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ABSTRACT

STOCHASTIC MODELS FOR IN-SILICO EVENT-BASED BIOLOGICAL

NETWORK SIMULATION

PREETAM GHOSH, PhD,

The University of Texas at Arlington, 2007

Supervising Professors: Sajal K. Das, and Kalyan Basu

The multi-scale biological system model is a new research direction to capture the

dynamic measurements of complex biological systems. The current statistical thermo-

dynamic models can not scale to this challenge due to the explosion of state-spaces of

the system, where a biological organ may have billions of cells, each with millions of

molecule types and each type may have a few million molecules. We seek to propose a

phenomenological theory that will require a smaller number of state variables to address

this multi-scaling problem. Discrete Markov statistical process is used to understand the

system dynamics in the networking community for a long time. In this dissertation, we

focus more specifically on a composite system by combining the state variables in the

time-space domain as events, and determine the immediate dynamics between the events

by using statistical analysis or simulation methods. In our approach the space-time be-

havior of the cell dynamics is captured by discrete state variables, where an event is a

combined process of a large number of state transitions between a set of state variables.

The execution time of these state transitions to manifest the event outcome is a random

variable called event-holding time. The underlying assumption is that it will be possible
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to segregate the complete system state-space into a disjoint set of independent events

and events can be executed simultaneously without any interaction once the execution

conditions are satisfied (removal of resource bottleneck, collision).

In this dissertation, we present the event-time models for some biological functions

that will be incorporated in the discrete-event based stochastic simulator. In particu-

lar, we present analytical models for the molecular transport event in cells considering

charged/non-charged macromolecules. We show, that molecular transport event comple-

tion time can be approximated by an exponential distribution. Next we present stochastic

models for biochemical reactions in the cell (that can be extended to reactions occurring

in the cell cytoplasm, membrane or nucleus). We show that the reaction completion

time follows an exponential distribution when one of the reactant molecules enter the

cell one at a time, whereas, it follows a gamma distribution when a batch of the reactant

molecules enter the cell. We also present stochastic models for the protein-DNA binding

and protein-ligand docking events and show that both these events have an exponen-

tially distributed event completion time. We also validate each of the models presented

in the dissertation with experimental findings reported in the literature. Finally, we

present a markov chain based stochastic biochemical system simulator which can give us

the dynamics of more complex events and can be used to improve the scalability of the

discrete-event based stochastic simulator. We propose to successfully demonstrate this

technique by modeling the complete dynamics of one Salmonella cell.
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CHAPTER 1

INTRODUCTION

During the last decade, the advancement in high-throughput biological experiments

has generated a large amount of empirical data on the molecular foundations of biological

structures and functions. Complete genomic sequencing of new organisms are being

completed and advanced databases storing comprehensive annotations of genomic and

protein structures are being developed rapidly. As more and more data become available,

biologists are now looking beyond assigning functions to individual genes. Although the

functional and structural properties of individual genes and proteins have been studied

and characterized, the understanding of their complex interactions in a cell through a

set of pathways that create the intelligence of the organisms is still very limited. The

complexity of this exercise increases manifold as we move into higher scales: interaction

of large ensemble of cells in a tissue or interaction of tissues in continuum for rhythmic

pumping of the heart, for example. The new research challenge [1] is to develop a

comprehensive modeling framework that integrates molecular and genetic data for a

quantitative understanding of physiology and behavior of biological processes at multiple

scales – starting from the cell, to the tissues and finally to the whole organism.

Currently, there exist comprehensive models in mathematical physiology [48] and

computational cell biology [21] that provide limited understanding on multi scale bi-

ological processes. Such models (e.g., the Hodgkins-Huxley equation) work very well

in specific problem domains like cell membrane current and conductance. Alongside,

researchers from diverse disciplines have focused on developing models to capture the

dynamics of biological processes [97, 28]. These spatio-temporal models can be classified

1
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into five categories: (a) quantum mechanics, (b) molecular dynamics, (c) mesoscale dy-

namics, (d) cellular/organ-level stochastic simulation and (e) rule based model. The first

two models are limited in scope, as they cannot handle the complexity of an entire cell.

For example, the quantum mechanics based model captures the random environment

of the cell at electron level and is very useful to understand the structure of the macro-

molecules. But because of computational overhead, it can only handle about 1000 atoms.

Similarly, the molecular dynamics model uses force field methods based on Newtonian

mechanics and is the right tool to understand the function of the macromolecules. This

model, for example, is used to study the binding site configurations for protein-protein or

protein-DNA interactions and protein folding. Currently, it can handle about 1 million

molecules and is not sufficient to model a cell or complex pathways.

The next two models have focused on a narrow range of biological components

such as the wave model [97] for ventricular fibrillation in human heart, neural network

signaling model [28] to control the onset of sleep in human, or simulation frameworks like

E-Cell [61] and Virtual Cell [54] for biological processes. Mesoscale models deal with rate

equation based kinetic models and uses continuous time techniques. The rate constants

derived from measurements are the most important biological parameters used in this

model to represent the biological functions. Experimental measurement of rate constants,

in reality, hides all the structural and functional complexities of the corresponding bio-

logical function. In addition, biologists often have difficulty to get all the rate constants

from valid experiments. The model solves a set of differential equations corresponding

to chemical reactions of the pathways with the help of numerical integration. Since a

biological system involves a very large number of such differential equations, the model

is computationally limited.

Recent experimental measurements at molecular level [40] identified the stochastic

nature of the reaction, specially for protein synthesis. This stochastic behavior is further
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modulated by the positive and negative feedback loops that exist in biological pathways.

The complex interaction of these factors create the stochastic resonance [47, 85] in a

biological system. To accommodate this, Gillespie [29] extended the rate based model

to a stochastic simulation framework that led to a few other variations such as Cell

Designer [39], BioSpice [25], Cell Illustrator [57] etc. The computational overhead of this

simulation forced the use of approximation techniques by sacrificing accuracy e.g. the

Tau Leap algorithm [30, 58]. Gillespie’s technique considers the biochemical system as a

discrete Markov process. The limitations of this technique are:

• It assumes that a biological system only consists of different biochemical reactions.

Hence, each reaction event is abstracted by the experimentally determined rate

constant. the model cannot capture the pertinent details of that biological event.

For example, ideally a bimolecular reaction event should incorporate some details

of the reactant molecules (e.g., kinetic parameters and size of the molecules).

• The Gillespie technique considers each reaction event completion time to be expo-

nentially distributed with means determined from the kinetic parameters which is

not always the case. Depending on the concentration of the reactants, the reaction

event completion times might follow different distributions which play an impor-

tant role in studying the system dynamics (specially for low number of reactant

molecules in the system where the stochastic effects are more pronounced).

The system has to be broken down to the reaction level to present the dynamics. This

will result in an increase in the complexity and explosion in the number of equations.

Due to the large number of protein complexes in a cell, the existing stochastic simulation

models lead to a combinatorial explosion in the number of reactions, thus making them

unmanageable for complex metabolic and signaling pathway problems.

Finally, the rule based simulation [59] is a new technique to model the complex

multi cell interaction at a molecular level and addresses the more complex host-pathogen
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interactions. It ignores the stochastic nature of biological functions and considers a

set of rules derived from pathways. After reviewing the current status of the modeling

methods and their challenge, and also to accommodate the new found stochastic behavior

of biological processes, we are motivated to look to an alternative approach to address

the problem. We plan to convert the biological process as a stochastic network and solve

it as a stochastic network simulation or analysis problem.

1.1 Some preliminary concepts

Here we define some preliminary concepts that will aid in a better understanding

of this thesis.

• Cell: The cell is the structural and functional unit of all known living organisms. It

is the smallest unit of an organism that is classified as living, and is sometimes called

the building block of life. Some organisms, such as bacteria, are unicellular (consist

of a single cell). Other organisms, such as humans, are multicellular. (Humans

have an estimated 1014 cells; a typical cell size is 10 m; a typical cell mass is 1

nanogram.)

• Prokaryotes: Prokaryotes (illustrated in Fig 1.1) are a group of organisms that lack

a cell nucleus, or any other membrane-bound organelles. Most are unicellular, but

some prokaryotes are multicellular organisms. The prokaryotes are divided into two

domains: the Bacteria (e.g., Salmonella, E. coli) and the Archaea.

• Eukaryotes (illustrated in Fig 1.2): Animals, plants, fungi, and protists are eu-

karyotic organisms whose cells are organized into complex structures by internal

membranes and a cytoskeleton. The most characteristic membrane-bound structure

is the nucleus. In the nucleus, the genetic material, DNA, is arranged in chromo-

somes. Many eukaryotic cells also contain membrane-bound organelles such as

mitochondria, chloroplasts and Golgi bodies. The subcellular components labelled
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Figure 1.1. Diagram of a typical prokaryotic cell (from Wikipedia).

in Fig 1.2 are as follows: (1) nucleolus (2) nucleus (3) ribosome (4) vesicle (5) rough

endoplasmic reticulum (ER) (6) Golgi apparatus (7) Cytoskeleton (8) smooth ER

(9) mitochondria (10) vacuole (11) cytoplasm (12) lysosome (13) centrioles within

centrosome.

• Discrete-event simulation: In discrete event simulation, the operation of a system is

represented as a chronological sequence of events. Each event occurs at an instant

in time and marks a change of state in the system. In addition to the representation

of system state variables and the logic of what happens when system events occur,

discrete event simulations include the following: (a) Clock: The simulation must

keep track of the current simulation time, in whatever measurement units are suit-

able for the system being modeled. In discrete-event simulations, as opposed to real

time simulations, time hops because events are instantaneous the clock skips to the

next event start time as the simulation proceeds. (b) Events List: The simulation

maintains at least one list of simulation events. An event must have a start time,
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Figure 1.2. Diagram of a typical eukaryotic cell (from Wikipedia).

some kind of code that constitutes the performance of the event itself, and possibly

an end time. In some approaches, there are separate lists for current and future

events. Events in their lists are sorted by event start time. Typically, events are

bootstrapped that is, they are scheduled dynamically as the simulation proceeds.

(c) Random Number Generators: The simulation needs to generate random vari-

ables of various kinds, depending on the system model. This is accomplished by one

or more pseudorandom number generators. (d) Statistics: The simulation typically

keeps track of the system’s statistics, which quantify the aspects of interest. (e)

Ending Condition: Because events are bootstrapped, theoretically a discrete-event

simulation could run forever. So the simulation designer must decide when the

simulation will end. Typical choices are “at time t” or “after processing n number

of events” or, more generally, “when statistical measure X reaches the value x”.

• Collision theory: Collision theory qualitatively explains how chemical reactions

occur and why reaction rates differ for different reactions. It assumes that for a
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reaction to occur the reactant particles must collide, but only a certain fraction

of the total collisions, the effective collisions, cause the transformation of reactant

molecules into products. This is due to the fact that only a fraction of the molecules

have sufficient energy and the right orientation at the moment of impact to break

the existing bonds and form new bonds. The minimal amount of energy needed

so that the molecule is transformed is called activation energy. Collision theory is

closely related to chemical kinetics.

• Markov chain: Markov chain is a discrete-time stochastic process with the Markov

property. Having the Markov property means the next state solely depends on the

present state and doesn’t directly depend on the previous states. At each point in

time, the system may have changed states from the state the system was in the

moment before, or the system may have stayed in the same state. The changes of

state are called transitions. If a sequence of states has the Markov property, then

every future state is conditionally independent of every prior state.

• Bernoulli trial process: In probability and statistics, a Bernoulli process is a discrete-

time stochastic process consisting of a sequence of independent random variables

taking values over two symbols. Prosaically, a Bernoulli process is coin flipping,

possibly with an unfair coin. A variable in such a sequence may be called a Bernoulli

variable. In this thesis, we use this concept for computing the time taken for some

biological events.

• First and second moments of event holding time: In the stochastic models for the

different biological events, we estimate the time taken to complete these events. We

consider the time as a random variable and determine its distribution by providing

the expressions for the first and second moments of this random variable. In the

reaction model (shown later) we also compute the adjusted time of reaction which

considers the changes in probability of the reaction event during a single reaction
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process. As our stochastic reaction model is discretized in time, the first and second

moments for the reaction completion time does not incorporate these changes in

probability due to competing reactions, and we show that this approximation does

not significantly affect the accuracy of the reaction models.

• Chemical master equation (CME): A master equation is a set of first-order dif-

ferential equations describing the time evolution of the probability of a system to

occupy each one of a discrete set of states. Many physical problems in classical,

quantum mechanics and problems in other sciences, can be reduced to the form of

a master equation, thereby performing a great simplification of the problem. The

CME refers to the master equation governing the time evolution of the probability

of a system of biochemical reactions.

• Gillespie simulation: The Gillespie algorithm generates a statistically correct tra-

jectory (possible solution) of a stochastic equation. It was developed to simulate

chemical or biochemical systems of reactions efficiently and accurately using lim-

ited computational power. As computers have become faster, the algorithm has

been used to simulate increasingly complex systems. The algorithm is particularly

useful for simulating reactions within cells where the number of reagents typically

number in the tens of molecules (or less). Mathematically, it is a variety of a dy-

namic Monte Carlo method and similar to the kinetic Monte Carlo methods. It is

used heavily in computational systems biology.

• Molecular dynamic simulation: Molecular dynamics (MD) is a form of computer

simulation wherein atoms and molecules are allowed to interact for a period of time

under known laws of physics, giving a view of the motion of the atoms. Because

molecular systems generally consist of a vast number of particles, it is impossi-

ble to find the properties of such complex systems analytically; MD simulation

circumvents this problem by using numerical methods. It represents an interface
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between laboratory experiments and theory, and can be understood as a “virtual

experiment”.

cell

cell cell

cell
signal in

signal out

process

process process

process

process

signal out

signal in

tra
n
s
la

tio
n

translation

ribosome
& tRNA

protein

mRNA

amino acid
molecules

Biological network Cell Biological Process Biological Event

Figure 1.3. Overview of proposed Modeling Concept.

1.2 Stochastic event-based simulation approach

The concept of “in silico” [87] or discrete event based modeling has been successfully

applied to study many complex networks and systems. Our main objective is to use this

technique to (a) explicitly study the stochastic nature of the biological system, (b) reduce

computational complexity of the system so that we can model complete cell dynamics, and

(c) use as much as possible the biological knowledge in the modeling, so that all biological

complexities are not hidden behind the value of the rate constant measurements. To

achieve that, we need mathematical models that are computationally fast and generic

in nature, so that by changing the species specific information, the models can be used

for other similar species. This stochastic discrete event based framework for complex
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biological systems [88, 89] can be easily used for modeling the dynamics of pathways in

a single cell, and multiple cell interactions.

In our terminology, a biological network is a collection of biological processes, each

comprising a number of functions, where a function will be modeled as an event. A

unique pathway will be defined as a biological process consisting of a number of biologi-

cal functions cascaded through the signal trafficking mechanism. The fundamental entity

in our proposed simulation model is an “event” which represents a biological function

with relevant boundary conditions. These event models provide the parameters for the

temporal displacement of the system states and drive the stochastic discrete-event simu-

lation of the biological system under study. Fig 1.3 illustrates our modeling concept for a

biological system. The interactions between cells are captured in the Biological network

view. Then for every cell the biological pathways are identified and their relationship is

defined. Each pathway is described by the event diagram of the biological process. All

these events are modeled by transforming the biological functionality of the event into a

stochastic parameter. The main research direction to model the events is to decompose it

into a number of biological microevents. Thus we transform the biological function from

the thermodynamic and diffusion plane to information plane through a coarse-grained

measure of probability. We then use the methods of applied probability to model the

temporal and spatial dynamics of the event as a stochastic process of these microevents.

Two types of models are required for this method: (1) event execution time, and (2) prob-

ability of next event type. Fig 1.4 shows a hypothetical example of the reaction pathway

of a biological process with these two types of models (model type-1 and model type-2).

A salient feature of this approach is the balance between computational complexity and

accuracy of the estimate by including sufficient biological function details. This model

allows us to track the important resource counts (typically the various molecules, ions,

ribosome-chromosome operon etc involved in the system) in time and space. If the path-
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Figure 1.4. Modeling Scheme for Pathway Abstraction.

ways are changed, the logic of the resource usage will also change and the simulation can

show the corresponding effect on the system states.

created

idle used

decayed

Life of Enzyme

Figure 1.5. State Transition Diagram of an Enzyme during its life cycle.

We identify a biological process as a system of resources (e.g., molecules, ions,

ribosome-chromosome operon, tissue, organ, enzyme, etc) that periodically change be-

tween one of the following four states based on the resource usage algorithms: (i) ‘used’
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(e.g, an enzyme is busy in a reaction), (ii) ‘idle’(e.g, an enzyme is free to enter a new

reaction), (iii) ‘created’ (e.g, a molecule is created by a reaction) and (iv) ‘decayed’ (e.g, a

molecule is in the process of disintegration at the end of its life-cycle) as shown in Fig 1.5.

The state transitions from one state to another are governed by transition flow rates of

the process in a cell. The process is initiated by an input signal(s) from the external

world to the cell. These input signals initiate a set of events which drive the simulation

in time domain resulting in changes in the cell resources with time. For example, the

activation of a receptor on a cell starts the pathway to create new proteins or store en-

ergy in the ATP or release energy from ATP or breakdown complex sugar molecules to

release glucose from the cell to the other tissues. These dynamics can be captured by

this process as a time-ordered set of distinct events within a cell. On completion, these

events will generate a signal (in this case, may be specific protein or sugar molecules, or

ions) that can trigger another pathway in a similar fashion.

The challenges in this approach are:

1. obtain the complete pathway maps that are part of the simulation and identifying

the biological discrete events based on system knowledge,

2. identify the set of resources involved in the event and collection of their structural

and functional characteristics from different databases,

3. model the event details mathematically to estimate the time taken to complete

an event (which is termed in system modeling as the holding time of the discrete

event),

4. identify the pathway forks and the underlying biological conditions (e.g. location of

motif on DNA, hidden motif by chromosome etc) and use this knowledge to model

the probabilities for the different fork branches, and

5. create a large “in silico” discrete event simulation framework.
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Table 1.1. Comparison of Gillespie Algorithm and Our modeling framework

Stochastic Simulation (Gillespie Algorithm) Our Discrete event based Simulation Comments

Initialization: Initialize the Initialization: Initialize the number of The initialization steps
number of molecules in molecules in the system for each species, are similar in both

the system, reaction constants, model parameters and resources and the algorithms.
and random number generators. random number generators.

Monte Carlo Step: Generate Event modeling and execution: The In this step, Gillespie and
random numbers to determine next reaction or molecular event is other stochastic simulation

the next reaction to occur selected based on the functional logic algorithms employ a Monte
as well as the time interval. hardwired in the simulator. For each Carlo step to determine next

process and its associated event, a reaction event and time while
random number is generated for the we compute them differently.
event execution time based on the
first and second moment of the
event holding time distribution

computed by the stochastic model.

Update: Increase the time step Update: The global simulation clock We make the temporal
by the randomly generated is increased by the time-step computed progression in discrete

time in the Monte Carlo step. in the previous step as the event time-steps based on the
Update the molecule count based holding time. The resource count event holding times computed

on the reaction that occurred. of molecules are updated based on in the previous step.
the last event stoichiometry.

Iterate: Go back to the Monte Iterate: Go back to the Event We handle reactions/
Carlo step unless the number modeling step and repeat the process. events with resource conflicts

of reactants is zero or the In case a particular event cannot /shortage differently.
simulation time has be executed because of resource

been exceeded. conflicts, it is ignored and the simulation
proceeds without the update step.

At present, this type of problems are solved by using the Gillespie simulation. It is

appropriate at this stage to compare the proposed Discrete event simulation framework

with the Gillespie method to explain our contribution. The comparison is schematically

presented in Table 1.1.

To illustrate the concept, we present the discrete event modeling of the PhoP/PhoQ

two component regulatory system which controls the expression of essential virulence

traits in Salmonella Typhimurium depending on the concentration of extra-cellular mag-

nesium [33],[83]. Based on available information, we have developed a functional event

diagram (Fig 1.6) of the process that includes both the model types. We identify the

list of discrete events that are required for the model based on the available knowledge

of the system. In other words, we identify the various types of molecules, cells, tissues

etc which are involved in the resource usage algorithm for an event (either in reactions,

or as catalysts or as end products). To find the time taken for an event, it is important

to identify the parameters which affect the interaction of the resources in a particular
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biological discrete event process and mapping them into the time domain (i.e. identifying

the time required for completion of the biological event. This generates event time as a

function of these parameters).

1.3 Salmonella PhoPQ System Model

In a Salmonella cell, virulence is produced by the PhoPQ two compartment system

that is activated by Mg2+ concentration change. We identify the key biological functions

involved in the PhoPQ regulatory network (from the sensing of Mg2+ at the cell mem-

brane to the expression of virulent genes from the DNA in the cytoplasm). The basic

schematic block diagram of the processes which we have identified to capture the se-

quence of actions is presented first. For each process block, we have some input signal(s)

coming into the process and output signal(s) which can be considered as the outcome of

the process and can trigger one or more processes (or the same process itself in a feedback

mechanism). Fig 1.6 captures the basic high-level biological functions involved.

Mg2+ receptor Signaling Process: Normally a biological process is defined by a pathway

(experimentally determined by biologists) that shows the cascade of biological functions

in time. Currently, many pathway databases have been established maintaining this

record for different species which we use to understand this process. With the departure

of a Mg2+ molecule, the PhoQ protein auto-phosphorylates (kinase activity) by mak-

ing use of an ATP molecule from the cell. The phosphatase activity of PhoQ regulates

the phosphotransfer mechanism to phosphorylate the PhoP protein under micromolar

Mg2+ concentrations, and dephosphorylates the phosphorylated PhoP molecules under

millimolar Mg2+ concentrations. Generally, Mg2+ concentrations higher than 250 mM

stimulate the dephosphorylation of phospho-PhoP. Two independent mechanisms of de-

phosphorylation of phospho-PhoP occur. One involves the reversion of the reaction that

takes place to phosphorylate the response regulator, and the other is a specific phospho-
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Figure 1.6. Biological Processes involved in the PhoPQ Process in Salmonella.

PhoP phosphatase induced by high concentrations of Mg2+ that renders the release of

inorganic phosphate.

Thus we can identify the following discrete events from the PhoPQ pathway: with

the departure of a Mg2+ molecule (event: ion movement from membrane protein), the

PhoQ protein autophosphorylates (kinase activity) by making use of an ATP molecule

from the cell (event: membrane reaction). The phosphate activity of the PhoQ regu-

lates the phosphotransfer mechanism to phosphorylate the PhoP protein under micro

molar Mg2+ concentrations, and dephosphorylates the phosphorylated PhoP molecules

under millimolar Mg2+ concentrations (event: cytoplasmic reaction). The Phospho PhoP
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(phoPp) activates the promoter loci and there is only one activation per phoPp. The

loci are obtained from the determination of regulatory pathway. PhoPp binding to DNA

site is required for transcription (event: DNA protein binding). RNA polymerases are

involved in the process of transcription (event: cytoplasmic multi molecule reaction).

We also need to consider translation (including steps such as binding of polymerases,

regulatory factors, subunits etc) and transport processes.

We identify different biological functions by following this research process to com-

plete the type of event models necessary for discrete event simulation. Each of these mod-

els are required to estimate their event time characteristics. The models for cytoplasmic

reactions [70, 71, 76], DNA-protein binding [72, 78], protein-ligand docking [73, 77] and

molecular transport [74, 75] are reported in this thesis. Based on these models and the

protein synthesis model [90] we can complete the simulation of the PhoPQ system.

1.4 Our contributions

Our contributions in this dissertation can be summarized as follows:

• We present an analytical model for the molecular transport biological function

driven by concentration and potential gradients. The proposed models meet the

accuracy and computational speed requirements for modeling complex biological

processes. The models are also parametric and can be used for different cases of

molecular transport.

• We develop a method to transform the complex biochemical reactions from the

thermodynamic energy plane to the information plane by quantifying the proba-

bility of microlevel reaction events. W use the micro events to design a stochastic

process that captures the complete event behavior. Finally, we use probability

theory to estimate the reaction time from the micro event probability measures.

We modify the current collision reaction model to treat the reaction as a discrete
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stochastic process. We use a velocity distribution of the molecules to capture the

effects of the thermodynamic force field profile of the cell. We define a threshold

parameter that the collision has to overcome for successful reactions to capture the

effect of molecular binding strength by using the parameter activation energy.

We use this estimation method for two modeling scenarios (a) the single molecule

model where a single molecule of one reactant can react with multiple molecules

of a second reactant, (b) the batch arrival model of the reactants where a batch of

molecules of one reactant suddenly arrives to react with multiple molecules of the

second reactant. Our results are statistical parameters and we derive the expres-

sions for the average and second moment of the reaction time.

We outline a method to estimate the reaction time for more complex biochemical

reactions like different pathway processes sharing the same molecule.

To ascertain the validity of this model, we compare our results with the existing

rate based reaction results that provide the mean reaction rate for glycolysis. We

show that considering the chaotic environment of the cell, the reaction time esti-

mate will be stochastic in nature. We also demonstrate that for single molecule

interactions an exponential distribution will characterize the nature of the reac-

tion time distribution, but for batch arrival process, the distribution will be a two

moment distribution like the gamma distribution.

We also analyze the impact of event serialization on the results from our model.

The stochastic event technique serializes the different events (i.e., if two different

reactions involve the same reactant and scheduled to occur at the same time, we

assume that one reaction occurs after the other). Our analytical results show

that the adverse effect of this approximation is reduced with increasing number of

reactant molecules in the system.
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• Next, we develop stochastic models for the protein-DNA binding event. We consider

the binding for both bacterial and eukaryotic transcription factors (TFs) to the

DNA assuming that the structure, location on chromatin and other details of target

sites on the DNA are known. This data can be found from the existing biological

databases (e.g., [43, 42]) or need to be determined from experiments if they are not.

In contrast to the existing thermodynamic and diffusion based models, our approach

closely follows the biological process that involves a number of discrete microevents.

We assume that the TF binding site of the DNA is exposed with a difficulty factor

depending upon the location of the site with respect to the nucleosome.

The main idea is that for bacterial cells, the TF (with matching motif) randomly

collides with the DNA and only when it hits the binding site with enough kinetic

energy to overcome the energy barrier of the site, can the binding occur. Based on

our research focus, we abstract the first micro biological event, collision of the TF

to the DNA surface, by using the collision theory model where one collision object

is non-spherical. The information measure we compute from this abstraction is the

probability of DNA-protein collision. The next microlevel biological event is the

binding of a TF to the DNA based on the description of the protein and DNA

structures on the chromatin as encountered in the biological process.

This model is general in nature and computationally very fast. This permits its

repeated use in the biological simulation for many TF-DNA binding situations. This

method bypasses the speed-stability paradox of protein-DNA interactions to allow

for a computationally efficient model. Our discrete-event based simulator uses this

fast model in a similar way as the rate constants used by the Gillespie simulator [29]

to approximate the protein-DNA binding time. The TF sliding mechanism due to

thermal gradient, for searching the binding region is also incorporated in our model

and we show that not all DNA-TF collisions result in sliding. For eukaryotic cells,
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the protein-DNA binding mechanism is achieved in two steps 1) diffusion of the

TF to the nucleus of the cell and 2) random collisions of the TF with the DNA

(we assume that the TF never comes out of the nucleus) for the binding. Our

model computes the entire DNA-protein binding time for bacterial cells and DNA-

protein binding time once the protein has entered the nucleus for eukaryotic cells.

