
RESOURCE ADAPTIVE AGENT

BASED FAULT TOLERANT

ARCHITECTURE

by

SHREYAS K SHETTY

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

AUGUST 2007

Copyright © by Shreyas K Shetty 2007

All Rights Reserved

iii

ACKNOWLEDGEMENTS

I would like to extend my gratitude to my advisor, Dr. Mohan Kumar, for giving

me an opportunity to work on this challenging research topic and providing me the right

guidance and support through the course of this research. I am grateful to Dr. Ramez

Elamsri and Dr. Jeff Lei for serving on my thesis committee.

I am very grateful to my parents and family who have been a constant source of

inspiration during my entire academic career. I would like to thank Sukruth and Prathiba

for their invaluable help and advice all the way.

July 20, 2007

iv

ABSTRACT

RESOURCE ADAPTIVE AGENT

BASED FAULT TOLERANT

ARCHITECTURE

Publication No. ______

Shreyas Shetty, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Mohan Kumar

Pervasive environment consists of increasing number of mobile, tiny and

heterogeneous devices communicating through interconnected network. As ubiquitous

computing has seeped into various aspects of everyday life, there has been an increasing

demand for dependable systems. However providing reliability demands fault tolerance

mechanisms that require substantial time and resources. The dynamic nature and the

uncertainty associated with pervasive systems coupled with the energy constraints of

the devices involved makes fault tolerance a challenging task. In general, the

techniques used to provide fault-tolerance are based on having redundancy and

v

duplication of the user tasks. However the additional cost and the low resource

availability will prohibit implementation of such fault tolerance methodologies for a

pervasive environment [17]. The traditional fault detection and recovery techniques

need to be modified to make it applicable in a pervasive environment [16].

Pervasive Information Community Organization (PICO) [20] is a framework

consisting of software agents, called delegents that perform services on behalf of users

and devices. In the PICO framework computing community of collaborating delegents

is formed to carry out application-specific services. PerSON (Service Overlay Network

for Pervasive Environments) [23] provides the service overlay network for the

implementation of the community computing concept introduced in PICO. PerSON

uses the device model proposed in PICO and provides an overlay network which

abstracts the details of service creation, discovery and utilization in a pervasive

environment. In this thesis we have developed a Resource Adaptive Agent System

(RAAS) which is integrated with PerSON to enhance and facilitate the services

provided by PerSON. To deal with the dynamic nature and make best use of resources

available in a pervasive environment, RAAS adds features like fault tolerance,

checkpointing and resource aware distribution of user requests to PerSON. RAAS not

only provides reactive measures to failures, but also proactively deals with the probable

future failures and if required performs reassignment of user task from the recently

saved checkpoint.

Demonstration applications that perform data intensive tasks have been

developed and tested on RAAS. For a set of tasks, energy savings of about 40% was

vi

achieved by adding the resource adaptiveness feature to PerSON. The energy savings

achieved is proportional to the size of tasks and is subject to the devices available in the

environment.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF FIGURES ... x

LIST OF TABLES... xi

Chapter

1. INTRODUCTION……………………………………………………….. ... 1

1.1 Motivation…………………………………………………………... 2

1.2 Contributions………………………………………………………... 3

1.3 Organization…………………………………………………….…... 3

2. BACKGROUND…………………... 4

2.1 Pervasive Computing .. 4

2.1.1 History……. ... 6

2.2 Challenges in Pervasive Systems.. 8

2.2.1 Device and Network Heterogeneity…….................................. 8

2.2.2 Device Mobility .. 9

2.2.3 Scalability…. .. 9

2.2.4 Adaptation…... 9

2.3 Classification of Faults and Failures... 10

viii

2.3.1 Types of failures errors and faults ……. 10

2.4 Agent Based Architecture in Pervasive Systems …………….. 12

2.4.1 Agents… …….. 13

2.4.2 Characteristics of an agent.. 14

2.5 Fault Tolerance in Pervasive Computing ………............................... 15

2.5.1 Fault Tolerance in PerSON .. 17

3. PICO AND PerSON …..…………………………………………………… 20

3.1 PICO ……………………………………………………………… .. 20

3.2 PerSON ………………. ... 23

3.2.1 Network Layer ... 25

3.2.1 Device Layer .. 25

3.2.1 Service Layer ... 27

4. RAAS SYSTEM MODEL AND ALGORITHMS …………………………. 30

4.1 Resource Model …………………………………………………… . 30

4.2 Byzantine Failure Model ……..…….……………............................. 32

4.3 Algorithms ……..…….……………. ... 33

4.3.1 Agent Election Algorithm... 34

4.3.2 Service Request Algorithm... 35

4.3.3 Agent Service Algorithm.. 36

4.3.4 Reassign Manager Algorithm... 38

5. ARCHITECTURE OF RAAS... 42

5.1 RAAS Architecture... 42

ix

5.1.1 Agent Manager ... 47

5.1.2 Agent Communicator.. 47

5.1.3 Service Manager ... 48

5.1.4 Agent Task Manager... 48

5.1.5 Reassign Manager... 50

5.1.6 Device Manager.. 50

6. RESULTS………………….. 54

6.1 Device Specifications.. 54

6.2 Overhead due to RAAS ………. .. 55

6.2.1 Observations ... 57

6.3 Resource Adaptiveness of RAAS ……. ... 58

6.3.1 Observations ... 62

6.4 Fault Resilience of RAAS …….. 64

6.4.1 Observations ... 66

6.5 Checkpointing feature of RAAS …….. 67

6.5.1 Observations ... 68

7. CONCLUSIONS AND FUTURE WORK……………………………….... 70

REFERENCES……………………………..….. ……. ….. ……… …….. . …….. 71

BIOGRAPHICAL INFORMATION …………… ………………………….. ……. 76

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Key Players in Computing Environment .. 5

2.2 Behavioral Faults... 11

3.1 PICO Framework Stack over JXTA.. 22

3.2 Abstract Representation of PerSON Architecture... 24

3.3 PerSON Stack.. 25

3.4 Service Connection ... 29

4.1 Abstract Representation of Servicing an Application Service Request 35

5.1 PerSON with RAAS….. 43

5.2 RAAS Architecture ... 46

5.3 User Level Abstract Representation of Service Execution 51

6.1 Remaining Battery Energy in PDA with Time ... 61

6.2 Remaining Battery Energy in Laptop with Time .. 62

6.3 Energy Savings in PDA with Time... 64

xi

LIST OF TABLES

Table Page

2.1 Comparison of PerSON, JXTA, ALASA and Konark.................................... 18

6.1 Time Comparison Results ... 57

6.2 Time Comparison with Resource Adaptation Results 60

6.3 Time Comparison under Faulty Conditions .. 66

6.4 Time Comparison with Checkpointing under Faulty Conditions 68

1

CHAPTER 1

INTRODUCTION

Over the last decade, there has been a dramatic increase in the use of computing

devices and that have become intrinsically involved in our daily life. The tremendous

developments in technologies such as wireless communications, networking, mobile

computing, wearable computers, sensors, smart spaces, middleware, software agents,

and the like has led to the evolution of pervasive computing platforms as natural

successor of mobile computing systems [33] . Pervasive computing aims at creating an

embedded environment of network devices to provide unobtrusive connectivity and

services to users without the user’s explicit awareness [34]. Users in pervasive

computing environments can be mobile and have computing sessions spanned over a

range of heterogeneous devices.

The dynamicity of a pervasive system increases the possibility of failure. A

system is said to be performing correctly if, in response to a certain input, the system

behaves in a manner consistent with a given specification [14]. The same definition will

hold good for the services provided by the system. Fault tolerance is the ability of a

system to perform correctly in the presence of faults [21]. The basic purpose of a fault

tolerant system is to increase the availability and the reliability of the system.

2

1.1 Motivation

The motivation of this thesis stems from a demand for dependable systems with

higher reliability properties in a pervasive environment [16]. Time critical applications

from the field of health care require continuous operation of systems even in the

presence of faults and failures [13]. Having intrinsic resilience to faults and failures

helps in providing transparency to users in a pervasive environment. Ideally, a fault

tolerant system ensures correct system operations in the presence of faults. This

approach typically uses redundancy to detect the components that produce errors and to

take further action. However, redundancy would mean use of extra resources which are

prized commodities in a pervasive environment. So far only few fault-tolerant

techniques have been explored in pervasive computing [15, 18, 32] and these

approaches typically require redundancy in terms of resources and time to detect faults.

Any system model for fault tolerance in a pervasive environment will need to

understand and deal with the challenges posed by ubiquitous systems in terms of the

dynamicity, heterogeneity and resource availability. Another approach to provide

dependable systems is to build reliable systems through thorough testing and debugging

[32]. However, the degree of reliability of a dependable system depends on the

thoroughness of the testing done which is not only difficult for a complex system but

also costly. In addition, a pervasive computing system typically contains heterogeneous

nodes which make testing beforehand very difficult [15].

PerSON , the service overlay network for pervasive environments successfully

manages to abstract the details of connecting and utilizing the services provided in the

3

environment but does not provide any kind of fault tolerance. PerSON also does not

provide any mechanism for resource aware adaptation to dynamic changes and for

service distribution.

