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ABSTRACT 

 

ENHANCED TARGETING IN A HAPTIC USER INTERFACE 

FOR THE PHYSICALLY DISABLED USING 

A FORCE FEEDBACK MOUSE 

 

Publication No. ______ 

 

Brian Joseph Holbert, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Manfred Huber 

Although the human computer interface continues to evolve by engaging sight, 

voice, sound, and touch to manipulate the environment, the marriage between mouse 

and graphic based operating systems remains one of the primary relationships through 

which we interact with the computer.  With the advent of haptics it has become possible 

to enhance the GUI/mouse relationship with the sense of touch using a haptic mouse, 

opening new avenues of interaction, in particular for those with disabilities. 

For the majority of users the mouse is an effective and proven device for human 

computer interaction. However it is not as well suited for particular groups with 

physical disabilities, leaving those with disabilities in search of an alternative input 
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device.  The haptic mouse can exist as one of those alternatives if an effective interface 

can be designed that compensates for the disability of the user.   

An environment has been constructed that uses haptic effects, movement 

profiles, and a prediction algorithm to improve targeting for a group of users with 

physical disabilities.  The research presented 23 individuals with motor disabilities 

affecting the arms with varying haptic and non-haptic desktop-like interfaces.  Results 

of the experiments found greatly improved performance for most individuals in the 

haptic condition over the non-haptic when the target was a known quantity.  In 

conditions where prediction was used to apply the haptic effect, results varied based on 

proximity to the actual target.  Predictions made within two objects of the target 

resulted in either no effect or improved performance among individuals, while 

predictions made further than two objects from the target resulted in no effect or 

decreased performance.  Analysis of the prediction algorithm has identified areas where 

improvement would be possible given the data collected during the experiments with 

the disabled group.  This research concluded with a better understanding of how 

disabled individuals interact with a haptic computer mouse, Fitts’ Law evaluation of the 

haptic mouse, effectiveness of compound haptic effects, and a new algorithm for 

predicting targets in a multi-columned multi-rowed environment, that results in 

improved performance for a group of disabled individuals in a desktop interface using a 

haptic mouse.   
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CHAPTER 1 

INTRODUCTION 

 

This research is designed to provide improved targeting for the physically 

disabled in an n-columned multi-target haptic user interface.  Individuals in this group 

of disabled users often find themselves in search of an effective input device for 

interacting with the computer. Since most standard input devices do not account for  

disability and since special purpose input modalities are frequently very expensive and 

difficult to integrate into common computer applications which are mostly designed 

specifically for use with the standard devices, this dissertation investigates the 

possibility of haptics to enhance the common mouse interface in the hopes of provide a 

cost effective alternative to special purpose devices. As computer desktops are not 

natively designed for use with haptics, this requires the design and construction of a 

haptic interface. Construction of this interface, in turn, requires haptic device selection, 

haptic effect construction, experimental design considerations, and a prediction 

algorithm to determine the target of the user’s movements.  In this dissertation, the 

results of this research will be presented. 

1.1 Why a Haptic Mouse? 

Human-computer interaction (HCI) for the past two decades has been 

dominated by the graphical user interface/mouse relationship.  As a result operating 
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systems and applications have, for the most part, been designed for manipulation with a 

mouse.  To augment this HCI, the addition of haptic or tactile cues to a graphical user 

interface (GUI) has been an area of increasing interest.  Tactile feedback is any 

feedback from a device that is perceived through the sense of touch. Force feedback is a 

form of tactile feedback that provides force vectors from a haptic device. The amount of 

force and the number of possible vectors can vary among devices. 

The range of haptic devices available allows for many differing ways of 

interacting with a computer interface, mostly in a three dimensional capacity.  However, 

these devices are typically special purpose devices not suited for prolonged use with a 

GUI operating system.  Two major drawbacks for a majority of haptic devices to be 

suited to mass production for prolonged daily use are their special purpose design which 

is unfamiliar to the user and the high cost of the hardware.  Prices for many of the 

special purpose three dimensional haptic devices range from $15,000 to $60,000+.  The 

first logical step for adapting haptic devices for everyday use is to reduce cost.  

Reducing cost typically means reducing functionality, sensitivity, strength of the device, 

and/or mass production with production refinement.  The haptic mouse is an example of 

reduced functionality that still provides an effective input device.  For a short time 

Logitech and a few other companies produced affordable haptic mice, mainly for the 

gamming industry, capable of effects ranging from vibrating feedback to full force 

feedback.  The Logitech Wingman™ Force Feedback Mouse, while discontinued, was 

and is an inexpensive force feedback device (they can still be bought used and new 

from various sources for approximately $100.00). 
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As use of the haptic interface grows, a larger range of effects will be applied to 

the Haptic User Interface (HUI) [25].  Haptics helping with the selection of folders and 

files, with drawing circles, navigating tunnels, and manipulating GUI objects would 

require new and different effects to be designed for each particular task.  Well designed 

haptic effects could enhance the HCI to the point of allowing users with physical 

disabilities to interact with the GUI in ways that would not be possible without the 

addition of haptic interaction.  However, it is important to quantify the effect a haptic 

interface can have on human-computer interaction and determine if the widely accepted 

and tested principles of graphic interface design can be applied to a haptic interface. 

The benefits of enhancing human-computer interaction in a GUI [2] with haptic 

interactions depends on the device, effect used, and the tasks performed [1].  It has been 

shown that enhancement of the input channels can improve human-computer interaction 

including for those with disabilities [15].  However, it is important to consider that 

haptics can defy accepted targeting laws and impede the targeting process [1].  

Therefore, it is important to study the haptic effects used and quantify the results in 

terms of current HCI principles in order to construct an environment with the highest 

possibility of being beneficial to the target group. 

The haptic mouse combines the familiarity of a mouse with the power of a full 

force feedback device.  It is a goal of this research to construct an n-columned multi-

object environment that will realize these two properties is such a way as to enhance 

targeting in a GUI for a group of individuals with physical disabilities. 
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1.2 The Wingman™ Mouse 

The Wingman™ mouse is a force feedback device which can produce force 

vectors in two dimensions.  Several properties define what forces each haptic device can 

produce and in how many dimensions.  Vibrations do not require extended force 

vectors, can be produced easily in three dimensions, even in a mouse, and are very 

popular in most video game controllers.  Extended force vectors, on the other hand, can 

be difficult to produce mechanically at varying levels of strength, but over a duration of 

time they can be used to create virtual objects, define the boundaries of the 

environment, simulate the consistency and texture of materials, and be used to create a 

whole range of effects not yet discovered.  As a full force feedback device the 

Wingman™ can produce force vectors capable of creating all of these effects in two 

dimensions.  One limitation of the Wingman™ is that it is not capable of measuring the 

pressure or force exerted by the user [11]. 

The Wingman™ has a wide range of effects that can be designed to enhance the 

interface.  In this research a series of pilot studies were employed to identify beneficial 

effect designs for the Wingman™ to be used in the final experiment involving a 

movement impaired group of individuals.  There has been extensive research in the area 

of haptics in a GUI environment using the expensive and special purpose haptic 

devices, such as the Phantom™, showing improved performance with the addition of 

haptic cues [2][18][19] and there has been research that identified haptic effects that 

proved detrimental to human-computer interaction [1].  It is clear that haptics can be 

either beneficial or detrimental to an interface based on the device used, the effect 
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design, and the environment in which it is used, making careful effect design of the 

haptic interface crucial.  An additional concern is ergonomics.  Because many of the 

special purpose three dimensional devices require the user to hold their hands in 

unfamiliar and at times awkward positions, prolonged use can result in fatigue [18].  

The mouse is a proven input device which has been a part of the GUI interface since its 

inception and the next logical step is to enhance that interface with tactile cues. 

1.3 Related Research 

There has been an abundance of research performed in recent years [3][10][20] 

investigating the mouse, general targeting, and targeting of objects on a desktop. The 

research presented in this chapter was selected because the methodologies and 

conclusions presented by each were directly related to the research in this dissertation 

and were useful in designing and implementing a haptic interface for the disabled. 

Kabbash et al [14] investigate the effects of cursor size in selection tasks.  In 

their research they reduce target size to a point (still visible) and increase the cursor 

width.  By increasing the width of the cursor they were able to reproduce selection 

times consistent with a typical cursor and target of equal width.  Furthermore they 

investigated the ability of Fitts’ Law [8] to describe the relationship between cursor 

width and targets of a fixed size.  It was found that there was a linear relationship 

between the movement time (MT) and index of difficulty (ID) when cursor size was 

varied.  This conformation of Fitts’ Law for cursor width shows the robust nature of the 

law and its ability to describe a number of selection tasks. 
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In recent studies, Langdon et al [15] have engaged in a number of experiments 

designed to investigate the haptic effect for enhancing a GUI for use with the physically 

disabled.  Like much of the research investigating haptics in a GUI, the researchers 

compare haptically enhanced tasks vs. non-haptically enhanced tasks citing differences 

between movement times and error rates to quantify the differences.  The difficulty with 

this approach is that without confirmation that Fitts’ Law applies to the haptic condition 

it cannot be asserted that the relationships described in the research will hold for all 

distances and target sizes.  The relationship between ID and MT must be established. 

The results and conclusions reported by Kabbash et al [14] and Langdon et al 

[15] provide insight as to how the experimental interface for collecting targeting data 

should be designed. However, there is still a question of which haptic effects would be 

beneficial to the research in this dissertation. To address this, previous research studies 

[1][16][27] that employ haptic effects and evaluate performance were reviewed. Results 

of these studies were then used to establish what effects exist, which of those effects 

improves performance, and which effects are a good fit for the target group. 

Langdon et al performed a series of experiments investigating the use of gravity 

wells and force channels with a group of disabled individuals [16].  Using the 

Wingman™ mouse they performed two experiments investigating each of these haptic 

effects.  The first experiment placed multiple haptically enhanced targets within the 

environment.  Each target was enhanced with a gravity well the size of which was 

varied.  What they found was that competitive gravity wells increased average 

movement time up to the point of overlap.  In the next experiment they compared force 
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channels of varying width.  A force channel provides free movement within the channel 

but restricts movement outside the channel.  What they found were mixed results 

favoring a zero width channel. 

Abbot et al performed an experiment to investigate the use of haptics in a 

surgical environment with non-disabled individuals [1].  In this experiment using a 

stylus type haptic device they created force ellipses to guide the user when drawing.  

The implications were originally intended for making incisions remotely, however the 

results were pertinent to this research.  What they found was two fold.  First they 

discovered that the use of ellipse type haptic effects, which create boundaries around 

areas, increased the performance of tracing tasks.  Secondly they found that weaker 

assistive forces were more effective than more rigid forces. 

Williams et al investigated the use of dampening with a group of non-disabled 

individuals [27].  In their experiments they applied inverted dampening to a stylus type 

haptic device and studied performance during targeting tasks.  Inverted dampening as 

described by the researchers is an inverse relationship of force to velocity, so the faster 

the subject moved their hands the less force was applied.  What they found was 

improved completion times in the inverted dampening environment compared to no 

dampening and regular dampening. 

The results and conclusions of the studies presented in this chapter influenced 

and shaped how the experimental interface would be designed and which haptic effects 

would be investigated for inclusion in the final experiment of this research. 
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1.4 The Process 

The ultimate goal of this research is to create a haptic environment capable of 

improving targeting in a GUI.  The implications of this would be to provide users with 

movement disabilities an additional tool with which to interact with the computer. The 

process of developing an interface capable of integrating several haptic effects within an 

environment containing multiple targets for use by individuals with disabilities requires 

in depth knowledge of the device being used, the haptic effects to be included, and the 

target group which will use the system.  In order to better understand these three aspects 

of the interface a series of pilot studies were performed. 

The first task of this research was to identify haptic effects that were thought to 

be beneficial to the target group.  Research has shown that gravity wells and resistance 

can have a positive effect when used in a GUI with disabled individuals [7] [15] [25].  

The Wingman™ mouse is capable of both effects in the form of a spring and damper.  

In addition to the spring and damper effects, I believe that ellipse and funnel effects 

(which will be described later) could be of benefit to this research.  Once designed, the 

effects were individually tested with targets of varying distances for comparison with 

the control (no effect) condition. 

The second task of this research was to evaluate each haptic effect designed 

with the Wingman™ mouse.  This first in a series of pilot studies allowed us to evaluate 

the experimental interface, evaluate effect design, and to collect movement profiles.  In 

order to make meaningful assertions about performance within the system being 

developed I first needed to establish the relationships present within the system.  There 
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were three relationships that needed to be studied before research could move forward: 

(i) does the movement profile of the target group match that of subjects without 

movement disabilities, (ii) does the mouse with the haptic effect conform to Fitts’ Law, 

and (iii) how will distractions be limited with multiple haptically enhanced targets.  I 

intended to answer the first two questions through a series of pilot studies, at least one 

of which would involve members of the target group and to address the final issue using 

prediction techniques. 

The third and final task of this research was to integrate the knowledge obtained 

during the pilot studies and construct an environment beneficial to the target group.  A 

final experiment was constructed in which the subject experienced a combination of 

haptic effects while the environment attempts to minimize the number of distractions 

and performed a series of tasks designed to evaluate targeting performance. 

Individuals with movement disabilities need inexpensive accessible input 

devices that allow them to interact with the computer in its intended fashion.  The 

mouse continues to be the choice of input device for individuals without disability, and 

research that will be presented later has shown that it could be the choice of disabled 

individuals if a few hurdles could be overcome.  It is through the use of haptics that I 

believe the mouse can be adapted for use by this group of users.  The remainder of this 

document describes and discusses the science of targeting evaluation, the prediction 

algorithm, results of the experiments, and future directions. 
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CHAPTER 2 

HAPTIC EFFECT DESIGN AND TARGETING MOVEMENTS 

 

The construction of a multi-target haptic environment that is beneficial to 

disabled users requires the incorporation of beneficial effects, a model that describes the 

movement characteristics of the user’s mouse movements, and a means of reducing 

distracting effects through the use of prediction, which will be discussed in Chapter 3.  

In order to accomplish this, an interface containing multiple haptic conditions has to be 

constructed.  The different conditions should be designed to isolate targeting 

movements and measure movement times in a controlled environment to evaluate 

targeting performance when the user experienced no haptic effect, haptic effect applied 

to only the target, and haptic effect applied to the currently predicted target.  To more 

completely understand the use of haptic effects less structured conditions should be 

employed to evaluate user performance in a more realistic environment.  Construction 

of the more controlled environments should be motivated by Fitts’ Law and designed to 

collect data capable of being evaluated in a Fitts’ Law model.  The less structured 

conditions do not provide targeting direction to the user resulting in data artifacts that 

make Fitts’ Law evaluation difficult. However, these less controlled environments  

provide information about the use of this system as a whole and in a more realistic 
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setting.  The remainder of this chapter will describe research that motivated the 

decisions made for construction of the interfaces and the pilot studies undertaken. 

A series of pilot studies were completed to collect data about targeting, the 

Wingman™ mouse, haptic effects, the experimental interface, and finally the target 

group.  What follows is a description of each study and a discussion about the results.  

The three primary metrics for evaluation of performance for this research are movement 

time to evaluate efficiency, error rates to evaluate accuracy, and velocity peaks to 

evaluate smoothness.  Movement time and error rates are common measures of 

performance.  On the other hand, peaks in velocity are studied in conjunction with 

cursor traces to evaluate how the haptic effect changes a person’s movement 

characteristics.  In addition the target size vs. distance data is evaluated for correlation 

to a straight line.  The purpose of this final evaluation is to verify the experiment was 

successful in isolating and capturing the targeting moves of the subjects. 

2.1 Haptic effects 

Having researched and found a number of haptic effects that were felt beneficial 

to targeting and groups with disability, four different haptic effects were designed for 

use with the Wingman™ mouse.  The four selected effects were the gravity well, 

damper, ellipse, and force tunnel.  For this research they are referred to as spring, 

damper, ellipse, and funnel respectively, based on the names given to them by 

Immersion Corporation, creator of the effect design tool. 
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Figure 2.1 Haptic effects a)spring b)damper c)ellipse d)funnel 

 

The spring effect provides force vectors in the direction of the target from all 

locations in the environment.  While the Langdon et al [16] study presented earlier in 

Section 1.3 describes decreased performance when confronted with multiple competing 

gravity wells, it was felt this group of individuals would benefit from a much larger 

gravity well effect that would draw them toward the target from a much larger distance.  

A solution to the decreased performance from competing gravity wells could be a 

prediction algorithm capable of focusing the haptic effect on a single target within the 

environment (Prediction will be discussed in detail in Chapter 3).  The damper effect 

provides force vectors in the opposite direction of the vector of travel.  As the planned 

target group displays spasms and tremors, it was felt resistance added to the 

environment would steady user movement and provide a stabilizing force within the 

environment [24].  The ellipse effect creates a boundary around the target which is easy 

to enter but more difficult to leave.  It was felt this effect would be beneficial to the 

target group in helping them remain over the target during target selection.  Finally, the 

funnel effect provides force vectors on the edge of a tunnel.  As long as the user remains 

in the middle of the tunnel no haptic effects would be experienced.  However, any 
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deviation from the tunnel would result in resistance.  These four haptic effects were 

prepared and implemented in a series of pilot studies which will now be discussed. 

2.2 Pilot Study 1 

Having identified a haptic device that was affordable and capable of force 

feedback and haptic effects that might prove beneficial to targeting, the next step was to 

do a limited study of the system to determine its operational characteristics.   