The average time for diffusion of protein molecules to the nucleus can be easily

computed from standard diffusion models.

We validate our model for the DNA replication process in prokaryotic cells. We

also present some “in silico” results showing the effects of protein-DNA binding on

gene expression in prokaryotic cells.

• Next, we introduce a collision theory model to explain the temporal kinetics of

ligand-protein docking. This is a simplified model which does not incorporate the

effects of electrostatic forces and desolvation directly as parameters of the model

but consider their effects through the random molecular motion of the proteins

in the binding environment. This simplification of the model makes it a random

collision problem within the cell and gives us a fairly accurate but computation-

ally fast model for the docking time estimate. Note that the Gillespie simulator

considers the docking process as another rate-based equation (a measured quantity

that encapsulates all the kinetic properties of the process during the experiment),

whereas our proposed model can incorporate the salient features of the docking

process along with the structural and functional properties of the protein-ligand

pair. This parametric presentation of the binding process makes the model generic

in nature and can be easily used for other cases of protein-ligand binding where the

assumptions are valid.

The results generated by this model are very close to experimental estimates. The

main conclusion of our work is that the total time required for docking is mostly
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contributed by the repeated collisions of the ligand with the protein. Also because

the ligand on arriving inside the cell compartment spends most of the time (for

binding) away from the protein (to which it binds), the effects of electrostatic force

and desolvation are negligible in the binding time estimation. However, electro-

static force and desolvation play a significant role in the determination of the free

energy change of the docked complex [22]. This effect is included in our model in

determining the probability of docking.

• Finally, we describe a new markov chain based model to simulate complex bio-

chemical reaction systems with reduced computation and memory overheads. The

central idea is to transform the continuous domain chemical master equation (CME)

based method into a discrete domain of molecular states with corresponding state

transition probabilities and times. Our methodology allows the basic optimization

schemes devised for the CME and can also be extended to reduce the computa-

tional and memory overheads appreciably at the cost of accuracy. The simulation

results for the standard Enzyme-Kinetics and a simple Transcriptional Regulatory

biological systems show promising correspondence with the CME based methods

and point to the efficacy of our scheme. This simulator can give us the dynamics

of complex biochemical systems and can be used to improve the scalability of the

discrete-event based stochastic simulator.

1.5 Organization of the dissertation

The dissertation is organized as follows. In Chapter 2, we present the stochastic

models for molecular/ionic transport inside a cell. Chapter 3 presents the stochastic

models for biochemical reactions in the cell cytoplasm and its possible extensions to

model reactions occurring in the cell membrane or nucleus. In Chapter 4, we present the

model for protein-DNA binding and show its effects on gene transcription and translation.
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Chapter 5 presents the models for protein-ligand docking events in the cell. In Chapter 6

we present a markov chain based stochastic biochemical system simulator which is less

accurate than the discrete event based system simulator, but has the potential of being

more scalable and memory efficient. Finally, in Chapter 7 we summarize the contributions

of this thesis, and discuss some directions of future work.



CHAPTER 2

MOLECULAR TRANSPORT

Our event modeling paradigm requires techniques that maintain a reasonable ac-

curacy of the biological process and also reduces the computational overhead. This

objective motivates the use of new methods that can transform the problem from energy

and affinity based modeling to information based modeling. To achieve this we transform

all dynamics within the cell into a random event in time, which is specified through an

information measure like probability distribution. We present a model to compute the

information measure of molecular transport by estimating the statistical parameters of

inter-arrival time between molecules/ions coming to a cell receptor as external signal.

This model transforms the diffusion process into the information measure of stochastic

event time to get the distribution of the Mg2+ departure events. This chapter is or-

ganized as follows. Section 2.1 presents the transient models for molecular transport.

Section 2.2 reports the results and analysis for a few simple transport events. In Sec-

tion 2.3, we present the results from the discrete event simulator to show how different

transport rates impact the entire PhoPQ system dynamics. Finally, in Section 2.4 we

summarize the findings of this chapter.

2.1 Analytical models for molecular transport

From the PhoPQ system, we find that an important process that we have to model

is the movement of molecules (Mg2+ ions, phoPp, etc). We have identified the following

transport models for biological processes: (a) diffusion of charged ions (e.g., Mg2+)

in the cell (to model the Mg2+ arrival/departure process); (b) diffusion of non-charged

22
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molecules (to model the transport function of phospho-PhoP in the cytosol); (c) diffusion

of charged ions out of the cell (to model the Mg2+ departure process out of the cell).

This transport model should also consider the breakage of the ionic bond between Mg2+

and PhoQ molecules for the diffusion to occur; (d) movement of ions or molecules due to

additional energy provided by the pump system. In this thesis, we present the analytical

solution of the first two models.

Cytoplasm

Outer Membrane

Outer Membrane

Ion Channels

Periplasm

Periplasm

Inner Membrane

Inner Membrane

Figure 2.1. Gram-negative bacterial cell showing location of ion channels.

2.1.1 Molecular transport Model 1: Diffusion

The diffusion model of Mg2+ ions into the cell is illustrated in Fig 2.1. The diffusion

takes place through ion-channels in the outer membrane. PhoQ is located in the cell
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membrane and phoP is located in the cytoplasm. The same diffusion model proposed

in this chapter can be extended to other cells that have only a single membrane with

embedded ion channels such that the ions are transported directly into the cytoplasm.

In [44], the authors have shown that ion transport through ion-channels can be

appropriately modeled using standard diffusion equations. We consider the following

hypothetical mathematical model: suppose that a long capillary (open at one end) filled

with water is inserted into a solution of known chemical concentration C0, and the chem-

ical species diffuses into the capillary through the open end. The concentration of the

chemical species should depend only on the distance down the tube and so is governed

by the diffusion equation:

∂C

∂t
= D

∂2C

∂x2
, 0 < x < ∞, t > 0 (2.1)

where for convenience we assume that the capillary is infinitely long. Here, D is the

diffusion constant having units length2/time, c is the concentration of the chemical, t is

the time and x is the distance traversed inside the capillary by the chemical.

Because the solute bath in which the capillary sits is large, it is reasonable to

assume that the chemical concentration at the tip is fixed at C(0, t) = C0, and because

the tube is initially filled with pure water, C(x, 0) = 0.

The solution of this problem is given by [21]:

C(x, t) = 2C0[1− 1√
2π

∫ y

−∞
exp(−s2

2
)ds] (2.2)

where y = x√
2Dt

. We can compute the inter-arrival time between the diffused molecules

from the following theorem:

Theorem 1 The inter-arrival time between the diffusion of the (i+1)th and ith molecules

or ions when the diffusion is based on the concentration gradient only, is given by:

Ii+1 − Ii =
π(2i + 1)

4C2
0G

2D
(2.3)
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where Ii+1 and Ii are respectively the times taken for diffusion of the (i + 1)th and ith

molecules, and G is the cross-sectional area of the capillary.

Proof 1 The total number of molecules entering the capillary in a fixed time t is given

by

N = G
∫ ∞

0
C(x, t)dx = 2C0G

√
tD

π
(2.4)

Thus we get:

Ii+1 =
(i + 1)2π

4C2
0G

2D
, Ii =

i2π

4C2
0G

2D
⇒ Ii+1 − Ii =

π(2i + 1)

4C2
0G

2D

It is also possible to determine the diffusion coefficient by solving Eqn 2.4 for D:

D =
πN2

4C2
0G

2t

In [56], this expression was used to measure the diffusion constant in bacteria. With

concentration C0 = 7 × 107/ml, and t = 2, 5, 10, 12.5, 15 and 20 minutes, they counted

N = 1800, 3700, 4800, 5500, 6700 and 8000 bacteria in a capillary of length 32 mm with 1

µl total capacity. In addition, with C0 = 2.5, 4.6, 5.0, and 12.0× 107 bacteria/ml, counts

of 1350, 2300, 3400, and 6200 bacteria were found at t = 10 minutes. A value of D in the

range of 0.1− 0.3 cm2/hour was estimated using Eqn 2.4.

Furthermore, from Eqn 2.2 it can be observed that C(x, t)/C0 is constant on any

curve for which z is constant. Thus, t = x2/D is a level curve for the concentration, and

measures how fast the diffusive elements move into the capillary. Here, t = x2/D is called

the diffusion time for the process. Table 6.1 shows typical diffusion times for a variety

of cellular structures. Clearly, diffusion is quite effective when distances are short, but

totally inadequate for longer distances (e.g. along a nerve axon) and biological systems

have to employ other transport mechanisms in such situations. For the sample biological

system introduced in Section 1.3, the PhoPp transport to the cytosol process can be
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Table 2.1. Estimates of diffusion times for typical cellular structures, computed from the
relation t = x2/D using D = 10−5cm2/s

x t Example

10 nm 100 ns thickness of cell membrane

1 µm 1 ms size of mitochondrion

10 µm 100 ms radius of small mammalian cell

250 µm 60 s radius of squid giant axon

1 mm 16.7 min half-thickness of frog sartorius muscle

2 mm 1.1 h half-thickness of lens in the eye

5 mm 6.9 h radius of mature ovarian follicle

2 cm 2.6 d thickness of ventricular myocardium

1 m 31.7 yrs length of a nerve axon

modeled using the diffusion model discussed above. But it is not suited for diffusion of

charged molecules, e.g., Mg2+. Also, this is only an approximate model as the source

does not ideally replenish itself. So, we will have better results if the initial concentration

C0 is quite high.

2.1.2 Molecular transport Model 2: Diffusion considering ion flux

For better analysis of the diffusion process, we need to consider the ion flux through

the membrane of width l (supposing a potential difference exists across it with φ(0) = φ1

and φ(l) = φ2) created due to movement of positively charged Mg2+ ions. We can make

a simplifying approximation that the potential gradient through the channel is constant:

∂φ

∂x
=

φ1 − φ2

l
=

V

l
, V = φ1 − φ2 (2.5)

If the process is in steady state so that the ion flux everywhere in the channel is the same

constant, then the total flux, J , can be written as:

J = −D[
∂C(x, t)

∂x
+ αC(x, t)

V

l
] (2.6)
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where, α = zF/RT , z = total number of positive charges in Mg2+, F = Faraday’s

constant, T = absolute temperature, and R = gas constant. Substituting the value of J

in the diffusion equation we get:

∂C

∂t
= −∂J

∂x
= D

∂2C

∂x2
+ aD

∂C

∂x
, 0 < x < ∞, t > 0 (2.7)

where a = αV/l. As it is difficult to achieve a closed form solution of the above equation,

we modify the boundary conditions leading to the following theorem:

Theorem 2 The solution to the diffusion problem outlined in Eqn 2.7 with boundary

conditions 0 < x < l and t > 0 is given by:

C(x, t) =
∞∑

m=1

[
2C0mπ(1− (−1)me−

zFV
2RT )

( z2F 2V 2

4R2T 2 + m2π2)
× e−(m2π2

l2
+ z2F2V 2

4R2T2l2
)Dt− zFV x

2RTl sin
mπx

l
] (2.8)

Proof 2 A standard method for solving the above partial differential equation (PDE) is

to assume that the variables are separable. Thus, we attempt to find a solution of Eqn 2.7

by putting

C = Y (x)Z(t) (2.9)

where Y and Z are functions of x and t, respectively. Substituting in Eqn 2.7 yields

Z ′(t)
Z(t)

= D[
Y ′′(x) + aY ′(x)

Y (x)
] (2.10)

such that the left hand side depends on t only, while the right hand side depends on x

only. Both sides must therefore be equal to the same constant which is conveniently taken

as λ2D. We thus have two ordinary differential equations:

1

Z

dZ

dt
= −λ2D, (2.11)

Y ′′(x) + aY ′(x) + λ2Y (x) = 0 (2.12)

The solution for the first equation is given by:

Z = e−λ2Dt (2.13)
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For the second equation, we make a change of variables to bring it down to a standard

form as follows:

f ′′ + (λ2 − a2

4
)f = 0, (2.14)

where, ln Y = ln f − 1

2

∫
adx = ln f − ax

2

The solution for f is given by:

f = A sin x

√
λ2 − a2

4
+ B cos x

√
λ2 − a2

4
(2.15)

f = Y e
ax
2 (2.16)

where A and B are the constants of integration. Thus we can write:

Y (x) = e−
ax
2 [A sin x

√
λ2 − a2

4
+ B cos x

√
λ2 − a2

4
] (2.17)

and the concentration at distance x and time t is given by:

C(x, t) = Z(t)Y (x) = e−(λ2Dt+ax
2

)[A sin x

√
λ2 − a2

4
+ B cos x

√
λ2 − a2

4
] (2.18)

Since we are solving a linear equation, the most general solution is obtained by summing

solutions of type Eqn 2.18 so that we have:

C(x, t) =
∞∑

m=1

e−(λ2
mDt+ax

2
) × [Am sin x

√
λ2

m −
a2

4
+ Bm cos x

√
λ2

m −
a2

4
] (2.19)

The previous capillary model cannot be used in this case to obtain a solution because the

solution of this equation is not easily possible. We make a simplified assumption of the

system to solve the problem.

We will now consider diffusion out of a plane sheet of thickness l through which

the diffusing substance is initially uniformly distributed and the surfaces of which are

kept at zero concentration. Mapping this model to our case, the ion channel of length
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l is assumed to contain the entire diffusing substance. Every single molecule coming

out of this sheet is assumed to enter the cell membrane (Mg2+ arrival process). This

model thus approximately characterizes the Mg2+ diffusion process. The corresponding

boundary conditions are as follows:

C(x, 0) = C0, 0 < x < l (2.20)

C(0, t) = 0, C(l, t) = 0 (2.21)

where Eqn 2.20 signifies the initial concentration inside the ion channel and Eqn 2.21

signifies the initial concentration (before the start of diffusion) inside the cell membrane.

Eqn 2.21 yields:

C(0, t) =
∞∑

m=1

Bme−λ2
mDt = 0 ⇒ Bm = 0

Also, substituting Bm = 0 in Eqn 2.21 for x = l, we get:

C(l, t) = 0 =
∞∑

m=1

e−λ2
mDt−al

2 Am sin l

√
λ2

m −
a2

4
(2.22)

The solution can be obtained by elimination of variables such that we have:

sin l

√
λ2

m −
a2

4
= 0 =⇒ λm =

√
m2π2

l2
+

a2

4

Substituting these values in Eqn 2.20 we get:

C0 =
∞∑

m=1

e−
ax
2 Am sin

mπx

l
⇒ C0e

ax
2 =

∞∑

m=1

Am sin
mπx

l
(2.23)

Multiplying both sides of Eqn 2.23 by sin gπx
l

dx and integrating from 0 to l, we get:

C0

∫ l

0
e

ax
2 sin

gπx

l
dx =

∞∑

m=1

Am

∫ l

0
sin

mπx

l
sin

gπx

l
dx (2.24)

We will use the following identities for the solution of Am:

∫
eax sin bx dx = eax[

a

a2 + b2
sin bx− b

a2 + b2
cos bx]
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∫ l

0
sin

mπx

l
sin

gπx

l
dx =





0, m 6= g

l
2
, m = g





(2.25)

Substituting these identities in Eqn 2.24, we get:

Am =
2C0mπ(1− (−1)me−

al
2 )

l2(a2

4
+ m2π2

l2
)

(2.26)

Hence we can write:

C(x, t) =
∞∑

m=1

2C0mπ(1− (−1)me−
zFV
2RT )

( z2F 2V 2

4R2T 2 + m2π2)
× e−(m2π2

l2
+ z2F2V 2

4R2T2l2
)Dt− zFV x

2RTl sin
mπx

l
(2.27)

Thus we get the time domain analysis for the concentration of Mg2+ molecules from

which we can derive the mean departure rate of Mg2+. The inter-arrival time between

the diffused molecules can be computed from the following theorem:

Theorem 3 The inter-arrival time between the diffusion of the (i+1)th and ith molecules

or ions when the diffusion is based on both the concentration and potential gradients across

the cell is given by IN−i−IN−i−1, where IN−i and IN−i−1 are the times taken for diffusion

of the ith and (i + 1)th molecules/ions respectively and can be solved from the following

equations:

N − i− 1 = 2C0G
∞∑

m=1

m2π2{1− (−1)me−
zFV
2RT

z2F 2V 2

4R2T 2 + m2π2
}2 × e−(m2π2

l2
+ z2F2V 2

4R2T2l2
)DIN−i−1(2.28)

N − i = 2C0G
∞∑

m=1

m2π2{1− (−1)me−
zFV
2RT

z2F 2V 2

4R2T 2 + m2π2
}2 × e−(m2π2

l2
+ z2F2V 2

4R2T2l2
)DIN−i (2.29)

Proof 3 The total number, N , of molecules/ions present inside the sheet of area G in a

fixed time IN is given by:

N = G
∫ l
0 C(x, t) = 2C0G

∑∞
m=1 m2π2{1−(−1)me

− zFV
2RT

z2F2V 2

4R2T2 +m2π2
}2 × e−(m2π2

l2
+ z2F2V 2

4R2T2l2
)DIN

The inter-arrival time can be computed in a straightforward way by noting that diffusion

occurs when a molecule/ion goes out off the plane sheet.
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Table 2.2. Parameter Estimation for the Numerical Plots

Parameters Salmonella cell

Diameter of an ion-channel (d) 10× 10−10m

Cross-sectional area of ion-channel (G′) 4π(d
2 )2

Number of ion-channels (N ′) 100

Cross-sectional area of capillary (G) N ′ ×G′

Diffusion constant (D) 10−5 cm2/s

Potential gradient (V ) 60 mV

2.2 Numerical results and analysis

Let us present the numerical results for our transport models. Table 6.2 lists the

parameters used.

Fig 2.2 plots the inter-arrival time of diffused molecules for molecular concentrations

of 10−9, 10−6, 10−5, 10−4 moles, respectively. As stated earlier, this model is suitable for

diffusion of uncharged molecules. The figure shows that the inter-arrival time increases

with increasing number of molecules diffused in. This is because the concentration gra-

dient reduces with more molecules diffusing in, resulting in a larger time required for the

molecules to move in. It is observed that the larger the initial concentration, the lesser

is the inter-arrival time. This is expected due to a higher concentration gradient. Also,

it can be observed that the inter-arrival time distribution can be fitted to an exponential

distribution.

Fig 2.3 plots the inter-arrival times for diffusion model 2 where the potential gra-

dient is considered. We assume a constant potential gradient of 60mV for the molecules

to overcome for diffusion to take place. The inter-arrival times are higher than the first

model because the molecules have to overcome the potential gradient as well in order to

diffuse. Here, the exponential increase in the inter-arrival times can be observed more
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Figure 2.2. Inter-arrival time vs number of molecules for Diffusion Model 1.
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Figure 2.4. Experimental results: phoPp concentration vs time, Mg2+ ∼ 10−3moles.

clearly. This scenario is best depicted by the curve for concentration 10−9moles where

the results are generated for a large number of molecules diffused out.

Note that model 1 is standard and we estimated the inter-arrival times of Mg2+

molecules using it. The transient analysis of model 2 is hard to solve and hence we chose

a specific boundary condition (as mentioned before) to derive a closed form expression.

The corresponding results compare well with model 1 indicating its validity.

2.3 Simulation results of the PhoPQ system

As the arrival/departure of Mg2+ molecules into the periplasm is essentially a

stochastic process, a constant diffusion rate is not suitable to trigger the input process of

the PhoPQ system. Hence we use an exponential distribution (as indicated by the numer-

ical plots) to estimate the inter-arrival times for diffusion of Mg2+ (which is considered to

be a random variable) to generate the results. The mean of this exponential distribution

is obtained from similar plots of inter-arrival times and corresponding curve-fitting. As
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mentioned in Section 1.3, the PhoPQ system is triggered at micromolar concentrations

of Mg2+ outside the cell, i.e., with millimolar Mg2+ concentration inside the cell. Thus,

it is fair to assume C0 ' 10−3 moles. The mean of the inter-arrival times of Mg2+ for

this concentration is estimated as approximately 10−6 secs for Model 1 and 10 msecs for

Model 2 respectively. The discrete-event simulation framework correspondingly uses a

Poisson distribution with the same mean (as the inter-arrival times follow an exponential

distribution) to estimate the departure process of Mg2+ triggering the signal transduction

cascade.

The simulation framework also uses the holding time estimates of other elemen-

tary biological processes such as cytoplasmic reactions [70],[71],[76] (models 2, 3, 4 and

5 in Fig 1.6), protein-DNA binding [72],[78] (model 6 in Fig 1.6) and gene transcrip-

tion/translation times (the average time for this process was assumed based on current

research results).

In the following, we present the results illustrating the sensitivity of the simulation

to the diffusion models used.

Fig 2.4 plots the concentration of phoPp molecules with time as observed in wet lab

experiments [95]. At present it is difficult to directly link the results of the simulation

to the wet lab experiments data that we have. This is because simulation gives the

temporal dynamics in actual molecular count, whereas the fluorescent tag based wet lab

experiments only show the sensitivity of the fluorescent light. It was not possible to

calibrate the fluorescent tag sensitivity to molecular count per cell in the past. Thus

our simulation results validate the similarity of the temporal dynamics of experimental

results now, without actual comparison of the molecular count of a cell. Currently

more sophisticated experiments like microfluidic based single cell assay [98] allow real

time observation of single molecules in a cell. In future, we hope to get molecular level

measurements in a cell to validate our results quantitatively. Fig 2.5 plots the change of
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Figure 2.5. Simulation results: phoPp concentration vs time, Mg2+ ∼ 10−3moles.

phoPp concentration from our discrete event simulation framework with three different

means for the Mg2+ departure process. It can be noted that with mean of 100µs, the

phoPp concentration change is quite steep, and it achieves the maximum value of phoPp

(observed experimentally) in the cell at about 1 sec. But as the mean is increased

to 10 ms, we get acceptable estimates of the phoPp concentration. This outlines the

importance of diffusion Model 2 where the mean of the Mg2+ departure process is indeed

in the range of 10 ms as opposed to the 1µs range for Model 1. As discussed earlier,

Model 1 is suitable for the phoPp transport process in the cytosol.

2.4 Summary

For the in-silico simulation, we need the transformation of biological functions into

information measure like probability distributions of event time. We have presented one

example of the transformation of the biological function (i.e., molecular transport time)

driven by concentration and potential gradients in this chapter. The proposed stochastic
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models meet the accuracy and computational speed requirements for modeling complex

biological processes. These models are parametric and can be used for different cases

of molecular transport. Once the complete set of mathematical models for the different

biological functions are in place, it should be possible to reuse these models to construct

other biological process models with marginal changes. The models provide for both

speed of computation and flexibility that is required to model the dynamics of an entire

cell.



CHAPTER 3

REACTION MODELS

This chapter presents the event model of the biochemical reactions between the

molecules inside the cytoplasm of a cell where the reaction environment is highly chaotic.

We present a mathematical formulation for the estimation of the reaction time between

two molecules within a cell based on their discrete states. In particular, we propose two

models: 1) The reactant molecules enter the system one at a time to initiate reactions,

and 2) The reactant molecules arrive in batches of a certain size. We derive expressions

for the average and second moment of the time for reaction. Unlike rate equations, the

proposed model does not require the assumption of concentration stability for multiple

molecule reactions. The parametric nature of the model makes it generic and useful for

diverse studies.

This chapter is organized as follows: Section 3.1 presents the stochastic models for

biochemical reactions inside the cell. Section 3.2 reports the results and analysis for a few

simple reaction events. In Section 3.3, we discuss how delayed reactions can be handled

by our models and also present the limitations of our model. Finally, in Section 3.4 we

summarize the findings of this chapter.

3.1 Models for biochemical reactions

We will present a simple reaction pair in this section to explain the discrete event

modeling of biochemical reactions. Consider the elementary reaction pair R1 and R2

with five types of molecules X1,X2,X3,X4 and X5:

R1 : X1 + X2 −→ X3 (3.1)

37
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R2 : X4 + X2 −→ X5

Note that we divide the reaction event into two independent micro-events as follows:

1. Random collisions between the reactants; this allows us to compute the probability

of collision (pc) between the reactant molecules.

2. A reaction will occur only when the kinetic energy of the colliding reactant exceeds

the activation energy requirement for the reaction; this allows us to compute the

probability of reaction (pr).

The total probability for reaction after a collision is hence the joint probability of these

two events. To model these reactions analytically in the time domain, we consider two

different models for the arrivals of X1 and X4 types of molecules in the system which,

we are assumed to contain a fixed number, n2, of X2 molecules.

3.1.1 Model 1: Reactant molecules enter the system one at a time

The molecules of X1 and X4 enter the system one at a time to start the reac-

tions. From the principles of collision theory for hard spheres, we model each reactant

molecule as a rigid sphere with radii r1, r2, r3, r4, and r5 respectively for molecules of

types X1, X2, X3, X4, and X5 as shown in Fig 4.1.

We define our coordinate system such that molecule X2 is stationary with respect

to molecule X1 for reaction R1, so that X1 moves towards molecule X2 with a relative

velocity U12. Molecule X1 moves through space to sweep out a collision cross section

A = πr2
12 (as illustrated in Fig 3.2), where r12 is the collision radius given by:

r12 = r1 + r2

If the center of the X2 molecule comes within a distance of r12 of the center of the X1

molecule, they will collide. To discretize the system we consider the dynamics of this

process within a small time interval ∆t. We assume that the temporal reaction process
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Figure 3.1. Schematic diagram of molecules of types X1 and X2.

is an independent sequence of events separated by ∆t. In this time interval, the X1

molecule sweeps out a volume ∆V given by:

∆V = πr2
12U12∆t

Now, the probability of X1 molecules in the collision volume ∆V is pX1 = 1 (as one X1

molecule entered the cell creating a collision volume of ∆V ).

Figure 3.2. Volume swept out by molecule X1 in time ∆t.
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The probability of at least one molecule of X2 being present in an arbitrary uni-

formly distributed ∆V in V is pX2 = ∆V.n2/V , where V denotes the cell volume (ideally

V should be the volume of the cytoplasm which can be approximated by the entire cell

volume). The probability that an X1 molecule collides with an X2 molecule in ∆t is

given by:

pc = pX1 × pX2 = ∆V.n2/V =
n2πr2

12U12∆t

V
(3.2)

Thus we have a stochastic sequence of events characterized by the probability of

collision, and it is important to determine whether the collision will create the reaction.

To complete the reaction, the molecules have to bind to each other. Different type of

bonds (ionic, covalent, hydrogen, etc.) require different activation energies for binding.

We next assume that the colliding molecules must cross an energy threshold, defined by

the free energy (EAct), to provide the energy to react. Also, we assume that only the

kinetic energy directed along the line of centers contribute to the reaction as the effects

of other forces (e.g. coulomb force) have been captured with the velocity distribution.