1.2 Contributions

The contribution of this thesis includes the development of a resource adaptive

agent system (RAAS) which is integrated with PerSON to enhance its features. RAAS

adopts a resource adaptive approach for task distribution and completely masks the

internal reconfigurations to deal with the faults and failures of the devices, network and

services. RAAS proactively deals with probable future failures and provides reactive

counteraction to dynamic changes in the environment. RAAS also provides provisions

for checkpointing and restarts failed service requests from the last saved checkpoint.

1.3 Organization

The rest of the thesis is organized as follows. Chapter 2 gives a background of

pervasive systems, covers challenges in pervasive computing, agents, classify various

kinds of faults and failures and discuss fault tolerance in pervasive environment. In

Chapter 3, we discuss PICO framework and the architecture of PerSON in detail. In

Chapter 4 we discuss the failure and resource model adopted by RAAS and the various

algorithms implemented in RAAS. In Chapter 5, we present the architecture and

implementation of different aspects of the RAAS. Chapter 6 contains the discussion of

the results. Finally, Chapter 7 draws conclusions and discusses future work.

4

CHAPTER 2

BACKGROUND

In the early 90’s Mark Weiser, who coined the phrase “ubiquitous computing”,

envisioned an environment embedded with advanced electronics, connected and

constantly available for users even when the user was not explicitly aware of the

technology [1]. Transparency of the actual computing and the technologies involved in

computing became the principal goal of pervasive computing [15]. In this chapter, we

first introduce pervasive computing and discuss its history in brief. We then look at the

challenges in pervasive systems and subsequently discuss the various faults and failures

likely to occur in pervasive environments. We then provide a brief discussion about

agent based systems in pervasive environment from fault tolerance point of view.

Finally, we discuss the need for fault tolerant systems and related work in pervasive

systems.

2.1 Pervasive Computing

Pervasive computing is the new trend in computing environments with

information and application services available anytime and anywhere. As Mark Weiser

prophesied pervasive computing is the idea of integrating computers seamlessly into the

world such that these technologies “weave themselves into the fabric of everyday life

until they are indistinguishable from their environment” [1]. Pervasive computing

applications allow users to access information anytime using any kind of devices. The

5

devices in a pervasive environment invariably have high resource constraints and many

a times have to rely on short-range and low-power mobile ad hoc networks to exchange

information. Current computer networks and the Internet are increasingly becoming

heterogeneous and the applications commonly operate across different types of hosts

with different resource capabilities using wired and wireless networks. Pervasive

computing is the ability to extend applications to such heterogeneous devices.

There are five key players in a typical pervasive environment: end users,

application developers, service providers, network operators, and equipment providers

[2]. The relationship between them is as shown in following figure.

Figure 2.1 Key Players in Computing Environment

Pervasive Computing Environment

Equipment
Providers

Network
Operators

Application
Developers

End Users

Service
Providers

6

According to Liu et al. [3] pervasive computing system should have the following

features:

• Pervasive: must be everywhere, with every portal reaching into the same

information base.

• Embedded: live in our world, sensing and affecting the way we live.

• Nomadic or Mobile: allow users and computations to move around freely,

based on their needs and requirements.

• Adaptable: provide flexibility and spontaneity, in response to changes in

user requirements and operating conditions.

• Efficiently powerful: free itself from constraints imposed by bounded

hardware resources, addressing system constraints instead which are

imposed by user demands and available power or communication

bandwidth.

• Intentional: enable people to name and use services and software objects

based on intent.

• Eternal: never shutdown or reboot; must be available all the time.

2.1.1 History

Mark Weiser wrote some of the earliest papers on ubiquitous computing [1, 5,

19], defining ubiquitous computing. Wieser recognized that including computing into

everyday scenarios would require understandings of social, cultural and psychological

phenomena. Weiser was influenced by many fields outside computer science, including

7

philosophy, phenomenology, anthropology, psychology, post-Modernism, sociology of

science and dystopian Philip K. Dick novel Ubik [29]. The computing history has

progressed in terms of four phases of interaction between human and computer [30] as

described below. The first phase was that of mainframes, where one machine was

shared among many human users. The second phase, known as personal computing,

saw one on one interaction between computer and human user. The third phase is that of

internet computing where one user accesses and utilizes the services hosted on a world-

wide network. The fourth and current phase is ubiquitous or pervasive computing, in

which many devices will serve many people in a personalized way on a global network

[30]. Currently, the state of art is not as mature as Weiser hoped, but research in

pervasive computing is very much ongoing and considerable amount of development is

taking place.

Mahadev Satyanarayanan in his paper, “Pervasive Computing: Vision and

Challenges” [4], identifies four new research areas brought about by pervasive

computing; effective use of smart spaces, invisibility, localized scalability, and masking

uneven conditioning. In the paper, Satyanarayanan points out that a smart space is

brought about by embedding computing capabilities in building infrastructure which

brings together two different worlds, enabling sensing and control of one world by the

other. He adds that, in practice, the ideal proposed by Weiser [1] of complete

disappearance of pervasive computing technology from a user’s consciousness or in

other words total invisibility might not be completely possible and a reasonable

approximation to it will be achieving minimal user distraction. If a pervasive computing

8

environment continuously meets user expectations and rarely presents him with

surprises and allows him to interact almost at a subconscious level would suffice the

goal of achieving transparency. Achieving transparency would require smart spaces to

grow in terms of complexities and also will require increased interactions between a

user’s personal computing space and his surroundings. This has severe bandwidth,

energy and distraction implications for a wireless mobile user. He also mentions that

pervasive computing environment will need development of techniques for masking

uneven conditioning and heterogeneity of environments.

2.2 Challenges in Pervasive Systems

Pervasive computing characteristically allows users, machines, data,

applications, and physical spaces to interact seamlessly with one another. The idea of

realizing seamless interaction faces a number of challenges with the existing

technologies.

2.2.1 Device and Network Heterogeneity

A pervasive computing environment may consist of wide variety of devices

such as wired devices, wireless devices, handheld devices, sensors operating in different

network technologies. Each of these devices will be required to interact with each other

despite the differences in hardware and software specifications and capabilities of

heterogeneous networks. This will require an infrastructure or middleware which will

manage the integration of the devices into a coherent system and will allow arbitrary

device interactions. Due to the complexity arising from the interaction of ubiquitous

9

services in a heterogeneous environment, probability of faults and occurrence of failures

increases.

2.2.2 Device Mobility

The device mobility primarily results in the need for maintenance of

connections between areas of differing network connectivity and different network

technologies and also puts a need for handling network disconnections.

2.2.3 Scalability

Scalability poses a challenge for any computing environment. As smart spaces

grow in sophistication, the intensity of interactions between a user’s personal

computing space and its surroundings increases which will have severe bandwidth,

energy and distraction implications for a wireless mobile user. But scalability is a

blessing in disguise when we consider fault tolerant techniques. The probability of

successful execution of a service increases with the increase in the number of

participating devices.

2.2.4 Adaptation

Adaptation is required in order to overcome the intrinsically dynamic nature of

pervasive computing. With time, mobility of users, changes in devices and revisions of

software components can occur, leading to changes in the physical and virtual

environments of these entities. There will be dynamic changes in the resources available

and the pervasive computing infrastructure should be able to handle and exploit such

dynamism.

10

2.3 Classification of Faults and Failures

The basic purpose of a fault tolerant system is to increase the availability and

the reliability of the system. Reliability of a system is defined as the probability with

which the system will perform correctly up to a given point of time [11]. Availability is

defined as the probability that a system is operational at a given point of time [11]. A

fault tolerant system should be resilient to various kinds of faults and should be able to

function in spite of these faults. We will first classify different kind of faults and

failures.

2.3.1. Types of failures errors and faults

In general, whenever a service does not behave in the manner specified, a

service failure is said to have occurred [14]. The cause of this failure is called error. The

error itself is the result of a defect or fault in the system or the service [21]. We can

categorize faults in different ways as follows.

Faults can be classified as transient or permanent based on the duration for

which the fault occurs. But in our service oriented architecture we are looking at the

execution of an individual service request at that instance of time with a time bound,

and hence we will deal with both these faults in a similar way. We identify them as a

permanent fault for that service request and deal with that fault.

Based on the behavior of the failed component we can classify the fault as

omission faults, timing faults and arbitrary faults [22]. The classification is as shown in

fig 3.1.

11

Figure 3.1 Behavioral Faults

2.3.1.1 Omission Faults

Based on the failure of service or the communication channel, there are two

kinds of omission failures.

i) Service Omission Failures

Service failure is a norm in an inherently unreliable pervasive computing

environment, making service failure the chief omission failure. A service crash or a

device crash on which the service is executing can be classified under service omission

failures. In a pervasive environment we can encounter service omission failures for

various reasons like mobile device moving out of the network range, complete drainage

of battery power of the device and so on.

ii) Communication Omission Failures

Behavioral Faults

Omission
Faults

Timing
Faults

Arbitrary
Faults

12

A pervasive computing environment consists of heterogeneous devices which

can be wired as well as wireless. In wireless networks, messages sent between devices

can be lost because of the unreliability associated with these types of networks. The loss

of messages is known as communication omission failure.

2.3.1.2 Timing Faults

A timing fault occurs when a process or service result is not delivered within the

specified time interval. Timing requirement is particularly relevant to critical services

executing in the pervasive environment. For example when we consider an accident

situation, there is a time bound within which the emergency service has to be contacted

and failure to do so results in timing fault.