 
Figure 2.2 Data collection interface 

 

Figure 2.2 illustrates the experimental interface which was designed to look and behave 

like a video game.  The game-like interface was used to motivate the subject to perform 

as quickly and accurately as possible while maintaining a level of interest in the 

experiment.  The system was implemented on a Windows XP computer using the 

Wingman™ Force Feedback Mouse as the input device.  Since the mouse had been 

discontinued for some time and no official Windows XP drivers existed it was 
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important to evaluate the performance of the mouse on XP.  It was also important to 

evaluate the Java libraries provided by Immersion Corporation for programming the 

mouse in this environment. Like the mouse, the Java SDK from Immersion had not 

been updated for Windows XP and needed to be evaluated for stability.  In addition the 

spring haptic effect was incorporated to evaluate the subject’s reaction to the application 

of haptic effects.  Data was collected, from four individuals in the UTA artificial 

intelligence lab, in the form of mouse locations read at ~1000Hz, movement time in ms, 

and errors recorded as clicks not on the target. 

While no formal evaluation of the data was performed, it was found that the 

Windows 2000 drivers provided for the mouse were compatible with the Windows XP 

operating system, the Java libraries performed with no errors, the subjects quickly 

acclimated to the haptic effect, and the data collection methodology could operate at a 

lower granularity of 100Hz.. 

2.3 Pilot Study 2 

Given the data collected from the first pilot study it was necessary to perform 

the experiment with more subjects and with more haptic effects and to evaluate the data 

collected.  Evaluation of the data consisted of movement time for efficiency, error rates 

for accuracy, movement peaks for smoothness, and correlation to a straight line 

signifying a relationship between distance and target size as described by Fitts [8]. 

In this study the test environment consisted of a Pentium based computer 

running Windows XP, a Wingman™ mouse and a 17” monitor set to a resolution of 

1152 by 864 pixels.  The subjects were asked too sit in front of the computer and were 
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given a brief explanation of the experiment, informing them of what to expect from the 

mouse and the interface to help eliminate any surprises.  The test subjects were 29 

Business students from Spring Hill College’s Introduction to Computers course. 

The interface (shown in Figure 2.2) contains a GUI frame containing a space 

ship console to display game information and circular alien torpedoes which act as 

target objects.  The subject is asked to click on the target as soon as it appears.  Each 

target object is 24 pixels in size and appears randomly in one of 5 locations as soon as 

the previous target object is selected.  The only restriction is it cannot spawn at the same 

location it was last located. 

Each subject participated in four identical GUI interfaces each with a different 

haptic condition.  Between each of the conditions was a “boss level” where no data is 

collected and no haptic enhancement incorporated to help keep the subject interested.  

The interface was constructed using Java 1.5 and the Touch Sense Developer Toolkit 

from Immersion Corporation.  One of the conditions has no haptic enhancement and 

serves as the control for the experiment.  The other conditions consist of a spring, a 

damper, and an ellipse effect.  Each experiment presents the four different conditions in 

random order. 

The interface consists of five possible locations for target objects and measures 

time from selection of the previous target to the selection of the next target.  The 

subjects complete four levels of the game, each with a different haptic effect, and data is 

collected.  Since the effects were presented in random order, learning should not be an 

issue in the pooled data.  Furthermore, while it would be desirable to have tested more 
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than three haptic effects the experiment was already at ~10 minutes per subject.  

Therefore an educated guess had to be made as to which three effects would most 

benefit our target group for inclusion in the study. 

2.3.1 Pilot Study 2 results 

As the subject selected one target in the interface a new one would spawn in one 

of the four remaining unoccupied spawn locations.  Movement time was measured from 

the end of the previous targeting task until the subject selected the new target object.  

This methodology captured the entire targeting process (locating the target, transversing 

the interface to the target, and target selection). 

Table 2.1 Average movement times 
Effect Average Time (s) P(T<=t) two-tail
No Effect (control) 1.368
Spring Effect 1.045 0.0000000171
Ellipse Effect 1.397 0.700483
Damper Effect 1.317 0.26158  
 

Movement times for each effect and the significance values when compared to the 

control (no effect) are presented in Table 2.1.  Since the spring effect was the only one 

to provide vector haptic feedback toward the target object it was not surprising to see it 

have the greatest effect on movement time.  A significant difference in favor of the 

spring environment was found when compared to the control.  A surprising result was 

the damper effect.  It was expected the damper would increase the time to target objects 

in the interface.  However, there was no significant difference between the damper 

environment and the control with respect to movement time.  Finally, no significant 

difference was found between the ellipse effect and the control.  Since the ellipse effect 
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only affects the final targeting process, total movement time is not an accurate measure 

of its effectiveness.  The target selection process is in the range of ~200ms [1] and a 

significant change in that portion of the movement time may not show as significant 

when looking at the movement time as a whole.  This data shows that the effects used 

here result in an increased or unchanged efficiency of the target move. 

In addition to the movement times, the average number of velocity peaks were 

computed from the movement data to provide a means of measuring smoothness of the 

targeting movement.  Peaks in velocity are identified by large changes in distance 

between readings.  A change of 25 pixels in distance between readings (10ms 

granularity), identifying that the user is moving the cursor at more than 2.5 pixels/ms, is 

considered high in this research because values greater than that comprise less than 1% 

of all velocities.  The average number of peaks for each movement per effect is 

presented in Table 2.2. 

 

Table 2.2 Velocity peaks 
Effect Peaks P(T<=t) two-tail
No Effect (control) 0.27
Spring Effect 0.66 0.007
Eclipse Effect 0.39 0.115
Damper Effect 0.03 0.0000171  

 

It is the belief of this research that while the haptic forces of the mouse are 

comparatively weak relative to the force of a tremor or spasm [15], it may be possible to 

determine when a tremor or spasm is occurring or to make the movements more 

predictable by dampening the tremors or spasms.  It was believed a tremor or spasm 
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would display sudden increases in velocity, making it important to identify which haptic 

effects might affect normal sudden increases in velocity.  Table 2.2 contains the average 

number of peaks per movement.  Ultimately this data was instrumental in determining 

values to be used in the prediction algorithm (presented in Chapter 3) and brought to 

light one of the benefits of the damper effect. 

 

 
Figure 2.3 Representative movement peaks (∆ pixels per 10ms) 

a) no effect b) spring effect c) damper effect d) ellipse effect 
 

Representative movement peak profiles are presented in Figure 2.3 and color 

changes in the Figure occur every 100ms of the movement.  The profiles are captured 

from a single subject and were selected due to their similarity to the majority of profiles 

observed for each effect.  While the ellipse effect had no significant difference from the 

control, the spring and damper effect had significant differences in velocity peaks 

compared to the control.  Figure 2.3 b) illustrates how the spring effect influences the 

subject, resulting in high rates of movement followed by short pauses, significantly 

increasing the number of velocity peaks from the control.  The damper effect had the 

most significant difference in velocity peaks when compared to the control.  It greatly 

reduced, and in many cases eliminated, peaks in velocity.  When looking at the data for 
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the damper effect as a whole it may be possible to eliminate peaks in velocity without 

adversely affecting movement times.  This, in turn, could make targeting movements 

much more predictable, potentially further improving the capabilities and performance 

of an integrated HUI. 

Besides movement time and velocity peak data presented above, cursor traces 

were collected and grouped by button and data from all subjects aggregated to create 20 

distinct movement profiles for each effect (80 total movement profiles).  Cursor traces 

were collected in order to identify distinct movements which would be indicative of 

where the user planned to move the cursor.  Select results are presented in the following 

figures for discussion. 

 

 
Figure 2.4 Average movements, from target 1 to 3 

a) no effect b) spring effect c) damper effect d) ellipse effect 
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Figure 2.5 Average movement, from target 3 to 4 

a) no effect b) spring effect c) damper effect d) ellipse effect 
 

Figures 2.4 and 2.5 contain aggregated cursor traces for a select number of 

movements.  The cursor traces presented were selected because they illustrate a 

phenomenon that was unexpected.  It was discovered that cursor traces of vertical 

movement drifted toward the center of the interface before moving toward the target 

object.  As each subject located the next target visually they appeared to be moving the 

mouse toward the center of the interface in anticipation of the next target’s location.  

Since it is unclear when the subject actually knows where the target object is and when 

they are simply drifting, identifying intended direction becomes difficult at the early 

stages of movement.  However, the ability to capture and identify movement 

characteristics from the cursor traces was confirmed.  It was clear that another pilot 

study would be needed to address the problem of drifting, but analysis of the movement 

characteristics was still performed on the collected data to analyze its correlation to 

Fitts’ Law, a law generally used to model targeting data. 
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2.3.1.1 Fitts’ Law 

If the amplitude and tolerance limits of a task are controlled by E, and S is instructed to 
work at his maximum rate, then the average time per response will be directly 
proportional to the minimum average amount of information per response demanded by 
the particular conditions of amplitude and tolerance.  
 

Fitts, The Information Capacity of the Human Motor System in Controlling the 

Amplitude of Movement 

Fitts, a psychologist at Ohio State University in the 1950’s, studied the information 

capacity of the human motor system.  In his classic paper quoted above Fitts theorizes 

that there is a fixed information-transmission capacity of the human motor system 

which can be quantified through experimentation.  The motor system described by Fitts 

is comprised of visual and proprioceptive components. 

In his most well known experiment Fitts asks the subjects to repeatedly tap 

plates of varying width at varying distances from each other with a stylus as accurately 

as possible.  By varying the amplitude of movement and the size of the plates Fitts is 

able to isolate the visual and proprioceptive components of target selection.  The 

capacity of this system is described by Fitts as the index of performance (IP).  The IP is 

calculated using the index of difficulty (ID) and the movement time (MT). 

(2.1) IP = ID/MT 

ID is based on amplitude (A) and tolerance (W).  Amplitude refers to the 

distance between the starting location of the movement and the middle of the target and 

tolerance refers to the width of the target. 

(2.2) ID = Log2(2A/W) 

What is considered Fitts’ Law can now be used to compute MT. 
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(2.3) MT = a + b * ID  

The MT from Equation 2.1 is experimentally derived as the average MT 

collected during repeated trails with identical ID.  By varying ID, a linear relationship 

can be established and a and b calculated.  While IP is shown to be ID/MT by Fitts, it 

has been discovered that for low ID (< 3) alternative methods for computing IP are 

necessary.  Wellford [26] offers an alternative for calculating IP which makes the 

relationship more linear and creates values of ID that are always greater than zero [25]. 

(2.4) ID = (A/W) + .5  

The motivation for an alternative method for calculating IP is believed to be due to 

ballistic movements which are not subject to the proprioceptive feedback loop [10].  

Ballistic movements are defined as small involuntary or reflexive movements which do 

not involve visual feedback in order to be performed.  Low ID movements are primarily 

made up of ballistic movements and therefore subject to the relationship described by 

Gan and Hoffman [10]. 

Finally the information capacity (IC) of the motor system can be calculated 

from the data. 

(2.5) IC = 1/b 

The original motivation for Fitts research was to study the information capacity of the 

human motor system.  That research has now become one of the foundations on which 

we study targeting characteristics in HCI. 
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2.3.1.2 Fitts’ Law in research 

As early as 1978 Fitts’ Law was being used to evaluate performance in HCI 

tasks.  In one of the earliest evaluations of the mouse, Card et al [3] used Fitts’ Law to 

evaluate performance and IP of a mouse and joystick in selection tasks.  It was found 

that the mouse used in that experiment had an IP of 10 bits/s which is comparable to the 

stylus used in Fitts’ original experiment.  Of great interest to this research, it was 

discovered the joystick studied had an IP of ~5 bits/s which demonstrates the effect an 

input device can have on the index of performance in selection tasks. 

It is one of the goals of this research to verify the certainty with which Fitts’ 

Law can accurately describe the movement times and error rates of targeting tasks in a 

GUI using the Wingman™ Force Feedback Mouse from Logitech with a range of haptic 

effects.  By asking the subjects to perform a series of targeting tasks of differing ID 

under the influence of four different haptic conditions models can be constructed from 

the MT and error data collected and compared for correlation to Fitts’ Law. 

2.3.2 Pilot Study 2 Fitts’ evaluation 

An analysis of the data evaluating the relationship of distance to target size was 

performed.  By separating the average MTs by distance slope, y-intercept, and 

correlation coefficients could be computed.   The results are presented in Table 2.3. 

 
Table 2.3 Slope, y-intercept, and correlation coefficient for each condition 

  Control Spring Damper 
b(s) 0.060 0.024 0.085 
a(s) 1.135 0.984 0.974 

r 0.41 0.38 0.75 
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The analysis resulted in relatively flat slopes, high intercepts, and low correlations.  

These results would seem to indicate the Wingman™ mouse does not conform to the 

targeting laws put forth by Fitts.  If it did, the slopes would be steeper, the y-intercept 

would be ~0, and the correlation coefficient would be in the ~90% range.  Since there is 

a large body of work verifying the mouse as a Fitts’ compliant input device it was 

difficult to accept the Wingman™ Force Feedback mouse as non-compliant in the non-

haptic condition. 

Therefore a closer look at the methodology for the experiment was undertaken 

and it was decided a game-like interface was not a controlled enough environment to 

collect the data needed.  In particular, as stated in the evaluation of the cursor traces, the 

use of a game environment led to initial drifting movements toward the center of the 

game region during the time used by the subject to locate the next target, and did not 

provide a means to separate these drift parts of the movement from the actual targeting 

movement.  A new interface was designed which limited the subject’s movements to 

allow for this separation.  By restricting the data collection to the period after the target 

had been identified it was felt only the targeting movements described by Fitts’ would 

be captured. The resulting experimental interface is described in Pilot Study 3. 

2.4 Pilot Study 3 

Two irregularities were discovered in the data collected during Pilot Study 2.  

The cursor traces for vertical movements contained unexplained drift toward the middle 

of the environment and the ID vs. time plots for the non-haptic conditions showed no 

correlation.  To correct the issues identified, a more controlled interface was developed 
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which requires the user to identify the target through the use of colored targets before 

the targeting move is begun.  The new study was also used as an opportunity to 

investigate another haptic effect, so for this experiment the ellipse effect was replaced 

by a funnel effect.  A full description of the interface and results of the experiment 

follow. 

The testing environment for the experiment was identical to the one described 

for Pilot Study 2.  The test subjects were 20 freshmen students from Spring Hill 

College’s Introduction to Computer Applications course.  The interface is comprised of 

a GUI frame containing a space ship console to display game information, 4 large (55 

pixel) circular primer buttons around the edges, each of a different color, and small (24 

pixel) circular alien torpedoes which act as target objects.  Each target object appears 

randomly in one of the 3 furthest target locations across from one of the four primer 

buttons, except for every 10th target, which is randomly chosen from the 3 closest 

possible target locations.  The new target color matches one of the primer button colors 

and target selection cannot occur until the subject first clicks on the matching primer 

button.  It was believed this aspect of the experiment would correct the irregularities 

experienced in the last study by eliminating the drift component of the movements.  As 

soon as a target object is selected, a new one spawns within the field of play.  The only 

restriction is that the same primer button cannot be used in successive attempts. 
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Figure 2.6 Data collection interface. 

 

Each subject participated in four identical GUI interfaces, each with a different 

haptic condition.  One of the conditions had no haptic enhancement and serves as the 

control for the experiment.  The other three conditions consisted of a spring, damper, 

and funnel effect.  Each experiment presented the four conditions in random order to 

remove any influence of a learning effect from the data. 

Movement time is measured from selection of the primer button to selection of 

the target.  Subjects were asked to emphasize accuracy over speed.  The subject 

completed four trials of 20 targets each with a different haptic effect for each trial. 
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2.4.1 Pilot Study 3 results 

The main goal of this third pilot study was to correct irregularities in data 

collection discovered in the second pilot study. These irregularities resulted in 

unexpected artifacts in the vertical cursor traces and deviation from a straight line in the 

Fitts’ regression analysis of the ID to MT data.  In order to study the effectiveness of the 

corrective measures taken, the data from this pilot study was evaluated using regression 

analysis and cursor trace observation. 

Using the Fitts formulation (ID>3) ID was calculated for each amplitude and 

plotted against average MT for the non-haptic, spring, damper, and funnel effects.  A 

straight line was then fit to the data using the models built from Equation 2.3 and 

regression analysis was performed. 

From the data presented in Figure 2.7 the spring effect trend line shows a 

significant decrease in MT (P(T<=t)=.048, p<.05) in the HUI and the damper effect has 

no significant impact on the MT (P(T<=t)=.49, p>.05). 

The average number of errors was recorded as clicks not on the target during a 

trial.  Results are presented in Table 2.4. 

 

Table 2.4 Average error 
Effect Average Error P(T<=t) two-tail
No Effect (control) 1.8
Spring Effect 0.6 0.002251
Funnel Effect 1.76 0.466378
Damper Effect 1.35 0.276954  
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What was found was a significant difference in error rate between the Control and 

Spring conditions (P(T<=t)=.002,p<.05) in favor of the spring effect. 

However, the benefit of haptic effects can go beyond MT and error rates.  In the 

case of the damper effect movements are smoothed and movement rate regulated, as 

was realized in the results from Pilot Study 2 and again here in Table 2.5. 

 

Table 2.5 Average velocity peaks 
Effect Peaks P(T<=t) two-tail
No Effect (control) 1.31
Spring Effect 1.22 0.169648
Damper Effect 0.89 0.000023
Funnel Effect 1.27 0.348471  

 

What was found was a significantly lower (P(T<=t)=0.00002),p<.05) number of 

average velocity peaks in the damper condition when compared to the control. 
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Figure 2.7 Relationship between movement time and index of difficulty with regression 

lines for all conditions. 
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Figure 2.8 shows aggregated cursor traces from the non-haptic condition in 

which it appears movements tend to move in relatively straight lines to the targets as 

was confirmed by an average radius of curvature > 50. 