With these two assumptions, we define the probability of another independent event:

successful reaction after collision denoted by pr. The kinetic energy of approach of X1

towards X2 with relative velocity U12 is E =
m12U2

12

2
, where m12 = m1m2

m1+m2
= the reduced

mass, m1 = mass (in gm) of molecular species X1 and m2 = mass (in gm) of molecular

species X2. We also assume that as E increases above EAct, the number of collisions that

result in reaction also increases linearly. Thus the probability, pr, for a reaction to occur,

is given by:

pr =





E−EAct

E
, for E > EAct

0, otherwise





(3.3)
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Hence, the joint probability, p, for collision and reaction is given by:

p = p(Reaction, Collision) = pr × pc =





pc
(E−EAct)

E
, for E > EAct

0, otherwise.





The above equations assume a fixed relative velocity U12 for the reaction. The velocity

distribution of the macromolecules inside a cell capturing the effects of the different forces

is obtained from Molecular Dynamic Simulation. It is found to be comparable to the

Maxwell-Boltzmann distribution of molecular velocities [38] for a species of mass m, given

by:

f(U, T )dU = 4π(
m

2πkBT
)3/2e

−mU2

2kBT U2dU

where kB = Boltzmann’s constant = 1.381 × 10−23kg m2/s2/K/molecule, and T is the

absolute temperature at which the reaction occurs. Replacing m with the reduced mass

m12 of the molecules X1 and X2, we get,

f(U, T )dU = 4π(
m12

2πkBT
)3/2e

−m12U2

2kBT U2dU (3.4)

The term on the left hand side of the above equation denotes the fraction of X1 molecules

with relative velocities between U and (U + dU). Summing up the collisions for the

X1 molecules for all velocities we get the probability of reaction, p, as a function of

temperature only as follows:

p(T ) =
∫ ∞

0
pf(U, T )dU

Now, recalling E =
m12U2

12

2
, and hence, dE = m12U12dU , and substituting into Eqn 4.3,

we get:

f(U, T )dU = 4π(
m12

2πkBT
)3/2 2E

Um2
12

e
−E

kBT dE

Thus,

p =
∫ ∞

EAct

(E − EAct)4n2πr2
12∆t

V kBT

√
1

2πkBTm12

e
− E

kBT dE =
n2r

2
12∆t

V

√
8πkBT

m12

e
−EAct
kBT (3.5)
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We mentioned that we discretize the temporal reaction process as a Bernoulli trial process.

Next we compute the average time taken to complete the reaction with this probability.

Let us assume that the molecule composition does not change during the reaction time.

This is valid due to the very short time for reaction compared to the time taken for a

potential change in the reaction environment for the associated molecules. Let ∆t = τ

be an infinitely small time step. The molecules try to react through repeated collisions.

If the first collision fails to produce a reaction, they collide again after τ time units and

so on.

We can interpret p as the probability of a successful reaction in time τ . Thus the

average time of reaction R1, TDE
avg1, and the corresponding second moment, TDE

2ndmoment1,

can be formalized as follows:

Theorem 4 The average and the second moment of reaction times of type R1 for one

molecule of X1 reacting with n2 molecules of X2 is given by:

TDE
avg1 =

τ

p

TDE
2ndmoment1 =

(2− p)τ 2

p2

Proof 4 The average time of reaction can be approximated by summing up the times

taken for reaction with the first collision, second collision and so on. Thus we get:

TDE
avg1 = pτ + (1− p)p.2τ + (1− p)2p.3τ + ...

We have:

TDE
avg1

= pτS (3.6)

where,

S = 1 + 2(1− p) + 3(1− p)2 + ... (3.7)
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Also, multiplying both sides of this equation by (1-p) we get:

(1− p)S = (1− p) + 2(1− p)2 + 3(1− p)3 + ... (3.8)

Subtracting Eqn 3.8 from Eqn 3.7 we get:

pS = 1 + (1− p) + (1− p)2 + (1− p)3 + ... =
1

p
⇒ S =

1

p2

Substituting S in Eqn 3.6 we get:

TDE
avg1

=
τ

p

Similarly, for the second moment we have:

TDE
2ndmoment1 = pτ 2 + (1− p)p.(2τ)2 + (1− p)2p.(3τ)2 + ... = pτ 2S

where,

S = 1 + 22(1− p) + 32(1− p)2 + ... (3.9)

Similarly,

S(1− p) = (1− p) + 22(1− p)2 + 32(1− p)3 + ... (3.10)

Subtracting Eqn 3.10 from Eqn 3.9, we get:

pS = 1 + (22 − 12)(1− p) + (32 − 22)(1− p)2 + (42 − 32)(1− p)3 + ...

Now, we can substitute the terms of the form a2 − (a − 1)2 in the above equation by

(2a− 1) as follows:

pS = 1 + (2.2− 1)(1− p) + (3.2− 1)(1− p)2 + (4.2− 1)(1− p)3 + ...

= [1 + 2{2(1− p) + 3(1− p)2 + 4(1− p)3 + ...}]

− [(1− p) + (1− p)2 + (1− p)3 + ...]

= 1 + 2Y − Z (3.11)
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where, Y = {2(1− p) + 3(1− p)2 + 4(1− p)3 + ...} and

Z = (1− p) + (1− p)2 + (1− p)3 + ...

Z forms an infinite geometric series and we get:

Z =
1− p

p

Next we multiply (1− p) to Y and subtract it from the expression of Y to get:

pY = 2(1− p) + (1− p)2 + (1− p)3 + ... = 2(1− p) +
(1− p)2

p
⇒ Y =

1− p2

p2

Substituting the values for Y and Z in Eqn 3.11 we get:

S =
2− p

p3

⇒ TDE
2ndmoment1 =

(2− p)τ 2

p2

Note that the computation of TDE
avg1 and TDE

2ndmoment1 assume that no other reaction (having

the same reactant) is overlapping with R1. If reaction R2 overlaps with R1, the average

time estimate (of R1) should increase as R2 will reduce the number of X2 molecules avail-

able for reaction R1. The discrete event approach serializes such overlapping reactions

and hence our estimates of TDE
avg1 and TDE

2ndmoment1 is independent of the effect of R2. We

next derive expressions for the adjusted time required for chemical reactions where such

overlapping is considered. Our goal is to show that the average time for serialized chem-

ical reactions is comparable to the adjusted time when the number of reactant molecules

is large in the biological system.

3.1.1.1 The actual scenario: conflicting reaction events

The discrete event technique assumes that all events are serialized in time. Thus no

two conflicting events occur at exactly the same time. If two conflicting reaction events
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are triggered at the same time, one event will be considered to occur before the other

one. Let us consider the following three reactions:

R1 : X1 + X2 −→ X3

R2 : X4 + X2 −→ X6

R3 : X6 + X5 −→ X7

R1 R2

Conflict

Case I

R1 R3

No Conflict

Case II

R2 R3

Conflict

Case III

R1

No Conflict

R2

Case IV

R2

No Conflict

R3

Case V

Figure 3.3. Possible Event scenarios with potential conflicts.

We next illustrate the different possible event scenarios in Fig 3.3. The events are

shown along the time axis. There is a conflict in Case I because the X2 molecules are

shared by both reactions R1 and R2; so they have to be serialized. There are no conflicts

between reactions R1 and R3 as they do not share any molecules (Case II). Similarly,

there is conflict between R2 and R3 due to the X6 molecules (Case III). Also, there are no

conflicts between reaction pairs R1, R2 (Case IV) and R2, R3 (Case V) as the reactions

do not overlap. The concept of serialization in discrete event modeling requires that

these conflict scenarios should be approximated as one reaction occurring only after the
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completion of another one. Thus, in Case III above, we assume that the molecule of X6 is

available to R3 only after the completion of R2. Similarly, in Case I, we assume, that the

molecule of X2 is available to R2 only after the completion of R1. These assumptions will

work well as long as the number of molecules in the system is large. Thus, this marginal

adjustment will not significantly distort the reaction time.

We next present the analytical modeling of Case I to show how the adjusted reaction

time should be derived.

3.1.1.2 Computing the Adjusted Time of Reaction R1 for Case I:

R1 R2

Tavg1

Tavg2

t0 t1

Figure 3.4. Case I Event Scenario and its Timing Details.

In Case I (Fig 3.4), molecules of X2 are shared by reactions R1 and R2. Thus

when R2 starts, there is faster depletion of molecules of X2. This will obviously result

in a larger average time of reaction, R1. In this section, we will estimate T adjusted
avg1

, the

adjusted time for reaction R1. It should be noted however, that this adjusted time is

also a random variable like TDE
avg1

. But, unlike TDE
avg1

, the computation of T adjusted
avg1

involves

the effect of multiple reactions that share a reactant. Here, we compute T adjusted
avg1

for two

conflicting reactions, i.e., R1 and R2. The computations become a lot more complex if

we consider more conflicting reactions. This is exactly the reason why the discrete event
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framework only uses the estimates of TDE
avg1 and TDE

2ndmoment1 to approximately estimate

the reaction time.

Let, n1 be the number of molecules of X1 at time t0, n2 be the number of molecules

of X2 at time t0 and n4 = number of molecules of X4 at time t1. Also, let p1 be the

probability of reaction of X1 and X2 during time (t1− t0). As calculated before, we have

p1 =
n2r

2
12τ

V

√
8πkBT

m12

e
−EA12

kbT

where EA12 is the activation energy required for R1. Let,

q = dt1 − t0
τ

e

Here, q denotes the number of timesteps of length τ between t1 and t0. Now, the average

number of X2 molecules in the system at time t1 is nt1
2 = n2 −∑q

k=1 p1(1− p1)
k−1. Also,

let p2 be the probability of reaction between X4 and X2 molecules. Then,

p2 =
nt1

2 r2
42τ

V

√
8πkBT

m42

e
−EA42

kbT

where r42, m42 and EA42 are defined as before for reaction R2. Now, the probability of

reaction R1 changes from the (q + 1)th step onwards as R2 can reduce the number of X2

molecules in the system. Thus,

pt1+hτ
1 = (nt1

2 −
h∑

k=1

p2(1− p2)
k−1)

r2
12τ

V

√
8πkBT

m12

e
−EA12

kbT

Here, pt1+hτ
1 denotes the probability of reaction R1 at the hth time-step after time t1. The

adjusted time for reaction R1, T adjusted
avg1

, is given by:

T adjusted
avg1

=
q∑

i=1

p1(1− p1)
i−1iτ +

∞∑

j=1

pt1+jτ
1 (1− p1)

q
j−1∏

k=1

(1− pt1+kτ
1 )[(q + j)τ ]

Similarly, the adjusted time for R2 can be calculated. Also, the adjusted second mo-

ments for reactions R1 and R2 can be calculated easily following the same concepts. In

Section 5.4, we report the comparisons between TDE
avg1

and T adjusted
avg1

, and show that the

difference between them reduces as the number of X2 molecules in the cell increases.
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3.1.2 Model 2: Reactant molecules enter the cell in fixed size batches

*
*
*
*

*
*
*
*

*
*
*
*

*   *   *   *   *   *   *   *

*   *   *   *   *   *   *   *

*   *   *   *   *   *   *   *

p1

p1

p1

1 - p1

1 - p1

1 - p1

p2

p2

p2

(1-p1) p2

(1-p1) p2

(1-p1)  p2

1w

1w

1w

1w

1w

1w

1w

1w

1w

1w 1w

1w 1w

1w 1w

b1-w+1

Figure 3.5. State diagram: wth reaction when X1 molecules arrive in batches.

We assume that the X1 molecules arrive in batches of size b1 and X4 molecules

arrive in batches of size b4 in the system. We will analytically model the average time for

reaction R1 for only the discrete event case, T batch/DE
avg1

(i.e., assuming no overlap between

reactions involving shared reactants). Fig 3.5 depicts the scenario. Let, pij
k denote the

probability of the jth reaction (we can have a total of b1 reactions in a batch size of b1) of

type Ri at the kth collision. Thus, the probability of the first reaction of type R1 between

one X1 molecule and an X2 molecule resulting from the first collision, p11
1 , is given by:

p11
1 =

b1n2r
2
12τ

V

√
8πkBT

m12

e
−EA12

kbT

The numerator on the right hand side of the above equation gets multiplied by b1 to sum

up the probability of reaction for all the b1 molecules that arrived in a single batch. The

black circles in Fig 3.5 signify the reaction R1 occurring from the first collision, second
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collision and so on. Hence, the probability of the first reaction of type R1 from the ith

collision (2 ≤ i ≤ ∞), is given by:

p11
i = p11

1

Also, the probabilities of the wth reaction of type R1 from the first collision is given by:

p1w
1 =

(b1 − w + 1)(n2 − w + 1)r2
12τ

V

√
8πkBT

m12

e
−EA12

kBT

Similarly, the probability of the wth reaction of type R1 from the ith collision, p1w
i , is

given by:

p1w
i = p1w

1

The average time to complete one reaction of type R1, T batch/DE
avg1

, and the corresponding

second moment, T
batch/DE
2ndmoment1, in the discrete event model is given by the following theorem:

Theorem 5 The average and second moment to complete a reaction of type R1 in a

batch of size b1 molecules of X1 and n2 molecules of type X2 in the discrete event model

is given by:

T batch/DE
avg1

=

∑b1
k=1[

∑∞
i=1(p

1k
i iτ

∏i−1
j=1(1− p1k

j ))]

b1

=

∑b1
k=1[

∑∞
i=1(p

1k
1 (1− p1k

1 )i−1iτ)]

b1

T
batch/DE
2ndmoment1 =

∑b1
k=1[

∑∞
i=1(p

1k
i (iτ)2 ∏i−1

j=1(1− p1k
j ))]

b1

=

∑b1
k=1[

∑∞
i=1(p

1k
1 (iτ)2(1− p1k

1 )i−1)]

b1

Proof 5 The time taken for the kth reaction in the batch is computed by adding up the

contributions from all the i collisions, (where 1 ≤ i ≤ ∞) as follows:

∞∑

i=1

(p1k
i iτ

i−1∏

j=1

(1− p1k
j )) (3.12)

The average time of any reaction in the batch is simply computed by adding up the times

for all the possible b1 reactions and taking the mean (i.e., dividing by b1). The second

moment can also be calculated in a similar fashion.
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The computation of the adjusted time of reaction R1 in the batch model becomes very

cumbersome and is not included here. The comparisons between the discrete event based

estimates and adjusted estimates are only shown for Model 1 in Section 5.4. However,

the batch model is required when the number of reactions increase significantly in the

system, triggering a large number of discrete reaction events in the stochastic simulation.

In such scenarios, we can club b1 such reactions (of type R1) together as a single event

using the batch model. This would automatically reduce the complexity of the system.

3.1.3 Probability of collision calculation for a time-step τ

The probability of collision, pc, as calculated in Eqn 4.1 will change if τ increases

sufficiently. This is because the number of collisions of one molecule of X1 (under Model

1) with molecules of X2 in the area ∆V is given by n2
∆V
V

, where ∆V = πr2
12U12τ and

n2 is the number of X2 molecules. We can estimate the number of collisions of the X1

molecule with a molecule of X2, Estcol for a successful reaction as follows:

Estcol = pc.1 + p2
c .2 + p3

c .3 + ... =
pc

(1− pc)2
= n2(

∆V

V
)

Solving for pc from the above quadratic equation and noting that pc ≤ 1, we get:

pc =
1 + 2n2

∆V
V
−

√
1 + 4n2

∆V
V

2n2
∆V
V

(3.13)

We can calculate the probability of reaction, p, from this new estimate of pc as before.

For batch arrivals (Model 2), the estimated number of collisions should be added

up for the b1 molecules of X1 arriving in a single batch. Thus,

Estbatch
coll = b1n2

∆V

V
=

pc

(1− pc)2
(3.14)

and hence:

pbatch
c =

1 + 2b1n2
∆V
V
−

√
1 + 4b1n2

∆V
V

2b1n2
∆V
V

(3.15)
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In the numerical results section we shall show that the difference between the adjusted

and average (i.e., for the discrete event model) reaction times is minimal as τ grows large.

This is due to the higher quantization error in the estimation process. But, we cannot

have τ excessively large because that would violate our assumption of only one collision

in this time period.

3.1.4 Generalization for other types of reactions

We considered simple reactions of type R1 where the reaction is activated by single

molecules of the reactants. The analysis becomes cumbersome for reactants having more

than one molecules participating in the reaction. Nevertheless, such situations can also

be modeled with our scheme. Note that, in such cases, only the pc computation changes.

Let us consider the following reaction:

R4 : X1 + yX2 −→ X3

Hence, the probability of collision, pc for Model 1, and pbatch
c for Model 2, can be written

as:

pc =

(
n2

y

)
∆V

V

pbatch
c = b1

(
n2

y

)
∆V

V

If more than one X1 molecule is involved in a reaction, then we can only consider batch

arrivals of Model 2. Thus, for reaction R5 we obtain:

R5 : xX1 + yX2 −→ X3

pbatch
c =

(
b1

x

)(
n2

y

)
dV

V
, b1 ≥ x
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3.1.5 Reactions occurring in the cell membrane or inside the nucleus

Note that the modeling concept presented here can be extended easily to estimate

the holding time for membrane reactions and reactions occurring in the nucleus. The

only difference between time estimates is governed by the estimates of V . Thus for a

reaction occurring inside the nucleus, V will denote the volume of the nucleus. This

assumes that the reacting molecules does not come out of the nucleus in course of the

reaction event.

cell membrane

cytoplasm

rcell

rcytoplasm

Figure 3.6. Estimation of V for membrane and cytoplasmic reactions.

For membrane reactions the computation of V requires a knowledge of the radius

of the cell (rcell) as well as the radius of the cytoplasm denoted by rcytoplasm. And, V can

be simply estimated assuming the cell to be spherical as:

V =
4

3
π[(rcell)

3 − (rcytoplasm)3]

Clearly, this assumes that the reacting molecules are freely dispersed along the cell mem-

brane. When the molecules are tightly bound to the cell periphery, however, we can use

the estimation method outlined in [3].
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Figure 3.7. Comparison: CDF of Model 1 and rate based equation model.

3.2 Numerical results

In this section, we present the numerical results for our reaction models. Af-

ter showing the comparisons of our stochastic reaction models with existing rate based

equation models, we illustrate the effect of τ on the reaction time. Finally, we show that

the average estimate of reaction time (using discrete event serialization) is comparable

to the adjusted time of reaction when the number of molecules increase in the system.

3.2.1 Comparison with existing rate based equation model

The rate based model for reactions is a well studied topic. In [38], the authors

apply a collision theory based approach to estimate the rate of reaction R1 per unit time

and per unit volume at absolute temperature T (denoted by k̃(T )) as:

k̃(T ) = n1n2r
2
12

√
8πkBT

m12

e
−Eact
kBT (3.16)
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Figure 3.8. CDF of Model 2 vs rate equation model (1200 ATP molecules).
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Our estimate of TDE
avg1 can also be written as:

TDE
avg1 =

V

n2r2
12

√
8πkBT

m12
e
−Eact
kBT

; (3.17)

Note that, if we compute TDE
avg1 per unit volume (denoted by T

DE/volume
avg1 ), we will have

T
DE/volume
avg1 = 1

k̃(T )
(we have n1 = 1 as 1 molecule of X1 enters the cell). This illustrates the

validity of our model with the existing rate based model. In particular, we can conclude

that the inverse of the reaction rate estimation gives the time required for one reaction

of type R1 in the rate based model, which is exactly the same as to the average time for

reaction R1 by a single molecule of type X1 estimated by our stochastic model. However,

the rate constant in the rate based model is a real variable and thus can only return a

constant time for completion of reaction R1. But such reactions in the cytoplasm are

essentially chaotic [40]. Hence they should be considered as a stochastic process and the

time required for reaction is actually a random variable.
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Table 3.1. Parameter Estimation for Glycolysis reaction

Parameters Prokaryotic Cell (Salmonella Typhimurium)

V (Volume of the cell) 4.52× 10−18m3

r1 (Radius of Glucose) 4.386 nm

r2 (Radius of ATP) 0.77 nm

n2 (number of ATP molecules in the cell) 1200000

Eact (Activation energy) -4.3 kcal/mol

T (Absolute temperature) 300 K

m1 (mass for Glucose) 180 Dalton

m2 (mass for ATP) 507.181 Dalton

To generate the numerical results, we consider the glycolysis reaction:

R1 : Glucose + ATP ⇐⇒ Glucose6P + ADP (3.18)

The corresponding parameters are shown in Table 6.1.

Fig 3.7 plots the cumulative distribution function for the time of reaction R1 from

Model 1 and also that from rate based equations [38]. The time for reaction follows

an exponential distribution with mean 0.003422 secs and variance 0.0000113 (note that

the standard deviation is nearly equal to the mean). The rate based model, however,

gives a constant reaction time of 0.003422 secs. Similar trends are observed for the

batch model (Model 2) as depicted in Fig 3.9. In this case, the standard deviation is

larger than the mean and hence it is not appropriate to assume any distribution that

is based on a single moment (e.g., the exponential distribution). By appropriate Chi-

square test, it is possible to fit the mean and standard deviation (for batch model) to a

Gamma distribution with appropriate parameters. In the current ODE based stochastic

simulations based on Gillespie technique, it is assumed that the reaction rate is constant

and only changes to stochastic at lower number of reactant molecules and the distribution

is assumed exponential. We have shown the nature of the distribution for different
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reaction conditions. Our model indicates that if we consider the chaotic environment of

the cell, the reaction time is always stochastic. For single molecule this can be assumed

exponentially distributed within the range of interest for cell modeling. But for batch

arrival of molecules, a Gamma distribution will be the appropriate model of the reaction

time. For the numerical study of batch reactions (Model-2), we consider three batch

sizes such as b1 = 50, 75, and 100. The average time for reaction decreases as the batch

size increases (because larger the batch size, the larger is the probability of individual

reactions in the batch which effectively decreases the average time for any one reaction).

For, b1 = 50, the mean is 0.000151 secs and variance is 0.362 × 10−7. Similarly, for

b1 = 75, the mean is 0.000121 secs and variance is 0.264 × 10−7 and for b1 = 100, we

have mean of 0.000101 secs and variance of 0.218 × 10−7. The reaction time from the

rate based model however remains constant in all three cases (which is calculated by

substituting n1 = b1 in Eq 3.16). We observe that the constant time for a reaction in the

rate-based model is slightly lower than the corresponding average time of reaction in the

batch model. This is because, the effect of reduction in the probability of reaction for

the later reactions in the batch is not considered in the rate-based model.

Fig 3.8 however shows an interesting characteristic for the CDF of Model 2. We

consider only 1200 ATP molecules in the system such that the reduction in probability

due to the initial set of reactions in the batch of size b1 is more pronounced. Note

that this reduction in probability is because more ATP molecules are being used up

by these initial set of reactions. As a result, the time taken for the later reactions in

b1 is more resulting in an overall increase in average reaction time of any reaction in

the batch. Hence, the average time estimates increase as the batch size increases. In

particular, for b1 = 50, 75, 100, we have mean = 0.007538, 0.009052, and 0.010076 secs

respectively. However, for the rate-based equation model, the time for a reaction in

a batch of size b1 is still constant. For different batch sizes, the reaction time for the
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rate-based equation model decreases with increase in batch size as normal. However,

we observe that the reaction time estimates from rate-based equations are significantly

less than that from our batch model as the former does not consider the reduction in

probabilities for each reaction in the batch. These effects however, fades off with more

number of ATP molecules in the system (typically greater than 1500) for a batch size of

100.

Fig 3.10 plots the standard deviation to mean ratio for the two models presented

i.e.,

√
T DE
2ndmoment1−(T DE

avg1)2

T DE
avg1

(for Model 1) and

√
T

batch/DE
2ndmoment1−(T

batch/DE
avg1 )2

T
batch/DE
avg1

(for Model 2). We

find that for Model 1, the ratio remains constant at 1 for appreciable number of ATP

molecules in the system. This corroborates our assumption that the reaction time follows

an exponential distribution in most cases. With further increase in the number of ATP

molecules (beyond a billion molecules, which is not realistic for many reactions), it starts

to decrease resulting in a constant reaction time where the rate equation-based model can

be applied. Thus, for fewer number of ATP molecules in the system, our stochastic model

gives a better estimate of the reaction time and becomes deterministic (i.e. constant)

with further increase in ATP molecules. The plot for the batch model, shows that the

ratio is consistently greater than 1 for acceptable estimates of ATP molecules in the

cell. This is why we model the reaction time for Model 2 using a Gamma distribution.

However, further increase in the number of ATP molecules (beyond a billion molecules)

will bring down the ratio to less than 1 and again make the reaction time constant (as

given by the rate-based model).
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Table 3.2. Parameter estimation for R1 and R2 reaction pair in Eq 3.19

Parameters Estimates

r1 (Radius of H2) 1.37 angstrom

r2 (Radius of O2) 1.55 angstrom

r3 (Radius of Cl2) 1.75 angstrom

Eact (same Eact assumed for R1 and R2) 7 kcal/mol

T (Absolute temperature) 273 K

m1 (for H2) 1 gm/mol

m2 (for O2) 32 gm/mol

m3 (for CL2) 71 gm/mol

b1 (batch size of O2 molecules in R1) 100

3.2.2 Dependence of the reaction time of our stochastic model on τ

Figs 3.11-3.14 plot the performance of our stochastic reaction models. The graphs

are generated considering the following simple reactions:

R1 : H + O2 → OH + O

R2 : H + Cl2 → HCl + Cl (3.19)

The corresponding parameters are depicted in Table 6.2. Note that from our conventions

in the previous section, the H molecules are the X2 type molecules in R1 and R2. The

reaction time estimates are made per unit volume. All the results have been generated

assuming 50% overlap between the reactions, i.e., q = dT DE
avg1

×0.5

τ
e.

Fig 3.11 plots the average and adjusted times of reaction for Model 1 against τ .

We find that initially they differ, but converge as τ increases. So, our reaction time

estimates should consider the time step τ to fall in this range. But τ cannot be increased

indefinitely because that would violate our assumption of one collision taking place in

one time step. A good estimate of τ would be 10−3 secs. Also, we find that the average

time of reaction is independent of the value of τ . With increasing τ , the probability
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Figure 3.11. Reaction time vs τ for Model 1 .

of reaction increases by an equal amount as the number of collisions required decreases

resulting in a constant average reaction time. However, we find that the adjusted reaction

time decreases initially before becoming a constant. This is because, with higher τ , the

probability of reaction R1 increases resulting in a lower value for the adjusted time of

reaction.

In Fig 3.12, we only show the average time taken for reactions of type R1 occurring

in a single batch of size 100. We can observe that the average time of reaction increases

with τ as more time is required for every single collision of the reactant molecules resulting

in increased average reaction time. However, the average time becomes constant with

τ ' 10−5. A point to note is that the adjusted time of reaction should be more than

the average time because it captures the actual scenario of reduction in probabilities

for conflicting reactions. It should be noted that the batch model requires lower time

for reaction than Model 1 because we have calculated the average of the time required

to complete all the b1 reactions corresponding to the b1 molecules arriving in a single
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Figure 3.13. Reaction time vs number of X2 molecules for Model 1 .
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Figure 3.14. Reaction time vs number of X2 molecules for Model 2 .
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Figure 3.15. Percentage difference between adjusted and actual times of reaction.
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batch which intuitively should need less time than a single reaction as in Model 1 as the

probability of a single reaction in the batch increases.