2.3.1.3 Arbitrary Faults

Arbitrary or Byzantine fault is a fault in which a computing entity does not stop

running but the entity does not operate correctly or provides false result [24]. An

arbitrary fault of a service is one in which the service arbitrarily omits intended

processing or maliciously takes unintended processing steps. Byzantine failures results

in service maliciously returning incorrect results making it very hard to detect.

Dealing with different types of faults and failures in a pervasive environment

will require an intelligent system that is flexible and will respond in timely fashion to

environmental changes. These features can be provided using an agent based system.

2.4 Agent Based Architecture in Pervasive Systems

Computer systems are no longer stand alone, but are interconnected to form

distributed and concurrent systems. As the computing requirements have grown, the

13

complexities of the tasks that we are capable of automating and delegating to computing

systems have steadily grown. With this trend, our programming abstractions have

progressed from machine code, machine independent languages and then objects to the

current agent based abstractions [31]. The idea and the significance of agent based

systems in ubiquitous computing solicit from the challenges posed by the intrinsic

nature of pervasive systems. One major challenge in making pervasive computing a

reality is the ability to access large amount of distributed information sources and

services in a heterogeneous environment and to respond dynamically to changing

circumstances. To deal with the challenge, we need the services of intelligent assistants,

also known as intelligent agents [2].

2.4.1 Agents

There are many existing definitions of agents in the literature. However, an

increasing number of researchers find the following characterization useful [14]: An

agent is an encapsulated computer system which is situated in some environment and is

capable of flexible, autonomous action in that environment in order to meet its design

objectives. A software agent is a piece of software that autonomously acts to perform

tasks on user’s behalf [3]. In an agent based design, the user only needs to specify a

high-level goal instead of issuing explicit instructions, leaving the how and when

decisions to the agent. A software agent has various features that make it different from

other traditional components such as autonomy, goal-oriented, collaborative, flexible

and mobile [3].

14

In a distributed agent framework, we conceptualize a dynamic community of

agents, which invariably need to interact with one another in order to manage their

inter-dependencies. These interactions involve agents cooperating, negotiating and

coordinating with one another. A distributed agent framework allows the construction

of systems that are flexible and adaptable to available resources within the context.

The significance of agents in pervasive computing is recognized and highlighted

in [10] as follows “An important next step for pervasive computing is the integration of

intelligent agents that employ knowledge and reasoning to understand the local context

and share this information to support intelligent applications and interfaces”.

2.4.2 Characteristics of an agent

The basic characteristics of an agent in pervasive computing systems are:

• Autonomous: Agents are self starting; independent entities which should

ideally incorporate all fault tolerance measures within themselves and do

not report exceptions or failures to higher level such as user applications.

• Adaptive: Agents must be able to change its behavior to be able to reach

its goal in dynamically changing pervasive environment. As agents are

situated in the environment itself, it can monitor the environment and

respond quickly to changes. Agents should proactively react and adapt to

changing circumstances to reach its goal.

• Mobile: As the execution environment and the resources available can

change on the fly in a pervasive computing environment, the agents

15

should be able to move around and change its location based on the

requirements

• Interactive: Agents will be acting on behalf of users with different goals

and motivations. To successfully interact, they will require the ability to

cooperate and coordinate with each other.

• Decentralized: Agents intrinsically are decentralized in nature. The

advantages of decentralization are scalability and fault tolerance.

Centralized systems can fail more often because of single point of failure,

but decentralized systems can survive by spreading the load. Also

decentralization allows agents to implement parallel implementation of its

tasks

2.5 Fault Tolerance in Pervasive Computing

The dependence of users on well-designed and well-functioning computer

systems has led to an increasing demand for dependable systems [15]. But achieving

expected levels of reliability, in an environment of heterogeneous and mobile devices,

which is common in a pervasive environment, is a challenge [21]. Designing for

reliability requires devoting substantial time and resources. The dynamic nature and the

unreliability associated with pervasive systems coupled with the energy constraints of

the devices involved makes provision for fault tolerance a must in one way but a

difficult and challenging task in another. Also, because of the increased heterogeneity

and interconnection of diverse wireless networks, the end-to-end performance has

16

become even more dependent on the weakest links and components [11]. Fault

tolerance issues have not been well explored so far in pervasive computing. Although

the general principles of fault tolerance can be applied to pervasive systems, several

important and additional constraints, including user mobility, network reliability, user

location, energy constraints and user density require that new design and models must

be considered. Even though the fault tolerance can be achieved by adding high

redundancy such as duplication of tasks, however, the additional cost and the low

resource specifications will prohibit such fault tolerance in practice [17]. In [16],

Banavar et al. points out that traditional fault detection and recovery techniques would

need to be modified to be applicable for pervasive computing.

In [12] Edwards and Grinter articulated seven challenges facing

ubiquitous computing in home, ranging from technological to social. One of the

challenges pointed is reliability and fault tolerance. Edwards and Grinter point out

reasons for unreliability in computing systems which does not exist in traditional

domestic technologies such as television, telephones as follows:

• Differences in development culture

• Differences in technological approaches

• Differences in technological advances and limitations

• Differences in expectations of the market

Bohn et al. [19] discuss dependability requirements of pervasive computing in a

healthcare environment. They mention that introducing technical equipment into health

17

care areas imposes a high reliability constraint as there is high (possibly life-

threatening) danger of a service failing when needed and stress on the paramount

importance of fault tolerance in ubiquitous computing. In [20] Falvin Cristian mentions

that there are a growing number of user communities for whom the cost of

unpredictable, potentially hazardous failures or system service unavailability can be

very costly. To minimize losses due to unpredictable failure behavior, these users will

have to depend on fault tolerant systems.

2.5.1 Fault Tolerance in PerSON

When we compare the PerSON framework with other existing frameworks, we

find that PerSON shares many common features but also carries a lot of advantages

over them. Table 2.1 provides the summary of the features of PerSON compared with

the existing frameworks.

18

Table 2.1 Comparison of PerSON, JXTA, ALASA and Konark [23]

Feature PerSON JXTA ALASA Konark

Support for
resource
constrained
devices

Yes. Uses
binary
messages and
is light-weight

Partial support. Uses
XML messages for
JXTA and binary
messages for JXME

No support.
Uses XML
messages.

No support. Uses
XML messages

Support for
heterogeneous
network

Supports
TCP/IP and
Bluetooth
networks

Current
implementation
supports only TCP/IP
networks.
Supports different
message transport
binding

Relies on
underlying
P2P
network

No support.
Depends on IP
multicasting

Support for
multiple network
interfaces

Yes. Yes No No

Support for
dynamic
networks

Yes Yes Yes Yes

Service
discovery

Highly
Decentralized
Only reactive.

Uses distributed
service indices.
Reactive and
proactive

Uses
distributed
service
directories
Only
reactive

Highly
decentralized
Reactive and
proactive

Service
description

Simple Text XML XML XML

Support for
service
composition

Yes No Yes No

Platform
Independence

Yes Yes Yes Yes

Scalability Locally
scalability

Internet Scalability Internet
Scalability

Depends on the
scalability of IP
multicasting

But PerSON does not provide any kind of fault tolerance and does not provide

mechanism for adaptation and service distribution based on the resource constraints.

When we consider a fault tolerant system model, we also need to find answers

for the following challenges pointed in [16]:

19

• Cannot expect to get services from a particular device for a long span of

time.

• Multiple devices may concurrently request service from one specific

resource.

• The devices in a pervasive environment are themselves suffering from a

number of limitations [4] to date, which includes but not limited to

inadequate processing capability, restricted battery life, limited memory

space, slow expensive connections, frequent line disconnections.

• Service discovery just lets you know how to find the resource but does not

deal with resourceful distribution of tasks

To confront the challenges related to fault tolerance in pervasive environment in

general and specifically for facilitating and enhancing services provided by PerSON, we

have developed a resource adaptive agent system (RAAS) for PerSON.

20

CHAPTER 3

PICO AND PerSON

The resource adaptive agent system (RAAS) proposed in this thesis is

embedded into PerSON for enhancing its features. In this chapter we first present the

details of PICO framework which is implemented using the service overlay network

provided by PerSON. Then we look at the architecture of PerSON in detail.

3.1 PICO

PICO [20] is a framework for pervasive computing developed at the University

of Texas at Arlington's pervasive computing research lab. The goal of the project is

creation of a framework consisting of dynamic communities of software entities which

are goal oriented and collaborate with each other to perform services on the behalf of

users and devices. Devices, delegents and communities are the different components of

PICO and each one of them is discussed in detail.

In the PICO framework, a device C in the pervasive computing environment is

represented by <Cid, Ch, F>. Here Cid represents the unique identifier of the device

whereas Ch is the set of system characteristics and F is the set of functionalities

provided by the device. For example, if we consider a mobile device such as a PDA, the

system characteristics will include the operating system, processor type, memory

21

battery, wireless card and so on. The PDA can provide functionalities of communication

and computing services for a user.

A delegent is a software entity that provides services on behalf of the device. A

delegent D is represented by <Did, Fd> where Did is the unique identifier of the delegent

and Fd represents the functional description of the delegent. The functional description

includes the set of program modules, the rules which controls the behavior of the

delegent and the goals of the delegent. For example, a delegent associated with a street

lamp may include the program modules for capturing images and detecting events such

as an accident. The rules may specify the protocol for state transition and

communication. The goal of the delegent is to survey the coverage area.