 

 
Figure 2.8 Cursor traces from Study 3  

a) left to right b) top to bottom c) right to left 
 

According to Fitts’ Law, two tasks of equal amplitude (target distance) and 

equal tolerance (target size) should have equal IP. To test this assumption in the context 

of haptic effects, the IP for each condition is calculated using the Fitts’ methodology for 

calculating ID (only the first amplitude and tolerance values result in an ID near the 

threshold reported by Gan and Hoffman [10]) and results are reported in Table 2.6. 

 

Table 2.6 Fitts' IP all conditions 
IP 

ID Control Spring Damper Funnel 
3.38 3.65 4.17 3.10 4.34 
4.27 3.15 4.53 3.81 4.02 
5.34 3.54 4.60 3.38 3.68 
5.45 3.71 4.87 3.74 4.09 
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What was found was a differing IP when haptics was included in the GUI, 

where the IP appears to be relatively constant within an effect condition but differs 

across effects. A significant increase in IP can be seen in the spring and funnel 

enhanced HUI. Since there is differing IP with identical target width and distance, it 

appears as if the HUI does not conform to the Fitts’ postulate for calculating IP. 

The end result of Fitts’ experiments was to determine the IC of the human motor 

system.  Therefore, it was important to compare the IC for each condition of the 

experiment and the results are reported in Table 2.7. 

 

Table 2.7 Fitts’ calculated IC (1/b) for each condition 
Fitts IC 

Control Spring Damper Funnel 
3.90 6.11 4.36 3.34 

 

What was discovered was a different IC for each condition. While the IC for the damper 

and funnel effects was not significantly different from the control condition the IC for 

the spring effect enhanced tasks showed a 56% increase in IC. In Fitts’ original work he 

stated: 

The concept of a fixed information-transmission capacity of the motor system not only 
accounts for such divergent results but also suggests a way of relating quantitatively the 
amplitude, duration, and variability of motor responses. The concept leads to the 
expectation that if repetitive movements of a fixed average amplitude are speeded up, 
then on the average each movement can provide less information, and movement 
variability will increase by a specified amount. Similarly, it suggests that if average 
movement amplitude should be increased then variability and/or average duration will 
also increase. 
 

Fitts, The Information Capacity of the Human Motor System in Controlling the 

Amplitude of Movement 
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Again it appears as if the HUI does not conform to Fitts’ theory on information 

capacity, as the data shows increased IC with a decrease in MT and decrease in error 

rate (P(T<=t)=0.0022 ).  This seems to make sense if you ignore the fixed-transmission 

capacity theory, because as you increase IC you would expect to see decreases in the 

time taken to complete a task and decreases in error rates. So was Fitts wrong about the 

fixed IC of the human motor system?  I do not believe this is the case, instead I believed 

the addition of haptic feedback has increased the IC of the HUI system (in a similar way 

as the mouse does compared to the use of a joystick [3]) allowing for increases in 

movement amplitude without increasing variability and/or average duration.  The effect 

of increasing IC would then explain the increase in IP for the spring effect. 

To support this hypothesis one just needs to look at the regression analysis of 

the data collected for each condition. 

 

Table 2.8 Slope (b), intercept (a), and correlation coefficients (r) for each condition 
  Control Spring Damper Funnel 

b (s) 0.256 0.163 0.229 0.299 
a (s) 0.131 0.253 0.254 -0.225 

r 0.94 0.99 0.92 0.98 
 

 

From Table 2.8 it is clear that, while IC is not a fixed quantity in this system, 

strong correlation coefficients are found between ID and MT within all conditions 

suggesting there remains a relationship between MT and ID which is described by Fitts’ 

Law. 
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The purpose of Pilot Study 3 was to make adjustments to the experimental 

interface to correct what was felt were errors in methodology from the previous Pilot 

Study.  As indicated by the results, low y-intercepts with high correlation coefficients 

and normal cursor traces, the interface for Pilot Study 3 was able to measure the isolate 

the targeting movements and capture movement times accurately.  The interface was 

ready for the target group. 

2.5 Pilot Study 4 

Feeling there was a sufficient number of haptic effects studied and that the 

experimental design was capable of isolating and measuring performance in the 

interface it was felt a study with the target group was necessary before design of the 

final experiment would take place.  In addition to collecting preliminary data on the 

target group some preliminary data about how the target group may interact with a 

prediction algorithm and compound haptic effect was collected. 

Pilot Study 4 was conducted under the same conditions as the previous study 

with the addition of a combined haptic effect and prediction condition.  In this condition 

the spring and damper effect are focused on one of the eight target locations based on 

several conditions. Haptic effect strength is (i) inversely proportional to the velocity of 

the cursor, (ii) inversely proportional to the acceleration of the cursor, and (iii) 

proportional to the proximity of the target.  The combined haptic effect consisted of 

spring and damper effects both varied equally by the prediction algorithm. 

Due to the difficult nature of collecting subjects from the target group [15] it 

was felt an initial pilot study consisting of 4 to 5 subjects would supply sufficient data 
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for comparison to the non-disabled data and prepare the system for a larger study.  

Movement times and cursor traces of the target group were collected for cursory 

comparison to the data collected in the previous studies.  While a large n for this 

experiment may be desirable it is not a realistic goal.  There are very few locations at 

which the target group gathers, and attempts to collect data have proven difficult.  

Given the limited accessibility of the target group it was decided to focus efforts on 

collecting subjects for the final experiment and find a small number of participants for 

this study.  Observations of the data collected from the target group follow. 

The aggregated cursor traces from the five individual in non-haptic conditions 

are shown in Figure 2.9. 

 

 
Figure 2.9 Cursor traces from Study 4 

a) from right to left b) from left to right c) from top to bottom 
 

The aggregated data from the cursor traces of the disabled and non-disabled 

groups are almost indistinguishable from each other and an average radius of curvature 

>50 confirm mostly straight line movements.  Cursory observations of individual cursor 

traces showed what looked like very normal vectors from the disability group until they 
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neared the target.  The majority of the difference in movement vectors did not seem to 

occur until over the target. 

 

 
Figure 2.10 Select representative cursor trace (color changes every ~100ms) 

 

Figure 2.10 shows a prevalent trend where the target group would diverge from 

a non-disabled user’s movement profile.  In the figure you can see the subject moves 

from the point on the right to the target (a straight line from the start location to the 

target is also included for comparison), then has difficulty remaining over the target 

when it comes time to make the selection.  The process of target selection often resulted 

in the subject losing control of the mouse and struggling to regain control. In the figure 

the subject moves downward away from the target then regains control and moves back 

to the target.  It was believed that through haptic effects designed to assist the user in 

remaining on top of the target this difficulty could be overcome. 

One of the goals of this pilot study was to discover how the movement profiles 

of the target group differ from a non-disabled user to assist in determining which 

characteristics of the target group might effect the creation of a prediction algorithm.  It 

was found that while the movement vectors were very similar there was a large 
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difference in the movement times for the disability group when compared to the non-

disabled group. 

Table 2.9 Movement times for the disability group (seconds) 
  Control Spring Damper Funnel Prediction 

subject 1 5.543 3.272 3.344 3.445 2.842 
subject 2 2.990 2.575 2.911 3.003 2.244 
subject 3 2.625 2.956 3.982 2.385 4.647 
subject 4 2.003 1.547 2.569 2.048 2.598 
subject 5 7.756 3.132 6.907 8.269 11.223 
average 4.183 2.696 3.942 3.830 4.710 

 

When compared to the average MT from Table 2.1 there is a noticeable difference in the 

means of the two groups.  The disability group takes on average 2 to 3 times longer to 

target than the non-disabled group.  Additionally it appears there are large differences in 

MT within the group, as can be seen in subject 5 vs. subject 4.  The results of the 

prediction condition were mixed.  Subject 1 displayed a significant decrease in MT 

when under the compound/prediction condition; however Subject 5 displayed 

significant increase in MT under the same condition. 

The results of Pilot Study 4 helped shape the final experiment and the design of 

the prediction algorithm.  It was felt the differences between the target group and the 

control were understood and design of the final interface would account for those 

differences in both haptic effect design and prediction algorithm.  In hindsight there was 

a variability issue that was missed when analyzing this data.  Subject 5 displayed a very 

high variability between the spring and prediction conditions and within each condition.  

Training that will be discussed in Chapter 3 for the prediction algorithm was designed 

to account for variability between individuals but the possibility of significantly 
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different variances between conditions was not expected.  It may have been beneficial 

to look at variability within conditions to better understand the target group and how to 

use the training data.  However, with the small sample size and majority of subjects 

displaying reasonable variability it was decided to move forward with the experiment. 

2.6 Pilot study conclusion 

Having performed a series of pilot studies it was felt sufficient data and 

information for the design of a prediction algorithm had been gathered and it was time 

to move forward with the final interface design and experiment under the following 

assumptions.  Movement times of the target group are significantly higher than those of 

non-disabled individuals, movement trajectories should be relatively similar to those of 

non-disabled individuals resulting in straight movements toward the target, there is a 

large variability between individuals from the target group, and a prediction algorithm 

that trains itself for each user is the solution to that variability. 
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CHAPTER 3 

PREDICTION 

 

Predicting targets in a GUI is not a new concept.  There is a wealth of research 

employing a number of differing approaches to prediction available [5][17][20].  The 

desire to predict the target in this instance is due to distractions created from 

overlapping haptic effects that occur in multiple target environments.  If a successful 

prediction algorithm could be developed it reduces the multiple target problem to a 

single target making the application of haptic effects much less complex.  Where this 

research differs from most is that the target group is comprised of disabled individuals 

in a multi-target environment, further complicating the problem.  Using movement 

profiles collected during the pilot studies and information drawn from previous 

prediction algorithms a new prediction technique was devised for this research that fits 

the target group.  The following is a description of prediction techniques that influenced 

the technique created for this research and a description of the prediction algorithm 

developed. 

3.1 Related Prediction Research 

In their paper Guidelines for the Design of Haptic Widgets, Oakley et al 

investigate the idea of multiple haptic targets within the same environment [20].  They 



 

 38

cite several sources that use both anecdotal and quantitative arguments to dissuade the 

use of prediction in applying haptic effects in multi-target environments. 

Dennerlein et al [5] describe an experiment in which the subjects are presented 

with multiple targets and asked to select one.  As the trial progressed the researcher 

manually controlled the number of haptic distracters in the environment between the 

subject and the desired target. This simulated the different accuracies of prediction.  

While the timing and accuracy results of the experiment were mixed they maintained 

that partially successful prediction algorithms had negative subjective results on the 

user experience [5]. 

The experiment conducted by Oakley et al [20] consisted of a simulated desktop 

interface, depicted in Figure 3.1, with many possible haptically enhanced objects.  The 

pointing device used was a PHANToM™ stylus from SensAble Technologies. 

 

 
Figure 3.1 Prediction interface 
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The subject was asked to select targets on the outside range of the interface while 

starting from the middle white range.  As the cursor passes over the non-target objects 

distracter forces are felt through the haptic interface.  One possible approach to 

overcoming the interference caused by distracters would be to predict the target and 

then focus the haptic effect on the predicted target.  However, as detailed earlier Oakley 

et al [20] cite research that contradicts the use of prediction algorithms because of the 

partially successful nature they display.  They also believed the only successful 

prediction algorithm would be those requiring extensive training of the system for each 

particular task and input device.  The solution proposed by Oakley et al was to forego a 

prediction altogether and to create an adjusted haptic effect that would have a high 

probability of overcoming the distracter effect while avoiding the negative subjective 

results experienced from partially successful prediction algorithms.  The haptic effect 

would be adjusted based on three conditions: 

1. Reduce the maximum force applied if a user is moving slowly (beneath 2 cm per 

second) to a minimum of one third of its normal value. 

2. If a user is moving rapidly (above 2 cm per second) and has only been on a 

target for a short time (less than 100 ms) reduce the maximum applied force by a 

factor of two. 
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Figure 3.2 Average MT: Visual, Haptic, and Adjusted Haptic conditions 
 

3. Increase the maximum force applied to three times its original amount if a user 

has begun to perform a click (by depressing the PHANToM’s button) and 

reduce the force back to normal levels when the click is completed (by releasing 

the button). [20] 

What they found was a decrease in MT for the adjusted haptic condition over both the 

haptic and non-haptic (visual) condition, as depicted in Figure 3.2. 

Several types of errors were recorded. What was found was a lower error rate in 

the visual condition for misses than for either of the other two conditions but a decrease 

in errors compared to the haptic condition for the adjusted condition.  Results are 

depicted in Figure 3.3. 
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Figure 3.3 Error: Visual, Haptic, and Adjusted Haptic 
 

For the slip off and slide over types of errors both haptic conditions showed far fewer 

errors than the visual condition and in each of those instances the adjusted haptic 

condition outperformed the haptic condition. 

While the experiment described does not address the issue of applying haptic 

effects at distance, the researcher does provide a partial solution to the prediction 

algorithm.  Oakley et al make an interesting argument against using prediction in the 

application of haptic interaction with multiple GUI objects but it would have been a far 

more complete study had they compared the adjusted condition to some form of 

prediction algorithm.  However, the research was effective in presenting an alternative 

methodology to prediction which was incorporated into the algorithm employed by this 

research. 
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3.1.1 Vector Based Prediction 

Murata describes a vector based method of target prediction in a desktop GUI 

environment [17].  In their approach they use vectors and angles to determine which 

target within the environment is the intended target.  Figure 3.4 illustrates both the 

experimental interface and the proposed prediction algorithm that was used for the 

research.  In this algorithm two vector types are constructed.  The first vector type is 

constructed using consecutive cursor readings from the subject.  The second vector type 

is constructed using the last cursor reading and the center of each target.  The number of 

mouse samples is represented by n with a sampling interval represented by st (~1/60 

second).  The difference between the cursor/cursor angles and the cursor/target angles 

are computed at then end of each st and accumulated.  The time to predict is the product 

of n and st. The cumulative difference in angle between the cursor/cursor vector and the  

cursor/target vector are computed for each target.  The target is then predicted to be the 

target with the smallest cumulative angle.  The larger n and st are the more accurate the 

prediction, however it also takes longer to create the prediction. 

The experiment consisted of several trials of varying distance (d) between 

objects, n, and st.  Figure 3.5 contains the MT data collected for each trial and a 
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Figure 3.4 Experimental Interface and Prediction Algorithm 

 

comparative chart for the Control vs. Prediction conditions.  Figure 3.6 contains the 

prediction accuracy data from an experiment performed with non-disabled individuals 

[17]. 
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Figure 3.5 MT for Control and Prediction trials 
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Figure 3.6 Prediction Accuracy 

 

During these experiments the mouse cursor would jump to the predicted target 

as soon as a prediction was made, therefore the data from Figure 3.5 could be 

considered predefined by the system since the only variables would be computational 

on the computers part and click time by the subject.  From the data in Figure 3.6 it is 

apparent that target position is directly related to prediction accuracy in the vector based 

system.  Finally, Murata performed a comparison of prediction accuracy to distance 

between objects, the result of which is presented in Figure 3.7. 
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Figure 3.7 Distance vs. Prediction Accuracy 

 

The results presented in Figure 3.7 do not seem to indicate a consistent 

relationship between distance between targets and predictability; you have a 40 pixel 

distance as the 2nd worst prediction distance for the target at position 2 and the 50 pixel 

distance as the 3rd worst prediction distance at target position 3.  However, this data 

does indicate distance between difficult to predict targets as having a significant effect 

on predictability. 

The vector based prediction algorithm appears to have a relatively high success 

rate when confronted with multiple targets within the environment.  Based on the 

problems predicting targets 2 and 4 it was surprising to find a high prediction success 

for target 3.  This would seem to indicate a vector based approach favors straight line 
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vectors (target 3 was directly above the start location).  It is also unclear how this 

approach would deal with multiple targets along the same vector.  While this prediction 

algorithm may be an incomplete solution for a real desktop environment, it became the 

basis for a part of the prediction algorithm designed for this research. 

3.2 The Prediction Algorithm 

When applying haptic effects there are a number of considerations that must be 

made, the most important of which is to determine if the effect is beneficial to the user.  

Through a series of pilot studies performed as part of this research, it was determined 

the most beneficial haptic effect, of those selected, in a single haptic target environment 

was the spring effect (gravity well).  While the desire to incorporate the spring effect is 

high, the implication of multiple spring effects overlapping is not at all desirable.  The 

spring effect draws the user toward the target from all directions from all locations in 

the environment.  In order to incorporate the spring effect it was determined a 

prediction algorithm of some sort must be constructed. 

Prediction algorithm design for GUI based targeting tasks is a daunting enough 

task in itself, but when trying to predict for a disabled group of users that task becomes 

much more difficult.  The literature discussed earlier in this chapter took two basic 

approaches to prediction, the first basically assumed 0% prediction accuracy and only 

addressed the prediction on top of possible targets, and the second predicted targets 

based completely on angles to the target with no design contingency for bad predictions.  

In order to construct a prediction algorithm for the target group it was necessary to 

identify what parts of the existing prediction literature was useful, where existing 
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algorithms fell short, what could be done to address the shortcomings of existing 

algorithms, and how the disability of the target group would effect existing prediction 

algorithms. 

3.2.1 Target Group Characteristics 

When creating this prediction algorithm it was important to realize how the 

target group was similar to or different from a non-disabled group of users.  Murata’s 

[17] motivation for his vector based approach was an assumption that targeting 

movements tend to follow a straight line.  Oakley et al believe that adjustments made to 

the haptic effect while over the target object could increase performance.  Let us 

examine how each of these algorithms correlates to our target group. 

