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ABSTRACT

LEARNING VIDEO PREFERENCES USING VISUAL FEATURES AND

CLOSED CAPTIONS

Publication No.

Darin Brezeale, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professor: Diane J. Cook

Viewers of video now have more choices than ever. As the number of choices

increases, the task of searching through these choices to locate video of interest is

becoming more difficult. Current methods for learning a viewer’s preferences in order

to automate the search process rely either on video having content descriptions or on

having been rated by other viewers identified as being similar. However, much video

exists that does not meet these requirements. To address this need, we use hidden

Markov models to learn the preferences of a viewer by combining visual features and

closed captions. We validate our approach by testing the learned models on a data

set composed of features drawn from movies and user ratings obtained from publicly

available data sets.
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CHAPTER 1

INTRODUCTION

People today have access to more video than at any time in history. Sources of

video include television broadcasts, movie theaters, movie rentals, video databases,

and the Internet. While many video choices come from the entertainment domain,

other types of video are becoming more common including medical [FLXW04] and

other types of educational lectures [vid07].

As the number of video choices increases, the task of searching for video of

interest is becoming more difficult. One approach that viewers take is to search

for video within specific genres. In the case of entertainment video, the genre of

the video is provided when the video is released. However, there is much video

that is unclassified. This has led to research in automatically classifying video by

genre. While knowing the genre of video is helpful, the large number of video choices

within many genres still makes finding video of interest a time-consuming process.

In addition, this problem is even greater for people who enjoy video from a variety

of genres, which seems likely for most people. For these reasons, systems have been

developed that can learn a particular person’s preferences and make recommendations

given these preferences.

There have traditionally been two approaches to identifying video of interest

to a viewer. The first is the case-based approach, which utilizes descriptions of the

video content [Eri97] [AGT+04] [ZKB+04]. In the case of entertainment video, the

description might include the genre of the video, director, actors, and a brief summary

of the video. The second is collaborative filtering, which attempts to identify viewers

1
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that are considered similar by some measure. Recommendations for the current viewer

will be drawn from the positively rated videos of these similar viewers.

The major strength of the case-based approach is that it relies strictly on the

viewer’s profile. Once a viewer’s preferences are known, it is a simple task to match

these up with video content descriptions. There are, however, several weaknesses

to the case-based approach. One is that it takes some effort to produce content

descriptions. While this is typically not a problem when dealing with entertainment

video such as television or movies, there is much video in video databases and on the

Internet for which there are no content descriptions. Another weakness is that the

viewer must initially seed the system with some preference information. A viewer

may not wish to devote the time and effort to provide enough preference details for

the system to perform well. A third weakness is that recommendations will be very

similar to previously rated video.

The second approach is collaborative filtering. Collaborative filtering does not

require the content descriptions used by the case-based approach. Also, unlike the

case-based approach, video recommendations are not restricted to video similar to

that previously rated by the user if the group the viewer is assigned to has a greater

variety of interests. However, it does take some effort to gather enough information

about other viewers in order to determine who is similar to the current viewer. A

second weakness of collaborative filtering is the latency of a new video spreading; a

video can’t be recommended if no one has seen and rated it yet.

There are many videos that lack the content descriptions required by the case-

based approach as well as the ratings of other viewers required by collaborative fil-

tering. The approach we have chosen to handle videos in this category is to extract

visual features and closed captions from video in order to learn a viewer’s preferences.

While we believe our approach is most useful in those situations that preclude the use
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of collaborative filtering or case-based methods, it is also applicable in the situations

for which the other approaches are appropriate or could be used to supplement those

approaches.

Individually, each of these types of features has limitations. Some methods for

representing text or images suffer from a lack of context. The bag-of-words model,

which is a common method for representing documents, does not maintain word order

and as a result two documents with essentially the same words but different word order

can have different meanings but appear similar when comparing their term-feature

representations. Likewise, two different images may appear similar when represented

as color histograms. By combining text and visual features, we believe that these

limitations can be lessened.

The visual features and closed captions are combined to produce observation

symbols for training hidden Markov models (HMM). A video is a collection of features

in which the order that the features appear is important, which suggests that an

HMM might be appropriate for classification. We believe that visual features and

closed captions are complementary. Visual features represent what is being seen, but

miss much of the social interaction. Video dialogue typically doesn’t describe what

is being seen, but represents the social interaction.

1.1 Hypothesis

Our hypothesis is that features extracted from video rated by a viewer are

sufficient to learn a viewer’s preferences such that recommendations can be made

with an accuracy exceeding what would be expected by choosing video at random.
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1.2 Solution

Our solution is to model a viewer’s preferences using hidden Markov models with

observation symbols generated by combining closed captions and visual features. We

will test our hypothesis on a data set of entertainment video and publicly available

viewer ratings. In addition, we will compare the results from the combination of visual

and text features to the results obtained from using each type of feature individually.



CHAPTER 2

BACKGROUND

In this chapter, we provide a discussion of the background material needed to

understand our work. Specifically, we discuss visual-based and text features derived

from video, dimensionality reduction, hierarchical clustering and modeling using hid-

den Markov models.

2.1 Closed Captions

Closed captioning is a method of letting hearing-impaired people know what is

being said in a video by displaying text of the speech on the screen. Closed captions

are found in Line 21 of the vertical blanking interval of a television transmission and

require a decoder to be seen on a television [Rob04]. On a DVD the closed captions

are stored in sets with display times. Figure 2.1 shows the 108th set of closed captions

for the movie Lethal Weapon.

The Telecommunications Act of 1996, which took effect in 1998, placed closed

captioning requirements on television shows broadcast in the United States. With

some exceptions, the law required that broadcasters begin providing closed captions

on their broadcasts with a goal of 100% of all broadcast hours of new (first broadcast

108
00:07:51,821 −−> 00:07:54,824
DO YOU KNOW A MAN
NAMED MICHAEL HUNSAKER?

Figure 2.1. Example of a closed caption set from Lethal Weapon.

5
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in 1998 or later) television shows by 2006 and 75% of older (first broadcast prior to

1998) television shows by 2008.

In addition to representing the dialog occurring in the video, closed captioning

also displays information about other types of sounds such as onomatopoeias (e.g.,

grrrr), sound effects (e.g., [BEAR GROWLS]), and music lyrics (enclosed in music

note symbols, �). At times, the closed captions may also include the marks >> to

indicate a change of speaker or >>> to indicate a change of topic [GGP00].

One advantage of text-based approaches is that they can utilize the large body

of research conducted on document text classification [Seb02]. Another advantage is

that the relationship between the features (i.e., words) and specific genre is easy for

humans to understand. For example, few people would be surprised to find the words

‘stadium’, ‘umpire’, and ‘shortstop’ in a transcript from a baseball game.

However, using closed captions does have some disadvantages. One is that the

text available in closed captions is largely dialog; there is little need to describe what

is being seen. For this reason closed captions do not capture much of what is occurring

in a video. A second is that not all video has closed captions. A third is that while

extracting closed captions is not computationally expensive, generating the feature

vectors of terms and learning from them can be computationally expensive since the

feature vectors can have tens of thousands of terms.

A common method for representing text features is to construct a feature vector

using the bag-of-words model [For03]. In the bag-of-words model, each feature vector

has a dimensionality equal to the number of unique words present in all sample

documents (or closed caption transcripts) with each term in the vector representing

one of those words. Each term in a feature vector for a document will have a value

equal to the number of times the word represented by that term appears in the
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document. One potential drawback of the bag-of-words model is that information

about word order is not kept.

Representing a transcript may require a feature vector with dimensions in the

tens of thousands if every unique word is included. To reduce the dimensionality,

stop lists and stemming are often applied prior to constructing a term feature vector.

A stop list is a set of common words such as ‘and’ and ‘the’ [FBY92]. Such words are

unlikely to have much distinguishing power and are therefore removed from the master

list of words prior to constructing the term feature vectors, which also has the benefit

of reducing the computational requirements. Stemming removes the suffixes from

words leaving the root. For example, the words ‘independence’ and ‘independent’

both have ‘indepen’ as their root. The stemmed words are used to generate the

feature vectors instead of the original words. One of the more common methods for

stemming is using Porter’s stemming algorithm [Por80].

Another common approach is to weight each term using an approach known as

the term frequency-inverse document frequency (TF-IDF) approach [TI94]:

TF-IDF = TF (d, t) × IDF (t)

where TF (d, t) is the frequency of term t in document d and IDF (t) is

IDF (t) = log

(

N

df(t)

)

where N is the total number of documents and df(t) is the number of documents

containing term t [TI94].

2.2 Visual Features

A variety of features can be obtained from the visual part of a video, as demon-

strated by the video retrieval and classification fields [AY99], [Bim99]. Some choices
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of features are color, texture, objects, and motion, which we will describe in detail in

the next few sections. Visual features may correspond to cinematic principles or con-

cepts from film theory. For example, horror movies tend to have low light levels while

comedies are often well-lit. Motion might be a useful feature for identifying action

movies, sports, or music videos; low amounts of motion are often present in drama.

The type of transition from one video shot to the next can affect mood [Old92].

Visual features are often extracted on a per frame or per shot basis. A video

is a collection of images known as frames. All of the frames within a single camera

action are called a shot. A scene is one or more shots that form a semantic unit.1

For example, a conversation between two people may be filmed such that only one

person is shown at a time. Each time the camera appears to stop and move to the

other person represents a shot change, but the collection of shots that represent the

entire conversation is a scene.

A shot is a natural way to segment a video and each of these segments may

represent a higher-level concept to humans, such as “two people talking” or “car

driving down road”. Also, a shot can be represented by a single frame, known as the

keyframe. Typically the keyframe is the first frame of a shot, although some authors

use the term to refer to any single frame that represents a shot. Shots are also associ-

ated with some cinematic principles. For example, movies that focus on action tend

to have shots of shorter duration than those that focus on character development

[VL00]. One problem with using shot-based methods is that the methods for auto-

matically identifying shot boundaries don’t always perform well [Lie99]. Identifying

scenes is even more difficult and there are few video classification approaches that do

so.

1In rare cases a single shot may contain more than one scene.



9

2.2.1 Color-Based Features

Color-based features are simple to implement and inexpensive to process. They

are useful in approaches wishing to use cinematic principles. For example, amount

and distribution of light and color set mood [RSS03].

A video frame is composed of a set of dots known as pixels and the color of each

pixel is represented by a set of values from a color space [Poy96]. Many color spaces

exist for representing the colors in a frame. Two of the most popular are the red-

green-blue (RGB) and hue-saturation-value (HSV ) color spaces. In the RGB color

space, the color of each pixel is represented by some combination of the individual

colors red, green and blue. In the HSV color space, colors are represented by hue

(i.e., the wavelength of the color percept), saturation (i.e., the amount of white light

present in the color), and value (also known as the brightness, value is the intensity

of the color) [Bim99].

The distribution of colors in a video frame is often represented using a color

histogram, that is, a count of how many pixels in the frame exist for each possible

color. Color histograms are often used for comparing two frames with the assumption

that similar frames will have similar counts even though object motion or camera

motion will mean that they don’t match on a per pixel basis. It is impossible to

determine from a color histogram the positions of pixels with specific colors, so some

authors will divide a frame into regions and apply a color histogram to each region

to capture some spatial information.

Another problem with color-based features is that the images represented in

frames may have been produced under different lighting conditions and therefore

comparisons of frames may not be correct. The solution proposed by Drew and Au

[DA00] is to normalize the color channel bands of each frame and then move them

into a chromaticity color space. After more processing, including the application of
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both wavelet and discrete cosine transforms, each frame is now in the same lighting

conditions.

2.2.2 MPEG

One of the more popular video formats is MPEG (Motion Pictures Expert

Group), of which there are several versions. We provide a somewhat high-level

description of MPEG-1; for more complete details, consult the MPEG-1 standard

[MPE91a].

During the encoding of MPEG-1 video, each pixel in each frame is transformed

from the RGB color space to the Y CbCr color space, which consists of one luminance

(Y ) and two chrominance (Cb and Cr) values. The values in the new color space are

then transformed in blocks of 8 × 8 pixels using the discrete cosine transform.

Much of the MPEG-1 encoding process deals with macroblocks (MB), which

consist of four blocks of 8× 8 pixels arranged in a 2× 2 pattern. Because the human

eye is less sensitive to the chrominance components, these are sampled less frequently

than the luminance component.

The DCT used in the MPEG-1 standard is

F (u, v) =
1

4
CuCv

7
∑

x=0

7
∑

y=0

f(x, y)cos αx cos αy
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where

f(x, y) = value of the original block at coordinates (x, y)

u = 0, 1, . . . , 7

v = 0, 1, . . . , 7

αx =
(2x + 1)uπ

16

αy =
(2y + 1)vπ

16

Cu =











1√
2

, if u = 0

1 , otherwise

Cv =











1√
2

, if v = 0

1 , otherwise

The upper left corner of the block of DCT coefficients has coordinates (0, 0) and

the lower right corner has coordinates (7, 7). It can be seen from the equation that

for coordinates (0, 0), the DCT produces a value that is proportional to the average

value. This value is known as the DC term while the other 63 values are known as

the AC terms. While each block has 64 DCT coefficients, for natural images most

of the energy of the block is concentrated in a few terms in the upper left corner.