3.2.3 Dependence of the reaction time on the number of X2 molecules

Figs 3.13 and 3.14 plot the average and adjusted times for reaction with increase

in the number of X2 molecules in the system for Model 1 and Model 2. For both plots

we find that the average time for reaction reduces with increasing number of molecules

for obvious reasons. Initially, there is some difference between the adjusted and average

results, but the difference quickly reduces as the number of molecules is increased in

the system as illustrated in Fig 3.13. Fig 3.15 plots the difference between the adjusted

and average times in percentage. We find that with ∼ 1.5 × 106 molecules of X2 the

difference becomes negligible. For micro-molar concentrations of the reactant molecules,

we find a negligible difference between the adjusted and average results that point to the

efficacy of the serialization process in discrete event simulations. Here also, we observe

that average time of reaction for Model 2 is slightly lower than that for Model 1. This is

because, in the batch model, the effect of increase in time taken for the reaction of the

last few molecules of a single batch because of reduction in the number of X2 molecules

is overridden by the increase in probability of each reaction in the batch resulting in an

overall lower average time for reaction than Model 1.

3.3 Discussions

3.3.1 Handling delayed reactions

Note that in this chapter, we have equated the time taken to complete a reaction

event and the holding time of a discrete reaction event. The underlying assumption is

that reactant collisions occur with some probability and once a collision of sufficient

energy occurs, a reaction takes place instantaneously. Hence, we assume that there is
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no holding time of an activated complex. If there is some time delay associated with

initiation and completion of the reaction, the probability evolution becomes more com-

plicated [26]. Our reaction models cannot directly handle such delayed reactions which

would require comprehensive modeling of the delayed states. Such an attempt was made

to model protein-ligand docking events in [73]. However, the reaction models in this

chapter were primarily developed for the discrete event simulator that can model delayed

reactions easily using the concept of event serialization. Thus, the random reaction time

can be convoluted with the random/constant delay to give the total delayed reaction

completion time. However, this involves an implicit approximation assuming that the

reactant molecules are not available for other reactions once it has entered the present

reaction event. But because both the original reaction event time and the delay can

be random variables incorporating the probability of successfully completing the delayed

reaction event, this approximation should be small. Further analysis is required to study

the effect of this approximation.

3.3.2 Limitations of our model

3.3.2.1 Maxwell-Boltzmann distribution of molecular velocities

The Maxwell-Boltzmann distribution gives a good estimate of molecular velocities

where we have spatial homogeneity and is widely used in practice. Molecular dynamic

(MD) simulation measurements during protein reactions show that the velocity distri-

bution of proteins in the cytoplasm closely match the Maxwell-Boltzmann distribution.

However, its application in our model might not give perfect results for cases where the

effects of the specific location (e.g. endoplasmic reticulum) of the reactant molecules may

violate the assumption of uniform distribution in a volume. Ideally the velocity distri-

bution should incorporate the properties of the reaction space (nucleus/membrane for
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reactions occurring in the membrane or nucleus) and the effect on velocity distribution

due to the space shape and irregularities. We plan to explore the possibility to improve

this velocity distribution by considering the other biological factors that can influence

the velocity of the reacting molecules.

3.3.2.2 Activation energy threshold

The activation energy (Eact) has been measured for many reactions and we need

an estimate of this parameter to be able to predict the nature of the reaction time. The

reactions are mostly affected by the amount of energy required to create the different

type of bonds used for the reaction. In most cases, however, reactions can be categorized

based on the chemical properties of the reactants, and the activation energy for similar

kinds of reactions (involving similar reactants) are quite comparable. Comprehensive

research results in biochemistry are available and we believe that we should be able to

use that knowledge to define this parameter for most of the reactions if we can specify

the reaction type.

3.3.2.3 Reverse reactions

We did not consider the reverse reaction conditions in our model because we are

interested in the state of single molecules at a time. The state of the molecule can

however change through reverse reactions based on the reverse reaction parameters. Say

X1 and X2 molecules combine to form X4. The moment the X4 molecule is formed,

a death event of an X4 molecule can occur at a later time (depending on the reverse

reaction parameters), when it decomposes back into X1 and X2 molecules. Because of

the large number of molecules in the system, and assuming the memoryless property of

our simulation technique, we can cause the death of any molecule of X4 at the occurrence

of such death events. During such death events, the system state is changed by killing
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any one of the X4 molecules to create the X1 and X2 molecules. The assumption of

memory-less property allows for a one-directional reaction model.

3.3.2.4 Reaction neighborhoods

In addition, there is increasing evidence of sub-compartmental (i.e., intra-compartmental

localization) in cells, so local neighborhoods of reactions will have higher apparent con-

centrations than simply the number of molecules divided by the size of the compartment.

However, this would require more in depth modeling of the different molecular concen-

trations inside the cell that reduces the scalability of the simulation framework. Indeed,

the Gillespie simulator also fails to address this issue as it requires different rate con-

stants for specific neighborhoods of the reaction type. Nevertheless, our model can be

easily extended to incorporate such reaction neighborhoods by limiting the movement

of the reactant molecules inside a limited reaction space while computing the probabil-

ity. However, the applicability of the Maxwell-Boltzmann velocity distribution in the

neighborhood requires further research.

3.4 Summary

In this chapter we proposed a model to compute the reaction time for cytoplas-

mic molecular reactions as a stochastic variable that appropriately reflects the cell en-

vironment. The main idea of this modeling is to transform the reaction process from a

continuous deterministic process to a discrete random process. This concept allows the

transformation of biological reactions to the stochastic domain and make it suitable for

discrete event simulation. We have systematically presented the models of different types

of reaction situations like single molecule reaction, reaction with a batch of molecules and

complex reaction sets sharing common molecule types. In addition, we presented the ac-

curacy impact of reaction serialization that we assume for our discrete event simulation.
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We found that the serialization impact on the accuracy of reaction time estimate is min-

imal when the number of molecules are large in the system which is commonly true for

a biological process. This type of random reaction time estimate can differentiate the

reaction environments in the cell based on number of molecules available for reaction and

the size of the batches that activated the reactions. The average reaction time estimated

from this method (for the single molecule model) is exactly same as the reaction rate

estimates of kinetic modeling. In addition, we are able to estimate the two moments of

the reaction time to capture the stochastic nature of the reaction function. The proposed

batch molecule model can significantly reduce the computational complexity when large

number of molecules enter a system in a very short time. The discrete modeling frame-

work for biological functions presented here is flexible enough to be extended to create

the models for complex biological functions like protein-DNA binding, protein-protein

interaction, transcription, translation etc. The stochasticity of the reaction time that is

modeled in this chapter is a new metric and current experimental methods are not able

to capture this measurement at molecular level. We have shown that the first moment

estimate is in agreement with current reaction rate based estimation technique and thus

established the validity of the model for the highest moment. At present no experimental

data is available to validate the second moment of the reaction time. Newer experiments

on single molecule movements in a cell can throw additional light on this aspect of the

variance of the reaction time.



CHAPTER 4

PROTEIN-DNA BINDING

This chapter presents a parametric model to determine the execution time of the

protein-DNA binding event. Our model considers the actual binding mechanism in con-

junction with the approximate model of the protein and DNA structures. We model the

effects of thermal and concentration gradients on the binding process using a collision

probability. This modeling approach significantly removes the complexity of the classical

protein sliding along the DNA model, improves the speed of computation and can bypass

the speed-stability paradox. The model produces acceptable estimates of DNA-protein

binding time necessary for our event-based stochastic system simulator where the higher

order (more than second order statistics) uncertainties can be ignored. The results show

good correspondence with available experimental estimates. The parametric nature of

the model does not depend on experimentally generated rate constants and permits bind-

ing time computation under various conditions. To illustrate the use of this model for

“in silico” simulation, we provide the results of the simple model of the protein-DNA

binding on gene expression in prokaryotic cells.

This chapter is organized as follows: Section 4.1 discusses some related works on

analytical models for protein-DNA binding. Sections 4.2 and 4.3 presents our stochastic

model for protein-DNA binding. Section 4.4 reports the results for a few sample tran-

scription factors for human and bacterial cells and also some results from the discrete

event simulator that we have built for validating the model. Finally, in Section 4.5 we

summarize the findings of this chapter.

68



69

4.1 Background on protein-DNA binding models

The transcription factors (TFs) bind DNA at specific sites to initiate the com-

plex transcription machinery of cells. Upon binding to the site, the TF forms a stable

protein-DNA complex that can either activate or repress transcription of nearby genes,

depending on the actual control mechanism. In this chapter, we focus on models for both

bacterial and eukaryotic TFs by assuming that the structure, location on chromatin and

other details of cognate (target) sites on the DNA are known from existing experimental

data. Such problems of specific binding and binding rates also arise in the context of

oligonucleotides-DNA binding [2]. In the proposed model, we do not include the effects

of chromatin remodeling and histone modifications [21].

Vast amounts of experimental data available these days provide the structures of

protein-DNA complexes at atomic resolution in crystals and in solution [66, 19, 20], bind-

ing constants for dozens of native and hundreds of mutated proteins [5, 100], calorimetry

measurements [84] and novel single-molecule experiments [67]. Based on these experi-

mental data, a conceptual basis for describing both the kinetics and thermodynamics of

protein-DNA interactions was first presented in [80, 69, 81, 79]. The classical model of

protein-DNA sliding based on the experimental data reported in [66, 19, 20], however,

is quite complicated. The problem faced by the sliding mechanism, if the energetics of

protein-DNA interactions are taken into account, is outlined in [60], where the authors

introduce a quantitative formalism for protein-DNA interaction.

4.1.1 Protein sliding model along the DNA

The existing TF-DNA binding model involves a combination of both three-dimensional

(3-d) and one-dimensional diffusion (1-d) of the TF. The total search process can be con-

sidered as a 3-d search followed by binding to the DNA and a round of 1-d diffusion.

The TF, upon dissociation from the DNA, continues on a 3-d diffusion until it binds
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at a different place on the DNA. The 1-d diffusion along the DNA proceeds along the

rough energy landscape of the DNA. A quantitative analysis of the search process in [60]

reported the following:

1. The diffusion along the DNA becomes prohibitively slow when the roughness of the

binding energy landscape is at least 2kBT .

2. The optimal energy1 of nonspecific binding to the DNA provides the maximal

search rate. However, even the optimal combination of 1-d and 3-d diffusions

cannot achieve experimental estimates of binding time when the roughness of the

landscape is at least 2kBT . In the optimal regime of search, the protein spends equal

amounts of time diffusing along nonspecific DNA (i.e, 1-d diffusion) and diffusing in

the solution (i.e, 3-d diffusion). A fairly smooth landscape (with roughness of the

order of kBT ) is required for the 1-d diffusion to achieve experimentally observed

and biologically relevant rates.

3. Stability of the protein-DNA complex at the target site requires considerably larger

roughness than kBT where rapid search is impossible, leading to the speed-stability

paradox. In fact, the minimal roughness as reported in [60] is 5kBT given a genome

size of 106 bps. A search-and-fold mechanism for the DNA-binding proteins is

proposed in [60] to resolve the paradox.

1While the TF diffusion along the DNA is controlled by the specific binding energy (i.e., energy

required for the TF to bind to a particular DNA sequence), the dissociation of the TF from the DNA

depends on the total binding energy (i.e., on the non-specific binding as well as on the specific one).

Moreover, since the dissociation events are much less frequent than the hopping between neighboring

base-pairs, the non-specific energy makes a larger contribution to the total binding energy.
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4.2 DNA-Protein binding model

We partition this problem into two biological microevents: (i) Collision of the

protein molecule to a binding site (±B) on the DNA surface, i.e., we assume that the

TF can slide a distance of B (in either direction) on the DNA before binding and (ii)

a protein colliding with DNA at the binding site (±B) will bind only if it hits it with

enough kinetic energy to overcome the energy barrier of the site.

4.2.1 Modeling the first microevent: calculating pn

In this section we abstract the first microevent by computing the probability, pn, of

collision of the protein (TF) with the binding site (±B) on the DNA. From the principles

of collision theory for hard spheres, we model the protein molecule as a rigid sphere with

diameter d and the TF binding region of the DNA as a solid cylinder with diameter D

and length L+2B (Fig 4.1). Note that the 2B factor is incorporated as the TF can slide

in either direction on the DNA.

Figure 4.1. Schematic diagram: protein molecule and TF binding region of DNA.
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We define our coordinate system such that the DNA is stationary with respect to

the protein molecule. This assumption allows the TF to move towards the DNA with

relative velocity U . The protein molecule moves through space to sweep out a collision

cross section, C. The number of collisions during a time period ∆t is determined when

a protein molecule will be inside the space created by the motion of the collision cross

section over this time period due to the motion of the protein molecule.

4.2.1.1 Average surface area of collision between a sphere and cylinder

Figure 4.2. Collision of spherical protein and cylindrical DNA TF binding region.

The spherical protein molecule during its motion can encounter the DNA bind-

ing sites in three different configurations (1) horizontal cylinder, (2) vertical cylinder
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and (3) cylinder at an arbitrary angle, θ, with the direction of motion of the protein

(Fig 4.2). For the horizontal cylinder model, the cross-sectional area of collision traces

out a circle, whereas for the vertical cylinder model, it is a cylindrical in shape. The third

case can be derived from the vertical cylinder model considering a cylindrical collision

area of length (L+2B+d) sin θ. Thus, the cross-sectional area of collision, C, is given by:

C =





π (d+D)2

4
, for θ = 00

(L + 2B + d)(D + d), for θ = 900

(D + d)(L + 2B + d) sin θ, otherwise





Thus for any arbitrary θ (00 < θ < 900), we can express the cross-sectional area of

collision as a function of θ as follows: C(θ) = (D + d)(L + 2B + d) sin θ.

Note that the border conditions (θ = 00, 900) constitute a set of measure zero

and for all practical purposes, the whole calculation can be limited to the case where

00 < θ < 900. We assume a uniform density for the occurrence of the different θ’s in the

range 00 ≤ θ ≤ 900, i.e. having density θ
(π/2)

. It is to be noted that ideally θ can take

any value in 00 ≤ θ ≤ 3600, but our working range of 00...900 suffices for all these cases.

Thus the average cross-sectional area, Cavg, can be expressed by:

Cavg =
∫ π

2
0

2
π
C(θ)dθ = 2

π
(D + d)(L + 2B + d).

Note that θ = 00 disappears from consideration but we can argue that the probabil-

ity of that happening is too small to change the expression for Cavg significantly. This

cross-section Cavg, moves in the cytoplasmic space (nucleus for eukaryotes) to create the

collision volume for a particular binding site.
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Figure 4.3. DNA packing through nucleosomes.

4.2.1.2 Probability of protein-DNA binding in eukaryotic cells

Fig 4.3 simplistically illustrates how DNA is packed along different cylindrical nu-

cleosomes. We do not include chromatin remodeling and histone modification in the

current model as discussed in Section 5.5.1. Thus, L in the expression for Cavg denotes

the length of the TF binding region and D the diameter of the DNA strand (assumed

cylindrical in shape) on a nucleosome cylinder. As single or multiple motifs [23] can be

present for a gene in the promoter region, the value of L is adjusted to reflect those con-

ditions. Now, we can have three cases based on where the TF binding region is located

on the DNA:

1) Case I: The region entirely lies within the DNA portion on a nucleosome cylinder;

2) Case II: The region lies entirely within the DNA portion that is outside the nucleosome

cylinders;

3) Case III: The region is shared between the DNA on a nucleosome cylinder and that

outside it.
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We analyze each of these case in the following:

Case I: Let the probability that the protein molecule hits the correct nucleosome cylinder

given it collided with the DNA with sufficient energy be pc
h. We have:

pc
h =

length of that nucleosome cylinder

length of all nucleosomes + length of all stretches

=
ln

N1ln +
∑N2

i=1 lis

where, ln denotes the length of a nucleosome cylinder (assumed fixed for all the cylinders),

lis denotes the length of the ith stretch of DNA, i.e., the length of DNA present in between

the ith and (i + 1)th nucleosome cylinders. Here, N1 and N2 denote the number of

nucleosome cylinders and that of stretches of DNA respectively. Now, the probability,

pd, of hitting the DNA portion of the nucleosome cylinder, can be estimated from the

surface area of the nucleosome cylinder and that of the DNA present in the cylinder as

follows:

pd =
πDld

πDld + πdnln

where, ld is the length of the DNA present inside the cylinder and dn is the diameter of

the nucleosome cylinder. Because the DNA is known to make 1.65 turns in a nucleosome

cylinder, we have ld
ln

= 1.65. Let, pc
f designate the probability of colliding with the TF

binding region (±B) in the DNA, given that the protein molecule already collided with

the DNA with enough energy and also hit the correct nucleosome cylinder. We have:

pc
f =

(length of TF binding region in the DNA) + 2B

total DNA length in that particular nucleosome

Also, the particular motif of the colliding protein molecule is of interest to us, as it should

come in proximity of the TF binding region (±B) of the DNA for a binding to occur. So,

we need to calculate the probability, pm, of identifying the motif of the colliding protein

molecule, as follows:

pm =
length of the motif region of the protein

total length of amino acid chain of the protein
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Thus, the total probability of collision of the TF to the DNA binding site (±B) is given

by:

pn = pm × pc
h × pc

f × pd

Now, because the DNA is wrapped around a particular nucleosome cylinder, some part

of it will not be available for the TF to bind to. Thus Cavg as calculated above is not

entirely available to the TF to bind to. Nucleosomes themselves are stable and show lim-

ited mobility. The dynamic characteristics are due to action of nucleosome-modifying and

remodeling complexes that restructure, mobilize and eject nucleosomes to regulate ac-

cess to the DNA. We approximate the impact of this complex process currently through

a difficulty parameter α, which denotes the percentage availability in average collision

cross-sectional area. This parameter represents approximately the percentage of the

time the hidden DNA surface is made visible for reaction through histone remodeling

(we are currently working on a separate model of histone remodeling to compute this

parameter). Thus, the effective cross-sectional area, Ceff , available for TF binding can

be calculated as follows: Ceff = α× Cavg.

Case II: In this case, the probability, ps
h, of hitting the correct stretch of DNA in between

the nucleosome cylinders is given by:

ps
h =

lis
N1ln +

∑N2
i=1 lis

where we assume that the TF binding site is located in the ith stretch of DNA. Similarly,

let ps
f designate the probability of colliding with the TF binding region (±B) in the DNA

similarly as before. We have:

ps
f =

(Length of TF binding region on DNA) + 2B

total DNA length in that particular stretch
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and, the total probability of collision of the TF to the DNA binding site denoted by pn

is given by:

pn = pm × ps
h × ps

f

In this case, the entire TF binding region in the DNA is available for the binding process

to occur and we have: Ceff = Cavg.

Case III: Because the TF binding region (±B) is shared between a nucleosome cylinder

and an adjoining stretch, the probability calculations become complex for this case. We

approximate the calculations in the following way. Suppose the TF binding site (±B)

is shared between the ith nucleosome cylinder and the jth stretch of DNA. Because the

cylinder and the stretch has to be side by side, we must have either j = i, or i = j + 1

depending on whether the first part of the TF binding site is in the cylinder or in the

stretch respectively. Let pc
w and ps

w denote the probabilities of hitting the TF binding

portion in the cylinder and that in the stretch respectively. In this case however, pc
f and

ps
f computations should change as follows:

pc
f =

(length of TF binding region portion in nucleosome) + B

total length of DNA in that particular nucleosome

ps
f =

(length of TF binding region portion in the stretch) + B

total length of DNA in that particular stretch

Hence we have:

pc
w = pm × pc

h × pc
f × pd; ps

w = pm × ps
h × ps

f ; pn = pc
w + ps

w

Thus pn is the total probability of collision of the TF to the DNA binding site (±B).

Furthermore, the average cross-sectional area calculations become a little different in this

case. We break up Cavg into Cavg1 and Cavg2 based on the length of the TF binding region

(L1) in the nucleosome cylinder and that in the adjoining stretch (L2). We assume for
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simplicity that the TF binding region is shared between one stretch and one nucleosome

cylinder only, because this region is generally quite small in length compared to the length

of the DNA packed inside a nucleosome cylinder. However, if the region is extended to

more than one nucleosome cylinder or stretch, we can handle that case in a similar

fashion. Thus the effective cross-sectional area of binding is represented as:

Ceff = α× Cavg1 + Cavg2

Thus the total probability, pn, of collision to one specific TF binding region can be

calculated easily for each of the three cases discussed above. But we need to know how

exactly the DNA is packed in the nucleosome cylinders to determine pn and the effective

surface area (Ceff ) required for binding. In particular, we assume that the DNA packing

structure in nucleosome cylinders is fixed and hence we can find where the TF binding

region is located as described in Cases I, II and III.

4.2.1.3 Approximate mechanism to find the TF binding region

Nucleosomes have 1.65 turns of DNA and a diameter, dn, of 11 nm. Thus the

length of DNA inside a nucleosome cylinder can be approximated as 1.65×π×dn, where

πdn is the circumference of the nucleosome cylinder. We assume that all the nucleosome

cylinders have identical shape and number of turns of DNA in them. We also assume

that all the stretches of DNA between nucleosome cylinders are equal in length. Thus,

length of DNA in a stretch can be approximated as (TD−N×(1.65×π×dn)
N−1

), where TD is the

total length of the DNA and N is the number of nucleosome cylinders present. The

denominator is due to the assumption that there can only be (N − 1) stretches of DNA

present in between the N nucleosome cylinders. From the complete genomic sequence,

we can find out the exact position of the TF binding region along with its length. Thus
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we can approximately estimate whether the TF binding region corresponds to Case I, II

or III.

Bacterial DNA has independently coiled domains

Loops secured at
base by unknown mechanism

Loop consists
of duplex DNA

Figure 4.4. Bacterial Genome Structure.

4.2.1.4 Protein-DNA binding probability for bacterial cells

The bacterial genome is supercoiled with a general organization as depicted in

Fig 4.4 [12]. Each domain consists of a loop of DNA, the ends of which are secured in

some way. Hence, the total probability of collision in this case is simply approximated

as:

pn = pm × pw; where pw =
length of TF binding region + 2B

total length of the DNA

Since the entire surface area of the DNA is available for binding, the effective cross-

sectional area of binding is given by: Ceff = Cavg
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4.2.2 Modeling the second microevent: calculating pb

Let pb denote the probability that the TF collides with the DNA with enough

kinetic energy such that it can bind to the DNA. In time ∆t, the TF sweeps out a

volume ∆V such that:

∆V = CeffU∆t

Now, the probability of the protein molecule being present in the collision volume ∆V is

pP = 1 given that one protein molecule arrived to create a collision volume of ∆V .

The probability of the DNA being present in an arbitrary uniformly distributed ∆V in

the total volume, V is given by pD = ∆V
V

. Note that the prokaryotic cells do not have a

nucleus and hence V denotes the total volume of the cell; for eukaryotic cells, however,

V will denote the volume of the nucleus.

Thus, probability of the protein molecule to collide with the DNA during time ∆t

is:

pc = pP × pD =
∆V

V
=

CeffU∆t

V
(4.1)

We next assume that the colliding protein molecule must have free energy of at

least EAct to bind to the specific DNA transcription factor binding region. This kinetic

energy will be required for the rotational motion of the protein molecule such that all the

binding points in the protein molecule come close to those in the DNA for the binding

to take place successfully. The kinetic energy of approach of the protein towards the

DNA with a velocity U is E = mPDU2

2
, where mPD = mP .mD

mP +mD
is the reduced mass, mP is

the mass (in gm) of the protein molecule, and mD is the mass (in gm) of the DNA. It

is to be noted that we consider the mass of the entire chromosome and not just the TF

binding site of the DNA. This is because the entire chromosome has to undergo rotational

motion for the binding process. We also assume that as the kinetic energy, E, linearly
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increases above EAct, the number of collisions that result in binding also increases. Thus,

the probability for a binding to occur because of sufficient kinetic energy of the protein

molecule is given by:

pr =





E−EAct

E
, for E > EAct

0, otherwise





(4.2)

and the overall probability, po, for collision with sufficient energy is given by:

po = p(binding, Collision) = pr × pc =





pc
(E−EAct)

E
, for E > EAct

0, otherwise.





The above equations assume a fixed relative velocity U for the reaction. We will use the

Maxwell-Boltzmann distribution of molecular velocities for a species of mass m given by:

f(U, T )dU = 4π(
m

2πkBT
)3/2e

−mU2

2kBT U2dU

where kB = 1.381 × 10−23 kg m2/s2/K/molecule is the Boltzmann’s constant and T

denotes the absolute temperature (taken as 2730 K). Replacing m with the reduced mass

mPD of the protein molecule and DNA, we get

f(U, T )dU = 4π(
mPD

2πkBT
)3/2e

−mPDU2

2kBT U2dU (4.3)

The term on the left hand side of the above equation denotes the fraction of this specific

protein molecule with relative velocities between U and (U + dU). Summing up the

collisions for the protein molecule for all velocities, the probability (pb ) of collision with

sufficient energy is obtained as follows:

pb =
∫ ∞

0
pof(U, T )dU

Recalling that E = mPDU2

2
, i.e., dE = mPDUdU and substituting into Eqn. 4.3, we get:

f(U, T )dU = 4π(
mPD

2πkBT
)3/2 2E

Um2
PD

e
−E

kBT dE
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Thus we get:

pb =
∫ ∞

EAct

(E − EAct)4Ceff∆t

V kBT

√
1

2πkBTmPD

e
− E

kBT dE

=
Ceff∆t

V

√
8kBT

πmPD

e
−EAct
kBT (4.4)

4.2.3 Total binding probability considering different binding regions

Ideally, for any protein molecule, we can have more than one TF binding regions

on the DNA. Let G be the number of different TF binding regions on the DNA for the

specific TF colliding with the DNA. Also, let pi
t denote the total probability of binding

(combining the first and second microevents) for the ith TF binding region (1 ≤ i ≤ G).

Note that the probabilities of the first and second microevents as calculated above will

depend on the specific binding site i on the DNA under consideration. We denote these

two probabilities as pi
n and pi

b for the ith site that can be calculated similarly as shown

above. In general, all the binding sites corresponding to a particular TF are identical

making pi
n = pj

n and pi
b = pj

b, for i 6= j, and 1 ≤ i, j ≤ G. Hence,

pi
t = pi

n × pi
b

Thus if p denotes the actual probability of binding of the protein with any of these G

different regions, we have:

p =
G∑

i=1

[pi
t

G∏

j=1,i6=j

(1− pj
t)]

This is because the probability of binding to the first TF binding region is given by

p1
t

∏G
j=2(1− pj

t); that for the second region is [p2
t (1− p1

t )(1− p3
t )(1− p4

t )...(1− pG
t )]; and

so on. The total probability, p, is the sum of all these individual cases.
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4.3 Time taken for protein-DNA binding

We next estimate the time taken to complete the binding with total binding prob-

ability, p. Let ∆t = τ be an infinitely small time step. The protein molecules try to bind

to the DNA through collisions. If the first collision fails to produce a successful binding,

they collide again after τ time units and so on. Note that now we can have a TF-DNA

binding in two ways: (a) the TF directly collides and binds to the DNA binding site or

(b) the TF collides at a distance (≤ B bps) and slides on the DNA to bind to the site.