While Murata does not provide evidence to support his assumption, he was 

never the less correct to a point. To understand what is meant by “correct to a point” 

there must be a distinguishing of movement types.  During a normal targeting task there 

are typically two types of movement, targeting and corrective.  Targeting movements 

are designed to move the user from distance to the target in one relatively long 

movement (ID > 3).  Corrective movements are typically very short (ID < 3) 

movements meant to compensate for over or undershoot of the desired target object and 

can be ballistic in nature [26].  According to the data collected during this research the 

majority of targeting movements are straight lines (radius of curvature > 50 [12]), while 

corrective movements are a mixture of both straight and curved movements (varying 

radius of curvature > 50).  If Murata’s algorithm depends on straight line movement it 
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should be effective for targeting movements, but will lose accuracy during corrective 

movements. 

Oakley et al [20] describe an algorithm that adjusts haptic effect strength based 

on instantaneous movement data collected while over objects in the environment, 

mainly increasing haptic effect when clicking begins.  One major difference between 

the target group and non-disabled individuals is the ability to make the clicking motion 

without causing a spasm.  Therefore, it was not considered a good fit for our prediction 

algorithm, however the idea of modifying the strength of the haptic effect while over 

the an object based on instantaneous data still makes sense for our research, and will be 

discussed in the next section. 

3.2.2 The Algorithm 

After careful consideration it was determined a two phased approach to 

prediction would be taken.  The prediction algorithm behaves similarly to the Murata 

algorithm at distance and similarly to the Oakley algorithm once within a cluster of 

objects.  As mentioned previously both algorithms were not complete or perfect fits for 

our target groups so modifications have been made to each in order to maximize the 

potential of success. 

3.2.2.1 At a Distance 

The Murata algorithm with non-disabled users resulted in relatively high 

prediction accuracy, above 80%, for one column of objects with distances between them 

above 10 pixels.  However, the algorithm lacks a robustness required for deployment in 

a realistic environment.  In addition to the assumption that all movement will be 
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relatively straight it cannot distinguish between two targets along the same angle.  It is 

necessary for the algorithm to be able to distinguish distance as well as angle to the 

target in a multi-column environment.  It is also a concern that the target group this 

algorithm is intended for use with does not display movements toward the target on a 

consistent basis; some contingency should be in place. 

The algorithm designed for this research first looks for patterns in movement 

that indicate targeting movements and then segregates those movements for the 

construction of likelihood models.  The models are used to estimate the likelihood of 

the current movement being a targeting move based on velocity, curvature, and 

directional data collected during the training condition.  The models are custom made 

specifically for the individual performing the targeting task to account for the variability 

believed to exist between target group individuals. 

To achieve a robust prediction, training of the algorithm is required and 

probabilities are used to make decisions about prediction and haptic effect application.  

Training of the data occurred in the non-haptic condition of the experiment, which will 

be described later.  It is sufficient right now to mention that there are multiple 

conditions to the experimental interface, one of which asks the subject to select known 

targets without the benefit of haptic interaction.  Movement data collected from the non-

haptic condition is segregated into targeting and corrective movements.   

Movement segregation is achieved by simply looking for increases in average 

velocity across 5 readings (50ms) of more than 60% to identify the beginning of a new 

movement and decreases in velocity of more than 60% to indicate the end of a 
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movement.  A minimum value of .5 pixels/ms was placed on the gross average 

velocities to reduce the sensitivity of the readings.  The values used were extracted from 

the data collected during the first two pilot studies.  In all cases, including the final 

experiment with the target group, this methodology has been successful in separating 

the movements.  It was determined from the data collected during the first two pilot 

studies that the first movement with velocity greater than 2 pixels/ms was a targeting 

movement.  Training takes place on the first targeting move of each task. 

The segregated and smoothed targeting movements were transformed into 3 

different model components which together form a model of a characteristic targeting 

move.  The models are constructed in phase space to eliminate the effect of delayed 

movement onset or target selection, and normalized over the movement distance to 

allow for a uniform model for varying target distances.  The underlying assumption, 

verified in the previous pilot studies, was that movement direction did not significantly 

affect the characteristics of a particular user.  The 3 model components represent the 

velocity, curvature, and directional characteristics of the targeting movement, 

respectively, and are then used to probabilistically evaluate the likelihood that a 

particular object in the GUI is the target of the current mouse movement.  The models 

are represented as follows: 

o The velocity model is represented by:  

o an average normalized velocity profile in phase space (represented by a 

sequence of distance/velocity pairs  {(d1=0, ν1), (d2, ν2), …(dn=1, νn)}),  
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o a corresponding variance model for the normalized velocity profiles 

(represented by a sequence of distance/variance pairs {(d1=0, σ2
v1), (d2, 

σ2
v2), … (dn=1, σ2

vn)}),  

o and a distribution of velocity scaling parameters (represented by a mean 

scaling parameter (mean peak velocity) sν, and corresponding variance 

σ2
sν). 

o A curvature model represented by: 

o  an average normalized curvature profile in phase space ({(d1=0, c1), (d2, 

c2), … (dn=1, cn)})  

o and a corresponding variance model for the normalized curvature 

profiles ({(d1=0, σ2
c1), (d2, σ2

c2), … (dn=1, σ2
cn)}). 

o A direction model represented by:  

o a distribution of angles (∟i) between the (known) target direction and 

the mouse movement vector (represented by an average difference angle 

Ф and a corresponding variance σ2
Φ). 

Assuming that deviations in movement velocity and curvatures are normally distributed, 

the above models represent a probability distribution for the targeting velocity and 

curvature for each current movement at distance di and the probability density for an 

observed normalized velocity of νj is the value of the Gaussian distribution of νj at di: 

(3.1) )()( 2, jvj vGvP
ivi σ=  

Similarly, the probability density for a curvature cj at di is given by 
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(3.2)  )()(
ic

2, jcj cGcP
i σ=  

And the density for an angle ∟j is given by 

(3.3) )()(
i

2, jj
i

GP ∠=∠
ΦΦ σ  

Given this set of probability distributions the likelihood of a given movement by the 

user being directed at a particular target can be computed using the smoothed partial 

current movement given as a time sequence of velocities, curvatures, and directions pcur 

= {(t1=0, pν1), (t2, pν2), … (tk, pνk)}, {(t1=0, pc1), (t2, pc2), … (tk, pck)}, {(t1=0, θ1), (t2, 

θ2), … (tk, θk)}.  Since the distance to each target is known, the velocity and curvature 

components can be converted into phase space and distances normalized.  This results 

in the normalized partial sequences {(d1=0, pν1), (d2/d, pν2), … (dk/d, pνk)} and {(d1=0, 

pc1), (d2/d, pc2), … (dk/d, pck)} for each target at distance d. Now it is possible to 

compute for each of the velocity scaling factors psν the likelihood that the observed 

partial targeting movement could belong to each target T. 
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Given this, the maximum likelihood of the observed partial movement to belong to a 

given target can be determined as the maximum likelihood for this target over all 

velocity scaling factors: 

(3.5) ),(max)( vcurTpscurT pspPpP
v

=  



 

 53

The best predicted target is simply the one with the highest probability.  For the 

following experiment (presented in Chapter 4), the assumption was made that the haptic 

prediction condition should always use the prediction, independent of the likelihood 

value.  The main reason for this is that the previous experiments did not allow for the 

determination of the amount of benefit a correct prediction had and the amount of 

detriment from incorrect predictions.  In Section 4.3.2.2, we will discuss and analyze an 

additional decision criterion that could be used to determine if a prediction should be 

made.  Once a prediction is made, it is used to attach a spring effect to the predicted 

target.  Once within close proximity to the objects in the environment control is turned 

over to another algorithm, described in the next section. 

3.2.2.2 Close Proximity 

One hundred percent accuracy in an algorithm predicting GUI targets in a 

desktop interface may one day be achievable but at this time is not a realistic goal.  

Therefore, in any prediction algorithm, especially one that applies haptic forces, there 

should be some contingency planned for wrong predictions. 

The prediction algorithm described above trains itself on targeting moves and 

requires a five reading window (50ms) at a minimum before it can begin to make a 

prediction of the intended target.  Corrective movements are typically shorter 

movements (ID<3) some lasting less than 100ms.  It was felt that given the duration of 

corrective movements a different algorithm should be used for predicting targets that 

are in close proximity to the cursor.  Considering objects in this environment were 38 

pixels in width and spaced 38 pixels apart, control was turned over to a close proximity 
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algorithm when the cursor was within 38 pixels of an object.  This guarantees the 

algorithm to run as long as the subject is within the cluster of objects.  This portion of 

the algorithm adjusts the haptic effects based on three criteria: velocity, acceleration, 

and distance from an object. Full discussion about these effects can be found in the pilot 

study chapter (Chapter 2) of this document. 

o Velocity over 1 pixel/ms results in the damper effect alone being applied, at full 

strength. 

o Positive acceleration results in proportionally weaker ellipse and spring effects, 

while negative acceleration results in proportionally stronger effects reaching 

their maximum at 0 pixels/ms. 

o Distance from the target of more than 19 pixels results in the haptic effects 

changing focus to the next closest target to the cursor. 

The values used in this algorithm were derived from numbers observed during the pilot 

studies.  Since the majority of the data in the pilot studies was collected from non-

disabled individuals it would be possible to readjust these values based on the data 

collected from the target group individuals during the final experiment to improve 

performance. 

3.3 Prediction Summary 

A two phased approach to prediction was developed.  The first phase of the algorithm 

assists the user in moving to the general area of the predicted target and the second 

phase of the algorithm attempts to make navigation through the cluster of haptically 

enhanced objects as easy as possible while still assisting them while over the target.  
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Results of the prediction algorithm are reported with the analysis of the final 

experiment.
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CHAPTER 4 

EXPERIMENT: A DESKTOP ENVIRONMENT FOR THE DISABLED 

 

The culmination of the four pilot studies is a simulated desktop environment 

capable of providing haptic enhancement to the targeting tasks of individuals with 

motor function disabilities.  Each subject experienced multiple columns and rows of 

objects, compound haptic effects, and a prediction algorithm.  A description of the 

experiment and analysis of the data collected follows. 

4.1 The Target Group 

While the original intention of this research was not to focus on a particular 

group of disabled individuals but rather a particular disability, the reality of the data 

collection process led to data being gathered from only one group of disabled 

individuals.  Twenty-three individuals from United Cerebral Palsy of Alabama of 

varying degrees of physical disability participated in this research, with nineteen of 

them completing the experiment. 

Cerebral Palsy describes a range of non-progressive neurological disorders that 

cause disability in movement and posture affecting approximately 500,000 individuals 

in the United States [6].  Cerebral Palsy is divided into four classifications based on 

how the disability effects movements which is usually directly related to the area of the 

brain damaged. 
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Spastic is by far the most common form of movement disability, affecting 70-

80% of all individuals with Cerebral Palsy.  Spasticity refers to a condition where 

certain muscles are continuously contracted.  They typically display tightness of the 

musculature and have a neuromuscular condition stemming from damage to the 

corticospinal tract, motor cortex, or pyramidal tract affecting the nervous system’s 

ability to process amino butyric acid at the locations of the spastic activity.  Spastic 

Cerebral Palsy is further classified by region of the body affected.  Spastic hemiplegia 

causes one side of the body to display limited functionality due to spasticity.  Spastic 

diplegia affects the entire body of the individual but more so in the lower extremities 

resulting in overall weakness of the muscles.  In addition people with Spastic diplegia 

commonly display strabismus (crossed eyes) due to a lack of strength in the muscles 

controlling the eyes.  Spastic Quadriplegia refers to individuals with the entire body 

affected equally by muscle weakness.  Individuals displaying Spastic Quadriplegia are 

sometimes affected by uncontrollable shaking in the limbs on one side of the body. 

Ataxia affects approximately 10% of those with Cerebral Palsy as a result of damage to 

the cerebellum.  Individuals with ataxia typically display hypotonia and tremors.  

Athetoid is used to refer to individuals displaying mixed muscle tone, both hypertonia 

and hypotonia, due to damage to the extrapyramidal motor system and/or pyramidal 

tract and to the basal ganglia.  About 25% of individuals with Cerebral Palsy display 

Athetoid.  Individuals with Athetoid are also known to display tremor.  The fourth and 

final form is a mixture of the previous three. [4] 
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A study performed at Sofia University’s Special hospital for residential 

treatment of prolonged therapy and rehabilitation of children with cerebral palsy found 

that for children with Cerebral Palsy and other motor disabilities the mouse is the 

preferred input device.  Ivanov et al found that for children with these disabilities the 

benefits of using a mouse include [13]: 

o Handicapped children are enabled to work with the same equipment as the 

healthy children and thus they don’t feel different. 

o The mouse is configurable and comes with many options. 

o The mouse is preferred to the track-ball because the hand position when using 

the mouse allows them to use the surface on which the mouse rests to steady 

movements. 

o The mouse is preferred to the Joystick due to difficulties in spatial orientation 

due to disability and the three-dimensional movement of the Joystick. 

The difficulties in using a mouse were identified as: 

o Most children can not distance themselves from the mouse and believe the 

mouse pad defines the boundaries of movement. 

o Due to visual thinking deficits most of the children can not make the connection 

that moving the mouse on the mouse pad corresponds to moving the cursor on 

the screen. 

o The disability makes it difficult to keep the cursor in one position on the screen. 

o Combinations of tasks such as clicking and dragging are difficult. 
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As a solution to these difficulties we suggest the Wingman™ be used.  The 

mouse operates within a fixed area so the first issue actually becomes true.  While the 

second issue is one of training, the use of haptics can assist in that training process.  

Different haptic effects can be employed to hold the cursor in place over targets and 

provide additional support to the hand for stability.  The final issue is one which we 

observed in our own research, the solution to which might be a more accessible mouse 

which contains a more accessible button and straps for the hand. 

Research centered on steadying of tremor and spasm has found resistance to be 

beneficial in the suppression of tremor and spasm.  Abbot et al studied the effect of 

resistance on fine motor movements in non-disabled users and found that increases in 

performance were achievable given resistance.  In an article published in 1992, MIT 

researchers report up to 80% reduction in tremors and spastic movement when 

resistance is applied to the arms of individuals with disabilities displaying those 

symptoms [24].  In addition to the applications in research, there are an abundance of 

devices designed to add resistance to the activities of these individuals, and it is well 

within the range of haptic effects for the haptic mouse to provide such resistance. 

One realization made during this research is that within a group of disabled 

individuals with the same disability there can be significant differences.  As described 

earlier, the number and variability of the neurological abnormalities makes every 

disabled individual unique.  This is an issue that will be discussed later when describing 

the construction of the prediction algorithm and difficulties experienced with respect to 
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the results. However, these individuals are trying to interface with the computer often 

using one of the standard input devices, with a desire to use a mouse. 

4.2 The Experimental Interface 

For this experiment the test environment consisted of a Pentium based computer 

running Windows XP, a Wingman™ mouse and a 17” monitor set to a resolution of 

1152 by 864 pixels.  The subjects were asked too sit in front of the computer and were 

given a brief explanation about the experiment, informing them of what to expect from 

the mouse and the interface to help eliminate any surprises.  The test subjects were 23 

disabled individuals from United Cerebral Palsy of Mobile Alabama and ranged in age 

from 17 to 54.  

Two similar interfaces are used for data collection and each is comprised of a 

GUI frame containing 30 (38 pixel) circular objects arranged in 3 columns of 10 rows 

on the left side of the frame, a message area centered at the top of the frame, and either 

a column of 3 equally spaced trash can icons on the right side of the screen or one 

trashcan icon in the bottom right corner, as depicted in Figure 4.1.  Figure 4.1 a) depicts 

the interface used in the first three conditions of the experiment and contains 30 objects 

on the left and 3 trash can icons on the right.  Figure 4.1 b) depicts the interface used in 

the final two conditions and consists of 30 objects on the left and one trash can icon on 

the right.  Each target object is selected from the 30 objects on the left of the interface.   
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Figure 4.1 Data collection interfaces 

a) Conditions 1, 2, and 3 b) Conditions 4 and 5 
 

The subjects participated in five similar GUI interfaces, each with a different 

haptic condition or task set.  The interface was constructed using Java 1.5 and the 

Touch Sense Developer Toolkit from Immersion Corporation.  Two of the conditions 

have no haptic enhancement and serve as controls for the experiment.  For the first three 

conditions the interface indicates the target to be selected by a change in color of the 

target.  In the second condition the haptic effect is applied to the known target object, 

while in condition three the prediction algorithm applies the haptic effect simulating an 

unknown target object.  The final two conditions do not direct the subject as to which 

object they should select.  The five conditions consist of: 

1. Condition 1: Directed targeting with no haptic effect. 

2. Condition 2: Directed targeting, known target, with compound haptic effect. 

3. Condition 3: Directed targeting, unknown target, compound haptic effect 

applied by prediction algorithm.  

4. Condition 4: Undirected targeting, unknown target, no haptic effect. 

5. Condition 5: Undirected targeting, unknown target, compound haptic effect 

applied by prediction algorithm. 



 

 62

Each experiment presents the conditions in such a way as to reflect the training involved 

while still varying some of the conditions to mitigate artifacts introduced by subject 

learning.  Condition 1 serves as the prediction algorithm training condition but can be 

presented as either the first or second condition.  Condition 2 can be presented as either 

the first or second condition.  Condition 3 is always presented as the third condition.  