That is, most of the information needed to reconstruct the block is found in these

terms. One of the ways that compression is achieved in MPEG-1 video is that the

DCT coefficients with little energy are discarded [Sym04].

Each frame in the MPEG-1 format is classified as either an I-frame, a P-frame,

or a B-frame 2 depending on how it is encoded. I-frames contain all of the information

needed to decode the frame. Consecutive frames within the same shot are often

very similar and this temporal redundancy can be exploited as another means of

2The standard also supports a D-frame in which only the DC coefficients are stored.
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Figure 2.2. A series of frames.

compressing the video. P-frames are encoded with respect to the previous I-frame

or P-frame. B-frames can make use of of information from previous or future frames,

or a combination of the two [Gha03]. See Fig. 2.2 for an example of an arrangement of

frames. Macroblocks from the frame(s) being referenced may appear in the P-frame

or B-frame being encoded, although not necessarily at the same location. After a

referenced macroblock is located in the frame being encoded, a motion vector is

calculated for projecting the referenced macroblock to its new location. Fig. 2.3

shows a macroblock in a frame and its new location in the following frame.

Much research has been conducted on extracting features directly from MPEG

video, primarily for the purpose of indexing video [KDLF97] [WDV+03] [SPN+05].

The primary features extracted from MPEG videos are the DCT coefficients and mo-

tion vectors. These can improve the performance of the classification system because

Figure 2.3. Two consecutive frames showing a macroblock (left) and its new location
(right).
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the features have already been calculated and can be extracted without decoding the

video.

2.2.3 Shot-Based Features

In order to make use of shots, they first must be detected. This has proven

to be a difficult task to automate, in part because of the various ways of making

transitions from one shot to the next. Lienhart [Lie99] states that some video editing

systems provide more than 100 different types of edits and no current method can

correctly identify all types. Most types of shot transitions fall into one of the following

categories: hard cuts, fades, and dissolves. Hard cuts are those in which one shot

abruptly stops and another begins [AECI00]. Fades are of two types: a fade-out

consists of a shot gradually fading out of existence to a monochrome frame while a

fade-in occurs when a shot gradually fades into existence from a monochrome frame.

A dissolve consists of one shot fading out while another shot fades in; features from

both shots can be seen during this process. While it is important to understand shot

transition types in order to correctly identify shot changes, the shot transition types

themselves can be useful features for categorization [WAD00].

One of the simplest methods for detecting shots is to take the difference of the

color histograms of consecutive frames, with the assumption that the difference in

color histograms of frames within the same shot will be smaller than the difference

between frames of different shots [ZKS93]. This approach, while easy to implement,

has a number of potential problems. One is deciding what threshold differences must

exceed in order to declare a change in shots. Shots that contain a lot of motion require

a higher threshold value than those with little motion. Also, the threshold value is

likely to be different for different videos and even within the same video no particular

value may correctly identify all shot changes [JCB01]. A threshold value that is too
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low will identify shot changes that don’t exist while a threshold value that is too high

will miss some shot changes.

Iyengar and Lippman [IL97] detect shot changes using the Kullback-Leibler

distance between histograms of consecutive frames that have been transformed to the

rgb color space. The rgb values are calculated using

r =
R

R + G + B
, g =

G

R + G + B
, b =

B

R + G + B

The Kullback-Leibler distance is calculated using

KL(p||q) = −

N
∑

i=1

p(xi)log
q(xi)

p(xi)

where N is the number of bins in the histograms, p(xi) is the probability of color xi

for one frame and q(xi) is the probability of color xi for the other frame.

Truong et al. [TDV00a] detect shot changes with shot transitions of the types

hard cut, fade-in, fade-out, and dissolve [TDV00b]. Hard cuts are detected by using

a global threshold to identify potential cuts, then a sliding window is applied to

these frames using an adaptive threshold. Fade-ins and fade-outs are detected by

first identifying monochrome frames and then checking if the first derivative of the

luminance mean is relatively constant. Dissolves are identified when the first order

difference of the luminance variance curve falls within a range calculated from the

luminance variances of the shots preceeding and succeeding the dissolve.

Rasheed and Shah [RS02] detect shot changes using the intersection of his-

tograms in the HSV color space. This method works best for hard cuts [RSS03].

Jadon et al. [JCB02] detect shot changes as well as shot transition types using

a fuzzy logic based approach [JCB01]. Abrupt changes (i.e., hard cuts) are detected

using the intersection of frame histograms in the RGB color space. Gradual changes

are detected using pixel differences and intersection of color histograms. The pixel
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difference between two consecutive frames is calculated using the Euclidean distance

between corresponding pixels in the RGB color space. Gradual changes are further

divided into fade-ins and fade-outs, which are detected using pixel differences, in-

tersection of color histograms, and edge-pixel counts. After detecting edges using

a Sobel edge detector, the difference in the number of pixels of edges between con-

secutive frames is used to identify fade-in and fade-out transitions. Each feature is

fuzzified, that is, values are assigned to qualitative categories (e.g., categorize as neg-

ligible change, small change, or large change). Fuzzy rules are constructed from these

features.

Lu et al. [LDA01] avoid detecting shots altogether, instead identifying keyframes

using clustering after first transforming frames to a chromatic color space to put all

frames under the same lighting conditions.

2.2.4 Object-Based Features

Object-based features are uncommon due to their computational requirements.

When they are used, they tend to focus on identifying specific types of objects, such

as faces [YLM+06] [WCY03]. Once objects are detected, features derived from them

include dominant color, texture, size, and trajectory.

Object-based features can be costly and difficult to derive. Wei et al. [WAD00]

report that detecting text objects is efficient enough to be applied to all video frames

but that detecting faces is so expensive that they limited it to the first few frames of

each shot. Most methods require that the objects be somewhat homogenous in color

or texture in order to segment them correctly, which may also require confirmation

from humans [HFF05]. Objects that changed shape, such as clouds, would also prove

difficult to handle.
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Dimitrova et al. [DAW00] and Wei et al. [WAD00] use an approach described

in [WS99] for detecting faces. Using images in which the skin-tone pixels have been

labeled, a model is learned for the distribution of skin-tones in the Y IQ color space.

The Y IQ color space, a transform of gamma-corrected RGB values, is used in broad-

cast video [Jac05]. The skin-tone distribution model is used for identifying regions of

skin-tone pixels, which are processed with morphological operations to smooth and

combine isolated regions that are related. Finally, shape analysis is applied to identify

faces.

Dimitrova et al. [DAW00] and Wei et al. [WAD00] both use an approach

described in Agnihotri and Dimitrova [AD99] for identifying text objects within video

frames. Using the luminance components of a frame, a process for enhancing the edges

is performed followed by edge detection and the filtering of areas unlikely to contain

text. Connected component analysis, which identifies pixels that are connected, is

performed on the remaining areas to identify text boxes. Text boxes from the same

line of text are merged. These text boxes can become objects to be tracked or passed

to character recognition software.

Fan et al. [FLXW04] detect objects representing a high-level concept, such as

gastrointestinal regions [FLE04]. The frames from sample clips containing examples

of the high-level concept are segmented by identifying regions with homogeneous

color or texture. Afterward, a medical consultant annotates those regions matching

the high-level concept. Low-level features, such as dominant color and texture, are

extracted for these regions and passed to a support vector machine for learning the

relationship between features and concept.
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Figure 2.4. A ball thrown into the air (left) and the optical flow from two of the
frames for the sequence (right).

2.2.5 Motion-Based Features

Motion within a video is primarily of two types: movement on the part of the

objects being filmed and movement due to camera actions. In some specific types

of videos, there might also be other types of movement, such as text scrolling at

the bottom of a news program. Motion-based methods largely consist of the use of

MPEG motion vectors or the calculation of optical flow.

Optical flow is an estimate of motion in a sequence of images calculated from

the velocities of pixel brightness patterns, which could be due to object motion or

camera motion, and is calculated from differences between two consecutive video

frames. Figure 2.4 shows a ball thrown into the air from left to right (with a dotted

line representing the motion of the ball that the viewer would observe in the preceding

and following frames) and the corresponding plot of optical flow values derived from

two of the video frames in the sequence.

There are many ways to measure optical flow [BFB94]. The method described

by Horn and Schunck [HS81], which is used by several of the papers that we reviewed,

determines the optical flow by solving two constraint equations. The gradient con-

straint equation finds the component of movement in the direction of the brightness
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gradient. The second constraint is known as the smoothness constraint and is used

to determine the component perpendicular to the brightness gradient.

Fischer et al. [FLE95] detect total motion in a shot by comparing the histograms

of blocks of consecutive frames. In order to detect object motion, they first calculate

optical flow as described in [HS81]. Motion due to camera movement (e.g., panning)

would result in all blocks having motion. Using this, camera motion can be subtracted,

leaving only the motion of objects. These objects are identified by segmenting pixels

with parallel motion.

Nam et al. [NAT98] measure the motion density within a shot. A 2D wavelet

transform is applied to each frame within a shot. A 1D wavelet transform is then

applied to the intensity of each pixel in the sequence of 2D-wavelet transformed frames

to produce a motion sequence [NT98], which is followed by calculating the dynamic

activity within the shot.

Roach et al. [RMX02] detect the motion of foreground objects using a frame-

differencing approach. Pixel-wise frame differencing of consecutive frames is per-

formed using the Euclidean distance between pixels in the RGB color space. These

values are thresholded to better represent the motion and doing so for the sequence of

pixels produces a 1D signal in the time dimension. To reduce this signal’s sensitivity

to camera motions, it is differentiated to produce a final motion signal.

The quantity of motion in a video is useful in a broad sense, but it is not

sufficient by itself in distinguishing between the types of video that typically have

large quantities of motion, such as action movies, sports, and music videos [NAT98].

Calculating the quantity of motion in a shot includes using optical flow, MPEG

motion vectors, or frame differencing. Optical flow is costly to calculate and may

not match the direction of the real motion, if that is also required. The optical flow

algorithm of Horn and Schunck has problems with occluded edges since they cause a
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discontinuity in reflectance [HS81]. Extracting motion vectors from MPEG-encoded

video is not costly, but of course requires that the video be in this video format in

the first place. However, motion as indicated by motion vectors may be less accurate

than motion as measured using optical flow [WDV+03]. Iyengar and Lippman [IL97]

found that measuring motion using frame differencing produced results similar to

those that measured motion using optical flow, yet frame differencing is simpler to

implement and less computationally expensive. However, region-based features such

as frame differencing are non-specific as to the direction of the motion [RMP01].

Measuring specific types of motion, such as object motion or camera motion,

is also a difficult problem because of the difficulty in separating the two. Many

approaches for measuring the motion of objects require that the object be segmented,

which is a difficult task itself [RMP01]. Identifying object motion can be made easier

if global motion can be detected and adjusted for. However, calculating global motion

is costly and therefore some applications only apply calculations to regions [HFF05].

2.3 Dimensionality Reduction

Samples in a data set are often represented by a very large number of features,

which may make learning difficult or be computationally infeasible to process [Pyl99].

This has led to methods for reducing the dimensionality of the data, either by elimi-

nating variables thought to be irrelevant or by transforming each sample such that it is

represented by less information while retaining the relationships between the samples

[PHL04]. While many methods have been proposed for reducing the dimensionality

of a data set, we only describe those utilized in this work [Fod02].
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2.3.1 Discrete Wavelet Transform

The traditional approach to analyzing signals has been to use Fourier analysis,

which consists of finding a representation of the signal as a sum of sines and cosines.

An assumption of Fourier analysis is that the signal is periodic, which makes Fourier

analysis inappropriate for signals that are not periodic [Gra95]. Like Fourier analysis,

the purpose of wavelet analysis is to find a new representation of a signal; however,

this representation is a sum of wavelets, which are waves that are short in duration

[War00]. From the linear algebra perspective, wavelets are a set of basis functions; we

wish to represent our signal in terms of these basis functions. The wavelet transform

decomposes a signal into two signals: a trend (or weighted average) signal and a

details signal, each having half the terms of the original signal [Wal99]. The wavelet

transform can be applied recursively to each new trend signal.

Wavelet analysis can be applied to two-dimensional data, such as an image,

by first applying the wavelet transform to each row (or column) of the image and

then then transformed columns (or rows). Figure 2.5 shows a video frame from the

movie Clean Slate. Figure 2.6 shows the same frame after applying 1-level of a Daub4

wavelet. The vertical details of the image are highlighted in the upper right quadrant

of the image. The horizontal details of the image are highlighted in the lower left

quadrant. The lower right quadrant represents the diagonal details of the image. The

upper left quadrant represents the trend values. To make this area recognizable, the

wavelet-transformed values were converted to an intensity image, which can be seen

in Figure 2.7.