The average binding time computation requires a probability assignment to these two

events. Let per denote the probability that the binding occurs due to collision only (point

(a) above). Hence, binding occurs with collision and sliding with probability (1 − per).

Note that per = 1 simplifies to the case where the protein does not slide along the DNA

at all, and per = 0 boils down to the model in [60] where it is assumed that the TF slides

along the DNA at every round. In [60], the authors derived the 1-d diffusion time, τ1d,

along the DNA using the mean first passage time (MFPT) from site 0 to B as follows:

τ1d(B) ' B2e
7σ2

4(kBT )2 (ν)−1(1 +
σ2

2(kBT )2
)−

1
2

where ν is the effective attempt frequency for hopping to a neighboring site and σ is the

roughness of the DNA landscape in units of kBT . Here τ1d considers the different energy

barriers on the DNA that the TF has to overcome while sliding whereas Eact is required

for the actual binding to the cognate site. Therefore, the total probability of binding is:

pbinding = pno−sliding(1− p) + p(1− pno−sliding); and, pno−sliding = |p|B=0

where pno−sliding denotes the probability of binding when the sliding along the DNA is

not considered altogether. Hence, the average time for protein-DNA binding model (i.e.,

the first moment) is given by:

T1 = pbinding(per × τ + (1− per)(τ + τ1d))
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+ (1− pbinding)pbinding × 2(per × τ + (1− per)(τ + τ1d))

+ (1− pbinding)
2pbinding × 3(per × τ + (1− per)(τ + τ1d)) + ...

⇒ T1 =
(per × τ + (1− per)(τ + τ1d))

pbinding

The second moment of the binding time is given by

T2 =
(2− pbinding)(per × τ + (1− per)(τ + τ1d))

2

(pbinding)2

When no sliding is considered, we find that the time for DNA-protein binding follows an

exponential distribution for most ranges of Eact (reported in the next section). Moreover,

since τ is assumed to be quite small, we can approximate the total time measurements

of binding using a continuous (exponential in this case) distribution instead of a discrete

geometric distribution. The average time T1 as calculated above gives the estimated

time for protein-DNA binding in bacterial cells. For eukaryotic cells, we should add the

average protein transport time from the cytoplasm to the nucleus that can be computed

from any standard diffusion model.

4.4 Results and analysis

4.4.1 Problems in validation of our model

Before presenting the numerical results, let us first discuss the difficulty of experi-

mentally validating our model. We compute the average time for protein-DNA binding

in this chapter. On the other hand, existing experimental results are based on estimation

of the binding rate of any specific TF to the DNA. The experimental estimate of 1 ∼ 10

seconds (secs) is reported from this rate measurement [60]. Hence, the time taken by a

TF to bind to the DNA site depends on the number of TFs in the cell. However, our

model computes the time taken by any particular TF to bind to the DNA which should

be independent of the number of TFs in the cell. It is certainly very difficult to carry
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out experiments to track a particular TF and physically compute the time. Also, the

stochastic nature of the binding process suggests that the distribution of the time taken

will have a very high variance. In other words, in some cases the TF requires time in

milliseconds whereas in other cases it might take as long as 100 seconds. The results we

present in this section assume that the time taken for any particular TF-DNA binding

is 1 ∼ 10 secs even though it is not a true estimate of this event because it is not a

molecular level measurement.

4.4.2 Numerical results for per = 1 (i.e. no TF sliding is considered)

In this section, we present the numerical results for the theoretical models derived

in the chapter. Figs 5.9-4.8 present the results for the PurR TF (having 35 binding

sites) on the Escherichia coli (E. coli) chromosome. Similarly, Figs 4.9-4.10 illustrate the

behavior for eukaryotic cells where we considered the average human cell with 20 µm

diameter and the Htrf1 DNA-binding protein. The different parameters assumed for the

numerical results are concisely presented in Table 5.1. We used the EcoCyc database [43]

for the E. coli data and the PDB database [42] for human cell data.

4.4.2.1 Results for prokaryotic cells

Fig 5.9 plots T1 against different values for ∆t. The average time for DNA-protein

binding remains constant initially and shoots up exponentially with increasing ∆t. The

same characteristics are seen for different activation energies, Eact = 10 kBT , 15 kBT and

20 kBT . The activation energy estimates follow from the change in free energy related to

binding that includes the entropic loss of translational and rotational degrees of freedom

of the protein and amino acid side chains, the entropic cost of water and ion extrusion

from the DNA surface, the hydrophobic effect, etc. as discussed in [35]. The smaller the

required Eact, the larger is pb for the protein molecules and hence the smaller is T1. Note
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Table 4.1. Parameter Estimation for Bacterial (pertaining to PurR TF in E. coli) and
Eukaryotic (pertaining to Htrf1 TF in human) Cells

Parameters Prokaryotic Cell (from [43]) Eukaryotic Cell (from [42])

V (volume) 4.52× 10−18m3 (of cell) 4.187× 10−16m3 (of nucleus)

Length of DNA 4.64× 106 bp (E. coli) 3× 109 bp (Human cell)

G (number of binding regions) 35 (for PurR) 35 (assumed for Htrf1)

Length of TF 26 48
binding site (L)

Length of protein 341 (for PurR) 53 (Htrf1)
amino acid chain

Length of protein 26 (for PurR) 48 (Htrf1)
motif

Radius of Amino 1 nm (for PurR) 1 nm (Htrf1)
acid chain

Average radius of 5 Å (for PurR) 5 Å (Htrf1)
the protein (d

2 )

mP 38.175 Dalton (for PurR) 6635 Dalton (for Htrf1)

Diameter of DNA (D) 2 nm (for E. coli) 2 nm (Human cell)

Mass of DNA (mD) 3× 106 Dalton (E. coli) 1.9× 1012 Dalton (Human cell)

that pb as calculated above also corresponds to the number of collisions in time ∆t of the

protein molecule with the DNA. And, for our assumption of at most one collision taking

place in ∆t to hold, we have to make sure that 0 ≤ pb ≤ 1 (this is also true because

pb is a probability). Thus the regions to the right of the vertical lines corresponding to

each Eact plot denotes the forbidden region where pb > 1 even though 0 ≤ p ≤ 1. This

gives us an estimate of the allowable ∆t values for different Eact’s such that T1 indeed

remains constant. With increasing ∆t, the time taken for successive collisions between

the TF and DNA increases, resulting in an overall increase in the average binding time.

However, with ∆t ≤ 10−8, T1 remains constant for each Eact.

Fig 4.6 plots T1 against the different possible Eact estimates. It shows that the

average time for binding increases with increasing Eact values. As Eact increases, more
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Figure 4.5. Average TF-DNA binding time (T1) against increasing ∆t for E. coli.
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kinetic energy is required by the TFs to achieve stable binding, and only higher molecular

velocities can produce that energy. Hence pb decreases resulting in an overall increase

in T1. However, for very low Eact, the binding times tend to increase because the TFs

actually has to spend more time to bind to a DNA site due to low kinetic energy require-

ment. Another interesting feature is that T1 remains the same for different estimates

of ∆t as long as 0 ≤ pb ≤ 1. As discussed before, the regions to the left of the vertical

lines denote the forbidden regions where pb > 1. The speed-stability paradox [60] says

that for acceptable average time estimates we should have σ ∼ kBT , whereas for stable

binding we need σ ≥ 5kBT . Our results show that we can achieve stable binding be-

tween Eact = 1kBT for ∆t = 10−8s and Eact = 13kBT for ∆t = 10−4s. The minimum

possible values for Eact for different ∆t’s are reported in Table 4.2. The average time

for TF-DNA binding is experimentally measured [60] to be 1 ∼ 10s, which is achieved

with Eact ' 20kBT . Fig 4.8 gives the comparison between the experimental results and

our theoretical estimates. We find that for 20kBT ≤ Eact ≤ 26kBT , our results match

with the experimental values. The minimum and maximum times for binding reported

in the figure for different Eact values are calculated assuming 95% confidence interval.

Thus, our theoretical model also gives an estimate of the activation energy required for

stable binding. It should be noted that Eact refers to the total free energy change due

to binding and should be higher than σ as calculated in [60]. We also find that in the

range 20kBT ≤ Eact ≤ 26kBT , the time of binding follows an exponential distribution (as

the calculated mean is very close to the standard deviation). In Fig 5.10, we find that

T1 decreases as the number of binding sites G is increased which is again logical as the

protein molecules now have more options for binding.
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Table 4.2. Allowable Eact values against ∆t such that 0 ≤ pb ≤ 1

∆t (in secs) Minimum Eact (in kBT )

10−4 13

10−5 10

10−6 7.6

10−7 5

10−8 1

4.4.2.2 Results for eukaryotic cells

Fig 4.9 shows similar trends for eukaryotic cells. The T1 values for eukaryotic cells

are higher than those for bacterial cells mainly because the volume of the nucleus is

larger than the average volume for prokaryotic cells. Also, α decreases the probability of

binding appreciably as the DNA is arranged in nucleosome cylinders, thereby reducing

the average surface area for collision and hence reducing pb. Also, the pd component of pt

results in lesser values of pt for eukaryotic cells and hence greater values for T1. Fig 4.10

shows the dependence of T1 on α. With smaller α, the value of Ceff is smaller, and hence

T1 is higher. It can be observed that α does not significantly affect the average time for

binding.

Figs 5.10,4.9,4.10 were generated with Eact = 15 kBT . For eukaryotic cells, we

consider the average time for binding after the TF has diffused inside the nucleus. Thus,

the overall time for DNA-protein binding has to consider the time taken by protein

molecules for diffusion. This has been extensively studied and not reported here.

4.4.2.3 Important observations from the per = 1 results

1. Our model achieves the experimental estimate of 1 ∼ 10 secs with activation energy

in the range: 20kBT ≤ Eact ≤ 26kBT for prokaryotic cells (obviously the results are
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generated for the PurR TF in E. coli and we have not tested this range for other

TFs as yet). The corresponding range for eukaryotic cells has not been reported

here because we need to know the corresponding experimental estimates for human

cells.

2. The stochastic nature of protein-DNA binding time can be approximated by an

exponential distribution in this range as the observed values for mean and standard

deviation of the binding time are comparable.

3. The average time for DNA-protein binding increases for higher Eact.

4. The DNA-protein binding time is independent of the value of ∆t. The recom-

mended value of ∆t is 10−8 secs. Figs 5.9-4.6 show the dependence of the average

time on ∆t and Eact. We find that a wider range of Eact is available (keeping pb ≤ 1)

with lesser ∆t. The same estimate holds true for eukaryotic cells also.

5. The average time decreases as the number of DNA binding sites increase because

the TF has more sites to bind to.

6. The average time is not significantly affected by α, i.e., the percentage availability

of average collision cross-sectional area.

Fig 4.11 plots the cumulative distribution function (CDF) for the time of binding with

Eact = 22kBT for E. coli. Figs 4.12 and 4.13 respectively show the dependence of T1 on

∆t and the number of binding sites for eukaryotic cells.

4.4.3 Validation of DNA replication with no-sliding assumption

We used another model validation exercise having robust measurement data. We

build the DNA replication model of E. coli that provides the gross measurement data

of a large number of DNA nucleotide/protein interaction sequences. We also build the

analytical model from the micro-scale DNA nucleotide/protein interaction times to copy

the DNA.
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Table 4.3 presents the parameters used to compute the total time taken for DNA

replication using the TF-DNA binding model as the base model and assume that the

TFs never slide on the DNA (per = 1). We assumed that (i) the rate of replication is the

same in both leading strand and lagging strands and (ii) replication stops at the position

directly opposite to the OriC in the chromosome. We now estimate the individual time

delays in each step of DNA replication mechanism.

1) Binding of DnaA, initiation proteins, with DNA at OriC: We consider length of the

replication as 245 bps [7] and 20 molecules of DnaA proteins bind with DNA [8] one after

another at OriC. The total time delay for the whole process will be 20 times the time

taken to bind one molecule of DnaA with DNA at OriC. With Eact = 20kBT , T = 273K,

L = 245bps and 1bp = 0.34 × 10−9m, the time taken for a DnaA is 0.133 secs. Hence,

the time taken for 20 molecules of DnaA is S1 = 2.6565 secs.

2) Binding of DnaB (Helicase) with DNA double helix at OriC: DnaB binds with the

complex formed by DnaA molecules. Two molecules of DnaB enzymes will be required
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Table 4.3. Parameter Estimation for DNA replication in E. Coli

Component Mol. Weight (Dalton) Radius (Angstroms)

DnaA 52574 24.5 (Stokes radius)

DnaB 9551 24.5 (assumed)

DnaG 68001 24.5 (assumed)

DNA Poly III holoenzyme 900000.4 60 (Stokes radius)

SSB 140000 45 (Stokes radius)

ATP 507 7.7

for one of the two replication forks. We ignored the role of DnaC (another enzyme

that helps loading the DnaB with the complex), since the loading function is not known

clearly. The time taken for a DnaB is computed as 0.18 secs. Hence, the time taken for

2 molecules of DnaB is S2 = 0.36 secs.

3) Binding of DnaG (Primase) with initiation complex: A molecule of DnaG binds with

the complex formed after the previous step. For the two replication forks, two DnaG

enzymes will be used. Hence the total time delay is twice the time taken to bind one

molecule of DnaG with the complex. We compute the time taken for a DnaG as 0.15

secs. Hence, the time taken for 2 molecules of DnaG is S3 = 0.3 secs.

4) Binding of DNA polymerase III holoenzyme (Polymerase) complex with replication

formed after step 3 in the DNA double helix: 2 DNA polymerase III holoenzymes are

required for the two replication forks. Hence the time delay for this step is twice the

time taken for binding one molecule of DNA Polymerase III holoenzyme. We compute

the time taken for a DNA Poly Holoenzyme with DNA = 0.363 secs. Hence, the time

taken for 2 molecules of DNA Poly Holoenzymes with DNA is S4 = 0.726 secs.

5) Unwinding of DNA by Helicase by hydrolyzing 1 ATP molecule: Helicase unwinds

the double stranded DNA by hydrolyzing ATP and the rate of unwinding is 3 bps by

hydrolyzing one ATP molecule to ADP. We compute the time taken for unwinding 3

nucleotides = 0.002736 secs. And, time taken to unwind 33 nucleotides, S5 = 0.7 secs.
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Table 4.4. Eact and per requirements for n = 100bps

σ (in kBT ) Eact (in kBT ) per

5 20− 26 1.0

4 20− 26 1.0

3 11− 15 or 20− 26 0.1− 0.9 or 1.0

2 14− 17 or 20− 26 0.1− 0.9 or 1.0

1 20− 24 or 20− 26 0.1− 0.9 or 1.0

6) Coating of ssDNA with SSB protein for stabilizing replication process: We assume

one SSB molecule covers ∼ 33 nucleotides in the ssDNA [9]. SSB proteins are required

in both leading as well as lagging strands. These proteins are continuously attached

with ssDNAs before the new DNA strand is synthesized and attached. We compute the

time taken for coating 3 nucleotides as 0.002736 secs. Hence, the time taken to coat 33

nucleotides is S6 = 0.7 secs.

7) Synthesis of new DNA by DNA polymerase III holoenzyme: DNA polymerase III

synthesize new DNA at the rate of 3 nucleotides [10] by hydrolyzing 1 ATP molecule

to ADP. The time taken to synthesize 3 nucleotides by DNA Poly III holoenzyme is

computed as 0.00275 secs. Therefore, the total time required for the complete DNA is

35.403 min.

Adding the time delays from each of the above steps, the total time required for DNA

replication in E. Coli from our model is ∼ 36 mins which is quite close to the experimental

estimate of 42 mins.

4.4.4 Numerical results for the combined model in E. coli (per 6= 1)

In [60], the authors presented an experimental estimate of τ1d for different values of

sliding distance (denoted by n) and at different roughness σ for the PurR TF of E.Coli
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Figure 4.14. Average binding time for purR (σ = 1kBT ).
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Figure 4.15. Average binding time for purR (σ = 2kBT ).

with a random and uncorrelated energy profile having standard deviation ' 6.5kBT .

These τ1d estimates have been used to generate the plots.

Figs 4.14-4.18 plot T1 for σ = 1, 2, 3, 4, 5 kBT respectively with per = 0 and different

values of the sliding distance, n, in bps. The x-axis gives the values for Eact and the y-axis

is plotted on a logarithmic scale with E ± z = 10±z. Note that the average binding time

estimates increase with increasing σ.

For σ = 1kBT and per = 0, the experimental estimates of 1 ∼ 10 secs can be

achieved with 15kBT ≤ Eact ≤ 20kBT , even with n = 8000bps. However, the experimen-

tal results can be achieved up to (n = 2000bps, σ = 2kBT ), (n = 200bps, σ = 3kBT ),

(n = 20bps, σ = 4kBT ) and (n = 7bps, σ = 5kBT ). Thus if we assume that every colli-

sion of the TF with the DNA is accompanied with a 1-d diffusion, the average number



98

per = 0

1.0E-02

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E+12

1.0E+14

1.0E+16

0 10 20 30 40 50

Eact

A
v

e
ra

g
e

 t
im

e
 f

o
r

b
in

d
in

g

n = 7 bps

n = 10 bps

n = 30 bps

n = 60 bps

n = 80 bps

n = 110 bps

n = 200 bps

n = 800 bps

n =1000 bps

n = 2000 bps

n = 5000 bps

n = 8000 bps

Figure 4.16. Average binding time (σ = 3kBT ).
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Figure 4.17. Average binding time (σ = 4kBT ).
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Figure 4.18. Average binding time (σ = 5kBT ).
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Table 4.5. Eact and per requirements for n = 50bps

σ (in kBT ) Eact (in kBT ) per

5 20− 26 1.0

4 20− 26 1.0

3 12− 15 or 20− 26 0.1− 0.9 or 1.0

2 20− 24 or 20− 26 0.1− 0.9 or 1.0

1 22− 25 or 20− 26 0.1− 0.9 or 1.0

of base pairs that the TF can slide is only 7 bps when σ = 5kBT . This is certainly a

very low estimate and it is logical to assume that not every TF-DNA collision involves

1-d diffusion.

The next step is to find an estimate of per (6= 0), that gives binding times in

the experimental range even with biologically relevant amounts of sliding. In [60], the

authors reported the optimal number of base-pairs that can be searched at σ = 1kBT as

100 bps. We report the maximum σ that can achieve the experimental estimates from

our results in Table 4.4 and that for 50 bps in Table 4.5. Thus we can get the bounds on

Eact, for different combinations of per, σ and n. The above results show the maximum

value of σ for which the experimental rate can be achieved. However, for σ = 5kBT , we

have to consider either per = 1.0, i.e., the TF does not slide on the DNA, or it can slide

a maximum of 7 bps.

4.4.5 Simulating the dynamics of protein-DNA binding

In this section, we analyze the dynamics of the protein-DNA binding event at a

“systems level” - studying its effect in association with other molecular events involved

in a cellular process. In particular, we focus on the effects of TF binding event on the

expression of genes in prokaryotic cells.



100

Stochasticity in prokaryotic gene expression has been extensively studied, both

mathematically [50],[41], as well as in experimental systems [53],[51]. Particularly, the

burstiness in protein production i.e., proteins are produced in random bursts of short

duration rather than in a continuous manner, have been shown in single cell experi-

ments conducted on the lacZ gene in E. Coli [53],[51]. The random fluctuations in the

number of proteins, termed ‘noise’, stems from the interplay of a large number of fac-

tors: discrete, random nature of molecular interactions like RNA Polymerase (RNAP)

- promoter binding and transcription open-complex formation, low copy number of key

transcriptional and translational machineries like RNA polymerase, transcription factors,

ribosomal units etc. and the random nature of signals triggering gene expression. The

fine-grained regulation of gene expression by the transcriptional machinery, specifically,

transcription initiation frequency controlled by the binding of the transcription factor

(TF) upstream of the promoter region, has been quantitatively studied in [4],[27],[92].

In order to quantitatively study the stochastic dynamics of TF-DNA binding on

prokaryotic gene expression, we build a discrete-event based simulation environment, as

outlined in [88], capturing the key molecular events involved in the process 2

• Transcription Event: This event represents the triggering of transcription by the

activation of a gene and the eventual release of a mRNA molecule in the system.

The probability distribution characterizing the time taken for the event is defined

by its first and second moments, R̄mR and σmR respectively, and the time between

two transcription events is represented by the random variable τtranscription. This

event encompasses the micro-event of TF-DNA binding and includes the average

binding time mathematically captured in T1 and T2.

2The details of the stochastic models for prokaryotic transcription and translation, together with the

simulation framework are available in [90]
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Figure 4.19. Molecular events involved in prokaryotic gene expression.

• Transcript Decay Event: This event represents the decay of a transcript and is

characterized by an exponential distribution with half-life mdecay obtained from

experimental data [90].

• Translation Event: This event captures the process of protein synthesis from a

single mRNA molecule characterized by the probability distribution of its time (R̄p

and σp )

• Protein Decay Event: This event represents the decay of a protein characterized

by an exponential distribution with half life of mprotein obtained from experimental

data [90].

The interactions of these molecular events, as captured in Fig 4.19, drives the

dynamics of protein production in prokaryotic cells. In order to study the effect



102

of TF-DNA binding time, as expressed by the parameterized model elucidated in the

previous section, on the stochasticity of protein synthesis, we conducted several in silico

experiments by varying the average binding time for the TF-DNA binding microevent

involved in transcription 3.

4.4.5.1 Protein synthesis dynamics with TF-DNA binding time of 10 secs

We conducted simulation studies to validate experimentally observed “bursts” in

protein generation of E.Coli. With the TF-DNA binding time of 10 secs (based on ex-

perimental observations reported in the previous section), Fig 4.20 shows the temporal

dynamics of mRNA and protein molecules together with the noise profile (noise being

quantitatively measured as the ratio of the variance to squared mean [50],[90]. As ob-

served from the plots, the burstiness in the number of LacZ proteins produced (marked

by a corresponding increase in noise) is primarily caused by the low frequency of tran-

scription events (around 1.2 mRNA molecules are produced per cell cycle).

4.4.5.2 Protein synthesis dynamics with TF-DNA binding time of 0.1 secs

As noted in [4], the transcription initiation frequency has a key role in controlling

the nature of stochasticity in protein synthesis. In order to analyze the impact of the TF-

DNA binding event in this fine-grained regulation, we conducted simulation experiments

for the LacZ system with different average TF-binding times computed from our model.

In Fig 4.21, we show the dynamics of the gene expression process for TF-DNA binding

time of 0.1 secs. As seen from the figure, a decrease in the average binding time does not

3The simulation was carried for the lacZ gene expression in E.Coli to validate with available exper-

imental data. The simulation experiments were conducted for 10 cell cycle times and results represent

average value for 50 simulation runs
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Figure 4.20. Dynamics: lacZ gene expression vs experimental TF-DNA binding time.
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significantly increase the transcription event rate as observed in the similar protein and

noise profiles as reported in the previous simulation case study.

4.4.5.3 Protein synthesis dynamics with TF-DNA binding time of 100 secs

In order to further analyze the effect of the TF-DNA binding event, particularly

with increased event time, we conducted a simulation experiment with the TF-DNA

binding event time set to 100 secs, an order of magnitude higher than the experimentally

reported value. As seen from the protein and noise profiles in Fig 4.22, the TF-DNA

binding time causes the transcription event time to decrease (i.e., the number of mRNA

molecules released decreases due to the high TF-DNA binding time), thus increasing the

“burstiness” in subsequent protein synthesis.

In this section, we have quantitatively captured the effect of the TF-DNA bind-

ing event as part of a dynamical system involving the temporal interaction of multiple

molecular events associated with gene expression in prokaryotic cells. Our simulation re-

sults confirm biological observed burstiness in protein synthesis while providing in silico

insights into the role of TF-DNA binding on the amplitude of fluctuations (noise) of the

gene expression process.

4.4.6 Limitations of our model

Maxwell-Boltzmann distribution of molecular velocities: As mentioned be-

fore, the application of the Maxwell-Boltzmann distribution in our collision theory model

requires further research.

3-d protein structure: The pm estimation can be improved by considering the 3-d

structure of the protein. Ideally, the motif of the protein molecule is located towards the

outer surface such that pm is actually higher than what we compute.

The actual protein-DNA binding process: The present model does not incorporate
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Figure 4.21. Dynamics: lacZ gene expression vs decreased TF-DNA binding time.
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Figure 4.22. Dynamics: lacZ gene expression vs increased TF-DNA binding time.
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the time required for the actual binding process i.e, how the specific atoms of the protein

form chemical bonds with the DNA forming a stable complex. Also, it should be noted

that the complex machinery of transcription, especially for eukaryotes, is not completely

understood, yet. Many proteins can play a role in regulating one gene that would require

further analysis. Our model can serve as a starting point for handling such cases.

Nucleosome dynamics: The long DNA chain in eukaryotes uses a systematic hierar-

chical compression. In the lowest compaction level the genetic material comprises arrays

of coiled DNA around histones (globular octamer of cationic nucleus proteins) [12]. Each

of these array elements is called a nucleosome that exhibits the following four dynamics:

(1) compositional alternation, (2) covalent modification, (3) translational repositioning,

and (4) conformational fluctuation. Compositional alternation is done by some remod-

eling enzymes to promote gene activation. Post translational modifications including

acetylation, methylation, phosphorylation and ubiquitination are among the covalent

modifications that can destabilize the histone cores and exploit DNA access to the bio-

logical processes. ATP-dependent remodellers use energy derived from ATP hydrolysis

to loosen the contacts between the coiled DNA and the histone core. In translational

repositioning, the bp position of core particles in the genome change to enhance the tar-

get site access. This process can happen both intrinsically or by the aid of remodellers.

Conformational fluctuation is a periodic minor change to the conformation of a canonical

nucleosome. The model presented in this chapter can help incorporate these factors in a

more comprehensive protein-DNA binding model.

4.4.7 Biological implications

Several TFs searching simultaneously: If we consider several TFs searching

for their sites on the DNA simultaneously, our results still remain valid. In [60], the au-

thors argue that this may reduce the total search time because the experimental estimate
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of 1 ∼ 10 secs is generated from the binding rate of the TFs to the DNA site. Our results,

however, are for any specific TF and compute the average time required for this TF to

bind to the DNA. Thus increasing the number of TFs should not change the results that

we report for any particular TF. In fact, this brings down the experimental estimate of

the binding time and hence requires lesser Eact for stable binding (as discussed in the

next subsection). This may also cause molecular crowding in the cell which can have an

impact on the search time. We did not consider molecular crowding on DNA or protein

hopping (intersegment transfer) in our model for similar reasons as in [60].