Condition 4 and Condition 5 can be presented as either the 4th or 5th condition.  The 

presentation order for either Conditions 1 and 2 or Conditions 4 and 5 is determined 

randomly between trials. 

 

 
Figure 4.2 Compound Haptic effect 

 

The compound haptic effect is composed of three different individual haptic 

effects, as seen in Figure 4.2.  The spring effect drags the cursor toward the target and is 

intended to assist the user in navigating to the target and once there to remain on top of 

that target. The damper effect introduces resistance throughout the environment and is 

intended to assist the subject in self steadying to reduce spasms and tremors. The ellipse 
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effect creates a boundary around the target which is easy to enter but difficult to leave 

and is intended to keep the user over the object as the clicking motion progresses.  A 

fourth effect was studied, the funnel, however the added complexity of managing a 

fourth haptic effect outweighed the possible benefits it may have provided.  The 

strength of each of these effects can be varied from 0, indicating no force, to 10000 

indicating maximum force.  When applied during Condition 2 all forces are set to 

maximum and applied to the known target object.  For Conditions 3 and 5 the force 

from each effect is varied according to the phase of the prediction algorithm. 

The interface for Conditions 1-3 consists of thirty possible locations for target 

objects and three possible trashcan icons, each of a different color.  Each time a new 

target is created in the interface it would match one of the randomly chosen trashcan 

colors.  The subject is asked to find the matching trashcan color, click it, and then select 

the target.  A message box at the top of the screen indicates where the subject is in the 

selection process.  Movement time is measured from selection of the trashcan to 

selection of the target.  Subjects are asked to emphasize accuracy over speed [8].  The 

subject completes four trials of 20 targets each with a different haptic effect for each 

trial. 

The only differences between Conditions 1, 2, and 3 is in how the haptic effects 

are applied.  For Condition 1 there are no haptic effects applied.  For Condition 2 the 

full force of all three haptic effects is applied to the target object.  Application of the 

haptic effects for Condition 3 varied according to the phase of the prediction algorithm 

and behavior of the subject. 
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The interface for Conditions 4 and 5 consists of 30 possible locations for target 

objects at the start of each trial and one trashcan icon.  The subject is asked to complete 

20 targeting tasks of their choice with the restriction that objects selected on the left of 

the screen should be moved to the right.  The trashcan icon on the lower right of the 

environment also behaves like a typical trashcan found on a GUI desktop.  Icons 

dragged and dropped on top the trashcan icon disappear from the environment until the 

next trial.  Movement times are recorded from mouse release to mouse click and capture 

the entire task performed.  For Condition 4 there was no haptic effect provided and for 

Condition 5 the haptic effects were applied via the prediction algorithm. 

4.3 Results and conclusions 

In order to evaluate the results of this research it is important to understand the 

three variables influencing them.  The first variable to study is the haptic effect and how 

it affects MT, error rates, and smoothness of movement.  The second variable is target 

group dynamics, i.e. how different is the target group from people without disabilities 

and how different are they from each other.  Finally the prediction algorithm is a 

variable which must be evaluated, how well did it perform and can it be improved.  The 

remainder of this chapter is an evaluation of how each of these variables affects 

targeting performance in a haptic user interface. 

4.3.1 Performance 

Since Fitts first described his targeting experiments in the 1950’s two measures 

of performance have been the basis for most evaluation of input devices, movement 

time and error rate.  As the results of the second pilot study confirm, isolation and 
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capture of targeting movements must be done in a highly structured environment. 

Because Conditions 3 and 4 are not structured in the same way as the other conditions, 

Conditions 1 (Control), 2 (Haptic), and 3 (Haptic(p)) will be compared to one another 

and Conditions 4 (Free) and 5 (Free(p)) compared, but no comparison between either 

Conditions 4 or 5 will be made to Conditions 1, 2, or 3. 

Movement time for the Control, Haptic, and Haptic(p) conditions is measured 

from the time the subject clicks the trashcan until the selection of the color indicated 

target.  Average MT is reported for all three conditions in Table 4.1. 

 

Table 4.1 Average movement time (s) 
  Control Haptic Haptic(P) Free Free(p)

Ave MT(s) 6.33 2.48 5.91 4.80 3.14 
 

The average MT for the Haptic condition is nearly one third the value of the Control 

condition, however standard statistical analysis of the data results in no significant 

difference detected between either of the conditions and the Control condition.  To 

investigate why the significance tests were not able to detect what looked to be a clearly 

significant difference between movement times, f-tests were conducted for each of the 

experimental conditions and the Control condition to determine if the variances were 

the same. When the conditions were compared a significant difference was found 

between the Haptic condition variances and the Control condition variances (P(F<=f) = 

2.92*10-13) and a significant difference was found between the Haptic(p) condition 

variances and the Control condition variances (P(F<=f) = 0.03).  Given the significant 

differences between variances it was determined that Log10 data transformation [21] 
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would be needed to normalize all the values.  After data transformation, significantly 

lower MTs were found for the Haptic condition when compared to the Control (P(T<=t) 

= 0.002), however no significant difference was found between the Haptic(p) and the 

Control conditions (P(T<=t) = 0.14). 

The average movement times are reported in Table 4.1 and significance testing 

between groups was applied.  The results of the significance tests found the Haptic 

condition to result in significantly lower MTs than in the control condition.  Based on 

the pilot studies this result was not a surprise, the spring effect, which was part of the 

compound effect used in the experiment, consistently resulted in lower average MTs for 

individuals.  Not only was there a significant improvement but the average is a 60% 

improvement in average MT.  The average MT for the Haptic(p) condition did not show 

any significant difference from the control condition, however average MT was lower 

than the control by about half a second.  Given the prediction algorithm was an 

unknown going into the experiment it was not surprising to see only slightly lower 

average MTs for the Haptic(p) condition, and discussion about that will follow later in 

the document.  For the Free and Free(p) conditions there was no significant difference 

found between them although the Free(p) condition mean MT was 1.66s lower than the 

Free MT.  The lower MTs in the Free(p) condition could be due to training on the 

prediction algorithm (which will be discussed later) or due simply to the subject 

allowing it to choose the target. 

Errors recorded as mouse clicks not over the target were recorded and averages 

computed.  The results are reported in Table 4.2. 
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Table 4.2 Average error 
  Control Haptic Haptic(P) Free Free(p)

Ave Error 4.89 2.42 3.75 5.58 3.47 
 

Significance testing of the Haptic condition and the Control condition found 

significantly fewer errors in the Haptic condition than in the Control (P(T<=t) = 0.01), 

however no significance was found between the Haptic(p) condition and the Control 

condition (P(T<=t) = 0.19). 

The average error was computed as the average number of clicks not on the 

indicated target.  For the Haptic condition there were significantly fewer errors per 

targeting movement than in the Control.  Once again this is not a surprising result, the 

data from the pilot studies showed significantly fewer errors for nearly every haptic 

effect evaluated.  The average errors for the Haptic(p) condition was not found to be 

significantly lower than the Control, however the mean was 1.4 errors lower than the 

Control.  Given the slightly higher average error than found in the Haptic condition it is 

possible there was some aspect of the Haptic(p) condition causing the user to err, or 

possibly the condition was just not as effective at reducing error as the Haptic condition.  

To determine if the higher error rate is due to prediction a study of errors during correct 

predictions vs. wrong predictions could be done.  If the higher error rate remains in the 

correctly predicted targets then it is possible effect application could be to blame.  The 

Free(p) condition had significantly fewer errors than the Free condition, however it was 

almost identical to the error rate from the Haptic(p) condition.  This means that for at 
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least some tasks on a desktop the prediction algorithm significantly improved error rate 

over no prediction. 

Peaks in velocity were collected and averaged to study the smoothness of the 

targeting movements.  Velocities higher than 2 pixels/ms were considered to be peaks in 

velocity.  This number was experimentally derived as the average of the highest 

velocity per movement during the pilot studies.  Average velocity peaks are reported in 

Table 4.3. 

 

Table 4.3 Average Velocity Peaks 
  Control Haptic Haptic(P) Free Free(p) 

Ave Velocity Peaks 2.80 2.08 5.33 2.07 3.54 
 

 

Significance testing of the data reveals significantly fewer velocity peaks in the Haptic 

condition when compared to the Control condition (P(T<=t) = 0.006).  Significance 

testing of the Haptic(p) condition compared to the Control condition show significantly 

fewer velocity peaks associated with the Control condition (P(T<=t) = 5.29*10-07). 

The average number of peaks per movement from Table 4.3 showed a 

significantly lower number of peaks in the Haptic condition.  Since the compound effect 

contains the damper, it is not surprising to see a decrease in peaks.  During the pilot 

study it nearly eliminated peaks in movement.  What was surprising was the 

significantly higher number of movement peaks seen in the Haptic(p) condition.  Since 

the damper effect was consistently on to provide pressure to the subject it would be 

expected the average peaks would be fewer.  It is possible the higher number of peaks is 
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due to wrong predictions and the user fighting against the haptic effects that are 

attempting to hold them in place.  This could be determined by looking at the average 

peak movements during correct prediction compared to those during wrong predictions.  

There was also a significant increase in average movement peaks in the Free(p) 

condition, probably from the same phenomenon that caused them in the Haptic(p) 

condition. 

Significance testing between the Free and Free(p) conditions reveals no 

significant difference between the MT (P(T<=t) = 0.17), a significant decrease in error 

rate for the Free(p) condition (P(T<=t) = 0.002), and a significant increase in velocity 

peaks for the Free(p) condition (P(T<=t) = 2.06*10-07).  From this point forward the 

Free and Free(p) conditions will only be addressed were relevant, the nature of the data 

collection for these conditions does not allow for meaningful pairing of the data for 

direct comparison. 

4.3.1.1 Groups and Individuals 

Given the mixed results from the significance testing and higher than expected 

variances, a closer look at individual performance during the experiment seems 

necessary to determine if and where the Haptic and Haptic(p) conditions were more or 

less effective. 

Using the average MT and ID values from Pilot Study 3 the average MT for the 

Control condition at average ID of 6.02 was computed to be 1.613s.  The subjects where 

then separated based on Control condition average MT into two groups, those less than 

4 times the expected average (group 1) and those greater than 4 times the expected 
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average (group 2).  The average MTs for each group under each condition are displayed 

in Table 4.4. 

Table 4.4 Ave MT grouped 
 Ave MT (s) Grouped by Control Condition Performance 
 Group 1 (Control MT < 6.455) Group 2 (Control MT > 6.455) 

Control 3.009 24.063 
Haptic 2.511 3.740 

Haptic(p) 6.191 18.727 
 

The first significance test compares the two groups within each condition to determine 

if these groups perform significantly different from each other.  Significantly lower MTs 

were found in group 1 when compared to those in group 2 for both the Control 

(P(T<=t) = 0.03) and Haptic(p) (P(T<=t) = 0.02) conditions.  However no significant 

difference was found within the Haptic condition between the two groups. 

The probability values for each haptic condition comparison to the Control 

condition separated by group can be found in Table 4.5. 

 

Table 4.5 Within group probabilities 
 (P(T<=t) group 1 group 2
Haptic 0.0003 0.07 

Haptic(p) 0.08 0.39 
 

From the data found in Table 4.5 the only significant difference is between the Haptic 

and Control conditions of group 1.  This group displays much lower average MTs in the 

Haptic condition than they do in the Control condition. 

In order to investigate the differences between groups the subjects were split 

into two groups based on average MT.  A metric was defined based on four times the 
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average expected MT for tasks of the same ID, as calculated using the data from Pilot 

Study 3, the results of this separation are listed in Table 4.4.  A significant difference 

was found between the two groups in the Control and Haptic(p) conditions but not in  

the Haptic condition.  What this means is that even though the groups are significantly 

different in disability, with the proper haptic effect application those differences can be 

overcome.  The only significance within the groups was found in the group 1 Haptic 

condition.  Given the extreme difference between the group 2 Control MT and Haptic 

MT, the group 2 control was 650% higher than the group 2 haptic, variability must have 

spoiled the test.  It even appears there is a significant difference in group 2 MT between 

the Control and Haptic(p) condition, 24.063s vs. 18.727s respectively.  The between 

and within group data shows the power of haptics by equalizing two significantly 

different groups.  Even if the Haptic(p) condition was significantly better than the 

Control, 18s is a very high average MT and probably too high to make mouse use 

reasonable for this group.  However, looking at the Haptic condition it is clear that if the 

effects could be fully realized, mouse use for group 2 would be attainable. 

Table 4.6 compares each individual’s performance in the Haptic and Haptic(p) 

conditions to their performance in the Control condition. 
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Table 4.6 Individual probabilities 
Ave MT Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 
Control 5244.97 4631.67 2777.03 1977.35 1627.25 
Haptic 2735.54 3423.57 1439.96 1897.50 1155.59 

Haptic(p) 5324.10 7363.87 2506.75 2048.61 2396.93 
P(T<=t)   
Haptic 0.011943 0.009556 0.000009 0.372888 0.001194 

Haptic(p) 0.482472 0.030918 0.178501 0.394143 0.029846 
      

Ave MT Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 
Control 2477.31 2819.51 4041.84 3750.01 2977.39 
Haptic 2194.77 2805.14 2742.95 1961.31 2031.17 

Haptic(p) 2906.93 2281.85 5177.77 2516.79 2784.89 
P(T<=t)   
Haptic 0.138970 0.489433 0.018221 0.011204 0.018849 

Haptic(p) 0.123858 0.040513 0.090453 0.055049 0.343390 
      

Ave MT Subject 11 Subject 12 Subject 13 Subject 14 Subject 15 
Control 2313.87 2580.32 2982.43 2923.63 2231.23 
Haptic 1382.96 1493.01 3200.31 2175.70 1369.75 

Haptic(p) 2954.69 2180.04 3389.88 2597.45 2889.44 
P(T<=t)   
Haptic 0.000008 0.000047 0.334867 0.044511 0.001330 

Haptic(p) 0.021266 0.084381 0.115528 0.205632 0.102007 
      

Ave MT Subject 16 Subject 17 Subject 18 Subject 19   
Control 2794.79 10061.76 50924.08 11203.99   
Haptic 3929.15 6804.01 2444.48 1970.89   

Haptic(p) 6709.98 14132.99 31842.40 10205.77   
P(T<=t)   
Haptic 0.206948 0.011308 0.000053 0.0000002   

Haptic(p) 0.026858 0.095883 0.038334 0.312881   
 

In Table 4.6 bold values represent significant decreases in targeting time for the Haptic 

or Haptic(p) condition while bold and underlined values represent significant increases 

in targeting time.  Fourteen of the nineteen subjects experienced significant decreases in 

MT in the Haptic condition with no significant increases in MT observed.   Three of 

nineteen subjects experienced significant decreases in MT in the Haptic(p) condition 

while four of the nineteen subjects experienced significant increases in MT in the 

Haptic(p) condition. 
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The data for each individual per condition is listed in Table 4.6.  This data was 

separated to see what the effect on each individual was for each condition.  What was 

found was found was that fourteen subjects had significantly lower MTs from the 

Haptic condition, two had significantly lower MTs in the Haptic(p) condition, and four 

had significantly higher MTs in the Haptic(p) condition.  What this means is that almost 

everyone in the study benefited from the Haptic condition, and at least fifteen 

individuals saw significant decreases in MT or no effect at all in the Haptic(p) 

condition.  Given there is room for improvement in the prediction algorithm (as will be 

talked about shortly) it is encouraging to see these numbers. 

4.3.1.2 Fitts’ Law Model 

In order to better understand the relationships of ID and MT for the target group 

the average MT data for each distance is used to calculate the slope, intercept, and 

correlation coefficients used to calculate IP and IC.  Figure 4.3 shows the plot of MT to 

ID. 
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Figure 4.3 MT vs. ID plot 

 

 There are 28 different values of ID representing distances ranging from 880 

pixels to 1230 pixels.  The plot of the untransformed average MT data illustrates the 

variance issues that have plagued this data, in addition as the ID increases so does the 

variability of the data.  Slope, intercept, and correlation coefficients are reported in 

Table 4.7. 

 

Table 4.7 Slope (b), intercept (a), and correlation coefficient (r) 
  Control Haptic Haptic(P) 
b 5.213 1.357 6.862 
a -24.759 -5.245 -33.722 
r 0.25 0.21 0.22 

 

With intercept values ranging from -5.245 seconds to -33.722 seconds the variability of 

the data has resulted in Fitts’ Law coefficients that do not appear realistic.  In an attempt 

to fit this data into a Fitts’ Law model the Fitts’ coefficients were calculated again using 

the transformed data and results are reported in Table 4.8. 
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Table 4.8 Fitts’ coefficients transformed data 
  Control Haptic Haptic(P) 
b 0.0192 0.0130 0.0168 
a 0.108 0.550 0.250 
r 0.19 0.12 0.13 

 

 The result from the transformed MT data is reasonable however the intercepts for the 

Haptic and Haptic(p) conditions are still well above the expected value of 0 and the 

correlation coefficients indicate no linear relationship (r<.90).  If these results are 

correct, which will be talked about shortly, there is no linear relationship between task 

difficulty and MT as described by Fitts’ for the target group. 

The data was put into Fitts’ Law models and evaluated for correlation.  The 

result was flat slope, unreasonable intercepts, and low correlation.  However, I do not 

believe this means there is no Fitts’ relationship in this data; the number of ID points 

was so high (28) that there were probably not enough movements at each ID to create 

good averages.  This resulted in the skewed charts and data.  One possible solution 

would be to aggregate the ID values to create better averages and then analyze for 

correlation. 