Wavelet analysis has a number of applications in image processing. By keeping

only the trend signal values, the dimensionality of the original signal can be reduced.

By comparing Figures 2.5 and 2.7, we can see that it is easy to recognize the reduced

version of the original image while using 75% fewer values. In addition to reducing
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Figure 2.5. Frame from Clean Slate.

Figure 2.6. One level of wavelet transformation of frame.
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Figure 2.7. One level of wavelet transformation of frame (intensity image).

the dimensionality, applications of wavelets to images have been shown to improve

matching in image retrieval [JFS95]. The previously mentioned ability of wavelet

analysis to separate the horizontal and vertical components of images has made it

popular for edge detection [Wal99].

2.3.2 Random Projection

The idea of random projection is to project a set of points in a high-dimensional

space to a randomly selected lower-dimensional subspace [Das00]. The application

of random projection is simple: Given an input matrix X with dimensions N × d

where N is the number of samples and d is the dimensionality of each sample, we can

transform this matrix to a new matrix X ′ with dimensions N × k by multiplying X

by a random matrix R with dimensions d× k such that X ′ = XR. Papadimitriou et
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al. [PTRV97] show that there is a high probability that pairwise Euclidean distances

are kept in the projected subspace.

Several ways of generating the transformation matrix R have been proposed.

One way is to generate a matrix in which each element is drawn from a standard

normal distribution, N(0, 1). Then each column of this matrix is normalized such

that the sum of the column values is one [FB03].

An advantage of random projection over principal component analysis (PCA),

a popular dimensionality reduction method, is that PCA is very computationally ex-

pensive while generating and applying random projections is not [BM01]. Also, should

the original matrix X be too large to work with in memory, it can be partitioned and

the matrix R applied to the individual partitions with the results combined.

2.4 Clustering

Clustering is an unsupervised method of learning, that is, the class that each

training sample belongs to is unknown to the system [HK06]. This contrasts with

supervised learning, in which class labels are associated with the training samples.

The difference is that supervised learning methods can take advantage of the class

being known to find the relevant features for assigning a new object to a class. Unsu-

pervised learning methods attempt to group similar objects without knowing which

features are relevant for class membership and typically, without even knowing the

number of classes.

2.4.1 Distance Measures

Each clustering method requires determining the similarity of objects, typically

viewed as the distance between them. Some of the standard distance measures are

the Manhattan, Euclidean, Minkowski, and Mahalanobis distances. The formulae for
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Table 2.1. Some common distance measures

Name Equation
Manhattan dij =

∑p
k=1

|xik − xjk|

Euclidean dij = (
∑p

k=1
(xik − xjk)2)

1/2

Minkowski dij = (
∑p

k=1
|xik − xjk|

r)
1/r

Mahalanobis D2
ij = (Xi − Xj)Σ

−1(Xi − Xj)

each of these can be found in Table 2.1 where each individual is represented by a

p-dimensional vector X = {x1, x2, . . . , xp} and xik is the kth element of individual i

and xjk is the kth element of individual j.

The Manhattan (also known as the city block or l1 norm) and Euclidean (or l2

norm) distances are special cases of the Minkowski (lr norm) distance with r = 1 and

r = 2, respectively. If we think in terms of two-dimensional geometry, although each

of the lr norms can be calculated in n dimensions, then given right triangle ABC

with the right angle being at point B, the distance between points A and C using

the Euclidean distance as the metric is the hypotenuse of the triangle. The distance

between these same two points with the Manhattan distance as the metric is the sum

of the lengths of sides AB and BC.

The Mahalanobis distance, which adjusts for the covariance, calculates the dis-

tance between objects Xi and Xj by

D2

ij = (Xi − Xj)Σ
−1(Xi − Xj)

where Σ is the pooled within-group covariance matrix. The Mahalanobis distance

becomes the Euclidean distance when Σ is the identity matrix [Bis06]. A major

disadvantage of using the Mahalanobis distance is that it is very computationally

expensive.
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Figure 2.8. Example of dendrogram.

2.4.2 Hierarchical Clustering

Hierarchical clustering methods are of two types: agglomerative or divisive.

Agglomerative clustering begins with all individuals separate. The two nearest indi-

viduals are joined into a group. Then the next two nearest objects (i.e., individual or

group) are joined and this process is repeated until all individuals are members of the

same group. Divisive clustering begins with a single group and divides it into smaller

groups until eventually each member has been separated out. In both cases it is

possible to represent the relationships as a tree, or dendrogram, which makes hierar-

chical clustering particularly popular for exploring relationships in the data [MM04].

Figure 2.8 shows a set of points in two dimensions and the corresponding hierarchical

relationship.

We can see in the X-Y plot of the data that the points with coordinates (4, 5)

and (4, 6) are the closest (at least according to the Euclidean distance, to be discussed

below) and these two points are the first to be connected in the dendrogram, shown

by the lowest horizontal connection. For this particular example, we can determine

the order in which the objects were grouped by following the order of the horizontal
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connections from bottom to top. The highest horizontal connection represents the

combination of all of the points into a single group. The length of the vertical lines is

an indication of the distance between two connected objects. Shorter vertical lengths

represent objects that are closer.

Once a hierarchy has been constructed, a decision must be made as to where

to prune (i.e., partition or cut) the tree in order to form the groups. For example,

if the tree in Figure 2.8 is pruned by drawing a horizontal line a quarter of the way

down from the top, then the two branches that are cut would each form a group. The

membership of each group consists of all of the objects connected to the cut branch.

Regardless of whether the agglomerative or divisive method is chosen, to de-

termine the similarity of two objects (an individual or group) consideration must be

given to how to measure the distance between objects and how to use the distances.

Of the methods that have been explored for determining how to use the distance

between objects, some of the most common are single linkage, complete linkage, and

average linkage [ELL01]. The single linkage method determines the similarity of two

objects by calculating the distance between the nearest members of each object; the

most similar object is the one for which this distance is the smallest. Because single

linkage only relies on the distance to the nearest member of a group, a new object

may not be near the group as a whole. Single linkage is computationally efficient but

is subject to chaining.

The complete linkage method determines the similarity of two objects by cal-

culating the distance between the farthest members of each object, with the most

similar object being the one for which this distance is the smallest. This ensures that

a new object will be close to all members of a group. However, a potential problem

is that complete linkage is sensitive to outliers and in fact constructing a hierarchy

using complete linkage can be used to find outliers. An example of complete linkage
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Figure 2.9. Example of complete linkage.

can be seen in Figure 2.9. In this example, there are two existing groups and point

A is to be assigned to one of these groups. By the Euclidean distance, the member

of group 1 with the maximum distance to A is B. The member of group 2 with the

maximum distance to A is C. The minimum of these maximums is the distance from

A to C, so A would be assigned to group 2.

Average linkage determines the similarity of two groups by calculating the av-

erage distance from each member of one group to each member of the other group.

Average linkage is more robust to outliers than single or complete linkage [ELL01].

An advantage of hierarchical clustering over some other forms of clustering, such

as k-means, is that it is unnecessary to know the number of clusters in advance. Once

a hierarchy has been constructed of n objects, it can be partitioned into anywhere

from 2 to n clusters. This is also an advantage in terms of computational performance.

A disadvantage of hierarchical clustering is that once an individual has been merged

into a group (agglomerative method) or separated from a group (divisive method), it

can not be undone. Another disadvantage is that the data may not be hierarchical

in nature and therefore hierarchical clustering imposes a structure that doesn’t exist

in the data.
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2.4.3 K-Means

The k-means algorithm assigns objects to the group whose center it is closest

to, with closest in this case typically being determined using the Euclidean distance

[HK06]. k of the objects to be clustered are chosen as the initial group centers (some

implementations may choose k random points in space instead). Then each of the

remaining objects is assigned to the group whose center it is closest to. Afterwards,

the mean value of each group is calculated as the new group center. Now each object

is assigned to the group whose mean value it is closest to and a new group center

is calculated. This process is repeated until no objects change group membership or

until some stopping criterion is met. Different initial values for the group centers can

result in some differences in the final group memberships.

k-means is a popular clustering method that is easy to understand and to im-

plement. It attempts to produce clusters in which the intracluster distance is low

but the intercluster distance is high. k-means is most suitable when the groups in

the data are well-separated. One disadvantage of k-means is that it is sensitive to

outliers. Another disadvantage of k-means clustering as compared to hierarchical

clustering is that changes in the value of k require the entire clustering process to be

repeated, which can make a search for the performance-maximizing value of k very

computationally expensive.

2.4.4 Determining the Number of Groups in the Data

It is often unclear how many groups exist in a data set or what relationship

exists between the groups. This is particularly true when looking at the raw data.

For example, do the groups form nicely separated spheres or is there much overlap

that will make discrimination difficult? When hierarchical clustering is used, which

combination of linkage method and distance metric is best for a given data set in
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single linkage average linkage complete linkage

Figure 2.10. Comparison of linkage methods for Exploratory Data Analysis.

the sense that it clearly identifies the groups present in the data? One method for

attempting to answer these questions is to use exploratory data analysis (EDA), which

typically consists of making a visual inspection of the data in some form [MM04]. An

example can be seen in Figure 2.10. In this example, generated from the famous Iris

data set, dendrograms are generated for the hierarchies produced using the single,

complete, and average linkage methods with the Euclidean distance as the distance

metric.

As stated earlier, the length of the vertical bars in the dendrogram represents

the distance between the two objects (i.e., individual or group) connected by a hor-

izontal bar. Each of the dendrograms in Figure 2.10 have the greatest height in the

last horizontal connection, which suggests that at least according to each of these
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combinations of linkage method and distance metric, there are two groups present in

the data set.

While visual inspection methods do serve a purpose, they are subjective in

nature and also make it difficult to automate the process of identifying the number of

groups present in the data set. Many methods have been proposed for automatically

determining the number of groups within a data set, which also allow the choices to

be more quantitative. Milligan and Cooper [MC85] compared 30 different methods

using Monte Carlo simulation and concluded that the “best” metric is dependent on

the data. We briefly mention the two methods used in this work for determining the

number of groups in the data.

The method of Krzanowski and Lai [KL88] uses the following equation:

DIFF(g) = (g − 1)2/p trace(Wg−1) − g2/p tr(Wg)

where g is the number of groups, p is the number of dimensions, and Wg is the within-

group-sum-of-squares covariance matrix for group g. By this measure, the number of

groups in the data is the value of g that maximizes

KL(g) =

∣

∣

∣

∣

DIFF(g)

DIFF(g + 1)

∣

∣

∣

∣

One disadvantage of this method is that it is unable to determine if the data only

represents a single cluster [TWH01].

Tibshirani et al. [TWH01] proposed the Gap statistic. First, the sum of the

pairwise distances between all group members of each of the k clusters is calculated:

Dr =
∑

i,i′∈Cr

dii′

where Dr is the sum of the distances for cluster r. This is followed by calculating

Wk =
k

∑

r=1

1

2nr

Dr



31

where k is the number of clusters, nr is the number of members of cluster r, and Wk is

the pooled within-group-sum-of-squares if the squared Euclidean distance is used for

measuring the distance between group members. This is compared to a null reference

distribution [MM04] to determine the number of groups present in the data.

2.5 Hidden Markov Models

In this section, we provide an overview of hidden Markov models for classifi-

cation. For a much more detailed discussion of hidden Markov models, see Rabiner

[Rab89].

The hidden Markov model (HMM) is widely used for classifying sequential data,

in particular temporal processes, and for modeling probabilistic processes. An HMM

represents a set of states and the probabilities of making a transition from one state

to another state [RJ86]. While in each state, an observation symbol can be generated

with some probability. The model is ‘hidden’ because the true number of states

and which state the model is in are unknown; only the observation symbols being

generated are known with certainty.

Formally, an HMM is represented by Q = 1, . . . , N states, each generating

V = 1, . . . ,M observation symbols, an N × N matrix A of transition probabilities

where aij is the probability of moving to state j while in state i, an N × M matrix

B of observation (or emission) probabilities where bik is the probability of generating

symbol vk while in state i, and a 1 × N vector π of starting probabilities where i is

the probability of beginning in state qi.

These concepts can be demonstrated by the example of the Occasionally Dis-

honest Casino from Durbin et. al. [DEKM98]. In a dice game in a casino, the casino

uses a fair die 95% of the time, but 5% of the time switches it for a loaded die. Once

the casino has begun using the loaded die, the casino will continue to use it 90% of



32
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Figure 2.11. Example of hidden Markov model.

the time but 10% of the time will switch back to the fair die. The probability for

each side of the fair die is 1/6. When using the loaded die, the probability of getting

a 6 is 50% while the remaining five sides of the die each have a probability of 10%.

We’ll assume that the probabilities of the casino beginning with either die are equal.