Funnels and local organization of sites: Several known bacterial and eukaryotic

sites tend to cluster together. Such clustering or other local arrangement of the sites can

create a funnel in the binding energy landscape leading to more rapid binding of cognate

sites. Our model assumes no such funnels of energy field. In the present model, the

probability of collision is assumed uniform for the entire DNA. Because of local organi-

zation of sites, there is bias in the collision site, we can model that effect by changing the

uniform distribution by another distribution to represent this bias. Also, due to change

in energy landscape if the binding energy requirement changes, the probability of binding

will increase in our model and hence will reduce the binding time.

Possible experiments to test our predictions: The search time depends on the

activation energy of the TFs, which, in turn, can be controlled by the ionic strength

of solution. Also, we show how the binding rate depends on the average collision time

between two random segments of DNA, τ . This time measurement (τ) depends on the

DNA concentration and the domain organization of DNA. By changing DNA concen-

tration and/or DNA stretching in a single molecule experiment, one can alter τ and

thus study the role of DNA packing on the rate of binding. This effect has implications

for DNA recognition in vivo, where DNA is organized into domains. Similarly, one can

experimentally measure and compare the binding rate, in the presence of other DNA-



109

binding proteins or nucleosomes.

Biological relevance of our model: Our model suggests that the kinetic energy of the

TFs has to exceed Eact for successful binding. Is the kinetic energy of the TFs greater

than this minimum requirement in general ? Theoretically, of course, the energy can

be infinitely large for any molecule. Moreover, the bound on Eact can be brought down

significantly if we incorporate the above factors. Note that the experimental estimate of

1 ∼ 10 secs incorporates the actual binding time. Thus the time for searching a DNA

site by a TF should be quite smaller than 1 ∼ 10 secs resulting in a very low requirement

of Eact. Also, because the experimental results depend on the binding rate, the total

search time for 100 copies of a TF searching in parallel for the cognate site in a cell of 1

µm3 volume is ' 0.1 s. This estimate further decreases with increasing number of TFs.

So, to compute the average time for binding experimentally, we really need to compute

the average number of that particular TF in the cell. Thus the model presented in this

chapter can be further extended to incorporate these factors.

4.5 Summary

We have presented a simplified model to estimate the DNA-protein binding time

by transforming the biological function as a stochastic process of a number of biologi-

cal microevents. The probabilities of these microevents are used to create the complete

stochastic model of the biological event. We used collision theory and Maxwell Boltzmann

velocity distribution to calculate this microevent probability. The model is computation-

ally fast and provides two moments for this random binding time. The model is robust as

the major factors are captured in a reasonably accurate way for general cell environments.

The complexity of DNA packing has been simplified to achieve acceptable estimates of

the DNA-protein binding time. We found the range of activation energies of the TFs that

are crucial for the robust functioning of gene transcription. The speed-stability paradox



110

can also be bypassed using the no TF sliding assumption and its effects reduced if we in-

corporate 1-d diffusion. The proposed mechanism has important biological implications

in explaining how a TF can find its site on DNA in vivo, in the presence of other TFs

and nucleosomes and by a simultaneous search by several TFs. In addition to providing

a quantitative framework for analysis of the kinetics of TF binding (and hence, gene

expression), our model also links molecular properties of TFs and the location of the

binding sites on nucleosome cylinders to the timing of transcription activation. This pro-

vides us with a general, predictive, parametric model for this biological function. These

details make the model more versatile compared to the current rate constants used in

the Gillespie simulation. Thus, our discrete stochastic modeling can incorporate more

parameters in the simulation.



CHAPTER 5

PROTEIN-LIGAND DOCKING

This chapter presents a computationally fast analytical model to estimate the time

taken for protein-ligand docking in biological pathways. The model includes the struc-

tural details of the ligands, proteins and the binding mechanism, thus permitting its

usage in different protein-ligand docking pairs. We use a modification of the collision

theory based approach. The model captures the randomness of this problem in discrete

time and estimate the first two moments of this process. The numerical results for the

first moment show promising correspondence with experimental results and demonstrate

the efficacy of our model.

This chapter is organized as follows: Section 5.1 discusses some related works on

analytical models for protein-ligand docking. Sections 5.2 and 5.3 presents our stochastic

model for protein-ligand docking. Section 5.4 reports the results for a sample protein-

ligand pair for bacterial cells. In Section 5.5, we discuss the biological implications of our

model and also present its limitations. Finally, in Section 5.6 we summarize the findings

of this chapter.

5.1 Background on existing protein-ligand docking models

Most of the work on protein-ligand docking use Brownian dynamic simulations

to model the mechanism. From the point of view of kinetics, protein docking should

entail distinct kinetic regimes where different driving forces govern the binding process

at different times [13, 14, 15]. This is because of the free energy funnel created by

the binding site of the protein. The funnel distinguishes three kinetic regimes. First,

111
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nonspecific diffusion (regime I) brings the molecules to close proximity. This is the

motion created by the random collision of the molecules. Second, in the recognition

stage (regime II), the chemical affinity steers the molecules into relatively well oriented

encounter complexes (≈ 5×10−10 m), overcoming the mostly entropic barrier to binding.

Brownian dynamics simulation of this regime [22] were also found to be consistent with

a significant narrowing of the binding pathway to the final bound conformation. Finally,

regime III corresponds to the docking stage where short-range forces mold the high affinity

interface of the complex structure.

Long-range electrostatic effects can heavily bias the approach of the molecules to

favor reactive conditions. This effect was shown to be important for many association

processes, including those of proteins with DNA [80], proteins with highly charged small

molecules [52], and proteins with oppositely charged protein substrates [86, 55, 36, 82,

62]. These systems have been thoroughly studied and are frequently regarded as typical

examples of binding phenomena. Electrostatics is clearly not the only force that can

affect the association rate. In addition, the most important process contributing to

the binding free energy is desolvation, i.e., the removal of solvent both from nonpolar

(hydrophobic) and polar atoms [16]. It is generally accepted that partial desolvation is

always a significant contribution to the free energy in protein-protein association, and it

becomes dominant for complexes in which the long-range electrostatic interactions are

weak [17]. Brownian dynamics simulations to study the effects of desolvation on the rates

of diffusion-limited protein-protein association have been reported in [22].
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5.2 Proposed analytical model

Let us consider the docking between a protein A and a ligand B. Let the total

number of surface binding points in A be nA and that in B be nB. The number of surface

docking points to produce the AB complex is denoted by ns, such that:

ns << nA; ns << nB (5.1)

We assume that the ns docking points are all contiguous and if any three of the docking

Protein A

Binding site of A

n  docking pointss

Figure 5.1. The protein docking mechanism.

points is hit by the ligand during a collision, the attractive force of the amino acid side-

chain will force the ligand to change orientation so that it can bind to the site. This

assumption has a few limitations which we will discuss in Section 5.5. Now, let the

total probability of hitting the site during a collision for successful docking be pf . The
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probability of hitting the binding site at only one of the docking points is

p1
f =

(ns
1 )

(nA
1 )(nB

1 )
.

Similarly, the probability of hitting the binding site at i docking points is given by:

pi
f =

(
ns

i

)
(

nA

i

)(
nB

i

) , (1 ≤ i ≤ ns) (5.2)

Thus pf can be expressed as follows:

pf =
ns∑

i=3

pi
f =

ns∑

i=1

(
ns

i

)
(

nA

i

)(
nB

i

) (5.3)

Also, let pb denote the probability that the ligand collides with the protein A with

sufficient kinetic energy for successful docking. Hence, the total probability that the

ligand hits the binding site while colliding with the protein, pt, is given by:

pt = pb × pf (5.4)

In general, the process of protein-ligand association can be described by a three-step

reaction mechanism as follows:

A + B =⇐⇒k+

k− A...B ⇐⇒k+
1

k−1
A−B ⇐⇒k+

AB

k−AB

AB, (5.5)

where A...B denotes the nonspecific encounter pairs, A−B denotes the precursor state(s)

leading to the docked conformation AB [18]. If long-range interactions can be neglected,

the first reaction step is the random collision of the protein and ligand (A and B),

resulting in a nonspecific encounter complex A...B within the desolvation layer. To a

good approximation, the limiting rate k+ of this first regime is given by the Smoluchowski

limit [63], kcoll. Indeed, the overall repulsion of the force fields has little effect on k+. The

authors in [22] report that the typical lifetime of a nonspecific encounter complex A...B

diffusing within the desolvation layer is about 4± 1 ns. This value is consistent with the

nonspecific affinity between proteins that is estimated to be 102M−1 or less [91].
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The third reaction step in Eq. 5.5 i.e., the late transition between the favorable

intermediate(s) A − B and the bound state AB, substantially differs from the first two

steps. The onset of the late transition coincides with the need to remove steric clashes

and charge overlaps in the binding mechanism. Although the first two steps are governed

by diffusion, the third is a process of induced fit that requires structural rearrangements

involving mostly side chains. [22] reports that this late transition is not diffusive. For

ligands that bind in a diffusion-controlled (or diffusion limited) reaction, the rate-limiting

step must be the diffusive search for the partially desolvated intermediate(s) or precursor

state(s) rather than the third step, and thus k+
AB À k−1 .

In this chapter, we focus on the kinetics of the total binding process. In particular,

the collision theory model incorporates the first two steps together, whereas the Ligand

axis rotation model estimates the third step.

5.2.1 Rotation of the ligand axis with respect to protein A

Fig 5.2 shows the rotation of the ligand axis to bring about the final docking

configuration. The final orientation can be reached by the rotation of the ligand axis by

an angle θ, where (0 ≤ θ ≤ 2π). However, as we will see in Section 5.4, this angle is often

quite small ranging between (0 ≤ θ ≤ π
2
). Also, we must have:

d11′ ≤ γ, d33′ ≤ γ, d55′ ≤ γ (5.6)

where, γ is the threshold distance between any two binding points of A and B respectively

for docking to occur.
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Figure 5.2. The rotation of the ligand axis.

5.2.2 Assumptions

1. Only the ligand rotates, to reach the final docked conformation whereas the protein

remains fixed. In particular, we consider the relative rotation of the ligand axis with

respect to the protein axis.

2. The docking point extends out of the ligand/protein backbones at an angle to the

corresponding axis. In the analytical model, we have included both the cases when

this angle is equal to π
2

and otherwise. The subsequent numerical results have been

generated assuming an angle equal to π
2

as this is not yet reflected in the biological

databases.

3. The docking site on the ligand/protein backbones are approximated as straight

lines for ease in calculations. Note that the first step is to find the average angle
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(in radians) that the binding site of the ligand axis has to rotate to reach the final

docked conformation. We assume that the binding site of the ligand behaves like

a rubber handle extending out of the spherical ligand structure. This allows us to

compute the average time taken for the rotation of the ligand axis easily.

4. At least 3 docking points in the ligand has to come within the range of the threshold

distance of the corresponding 3 docking points in protein A for a successful binding

to occur.

5. We consider a 2-d coordinate system to estimate our results. A 3-d coordinate

system can be used following the same concept but the equations become quite

complicated to solve as discussed later. If 3 docking points are considered, it is

always feasible to have the three points on the same plane where the other points

are contributing to reduce the rotational threshold energy required for binding for

these three 2-d points. Thus a 2-d assumption is appropriate for the model.

6. The docking points extend out of the protein/ligand backbones in a straight line.

The requirement of at least 3 docking points to come within the threshold distance of

γ allows us to calculate the average angle of rotation, θavg, that the ligand axis has to

rotate for successful docking with Protein A as discussed below.

5.2.3 Finding θavg

It should be noted that in the subsequent discussion all references to the lig-

and/protein backbones actually applies to only the docking site of the corresponding

backbones (which are assumed as straight lines). Fig 5.3 shows the scenario when the

ligand and the protein come within a distance of γ for at least 3 docking points.

5.2.3.1 Conventions

1. There are a total of ns docking points.
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Figure 5.3. Ligand/Protein coming within threshold distance of 3 docking points.

2. The docking points on the protein are labelled as (gix, giy) to denote the x and y

coordinates respectively of the ith docking point.

3. The points on the amino acid backbone of the protein corresponding to the ith

docking points are denoted by (g′ix, g
′
iy).

4. The docking points on the ligand are labelled as (hix, hiy) to denote the x and y

coordinates respectively of the ith docking point.

5. The points on the amino acid backbone of the ligand corresponding to the ith

docking points are denoted by (h′ix, h
′
iy).

6. The origin of our 2-d coordinate system is at (g1x, g1y), i.e, (g1x, g1y) = (0, 0).

7. The distance between the ith docking point and the corresponding point on the

protein backbone is given by dgi.
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8. The distance between the ith docking point and the corresponding point on the

ligand backbone is given by dhi.

9. The angle between the straight line connecting the ith docking point and the protein

backbone and the straight line denoting the protein backbone is denoted by φi.

10. The angle between the straight line connecting the ith docking point and the ligand

backbone and the straight line denoting the ligand backbone is denoted by ψi.

11. The docking site on the protein backbone (assumed to be a straight line) is parallel

to the x-axis of the 2-d coordinate system. Thus the equation of this straight line

is y = −(dg1) sin φ1.

12. The distance between the points on the protein backbone corresponding to the ith

and jth docking points is denoted by Dgij.

13. The distance between the points on the ligand backbone corresponding to the ith

and jth docking points is denoted by Dhij.

The angles φi, (∀i) are measured from the protein axis to the straight line extending out

of the axis carrying the docking point in an anti-clockwise direction as shown in Fig 5.4.

Similarly, the angles ψi, (∀i) are also computed.

Figure 5.4. Determining the angles between the axis and the docking point.
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5.2.3.2 Coordinates of the docking points of the protein backbone

Its fairly easy to compute the coordinates of all the ns docking points and their

corresponding contact points on the protein backbone. We will simplistically sketch the

process in this section.

The first docking point on the protein backbone, (g1x, g1y) is considered to be the

origin of our coordinate system. Also, because the equation of the straight line denoting

the protein axis is known, we can write:

(g1x, g1y) = (0, 0); (5.7)

g′1y = −(dg1) sin φ1; (g′1x)
2 + (g′1y)

2 = (dg1)
2 (5.8)

From, Eq 5.8 we can readily calculate (g′1x, g
′
1y). Next, we can compute (g′ix, g

′
iy), (1 ≤

i ≤ ns) by solving the following set of equations:

g′iy = −(dg1) sin φ1 (5.9)

(g′ix − g′1x)
2 + (g′iy − g′1y)

2 = (Dg1i)
2; 2 ≤ i ≤ ns (5.10)

Next, we can estimate the coordinates of the docking points of the protein (gix, giy),

(2 ≤ i ≤ ns) by solving the following equation pair:

(g′ix − gix)
2 + (g′iy − giy)

2 = (dgi)
2; giy = g′iy + (dgi) sin φi (5.11)

5.2.3.3 Calculating the coordinates of any three docking points on the ligand

The angle θ as shown in Fig 5.3 denotes the angle made by the docking sites of the

ligand backbone with the protein backbone (and equivalently the x-axis). As mentioned

before, we assume that any three docking points on the ligand come within the threshold

distance of the corresponding docking points of the protein. Without loss of generality, let

us assume that these 3 docking points are denoted by (hix, hiy), (hjx, hjy) and (hkx, hky)
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corresponding to the docking points on the protein denoted by (gix, giy), (gjx, gjy) and

(gkx, gky), where 1 ≤ i, j, k ≤ ns and i 6= j 6= k. Thus we can write:

(hix − gix)
2 + (hiy − giy)

2 ≤ γ2 (5.12)

(hjx − gjx)
2 + (hjy − gjy)

2 ≤ γ2 (5.13)

(hkx − gkx)
2 + (hky − gky)

2 ≤ γ2 (5.14)

Next, we can find the distance between the docking points (hix, hiy) and their corre-

sponding points of attachment to the ligand axis (h′ix, h
′
iy) denoted by dhi (from the PDB

database [42]) and hence:

(hix − h′ix)
2 + (hiy − h′iy)

2 = (dhi)
2 (5.15)

(hjx − h′jx)
2 + (hjy − h′jy)

2 = (dhj)
2 (5.16)

(hkx − h′kx)
2 + (hky − h′ky)

2 = (dhk)
2 (5.17)

The distances between the corresponding points on the ligand axis can also be estimated

(from the PDB database) and we have:

(h′ix − h′jx)
2 + (h′iy − h′jy)

2 = (Dhij)
2 (5.18)

(h′ix − h′kx)
2 + (h′iy − h′ky)

2 = (Dhik)
2 (5.19)

Also, our assumption that the docking points extend out of the ligand backbone in a

straight line allows us to formulate the slope of these lines as
hiy−h′iy
hix−h′ix

,
hjy−h′jy

hjx−h′jx
and

hky−h′ky

hkx−h′
kx

.

And because the corresponding angles of these lines with the ligand axis can be estimated,

we have: 



tan ψi =

hiy−h′
iy

hix−h′
ix
−m

1+m
hiy−h′

iy

hix−h′
ix

, for ψi 6= π
2

m
hiy−h′iy
hix−h′ix

= −1, for ψi = π
2





(5.20)
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tan ψj =

hjy−h′
jy

hjx−h′
jx

−m

1+m
hjy−h′

jy

hjx−h′
jx

, for ψj 6= π
2

m
hjy−h′jy

hjx−h′jx
= −1, for ψj = π

2





(5.21)





tan ψk =

hky−h′
ky

hkx−h′
kx

−m

1+m
hky−h′

ky

hkx−h′
kx

, for ψk 6= π
2

m
hky−h′ky

hkx−h′
kx

= −1, for ψk = π
2





(5.22)

where, m is the slope of the straight line denoting the ligand axis. Note that, in Sec-

tion 5.4, we assume an angle of π
2

to generate the results as the corresponding angles are

not reported in the biological databases. Finally, because the points (h′ix, h
′
iy), (h′jx, h

′
jy)

and (h′kx, h
′
ky) lie on the same straight line (i.e, the ligand backbone), we can write:

h′ky − h′iy = (h′kx − h′ix)
h′jy − h′iy
h′jx − h′ix

(5.23)

h′ky − h′jy = (h′kx − h′jx)
h′jy − h′iy
h′jx − h′ix

(5.24)

Thus, in Equations 5.12-5.24, we have 13 equations to solve for the following 13 unknown

variables: hix, hiy, hjx, hjy, hkx, hky, h′ix, h
′
iy, h

′
jx, h

′
jy, h

′
kx, h

′
ky and m. Note that, we need at

least 3 docking points to form sufficient number of equations for solving all the unknown

variables. To calculate θ from m, we observe that the slope of the ligand axis is given by

tan (θ), such that we have:

θ = arctan (m) (5.25)

Note that the slope can be both positive or negative resulting in clockwise or anticlockwise

rotations of the ligand axis. However, because we are interested in computing the time for

rotation of the ligand axis, the direction of rotation is not important for us. Also, because

the equations are nonlinear and involve inequalities, we can only make an approximate

estimate of the coordinates of the docking points on the ligand.
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5.2.3.4 Calculating θavg from θ

The next step is to estimate the average angle of rotation, θavg. We will find the

angle θ (as outlined above) considering any 3 docking points out of the possible ns points.

This requires a total of
(

ns

3

)
iterations.

We next find the average angle of rotation considering 3 docking points, θ3
avg, from

the
(

ns

3

)
different θ3

i ’s (1 ≤ i ≤
(

ns

3

)
) calculated (where, θ3

i denotes the angle computed

using the above equations for the ith combination of 3 docking points). Assuming uniform

probability for all these cases, we have:

θ3
avg =

(ns
3 )∑

i=1

θ3
i(

ns

3

) (5.26)

Note that if greater number of docking points come within the threshold distance, θj
avg

(4 ≤ j ≤ ns) will continue to decrease. We next consider the case when more than 3

docking points come within the threshold distance. If 4 points come within the distance,

we will have an extra 4 variables to solve (hmx, hmy, h
′
mx, h

′
my). Note that our assumptions

for this coordinate system is only valid if all of these four points are on the same plane.

We will have another 4 equations by adding the equations corresponding to this new

point to the Eqs 5.12-5.14, Eqs 5.15-5.17, Eqs 5.18-5.19 and Eqs 5.20-5.22 respectively

as follows:

(hmx − gmx)
2 + (hmy − gmy)

2 = γ2 (5.27)

(hmx − h′mx)
2 + (hmy − h′my)

2 = (dhm)2 (5.28)

(h′ix − h′mx)
2 + (h′iy − h′my)

2 = (Dhim)2 (5.29)





tan ψm =

hmy−h′my

hmx−h′mx
−m

1+m
hmy−h′my

hmx−h′mx

, for ψm 6= π
2

m
hmy−h′my

hmx−h′mx
= −1, for ψm = π

2





(5.30)
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Next we can calculate the average angle of rotation considering 4 docking points, θ4
avg, in

the same way as discussed above assuming uniform probability for all the
(

ns

4

)
different

cases as follows:

θ4
avg =

(ns
4 )∑

i=1

θ4
i(

ns

4

) (5.31)

This procedure is repeated to calculate θj
avg, (4 < j ≤ ns) in the same away by adding 4

new equations for each extra docking point considered.

Finally, the average angle of rotation, θavg can be approximated as;

θavg =
1

pf

ns∑

i=3

pi
f × θi

avg (5.32)

5.2.4 Computing θavg using a 3-d coordinate system

As mentioned before, a 3-d coordinate system can be used in a similar way to

compute θavg. However, as this increases the number of unknown variables appreciably,

we need to assume that at least 15 docking points of the protein/ligand come within the

threshold distance. This greatly increases the number of equations that has to be solved

as well. Moreover, for small docking sites, the assumption of 15 docking points coming

close might not be a practical way of solving the problem. Another disadvantage of the

3-d calculations is that as we need more docking points to come close, the value of θavg

becomes less than what we estimate with the 2-d system, resulting in a further decrease in

the estimation of the time for the rotation of the ligand axis. Fig 5.5 plots the rotational

energy required (measured in terms of total change in free energy reported in [22]) for

different number of docking points coming within threshold distance (varied from 3 to

15). The results were generated for the protein-ligand pair of human leukocyte elastase

and OMTKY3 where the optimal configuration corresponds to 15 docking points coming

close (as we will have maximum chance of docking in that case) and the subsequent

energy requirements were assumed for lesser number of docking points coming close. We
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observe that as more docking points come close, the rotational energy required is lesser

i.e., the ligand axis has to rotate less to reach the docked conformation indicating that

the time required for rotation also decreases.

As we show later, the total protein-ligand docking time is primarily governed by

the collision theory component (i.e., the time required for rotation of the ligand axis

is negligible in comparison to the time taken by the ligand to collide with the docking

site on the protein), and hence the lesser accuracy of the 2-d based computations is

not a deterrent in estimating the total docking time. Also, this reduces the number of

equations that need to be solved making the model computationally fast which is a basic

requirement for our discrete event-based simulator.
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Figure 5.5. Rotational energy vs no. of docking points within threshold distance.
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5.2.5 Calculating pb

We assume that the ligand molecules enter the cell one at a time to initiate the

binding. From the principles of collision theory for hard spheres, we model the protein

and ligand molecules as rigid spheres with radii rP and rL respectively. As mentioned

before, pb denotes the probability of collision of the ligand with the protein with enough

kinetic energy for the binding to occur successfully. Let the total volume of the cell be V

and n2 denotes the number of protein molecules present inside the cell. We next assume

that the colliding ligand molecule must have free energy EAct or greater to overcome

the energy barrier and bind to the specific protein molecule. Let mPL = mP .mL

mP +mL
= the

reduced mass where, mL = mass (in gm) of the ligand molecule and mP = mass (in gm)

of the protein. Thus following the reaction model, we get:

pb =
n2r

2
PL∆t

V

√
8πkBT

mPL

e
−EAct

kbT

5.3 Computing the time taken for protein-Ligand docking

Now, we are in a position to analytically compute the time taken for ligand-protein

docking. This can be divided into two parts: 1) computing the time taken for the ligand

to collide with the binding site of the protein molecule with enough activation energy to

create a temporary binding and 2) computing the time taken for the rotation of the ligand

axis to stabilize the binding to the protein molecule. Note that the first part computes

the time for the random collisions until the creation of the precursor state A − B (as

shown in Eq. 5.5) and involves the first two steps in Eq. 5.5. The second part computes

the time taken for the formation of the final docked complex, AB, from A−B.
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5.3.1 Estimation of collision time for successful docking

Let ∆t = τ = an infinitely small time step. The ligand molecules try to bind to

the protein through collisions. If the first collision fails to produce a successful binding ,

they collide again after τ time units and so on.

We can interpret pt as the probability of a successful binding in time τ . Thus, the

average time for the ligand to collide with the binding site of the protein molecule with

enough activation energy for successful docking denoted by T c
1 is given by:

T c
1 = ptτ + pt(1− pt)2τ + pt(1− pt)

23τ + ... =
τ

pt

and the corresponding second moment, T c
2 , is given by:

T c
2 = pt(τ

2) + pt(1− pt)(2τ)2 + pt(1− pt)
2(3τ)2 + ... =

(2− pt)τ
2

p2
t

We find that the time for ligand-protein collisions (which is a random variable denoted

by x) follows an exponential distribution for the specific ligand and protein used to gen-

erate the results (reported in the next section). It should be noted that as we assume τ

to be quite small, we can approximate the total time measurements of binding using a

continuous (exponential in this case) distribution instead of a discrete geometric distri-

bution. Thus as reported later, we find T c
1 ≈ T c

2 , and hence the pdf of the exponential

distribution is given by:

f1(x) =





( 1
T c
1
)e
−( x

Tc
1

)
, for x ≥ 0

0, otherwise





(5.33)

5.3.2 Finding the average time for rotation of ligand axis

Now to rotate the docking site on the ligand about the axis to reach the final

docking configuration, we need to have some rotational energy which is contributed by



128

the total change in free energy in forming the docked complex (denoted by Ef ). Thus

we have:

1

2
Idw

2
d = Ef (5.34)

where, Id and wd are respectively the average rotational inertia and angular velocity of

the docking site of the ligand. Now the estimates of Ef have been reported extensively

in the literature, and our goal is to calculate Id and wd.

5.3.2.1 Calculating the average moment of inertia of the ligand, Id:

The moment of inertia calculation can become tricky as we have to consider the

axis of rotation as well as its distance from the ligand axis. Fig 5.6 illustrates the possible

orientations of the protein and ligand axis where the dotted line with an arrow signifies

the axis of rotation. Note that the protein and ligand axes might not intersect as well

in some configurations (Figs 5.6(b),(c),(d)). In such cases, it becomes imperative to

calculate the distance of the ligand axis from the point about which it rotates making

the moment of inertia calculation quite cumbersome.

We assume that the ligand and protein axes do actually intersect in all cases (i.e.

Figs 5.6(b),(c),(d) can never occur). This is a practical consideration because the ligand

physically collides with the protein. We also assume that the ligand axis rotates about this

point of intersection. Note that this simplifies the average moment of inertia calculation

as the intersection point will always be on the ligand axis (and we do not have to compute

the distance of the ligand axis from the axis of rotation).

From section 5.2.3.3 we can easily find the equations of the two lines denoting the

protein and ligand axes (as the coordinates of at least 3 points on each line is known).