4.3.2 Prediction Performance 

In this section the prediction algorithm is evaluated as well as each subject’s 

performance under the prediction algorithm.  The raw prediction data per individual is 

reported in Table 4.9.  Table 4.9 contains the following breakdown of the prediction 

numbers: 

o Ave Good – gives the average MT for good predictions 
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o Ave Bad – gives the average MT for bad predictions 

o P(T<=t) Good – probability that there is a difference in MT between a good 

prediction and the Control condition 

o P(T<=t) Bad – probability that there is a difference in MT between a bad 

prediction and the Control condition 

o Prediction % - gives the percentage of correct predictions for this subject 

 

Table 4.9 Prediction numbers 
 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Control 5.245 4.632 2.777 1.977 1.627 
Ave Good 2.015 2.862 2.232 1.788 1.418 
Ave Bad 5.529 7.249 3.130 2.115 2.585 

P(T<=t) Good 0.001288 0.000107 0.012164 0.280458 0.116857 
P(T<=t) Bad 0.436675 0.020857 0.249681 0.306672 0.021178 
Prediction % 15.00% 15.00% 45.00% 25.00% 20.00% 

      
 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 

Control 2.477 2.820 4.042 3.750 2.977 
Ave Good 2.117 2.030 2.076 2.079 1.746 
Ave Bad 3.463 2.387 4.348 2.854 3.009 

P(T<=t) Good 0.125463 0.011310 0.164017 0.016357 0.004839 
P(T<=t) Bad 0.029390 0.091404 0.210306 0.128075 0.472756 
Prediction % 40.00% 25.00% 5.00% 40.00% 15.00% 

      
 Subject 11 Subject 12 Subject 13 Subject 14 Subject 15 

Control 2.314 2.580 2.982 2.924 2.231 
Ave Good 1.371 1.724 2.862 1.746 1.703 
Ave Bad 3.243 2.199 3.842 2.748 3.579 

P(T<=t) Good 0.000725 0.001062 0.373939 0.002275 0.011378 
P(T<=t) Bad 0.001290 0.482479 0.021252 0.385654 0.025523 
Prediction % 10.00% 45.00% 40.00% 15.00% 35.00% 

      
 Subject 16 Subject 17 Subject 18 Subject 19  

Control 2.795 10.062 50.924 11.204  
Ave Good 3.491  5.686 6.820  
Ave Bad 8.470 13.494 31.769 9.217  

P(T<=t) Good 0.101189 0.237139 0.000098 0.001114  
P(T<=t) Bad 0.020815 0.104412 0.070809 0.347416  
Prediction % 35.00% 0.00% 10.00% 15.00%  
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The rate of correctly predicted targets is 23%, the average MT for correct 

predictions is 2.532s, and the average MT for wrong predictions is 4.238s.  Significance 

testing of the Control condition and the average MT of predictions shows a significant 

decrease in MT for correct predictions (P(T<=t) = 0.0002) and a significant increase in 

MT for wrong predictions (P(T<=t) = 0.04). 

The data is separated by subject and compares individual performance in the 

Control condition to good and bad prediction in the Haptic(p) condition.  Significantly 

lower average MTs than the Control are in bold and significantly higher average MTs 

are in bold and underlined.  Twelve of nineteen subjects have significantly lower MTs 

during a good prediction than in the Control condition, while seven of nineteen subjects 

have significantly higher MTs from bad predictions when compared to the Control. 

Table 4.9 contains the prediction data listing the raw prediction percentage, the 

good prediction average time and the bad prediction average time.  What this data can 

tell us is what the possible outcomes would be if we are able to increase the accuracy of 

the prediction algorithm.  Given the prediction rate of 23%, the performance of this 

prediction interface could be improved significantly if the number of incorrect 

predictions could be lowered.  The average MT from good prediction was found to be 

significantly lower than the Control condition MTs.  That means it is possible to 

increase performance to a significant level if prediction rate could be raised sufficiently.  

It was also found that bad predictions had significantly higher MTs than the Control.  So 

increased prediction rates should again decrease the MT.  It was also not surprising to 

find that for every individual with a significant difference in MT from bad predictions it 
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was for increases and for every individual with significant differences in good 

prediction MT they were for decreases in MT.  One other piece of data to look at in 

Table 4.9 is that the prediction rate depended on the individual.  Individual prediction 

percentages ranged from 0-45% with all the better predictions occurring with 

individuals of low average MT (~3s) while those with the largest Control condition MTs 

were the hardest to predict, probably due to the high variability of their movements. 

To further understand the performance of the prediction algorithm, average MT 

for the first 10 targeting moves of the Haptic(p) condition was compared to the average 

MT for the last 10 targeting moves of the Haptic(p) condition.  This was to determine if 

there was an initial distracting effect of the changing haptic effects encountered during 

the Haptic(p) condition due to changing prediction conditions, that was adjusted to by 

individuals over time.  What was found were significantly lower (P(T<=t) = 0.0004) 

MTs in the second half of the Haptic(p) condition.  Significance testing of the second 10 

MT averages to the Control condition did not show any difference between the groups 

(P(T<=t) = 0.36) even though the Haptic(p) mean (5.2s) was 1.06s lower than the 

Control mean (6.3s).  Nevertheless, this suggests that the users adjusted to the 

prediction algorithm and learned to ignore its distracting characteristics and to utilize it 

to their advantage.  There is no indication, however, as to how much training with the 

prediction algorithm could improve MTs. 

Evaluation of the prediction algorithm would not be complete without looking 

at the area around the target to see if the prediction algorithm got the subject within the 

vicinity of the target (if not on the target).  This can also be interpreted as asking how 
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much the prediction accuracy would have improved had the targets been placed further 

apart.  Table 4.10 lists the prediction times and percentages by prediction proximity to 

the target. 

 

Table 4.10 Prediction zones 
  Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Pred % 15.00% 15.00% 45.00% 25.00% 20.00% 
Pred MT 1st zone 7657 6451 2526 2069 3058 
Pred % 1st zone 35.00% 45.00% 60.00% 55.00% 45.00% 

1st P(T<=t) 0.273010 0.122990 0.209578 0.366284 0.034783 
Pred MT 2nd zone 5670 5746 2604 1961 2776 
Pred % 2nd zone 65.00% 60.00% 65.00% 85.00% 65.00% 

2nd P(T<=t) 0.424760 0.179576 0.286796 0.473602 0.022609 
      
  Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 

Pred % 40.00% 25.00% 5.00% 40.00% 15.00% 
Pred MT 1st zone 2517 2547 5338 2394 2751 
Pred % 1st zone 60.00% 50.00% 25.00% 60.00% 40.00% 

1st P(T<=t) 0.460106 0.217994 0.269710 0.041985 0.366519 
Pred MT 2nd zone 2664 2307 4754 2390 2769 
Pred % 2nd zone 95.00% 70.00% 40.00% 80.00% 55.00% 

2nd P(T<=t) 0.117109 0.057998 0.295348 0.038574 0.353871 
      
  Subject 11 Subject 12 Subject 13 Subject 14 Subject 15 

Pred % 10.00% 45.00% 40.00% 15.00% 35.00% 
Pred MT 1st zone 2417 1842 3315 2439 2933 
Pred % 1st zone 15.00% 80.00% 65.00% 65.00% 65.00% 

1st P(T<=t) 0.465381 0.062843 0.199001 0.125876 0.138003 
Pred MT 2nd zone 2699 2193 3342 2523 2432 
Pred % 2nd zone 30.00% 85.00% 80.00% 85.00% 95.00% 

2nd P(T<=t) 0.242465 0.090859 0.149555 0.160010 0.173753 
      
  Subject 16 Subject 17 Subject 18 Subject 19 Ave 

Pred % 35.00% 0.00% 10.00% 15.00% 23.68% 
Pred MT 1st zone 3472 12999 21741 7414 5046 
Pred % 1st zone 60.00% 15.00% 40.00% 30.00% 47.89% 

1st P(T<=t) 0.080936 0.370279 0.083407 0.002636   
Pred MT 2nd zone 6110 11507 30934 7802 5431 
Pred % 2nd zone 80.00% 30.00% 45.00% 35.00% 65.53% 

2nd P(T<=t) 0.054964 0.363071 0.052453 0.006472   
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Table 4.10 shows the prediction percentages for three size target areas of three, 

the associated average MT, and the significant difference between the prediction 

average MT and the Control condition average MT.  Probabilities in bold represent 

predictions with significantly lower MT.  There are no significantly higher average MTs 

for these three zones of prediction. 

The three zones of prediction include the one over the target, one within at least 

one object of the target (1st zone), and one within at least two objects of the target (2nd 

zone).  For predictions within one object of the target (47%) there are no significantly 

higher MTs for any subject, however only three subjects recorded significantly lower 

MTs when compared to the Control.  For predictions within two objects of the target 

(65%) there remain no significantly higher MTs for any subject and there are six 

subjects experiencing significantly lower MTs when compared to the Control. 

While a 23% prediction rate is not ideal, it is important to understand the 

accuracy of the prediction in relation to the environment.  To study this, the predictions 

were grouped by those within one object of the actual target and then within 2 objects of 

the target.  The most striking information from Table 4.10 is the fact that none of the 

individuals had significantly higher MTs if the target was predicted within two objects 

of the target and three individuals had significantly lower MTs than the Control.  With 

65% accuracy of at least doing no harm it has given a much larger area to aim for with 

the prediction.  It seems as long as all the predictions can be made within two objects of 

the target no significant increases in MT will be present.  One strange data point was 

that the predictions within two objects had more significantly lower MTs for individuals 
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than the predictions that miss by one object.  This is probably due to the prediction 

algorithm over the target attempting to hold the user in place.  When they pull away 

from the wrong prediction a slingshot effect would probably cause them to shoot past 

the closer objects onto the next.  If the prediction algorithm over the targets could be 

tweaked to cause less slingshot the within one object prediction times may greatly 

improve. 

Finally, Table 4.11 lists the prediction percentages by target. 

 

Table 4.11 Prediction percentages per object 
Object Percentage Object Percentage Object Percentage Average 

0 0.00% 10 20.00% 20 45.45% 21.82% 
1 16.67% 11 25.00% 21 14.29% 18.65% 
2 7.69% 12 15.38% 22 10.00% 11.03% 
3 11.11% 13 7.69% 23 27.27% 15.36% 
4 25.00% 14 16.67% 24 38.89% 26.85% 
5 9.09% 15 0.00% 25 66.67% 25.25% 
6 26.67% 16 27.27% 26 46.67% 33.54% 
7 18.18% 17 0.00% 27 50.00% 22.73% 
8 7.14% 18 23.08% 28 38.46% 22.89% 
9 18.18% 19 22.22% 29 90.00% 43.47% 

Average 13.97%  15.73%  42.77%  
 

The front column of objects has a much higher prediction percentage than the other two 

columns.  There also appears to be a dip in predictability in the upper left corner of the 

cluster of objects.  A scatter plot is included to help illustrate the differences in 

prediction accuracy due to location in the cluster of objects. 

Prediction percentages per target were categorized in Table 4.11.  The reason 

this was done was to see if there was something about the environment that affected 

prediction percentage.  It is clear the front row of the cluster was predicted at a much 

higher rate than the back or middle rows.  What caused this may have been an artifact of 
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Figure 4.4 Prediction percentages per object 

 

training of the prediction algorithm on the Control condition while the haptic effects 

were influencing movement in the prediction condition.  If the application of the haptic 

effect changed the profile of the user in such a way that there was always undershoot of 

the prediction, the first row would end up being favored over the other two more distant 

rows.  In the end it is hard to tell what caused this phenomenon, but it is definitely 

something to consider when revising the algorithm. 

4.3.2.1 Murata comparison 

To better understand how the prediction algorithm performed, a comparison to 

the Murata algorithm was performed.  Predictions were performed on both the Control 

and Haptic(p) conditions of the disabled group data collected during the final 

experiment.  Unlike in Murata’s original experiment, the prediction is made here after 
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the first 50ms of the targeting move to compare predictions over the same set of data as 

the results reported for the prediction algorithm used for this research. 

The first data to have the Murata algorithm applied to it was the Control 

condition of the final experiment with the disabled individuals.  The results where 

collected for correct predictions, predictions within one object, and predictions within 

two objects.  What was found was 6% correct target predictions, 36% within one of the 

target, and 60% within two of the target. The very low correct prediction percentage is 

probably due to targets on the two more distant columns being shielded by the closest 

column of objects.  The much higher within one and within two prediction percentages 

would seem to support the idea of the first column shielding the target from prediction. 

The data from the Haptic(p) condition of the final experiment with the disabled 

individuals had the Murata algorithm applied to it.  This data was collected to study 

how vector based prediction is affected by the application of haptic effects.  The results 

were 4% prediction on the target, 28% predicted within one of the target, and 49% 

predicted within two of the target. 

Given the much higher target prediction accuracy (23%) of the prediction 

algorithm developed in this research but about equal within one (47%) and within two 

(65%) accuracies it is reasonable to believe the algorithm used for this research is more 

effective at identifying targets within the cluster than a simple vector based algorithm.  

The within one and within two data supports the ability of the algorithm developed here 

to better predict targets within the cluster since the two algorithms perform about the 

same when considering the two zones.  Meaning both algorithms are equally effective at 



 

 84

getting the user to the area, just the one developed here is better at picking the correct 

one out of that area. 

The comparison of the Murata algorithm to the one developed here has 

identified some possible avenues to increase accuracy or at least efficiency of the 

algorithm described by this research.  The near equal within one and within two data for 

the experimental prediction algorithm when compared to the Murata algorithm would 

suggest it may not be necessary to compute the distance of the movement when 

predicting an area.  There are two components modeling vector angles in this research, 

one which is the difference in angle from the start location to each target and the other 

is a difference in angles between subsequent vectors.  Since both are components of the 

Murata algorithm and they have approximately the same success rate in predicting 

within one and within two it may be possible to remove the distance portion of the 

probability model during area predictions. 

It seems given the per-target prediction percentages detailed in Table 4.11 there 

was favoritism for the closest row of targets, something which should have been 

avoidable using the distance model.  However, once again the velocity model built 

during the control condition may have become disjoint from the movement data once 

haptic effects were applied.  If there was a fundamental shift toward slower movements, 

as might occur if the damper effect was applied, the model would favor closer targets 

resulting in regular undershoots in prediction distance.  As a solution to this problem the 

algorithm could be trained on haptic conditions and those models used once haptic 

effects are being applied in the environment. 
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4.3.2.2 Credibility 

Because the prediction algorithm described in this research uses probability 

models, it not only calculates a prediction but also provides an estimate of the 

reliability, or credibility of the prediction. In particular, using Bayes law, the prediction 

value from Equation 3.2 for all objects, it is possible to determine the likelihood with 

which the predicted target is the correct target under the assumption that all objects are 

equally likely and that the user is actually targeting one of the objects: 
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This value can in turn be used to make the decision when to apply haptic effects. 

To evaluate the reliability of this predicted accuracy value, its value was computed for 

correct, within one, and within two predictions.  Figure 4.5 contains the experimental 

relation between this credibility (predicted accuracy) and the probability of correct 

predictions for the given credibility values. To provide more stable numbers, the data is 

presented as a histogram over predicted likelihood intervals of width 0.1. 

Figure 4.5 contains the credibility for correct predictions. 

 



 

 86

0%

10%

20%

30%

40%

50%

60%

70%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Credability

P
er

ce
nt

 C
or

re
ct

 
Figure 4.5 Correct prediction accuracy vs. credibility 

 

From Figure 4.5 it is clear making a decision about when to apply haptic effects based 

on the predicted target could be beneficial.  At about 50% credibility the prediction 

accuracy greatly increases.  However, since 77% of the predictions were made below 

50% credibility that would mean throwing away most of the predictions, both good and 

bad. As a result, a simple decision to not make predictions when the predicted 

credibility of the prediction falls below 50% would not be beneficial but rather a more 

complex criterion would be needed that also takes into account within one and within 

two prediction accuracies since these did not show detrimental effects on MT. 

The credibilities for objects within one of the target are displayed in Figure 4.6. 
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Figure 4.6 Prediction accuracy vs. credibility for within one object of target 

 

The predicted credibilities for within one show a stronger effect than the ones for 

correct predictions.  There is a definite shift correlating credibility to correct 

predictions.  With the relatively high correct prediction rate for 40% credibility, the 

decision threshold could be lowered allowing for more predictions to be made.  If the 

threshold was 40% credibility, 36% of the time predictions would be made at 83% 

accuracy (within one of the target). 

The credibilities for the within two data is presented in Figure 4.7. 
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Figure 4.7 Prediction accuracy vs. credibility for within two objects of target 

 

The credibilities within two show very few correct predictions below 50% credibility.  

If the threshold for making predictions was set at 50% credibility then 81% of 

predictions would be made at 88% accuracy.  The results of these last two studies are 

very encouraging. 

While the target prediction rate remains relatively low (23%) for this prediction 

algorithm, as noted earlier, only predictions not within two objects of the target resulted 

in significantly higher MTs for any individual.  Given the data presented in this section 

here it is clear that if no haptic effects were applied when the predicted credibility for 

the target being within two of the actual target was lower than 50% almost all incorrect 

predictions for the within two target region could be eliminated.  This would remove 

most negative results of the application of haptic effects during wrong predictions, 

which could greatly improve the performance of the system. 
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The number of predictions made with low credibility for the correct prediction 

and within one prediction data makes the use of those credibilities, as a sole decision 

criterion, to reduce the effects of bad predictions less valuable.  However, what that data 

does reveal is a lower than expected correlation between the current movement and the 

prediction models.  This supports my belief that haptic effect applied during the 

prediction conditions caused a significant shift in movement profile.  Since the within 

two credibilities are very effective at segregating wrong from correct predictions and 

only discard 19% of the predictions it is possible to use these credibilities to reduce the 

number of detrimental predictions.  The within two credibilities are more effective in 

increasing performance because it throws away far fewer correct predictions than the 

within one credibilities and allows predictions to be made at a much higher percentage 

than the within one or on target credibilities. 