A community will consist of one or more delegents interacting with each other

to accomplish the common goal. The delegent may reside on the same device or

different devices and the community may be formed statically or dynamically defined

by the rules specified in the delegent.

The PICO framework stack is implemented over the Java reference

implementation of JXTA (Figure 3.1). HTTP and TCP message transport bindings are

supported by the reference implementation of JXTA. The implementation of the PICO

framework over JXTA and prototype for the enhanced response system is described in

[6].

22

Figure 3.1 PICO Framework Stack over JXTA

A default peer group is created when the first device layer in the community is

started. Any other device in the local network which starts after the instantiation of the

first peer group will search for the existing peer group and joins the group. After

creating a new group or joining an existing group, the device layer searches for the

available rendezvous service on the local network. The device layer gets connected to

the other devices through the service layer which enables the communication through

message exchanges between the devices. The received messages are processed by a

message handler of the respective device. The messages intended for the services are

passed to the delegent layer’s message handler.

The service layer helps the device layer to create and publish services. In order

to create a service, the service layer creates and publishes an advertisement for the

service. The service layer also creates an input pipe and listens for any incoming service

requests. When the service request is received by the service layer from other peers,

service layer accepts the connection and creates an input pipe and an output pipe and

Hardware

TCP / IP
HTTP

JXTA

Device
Service

DelegentPICO
FRAMEWORK

23

returns them to the device layer. The device layer uses the pipes for further

communication.

A service or an application is created by implementing the interface provided

by the delegent layer. When a service is started, the service will request the device

layer to create a service with the specified name. The service also specifies the

message handler to be invoked whenever a message is received. When an application

needs to find a service on the network, the application will call the service layer to

look for the service. Upon shutdown, services enter the exit state, which breaks the

infinite execution of the state machine and requests the device layer to close the

service. The device layer closes all the open pipes and requests the service layer to

close the server pipe.

3.2 PerSON

The implementation of PerSON [23] is used to provide the overlay network

for the PICO framework. PerSON is a framework for constructing the service overlay

network that abstracts the underlying network details and provides connections

between applications and services. The framework is not dependent on a specific

development language or operating system. The reference implementation of PerSON

is developed using Java. The J2SE version of PerSON can be executed in powerful

devices like desktops and laptops. The J2ME version can be executed in resource

constrained devices like PDA’s and cell phones. Consider three devices (Figure 3.2)

which are connected in two different physical networks.

24

Figure 3.2 Abstract Representation of PerSON Architecture [23]

Here the laptop and the cell phone are connected via the Bluetooth network

whereas the PDA and the laptop are connected using TCP/IP. In such a scenario the

PDA will never be able to access the services provided by the cell phone. But PerSON

masks the heterogeneity of the networks and enables communication between PDA and

cell phone using the laptop. The details of the underlying network complexity are

hidden by the overlay network. The details of discovering the available services and

establishing the service connections are also abstracted from the applications and

services.

The PerSON stack consists three layers as shown in the following figure.

Bluetooth Wireless LAN

Cell phone

Laptop

PDA

Bluetooth Wireless LAN

PerSON overlay network

Application Service

Application Service

RFCOMM

PerSON

Application

RFCOMM TCP+UDP / IPTCP+UDP / IP

PerSON

Apps/Services Service

PerSON

25

Figure 3.3 PerSON Stack[23]

3.2.1 Network Layer

The primary function of network layer is to abstract the underlying network to

the devices connected to PerSON. The network specific address of the device is masked

by PerSON and the device will be identified by a unique device identifier (DID). The

network connections are made using the available transport protocols on each physical

network. The device layer utilizes the unicast and broadcast functions of the network

layer to exchange messages with the neighboring devices.

3.2.2 Device Layer

The device layer lies on top of the network layer and utilizes the services

provided by the network layer. The device layer takes care of service creation, service

discovery and utilization on behalf of application user service. The device layer

TCP+ UDP
IP

Bluetooth

……Service Connections

Services Applications

Device
Router

Resolver

Discoverer

Network

Device

Service

Network Connections Network Connections

……Local Services

Service Table

Route Table

Device Table

26

manages all the service connections of the device currently active and performs the

multiplexing and de-multiplexing of service connections with respect to the respective

user service. The device layer maintains a device table which is updated with every

incoming message with the physical address of the neighboring device from which the

message is received. The device layer also takes care of choosing the appropriate

network connection to send the outgoing messages.

The two main components of device layer are Discoverer and Resolver.

The basic function of a discoverer is to locate a given service. The services hosted by a

device are registered in the local services. Each service is identified by a unique service

identifier (SID). A new service connection is spawned when the device receives a

service request. The connection is utilized by the service layer to communicate with the

application that requested the service. The discoverer will broadcast a query message to

other devices to find a service and the broadcast message will be restricted in terms of

hop count to limit the scope of discovery.

The resolver processes the query messages received by a device. The resolver

tries to match the requested service in the local registry and if found then a result

message is sent back by the resolver to the device that requested the service. The result

message will contain the SID of the discovered service and the complete route to the

device that hosts the service. The resolver of the service requesting device will process

the result message and the service information is updated in the service table and the

route information is updated in the route table.

27

The third component of a device layer is the router. The router is used only

when the device has access to multiple networks and is willing to act as a bridge

between those networks. When a message received is not intended for the device, the

router forwards the message to the next hop in the route.

3.2.3 Service Layer

Service layer forms the topmost layer of PerSON stack. The service layer

contains the user defined services and applications. New services are created by

utilizing the functions provided by the device layer. The applications in the service layer

request the device layer to discover other services and connect to the required services.

Once a service connection is established by the device layer, an application and a

service can communicate using the connection.

The service creation and service connection instantiation process is described in

figure 3.4. Here we consider two devices, device S and device X where S is hosting a

service and device X runs an application which requires the service from device S. The

service running on S is identified by the SID and the service description and is

registered in the local registry by the device layer. The application on X requests its

device layer to discover the service specified by a simple service description. The query

message is broadcast using the network layer and is propagated by other devices till the

message reaches S. The device S responds back and the response message will include

the SID. A connection request message from device layer of device X which includes a

new connection identifier (CIDS) is sent to S. The request message is received by the

device layer on S, which will create a new service connection and a response message

28

with the new connection identifier (CIDX) is sent back to X. The CIDX is also provided

to the service on device S. Once the device layer on S receives the success message,

CIDS is returned to the application. Once the service connection is created, the

application and the service can exchange the application specific data messages. In the

event of service not accepting incoming connections, an error message is sent. The

connection request is then reinitiated after a timeout interval. A close message is sent to

X, once the application has finished accessing the service.

29

Figure 3.4 Service Connection [23]

PerSON takes care of masking the underlying network technology and

interconnecting the services but does not make any resource aware decisions or provide

other services to deal with any changes which might occur after two services are

connected. To do so we will need an intelligent system on top of PerSON to keep tap on

current environment situation and to make any kind of dynamic reconfigurations and

this brings about the need for agent based system.

Read
Message

(CIDX)

MSG

Send
Message

(CIDX, MSG)
Data Message (CIDS, MSG)

MSG

Close
Connection

(CIDS)
Request Message (CLOSE, CIDX)

Close
Connection

(CIDX)

Accept
Connections

(SID)
Query Message (Service Description)

Result Message (SID, Available Time, Srvc Description) Connect
Service (SID)

Request Message (CONNECT, SID, CIDS)
New

Connection
(CIDX)

Response Message (CIDS, CIDX)

Service
Connection

(CIDS)

Send
Message

(CIDS, MSG)
Data Message (CIDX, MSG)

Create
Service (SID,
Description)

Service
Layer

Device
Layer

Service
Layer

Device
Layer

Device X Device S

30

CHAPTER 4

RAAS SYSTEM MODEL AND ALGORITHMS

This thesis proposes a resource adaptive agent system (RAAS) for providing

fault tolerance features in PerSON. RAAS not only deals with the fault related changes

occurring in pervasive environments but also proactively tries to deal with possible

future failures. As a resource aware component, RAAS tries to distribute the tasks as

efficiently as possible and also facilitates the feature of checkpointing and parallel

distribution of tasks. We will initially discuss the resource model, Byzantine failure

model used by RAAS and then discuss the algorithms used for the implementation of

various aspects of RAAS.

4.1 Resource Model

RAAS models the pervasive network environment as a collection of autonomic

devices which provide services to each other. We use the model proposed in the PICO

[23].

Devices in the overlay network are represented by the tuple C = < Cid,H, F >,

where Cid is the device identifier, H = {h1, h2, .. . , hn} is the set of characteristics of the

device, and F = {f1,f2 …., fm} is the set of functionalities available through the device.

The device identifier is a mechanism to address the device which can include the IP

31

address, MAC address etc. The functionalities or the services are identified by the

service identifier (SID).

The RAAS mainly consists of agent manager service, device manager

service, agent task manager service and reassign manager service. All devices using the

service overlay network provided by PerSON will have the services of RAAS running.