Hence the point of intersection can be computed in a straight-forward manner. Let the

point of intersection be denoted by (δx, δy). Also, we can estimate the coordinates of the
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ligand axis

protein axis

ligand axis

protein axis

ligand axis

protein axis

ligand axis

protein axis

(a)
(b)

(c) (d)

Figure 5.6. 4 possible orientations ((a),(b),(c),(d)) of the protein and ligand axes.

beginning (denoted by (bx, by)) and end (denoted by (ex, ey)) points on the ligand axis

corresponding to the first and last docking points 1 and ns.

As explained before, the docking sites of the ligand and protein axes are assumed

as straight lines, such that the ligand can be approximated as a sphere (of radius rL)

with a rubber handle (which is the straight line denoting the docking site on the ligand

backbone). Fig 5.7 explains the model. This rubber handle on the ligand can be ap-

proximated as a cylinder with radius rd and length
√

(bx − ex)2 + (by − ey)2. Note that

in Section 5.2.5 we had modelled the ligand as a hard sphere. However, the calculation

of θavg and Id requires the docking site of the ligand axis to be a straight line (for ease

in computation). Note that, in general, the docking site is quite small compared to the

length of the entire ligand, and thus the rubber handle assumption is quite feasible. The
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Figure 5.7. Approximate model of the Ligand molecule.

collision theory estimate can still treat the entire ligand as a sphere without taking into

account the rubber handle part. However, because the docking site is approximated as

a rubber handle, only this part rotates to bind to the corresponding site on the protein

and hence Id is the rotational inertia of the docking site only. We also assume that the

docking site on the ligand has uniform density, ρd, and cross-sectional area, Ad = πr2
d.

Thus we can approximate Id as follows:

Id =
∫ √(δx−bx)2+(δy−by)2

−
√

(δx−ex)2+(δy−ey)2
ρdAdx

2 dx

=
ρdAd

3
([(δx − ex)

2 + (δy − ey)
2]

3
2 + [(δx − bx)

2 + (δy − by)
2]

3
2 ) (5.35)

5.3.2.2 Calculating T r
1 :

The average time for rotation of the docking site of the ligand axis (denoted by T r
1 )

is given by:

T r
1 =

θavg

wd

(5.36)
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However, this does not allow us to compute the second moment of the time for rotation.

We assume that the time for rotation follows an exponential distribution and hence the

second moment of the time for rotation is given by:

T r
2 = 2(T r

1 )2 (5.37)

Thus this exponential distribution has both mean and standard deviation as T r
1 and pdf

of the form:

f2(x) =





( 1
T r
1
)e
−( x

Tr
1

)
, for x ≥ 0

0, otherwise





(5.38)

5.3.3 General distribution of the total time for protein-ligand docking

The total time for protein-ligand docking can be computed from the convolution

of the two pdf’s given in Eqns 5.33 and 5.38 as follows:

f(x) = f1(x)
⊙

f2(x) =
∫ x

0
f1(z)f2(x− z) dz

where, f(x) denotes the pdf of the general distribution for the total time and
⊙

is the

convolution operator. Hence we get:

f(x) =





e
− x

Tc
1 −e

− x
Tr
1

T c
1−T r

1
, for x ≥ 0

0, otherwise





(5.39)

Also we have:

T1 =
∫ ∞

0
xf(x) dx = T c

1 + T r
1 ; T2 =

∫ ∞

0
x2f(x) dx = 2[(T c

1 )2 + T c
1T r

1 + (T r
1 )2]

where, T1 and T2 are the first and second moments of the total time taken for protein-

ligand docking.
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5.4 Results and analysis

5.4.1 Problems in validation of our model

Before presenting the results, we first discuss the difficulty of experimentally vali-

dating our model. Note that we compute the average time for protein-ligand binding in

this chapter. Existing experimental results are based on estimation of the binding rate

of the ligands to a specific protein. We consider the binding of the turkey ovomucoid

third domain (OMTKY) ligand to the human leukocyte elastase protein to generate the

results. The experimental rate constant of 106M−1s−1 as reported in [22] is derived from

these rate measurements. Hence, the number of ligands in the cell will affect this estimate

of time taken by one single ligand to bind to the protein because the rate of reaction

incorporates the ligand concentration as well. However, our model computes the time

taken by any particular ligand to bind to the protein which should be independent of the

number of ligands in the cell. It is currently very difficult to carry out experiments to

track a particular ligand and physically compute the time. Also, the stochastic nature of

the binding process suggests that the distribution of the time taken will have a very high

variance. In other words, in some cases the ligand requires time in microseconds whereas

in other cases it might take as long as 1 second. The results (for the ligand-protein pair

identified above) we present in the next section assume that the time taken for any par-

ticular OMTKY-human leukocyte elastase binding has a rate constant of 106M−1s−1 (as

reported in [22]) even though it cannot be a true estimate of this event. Also, note that

our model can be easily extended to incorporate the effects of multiple ligands present

in the cell on the binding rate as discussed in Section 5.5.2.

5.4.2 Numerical results

In this section, we present the numerical results for the theoretical model derived

in the chapter. Figs 5.8-5.12 present the results for OMTKY-Human leukocyte elastase
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Table 5.1. Parameter Estimation for an average Human Cell

Parameters Eukaryotic Cell

V 4.187× 10−15m3

(average volume of a human cell)

rP 23.24× 10−10 m
(for Human leukocyte elastase)

rL 14.15× 10−10 m
(for Turkey ovomucoid third domain)

ns 8

rd 1 nm

Ef (total change in free energy) -7 Kcal/mol [22]

mP 23328.2 Dalton
(for Human leukocyte elastase)

Number of ligand (OMTKY) molecules 105

mL 6047.9 Dalton
(for Turkey ovomucoid third domain)

ρd 1.44 g/cm3

(for Turkey ovomucoid third domain [37])

binding in an average human cell with 20 µm diameter. Also, the results were generated

for ns = 8 docking points on the protein/ligand. The different parameters assumed for

the numerical results are concisely presented in Table 5.1. We used actual values from

the from the PDB database [42] and some assumptions as reported in [22].

5.4.2.1 Calculation of Id and wd

To calculate Id we need to know the point of intersection of the straight lines

denoting the docking sites of the protein and ligand. Because, we need to estimate the

average rotational inertia, we consider two cases: (1) the intersecting point is at the

center of the docking site on the ligand and (2) the intersecting point is at the end of the
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Figure 5.8. θi
avg against number of docking points within threshold distance.
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Figure 5.10. Average Time against ns.
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docking site on the ligand. Note that the coordinates of the exact set of docking points

and their corresponding points on the protein/ligand backbones have been estimated

using the LPC software [96]. Also the density of the ligand molecule is assumed to be

1.44 g/cm3 as the molecular weight of OMTKY is ≈ 6 KDalton (see [37] for details).

The corresponding values for wd (assuming Ef = −7 Kcal/mol, from [22]) are

63.5 × 109 and 31.75 × 109 radians/sec respectively. Note that, [64] reports that the

average angular velocity of a protein molecule is in the range ≈ 109 radians/sec, which

is very close to our estimate.

5.4.2.2 Estimation of θavg

Fig 5.8 plots θi
avg, (3 ≤ i ≤ 8), against the number of docking points coming within

threshold distance of γ = 2 × 10−10 m. Note that instead of averaging out the
(

ns

i

)

possible cases of choosing i docking points, we assumed that only i contiguous points can

come within a distance of γ. This is because for the other combinations, the angle was
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too small making the corresponding θi
avg too low. Thus, Eq 5.26 was modified as follows

to generate the results:

θi
avg =

ns−i+1∑

j=1

θi
j

ns − i + 1
(5.40)

As expected, we find that the angle reduces as more docking points come within threshold

distance. Also, we calculate θavg = 0.643483 radians for the specific ligand-protein pair

under consideration.

5.4.2.3 Estimation of T r
1

The next step is to estimate the mean of the time for rotation of the docking site

of the ligand axis to produce the final docked complex. We obviously get T r
1 ≈ 1× 10−11

and 2× 10−11 secs for the two wd estimates reported previously. Thus in general we can

say that the time for rotation is too small in comparison to the time for collision, T c
1 as

reported subsequently. Thus the total time for ligand-protein docking is dominated by

T c
1 which corroborates the results reported in [22].

5.4.2.4 Dependence of T1 on ∆t

Fig 5.9 plots T1 against different values for ∆t. The average time for ligand-

protein docking remains constant with increasing ∆t. The same characteristics are seen

for different number of docking points considered, ns = 8, 15, 25 respectively. Though

we have ns = 8 for the ligand-protein pair under consideration, we have reported the

plots for different values of ns to show the dependence of the average binding time on

ns. The activation energy, Eact is kept at 0 for the above plots. For, ns = 8, we find

T1 = 0.000395 secs as against 0.00025 secs as estimated from the experimental rate

constant value of 106M−1s−1. This is a very important finding from our model. It

states that for the process of ligand-protein docking no activation energy is required, i.e.



138

the ligand molecules do not have to overcome an energy barrier for successful docking.

Indeed, biological experiments have indicated that the docking process occurs due to

changes in monomer bonds into dimers and the resultant change in free energy is used

for the rotational motion of the ligand to achieve the final docked conformation. Thus

this finding corroborates the validity of our model. The results were generated assuming

an average of 105 molecules of OMTKY inside the cell.

Also it can be noted that the average time for binding (= 0.000395 secs) is very

high compared to our estimate of T r
1 . Thus it can be inferred that the time taken for the

rotational motion of the ligand is negligible in comparison to T c
1 .

It is to be noted that pb as calculated above also corresponds to the number of

collisions in time ∆t of the ligand molecule with the protein. And for our assumption of

at most one collision taking place in ∆t to hold, we have to make sure that 0 ≤ pb ≤ 1

(this is also true because pb is a probability). Thus the regions to the right of the vertical

lines corresponding to each ns plot denotes the forbidden region where pb > 1 even

though 0 ≤ p ≤ 1. This gives us an estimate of the allowable ∆t values for different

ns’s such that T1 indeed remains constant. Out estimates show that with ∆t ≤ 10−8, T1

remains constant for most values of ns.

5.4.2.5 Dependence of T1 on ns

Fig 5.10 plots T1 against the different possible ns values and we find that the average

time for docking decreases as the total number of docking points ns is increased. This

is again logical as the ligand molecules now have more options for binding resulting in a

higher value of pf and subsequently pt.
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5.4.2.6 The stochastic nature of the docking time

Fig 5.11 plots the cumulative distribution function (CDF) for the total time of

binding with Eact = 0. The time for collision followed an exponential distribution (as the

calculated mean was very close to the standard deviation). Also, because the T r
1 compo-

nent is very small in comparison to T c
1 , the overall time for binding can be approximated

to follow an exponential distribution given by Eq 5.33. Note that incorporating T r
1 ¿ T c

1

in Eq 5.39 we get Eq 5.33 implying that the total time for docking is dominated by the

exponential distribution outlined in Eq 5.33.

Fig 5.12 illustrates the dependence of the average time for docking (T1) on the

number of protein (Human Leukocyte elastase) molecules in the cell for a fixed number of

ligand (OMTKY) molecules (≈ 105). The corresponding time of reactions estimated from

the experimental rate constant of 106M−1s−1 have also been reported. The docking time

estimates from our theoretical model very closely matches the experimental estimates in

the acceptable range of the number of protein molecules (varied from 103−109 molecules

as can be found in any standard human cell).

5.4.3 Important observations

1. Our model achieves the experimental rate constant estimate with zero activation

energy requirement for the protein-ligand pair under consideration in human cells.

The stochastic nature of protein-ligand binding time can be approximated by a

general distribution with pdf of the form given in Eq 5.39 and first and second

moments given by T1 and T2 respectively. However, for this protein-ligand pair,

the total docking time can be approximated as an exponential distribution with

pdf given by Eq 5.33 as T r
1 ¿ T c

1 .
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2. The average time for DNA-protein binding is independent of ∆t and decreases as

the length of the docking site increases (i.e., as ns increases).

3. An acceptable estimate of ∆t is 10−8 secs. Fig 5.9 shows the dependence of the

average time on ∆t. We find that a wider range of ∆t is available (keeping pb ≤ 1)

as ns decreases.

4. The mean of the total docking time (T1) decreases as the length of the docking site

(ns) increases.

5. The average angle of rotation (θ) for the ligand to reach the final docked conforma-

tion is very small. This coupled with the fact that the average angular velocity of

the docking site on the ligand axis being very high makes the mean time taken for

rotation negligible in comparison to the collision theory component of the docking

time.

5.5 Discussion

5.5.1 Limitations of our model

5.5.1.1 Maxwell-Boltzman distribution of molecular velocities

As mentioned before, the Maxwell-Boltzmann distribution gives a good estimate

of molecular velocities of proteins in the cytoplasm. However, the velocity distribution

should incorporate the properties of the cytoplasm, the protein/ligand structure and also

the electrostatic forces that come into play.

5.5.1.2 3-D protein/ligand structure

Another point to note is that the pf estimation can be improved by considering

the 3-D structures of the protein and the ligand. Ideally, the motifs of the protein/ligand

molecules are located towards the outer surface such that our straight line assumption of



141

the docking sites are quite realistic. However, the denominator in the expression for pi
f

considers all possible atoms on the protein/ligand molecules. However, due to their 3-d

structure, not all of these molecules are exposed towards the outer protein surface that

the ligand can collide to. As a result our estimates of pi
f is actually a little lower than

what should be a good estimate for the same, resulting in a corresponding decrease in

pf and hence pt and a resultant increase in T c
1 and hence T1. This might as well explain

the slightly greater time reported from our model in comparison to the experimental

estimates (recall that the experimental estimate was 0.00025 secs as against the 0.000395

secs reported by our model).

5.5.1.3 Straight line assumption of sites on protein/ligand backbones

As mentioned before, we have approximated the docking site on the protein/ligand

axes as straight lines to simplify the computations of the average angle of rotation θavg

and subsequently the average time required for rotation, T r
1 . However, because T r

1 ¿ T c
1 ,

the T r
1 component of T1 is negligible and the results reported from our theoretical model

are quite close to experimental estimates. We are working on this aspect to identify a

better estimate of T r
1 that models the actual docking process more closely.

5.5.2 Biological implications

5.5.2.1 Several ligands coming into the cell for docking

If we consider several ligands searching for their docking sites on the protein si-

multaneously, our results still remain valid. Note that as the number of ligands increase

in the cell, the binding rate will increase. Assuming the docking time to be completely

characterized by the collision theory part, an analytical estimate of the binding rate in

such cases can be achieved by using the batch model for cytoplasmic reactions. However,
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the time taken for any particular ligand to bind to the corresponding protein molecule

still remains the same. Thus increasing the number of ligands should not change the

results that we report for any particular ligand. In fact, this discrepancy arises because

of the definition of the binding rate the inverse of which gives the time required for a

successful docking to occur between the protein-ligand pair. Looking into the problem

from one specific ligand’s perspective (as we do in this thesis), the average time required

for docking will be the same assuming there are enough number of protein molecules in

the cell. This is a salient feature of our stochastic simulation paradigm where we track

the course of events initiated by any particular molecule in the cell to study the dynamics

of the entire cell. However, this may cause molecular crowding (of ligands) in the cell

which can have an impact on the search time. Further studies are required to cover this

aspect of ligand-protein docking.

5.5.2.2 Funnels and local organization of sites

Local arrangement of the binding sites of proteins tend to create a funnel in the

binding energy landscape leading to more rapid binding of cognate sites. Our model

assumes no such funnels of energy field. If the ligands spend most of their search time far

from the cognate site our model will remain valid and no significant decrease in binding

time is expected.

5.6 Summary

We have presented a computationally simplified model to estimate the ligand-

protein binding time based on collision theory. The model is robust enough as the major

contributing factors (molecular motion) are captured in a reasonably accurate way for

general cell environments. For an extreme cell environment condition, where the influ-

ence of the electrostatic force will be significantly different, the model will not provide
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such accuracy. We are exploring the possibility to modify the velocity distribution to

capture the effect of this extreme cell environment. However, the model is computa-

tionally fast and allows our stochastic simulator to model complex biological systems

at the molecular level (i.e., that involves many such docking events). The complexity

of the 3-d protein/ligand structures have been simplified in this chapter to achieve ac-

ceptable estimates of the holding time of the ligand-protein binding event. We found

that no activation energy is required for the docking process and the rotational energy

for ligand-protein complex to attain the final docked conformation is contributed by the

total change in free energy of the complex. The proposed mechanism has important

biological implications in explaining how a ligand can find its docking site on the protein,

in vivo, in the presence of other proteins and by a simultaneous search of several ligands.

Besides providing a quantitative framework for analysis of the kinetics of ligand-protein

binding, our model also links molecular properties of the ligand/protein and the structure

of the docking sites on the ligand/protein backbones to the timing of the docking event.

This provides us with a general parametric model for this biological function for our

discrete-event based simulation framework. Once the model is validated for a few test

cases, it can serve as a parametric model that can be used for all ligand-protein binding

scenarios where the binding details are available. This may eliminate the necessity of

conducting specific experiments for determining the rate constants to model a complex

biological process.



CHAPTER 6

MARKOV CHAIN BASED BIOCHEMICAL SYSTEM ANALYSIS

The molecular networks regulating basic physiological processes in a cell are gen-

erally converted into rate equations assuming the number of biochemical molecules as

deterministic variables. At steady state these rate equations gives a set of differential

equations that are solved by a computer using numerical methods. The recent identifica-

tion of the stochasticity of the biochemical environment motivates us to propose a math-

ematical framework for analyzing such biochemical molecular networks. The stochastic

simulators that solve a system of differential equations is one technique that includes

this stochasticity in the model, but suffer from simulation stiffness and require huge

computational overheads. This chapter describes a new markov chain based model to

simulate such complex biological systems with reduced computation and memory over-

heads. The central idea is to transform the continuous domain chemical master equation

(CME) based method into a discrete domain of molecular states with corresponding

state transition probabilities and times. Our methodology allows the basic optimization

schemes devised for the CME and can also be extended to reduce the computational and

memory overheads appreciably at the cost of accuracy. The simulation results for the

standard Enzyme-Kinetics and a simple Transcriptional Regulatory biological systems

show promising correspondence with the CME based methods and point to the efficacy

of our scheme.

This chapter is organized as follows: Section 6.1 discusses some related works on

biochemical system simulation. Sections 6.2 presents our markov-chain based stochastic

biochemical system simulator. Section 6.3 reports the results for sample Enzyme-Kinetics

144
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and Transcriptional regulatory systems. In Section 6.4, we discuss the biological implica-

tions of our model and its limitations. Finally, in Section 6.5 we summarize the findings

of this chapter and discuss about the future improvements.

6.1 Background: stochastic biochemical system analysis

In a stochastic biochemical system, the state of the system at any time is defined

by the number of molecules of each type. The transition from one state to another is

derived from the probability of the reactions at the current state and the resulting next

state is the new molecular state. As the molecular reactions in a biological process occur

due to the random collision of the molecules, the state transition parameters are random

and the state space is discrete. Let us assume in a stochastic biochemical system there

are M elementary (monomolecular or bimolecular) irreversible reaction channels, which

react at random times. A monomolecular reaction converts a reactant molecule into one

or more product molecules. A bimolecular reaction converts two reactant molecules into

one or more product molecules. We can decompose a reaction channel that involves more

than two reactant molecules into a cascade of elementary reaction channels and model a

reversible reaction channel by two irreversible reaction channels. The state of a stochastic

biochemical system at time t is characterized by the M -dimensional random vector

Z(t) = [Z1(t)Z2(t)...ZM(t)]T

where Zm(t) = z, if the mth reaction has occurred z times during the time interval [0, t)

and T denotes vector or matrix transposition. The random variable Zm(t) is referred

to as the degree of advancement (DA) of the mth reaction [65]. Also Xn(t) denotes the

number of molecules of the nth reactant or product species present in the system at time

t. By assuming N distinct species, we have

X(t) = [X1(t)X2(t)...XN(t)]T
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Given that the biochemical system is at state X(t) = x at time t, let qm(x) be the number

of all possible distinct combinations of the reactant molecules associated with the mth

reaction channel when the system is at state x. Note that

qm(x) =





xi, for monomolecular reactions

xi(xi − 1)/2, for bimolecular reactions

with identical reactants

xixj , for bimolecular reactions

with different reactants





for some 1 ≤ i, j ≤ N, i 6= j. Moreover, let cm > 0 be the probability per unit time that a

randomly chosen combination of reactant molecules will react through the mth reaction

channel. This probability is known as the specific probability rate constant of the mth

reaction. Then, the probability that one mth reaction will occur during a time interval

[t, t + dt) will approximately be equal to πm(x)dt, for a sufficiently small dt, where

πm(x) = cmqm(x), m ∈ M = {1, 2, ..., M},

is known as the propensity function of the mth reaction channel [31, 32]. Note that, given

the state z(t) of the biochemical system at time t, we can uniquely determine the state

x(t) of the system at time t. This is because

Xn(t) = gn(Z(t)) = x0,n +
∑

m∈M

snmZm(t), t ≥ 0, (6.1)

where x0,n is the initial number of molecules of the nth species present in the cell at time

t = 0 and snm is the stoichiometric coefficient. This coefficient quantifies the change in

the number of molecules of the nth molecular species caused by one occurrence of the mth

reaction. The state z(t) cannot be determined from x(t) in general since there might be

several states z(t) that lead to the same state x(t). To distinguish Z(t) from X(t), all



147

existing works on stochastic simulation refer to Z(t) as the hidden state and to X(t) as

the observable state and use a hidden markov model to analyze the system.

The discrete-valued random process

Z = {Z(t), t ≥ 0}

characterizes the dynamic evolution of the hidden state of a biochemical system. This

process is specified by the probability mass function (PMF)

Pz(z; t) = Pr[Z(t) = z|Z(0) = 0],

for every t ≥ 0. Simple probabilistic arguments show that Pz(z; t) satisfies the following

first-order differential equation [34]:

∂Pz(z; t)
∂t

=
∑

m∈M

αm(z − em)Pz(z − em; t)− αm(z)Pz(z; t),

for t > 0, with initial condition Pz(0; 0) = 1, where em is the mth column of the M ×M

identity matrix and

αm(z) = πm(g(z)) = cmqm(g(z)),

g(z) = [g1(z)g2(z)...gN(z)]T

This is the well-known forward Kolmogorov differential equation [93, 94, 6] governing the

stochastic evolution of a continuous-time Markov chain. In computational biochemistry,

Eqn. 6.1 is referred to as the chemical master equation (CME) [65]. It turns out that Z

is a multivariate birth process [93, 6] and X is a multivariate birth-death process.

6.2 Our markov chain based formulation

Our approach is to replace the hidden markov model based approach by a Markov

Chain based approach to model a composite biochemical system. Note that the system

only represents biochemical reactions inside the cell or protein-ligand docking mecha-

nisms. Thus in the Markov Chain, each state transition occurs due to one reaction or
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docking event. If multiple reaction or docking events are possible, then the state transi-

tions can occur due to any one of those reaction/docking events and hence there can be

multiple transition paths to the next state. The states in the Markov Chain are defined

as the number of molecules of the different components in the biological system that

we are considering, i.e., by X(t) = [X1(t), X2(t), ..., XN(t)]. For example, consider the

following biochemical system:

R1 : X1 + X2 −→ X3; R2 : X2 + X4 −→ X5

where, X1, X2, X4 are proteins and X3, X5 denote the docked complexes. Then each state

in the Markov Chain will have 5 tuples corresponding to the number of molecules of these

5 components. The corresponding Markov Chain with the possible state transitions is

shown in Fig 6.1. Note that each transition signifies either an R1 or an R2 type of event.

Thus, the total number of edges coming out of each node is given by the possible

number of reaction/docking events (and equivalently the number of differential equations)

considered in the system.

6.2.1 The MFPT concept

Assuming first order kinetics, the probability that a particle has reached the final

state at some time t is given by Pf (t) = 1 − e−kt where t is the time, k is the rate,

and Pf (t) is the probability of having reached a final state by time t. By running many

independent simulations shorter than 1/k, one can estimate the cumulative distribution

Pf (t), and hence fit the value for the rate, k. The mean first passage time is the average

time when a particle will reach the final state for the first time, given that it is in an

initial state at t = 0,

MFPT =
∫ ∞

t=0
(
d

dt
Pf (t))t dt =

∫ ∞

t=0
kte−ktdt =

1

k
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3,3,0,3,0

2,2,1,3,0

3,2,0,2,1

1,1,2,3,0

2,1,1,2,1

3,1,0,1,2

0,0,3,3,0

1,0,2,2,1

2,0,1,1,2

3,0,0,0,3

Figure 6.1. Markov Chain: 3 molecules each of X1, X2, X4 and no X3, X5 molecules.

6.2.2 Computing the state transition probabilities and times

Note that computing the MFPT requires an estimation of each state transition

probability along with the time taken for the transition. Because, each state transition

signifies either a reaction or docking, we can estimate the state transition probabilities

and times from the batch models of the reaction and docking events using concepts from

collision theory. For clarity, we are including a brief description of these two models in

the appendix. The batch model incorporates the number of molecules of each reactant

present before the start of the reaction/docking events. This makes each state transition

depend upon the current state that the system is in. Note that the batch model estimates
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the time of reaction/docking as a random variable following a Gamma distribution when

few reactant molecules are present in the system. However, as the number of reactant

molecules increase, the mean-to-standard deviation ratio for time becomes close to 1

signifying an exponential distribution. Also, note that [73] reports that the docking time

is primarily affected by the collision theory component. Hence the batch models of [71]

which model the stochastic biochemical reaction time are also applicable to the docking

events.

6.2.2.1 Monomolecular reactions

The time taken for monomolecular reactions can be simply computed from the

experimentally determined reaction rate constant for the reaction. Denoting the reaction

rate constant by kR3 , the probability of reactions of type R3 (denoted by PR3) is given

by:

R3 : X6 → X7 + X8; PR3 = [X6]kR3τ

where [X6] denotes the concentration of X6 type of molecules and τ denotes a infinitely

small time step (generally in the order of ∼ 10−8 secs). Note that this definition of the

monomolecular reaction probability is exactly the same as that used for solving the CME

and can be defined as the probability of a reaction of type R3 occurring in time τ .

The time taken for completion of R3 (denoted by TR3) can also be estimated from

the rate constant as follows:

TR3 =
1

[X6]kR3

In [71] we have shown that the reaction time is a random variable following an exponential

distribution when there are sufficient number of molecules in the system. Hence, we

assume that the monomolecular reaction completion time also follows an exponential

distribution with mean TR3 .



151

6.2.2.2 Bimolecular reactions

We use the batch model developed in [71] for computing the probability of reaction

and first and second moments of the reaction completion times. Considering reaction R1,

the probability and time can be estimated as:

PR1 =
n1n2r

2
12τ

V

√
8πkBT

m12

e
−EA12

kBT ; TR1 =
τ

pR1

where, n1, n2 are the numbers of X1 and X2 type molecules present in the cell, r12 is the

collision radius computed as the sum of the radii of X1 and X2 molecules (which are as-

sumed to be spherical), m12 is the reduced mass computed as m12 = m1m2

m1+m2
(where m1,m2

are the masses in gm of X1 and X2 type molecules), V is the cell volume, T is the temper-

ature (in Kelvin), kB is the Boltzmann’s constant = 1.381× 10−23kg m2/s2/K/molecule

and EA12 is the activation energy required for reaction R1. TR1 denotes the mean of the

reaction completion time which is assumed to follow an exponential distribution. Note

that the Gillespie simulator also considers the reaction time to be a random variable

following the exponential distribution.