4.4 Summary 

With the data collected from 4 pilot studies, one of which contained target group 

members, as a guide an effective tool for evaluating performance in a haptic 

environment was created.  This tool was administered to twenty-three individuals 

displaying varying levels of motor disability, nineteen of which completed the 

experiment.  The results of the final experiment were mixed, mainly due to variability 

differences between and within subjects.  Evaluation of the prediction algorithm shows 

many positive indications that accuracy can be increased and the negative impact of 

wrong predictions reduced when attempting to apply haptic effects in an environment 

where the target object is not a know quantity.  A deeper understanding of the target 



 

 90

group should allow modifications to the methodology and algorithms used during this 

research to create an environment that closely resembles the ideal haptic performance 

increases, seen in the Haptic condition, in a real desktop environment. 
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CHAPTER 5 

CONCLUSION 

 

This dissertation examines the state of haptic devices and their availability, the 

need for careful effect design, and the possibilities for a haptic mouse.  It also details the 

characteristics of individuals with Cerebral Palsy and describes their accessibility needs.  

When talking about computer science it may be tempting for the reader to think, “What 

is a detailed description of Cerebral Palsy doing in a Computer Science dissertation?”, 

and honestly early drafts of this document did not contain that section.  However, by the 

time the second round of data collection with the target group was completed it was 

clear how uniquely each disability manifests itself within the individual.  But for those 

who still aren’t convinced, let the computer science begin.  The document describes the 

Wingman™ mouse and gives insight into the art of haptic effect design and presents a 

methodology for the creation of a haptic interface and collection of targeting data. 

This document also presents necessary background information to understand 

why certain decisions were made in interface and prediction algorithm design.  

Discussion of Fitts’ Law is essential in any simple targeting task experiment as it has 

been the basis of most targeting performance evaluation with the mouse since it was 

first used with a mouse in the 1970’s.  Understanding of Fitts’ Law will help the reader 

understand why certain interface and task decisions were made.  Fitts’ Law influenced a 
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number of interface decisions, the first of which was round targets.  Round targets were 

used to give uniform amplitude and tolerance to the target when computing Fitts’ Law 

coefficients.  In addition since Fitts’ Law does not make any assertion that direction of 

movement affects movement time (MT) or error rate there was no concern in using an 

interface where the targets were all located on the same side, like most uncluttered GUI 

desktops.  Finally Fitts’ Law was instrumental in the decision to use a color system to 

ensure the subject had located the target prior to beginning the task in order to remove 

any timing artifacts introduced due to difficult locating the target.  Although little of the 

prediction algorithms that were discussed played a major roll in the algorithm designed 

for this research, the principles of each were used to shape aspects of it.  Both the 

decision to use a series of readings to determine direction  and a target based approach 

once inside the cluster were influenced by the research discussed in Chapter 2. 

The prediction algorithm design attempts to take into account the differences 

between individual disability and at the same time provide a universal approach to over 

target behavior.  At a distance the prediction algorithm uses training from the non-

haptic Control condition to create probabilities at each distance the mouse travels.  

Training of the algorithm was chosen over a more general approach because it was 

believed each individual of the target group would display different movement profiles.  

The decision to switch algorithms once within a certain distance of an object was made 

because, much like Oakley et al claim [20], at some point bad predictions would have to 

be handled.  By switching to and algorithm focused on behavior over the target effort 

was able to be focused on the decision to hold a user in place based on a smaller number 
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of readings.  In the end the algorithm could have used a period of adjustment with the 

target group which will be discussed later. 

A series of pilot studies were performed for guidance in designing haptic 

effects, evaluate data collection methods, collect cursor traces, and evaluate the target 

group.  The first three pilot studies were used to build and refine the experimental 

interface.  Data collected during the first three pilot studies were from non-disabled 

individuals in a single target environment.  These three pilot studies resulted in a 

number of interface refinements, effect changes, and methodology evaluation.  The final 

pilot study was performed with five target group individuals and contained a simple 

prediction algorithm in a simulated multi-haptic target environment.  The movement 

time, cursor traces, and error rates of the target group individuals were compared to the 

times of the non-disabled subjects.  The results of those comparisons indicated the 

target group moved much slower than a non-disabled group but the movement 

trajectories were basically the same.  The target group also displayed relatively high 

error rates due to spasms experienced when attempting to click on the target, these 

spasms were noted in the cursor traces and motivation for a strong haptic effect to help 

the subject remain over the target during clicking. 

The final experiment consisted of five conditions, three very controlled 

conditions to capture Fitts’ style MTs, and two conditions which allowed the subject to 

move freely through the environment.  In hindsight the last two conditions could have 

been more structured in the task that was performed, which would have allowed for 

more analysis of the differences between the conditions, but the motivation was to move 
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away from the heavily structured tasks in the previous three conditions.  It may have 

been beneficial to evaluate the haptic effects individually however there was concern 

that if the experiment took too long fatigue would become a factor. The final 

experimental interface looked and behaved somewhat differently from what was 

originally expected, however confidence was high that it would be capable of capturing 

the affects of haptics and prediction on the target group.  During administration of the 

experiment only one major deficiency was apparent and that was the trashcan icons.  

There was no haptic enhancement of those icons and it would have made the 

experiment much less frustrating to the participants had they been enhanced.  The 

length of the experiment appeared to be right at the limit of attention span for people 

performing repetitive pointing tasks as they became fidgety toward the end.  The 

experimental interface performed beyond expectations, the subjects were entertained by 

the changing colors and even tried drawing pictures with the targets in the last two free 

movement conditions. 

The data collected was of several types, movement time, error rate, movement 

peaks, and predicted target.  Performance evaluation for this research is based solely on 

subjective data collected from the interface.  Movement time and error rate are the most 

important factors to take into account when evaluating performance in this system, the 

peaks in movement and prediction rate data are really measures of less consequence to 

performance evaluation and mainly used to evaluate the MT and error rate data.  The 

data analysis turned out to be more extensive because extremely high variances between 

individuals, within conditions, and between conditions existed.  A common method 



 

 95

used to assist in the evaluation of data with high variances is to use transformations.  Of 

the common data transformations the best treatment for this data was a log10 conversion. 

Even though the statistical analysis of the data collected for this experiment was 

difficult there were some significant performance increases due to haptic effects 

displayed for most subjects.  Even the data that did not show significance often showed 

improved average performance over the no effect condition.  In addition to the 

performance increases, a wealth of data about the target group was gathered and a new 

prediction algorithm was developed.  The future of this research is promising and 

should be the first step in developing a complete haptic desktop interface for the 

physically disabled. 

5.1 Future Directions 

One of the main issues I found during this research was interaction of the target 

group with the mouse design.  Often the individuals would have trouble griping the 

mouse is such a way that clicking or clicking and dragging were difficult.  While the 

basic design of the mouse remains desirable the placement of the buttons and the shape 

of the body could be more accessible.  In addition the design of the haptic mouse could 

benefit from stronger haptic effects and since it is fixed to a pad an adjustable mouse 

body so that when the user would need to approach the mouse from different directions, 

due to wheel chair or other assistive device, they could easily position the mouse in a 

comfortable position. 

The prediction algorithm could use adjustment.  There is a lot of room for 

improvement but given the data collected from this experiment it should be possible to 
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better design the algorithm to result in higher prediction rates and less adverse impact 

from wrong predictions.  In particular, given the data evaluated here, improved training 

conditions as well as the addition of a decision criterion based on predicted credibility 

values of the predictions appear very promising and capable of significantly improving 

the performance of the haptic environment in the predictive condition. 

This research has explored one area of desktop interaction.  There still remains 

at a minimum a study with menus that must be undertaken to develop a complete 

desktop solution.  Since menus are considered tunnels and behave a little differently 

than desktop targeting they will probably require a different set of haptic effects and 

prediction algorithms. 

Finally, research conducted with the disabled individuals has proven very 

difficult.  Not only does the disability result in highly variable individual performance 

but the need for attendants and lack of public meeting locations makes the data 

collection process nearly impossible.  Without some funding to assist with either 

providing transportation to or a common experimental lab near an area the group is 

required to visit, repeated data collection from a significant number of individuals will 

be difficult to attain. 
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Distance, ID, average MT, IP 
Dist ID Control Haptic Haptic(P) Control-IP Haptic-IP Haptic(P)-IP
880 46.32 5.53 3522 2344 3142 1.57 2.36 1.76
890 46.84 5.55 9318 2095 5311 0.60 2.65 1.90
900 47.37 5.57 4368 2265 3999 1.27 2.46 1.39
920 48.42 5.60 6000 3042 4531 0.93 1.84 1.24
940 49.47 5.63 5121 2155 2511 1.10 2.61 2.24
950 50.00 5.64 2510 1948 2850 2.25 2.90 1.98
960 50.53 5.66 4643 2176 6135 1.22 2.60 1.11
970 51.05 5.67 2441 3463 3429 2.32 1.64 1.65
980 51.58 5.69 3690 2149 7314 1.54 2.65 1.27
990 52.11 5.70 2737 1599 9019 2.08 3.57 1.43
1000 52.63 5.72 2954 3853 6862 1.94 1.48 1.25
1010 53.16 5.73 4094 2230 2843 1.40 2.57 2.02
1020 53.68 5.75 6377 1942 9918 0.90 2.96 0.72
1030 54.21 5.76 6478 3241 8364 0.89 1.78 1.21
1040 54.74 5.77 2891 2708 3447 2.00 2.13 1.68
1050 55.26 5.79 9098 2276 5721 0.64 2.54 1.18
1060 55.79 5.80 5911 3097 2730 0.98 1.87 2.13
1070 56.32 5.82 7365 2007 4921 0.79 2.90 1.18
1080 56.84 5.83 3694 2977 9791 1.58 1.96 1.14
1090 57.37 5.84 5781 1984 8576 1.01 2.94 2.16
1100 57.89 5.86 2700 2493 4059 2.17 2.35 1.44
1120 58.95 5.88 9335 2371 4675 0.63 2.48 1.26
1150 60.53 5.92 3981 4363 4363 1.49 1.36 1.36
1160 61.05 5.93 7884 2962 5827 0.75 2.00 1.66
1180 62.11 5.96 2166 1712 24846 2.75 3.48 1.38
1190 62.63 5.97 4022 2180 2277 1.48 2.74 2.62
1220 64.21 6.00 14978 5480 2735 0.40 1.10 2.20
1230 64.74 6.02 5114 1363 4524 1.18 4.41 1.33
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Transformed MT values 
Control Haptic Haptic(P) 

3.5467598 3.3698804 3.49717955
3.9693353 3.3211654 3.72518578
3.6403281 3.3551364 3.60199595
3.7781438 3.4831046 3.65623076
3.709324 3.3334756 3.3997772 
3.3997456 3.2896695 3.45484833
3.6667914 3.3377014 3.78784125
3.3875207 3.5393987 3.53513094
3.567026 3.3322372 3.86418088
3.4371985 3.2038773 3.95517726
3.4704528 3.5857566 3.83648216
3.6121614 3.3483932 3.45371397
3.8045977 3.2882693 3.99642566
3.8114361 3.5106705 3.92240255
3.4609771 3.4326307 3.53740837
3.9589423 3.3572021 3.7574878 
3.7716396 3.4909227 3.43610233
3.867171 3.3025337 3.69201356
3.567511 3.4737469 3.99082194
3.761974 3.2975529 3.9333014 
3.4313109 3.396754 3.60842052
3.9701182 3.3749247 3.66980135
3.5999548 3.6397376 3.63973757
3.8967563 3.4715619 3.7654238 
3.3356729 3.2335697 4.39526386
3.6044299 3.3384372 3.35742686
4.1754558 3.7387568 3.43700775
3.7087345 3.1344749 3.65548567
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Transformed MT, Error Rates, Velocity Peaks 

Control 3.72 3.67 3.44 3.30 3.21 3.39 3.45 3.61 3.57 3.47 3.36 3.41 3.47 3.47 3.35 3.45 4.00 4.71 4.05

Haptic 3.44 3.53 3.16 3.28 3.06 3.34 3.45 3.44 3.29 3.31 3.14 3.17 3.51 3.34 3.14 3.59 3.83 3.39 3.29

Haptic(p) 3.73 3.87 3.40 3.31 3.38 3.46 3.36 3.71 3.40 3.44 3.47 3.34 3.53 3.41 3.46 3.83 4.15 4.50 4.01

Free 3.61 3.70 3.15 3.24 3.15 3.36 3.24 3.36 3.38 3.39 3.28 3.38 3.65 3.21 3.35 3.42 3.94 4.48 4.09

Free(p) 3.34 3.80 3.36 3.28 3.23 3.30 3.32 3.28 3.48 3.32 3.29 3.32 3.60 3.28 3.37 3.64 3.79 3.86 3.62

Haptic(p) front 3.77 4.16 3.49 3.31 3.34 4.50 3.42 3.77 3.42 3.43 3.52 3.35 3.57 3.49 4.15 3.97 3.53 3.93 3.57

Haptic(p) back 3.61 3.88 3.37 3.31 3.40 4.52 3.30 3.63 3.39 3.47 3.45 3.34 3.50 3.42 4.11 3.62 3.39 3.68 3.32

Ave Good 3.30 3.46 3.35 3.25 3.15 3.33 3.31 3.32 3.32 3.24 3.14 3.24 3.46 3.24 3.23 3.54 3.37 3.75 3.83

Ave Bad 3.74 3.86 3.50 3.33 3.41 3.54 3.38 3.66 3.46 3.48 3.51 3.34 3.58 3.44 3.55 3.93 4.13 4.50 3.96

1st zone MT 3.88 3.81 3.40 3.32 3.49 3.40 3.41 3.73 3.38 3.44 3.38 3.27 3.52 3.39 3.47 3.54 4.11 4.34 3.87

2nd zone MT 3.75 3.76 3.42 3.29 3.44 3.43 3.36 3.68 3.38 3.44 3.43 3.34 3.52 3.40 3.39 3.79 4.06 4.49 3.89

Control 1.20 0.00 0.78 0.78 0.30 0.00 1.48 1.34 1.66 0.48 0.60 0.70 0.00 0.70 0.78 0.00 1.00 0.70 0.60

Haptic 1.04 0.00 0.30 0.48 0.00 0.30 1.58 1.28 0.00 0.48 0.00 0.00 0.00 0.00 0.30 1.04 0.48 0.00 0.00

Haptic(p) 1.11 0.00 0.95 0.30 0.00 0.30 1.36 0.90 0.00 0.00 0.00 0.78 0.30 0.00 0.60 1.04 1.18 1.04 1.04

Free 1.18 1.26 0.30 0.90 0.70 0.78 1.00 0.78 0.48 0.00 0.00 1.00 0.60 0.95 0.48 0.70 0.90 1.34 0.85

Free(p) 0.60 1.18 0.30 0.48 0.00 0.48 0.30 0.60 0.48 0.30 0.00 0.85 0.85 0.60 0.30 0.60 0.60 1.28 0.48

Control 0.57 0.24 0.38 0.30 0.36 0.40 0.42 0.39 0.37 0.37 0.30 0.47 0.33 0.61 0.34 0.27 0.59 1.11 0.67

Haptic 0.51 0.30 0.32 0.11 0.32 0.37 0.38 0.40 0.15 0.39 0.30 0.33 0.26 0.22 0.38 0.32 0.33 0.34 0.30

Haptic(p) 0.77 0.84 0.71 0.57 0.67 0.33 0.62 0.87 0.58 0.70 0.77 0.61 0.57 0.64 0.80 0.71 0.87 1.16 1.04

Free 0.27 0.37 0.05 0.14 0.40 0.43 0.30 0.08 0.22 0.30 0.40 0.28 0.27 0.26 0.40 0.11 0.22 1.03 0.47

Free(p) 0.50 0.60 0.57 0.52 0.59 0.60 0.55 0.36 0.46 0.60 0.56 0.56 0.56 0.51 0.69 0.43 0.38 0.94 0.45