The agent of the overlay network at any particular instance of time will be chosen based

on the device profile value (α) of devices. The device profile value of a device is the

resource capability of the device and is calculated based on residual battery power, CPU

utilization and memory usage at that instance of time [26]. Each of the devices involved

will have a utility value specified in the device specification document. The utility value

will determine the device willingness to provide any service and also plays a role in

calculating the resource capability of the device. One of the most important resources in

a mobile environment is battery life of a device. The time a wireless device remains

usable to the user is constrained by limited battery capacity and thus remaining battery

capacity plays a major role in choosing the device to perform a requested service and

also in getting chosen as the agent. By considering the CPU and the memory value we

ensure the distribution of load on all the available devices. The CPU load and the

memory usage of a device can vary based on the number of jobs being performed by a

device and the nature of those jobs. Assigning new task to a device which is already

performing at its full capacity will not only cause delays in the service execution but

will also affect the rate of the power consumption in the device. If the CPU and the

memory in a battery operated device is utilized at its full capacity for a period of time,

32

the device consumes more power as compared to the consumption over the same time

with lower CPU load [26]. For any service request from a user we elect an agent based

on the α value, which is the device with highest resource capabilities in the overlay

network, at that instance of time. We then assign the user request to the chosen agent.

4.2 Byzantine Failure Model

The agent service will duplicate the high priority service requests from user or

applications based on the availability of the worker devices. The agent service will

implicitly check for Byzantine failures whenever there is a duplication of service. To

detect the Byzantine failures we use the model proposed in [27] and modify it to

implement in our component. The model proposed ensures the detection of these

failures with minimum communication overhead. Here we detect Byzantine failures

with only t +1 replicas instead of the normal 2t + 1 replicas. We use the checkpointing

scheme to further enhance the efficiency of the protocol.

Consider a service request which is replicated in m worker devices denoted

W1,W2, …,Wm. We assume that a worker device is either correct or corrupt, where a

corrupt process is one that might completely halt its execution, or even deviate

arbitrarily from its specification. A process is correct if it is not corrupt. Now let us

assume that the number of corrupt worker devices is bounded by t. Thus, by setting m =

3t + 1, the agent can reach agreement despite t intrusions by running a Byzantine

agreement protocol, such as in [28]. Now in the model, to ensure that a set of workers

includes at least one correct worker, the agent sends the same computation task to t + 1

workers. Here m could be more than t + 1, but for every computation task we only need

33

t + 1 active workers. Once a fault is detected, the total number of workers required to

deal with the failure is 2t+1. Here each checkpoint sent to the agent by the device

manager of the worker device is assigned a unique sequence number. The agent can

identify the corresponding valid checkpoint for each checkpoint interval as follows.

Since we have t + 1 workers running a service request, there is always at least

one correct worker running. If during a checkpoint interval some workers behave in an

observable corrupt manner, then the agent will receive checkpoints different from the

valid checkpoint. If the agent is unable to reach a consensus with a valid checkpoint

from the t different worker devices, the agent will ask up to an additional t workers to

execute the checkpoint interval, leading to a total of 2t+1 workers. As at most t can be

corrupt, at least t + 1 checkpoints reported to the workers will be the same. The agent

will pick this checkpoint as the valid checkpoint and discard the faulty worker devices.

By using the checkpointing mechanism, we will need to restart any task only from the

previous valid checkpoint. The Byzantine failure model is implemented in the agent

task manager and it performs the Byzantine failure analysis as when each checkpoint is

recorded.

4.3 Algorithms

Any application requiring a service will contact the device manager of the

device on which the application is running. The device manager will contact the agent

manager of other devices involved in the overlay network and then run agent election

algorithm before offloading the service request. The device manager then forwards the

service request to the agent and keeps track of the request by running the service request

34

algorithm. The agent service assigns the service request to agent task manager. The

agent task manager takes care of the service request by running agent service algorithm.

The task manager then works with the reassign manager to deal with different kind of

failures.

4.3.1. Agent Election Algorithm

The agent election algorithm is run by the device manager when it receives a

service request from the application running on the device. The device manager chooses

the most resourceful device as the agent to take care of the service request.

Notations:

agentDevProf : the agent device profile object

localDevProf : the instantiation of the singleton device profile
object

tOut : timeout value for receiving current agent message

Procedure agentCommunicator
Begin

localDevValue := localDevProf.getValue ()
t1 := initial timeout value for receiving α values.
Choose agent with the highest α value.
if no device responds before timeout occurs

setCurrentAgent (localDevProf.Device, localDevValue)

else
agentDevValue := agentDevProf.getValue()
if localDevValue > agentDevValue

setCurrentAgent(localDevProf.Device,
localDevValue)

else
setCurrentAgent(agentDevProf.Device,
agentDevValue)

End Proc

35

4.3.2. Service Request Algorithm

Any application which requires a service will just connect to its device manager

service and specify its request details. The device manager forwards the application

request to the agent and awaits further communication from the agent. The device

manager also keeps track of the agent status to reconfigure the request processing in the

event of agent failure. The device manager will also reassign the task in the case of

agent as well as the worker device failures.

Figure 4.1 Abstract Representation of Servicing an Application Service Request

1. Request Service

4. Final Result

2.Find Agent 4. Exchange
and Intermediate

Offload Service Results

Application Device Manager
Service

Agent Service

36

4.3.3. Agent Service Algorithm

Once the agent receives request from any device to process its service request a

request handler called agent task manager will be created and that service request will

Notations:

agentDevProf : the agent device profile object

Reassign Manager : This service will be called to handle failure
of services and devices

Procedure deviceMgrServReqHandler
Begin

agentSID := agentDevProf.getSID ()

connect(agentSID)

Request agent to service the application request

WAIT STATE: Wait for incoming data

if data is from agent

if task is complete

Send the final result to application
else

Store the intermediate result
Update the necessary request specific data
structures
Go back to WAIT STATE

else

Data is received from mobile host; indicating agent
has failed
Call Reassign Manager
Update Agent Status
Go back to WAIT STATE

End Proc

37

be assigned to the handler. The agent task manager will then perform service discovery

and choose the worker devices most suitable to handle the service request. After the

task is distributed, the agent waits for the worker devices to respond with the

intermediate and final results. The agent also looks to duplicate the job based on its

priority and the availability of the worker devices. While the agent waits for the result,

the reassign manager is called upon. In the case of duplication of jobs, the agent also

handles Byzantine failures. Based on the soft deadline target set for the service request,

the agent task manager will trigger service failure event for the reassign manager to take

action if the worker device fails to respond within the deadline time.

38

4.3.4. Reassign Manager Algorithm

The reassign manager works independently based on the Service request object

received from the Agent Service manager or the Device manager. The reassign manager

Notations:

ServiceRequest : the service task object

Reassign Manager : This service will be called to handle failure
of services and devices

workerDevList : The list of worker devices available for that
service

Procedure AgentServReqHandler
Begin

workerDevList = ServiceRequest.find()

if workerDevList == 0
return ERROR “No devices found”

else
Sort the workerDevList based on resource
capabilities

Create ServiceRequestObject based on workerDevList

Assign the ServiceRequestObject to worker Devices
in workerDevList

Based on the job priority and number of devices left
in workerDevList, duplicate the job

Call Reassign Manager with the ServiceRequestObject

Receive the intermediate results from worker devices
and also communicate the same to the Service
Requester Device Manager.

Periodically check the soft deadline of the task to
flag service failure event

Once the request is completed, trigger the Request
Completed event and exit

39

performs a periodic health check on the currently active worker devices based on the

soft deadline set for the respective service request. The reassign manager also takes

proactive measures to guard against potential future failures. For example if the residual

battery power goes below a threshold level, reassign manager will reassign the service

request in the current state to the most eligible device in the worker device list. In the

event of any other kind of failures, be it the device failure discovered by the reassign

manager or a service failure discovered by the agent manager or the network failure, the

reassign manager will perform the reassignment task to restart the failed service request

on some other device.

40

In a pervasive computing environment, as the services leave and join the

network, the availability of specific service cannot be guaranteed over time. In this

chapter we discussed the various algorithms implemented in RAAS to deal with

Notations:

ServiceRequest : the service task object

workerDevList : The list of worker devices available for that
service

thValue : Threshold value for the low battery level

tDeadline : Time deadline for the service request

Procedure ReassignManager
Begin

Based on tDeadline perform periodic health check on
active Worker Devices

if any failure event occurs

if workerDeviceList ! = 0

Check the Worker Device List to choose
the most resourceful unused worker
device
Assign the failed service request in
latest committed checkpoint state to the
chosen worker device
Change the ServiceRequest object
appropriately

else await completion of a active worker device

Assign the failed service request in
latest committed checkpoint state to the
chosen worker device
Change the ServiceRequest object
appropriately

else repeat the above steps till the successful
completion of Service Request

End Proc

41

different types of faults and failures introduced by the dynamicity of the environment.

We also introduced some of the main components of the RAAS which implements the

above algorithms. In the next chapter we discuss the architecture of RAAS.

42

CHAPTER 5

ARCHITECTURE OF RAAS

The resource model and the algorithms discussed in the previous chapter are

implemented in RAAS. We describe the functionalities of services provided by RAAS

in detail in this chapter. The proposed component is embedded into PerSON and

facilitates successful execution of service requests using PerSON, with proactive and

reactive measures against different types of failures.

5.1 RAAS Architecture

Once a service request is received from a user application, the device manager

of the device runs an agent election algorithm involving the agent services of devices in

the network. The device with the maximum resources is elected as the agent. The device

chosen will continue to act as the active agent and will continue to accept new services

until one of the following events occur

• A device with higher capabilities enters the overlay network and is elected

as an agent.

