl=0.4, Rdata=2.5%, Rnode=0.5, Number Distinct=250K

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zipf Data Skew

A
v

e
ra

g
e

 R
a

ti
o

 E
rr

o
r

Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

 

Figure 8: Average Ratio Error vs. Zipf Data Skew 

 

5.4.5 Number of Distinct Values 

We provide two graphs to demonstrate the operation of both GEE and AE. The 

AE graph shown in Figure 9 is obtained by varying the number of distinct values on the 

network between 100,000 and 1,000,000. Figure 10 shows the graph obtained by using 

GEE while varying the number of distinct values between 10,000 and 100,000. Note 

that far fewer distinct elements were used for estimations using GEE as it produces poor 

results at a higher number of distinct results. This is expected since it is a biased, 

optimal error estimator. 

 



 

 37 

Average Ratio Error (AE) vs. Number of Distinct Values

Rdata = 2.5%, Rnode =0.5, Cl = 0.7, Skew = 0.5

0.5

1

1.5

2

2.5

3

3.5

4

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K

10
00

K

Number of Distinct Elements

A
v
e
ra

g
e
 R

a
ti

o
 E

rr
o

r

Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

 

Figure 9: Average Ratio Error vs. Number of Distinct Elements using the Adaptive 

Estimator 

 

Average Ratio Error (GEE) vs. Number of Distinct Values

Skew = 0.7, Cl = 0.7, Rdata=2.5%, Rnode=0.5

0

0.5

1

1.5

2

2.5

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Number of Distinct Values

A
v

e
ra

g
e

 R
a

ti
o

 E
rr

o
r

Random Walk (GEE)

Random Node Sample

(GEE)

Data Sample (GEE)

 

Figure 10: Average Ratio Error vs. Number of Distinct Elements using the 

Guaranteed Error Estimator 



 

 38 

5.4.6 Burn-In Period 

Average Ratio Error (AE) vs. Burn-In Period

Skew = 0.5, Rdata=2.5%, Rnode=0.5, Cl=0.7

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 3 5 7 9 11 13 15 17 19

Burn In Period

A
v

e
ra

g
e

 R
a

ti
o

 E
rr

o
r

Random Walk (AE)

Random Node Sample (AE)

Data Sample (AE)

 

Figure 11: Average Ratio Error vs. Burn-In Period 

 

Figure 11 shows the effect of executing the random walk with different burn-in 

periods. As seen from the results, the ratio-error becomes increasingly close to that of a 

random sample as the burn-in increases. This is because the data at sampled nodes 

becomes less correlated as the burn-in period increases. 



 

 39 

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 

In this thesis we have addressed a new and interesting problem with unique 

challenges.  We offer a way of combining different strategies to come up with an 

algorithm that has a ratio error comparable to uniform-random node samples, and in 

some conditions, comparable to uniform-data samples. It also opens up numerous 

possibilities for future work. 

An interesting area of further work is exploring how one can set node sub-

sampling ratios so as to balance the quality of an estimate and its cost. It may even be 

possible to consider dynamic sub-sampling ratios, with different traversal techniques in 

order to get uniform-random samples from the network. Similarly, ways of predicting 

how much to sample from the entire P2P network warrant further study. Applying 

techniques of optimizing the sub-sampling process at each node can also be considered, 

such as maintaining a collection of samples at each node. This would reduce the cost of 

repeatedly sampling the local repositories at each node.  

Methods of compressing the size of the samples sent back to the query initiator 

could also be investigated to cut down on network data transfer requirements. Being 

able to model the network requirements of accessing and retrieving samples from nodes 



 

 40 

also gives insight into setting input parameters for the algorithm, and also offer a means 

of predicting how best to bound a walk. 

Distinct value estimation for dynamic graphs could also be studied for P2P 

network environments which change rapidly during the execution of a random walk.  

Being able to get distinct values estimations paves the way for future work in 

histogram construction, query optimization and duplicate elimination on peer-to-peer 

networks. This is could be an emerging area due to the rapid increase in popularity of 

P2P networks and the possible paradigm shift away from traditional client-server 

computing models. 



 

 

 

41 

 

 

REFERENCES 

 

[1] Androutsellis-Theotokis, S., and Spinellis, D. A Survey of Peer-to-Peer Content 

Distribution Technologies. ACM Computing Surveys, 36(4):335-371, Dec. 

2004. 

[2] Arai, B., Das, G., Gunopulos, D., and Kalogeraki, V. Approximating 

Aggregation Queries in Peer-to-Peer Networks. ICDE 2006 (April 3-8, Atlanta, 

GA, 2006) 

[3] Awan, A., Ferreira, R.A., Jagannathan, S., and Grama, A. Distributed Uniform 

Sampling in Unstructured Peer-to-Peer Networks. In HICSS, 2006. 

[4] Babcock, B, Chaudhuri, S., and Das, G. Dynamic Sample Selection for 

Approximate Query Processing. SIGMOD Conference 2003: 539-550. 

[5] Bar-Yossef, Z., and Gurevich, M. Random Sampling from a Search Engine’s 

Index. International World Wide Web Conference Committee 2006  

[6] Bar-Yossef, Z., Berg, A., Chien, S., Fakcharoenphol, J., and Weitz, D. 

Approximating Aggregate Queries about Web Pages via Random Walks. VLDB 

2000.  

[7] Baset, S.A., and Schulzrinne, H. An analysis of the Skype peer-to-peer Internet 

telephony protocol. Technical Report CUCS-039-04, Computer Science 

Department, Columbia University, September 2004. 