Figure 2.11 is a graphical representation of the HMM representing the Occasionally

Dishonest Casino.

In more formal terms, this example has two hidden states Q = {Fair Die, Loaded Die}

and observation symbols V = {1, 2, 3, 4, 5, 6}. The starting, transition, and observa-

tion probabilities are

π =

[

1

2
,

1

2

]

, A =







0.95, 0.05

0.10, 0.90






, B =







1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6

1

10
, 1

10
, 1

10
, 1

10
, 1

10
, 1

2







respectively.

To use hidden Markov models, one or more of the following problems must be

dealt with [Rab89] [DHS01]:
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• Evaluation Problem – Given an HMM with known transition probabilities, what

is the probability that this model would have generated a particular sequence

of observation symbols?

• Decoding Problem – Given an HMM and a set of observation symbols, what

is the most likely sequence of hidden states for producing these observation

symbols?

• Learning Problem – Given a set of observation symbols, what are the parameters

for constructing the best model that generates these symbols?

In order to construct an HMM, we must deal with the Learning Problem. Figure

2.11 represents the true underlying model, but in many situations the actual model

is unknown and only the observation symbols are known. To construct a model, we

must guess the number of states (assuming they are unknown) and provide samples of

sequences of observation symbols. We can test models with different numbers of states

to determine which one best classifies our test samples. The choice of the number

of states is important because too few will result in a model that doesn’t accurately

represent reality, but too many will result in a model that fits the particular data

instead of generalizing (i.e., overfit) [Moo07]. Using the assumed number of states

and the sequences of observation symbols, the model estimates the transition and

observation probabilities through an iterative process. This is often accomplished

using the Baum-Welch algorithm, which is a version of the Expectation Maximization

(EM) algorithm. There is no guarantee that the learned parameters are optimal

[DHS01].

It is typical to construct one HMM for each class to be predicted. The Evalua-

tion Problem is the situation we are dealing with when using constructed models to

classify test sequences (technically this assumes that P (model1) = · · · = P (modeln)).

The observation sequence representing the sample to be classified is provided to each
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HMM. The one that produces the highest likelihood (i.e., probability) for generating

this sequence is the class to which the sample will be assigned.



CHAPTER 3

RELATED WORK

Research related to this work falls primarily into two categories. The first is the

previously mentioned video recommendation. The second is automatic classification

of video by genre because of the similarity in feature selection and classification.

While the application area is video recommendation, the general approach that

we have taken in feature selection and classification is drawn from efforts to automat-

ically classify video by genre.

3.1 Video Recommendation

One of the earliest approaches to video recommendation is the work of Karunanithi

and Alspector [KA95] in which they compare a case-based approach (which they refer

to as a feature-based approach) to a collaborative filtering approach (which they refer

to as a clique-based approach). The case-based approach trains a neural network to

predict movie ratings on a 1–10 scale. The features provided to the neural network

are category (i.e., genre), MPAA rating, the rating provided by movie critic Leonard

Maltin, Academy Award (i.e., won, lost, or not considered), length in minutes, and

country of origin (i.e., USA, made in USA with foreign collaboration, or foreign)

[AKK97]. The collaborative filter approach determines the similarity of two viewers

by calculating Pearson’s correlation between the movie ratings of each viewer. Re-

sults are reported as the correlation between the predicted and the actual ratings. For

most of the viewers used in the study, the collaborative filtering approach produced

the best results.

35
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Basu et al. [BHC98] investigate a collaborative filtering approach, a case-based

approach, and a hybrid approach. All classification was performed using inductive

learning and the results were evaluated using precision and recall, with the emphasis

placed on achieving high precision at the expense of recall. The collaborative filtering

approach finds similar viewers strictly by which movies they like and dislike. The

case-based approach uses 26 features (e.g., actors, genre, titles, and so forth) obtained

from the Internet Movie Database (IMDb). To create a hybrid approach, the genre

comedies, dramas, and action are isolated and the users who liked them are found.

The proportion of specific genre of movies that a user has rated as liked is used to

determine if that user likes a specific genre in general. The precision and recall are

77% and 27% for the collaborative filtering approach, 73% and 33% for the case-based

approach, and 83% and 34% for the hybrid approach.

Smyth and Cotter [SC99] combine case-based and collaborative filtering ap-

proaches in order to offset the weaknesses of each. Their hybrid recommender re-

quires that a user initially provide information about the types of television programs

that they like and dislike. This information is used to find viewers with similar inter-

ests. Some recommendations are derived from the content information provided at

registration while other recommendations are based on the preferences of the similar

viewers. Smyth and Cotter measure performance by the percentage of users who

receive N or more good recommendations per day, where N = 1, 2, 3. The collabora-

tive filtering recommendations produce one or more good recommendations per day

for 96% of users while the case-based recommendations produce one or more good

recommendations for 78% of users.

Kurapati et al. [KGS+01] use a case-based approach to make television pro-

gram recommendations by constructing three agents. An implicit preferences agent

analyzes the viewer’s viewing habits. An explicit preferences agent learns preferences
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by asking the viewer questions about general interests, such as preferred genre, chan-

nels, and time-of-day for watching television. A feedback agent allows the viewer to

provide specific information, such as favorite actors and television programs. Both

Bayesian and decision tree classifiers were investigated for constructing the implicit

preference agent.

Ardissono et al. [AGT+04] combine three user models. The Explicit user model

is constructed from a form the viewer fills out requesting demographic information,

general interest in topics such as books and politics, and TV program preferences.

The Stereotypical user model uses information obtained in constructing the Explicit

user model, which in turn is used to determine how well the viewer matches a number

of pre-existing categories, or stereotypes, of TV viewers. Finally, the Dynamic user

model is constructed by observing the viewer’s TV viewing habits. In particular,

the day and time of TV programs is monitored as well as the types of TV programs

watched. The preferences derived from these three user models are combined using a

weighted sum. A precision of 0.8 and a mean absolute error rate of 0.3 were achieved.

The fusion of these three user models has several strengths. The input of the

user who constructed the Explicit user model allows the system to begin making

recommendations immediately as well as to match the user to existing viewer profiles

(the Stereotypical user model). The Dynamic user model allows the system to learn

new preferences over time. However, this approach has several weaknesses as well.

The user may not wish to spend the time necessary to provide the initial preference

information. Without much initial preference values, the Explicit and Stereotypical

user models will be limited in their usefulness. The Dynamic user model allows the

system to learn over time, but it considers the time and day of viewing as important

features. We hypothesize that digital video recorders, which make recording television
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programs for later viewing easy, will reduce the importance of time and day as features

since a viewer’s choices will not be limited to what is on at a certain time of the day.

Zimmerman et al. [ZKB+04] extend the work of Kurapati el al. [KGS+01]

by using a radial basis function neural network to fuse five individual recommenders.

The individual recommenders consisted of two that learned implicitly from individual

viewing history (one each using Bayesian or decision tree classifiers), two that learned

implicitly from household viewing history (one each using Bayesian or decision tree

classifiers), and one that learned explicitly.

We believe that our approach has several advantages over existing methods. It

does not require that a viewer provide any information about his preferences other

than a rating for a video that he has viewed. This saves time as well as avoids poor

recommendations that might occur due to omissions in the preference description.

Another benefit is that it is unnecessary to identify similar viewers. A third is that,

as mentioned earlier, there are situations in which neither case-based nor collaborative

filtering approaches are applicable and the only choice is to analyze the video itself.

Our approach does have some known disadvantages, which are not trivial. One

is that some video may not have closed captions nor may it be possible to automat-

ically generate a transcript using speech recognition. If this is the case, preferences

could be learned using the visual features alone. Another is that initially the system

would not know anything about the viewer’s preferences and would require that the

viewer locate enough video of interest to learn preferences.

3.2 Classification of Video by Genre

Approaches to classification of video by genre use features from three modalities:

audio, visual, or text. We only discuss classification methods that utilize visual or
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text features because of their relationship to this work. For a survey of the video

classification literature, see Brezeale and Cook [BCar].

Zhu et al. [ZTL01] classify news stories using features obtained from closed cap-

tions. News video is segmented into stories using the topic change marks (explained

in Chapter 2) inserted by the closed caption annotator. A natural language parser

is used to identify keywords within a news segment and the first 20 unique keywords

are kept. A weighted voting scheme involving the conditional probabilities of classes

and keywords is used to classify the news segment.

Brezeale and Cook [BC06] perform classification using text and visual features

separately; we describe the use of text features here. The text features are the closed

captions from DVDs. After processing the closed caption text with a stop list and

stemming, classification was performed using a support vector machine. There were

fifteen genres of movies.

Lin and Hauptmann [LH02] combine classifiers of visual and text features. A

video is divided into shots and a keyframe is extracted from each. Each keyframe

is represented by a vector of the color histogram values in the RGB color space. A

support vector machine (SVM) is trained on these features. For each shot, the closed

captions are extracted and represented as a vector. For these vectors, another SVM

is trained. Two methods for combining classifiers are investigated. The first method

is based on Bayes’ theorem and uses the product of the posterior probabilities of

all classifiers. Performance is improved by assuming equal prior probabilities. The

second method uses an SVM as a meta-classifier for combining the results of the

other two SVMs. Both methods had similar recall, but the SVM meta-classifier had

statistically significant higher precision.

Lin and Hauptmann combine both visual and text-based features for classifica-

tion and in that regard their approach is very similar to our approach described in
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this work. Our approach differs from that of Lin and Hauptmann in the choice of

machine learning algorithms employed as well as our consideration of the temporal

relationship between features. We also use clustering to reduce the feature space from

which to produce observation symbols for the HMMs.

Wang et al. [WCY03] classify news video into one of ten categories. Classifi-

cation is performed primarily using text features. The spoken text from news stories

is extracted using speech recognition. Audio features are extracted from one second

clips. Forty-nine audio features are produced including mel-frequency cepstral co-

efficients, high zero crossing rate ratio, and bandwidth. From each video shot, 14

features are produced including the number of faces, display of closed captions, shot

duration, and motion energy.

Using the text features, an SVM produces a confidence vector for each news

story. A confidence vector is produced by one Gaussian mixture model (GMM) per

class using the audio features. A confidence vector is also produced by one GMM per

class using the visual features. If the confidence vector produced by the SVM using

text features exceeds some threshold, then it is used to classify the news story. If not,

then an SVM-based meta classifier is used with the input being the concatenation of

the text, audio, and visual confidence vectors.

Qi et al. [QGJ+01] classify a stream of news video into types of news stories.

Audio and visual features are first used to detect video shots and then these shots

are grouped into scenes if necessary. The closed captions and any scene text detected

using optical character recognition (OCR) are the features used by a support vector

machine for classifying the news stories.

Rasheed et al. [RSS03] used low-level visual features to classify movie previews

by genre. Features are chosen with specific cinematic principles in mind. The features

are average shot length to measure the tempo of the scene, shot motion content to
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determine amount of action, lighting key to measure how well light is distributed (i.e.,

are there shadows) and color variance, which is useful for distinguishing between such

genre as comedies (which tend to have bright colors) and horror movies (which tend

to be dark).

Clustering is performed using mean-shift clustering. This method is chosen be-

cause it can automatically detect the number of clusters and it is non-parametric, so it

is unnecessary to make assumptions about the underlying structure. The genre stud-

ied are action, comedy, drama, and horror, but the authors kept in mind that some

movies may fall into several genre categories. The mean-shift clustering approach pro-

duced six clusters, which are labeled action+drama, drama, comedy+drama, comedy,

action+comedy, and horror.

Nam et al. [NAT98] focus specifically on identifying violent video shots. First,

the motion within a shot is measured by applying a 2D wavelet transform to each

frame within a shot. A 1D wavelet transform is then applied to the intensity of each

pixel in the sequence of 2D-wavelet transformed frames. Those shots whose motion

exceeds some predetermined threshold are identified as action shots. Violent action

shots are differentiated from non-violent action shots by identifying audio and visual

signatures associated with gunfire and explosions. Specifically, violence is identified

using the colors associated with flames and blood as well as the energy entropy of

bursts of sounds produced by gunfire and explosions.

Dimitrova et al. [DAW00] classify four types of TV programs: news, commer-

cials, sitcoms, and soap operas. Faces and text are detected and tracked. Counts of

the number of faces and text are used for labeling each frame of a video clip. An

HMM is trained for each class using the frame labels as the observations.

Lu et al. [LDA01] classify a video by first summarizing it. The color channel

bands of each frame are normalized and then moved into a chromaticity color space.
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After more processing including both wavelet and discrete cosine transforms, each

frame is now in the same lighting conditions [DA00]. A set of twelve basis vectors de-

termined from training data can now be used to represent each frame. A hierarchical

clustering algorithm segments the video into scenes; the keyframes from the scenes

represent the summarized video. One HMM is trained for each video genre with the

keyframes as the observation symbols.