• At any instance, one of the existing devices has more resource capability

than the current agent. This could happen due to slower resource drainage

than the agent.

43

• The device elected as agent has its resources currently tied up due to

active services running on the agent.

Figure 5.1 PerSON with RAAS

The RAAS consists of the following main services:

• Agent Manager: This service performs the high level management of

different functional services of RAAS, running them as and when

required.

TCP+ UDP
IP

Bluetooth

……Service Connections

User Services User Applications

Device
Router

Resolver

Discoverer

Network

Device

Service

Network Connections Network Connections

……Local Services

Service Table

Route Table

Device Table

Device ManagerAgent Services
Agent Services

RAAS

44

• Agent Communicator: Agent Communicator handles the communication

of the device profile of the mobile devices in the network. Agent

Communicator service will be run in all the mobile devices in the overlay

network created by PerSON.

• Service Manager: Service Manager runs on the device which has been

currently chosen as the agent. Service manager will overlook and manage

all tasks and services run by the agent device.

• Agent Task Manager: Agent Task Manager will be created for each task

request received by the agent service manager. The Agent Task Manager

will handle the data structures required to maintain each request and

perform the distribution of the user requests among the various devices.

• Service Discovery Manager: Service Discovery Manager will work with

PerSON to assist Agent Task Manager in identifying the devices available

which are called worker devices. The service discovery manager sorts the

devices based on the resource capabilities to perform the particular task.

• Device Manager: This service will be active for each device involved in

the network. The device manager forms the interface between the user

application and PerSON. The device manager also provides resilience

against a case of agent failure while processing the service request.

• Reassign Manager: Reassign Manager will be called upon by the Agent

Task Manager and Device Manager to perform the reassignment of a

45

specific sub-task or service. This happens when the original device (s)

assigned with the task, fails to do its job successfully.

The architecture of the RAAS is shown in figure 5.2.

46

Figure 5.2 RAAS Architecture

SERVICE
DISCOVERY
MANAGER

REASSIGN
MANAGER

TASK
SPECIFIC-
ATIONS

DEVICE
PROFILE

AGENT TASK
MANAGER

AGENT
COMMUNICATOR AGENT MANAGER

SERVICE
MANAGER

DEVICE
MANAGER

47

In the following section we describe the functionality and the inner workings of

each of the service component of RAAS in detail.

5.1.1 Agent Manager

Agent manager forms the starting point of RAAS which needs to be run on all

the devices desiring to be part of PerSON. The agent manager will start up the Agent

Communicator for the device and periodically query the Agent Profile data structure to

ascertain the current agent in the system. The agent manager will also ensure a negative

response for any service request if the device is running short on resources.

5.1.2 Agent Communicator

The Agent Communicator is primarily responsible for the communication of

device profile value between devices. When “Device Profile” request message is

received, the communicator will return the current resource capability value of the host

device. The agent communicator takes responsibility of finding any particular local

service running on the device and also communicates the Agent Task Manager SID on

request from agent service manager.

The agent communicator exchanges the device profile object which contains the

status of the different resources of the device at that instance of time. At this moment

we are taking battery level, CPU usage, the memory usage and the distance of the

application device from the agent device into consideration for calculating the

capability of the device. It can be easily extended to take other criteria based on the

requirements of that specific network.

48

5.1.3 Service Manager

The service manager will be active when the host device is elected as the agent.

The main task of the service manager is the management of all the tasks and service

requests requested by the device manager on behalf of user applications and user

services. For each task or service request received, the service manager will assign the

task to an agent task manager handler.

The service manager will also provide mechanisms for offloading a

service itself based on the specification of the request received, priority of the request

and the availability of a device to perform the service.

5.1.4 Agent Task Manager

The basic functionality of the agent task manager is to ensure the successful

execution of the task or service assigned to it which is achieved by implementing the

algorithm described in 4.3.3.

When a service is assigned to an Agent Task Manager, the Agent Task Manager

contacts the service discovery manager to get a list of worker devices available to

perform the assigned task. If a task is eligible to be divided into subtasks, the agent task

manager assigns each of the subtasks to available devices; otherwise the agent task

manager just assigns the entire task to the devices returned by the service discovery

manager. The task is assigned to the worker devices based on the resource capability of

the devices. Higher resource capability worker device is chosen first to be assigned with

the user request.

49

The task manager also looks at the task specifications while performing the

assignment of tasks. If the task being assigned has a higher priority, the agent task

manager will try to duplicate the task assignment in different devices based on the

availability. For example if a high priority task is subdivided into task A and B, and if

there are two devices available which are willing to provide service A and one device

willing to provide the service B, then the agent task manager will duplicate the subtask

A on the two available devices.

The actual reassignment of the task to a specific device is done by collaborating

with the device manager of that device. Once the task has been assigned, the agent task

manager will wait for the result for a certain amount of time. The time agent task

manager waits is a function of the soft deadline target specified by the application in the

task specification. The agent task manager then contacts the reassignment manager to

check if there is any kind of failure with the worker devices currently servicing user

request or to check for any potential failure cases and to take proactive measures against

the probable failures.

To support checkpointing, Agent task manager provides mechanisms to store

the intermediate result associated with a subtask. When a device fails, the computation

is restarted from the most recent saved state thus saving time and resources. The agent

task manager also periodically interacts with the device manager of the parent device

which initially requested the service. The agent task manager will replicate the state of

the task-list and the assigned device-list with the associated intermediate results in the

parent device by collaborating with the device manager of the service requester device.

50

This is to ensure that, in the event of agent device failure, the state of the sub task is not

lost completely and providing tolerance against failure of worker devices as well as the

agent. Though we can safely assume here that the parent device will not fail during the

service request but in case of such a failure, the agent task manager provides

mechanism to cache the result for some time to check if the parent device comes up

again before discarding the result completely.

5.1.5 Reassign Manager

The reassign manager implements the algorithm discussed in section 4.3.4 to

provide fault tolerance service to the agent task manager. Once any agent task manager

initiates an interaction, the reassign manager will check the status of the active worker

devices in the device-list of agent task manager. The reassign manager will check the

agent manager of the respective worker devices through heart beat messages to

determine the status of the device. The heart beat message will also carry the current

resource capability profile status enabling the reassign manager to take some pro-active

measures against the probable failure of the device. For example, if the battery level of

any device has gone down below a critical threshold value, the reassign manager will

try to reassign the last saved checkpoint of the task to another device.

5.1.6 Device Manager

The device manager runs on all the devices in the overlay network and forms

communication interface to PerSON for all user applications. The device manager

implements the algorithm described in 4.3.2.

51

Figure 5.3 shows the abstract representation of a user request from the user

device perspective.

Figure 5.3 User Level Abstract Representation of Service Execution

The device manager finds the current agent for the service request by running

the agent election algorithm described in 4.3.1 and queries the service identifier (SID)

of the service manager. The device manager service accepts user requests from the

device, generates the local task id for the service request and spawns a request handler

Device Manager Service Manager

Agent Manager

Reassign Manager

Local Device Agent Device

Application

Agent Task
Manager

Remote Device Remote Device

Device
Manager

Device
Manager

Service Discovery
Manager

52

to deal with the particular request. The device manager communicates with the service

manager of the current agent for the remote execution of the service. The device

manager wraps the user request with the task specification details before sending the

request to the service manager. The request handler of the device manager then offloads

the task to the service manager using its SID and also creates the data structures

required to store the device list and the intermediate checkpoint results of the service

request. The request sent will have details like service SID, the task id, the service

specifications, and other details required by the agent to provide the service.

The device manager periodically collaborates with the agent to save the

intermediary states of the tasks and the device list. The device list consists of device id’s

and service id’s of the devices which has been assigned the service request by the agent.

In the event of failure of the agent, the device manager of the service requester will

communicate directly with the device manager of the respective worker devices in the

device list to continue the execution of the offloaded tasks. In case of further failure of

any device in the device list, the device manager will perform the function of

reassigning the task to some other device with the help of reassign manager. The device

manager of the service requester will pass on the final result to the user application.

The RAAS architecture discussed above facilitates and enhances the features

provided by PerSON. The RAAS primarily consists of agent services, dynamically

collaborating to accomplish fault resilience and increase the dependability of the

system. It uses resource aware techniques in choosing the service provider and also

provides checkpointing facility. RAAS not only deals with failures at application level,

53

but also successfully adapts and deals with the challenges posed by the dynamicity of a

pervasive environment.

54

CHAPTER 6

RESULTS

We look at the performance and experiment results of executing service

requests on PerSON embedded with RAAS in varying conditions.

6.1 Device Specifications

The test bed environment consists of devices varying in capacity in terms of

CPU processing speed, battery energy, memory and heterogeneity in terms of hardware

as well as software.

The resource constrained devices are Sharp Zaurus SL-5500 PDAs. Each of

these PDAs contains an Intel StrongARM processor running at 206MHz. They run

Jeode Personal Profile for Java with 32MB of RAM. Their operating system is the

Qtopia Desktop Environment (QDE) with Linux kernel 2.4.18 (Cacko). Their

communications links used by the PDAs are D-Link Air DCF- 50W compact flash

cards

The first resourceful device is a Dell Inspiron 5150 laptop with a 3.06 GHz,

Pentium 4 Processor and 256 MB RAM. The laptop has a built-in Dell TruMobile

802.11g wireless network card. Its operating system is the Windows XP and has been

installed with JDK 5.0 version of the java virtual machine.