 

 

 

42 

[8] Burnham, K., and Overton, W. Robust estimation of population size when 

capture probabilities vary among animals. Ecology, 60:927–936, 1979. 

[9] Charikar, M., Chaudhuri, S., Motwani, R., and Narasayya, V. Towards 

Estimation Error Guarantees for Distinct Values. In Proceedings of the ACM 

PODS 2000. 

[10] Chaudhuri, S., Das, G., and Srivastava, U. Effective Use of Block-Level 

Sampling in Statistics Estimation. SIGMOD 2004 (Paris, France, June 13-18, 

2004) 

[11] Chaudhuri, S., Das, G., Datar, M., Motwani, R., and Narasayya, V. Overcoming 

Limitations of Sampling for Aggregation Queries. ICDE 2001: 534-542. 

[12] Chaudhuri, S., Motwani, R., and Narasayya, V. Random sampling for histogram 

construction: How much is enough? In Proc. of the 1998 ACM SIGMOD 

[13] Flajolet, P., and Martin, G. N. Probabilistic counting algorithms for data base 

applications. J. Computer and System Sciences, 31:182–209, 1985. 

[14] Ganesan, P., Bawa, M., and Garcia-Molina, H. Online balancing of range-

partitioned data with applications to peer-to-peer systems .In VLDB 2004 

(Toronto, Canada) 

[15] Gibbons, P., Distinct Sampling for Highly-accurate Answers to Distinct Values 

Queries and Event Reports, VLDB 2001 

[16] Gkantsidis, C., Mihail, M., and Saberi, A. Random Walks in Peer-to-Peer 

Networks. In INFOCOM, 2004 

[17] Gnutella Website: rfc-gnutella.sourceforge.net  



 

 

 

43 

[18] Goodman, L., On the estimation of the number of classes in a population. 

Annals of Math. Stat., 1949. 

[19] Haas, P., and Swami, A. Sequential sampling procedures for query size 

estimation. 1992 SIGMOD 

[20] Haas, P., Naughton, J., Seshadri, P., and Stokes, L. Sampling-based estimation 

of the number of distinct values of an attribute. In Proc. Of VLDB, 1995. 

[21] Hastings, W. Monte Carlo sampling methods using Markov chains and their 

applications. Biometrika, 57(1):97–109, 1970. 

[22] Hou, W., Ozsoyoglu, G., and Dogdu, E. Error-Constrained COUNT Query 

Evaluation in Relational Databases. In Proc of the 1991 ACM SIGMOD. 

[23] Hou, W., Ozsoyoglu, G., and Taneja, B. Statistical estimators for relational 

algebra expressions. In Proc. of 1988 ACM PODS, pages 276–287, March 1988. 

[24] Java Universal Network/Graph Framework (JUNG) Website. 

http://jung.sourceforge.net 

[25] KazaA website: kazaa.com 

[26] Kempe, D., Dobra, A., and Gehrke, J. Gossip-Based Computation of Aggregate 

Information. In Proceedings. of the IEEE Symposium on Foundations of 

Computer Science, 2003 

[27] King, V., and Saia, J. Choosing a random peer. In ACM Symp. On Principles of 

Distributed Computing, 2004 

[28] Le Fessant, F., Handurukande, S., Kermarrec, A.-M., and Massoulié, L. 

Clustering in Peer-to-Peer File Sharing Workloads. IPTPS 2004 



 

 

 

44 

[29] Lipton, R., Naughton, J., and Schneider D. Practical selectivity estimation 

through adaptive sampling. 1990 ACM SIGMOD, pages 1–11, 1990. 

[30] Lv, Q., Cao, P., Cohen, E., Li, K., and Shenker, S. Search and Replication in 

Unstructured Peer-to-Peer Networks, ICS 2002, (New York, New York, USA) 

[31] Metropolis, N., Rosenbluth A,, Rosenbluth, M., Teller, A., and Teller, E. 

Equations of state calculations by fast computing machines. J. of Chemical 

Physics, 1953. 

[32] Ntarmos, N., Triantafillou, P., and Weikum, G. Counting at Large: Efficient 

Cardinality Estimation in Internet-Scale Data Networks, ICDE 2006. 

[33] Ripeanu, M. Peer-to-peer architecture case study: Gnutella network. In Proc. of 

International Conference on Peer-to-peer Computing, August 2001. 

[34] Shlosser, A. On estimation of the size of the dictionary of a long text on the 

basis of a sample. Eng. Cybernetics, 1981. 

[35] Stutzbach, D., Rejaie, R., Duffield N., Sen, S., and Willinger, W. On Unbiased 

Sampling for Unstructured Peer-to-Peer Networks. IMC 2006 

[36] Tsoumakos, D., and Roussopoulos, N. A Comparison of Peer-to-Peer Search 

Methods In Proc. of the 6
th
 International Workshop on Web and Databases, 2003 

[37] Zhong, M., and Shen, K. Random walk based node sampling in self-organizing 

networks. SIGOPS 2006 

[38] Zipf, G. E. Human Behavior and the Principle of Least Effort. Addison-Wesley 

Press, Inc., 1949. 



 

 

 

45 

BIOGRAPHICAL INFORMATION 

 

Zubin Joseph was born in Lusaka, Zambia and completed his Bachelor of 

Engineering in Lesotho, Southern Africa. He then took his Master’s degree at the 

University of Texas at Arlington, where his main research interests lie in database 

exploration and information retrieval applied in distributed environments. 

 