Huang et al. [HLW+99] combine audio and visual features for classifying video

from the following classes: news reports, weather forecasts, commercials, basketball

games, and football games. The audio features produced are as described in [LHW98].

The visual features are dominant color, dominant motion vectors, and the mean and

variance of the motion vectors.

Four ways of using these features are investigated. In the first method, the audio

and visual features are determined for each clip and concatenated into a single vector.

The feature vectors for sequences of 20 clips are the input to HMMs, one for each

video class. In the second method, audio, color, and motion features are produced

for each video frame and a separate HMM is trained for each. The product of the

observation probabilities for each these three types of features is used for classification.

The third method uses two stages of HMMs. In the first stage, audio features are

used to train HMMs for distinguishing between commercials, football or basketball

games, and news reports or weather forecasts. In the second stage, visual features are

used to train HMMs to distinguish football games from basketball games and news

reports from weather forecasts. For the fourth method, for each of the three types of

features (audio, color, motion), an HMM is trained for each class. The output from

these HMMs becomes the input to a 3 layer perceptron neural network. The product

HMM gave the best average classification accuracy.
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Gibert et al. [GLD03] use motion and color to classify sports video into one of

four classes: ice hockey, basketball, football, and soccer. Motion vectors from MPEG

video clips are used to assign a motion direction symbol to each video frame. Color

symbols are assigned to each pixel of each frame. A symbol for the most prevalent

color is assigned to the entire frame. Unlike most other applications of HMMs for

video classification, the authors train two HMMs for each video class: one for the

frame color symbols and the other for the motion direction symbols. The output

probability for each class is calculated by taking the product of the color and motion

output probabilities for that class.



CHAPTER 4

METHODOLOGY

In this chapter we discuss conceptually the overall methodology of our final

approach as well as the rationale for our choices. Specific implementation details are

discussed in Chapter 5.

As stated in the Introduction, our intent is to learn a user’s video preferences

by constructing a model whose input is the set of features from the videos that this

user has viewed and rated. We intend to represent each video by a combination

of text features, specifically closed captions, and visual features while maintaining

the temporal relationship of the features. Were we uninterested in the temporal

relationship, there would still be a variety of ways to combine the text and visual

features but an easy way to represent the video would be to create a vector for

all of the closed captions and a vector for the visual features (most likely a subset

of all of the visual features for computational reasons) and concatenate the two.

However, the order in which text and visual features appear in a video are important

to its meaning and therefore we believe that this temporal relationship should not be

ignored. Therefore, in order to represent a video, we have two basic issues to address:

1) how to combine the text and visual features and 2) how to capture the temporal

relationship of features.

A common approach to dealing with the first issue is to segment a video into

shots and then represent each shot by the text and visual features that occur during

this shot. As discussed in Section 2.2, a shot is a natural way of segmenting a video,

but as was also discussed, attempts to automate this process with a high degree of

44
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1573
01:34:21,963 −−> 01:34:23,765
RELAX, DOCTOR. I’M
SURE THEY’RE JUST HERE
1574
01:34:23,765 −−> 01:34:25,767
TO GIVE US A SENDOFF.

Figure 4.1. Example of two closed caption sets from Star Trek: First Contact.

accuracy have proven difficult. In our own attempts to automatically segment video

into shots we found the process to be highly unreliable.

Because the text features that we are utilizing are closed captions, specifically

those available on DVDs of movies, we have an alternative method for segmenting

a video. Closed captions that are displayed on-screen at the same time, which we

have termed closed caption sets, are stored on a DVD along with the time period

for which the closed caption will be displayed. For other video sources that contain

closed captions, such as television broadcasts, the time in which the closed captions

appear could be ascertained from the elapsed time of the video.

By using these closed caption set display times, we can know exactly when

during the course of a video certain text and visual features occur together. Therefore,

our proposed methodology for combining text and visual features begins by extracting

the closed caption sets from the training videos that the viewer has rated with the

intent of using the times that the closed caption sets are displayed as the mechanism

for segmenting the video. The display times are used only for segmentation and for

finding a corresponding video frame from which to extract visual features. For

example, Figure 4.1 shows the 1573rd and 1574th closed caption sets from the movie

Star Trek: Close Contact with their timestamps. The timestamps for the 1573rd

closed caption set show that this set of closed captions will be displayed from the

time period beginning at 1 hour, 34 minutes, 21 seconds, and 963 milliseconds of
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the movie until 1 hour, 34 minutes, 23 seconds, and 765 milliseconds. For a movie

encoded at 29.97 frames per second, we can calculate that this two second period

begins at frame 169,689 and ends at frame 169,743. Visual features can be extracted

from one or more of the video frames in this range.

One potential problem that can occur from creating a segment for each indi-

vidual closed caption set is that the video may be over-segmented. The number of

unique terms that occur in a closed caption set is typically less than twenty while

the dimensionality of the feature vectors representing the text may have thousands

of terms, resulting in term feature vectors in which the vast majority of terms have

values of zero. The consequence of this is that there may be little overlap between

the text feature vectors and therefore it is difficult to determine which feature vectors

are similar. A solution to this problem is to combine several closed caption sets into

a single segment, which is represented by a single vector. Specifically, M consecutive

closed caption sets are combined to form a single feature vector (Section 2.1), with

a new feature vector being constructed at every N th closed caption set. Once the

segmentation times have been determined, visual features are extracted from a single

video frame (Section 2.2) that occurs during this time period to represent the entire

time period. If M = 2, for example, then all of the words found in both of the closed

caption sets shown in Figure 4.1 would be combined into a single segment. The visual

features representing this segment would be obtained in some manner from the range

of frames that begins with the display of the 1573rd closed caption set (frame 169,689)

and ends when the 1574th closed caption set stops being displayed (frame 169,743).

In this work we would represent this entire range of video frames by a single frame

in this range.

Another potential problem with creating segments from individual closed cap-

tion sets or groups of closed captions in which no groups overlap is that possibly
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important visual features can be missed. Since closed captions are typically not dis-

played constantly, there is a gap between closed caption sets that is lost. For example,

if one set of closed captions is displayed from frame 100 until frame 200 and the next

set of closed captions is displayed from frame 251 to frame 400, then the 50 frames

that occur between these closed caption sets will not be represented under these con-

ditions. This potential problem can be avoided by having the groups of closed caption

sets overlap.

In order to address the second issue–capturing the temporal relationship of

features–we chose to use hidden Markov models. Two HMMs can be constructed,

one for ‘liked’ movies and the other for ‘disliked’ movies. To construct the ‘liked’

HMM, sequences from each of the movies the user has rated as ‘liked’ would be

provided while the ‘disliked’ HMM would be constructed using sequences from the

movies the user has rated as ‘disliked’.

A simple approach for generating the sequences of observation symbols for each

movie would be to concatenate the text and visual feature vectors from each closed

caption set time period into a single vector and provide the sequence of these vectors as

they occur chronologically to the HMM. There is a major problem with this approach,

however. Because different combinations of closed caption sets and visual features

are unlikely to have the same term feature representation, each combination would

essentially represent a different observation symbol which would result in nearly every

observation symbol being unique. Another consequence is that it is unlikely that

the observation symbols produced from test samples will match any of the existing

observation symbols and therefore HMMs are not suitable for classifying the test

sequences. Our goal is to identify similar movies this viewer would like, not recognize

the specific movies they have rated.
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Figure 4.2. Overview of the data processing phase during training.

Our solution to this problem is to use clustering so that similar feature vectors

will be represented by the same observation symbol. With this approach, similar

movies should have similar sequences of observation symbols. In order to combine

the visual features and closed captions, clustering (e.g., k-means, hierarchical, and so

forth) is applied to the feature vectors for the closed captions for all of the movies

a viewer has rated. This process is repeated for the feature vectors representing the

visual features of these same movies. Automated methods (Section 2.4.4) determine

how many clusters should be produced if using a method such as k-means or where

to prune each hierarchy in the case of hierarchical clustering. The hypothesis is that

vectors from movies the user liked and disliked will tend be in different groups. An

overview of the data processing phase during training is shown in Figure 4.2.

Observation symbols are generated by combining the cluster number of a closed

caption set and the cluster number of its corresponding video frame (i.e., the video

frame chosen for the time period that the closed caption set was displayed) in the form

(closed caption set cluster number, video frame cluster number). This pro-

cess of generating observation symbols is repeated for each pair of closed caption set

and video frame to produce the sequence of observation symbols for a specific movie,

with a separate sequence being generated for each movie. Individually, the closed

captions and the corresponding visual features that occur during a video may have
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Figure 4.3. Example of observation symbol production.

multiple possible meanings. By generating observation symbols that combine these

types of features, we believe that some element of context is captured.

An example is shown in Figure 4.3. In this example, k-means clustering is

used to produce two clusters for the closed caption data and three clusters for the

data derived from visual features. Closed captions set #1 (the one that occurred

first in the movie) is in cluster 1 while its corresponding frame is in cluster 2, so the

observation symbol will be (1,2). Closed captions set #2 (the second to occur in the

movie) is in cluster 1 while its corresponding frame is cluster 1, so it is represented

by the observation symbol (1,1). This is repeated for all of the closed caption sets

and frames extracted from a video clip to generate a sequence of observation symbols

that represent a video.

All of the sequences of observation symbols for the training videos rated as

‘liked’ by the viewer are used to construct an HMM. A second HMM is constructed

using the sequences of observation symbols for the training videos rated as ‘disliked’
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by the viewer. Figure 4.4 shows the training process from the clustering to the

construction of the HMMs.

To classify a new video, the text and visual features are extracted and repre-

sented as term-feature vectors as described for training videos. Instead of clustering

the vectors, they are assigned to one of the clusters produced during the training phase

to determine their cluster numbers. This is followed by generating a sequence of ob-

servation symbols as described earlier for training videos. This sequence is supplied

to both HMMs and the video is assigned the classification of the HMM that generates

the sequence with the highest probability. An overview of the testing process is shown

in Figure 4.5.
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The states of the HMM represent the high-level concepts that occur in the

movies that the user has rated. In theory, these concepts could be things like “car

chases” or “two people talking”. However, it is difficult to look at the extracted

features to discern the actual concepts being represented, especially in light of the

fact that the constructed HMMs are not unique. Also, different viewers will have

different preferences and therefore different models will be constructed.

This approach does not require either us or the viewer to enumerate the concepts

found in the movies that the viewer prefers. The entire model building process is

intended to find the necessary relationships between the features of rated movies and

what the viewer prefers.



CHAPTER 5

EXPERIMENTS

5.1 Data Sets

In order to validate our approach, we chose to obtain real-world data. Video

from the entertainment domain was chosen due to the fact that it has the closed

captions required by our approach and the availability of data sets of user ratings.

The user ratings for the experiments described in this document were obtained from

the following two publicly available data sets: One Million Ratings MovieLens Dataset

and Netflix Prize Dataset.

The MovieLens data set is the result of an online collaborative filtering movie

recommender project [Gro05]. The data set was produced by 6,040 viewers who had

rated movies from a set of 3,883 possible movies for a total of more than 1 million

ratings. The range of rating values is 1–5, with one representing a strongly disliked

movie while five represents a movie the user strongly liked. Users provided demo-

graphic information including gender, age (grouped into 7 age ranges), occupation

(consisting of 21 choices), and zip code. The movie data includes the title and one or

more genre labels.

The Netflix Prize data set was released by the DVD rental company Netflix as

part of a contest to determine if participants could produce movie recommendations

that surpassed Netflix’s own recommender by at least 10% [Net07]. The data set

consists of over 100 million ratings from 480,189 users from a set of 17,770 movies.

The range of rating values is 1–5.
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We acquired the DVD version of 90 of the movies represented in the MovieLens

data set; 88 of these movies are also in the Netflix data set. These movies were

selected from 18 entertainment genres (e.g., sci-fi, drama, and so forth) with many

having multiple genre labels. The list of movies can be found in Appendix A.

5.2 Preliminary Experiments

When we began this work, we wished to determine the viability of using closed

captions and visual features for learning preferences. To do so, we conducted exper-

iments on the related task of classifying video by genre, for which there is already

a large body of research [BCar]. We hypothesized that this would be an easier task

than learning preferences. If we were unable to produce positive results using these

features for classifying movies by genre, then it was unlikely that these features would

be useful for learning video preferences.

For these initial experiments, closed captions and visual features were used sep-

arately for representing video and for each we performed three types of experiments:

classification by genre, classification by user rating (i.e., attempt to learn the specific

rating a user would assign to a video), and classification by grouped user ratings (i.e.,

the individual ratings are grouped to form ‘Like’ and ‘Dislike’ groups).

All tests were performed using the support vector machine classifier available in

the Weka data mining software [WF00] with the default linear kernel. Support vector

machines are well-suited to classification problems in which there are few training

examples but the feature vectors have many terms [BC00]. We chose 81 movies

represented in the MovieLens project that had been rated by at least 20 users. There

were 1,116 users who had rated at least 10 of these 81 movies. For each type of

experiment the mean classification accuracy was calculated.
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To classify by genre, we created a separate test file for each genre with each

movie being marked as either being in that genre or not. To classify by user rating,

we created a test file for each of the 1,116 users with the movies that user had rated.