55

The second resourceful device is a IBM ThinkPad with a 1.60 GHz, Pentium M

Processor and 760 MB RAM. The laptop has a built-in Intel® PRO/Wireless 2200BG

Network Connection wireless network card. Its operating system is Windows XP Home

Edition with Service Pack 2 and has been installed with JDK 5.0 version of the java

virtual machine.

The devices in the environment form an ad hoc network and communicate with

each other using the Wi-Fi (802.11b) protocol.

6.2 Overhead due to RAAS

In this experiment we will analyze the worst case performance of RAAS. In this

scenario, we use 2 Laptops where one Laptop provides the MatrixMultiplication service

which is requested by the application running on the other laptop. The

MatrixMultiplication service performs matrix multiplication of square matrices based

on the size and matrices provided to the service. The application requests for

MatrixMultiplication service for square matrices starting from size 40, in increments of

40, up to 520. The experiment measures the time consumed to execute the complete

task set using the PerSON without RAAS and then we conduct the same experiment on

PerSON with RAAS. To simulate the worst case scenario, we have conducted the

experiment under the following constraints:

• There will be no failures of any kind during the whole experiment.

• The required service runs only on the resourceful device i.e. a Laptop.

56

• The agent election algorithm runs with a timeout value of 10 seconds for

choosing the most resourceful agent. As a result of which each execution

will take 10 seconds extra for agent election.

• The agent service creates all the necessary data structures to support check

pointing and failure resilience features though they are never used in the

experiment.

The time required to complete each task is recorded and tabulated in table 5.1.

57

Table 6.1 Time Comparison Results

Matrix Size PerSON w/o RAAS (secs) PerSON with RAAS (secs)

40 2.96 17.308

80 3.274 17.448

120 4.907 18.94

160 7.972 22.125

200 12.948 27.172

240 20.82 34.873

280 30.544 44.557

320 44.244 58.087

360 62.38 76.092

400 83.551 96.321

440 110.939 124.653

480 144.478 160.093

520 186.529 200.521

6.2.1 Observations

Running PerSON with RAAS has an overhead and the difference due to

overhead decreases proportionally with the increase in the size of the data task set.

58

Though the percentage increase in time due to RAAS is negligible when the task size is

large, but there is a significant difference for smaller task set.

To overcome the overhead problem for smaller tasks the application can

choose to bypass the fault resilience feature completely and get the best performance

possible. The application can also change the timeout value for choosing the agent by

setting it to a lower value or by asking RAAS to choose the first agent who responds.

6.3 Resource Adaptiveness of RAAS

In this experiment we validate the resource adaptation feature added by RAAS

to PerSON. We setup a test bed with two resourceful devices i.e. the laptops and one

resource constrained device i.e. the PDA. The application requesting for

MatrixMultiplication service is run on laptop. The service is run on the other laptop and

the PDA. The application requests for matrix multiplication of square matrices starting

from size 40, in increments of 40, up to 520. We measure the time consumed to execute

the complete task set using the PerSON framework without RAAS and then we conduct

the same experiment for PerSON with RAAS. The remaining battery energy on the

PDA and service provider laptop is periodically recorded until the set of tasks is

completed. To test the resource adaptiveness, we have conducted the experiment under

the following constraints:

• There will be no failures of any kind during the whole experiment.

• The required service is running on one resource constrained device i.e. the

PDA and one resourceful device i.e. the Laptop.

59

• The agent election algorithm runs with a timeout of 10 seconds and as

result of which, each execution will take 10 seconds extra.

• The agent service creates all the necessary data structures to support check

pointing and failure resilience features though they are never used in the

experiment.

The time required to complete each of the task set is recorded and tabulated in

table 6.2

60

Table 6.2 Time Comparison with Resource Adaptation Results

Matrix Size PerSON w/o RAAS (secs)

Device Chosen: Laptop (L) or

PDA (P)

PerSON with RAAS (secs)

Device Chosen: Laptop (L) or

PDA (P)

40 3.526 (P) 17.308 (L)

80 3.886 (P) 17.448 (L)

120 5.538 (P) 18.94 (L)

160 8.372 (P) 22.125 (L)

200 13.589 (P) 27.172 (L)

240 19.038 (L) 34.873 (L)

280 33.959 (P) 44.557 (L)

320 43.042 (L) 58.087 (L)

360 60.657 (L) 76.092 (L)

400 84.561 (P) 96.321 (L)

440 110.939 (P) 124.653 (L)

480 143.236 (L) 160.093 (L)

520 186.529 (P) 200.521 (L)

The following plot shows the percentage of remaining battery energy over time

on the PDA when all the tasks are executed with and without RAAS on PerSON.

61

Figure 6.1 Remaining Battery Energy in PDA with Time

The plot in figure 6.2 shows the percentage of remaining battery energy over

time on the Laptop when all the tasks are executed with and without RAAS on PerSON.

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (seconds)

R
em

ai
n

in
g

B
at

te
ry

E
n

er
g

y
(p

er
ce

n
ta

g
e)

PerSON Without Agent
Middlew are (percentage)

PerSON With Agent
Middlew are (percentage)

62

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Time (seconds)

R
em

ai
n

in
g

B
at

te
ry

E
n

er
g

y
(p

er
ce

n
ta

g
e)

PerSON Without Agent
Middlew are (percentage)

PerSON With Agent
Middlew are (percentage)

Figure 6.2 Remaining Battery Energy in Laptop with Time

6.3.1 Observations

The resource adaptive property of the RAAS is clearly highlighted from this

experiment. When we ran the experiment without RAAS, PerSON randomly selected

PDA or the laptop as its service provider while in the second case; RAAS running on

top of PerSON ensured that the higher resourceful device is always chosen as the

service provider. We can also observe that difference in time required to finish the task

has reduced because of the choice of laptop over the PDA. The time difference which

63

remains in executing the service is mainly due to the 10 seconds timeout set for agent

election as discussed in the previous experiment.

Though the laptop was chosen as the service provider, we notice that there is no

difference in battery energy lost when we compare it with the scenario where the laptop

was not chosen as the service provider. We can note from figure 5.2 that the difference

is practically negligible and there is no energy lost.

In the case of the PDA we see a significant difference in the remaining battery

energy at the end of the experiment. The battery energy lost in the second case is

primarily due to the energy dissipated by the PDA during idling. The only other

significant task performed by the PDA during the experiment for second case is

replying for agent service enquiry and the device profile status. As seen from the

following plot, there is a significant energy savings for the PDA at the end of the

experiment. We observe that as the size of the task, the energy savings that can be

achieved using the resource adaptive feature of RAAS also increases. From the plot in

figure 5.3 we see that, the remaining battery energy in PerSON without RAAS is 9%

and with RAAS is nearly 50% which gives battery power savings of about 40% by the

resource adaptiveness feature of RAAS.

64

0

10

20

30

40

50

60

70

80

90

100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00

Time (seconds)

E
n

er
g

y
S

av
in

g
s

(p
er

ce
n

ta
g

e)

Energy Savings w ith
Agent Middlew are in
PerSON

Figure 6.3 Energy Savings in PDA with Time

6.4 Fault Resilience of RAAS

In this experiment we test the fault resilience feature added by RAAS to

PerSON. We setup a test bed with one resourceful device i.e. the laptop and three

resource constrained devices i.e. the PDA’s. One of the PDA’s will run the application

which requests for the MatrixMultiplication service run on the other PDA’s. The

application requests for matrix multiplication of square matrix of size 520.The

experiment measures the time consumed to execute the complete task set using the

65

PerSON framework without RAAS and then we conduct the same experiment on

PerSON with RAAS in a faulty environment. During the experiment, to test the fault

resilience, we have conducted the experiment under the following constraints:

• The devices involved can experience failures such as going out of range or

go down because of battery energy.

• The agent election algorithm runs with a timeout value as 10 seconds for

choosing the most resourceful agent and as result of which, each execution

will take 10 seconds extra.

• The agent service creates all the necessary data structures to support check

pointing even though they are never used in the experiment.

The time required to complete the task set is recorded and tabulated in table 6.3

.

66

Table 6.3 Time Comparison under Faulty Conditions

Case Kind of Failure PerSON w/o
RAAS (secs)

PerSON with
RAAS (secs)

1 No failure 186.529 200.521

2
Service provider

goes out of range

around 90th second

after being

assigned the

service

X

(The task is never
completed)

320.982

3
Service provider

goes down around

120th second after

being assigned the

service

X

(The task is never
completed)

310.243

6.4.1 Observations

When the device which provides the service fails, the task is never completed in

PerSON even though there are other devices providing the same service at that instance

of time. But RAAS reacts to the failure as soon as a failure is detected and then

reassigns the service request to the next most capable device in the network. In the case

of failure, RAAS takes more than 200.521 + 90 seconds, as the agent might not detect

the failure as soon as failure occurs. The detection of the failure depends on when the

67

device, on which the service is currently executed, is polled for the device profile value.

In the 3rd case, even though the device goes down at the 120th second, it still takes less

time to complete the task then the 2nd case, highlighting the proactive failure resilience

feature provided by the RAAS. The agent predicts that the device failure before the

device actually fails and reassigns the task to the other device. Again in this case the

time in seconds might vary based on how soon the agent detects the probable failure.