Transformed Movement time

Transformed Error Rates

Transformed Velocity Peaks
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Control MT per distance 
Control
1 to 0 2193 4751 1943 5470 92103
1 to 1 
1 to 2 4166 2211 1073 4790 4074 2216 2578
1 to 3   2118
1 to 4   1879 1704 32833 15814
1 to 5   2406 2213 7031 20156
1 to 6   3261 3529 2488 1797 3766
1 to 7   2685 1759 2199 2307 23956
1 to 8   2702 1613 2183
1 to 9   3557 3425 2016 3127 1927 2265 88529
1 to 10   2832 3159 7032 5625
1 to 11   1698 3383
1 to 12   2829 3262 1673 3110 2582 36890 11664
1 to 13   2871 5112 2144 1687 1557
1 to 14   4560 1639 3517
1 to 15 4727 3614 3239 2976
1 to 16 2424 3149 5101 79908
1 to 17   2592 1881
1 to 18   3233 3037 2143
1 to 19   2728 2759 2333 3176 2640 2151 2978 3583 79036
1 to 20   1969 1642 1271 4021
1 to 21   1928 2640
1 to 22   1591
1 to 23   1950 7620 1680 10800
1 to 24   3310 2743 2665
1 to 25 6158 1551 2213 1983 3183
1 to 26   2007
1 to 27 2921 3535 3023 3037 9853
1 to 28   2135 4813 17980
1 to 29   1623 1928 2706 2977 3216 2935
2 to 0   6357 3031 1350 3549 17290 5999
2 to 1   3877 2885 14415
2 to 2   2486 888 2585 11620
2 to 3   4124 1312 1600 1648 1727
2 to 4   3093 2062 2912 7230
2 to 5   1536 1677
2 to 6   3466 2121 6335
2 to 7   5431 21957
2 to 8   3366 2696 3239 2344 15071
2 to 9   1224 1586 2727 15220
2 to 10   4014 4800 2329
2 to 11   
2 to 12 1718 3807 1430 2764 1281 3644
2 to 13   4351 2896 3174 1480
2 to 14   1886 5874
2 to 15   2154 10263
2 to 16   2686 3086 3208 4061
2 to 17 1527 2757 2151
2 to 18   1735 1343 2622 3237
2 to 19   17885 3550 3943 9990
2 to 20   1607 2010 2374 14492
2 to 21   2976 2615 1710 2024
2 to 22   1734 2663 2420 2911 1895 9876
2 to 23 5247 1386 2886 2033
2 to 24 1935 1362 1846 3101
2 to 25   2184 2351
2 to 26   3096 1912 74930
2 to 27   2832 3896 2448 3892 1639 9351
2 to 28   5041 2079 1464 2640 1741 76589
2 to 29   1538 2462 3914 1977 2399
3 to 0 6639 1856 2408 3791 1559 12482 7060
3 to 1   2602 1424 8040
3 to 2   1657 1103
3 to 3   10038 3769 3865 3221 1839 1529  
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Control MT per distance (cont) 
3 to 4   6696 1705

3 to 5   4901 2487

3 to 6   3560 6785

3 to 7   3646 2181 2919 2551 1968 1680

3 to 8 1982 2583 2638

3 to 9 4420 1352 2225 5065

3 to 10 4382 2910 9234 2215 3128 2447 7207

3 to 11 2079 2496 79441 26081

3 to 12   2521 2646

3 to 13 6247 2298 13900 1422 12892

3 to 14   8072

3 to 15   2487 3422

3 to 16   9013 2309 1858 8350 7575

3 to 17   1389 3006 2050 2385

3 to 18   5191 1447 2600 3985 5607

3 to 19   3983

3 to 20   4404 2328 1774

3 to 21 7914 6856 2201 2080

3 to 22   1150 8758

3 to 23   3406 8199

3 to 24   2090 2022

3 to 25   6213 3636 1416 7600

3 to 26   

3 to 27   2480 9816

3 to 28   4511 1662 15790

3 to 29   6702 5500 1863 2605 2777 10382

Ave 5245 4632 2777 1977 1627 2477 2820 4042 3750 2977 2314 2580 2982 2924 2231 2795 10062 50924 11204  
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Haptic MT per distance 
1 to 20   1123 1403 1427

1 to 21   2331 1136 2259

1 to 22   1545 1187

1 to 23   1959 1347 1339 2320 7210

1 to 24   2859 2163 21440 1331

1 to 25 891 1443 971 1304

1 to 26   1043 2875 1544 1243

1 to 27 1723 2059 1355

1 to 28   1031

1 to 29   1971 1635 1093

2 to 0   1835 2163 3899 2379

2 to 1   2355 8610 2099 1171

2 to 2   2581 4066 1931 1459 2971

2 to 3   2331 3155 3915 1352

2 to 4   8762 3027 1571

2 to 5   1183 2563 3827 12985 2147

2 to 6   2111 2267

2 to 7   1955 1963 2395 6326 4810

2 to 8   2984 1003 1683 1032

2 to 9   667 3970 1251 1267

2 to 10   3275 1419 4538 1763

2 to 11   1395 2551 1755 995 1003

2 to 12 4066 2859

2 to 13   4458 2331 3898 2043

2 to 14   971 1867

2 to 15   1895 1682

2 to 16   5450 1048 2011

2 to 17 1728 1291 1683

2 to 18   1481 1203 2403

2 to 19   1595 923 1615

2 to 20   1624 2376 1755 1843 3179

2 to 21   1339 1571 1251 1387

2 to 22   1915 1427 1195 5962

2 to 23 1643 2587 1227 1747 2723

2 to 24 5435

2 to 25   1139 1259

2 to 26   2375 1123 1971

2 to 27   1512 923 2155 1107 1028

2 to 28   1339 1616 1672 2875

2 to 29   1475 1096 2107 2019 1299

3 to 0 1443 1283

3 to 1   1587 3479 2523 1131

3 to 2   1480 2763 1131 14561  
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Haptic MT per distance (cont) 
3 to 3   1467 995 2019 1571

3 to 4   1683 3643

3 to 5   1427 2171

3 to 6   1755 2043 7566 1811 3627

3 to 7   5698 2161 2063 1288 1573 2995

3 to 8 2831 1912 2264 4114

3 to 9 1547 2655

3 to 10 1795 1592 2347 4642

3 to 11 1928 2107 3867 7482

3 to 12   5319 3115 2859

3 to 13 2395 1395 2227

3 to 14   1347 1283 1891 1419 1619 1979 9311

3 to 15   3853

3 to 16   6538 2363 1003 1827

3 to 17   3099 1723 2963 1064

3 to 18   1363 1475 1955 1136 2603 2019

3 to 19   2368

3 to 20   4570 2211 1579 9622 1123 1415

3 to 21 2483 2595 3251 1787 4421 1275

3 to 22   

3 to 23   2108 1735 1315 2200 2491

3 to 24   2403 2187 2291 1803 6786

3 to 25   2531 3155

3 to 26   2387 2127

3 to 27   3059 3735 3019 4434 1779

3 to 28   1187 1240 1611 5478

3 to 29   2619 1027

Ave 2736 3424 1440 1898 1156 2195 2805 2743 1961 2031 1383 1493 3200 2176 1370 3929 6804 2444 1971  
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Haptic(p) MT per distance 
1 to 21   1863 4959 1503 3911 1263 1575 1883

1 to 22   2772 4551

1 to 23   2040 1807 2023

1 to 24   1152 8070 1935

1 to 25 1552

1 to 26   2751 1783 1575 1799 3620 19666 12447

1 to 27 1143 3007 3115 3251 2607

1 to 28   2847 3823 1919 2593 5959 6607

1 to 29   1583 3447 1519

2 to 0   3047 1659 8630

2 to 1   1835 2303 6746

2 to 2   1639 2579 4914 8190

2 to 3   2863 9163 2831 4991 5223 5695

2 to 4   4492 1847 2623 82493

2 to 5   1904 5815 5908 13550

2 to 6   2167 3095

2 to 7   1431 2650 3764

2 to 8   2719 3415 2935 3564 28323

2 to 9   3975 28904

2 to 10   2511 5007 1663

2 to 11   6758 1782 4383 1463

2 to 12 6204 2039 1287 3504 1920 5619

2 to 13   9102 1631 2423 3404

2 to 14   1356 1863 26291 32171

2 to 15   1767

2 to 16   15005 2420 2287 2076 2095 3287 32570

2 to 17 4703 5751 4455

2 to 18   4271 6223 3727 2175 7898

2 to 19   29070 5479

2 to 20   1687 2916 2903 2632 2415

2 to 21   5823 17605

2 to 22   3103 1823 25547

2 to 23 2380

2 to 24 3918 2092 2528 14949

2 to 25   2135 2583

2 to 26   2543 1856 2303 2135 7854

2 to 27   1452 2175 1479 1279

2 to 28   3887 1803 2687 2751

2 to 29   2312 1151

3 to 0 4447 3055 6069

3 to 1   3285 1477 2188 2159

3 to 2   2943 5447 3087

3 to 3   2936 3007 3583  
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Haptic(p) MT per distance (cont) 
3 to 4   2327 2775 15341

3 to 5   1839 3415 3083 3203 1319

3 to 6   1512 2279 3447 2147 1558 45560

3 to 7   5567 3602 2680 1431 4119 1447 7774

3 to 8 2902 1696 5879 2367 3151

3 to 9 4447 2775

3 to 10 1640 2119 2400 20061

3 to 11 3927 1903 5015

3 to 12   12310 31315

3 to 13 3351 2448 5103 26775 16573

3 to 14   1935 3491 6703

3 to 15   1567 1399 3887 14793 12665

3 to 16   2631 4359 41737

3 to 17   1940 2975 2303 3911

3 to 18   4791 6015 8835 7126

3 to 19   2360 8350

3 to 20   5935

3 to 21 2039 1623

3 to 22   1543 2983 3804 4071 7518

3 to 23   3946 2206 2408 4831 2975

3 to 24   3187 17213 2271 6247 2491 1751 2519 6455

3 to 25   2039 1823

3 to 26   2279 1421 3159

3 to 27   1799 1887 31907

3 to 28   2540 2767 6207

3 to 29   2599 1567 1919 3359 4627

Ave 5324 7364 2507 2049 2397 2907 2282 5178 2517 2785 2955 2180 3390 2597 2889 6710 14133 31842 10206
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Free, Free(p), Misses, Peaks 

Free Move

Ave Time 4082 5055 1404 1755 1416 2310 1754 2291 2390 2438 1888 2420 4418 1621 2254 2604 8655 30084 12334

Free Move(P)

Ave Time 2180 6241 2309 1896 1703 2016 2076 1913 3031 2068 1967 2075 3973 1902 2357 4414 6168 7171 4205

Misses

Control 15 0 5 5 1 0 29 21 45 2 3 4 0 4 5 0 9 4 3

Haptic 10 0 1 2 0 1 37 18 0 2 0 0 0 0 1 10 2 0 0

Haptic (P) 12 0 8 1 0 1 22 7 0 0 0 5 1 0 3 10 14 10 10

Free Move 14 17 1 7 4 5 9 5 2 0 0 9 3 8 2 4 7 21 6

Free Move (P) 3 14 1 2 0 2 1 3 2 1 0 6 6 3 1 3 3 18 2

Peaks

Control 3 1 2 2 2 2 2 2 2 2 2 2 2 4 2 1 3 12 4

Haptic 3 2 2 1 2 2 2 2 1 2 2 2 1 1 2 2 2 2 2

Haptic (P) 5 6 5 3 4 2 4 7 3 5 5 4 3 4 6 5 7 14 10

Free Move 1 2 1 1 2 2 2 1 1 2 2 1 1 1 2 1 1 10 2

Free Move (P) 3 4 3 3 3 4 3 2 2 4 3 3 3 3 4 2 2 8 2  
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Prediction per target 

Predictions

Target 27 24 11 20 25 11 2 2 3 18 21 27 27 12 18 4 16 21 21

Prediction 29 24 27 20 25 11 13 29 28 28 15 27 27 26 19 26 29 1 26

Time 3095 2820 6510 1751 1500 3359 2951 3631 4515 2754 4294 1599 4606 8070 4891 7710 9278 30883 34350

Target 26 7 8 28 2 8 26 16 27 26 24 23 2 14 8 6 3 9 14

Prediction 26 5 29 29 12 17 26 16 28 29 9 14 27 14 29 26 6 25 29

Time 2543 3879 3543 1803 3399 5878 1575 2076 4239 2303 2490 2023 5446 1863 3563 34242 5222 28903 32171

Target 9 0 18 16 7 6 1 7 6 20 6 20 28 2 13 21 4 14 19

Prediction 29 25 28 17 28 26 3 3 6 28 1 20 28 12 23 22 6 21 29

Time 3975 3047 4270 2287 1431 6686 2103 3763 3095 2903 5031 1455 2593 3087 5102 1882 9190 66957 8350

Target 10 16 0 26 21 4 14 19 23 26 25 25 16 0 12 26 15 4 7

Prediction 24 17 27 26 13 4 18 23 23 26 5 27 29 24 16 29 9 20 29

Time 2511 15005 4343 1855 3911 2327 2167 7822 2308 1799 2583 2039 2631 3055 5618 19665 14165 15341 10134

Target 9 24 25 5 10 17 17 3 27 14 23 19 26 15 21 5 22 15 24

Prediction 19 29 25 26 10 29 9 16 27 26 9 29 26 25 23 5 21 28 29

Time 3884 17212 2135 1903 1372 4454 1940 9163 1990 2199 2407 4319 3619 4311 1575 5814 4070 12665 6455

Target 19 13 20 29 12 24 18 27 20 15 5 9 8 22 27 2 7 13 3

Prediction 29 2 20 29 15 24 19 25 20 27 9 28 28 23 27 23 29 29 29

Time 29070 9102 1687 1583 1287 1207 3726 3007 2207 3503 3055 3095 2935 1823 1279 8190 15837 26774 7118

Target 13 4 10 7 18 3 7 15 8 12 11 24 27 5 1 13 6 29 24

Prediction 17 3 29 28 29 27 6 14 29 27 5 24 25 25 1 24 29 29 29

Time 3315 4492 1639 2679 4790 2863 2031 12581 2367 3655 4382 1751 3250 2475 2159 3404 45560 4626 14949

Target 7 11 28 2 6 24 11 22 11 27 13 10 23 2 26 28 28 8 22

Prediction 29 6 28 23 10 25 2 8 24 26 9 23 23 13 26 26 29 21 29

Time 3119 10541 2540 1847 1511 2092 2783 3804 1780 2175 2447 2398 2380 1903 2135 5958 6606 68476 7518

Target 6 7 4 26 1 19 28 0 20 6 3 13 10 20 18 26 3 27 18

Prediction 28 8 4 27 7 19 19 6 20 17 9 3 10 22 28 26 27 29 18

Time 3359 4135 2476 1783 1476 2379 3822 8630 1447 3447 4862 2422 2399 2415 8835 3159 6963 31906 7678

Target 2 28 12 29 0 7 14 11 3 28 11 4 6 14 6 3 12 10 20

Prediction 2 26 13 29 25 7 9 24 3 28 1 12 6 27 6 25 5 29 29

Time 1639 3887 2038 2598 1659 2359 1703 2671 1911 1919 4510 2671 2852 3391 1548 4991 12309 20060 5935

Target 1 3 16 21 17 22 3 29 11 12 7 10 5 17 6 17 15 16 18

Prediction 15 9 16 25 28 29 3 24 11 16 28 24 15 29 8 27 18 25 18

Time 3711 2743 2420 1503 5750 2983 2100 3447 1783 3351 3303 1839 3202 2975 1567 3910 15421 32570 6575

Target 24 11 9 27 26 23 21 24 23 29 14 9 3 23 11 0 16 5 18

Prediction 23 11 9 29 8 23 26 29 22 29 18 6 14 25 11 15 29 15 29

Time 2135 2975 1990 1451 1420 2039 1623 8070 1807 1519 3419 2535 2831 2975 1463 4950 4358 13549 7898

Target 7 19 2 15 8 6 14 7 27 3 17 12 12 16 17 24 21 11 7

Prediction 16 1 26 27 19 6 14 9 27 8 22 12 22 26 6 25 24 21 18

Time 5567 7491 2578 1399 1695 2167 1863 4119 1887 3007 2038 1920 5470 3287 2303 1935 5822 33893 7775  
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Prediction per target (cont) 
Target 21 7 24 9 27 24 5 12 8 1 8 9 17 1 19 0 14 1 3

Prediction 21 7 14 18 8 24 8 21 27 5 5 9 25 2 19 29 22 1 27

Time 1863 2791 3918 2383 1799 1095 3415 4342 2719 2847 3414 2454 4191 2188 1959 7187 26291 6745 4272

Target 15 3 26 29 22 8 28 23 0 1 21 9 24 8 13 10 11 15 21

Prediction 25 5 29 29 25 29 28 8 24 3 21 19 24 29 24 20 13 11 29

Time 8758 3127 2278 1151 1543 1847 2767 3946 4446 2743 1263 2830 2527 3151 2719 6091 5014 68440 17604

Target 22 12 24 28 13 21 7 28 11 4 10 29 7 28 15 13 5 15 28

Prediction 25 23 24 29 16 29 9 29 25 7 5 29 16 18 18 13 12 21 28

Time 3103 6203 2271 2847 1631 2039 1431 2687 1903 2623 1663 1567 3214 2751 1767 4206 5907 16956 6207

Target 17 19 15 11 5 9 1 4 6 2 3 7 9 25 5 27 8 26 22

Prediction 29 20 28 16 29 29 5 9 27 18 1 7 19 25 17 27 9 21 29

Time 4703 10533 1567 3927 1839 4446 1834 2775 2279 2943 3055 1446 5478 1823 1319 2607 28322 12446 4551

Target 1 26 8 20 18 6 14 8 15 11 3 16 23 6 2 22 3 16 14

Prediction 6 3 8 22 28 24 6 28 25 12 9 16 26 8 15 22 17 28 27

Time 2859 2751 2259 1351 6222 2974 1356 4215 3887 2383 2303 2095 4830 2146 4914 2772 4155 41737 6702

Target 0 21 29 4 27 7 18 24 23 18 5 13 20 25 7 29 1 4 26

Prediction 24 25 29 26 27 8 18 17 24 29 9 3 23 25 7 29 29 14 29

Time 6591 4958 2311 1847 1143 2620 1847 6246 2167 6014 3111 2358 2631 1551 1376 3359 19844 82493 7854

Target 24 13 2 7 4 7 20 10 23 1 27 12 29 18 19 24 22 12 13

Prediction 28 0 25 16 4 18 27 0 25 27 27 12 29 29 9 24 29 28 28

Time 4239 14125 1751 2719 1655 2679 2915 5006 2142 2303 1479 1231 1919 2175 2359 2519 25547 31314 16573
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