In [70], we have shown that the mean of the reaction time (TR1) is actually equal to

the time reported by the rate equation based model. Hence, denoting the rate of reaction

R1 by kR1 , we have:

TR1 =
1

n1n2kR1

Hence the probability of reaction can also be computed if one does not know the activation

energy for any specific reaction but the rate constant is known.

As before, reactions involving multiple copies of any molecule type can be repre-

sented by a cascade of elementary reactions of the above types.
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6.2.2.3 Reversible Reactions

The Gillespie simulator considers reversible reactions as two separate reactions.

This increases the complexity of the system as more number of reactions need to be

handled. Also, in our Markov Chain based model, a reversible reaction will involve a

double edge between any two nodes making the MFPT computations difficult. Hence we

can approximately characterize reversible reactions using a simple birth-death model as

shown in Fig 6.2.

a

b

Si Sj

Si Sj

peff

Figure 6.2. A simple birth-death model for reversible reactions.

Let us denote the forward and backward transition probabilities between any two

states Si and Sj by a and b respectively. We need to compute the effective probabil-

ity that the reaction proceeds in the forward direction denoted by Peff such that the

double edge can be replaced by a single edge driving the reaction in the forward direc-

tion with probability Peff . However, the time for the forward reaction still remains the
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same and can be computed as above. The computation of Peff will be different for the

monomolecular and bimolecular reaction scenarios. In general, Peff can be expressed by:

Peff = P (Si)× a− P (Sj)× b

where, P (Si) and P (Sj) are the probabilities of being in states Si and Sj respectively.

However, P (Si) and P (Sj) does not simply depend on a and b, but also on the transition

probabilities of edges into and out of nodes Si and Sj making the Peff estimation quite

complicated. In the following, we show two approximate schemes of computing Peff for

monomolecular and bimolecular reactions.

Monomolecular reactions: Consider reversible reactions of type R1, i.e., X1 +X2 ↔
X3. In this case, the probabilities of forward and backward reactions (a and b) can be

computed as discussed before. We approximate Peff as Peff = a− b in such cases. Note

that this approximation assumes that P (Si) ≈ P (Sj) for all the reversible reactions in

the system. While this indeed is a gross simplification of the reversible reaction kinetics,

the results obtained show that it is not overly restrictive. Moreover, when a ≈ b, we

assume that the reversible reaction attains equilibrium and make node Si a sink i.e., no

further state transitions can originate from this node.

Bimolecular reactions: Consider reversible reactions of type R4 as follows:

R4 : X9 + X10 ↔ X11 + X12

Here also we can use the above approximation of P (Si) ≈ P (Sj) and compute Peff =

a − b. However, we can slightly change the collision theory model presented in [70] to

recompute the probabilities of forward and backward reactions (a and b) such that this

approximation is no more required.
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From [70, 71], we compute the collision probability for the forward and backward

reactions as:

pforward
c =

n9n10π(r9 + r10)
2U9,10τ

V

pbackward
c =

n11n12π(r11 + r12)
2U11,12τ

V

where, U9,10 and U11,12 denote the relative velocities between the X9 and X10 molecules

and that between the X11 and X12 molecules respectively. Using the reduced mass m9,10 =

m9m10/(m9 + m10) and m11,12 = m11m12/(m11 + m12) for the forward and backward

reactions respectively and the Maxwell-Boltzmann molecular velocity distribution we

can estimate the total probability of reaction as:

a =
∫ EA11,12

EA9,10

(E − EA9,10)4n9n10π(r9 + r10)
2τ

V kBT
e
− E

kBT ×
√

1

πkBT (m9,10 + m11,12)
dE

=
4n9n10(r9 + r10)

2τ

V

√
π

kBT (m9,10 + m11,12)
[(EA9,10

+ kBT − 1)e
−EA9,10

kBT − (EA11,12 + kBT − 1)e
−EA11,12

kBT ]

b =
∫ ∞

EA11,12

(E − EA11,12)4n11n12π(r11 + r12)
2τ

V kBT
e
− E

kBT ×
√

1

πkBT (m9,10 + m11,12)
dE

=
4n11n12(r11 + r12)

2τ

V

√√√√ πkBT

(m9,10 + m11,12)
e
−EA11,12

kBT

Note that in [70, 71], the integrations ranged from the activation energy of that specific

reaction to infinity as theoretically the colliding molecules can have infinite activation

energy. Also, because we can assume that the forward reaction probability (and equiv-

alently forward reaction rate) is much higher than the backward reaction probability

(or rate), we will have EA9,10 ¿ EA11,12 . The integration range for computing a is kept

between EA9,10 and EA11,12 to ensure that the backward reactions does not occur. Also,

the Maxwell-Boltzmann velocity distribution is normalized with effective reduced mass
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given by (m9,10 +m11,12)/2 such that it can be applied to both the forward and backward

reactions. Hence we can approximate Peff as:

Peff = a + b(1− pbackward
c

pforward
c

)

Note that the second term in the above expression accounts for the number of molecules

creating the forward reaction having activation energy greater than EA11,12 . Also, when

the forward and backward collision probabilities are the same, Peff is equal to a, i.e.,

the adjusted value of the forward reaction probability (with the contribution from the

backward reaction deducted in terms of the activation energy).

6.2.3 Pruning the markov chain

As mentioned before, we will estimate the time taken to reach any node in the

markov chain by using the MFPT. Hence, we consider each node in the chain as a sink

to compute its MFPT. Also, it has to be ensured that every node in the Markov Chain

is able to reach the sink. Otherwise, since these nodes will have an infinite mean first

passage time, calculations done on the Markov Chain will fail. We identify the nodes that

can reach the sink by performing a depth first search from the sink over the incoming

edges, and marking all nodes that are reachable. The nodes that were not marked can

be simply deleted, thus ensuring that all nodes in the Markov Chain can reach a node

in the final state. Next, we normalize the probabilities on all the edges so that on each

node, the sum of the probabilities for all outgoing edges is one as follows:

P new
ij =

Pij∑
edgek

Pik

The probability on each edge equals the number of times that transition was made divided

by the total number of transitions from that node.
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6.2.4 Computing the total probability of reaching a final state

The Markov Chain consists of a set of nodes and a set of transitions or edges

between these nodes. Each edge has a probability associated with it as well as the time

taken to traverse this edge. We define the Psink of a node as the probability that the

system starting in the initial state would reach the sink state before reaching the initial

state again. Following [68] we will use the Markov Chain to calculate the Psink values.

The Psink can be defined conditionally based on the first transition made from the node

as follows:

Psink(nodei) =
∑

transition(i,j)

P (transition(i, j)× Psink(nodei|transition(i, j))

where the sum is over all possible transitions (that are mutually exclusive) from nodei.

The possible transitions from nodei are simply all of the edges leading from nodei, and

the probability of each of these transitions is the Pij values defined previously. This

satisfies the above condition. Psink(nodei|transition(i, j)) is simply the Psink of nodej

which results in the following equations:

Psink(nodei) =
∑

edgeij

PijPsink(nodej),

Psink(nodei) = 1, nodei ∈ sink,

Psink(nodei) = 0, nodei ∈ source

Thus the probability of reaching any node in the chain can be estimated by a simple

recursive procedure that traverses the chain. Note that in the worst case, the chain

becomes a tree, where each node can traverse to M different new nodes (M being the

number of reactions considered). Hence the worst case time complexity of traversing the

chain is O(V +E) ≈ O(E), where V, E are the number of vertices and edges of the chain.

This is because the number of edges is generally greater than the number of vertices

in the chain. In the worst case we might have a tree where E = V − 1. Also, as the
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probability has to be computed for each node in the chain, we have an overall complexity

of O(V E).

6.2.5 Computing the MFPT for reaching the final state

We define the mean first passage time (MFPT) of any node in the chain as the

average time taken to reach that node (considered the sink) from the first node in the

chain. The MFPT is defined conditionally based on the first transition made from any

node:

MFPT (nodei) =
∑

transitionij

P (transition(i, j))×MFPT (nodei|transition(i, j))

where the sum is over all possible transitions from nodei . The MFPT of nodei given

that a transition to nodej was made is the time it took to get from nodei to nodej added

to the MFPT from nodej . This leads to the equation for MFPT as follows:

MFPT (nodei) =
∑

edgeij

Pij(timeij + MFPT (nodej)) (6.2)

where the sum is over all edges leading from nodei. Also, we can define the initial

conditions as follows:

MFPT (nodei) = ∞, nodei /∈ sink

MFPT (nodei) = 0, nodei ∈ sink

Note that time is a random variable, and hence cannot be added as shown in the equations

above. Hence we need to compute the convolution of exponential distributions that has to

replace a simple addition of this random variable. Equivalently, it should be understood

that the MFPT is no longer fixed, but is also a random variable.

We need general expressions for the following two types of convolutions of expo-

nential distributions:
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1. General expression for n+1-fold convolution of exponential variables from an n-fold

convolution for the (timeij + MFPT (nodei)) component of Eqn 6.2:

fn = an
1e
− x

T1 + an
2e
− x

T2 + ... + an
ne
− x

Tn

fn+1 =
T1

T1 − Tn+1

an
1e
− x

T1 +
T2

T2 − Tn+1

an
2e
− x

T2 + ... +
Tn

Tn − Tn+1

an
ne−

x
Tn

− [
T1

T1 − Tn+1

an
1 +

T2

T2 − Tn+1

an
2 + ... +

Tn

Tn − Tn+1

]e
− x

Tn+1

⇒ fn+1 = an+1
1 e

− x
T1 + an+1

2 e
− x

T2 + ... + an+1
n+1e

− x
Tn+1

where, T1, T2, ..., Tn denote the means of the reaction times of each edge of the n-

fold convolution (convolution of the times for n edges gives an n-fold convolution),

and Tn+1 = timeij in the (timeij + MFPT (nodei)) component of Eqn 6.2. While

the above expression gives the general distribution for the n + 1-fold convolution,

the first and second moments can also be generically expressed as follows:

First Moment = F n+1 = an+1
1 (T1)

2 + an+1
2 (T2)

2 + ... + an+1
n+1(Tn+1)

2

Second Moment = Sn+1 = an+1
1 (T1)

3 + an+1
2 (T2)

3 + ... + an+1
n+1(Tn+1)

3

After a few manipulations it can be shown that the first and second moments of

this general distribution reduces to:

F n+1 = T1 + T2 + ... + Tn+1;

Sn+1 = Sn + Tn+1(
n+1∑

i=1

Ti);

S1 = (T1)
2

2. General expression for a convolution between an n-fold convolution (fn) and an

m-fold convolution (gm) for the (
∑

edgeij
) component of Eqn 6.2:

fn ⊗ gm =
m∑

j=1

n∑

i=1

an
i a

m
j (

e
− x

Tn
i − e

− x
Tm

j

1
T m

j
− 1

T n
i

)
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Note that the above expression contains m + n terms in total and the first and

second moments of this general distribution can also be computed in a similar

manner as before.

Moreover, because of the simplified expression for the first moment of the MFPT, we can

use the same expression as in Eqn 6.2 if one is only interested in the mean value of the

MFPT itself. In the next section we report the results based on this mean value of the

MFPT distribution. However, it is also possible to compute the exact MFPT distribution

of each node in the chain.

It should be noted that the above expressions for the general distribution of the

MFPT and corresponding first and second moments were derived assuming Ti 6= Tj, for

all i, j. This will be true for most cases as it is quite unlikely that the mean of the

reaction times are equal (because the mean also depends on the concentration of the

reactant molecules and most states in the chain will have different concentrations of the

particular reactants of the specific reaction). However, in certain cases, the mean reaction

times might be equal and we need to add a small δ to make them different such that the

above reactions remain valid. Consider a 2-fold convolution of exponentially distributed

random variables with means T1 and T2. If T1 = T2, the general distribution takes the

form xe
− x

T1

T1
, and when T1 6= T2, it is of the form (e

− x
T1 −e

− x
T2 )

T1−T2
. However, with δ = T1 − T2,

we can show that

lim
δ→0

(e
− x

T1 − e
− x

T2 )

T1 − T2

=
xe

− x
T1

T1

Hence, smaller the value of δ, the more precise are the results obtained.
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6.2.6 Approximations: reducing complexity at the cost of accuracy

In most cases, it is not possible to derive an analytical solution of the CME. The

following approximation techniques have been proposed to reduce the complexity of the

CME:

1. Langevin approximation (LA) [32]: A useful approximation to the CME is obtained

by assuming that there exists a time step dt such that the following two conditions

are satisfied:

• Changes in the hidden system states that occur during any time interval [t, t+

dt) do not appreciably affect the propensity functions.

• The expected number of occurrences of each reaction in a time interval [t, t+dt)

is much larger than one.

It can be shown that, under both conditions, the dynamic evolution of the hidden

state process is governed by a simpler system of stochastic differential equations

that can be solved by the Monte Carlo estimates.

2. Linear Noise approximation (LNA) [24, 49]: Unfortunately, the LA method does not

allow us to obtain an expression for the joint probability density function (PDF)

of the hidden states. However, by using additional approximations, the hidden

states can be characterized by a multivariate Gaussian PDF that can be solved

numerically (e.g., by the standard Euler method) and is faster than the Monte

Carlo method. However, both the LA and LNA methods require both conditions

(shown above) to be satisfied simultaneously which is not possible in most biological

systems.

3. Poisson approximation (PA) [99]: A better approximation of the HMM is obtained

by employing a time step dt satisfying the first condition, but may not necessar-

ily satisfy the second one. Since reactions that occur during the time interval

[kdt, (k + 1)dt) will not appreciably change the values of the propensity functions,
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these reactions will occur independently of each other. Moreover, the number of

occurrences of the mth reaction during [kdt, (k + 1)dt) is assumed to be a Poisson

random variable.

4. Mean-Field approximation (MFA) [45]: The PA method does not allow us to derive

an expression for the joint PMF of the hidden states. However, it is possible to

approximately characterize the hidden states by a PMF by the dynamic evolution

of the normal Gibbs distribution. This method is superior to the LNA method for

three main reasons:

• It is based on the more accurate Poisson approximation,

• its approximation accuracy does not depend on the cellular volume, and

• it does not require linearization of the underlying propensity functions.

5. Stochastic quasi-equilibrium approximation (SQEA) [46]: Most often, reactions

occur on vastly different time scales e.g., the transcription and translation reactions

are typically slow reactions, whereas dimerization is a fast reaction. This means

that transcription and translation may occur infrequently, whereas, dimerization

may occur numerous times within successive occurrences of slow reactions.

In such cases, the Gillespie algorithm spends most of the time simulating fast

reaction events. It may, however, be less important to know the activity of fast

reactions in detail since the system’s dynamic evolution may be mostly determined

by the activity of the slow reactions. Hence, it is possible to approximate the CME

by one that involves only slow reactions.

In our Markov model formulation, we do not have any hidden states as the chain can

be appropriately characterized by the number of different molecule types present in the

system (denoting the states of the chain), and each state transition is characterized by

the corresponding reaction/docking events. Hence, most of the above techniques are not

directly applicable to this formulation. However, we can employ the SQEA approach to
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substantially simplify the markov chain (with lesser number of states) making the MFPT

computations faster. In this case, the states of the markov chain will have the same

tuples as before, however the state transitions will only be governed by the slow reactions.

During each state transition, the new state in the chain is computed depending on this

slow reaction and also computing how many fast reactions can occur in that time and

appropriately updating the molecule counts of the reactants in the fast reactions.

In fact this technique has a direct analogy to Gillespie’s tau-leap algorithm, wherein,

we can specify a certain time step ∆t, and compute how many reactions (both fast and

slow) occur within that period. Thus we can compute the next state and the markov

chain will become a 1-dimensional chain thereby greatly reducing the complexity. Also

the memory requirements for storing the Markov chain can be completely removed as

the MFPT can be computed online as the chain progresses in time.

6.3 Results and analysis

6.3.1 Enzyme-Kinetics system

In this section, we present the results for the well known Enzyme Kinetics system

governed by the following three elementary reactions:

E.S → P + E, E + S ↔ E.S

The rate constant for the reversible reaction pair is set at 1s−1 and that for the first

reaction is 0.1s−1.

Figs 6.3-6.5 show the molecular distributions of the product (P ) molecules with

time for different number of enzyme (E) and substrate (S) molecules. Note that it is

possible to report the exact molecular distributions of any molecule type in the system

using our approach. The time axis reports the mean value of the MFPT (which is

also a random variable as discussed earlier). Fig 6.8 compares the dependency of mean
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Figure 6.3. Molecular distribution of P type molecules, with E=10, S=5.
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Figure 6.4. Molecular distribution of P type molecules, with E=10, S=100.
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Figure 6.5. Molecular distribution of P type molecules, with E=1000, S=100.
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Figure 6.6. Probability distribution of P type molecules, with E=10, S=5.
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Figure 6.7. Probability distribution of P type molecules, with E=10, S=100.
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Figure 6.11. Mean to s.d. ratio of P molecules (constant no. of substrates).

number of P type molecules on time with that reported from an exact simulation of the

CME (obtained from Monte Carlo simulation of the differential equations in the system).

Our results compare very well with the exact simulation for low number of molecules

in the system. With large number of enzyme molecules present, the reactions occur

very fast and the markov model formulation being driven in discrete time produces less

accurate results. Nevertheless, it is computationally very fast and allows the study of

more complicated systems (with large number of reactions and molecular types involved).

Figs 6.6-6.7 plots the probability distributions of the product molecules. The dif-

ferent bars at each possible molecular count value of the P type molecules correspond to

the probability of reaching different states (from the initial state) in the Markov model

having that number of P type molecules (and different molecular count values for the

other entities in the system). It is again possible to compute the complete distribution
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(not just the first and second moments) of all the different molecule types in the system

with our formulation.

Fig 6.9 shows the effects of the SQEA (denoted by “quasi approx”) and tau-leap ap-

proximations to our markov model. The reversible reactions are considered fast reactions

in our analysis. As expected, the SQEA approach provides a very accurate approximation

of the mean number of product molecules whereas the tau-leap variation (with ∆t = 10−3

secs) provides the fastest (and most memory efficient) solution at the cost of accuracy.

Figs 6.10-6.11 plot the mean to standard deviation ratio of the molecular distribu-

tion of the product molecules with varying number of substrate and enzyme molecules

respectively. With less number of substrates, the stochastic resonance is quite high in

the system (as the ratio is less than 1). With higher number of substrates, the ratio

saturates at 1.5 implying lesser stochasticity in the system. Also, the stochasticity is

not very much dependent on the number of enzyme molecules in the system as depicted

in Fig 6.11. Thus from these plots we can infer that the stochastic resonance in the

molecular distribution of the product molecules is primarily governed by the number of

substrate molecules in the system.

6.3.2 Transcriptional regulatory system

We next show the results of our model for a simple transcriptional regulatory system

as shown in Fig 6.12. Protein M , synthesized by transcription of a gene, dimerizes to the

transcription factor D, which may bind to the gene’s regulatory region at two binding

sites, R1 and R2. Binding of D at R1 activates transcription of M . However, binding of

D at R2 excludes the RNA polymerase from binding at the gene’s promoter and in this

case transcription is repressed. Table 6.1 presents the terminology used for the different

components of this example system, whereas Table 6.2 shows the list of reactions involved

along with their respective rate constants [45].
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Figure 6.12. A simple transcriptional regulatory system.

Table 6.1. Terminology for the Transcriptional Regulatory System

M Protein (monomer)

D Transcription factor (dimer)

RNA mRNA

DNA DNA template free of dimers

DNA.D DNA template bound at R1

DNA.2D DNA template bound at R1 and R2

In this system as well, we find very good agreement between the exact simulation

results with that from our model. In both the example systems, the reversible reactions

used the Peff = a−b approximation for both monomolecular and bimolecular reactions as

discussed before. Thus, for reaction-pairs {5, 6} {7, 8} and {9, 10} we choose the forward

reactions as 6, 7 and 10 respectively and drive the Markov Chain formulation accordingly.

The accuracy of our system suffers from this approximation (hence the difference from

the exact simulation results).

It should be noted that these results were generated for a low number of the differ-

ent molecule types in the system. As the number of molecules increase, the MFPT based

results are further off from the exact simulation results because of the approximations.

Thus, our model allows for a computationally efficient implementation of a complex bio-
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Table 6.2. Reactions Associated with the Transcriptional Regulatory System

Reaction Rate Constant

1 RNA → RNA + M 0.043s−1

2 M → ∅ 0.0007s−1

3 DNA.D → RNA + DNA.D 0.0715s−1

4 RNA → ∅ 0.0039s−1

5 DNA + D → DNA.D 0.02s−1

6 DNA.D → DNA + D 0.4791s−1

7 DNA.D + D → DNA.2D 0.002s−1

8 DNA.2D → DNA.D + D 0.8765× 10−11s−1

9 M + M → D 0.083s−1

10 D → M + M 0.5s−1

chemical system simulation which can give accurate results when the number of molecules

of the components in the system are small. It also allows us to reduce the computational

overheads appreciably by using many graph-theoretic techniques as we discuss later.

6.4 Discussion

Here we make some comments regarding both the differential equation based and

our discrete random process based approach for biological system modeling. The former

approach is usually used to model the variations of the concentrations of biomolecules,

where the latter models the variations of the number of biomolecules. As for any research

problem for which there are a variety of feasible solutions, each of these approaches has

its own pros and cons. For example, when the number of biomolecules is extremely large,

it may not even be practical to use our discrete random process-based model because of

the following reasons:
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Figure 6.13. Mean number of monomers: Exact Simulation Vs Our Model.
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Figure 6.14. Mean number of dimers: Exact Simulation Vs Our Model.
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Figure 6.15. Mean number of mRNA transcripts: Exact Simulation Vs Our Model.

1. the number of possible candidate states of a molecular entity, X(t) ∈ {0, 1, ...,the

maximum number of molecules}, could be too huge to handle; and

2. if a discretization strategy is used, then accuracy of the model could be compro-

mised.

No matter which model is used, some of the parameters (e.g., kinetic parameters for

the differential equation based models) need to be estimated and the estimates have

to be consistent with the reality as much as possible. The parametric models we have

introduced for biochemical reactions and docking (shown in the appendix) can estimate

these parameters theoretically and can be used once we have sufficient fidelity in these

models. However, the Markov model based approach presented in this chapter will work

for both cases i.e., by estimating the kinetic parameters through controlled experiments

or by using the parametric models.
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6.5 Summary and future directions

We have introduced a Markov Chain based analysis technique as an alternative for

complex biological process modeling. The main idea of this modeling is to transform

the biological processes from a continuous deterministic process to a discrete random

process. Because of its simplicity in comparison to solving numerically a large number of

differential equations, our framework reduces the computational overhead and increases

scalability considerably. We are currently working on a complex pathway model with

many molecular types and with large number of molecules of each type to estimate the

computational complexity. The main benefit of this analysis is to analyze the stochasticity

of many reactions occurring together. Current experimental methods are not able to

capture this measurement at a molecular level without special set-up.

The challenge in the model proposed here is the optimization of memory and com-

putational speed of DFS and MFPT algorithms. Note that each node in the Markov

Chain has an out-degree of M , where M is the number of reactions/docking considered

in the system. The storage of an arbitrary graph with a large number of nodes and

out-degree will have memory problems. It is also imperative to find appropriate simpli-

fications and data structures to speed up the process. Can the chain be converted into a

tree structure by eliminating/adding pseudo nodes/edges ? This will allow us to traverse

the chain (during DFS or MFPT computations) in O(logMV ) time. We have already

stated that the tau-leap approximation on the chain reduces it to a 1-dimensional chain

and the MFPT computations can be performed online. Also, can the tree structure be

converted into a trie wherein the chain is compressed optimally thereby reducing the

memory overheads ?

The complete cell model by this analysis may not be feasible due to the large

number of molecules in the cell, but we expect that many complex biological systems
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can be modeled by this technique. The event statistics thus derived can be used for a

discrete event based cell simulation.



CHAPTER 7

CONCLUSION

In this dissertation, we have presented a discrete-event based framework for stochas-

tic modeling and simulating the dynamics of complex biological systems. We have de-

veloped stochastic models for a few basic biological events (e.g., molecular transport,

biochemical reactions, protein-DNA binding and protein-ligand docking) that form the

building blocks for the simulator. We also explained a simple biological system, i.e., the

two-component PhoPQ signal transduction system in Salmonella typhimurium to explain

the simulation technique and how our stochastic event models fit into the bigger picture.

While the models presented here can approximately capture most of the important bio-

logical events inside a cell, many other models are required to realize our endeavor of a

complete cell simulation. Some of these are as follows:

• Gene expression duration: This model should compute the total time taken for

the gene transcription and translation processes. It will play an important role in

the quantifying the burstiness in mRNA production and protein generation. Some

preliminary works on this can be found in [90].

• Molecular/ionic mobility in a cell: While we have modeled the basic molecular/ionic

transport mechanisms (simple diffusion processes) in this thesis, some other trans-

port mechanisms have not been covered. These include transport mechanisms using

the active/passive pump system. Also, we have used the Maxwell Boltzmann dis-

tribution to model the macromolecular velocity distribution in the cell. However,

its applicability outside the cell cytoplasm (e.g., nucleus or membrane) requires

further research.

175
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• Transport vesicles: In a very general sense, a transport vesicle could be any vesi-

cle that transports material around the cell. More specifically, transport vesicles

usually refer to those vesicles that transport material from the Endoplasmic Retic-

ulum to the Golgi apparatus or from one part of the Golgi to another. Some work

is required to analytically model this process.

• Protein folding duration: A lot of research has been done to study the protein

folding mechanism as it determines whether a protein is correctly formed. These

works are mostly based on molecular dynamic simulation and we need analytical

models to consider the protein folding event in the simulation. As of now, we are

simply assigning a certain probability to the correct formation of the protein, but

certainly more detailed analysis is required of this important biological event.

• Protein life time duration: The protein decay event has been captured in our sim-

ulation by an exponentially distribute random variable computed from the protein

decay rate (which is experimentally measured). However, analytical models ex-

plaining the protein decay process should be able to predict the protein decay rate

in the absence of such experimental results.

Also, the individual models presented here can also be improved in terms of accuracy

and computational speed. Our goal, however, was to present some simple models for

the most important biological processes that enables us to complete the discrete-event

simulator as a proof of concept.

We have also presented a markov-chain based biochemical system simulator that

is less efficient than the discrete-event based simulator in terms of accuracy, but has the

potential of providing higher scalability. Further work is required to analyze the accuracy

and effectiveness of this simulator for larger biochemical systems. Once we build sufficient

fidelity into this simulator, we can start several graph theoretic optimization techniques

to improve its scalability and memory usage.
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