6.5 Checkpointing feature of RAAS

In this experiment we test the check-pointing feature added by RAAS to

PerSON in a failure prone ad-hoc environment. We setup a test bed with one

resourceful device i.e. the laptop and three resource constrained devices i.e. the PDA’s.

The two PDA’s run the MatrixMultiplication service whose service will be utilized by

the application running on the third PDA. The application requests for matrix

multiplication of square matrix of size 520. We measure the time consumed to execute

the complete task set using the PerSON framework without RAAS and then we conduct

the same experiment using PerSON with RAAS. We have conducted the experiment

under the following constraints:

• The devices involved can experience failures due to mobility or because

of low battery energy.

• The agent election algorithm runs with a timeout value of 10 seconds for

choosing the most resourceful agent.

The time required to complete the task set is recorded and tabulated in table 6.4.

68

Table 6.4 Time Comparison with Checkpointing under Faulty Conditions

Case Kind of Failure PerSON w/o

RAAS (secs)

PerSON with

RAAS (w/o

checkpointing)

(secs)

PerSON with

RAAS (with

checkpointing)

(secs)

1 No failure 186.529 200.521 201.103

2 Service provider

goes down

around 90th

second after

being assigned

the service

X

(The task is

never

completed)

320.982 238.114

6.4.1 Observations

When we compare the results to the previous experiment, we note that the time

savings and thus resource savings due to checkpointing service is very significant. Here

to complete the same task, we see that it nearly takes 90 seconds less when we restart

the services from the saved state rather than completely restarting the services. The time

taken for completion will be effected by the frequency with which checkpoints are

69

saved and the frequency with which the service provider is polled for its current

resource status.

70

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The thesis presented the architecture and implementation of RAAS, an

architecture for introducing the fault tolerance component on an existing middleware

framework for pervasive computing. Here we presented the design and evaluation of a

light weight agent component for provisioning resource aware task distribution as well

as resilience against various faults and failures. RAAS also provides features for

parallel distribution of user tasks and flexibility to configure the agent services based on

the needs of a service request.

Implementation results show that the RAAS achieves significant energy savings

through resource aware decisions when compared to the performance evaluation of the

middleware without RAAS features. Experiments also show that the overhead

introduced by RAAS decreases as the data size of user request increases, even in the

ideal scenario of no faults and failures.

The future work includes incorporating support for service composition and a

model for trust in the RAAS. Service composition will facilitate in achieving fault

tolerance even when direct service match is not available.

71

REFERENCES

[1] Weiser, M. (1991) The Computer for the 21st Century. Scientific American,

265(3), 94-104

[2] Ulema, M., Waldman, M., Kozbe, B. (2006) A Framework for Personal

Mobile Agents in Wireless Pervasive Computing Environment. Wireless Pervasive

Computing, 2006 1st International Symposium, 16-18

[3] Liu, R.; Chen, F., Yang, H., Chu, W.C., Yu-Bin Lai. (2004) Agent-based

Web services evolution for pervasive computing. 11th Asia-Pacific Software

Engineering Conference

[4] Satyanarayanan, M. (2001) Pervasive Computing: Vision and Challenges.

IEEE Personal Communications, 8(4), 10-17.

[5] Mark Weiser. (1994) "The world is not a desktop". Interactions, pp. 7-8

[6] Chaozhen Guo, Wu Dong, Jia Wu. (2001) Research on Multi-Agent for

General Group Decision Support System. Computer Supported Cooperative Work in

Design. The Sixth International Conference, (7), 308-312.

[7] L. Chen, T. Finin, A. Joshi. (2004) An Ontology for Context-Aware

Pervasive Computing Environments. Special Issue on Ontologies for Distributed

Systems, Knowledge Engineering Review, Cambridge University Press, 197-207.

[8] N. R. Jennings. (2000) On Agent-Based Software Engineering. Artificial

Intelligence, (117), 277-296

72

[9] Felix C. Gartner. (1999) Fundamentals of fault tolerant distributed

computing in asynchronous environments. ACM Computing Surveys, 31(1), 1-26

[10] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J.B.Sussman, and D.

Zukowski. (2000). Challenges: An application model for pervasive computing. Mobile

Computing and Networking, 266-274.

[11] Upkar Varshney and Alisha D. Malloy. (2006). Multilevel fault tolerance

in infrastructure-oriented wireless networks: framework and performance evaluation.

International Journal of Network Management, 16(5), 351-374

[12] W. Keith Edwards and Rebecca Grinter. (2001). At Home with Ubiquitous

Computing: Seven Challenges. Proceedings of the Conference on Ubiquitous

Computing 256-272.

[13] J. Bohn, F. Gartner, and H. Vogt. (2003). Dependability Issues of Pervasive

Computing in a Healthcare Environment . Proceedings from the First International

Conference on Security in Pervasive Computing

[14] Flavin Cristian. (1991). Understanding Fault-Tolerant Distributed Systems.

Commmunications of the ACM, 34(2), 56–78.

[15] Doreen Cheng, Henry Song, and Alan Messer. (2006). Reliability,

Diagnosis – Challenges to Pervasive Computing. 8th Annual Conference on Ubiquitous

Computing.

[16] Sharmin, M., Ahmed, S., Ahamed, S.I. (2005). SAFE-RD (secure, adaptive,

fault tolerant, and efficient resource discovery) in pervasive computing environments

Information Technology: Coding and Computing. International Conference on Volume

2, Issue , 4-6, 271 – 276

73

[17] S. S. Yau, F. Karim, Y. Wang, B. Wang, S. K.S. Gupta. (2002).

Reconfigurable Context-Sensitive Middleware for Pervasive Computing, IEEE

Pervasive Computing, IEEE Computer Society Press, 33-40

[18] Shiva Chetan, Anand Ranganathan, and Roy H. Campbell. (2005). Towards

Fault Tolerant Pervasive Computing. In IEEE Technology and Society . Volume: 24,

No. 1, pp 38-44.

[19] Mark Weiser. (1993). Some Computer Science Problems in Ubiquitous

Computing. Communications of the ACM.

[20] Kumar, M., Shirazi, B., Das, S.K., Singhal, M., Sung, B.Y., and Levine, D.,

(2003) PICO: A Middleware framework for Pervasive Computing. IEEE Pervasive

Computing, 2(3), 72-79.

[21] Li Jiang, Da-You Liu, Bo Yang. (2004). Smart home research - Machine

Learning and Cybernetics. Proceedings of 2004 International Conference on Volume 2,

Issue ,26-29, 659-663.

[22] Coulouris,G.F., Dollimore,J., Kindberg,T. (2005). Distributed Systems,

Concepts and Design. 4th edition Addison-Wesley.

[23] K. Senthivel. (2006). PerSON - A framework for service overlay network

in pervasive environments. Masters Thesis, The University of Texas at Arlington, TX

[24] Lamport, Shostak and Pease. (1995). The Byzantine Generals Problem, in

Advances in Ultra-Dependable Distributed Systems. N.Suri, C.J.Walter, and

M.M.Huue(Eds.). IEEEComputer Society Press.

[25] Kalasapur, S., Senthivel, K. & Kumar, M. (2006) Service Oriented

Pervasive Computing for Emergency Response Systems. Pervasive Computing and

74

Communications Workshops 2006. Ubicare’06. Proceedings of the Fourth Annual IEEE

International Conference on, 517 – 521.

[26] L. Benini and G. de Micheli. (2000). System-level power optimization:

techniques and tools, ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 2, 115-192.

[27] Adnan Agbaria, Roy Friedman. (2005). A Replication- and Checkpoint-

Based Approach for Anomaly-Based Intrusion Detection and Recovery. Conference:

International Conference on Distributed Computing Systems - ICDCS(Workshop). 137-

143.

[28] M. Castro and B. Liskov. (1999). Practical Byzantine Fault Tolerance. In

Proceedings of the 3rd Symposium on Operating Systems Design and Implementation,

173–186.

[29] Ubiquitous computing http://en.wikipedia.org/wiki/Ubiquitous_computing

[30] Pervasive Computing: The Next Chapter on the Internet

http://www.phptr.com/articles/article.asp?p=165227&rl=1

[31] An Introduction to MultiAgent Systems.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

[32] Fault tolerance techniques for distributed systems.

http://www.128.ibm.com/developerworks/rational/library/114.html

[33] A. M. Memon. (2004). Developing Testing Techniques for Event-driven

Pervasive Computing Applications. Workshop on Building Software for Pervasive

Computing.

[34] Sajal K. Das (Editor-in-Chief), Marco Conti (Associate Editor-in-Chief),

Behrooz Shirazi (Editor-in-Chief, Special Issues). Pervasive and Mobile Computing.

75

http://www.elsevier.com/wps/find/journaldescription.cws_home/704220/description#de

scription

[35] Research Activities of the Complex Systems Modelling Laboratory. (2005)

Complex Systems Modeling and Cognition Lab Eurocontrol and EPHE Joint Research

Lab. 4th EUROCONTROL Innovative Research Workshop & Exhibition - Workshop

Proceedings

76

BIOGRAPHICAL INFORMATION

Shreyas K Shetty received his Bachelor’s degree in Engineering at Bangalore

Institute of Technology, India in 2003. He worked as a software engineer at Oracle

India Pvt Ltd before starting his Masters of Science in Computer Science and

Engineering at the University of Texas at Arlington in August 2005. His research

interests include pervasive and wireless networks and embedded technologies in mobile

devices.