The class for each movie was the rating that user had given the movie on a 1–5 scale.

To classify by grouped user ratings, we created a test file for each of the 1,116 users

with the movies that user had rated. The ratings were grouped: a movie with a

rating of 4 or 5 was labeled as ‘liked’ while a movie with a rating of 1–3 was labeled

as ‘disliked’.

5.2.1 Preliminary Experiments Using Closed Captions

The closed captions were extracted from the DVDs in their entirety including

any sound effects (e.g., [DOOR CREAKS]). The words found in sound effects could

possibly be used to gain understanding of what is happening at that point in a video,

but we did not pursue this in these experiments. Because the processing and storage

requirements for text is significantly smaller than for visual features, we were able to

use the entire set of closed captions from each movie. Each movie’s closed captions

were converted to a feature vector using the bag-of-words model (Section 2.1) after

applying a standard stop list and Porter’s stemming algorithm [Por80].

When classifying by genre using closed captions, feature vectors for all 81 movies

were used. These feature vectors each had 15,254 terms. When classifying using the

individual ratings each user had assigned to the movies, the feature vectors ranged

in size from 4,401 to 13,350 terms depending on the movies rated. The results from

these experiments are summarized in Table 5.1. These results are discussed in Section

5.2.3 along with the results from the experiments in which movies were represented

using visual features.
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Table 5.1. Summary of preliminary results using Closed Captions.

Classification 95% Confidence
Experiment Accuracy Interval
CC, by Genre 89.71% (84.34, 95.09)
CC, Individual Ratings 38.45% (37.40, 39.50)
CC, Grouped Ratings 64.04% (63.02, 65.05)

5.2.2 Preliminary Experiments using DCT Coefficients

Many representations of video using visual features have been developed over

the years, some of which are described in Sections 2.2 and 3.2. Our hypothesis

was that movies with similar types of shots should have similar feature vectors and

therefore we chose to represent each movie as a collection of shots with each shot

being represented by video features found within the shot.

Processing visual features requires significantly more computational and storage

requirements than closed captions, so we chose to extract features from the first five

minutes of each video. To extract the DCT coefficients, we modified mpeg java, an

MPEG-1 video player whose source code is available [And05]. Since this software

only supports MPEG-1 encoded video, we had to convert each DVD to an MPEG-1

clip. The resolution of the frames in our video was 240 × 352.

A color histogram was generated for each I-frame (Section 2.2.2). Shots were

detected by comparing the color histograms of consecutive I-frames; if the differences

between two of these frames exceeded some threshold, we assumed a shot change had

occurred [AY99].

The DCT coefficients were extracted from the first frame of each shot with the

assumption that the first frame is representative of the entire shot. In many cases the

frames within a single shot will be similar enough for this assumption to hold true. If

two consecutive frames within a single shot are significantly different, then it is likely
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that the shot detection method will falsely identify a shot at this point anyway and

the DCT coefficients for this frame will be included in the collection of shots.

The next step was to combine the DCT coefficients of the frame in order to

represent the frame in some manner. One way in which this could be accomplished

would be to simply concatenate all of the DCT coefficients in the order in which

they occur. This approach makes it difficult to find similar frames since a common

method for representing this type of information is as a vector with comparisons

of vectors typically performed on a term-by-term basis. For example, many filmed

scenes involve the camera rotating left or right. Any two consecutive frames filmed

during this process are likely to appear to be dissimilar when compared on a term-by-

term basis. While it still might be possible to find frames that are similar in content

by some type of sliding window approach, such methods are very computationally

expensive. An alternative approach, which we chose to use, is to represent the frames

as histograms of the DCT coefficients. A term-by-term comparison of histograms

determines that two frames are similar if they have similar color distributions, even

if the exact locations of the colors in each frame differ as in the example of the last

paragraph.

After deciding to represent a frame with a histogram of its DCT coefficients, we

still wished to reduce the overall amount of information utilized and therefore we chose

to use only the DC term from each block. To see how much information is contained

just in the DC term of each block, see Figures 5.1 and 5.2. Figure 5.1 shows a frame

from the TV show Sliders that was reconstructed from DCT coefficients. Figure 5.2

represents the same frame, but the 63 AC terms were set to zero before applying

the inverse DCT. Although Figure 5.2 is blocky, it is still possible to recognize it

as representing the frame shown in Figure 5.1. The histograms for each of the

three color components were concatenated to form a vector representing the shot in a
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Figure 5.1. Frame from Sliders.
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Figure 5.2. Frame from Sliders in which
all values in a block use the DC term.

manner similar to that described in [WDV+03]. The resulting vector had 3× 2041 =

6123 terms since DC coefficients can range in value from 0 to 2040 [MPE91b].

Once all of the shots had been represented as a histogram of DC terms, these

histograms were clustered in order to group similar shots together. We chose k-means

clustering (Section 2.4.3) with the Euclidean distance as the similarity measure. k-

means is well known and generally applicable, which made it suitable as an initial

choice. After the clustering was complete, each movie was represented by a feature

vector with a term for each of the k clusters. We varied the number of clusters of

shots to use for representing a video, first using k = 20 and then k = 40. For example,

let us say that k = 5 and the vector of shots for a particular movie is [1, 0, 5, 50, 0].

This means that this movie contains a total of 56 shots, one of which was in cluster

1, 5 of which are in cluster 3, and 50 of which are in cluster 4. We don’t know what

high-level concept might be represented by each cluster; we just know that this movie

contains this distribution of these concepts.

During the extraction of the DCT coefficients, the software failed prior to reach-

ing the end of each movie due to a lack of robustness for dealing with differences in

MPEG video encoding. This prevented us from using the entire five minutes of video
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Table 5.2. Summary of preliminary results using DCT Coefficients.

Classification 95% Confidence
Experiment Accuracy Interval
DC Terms, by Genre (20) 88.48% (82.66, 94.30)
DC Terms, Individual Ratings (20) 33.26% (32.33, 34.19)
DC Terms, Grouped Ratings (20) 59.23% (58.28, 60.19)
DC Terms, by Genre (40) 87.24% (81.17, 93.31)
DC Terms, Individual Ratings (40) 32.54% (31.63, 33.45)
DC Terms, Grouped Ratings (40) 58.76% (57.83, 59.69)

from some of the movies and resulted in an inconsistent number of minutes processed

for each movie. While the total number of shots for all 81 movies was 46,311, we

were only able to obtain a few shots for some movies while for others we obtained

hundreds. The results for the experiments that used DCT coefficients are summarized

in Table 5.2 with 95% confidence intervals [BC06].

5.2.3 Results and Discussion

Comparing Tables 5.1 and 5.2, we can see that the results were virtually the

same regardless of whether closed captions or DCT coefficients were used. In each

case classification by genre had the best results while classification by individual

ratings had the worst. We expected classification by genre of a movie to be easier

than learning an individual’s preferences and so were not surprised by these results.

We were surprised to find that when using DCT coefficients as the feature the results

were very similar regardless of the number of clusters. The previously mentioned

problem in obtaining consistent data may have contributed to this. Another possible

reason was that the threshold value that we used for shot detection may have been

too conservative, that is, the amount of difference between two frames necessary to
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indicate that a shot had occurred may have been too high. This would result in some

shots being undetected.

The results when learning preferences using individual ratings with the features

being visual were 32.5% (for 40 clusters) and 33.3% (for 20 clusters); when the features

were closed captions the results were 38.4%. These values are better than the 20%

accuracy one would expect to get if the ratings were chosen at random from a 1–5

scale, but there is still much room for improvement. It seems unlikely that users

would be satisfied with a recommender system with classification accuracies this low.

One reason for this poor performance could be that the number of training examples

for each user was too small to learn a user’s rating preferences.

5.3 User Modeling with Hidden Markov Models and Hierarchical Clus-

tering

In our preliminary experiments, we were able to classify video by genre with

results that were much better than would be expected by choosing genre at random

[BC06]. This suggests that text and visual features are viable for learning preferences.

However, the results were much less favorable when we used each of these types of

features for predicting that a viewer would like or dislike a movie, or in predicting

the specific viewer rating of a movie.

To address the limitations of the approach taken in our preliminary experiments,

we wished to combine the text and visual features as well as represent the temporal

relationship of the features. The approach that we chose to accomplish this can be

described as follows: extract the closed captions and visual features and cluster each

separately, generate observation symbols for a hidden Markov model by combining

the cluster assignments of the features, and construct a hidden Markov model for

each of the two classes (i.e., Like, Dislike) that we are interested in predicting.
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For these experiments, we again used the viewer ratings from the MovieLens

data set. In this case the data set consisted of 357 viewers who had rated at least

20 of these movies, for a total of 9,708 ratings. The number of movies rated by

each viewer ranged from 20 to 69 with a mean of 27. For each viewer we split the

ratings into two groups: movies with ratings of 4 or 5 were considered ‘liked’ while the

remainder were considered ‘disliked’. For the entire data set, there were 4,771 (49%)

disliked movies and 4,937 (51%) liked movies although this is not guaranteed for any

particular viewer. Two-thirds of the liked and disliked sets were used for training.

It was not computationally feasible for us to extract and work with features

from the full length of each movie, therefore we chose to extract features from only a

five minute portion of each movie. In particular, we extracted features from minutes

5 to 10 of each movie. This differs from our preliminary experiments that attempted

to extract visual features from the first five minutes of each video. The reason for

using minutes 5 to 10 as opposed to the first five minutes of each movie is that the

very beginning of a movie is often used for displaying credits and therefore may not

be representative of the movie as a whole. The visual features might differ as well

as there are fewer closed captions. Limiting our method to just a five minute period

does have the potential drawback that this time period may not capture what is

important to a user. For example, a viewer may prefer movies in which story and

character development is drawn out over a long period. Another viewer may enjoy

action scenes, which typically don’t occur at the very beginning of movies.

In order to capture any temporal relationship existing in the features, we first

needed to segment the video and then extract the text and visual features present in

each segment. A common way to do this would be to segment the video into shots

(Section 2.2). We found this very difficult to accomplish in an automated fashion.

Since the closed captions that we were working with were extracted from DVDs
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of movies, we had timestamps available to us for when the closed captions would

be displayed. Therefore we decided to use the time that these closed caption sets

(Section 2.1) were displayed as the segmentation mechanism as described in Chapter

4 with M = 1 and N = 1, that is, a segment consisted of one closed caption set and

a new segment began every one closed caption set.

For the five minutes of each video that we were using, we extracted the closed

caption sets. Each of these closed caption sets was represented using the bag-of-words

model after applying a stop list and Porter’s stemming algorithm. The number of

closed caption sets for this five minute period ranged from 32–162, with a mean

value of 86. The term-feature vectors representing the closed captions had 4,003

terms. Random projection (Section 2.3.2) was applied to reduce the dimensions of the

vectors from 4,003 terms to 400 terms. The transformation matrix R was generated

using the method of Fern and Brodley [FB03]. Random projection was chosen due

to the success demonstrated by Bingham and Mannila [BM01] in applying random

projection to sparse matrices representing documents. We found the need to reduce

the dimensionality of the closed caption vectors at a later stage of the process that

involved clustering the vectors. Clustering the original 4,003 term features vectors of

closed captions would take approximately 24 days in Matlab running on a computer

with a 2.8 GHz Pentium D processor and 1 Gb of memory. After applying random

projections, the clustering process took approximately two days.

In the preliminary experiments, the visual features were derived from the DCT

coefficients produced during the MPEG encoding process. Since these DCT coeffi-

cients only represent local features, we decided to instead use wavelet-transformed

RGB values since they capture global features [Gha03]. We also changed our method

for extracting visual features which allowed us to overcome the technical problems

from which our preliminary experiments suffered.
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Figure 5.3. Hierarchies constructed for the wavelet-transformed features for a typical
viewer.

To produce the visual features, the first frame from each of the time periods

that the closed caption sets were displayed was extracted. Representing each frame

by concatenating the RGB values of the pixels would have produced vectors with

253,440 terms. To reduce the dimensionality, five levels of a 2D Daubechies 4 wavelet

[Wal99] were applied separately to the R, G, and B components. The final trend

values (Section 2.3.1) were concatenated to form vectors of 363 terms.

The visual features and closed captions were clustered separately using ag-

glomerative hierarchical clustering. We performed exploratory data analysis (Section

2.4.4) on a subset of our training data to determine which linkage method (Section

2.4.2) and distance measure produced the best hierarchy, with ‘best’ in this case
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Figure 5.4. Process for combining closed captions and visual features to form obser-
vation symbols.

being a combination of balance and height between groups. We found that in gen-

eral complete linkage with the Euclidean distance produced balanced hierarchies for

the wavelet-transformed pixel values. An example can be seen in Figure 5.3. For

the closed captions transformed by random projections, none of the combinations

of linkage methods and distance measures produced well-balanced hierarchies which

suggests that hierarchical clustering may not be the most appropriate form of clus-

tering for closed captions. For both types of features, we performed clustering using

complete linkage with the Euclidean distance.

We chose to partition the hierarchy into clusters using the method proposed

by Krzanowski and Lai (Section 2.4.4). Calculating the within-group-sum-of-squares

is very computationally intensive and therefore we limited our search for the correct

number of clusters to cluster sizes of 2–10. This is also what prompted the previously

mentioned decision to use random projection to reduce the dimensionality of the

vectors of closed caption terms.
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Once the clustering was complete, the cluster numbers for the closed caption

sets and the corresponding visual features were combined to form the observation

symbols for training the HMMs. To create an observation symbol, the cluster number

that a closed caption set is assigned to is combined with the cluster number of the

corresponding visual feature. An example can be seen in Figure 5.4. In this example,

the pruning of the hierarchy of closed captions produces two clusters, numbered from

left to right as #1 and #2. The pruning of the hierarchy of video frames produces

three clusters, numbered from left to right as #1, #2, and #3. We can see that CC1,

the first closed caption set to occur in the video, is in cluster #1. The video frame

that was displayed at the time this closed caption set was displayed is F1 and it is

in cluster #2. Therefore, the observation symbol produced from this combination is

(1, 2). This process is repeated for all of the closed caption and visual features in a

video.

After the sequences of observation symbols were generated for the training

samples, two HMMs were constructed: one from the training samples of the movies

the viewer rated as ‘liked’ and one from the movies the viewer rated as ‘disliked’. The

‘liked’ and ‘disliked’ HMMs each had two states; we made an arbitrary decision to

set the start probabilities equal for both states. The initial elements of the transition

matrix were all set to have equal likelihood as were the elements of the observation

matrix.

It is necessary when constructing models to make a decision as to how many

states to use. A choice of too few will result in models that don’t accurately represent

the underlying relationships being modeled while too many will overfit the data (Sec-

tion 2.5). In constructing the ‘liked’ and ‘disliked’ HMMs, we investigated models

with 2–10 states with the same number of states in each model. The optimal number

of states will be that which maximizes the performance.
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Table 5.3. Comparison of features in initial hybrid approach

Features Accuracy 95% CI
CC + Visual 54.6% (52.7, 56.6)
CC only 51.4% (49.4, 53.5)
Visual only 52.7% (50.7, 54.7)

To test the constructed models, we needed to generate observation symbols for

the test samples. This was accomplished by finding the training cluster that the

test sample would have been assigned to by the complete linkage method using the

Euclidean distance as the distance measure. The test samples produced observation

symbols that were not present in the training samples, which made it impossible to

calculate the log-likelihood of the test sequences. To overcome this, the emission

probabilities with values of zero were changed to an arbitrarily low value of 10−6.

5.3.1 Results and Discussion

Our results from combining closed captions and visual features are shown in

Table 5.3 [BC07]. We found that the accuracy, precision, and recall were essentially

the same regardless of the number of states; the reported results are for models

with two states. We also generated observation symbols from each type of feature

alone in order to determine if the combination of features was an improvement. Our

combination approach had an average classification accuracy over the 357 viewers of

54.6%, which is only slightly better than what would be expected if the movies were

picked at random. The average classification accuracy when using closed captions

or visual features alone was 51.4% and 52.7%, respectively. While the mean value

of our combination approach is larger than the mean values of using either type of

feature separately, the confidence intervals overlap and we therefore can’t state that

the results are significantly different.
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Table 5.4. Results per number of movies rated in initial hybrid approach

Number Rated # users mean 95% CI
20 ≤ movies rated < 30 253 54.2 (51.8, 56.5)
30 ≤ movies rated < 40 78 54.0 (50.1, 57.8)
40 ≤ movies rated ≤ 69 26 61.5 (56.3, 66.6)

We believe there are several possible reasons for the poor performance of this

approach. The first is that out of the 357 users for which we had preference informa-

tion, 253 of them had rated less than thirty movies (Table 5.4). In fact, forty-eight

had only rated twenty movies. This is unlikely to be a sufficient amount of data for

this approach to effectively learn preferences. When we look at the average results

for the viewers who had rated forty or more movies, the mean classification accuracy

improves to 61.5%. However, the confidence intervals overlap for each of the three

ranges of number of ratings that we looked at and therefore we can’t state that the

differences are statistically significant.

Another possible problem is that when generating the test observation symbols

by combining the cluster numbers for the visual features and closed captions, it’s pos-

sible to generate observation symbols that never occurred in the training data. Many

test sequences contained symbols that never occurred in the training, so even though

we gave these symbols an emission probability of 10−6 to make it possible to calcu-

late the log-likelihood for the sequence, each of these symbols essentially contributed

nothing to that calculation. The remaining symbols may not have been enough to

effectively learn preferences. A possible solution to this that we can investigate in a

future work is to assign observation symbols to test samples by finding the nearest

training combination of closed caption and visual features. This will avoid generating

observation symbols that never occurred in the training data. It is not possible to
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generate unseen observation symbols for the test samples when using only a single

type of feature, so this can’t account for the poor performance of using either type of

feature alone.

In our preliminary experiments [BC06], discussed in Section 5.2, we investigated

the use of closed captions and DCT coefficients separately. We felt that this work

suffered from two problems. First, it did not attempt to combine the text and visual

features with the resultant gain in performance that one would expect from such

a combination. Second, no consideration was given to the order in which features

appear. However, the preliminary experiments do help us to establish a baseline for

comparison with the current method in order to determine whether the use of HMMs

has improved performance.

The use of closed captions alone in the preliminary experiments had a classifi-

cation accuracy of 64.04% with a 95% confidence interval of (63.02, 65.05), as seen in

Table 5.1. This exceeds the classification accuracy of 51.4% that we achieved when

using closed captions alone in our initial approach using HMMs. In our preliminary

experiments, all of the closed captions for an entire movie were represented in a sin-

gle feature vector. In these initial experiments using HMMs, prior to dimensionality

reduction each closed caption set is represented by a feature vector with 4,003 terms

for the 4,003 unique words present in the entire data set. However, the maximum

number of words that any closed caption set had was eleven which means that more

than 99% of the terms were zero. The unlikely overlap of many of the feature vectors

makes learning difficult. Using closed caption sets as the segmentation mechanism

may not be appropriate since it appears to be over-segmenting the video, both when

closed captions are used alone or combined with visual features. A better approach

may be to segment by combining several closed caption sets, such as considering every

ten sets of closed captions a segment.
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The visual features in the preliminary experiments were the DC terms of the

discrete cosine transform coefficients and the classification accuracy using these fea-

tures alone was 59.23% with a 95% confidence interval of (58.28, 60.19); these are

found in Table 5.2. Because both the visual features and methodology were dif-

ferent in the preliminary experiments, we could not directly compare our current

approach when using visual features alone to our preliminary experiments. There-

fore, we wished to know how well the preliminary experiments would have performed

if wavelet-transformed RGB values had been used instead of DCT coefficients.

As stated previously, technical problems prevented us from extracting visual

features from the entire five minute period for some of the videos. They also make

it impossible for us to completely replicate the earlier results. Therefore, instead of

extracting the DCT coefficients from the MPEG-encoded video, we simulated the

MPEG encoding process by applying the discrete cosine transform to blocks of the

bitmaps of the individual video frames from the five minute period for each video.

To identify the video shots, we first computed the color histogram for each

video frame. The color histograms for consecutive frames were compared by taking

the difference between each. Because the magnitude of the differences varied so much

for different movies, the differences of these differences were then calculated to identify

significant differences. An analysis of a sample of our movies indicated that those 2nd

order differences that exceeded a threshold of 30,000 indicated a shot change in most

cases, which allowed us to automate the shot detection process.

After identifying the video shots, either DCT coefficients or wavelet coefficients

were used to represent each shot as described in Section 5.2. The classification results,

shown in Table 5.5, indicate that in the preliminary experiments wavelet coefficients

would have performed as well as DCT coefficients. Therefore, the decreased perfor-
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Table 5.5. Comparison of DCT and Wavelet coefficients in preliminary results.

Feature Type Accuracy 95% C.I.
DCT coefficients 60.6% (59.2, 62.0)
Wavelets 60.4% (59.0, 61.7)

mance of these current experiments when using only visual features appears to be

due to problems with the methodology.

5.4 User Modeling with Hidden Markov Models and k-Means Clustering

The results from our initial attempt to learn video preferences by combining

text and visual features were only slightly better than what would be expected if the

movies were assigned to the Like and Dislike classes at random. We decided that

the most likely sources of the poor performance were insufficient number of training

examples for most users, over-segmentation of the video that resulted in closed caption

feature vectors that were very sparse, and observation symbols from test samples that

were unseen in the training data (i.e., zero probability).

To address the perceived problems with our initial efforts to combine features,

we made the following changes to our methodology [BC07]. We increased the average

number of movies rated per user by switching to the Netflix data set. Table 5.6 shows

the number of ratings for our set of DVDs for the MovieLens and Netflix data sets.

By using the ratings from the Netflix data set, we can restrict our tests to those users

who had rated at least 45 movies. In our earlier work using the MovieLens data set,

there were 357 users who matched our criteria. There are 334 users in the Netflix

data set that we can use.

Instead of using a single closed caption set as a segmentation mechanism, we

created a window of consecutive closed caption sets with a length of twenty, with a
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Table 5.6. Comparison of the number of ratings per user for the GroupLens and
Netflix data sets.

# ratings # MovieLens users # Netflix users
20 ≤ ratings < 30 253 10,967
30 ≤ ratings < 40 78 2,934
40 ≤ ratings < 50 20 631
50 ≤ ratings < 60 5 142
60 ≤ ratings < 70 1 30
70 ≤ ratings < 80 0 9
80 ≤ ratings < 90 0 5

new window beginning every tenth closed caption set (i.e., M = 20 and N = 10) as

described in Chapter 4. That is, we combine closed caption sets 1–20, 10–30, 20–

40, and so forth. All of the words from all closed caption sets within the window are

combined to represent that entire time period that these closed captions are displayed.

Visual features were derived from a single frame within this period to represent the

entire time frame. The frame chosen is the first (available) frame from the time period

of the 10th closed caption set in each window of 20.

By combining the closed caption sets within a window into a single feature vec-

tor, we were able to reduce the number of feature vectors per minute of video. This

allowed us to increase the total number of minutes of video processed from five to

twenty, with the specific twenty minute segment of each video being minutes five to

twenty-five. Random projection was used to reduce the dimensionality of the feature

vectors produced from the closed captions from 4,003 terms to 363 terms. The visual

features were wavelet-transformed RGB values as described in Section 5.3. Hidden

Markov models were constructed as described in Section 5.3 except that the initial

values used in the starting, transition, and observation matrices were chosen ran-

domly. With two of the perceived problems with the earlier hidden Markov approach
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addressed, the results were similar to those described in Section 5.3 (summarized in

Table 5.3).

We still hypothesized that the performance was being influenced by observation

symbols generated for test sequences that were unseen when constructing the models.

To generate observation symbols for the test sequences, we matched closed caption

set/video frame pairs in the test data to closed caption set/video frame pairs in the

training data instead of finding similar closed caption sets and video frames individ-

ually. To do this, we began by concatenating the closed caption and visual feature

vectors from the training samples and did the same to the test samples. The original

vectors of the closed captions and visual features had substantially different ranges

of values, so we normalized each column of these row vectors using [Pyl99]

νnorm =
νi − min(ν1 . . . νn)

max(ν1 . . . νn) − min(ν1 . . . νn)

for both the training and test samples where vi is the specific term value and v1 . . . vn

is the range of values in that column. Also, the decision to reduce the dimensional-

ity of the closed caption vectors to 363 terms was so that the length would match

the length of the vectors of wavelet coefficients; the concern was that unequal vector

lengths would give more influence to one type of feature. After normalizing the fea-

ture vectors, the test samples were assigned the observation symbol from the nearest

training sample, with nearest being determined using the Euclidean distance. In spite

of these various changes to the approach described in Section 5.3, the classification

results remained essentially the same.

During our investigation of these results to determine the cause of the poor

performance, we noticed that the hierarchical clustering produced groups in which a

single group would contain the majority of the clustered objects. The consequence

of this is that many of the observation symbols will be the same and therefore it will
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Table 5.7. Comparison of features from HMM and k-means clustering

Features Accuracy 95% CI Prec. 95% CI Recall 95% CI
CC + Visual 61.7% (60.2, 63.2) 51.2% (48.0, 54.4) 53.4% (49.1, 57.6)
CC only 60.9% (59.4, 62.4) 49.0% (46.0, 52.0) 50.8% (46.9, 54.7)
Visual only 61.5% (60.1, 63.0) 50.9% (47.8, 54.0) 50.1% (46.3, 54.0)

be difficult to distinguish between the sequences of ‘liked’ and ‘disliked’ movies. This

prompted us to investigate another clustering method, and for this we chose to use

k-means clustering (Section 2.4.3).

We applied k-means clustering to the feature vectors that were processed as

described earlier in this section. The value of k to use for each type of feature for

each user was determined using the method of Krzanowski and Lai, with the value

of k limited to 2–10 to keep the computational requirements reasonable. When we

looked at the cluster assignments produced by k-means clustering, we found that the

objects were much better distributed than what had been produced using hierarchical

clustering. When producing observation symbols for the test samples, we did not

restrict the values to those that had occurred when generating the observation symbols

for the training examples.

5.4.1 Results and Discussion

We investigated HMMs with 10–70 states (in increments of 10) and found that

from states 30–70 the average classification accuracies were all in the range of 61–

62% with the highest classification accuracy occurring at 60 states. Table 5.7 shows

the results that were achieved when k-means clustering was used with HMM mod-

els with 60 states. Results are reported in terms of accuracy, precision, and recall.

Throughout this work our efforts have been focused on improving classification ac-

curacy. However, the results of much of the other work in video recommendation is
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reported in terms of precision and recall and therefore we report our results using

those metrics as well. Accuracy is the ratio of the number of correct predictions to

the total number of test samples. Precision is the ratio of the true positives to the

sum of the true positives and false positives. Recall is the ratio of the true positives

to the sum of the true positives and the false negatives. Precision and recall are

more commonly found in information retrieval. In the case of a movie recommender

system, the recommender might recommend a subset of the total movies available.

Precision is a measure of how many of the recommended movies the user actually

prefers. Recall is a measure of how many of the movies in the total data set that the

user would prefer end up in the recommendations made to the user. When only a

subset of movies is recommended to a viewer, it is possible to improve the precision

without improving the overall accuracy of classification.

We can see that the results from combining features were approximately the

same as were achieved when generating observation symbols for either type of feature

alone. The correlation between the model constructed using only closed captions

and the model constructed using only visual features was 41%. This suggests that

both types of features contribute differently to the classification. The correlations

between the results produced by the model constructed using a combination of closed

captions and visual features and the models constructed using only closed captions

or only visual features had mean values of 46% and 47%, respectively.

When we compare these results to the initial effort to combine features that used

hierarchical clustering (Table 5.3), we can see that the switch to k-means clustering

improved the results. An analysis of the models shows that for many users one of the

models would perform very well while the other model would perform very poorly.

In particular this seemed to be the case when the user’s ratings were not close to
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Table 5.8. Results per number of movies rated in hybrid approach using k-means

Number Rated # Users Accuracy 95% CI
45 ≤ movies rated < 50 167 60.0 (57.8, 62.3)
50 ≤ movies rated < 60 131 62.5 (60.3, 64.8)
60 ≤ movies rated < 70 26 64.6 (59.7, 69.5)
70 ≤ movies rated ≤ 88 10 72.3 (59.8, 84.8)

being evenly distributed between ‘liked’ and ‘disliked’. This could be a consequence

of having too few training examples to learn from for one of the classes.

Table 5.8 shows the classification accuracy by number of movies rated. We can

see here that as would be expected, the classification accuracy improved as the number

of ratings increased although the 95% confidence intervals overlap for each case and

therefore we can’t state that the differences are statistically significant. However, an

analysis of the individual predictions shows that even for the users for which there

were a large number of rated movies, in most cases only one of the HMMs performed

well. Since this was the HMM constructed from the majority of the user’s ratings,

this resulted in a measured improvement in performance.

As stated previously, much of the other work in video recommendation reports

results in terms of precision and recall. In video recommender systems that focus on

improving precision, typically this means that the viewer is provided with a subset

of the total number of movies that the viewer is predicted to like. It is possible then

to improve the precision (since it is calculated from this subset) while the overall

accuracy of the system may not improve. While the authors of the work that we

describe here for comparison have not stated so explicitly, we assume that they max-

imized precision by providing the viewer with a subset of the video that they may

potentially like. This should be kept in mind when comparing the results by other in

this field with our own work.
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Ardissono et al. [AGT+04] achieved a precision of 80% and a mean absolute er-

ror rate of 30% in their case-based approach to recommendation. Basu et al. [BHC98]

achieved precision and recall values of 83% and 34%, respectively, in their system that

combined the case-based and collaborative filtering approaches. Their approach fo-

cused on achieving high precision at the expense of the recall. By comparison, we

achieved precision and recall values of 51.2% and 53.4%, respectively, over the entire

set of movies for each viewer. The average precision and recall for our approach were

45% and 50%, respectively. Therefore, the precision that we achieved was statistically

different than what we would expect by choosing movies at random, but the recall

was not statistically different from random. Neither of the other approaches reports

overall classification accuracy, so we can not compare our results to theirs using that

metric. While both of their approaches achieve much higher precision than our ap-

proach, they are still restricted to those situations for which these two approaches

can be applied as described in Chapter 1.

While our final approach was able to produce results that exceeded what would

be expected if movies were classified as ‘like’ or ‘dislike’ at random, there is still much

room for improvement. There are several possible areas that could be investigated

in a future work. One is to increase the number of training examples for each user.

Table 5.8 suggests that the results improve with the number of training examples,

but the small number of users for which we had large numbers of training examples

resulted in large confidence intervals. More viewers with large numbers of training

examples would allow us to be more confident in the results.

It is possible that our choice of features, in particular the decision to rely on

transformed color values, may not have sufficiently captured the characteristics that

are important to viewers. As was discussed in Chapter 2, a large number of visual



76

features are available and one or more may better represent what is of interest to a

viewer.

A third area that could be investigated further is the use of HMMs for modeling

the viewer’s preferences. It is possible that the training and test sets of data were

insufficiently similar for the models to accurately classify the test sequences. This

could also be due to the models overfitting the data. We also did not investigate

potential bias in the models in this work. If there is bias in the model predictions, it

may be possible to identify and correct for this.



CHAPTER 6

CONCLUSIONS

Traditional approaches to video recommendation have been shown to have rela-

tively good performance. However, for reasons described previously, these approaches

are not always applicable. To address this need and to provide an alternative, we have

explored the use of visual features and closed captions extracted from video for learn-

ing a viewer’s preferences. Our final approach achieved results that were better than

what would be expected if the video was randomly assigned to either the ‘like’ or

‘dislike’ classes and therefore we believe this approach to be a viable alternative to

traditional approaches to learning video preferences.

We took two types of features commonly found in entertainment video and

combined them to learn models representing a user’s likes and dislikes. We found

that in many cases one of the learned models tended to not perform well. In an

experiment conducted under ideal conditions, the movies that a user would watch

and rate would be chosen at random. However, the user ratings that we used were

not obtained under such conditions and for most viewers the number of liked and

disliked movies were far from even. This likely resulted in an insufficient number of

training examples for one of the classes.

While our experiments focused on entertainment video, we believe that this

work can be extended in a number of ways. It can be applied to the task of classifying

video by genre. While there has already been much research in this area, there is still

room for improvement.
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It could also be applied at the shot or scene level. Applications include content

filtering, such as identifying violent scenes in movies, or the identification of scenes

important to the user. Video summarization can also be performed by finding scenes

important to many users. Of the research that has been performed in automatically

classifying video by genre, very little has attempted to subdivide genre, such as finding

action movies that include car chases or separating romantic comedies from dark

comedies.

Much of the research in learning video preferences and classifying video by genre

has focused primarily on the entertainment video domain. Other domains, such as

education, should be explored more to determine how well our approach would apply

to them.

Another area where our work could be applied is video learning. As more

and more educational video becomes available, students will have a variety of video

choices for learning a particular topic. If the student’s performance on a test covering

a specific topic is tracked, which should be possible with online courses, then video

can be recommended that is similar to those that resulted in the best performance

by the student.
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These movies were chosen from the MovieLens [Gro05] and Netflix [Net07] data

sets as the sources of ratings information.

Table A.1: Movie Titles and Genre

Movie Genre

13th Warrior, The (1999) Action, Horror, Thriller

Adventures of Buckaroo Bonzai Across the

8th Dimension, The (1984) Adventure, Comedy, Scifi

Affair of Love, An (Une Liaison

Pornographique) (1999) Drama, Romance

Apocalypse Now (1979) Drama, War

Awfully Big Adventure, An (1995) Drama

Babes in Toyland (1961) 1 Childrens, Fantasy, Musical

Betrayed (1988) Drama, Thriller

Black Beauty (1994) Adventure, Childrens

Blue Lagoon, The (1980) Adventure, Drama, Romance

Boogie Nights (1997) Drama

Boys and Girls (2000) Comedy, Romance

Boy Who Could Fly, The (1986) Drama, Fantasy

Bull Durham (1988) Comedy

Chicken Run (2000) Animation, Childrens, Comedy

Child’s Play (1988) Horror

Chinatown (1974) FilmNoir, Mystery, Thriller

Circle of Friends (1995) Drama, Romance

1not in Netflix data set
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Table A.1 Continued

Clean Slate (1994) Comedy

Cool Runnings (1993) Comedy

D3: The Mighty Ducks (1996) Childrens, Comedy

Days of Thunder (1990) Action, Romance

Dial M for Murder (1954) Mystery, Thriller

Dolores Claiborne (1994) Drama, Thriller

Dr. Strangelove or: How I Learned to Stop

Worrying and Love the Bomb (1963) Scifi, War

Even Cowgirls Get the Blues (1993) Comedy, Romance

Following (1998) Drama

French Kiss (1995) Comedy, Romance

Gloria (1999) Drama, Thriller

Glory (1989) Action, Drama, War

Godzilla (1998) Action, Scifi

Gone Fishin’ (1997) Comedy

Hard 8 (a.k.a. Sydney, a.k.a. Hard Eight) (1996) Crime, Thriller

Haunted Honeymoon (1986) Comedy

Hoosiers (1986) Drama

House Party (1990) Comedy

I Dreamed of Africa (2000) Drama

It Takes Two (1995) Comedy

Lawn Dogs (1997) Drama

Lethal Weapon (1987) Action, Comedy, Crime, Drama

Life and Times of Hank Greenberg, The (1998) Documentary
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Table A.1 Continued

Live Flesh (1997) Drama

Mary Shelley’s Frankenstein (1994) Drama, Horror

Minus Man, The (1999) Drama, Mystery

Mod Squad, The (1999) Action, Crime

Moll Flanders (1996) Drama

My Crazy Life (Mi vida loca) (1993) Drama

My Son the Fanatic (1998) Comedy, Drama, Romance

Naked Gun 33 1/3: The Final Insult (1994) Comedy

Natural, The (1984) Drama

Night Falls on Manhattan (1997) Crime, Drama

Nobody’s Fool (1994) Drama

Papillon (1973) Drama

Party Girl (1995) Comedy

Pork Chop Hill (1959) War

Radio Days (1987) Comedy, Drama

Rambo: First Blood Part II (1985) Action, War

Rapture, The (1991) Drama, Mystery

Remember the Titans (2000) Drama

Rock, The (1996) Action, Adventure, Thriller

Roseanna’s Grave (For Roseanna) (1997) Comedy, Romance

Rounders (1998) Crime, Drama

Santa Claus: The Movie (1985) 2 Adventure, Childrens, Fantasy

Selena (1997) Drama, Musical

2not in Netflix data set
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Table A.1 Continued

Singin’ in the Rain (1952) Musical, Romance

Sliding Doors (1998) Drama, Romance

Soldier (1998) Action, Adventure, Scifi,

Thriller, War

Space Cowboys (2000) Action, Scifi

Sphere (1998) Adventure, Scifi, Thriller

Spy Hard (1996) Comedy

Stage Fright (1950) Mystery, Thriller

Stargate (1994) Action, Adventure, Scifi

Star Trek: First Contact (1996) Action, Adventure, Scifi

Star Trek VI: The Undiscovered Country (1991) Action, Adventure, Scifi

Stigmata (1999) Thriller

Strange Days (1995) Action, Crime, Scifi

Strangers on a Train (1951) FilmNoir, Thriller

Strictly Ballroom (1992) Comedy, Romance

Striking Distance (1993) Action

Sweet Hereafter, The (1997) Drama

Swimming with Sharks (1995) Comedy, Drama

They Shoot Horses, Don’t They? (1969) Drama

Thin Blue Line, The (1988) Documentary

Three Kings (1999) Drama, War

Three to Tango (1999) Comedy, Romance

Total Eclipse (1995) Drama, Romance

True Grit (1969) Adventure, Western
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Table A.1 Continued

Untouchables, The (1987) Action, Crime, Drama

Walk in the Clouds, A (1995) Drama, Romance

What Dreams May Come (1998) Drama, Romance

White Men Can’t Jump (1992) Comedy
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