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ABSTRACT

MONTE CARLO ANALYSIS OF REFUGE SITE SELECTION: STATISTICAL

PROPERTIES AND AN EMPIRICAL EXAMPLE

Anna Michelle Lawing, MS

The University of Texas at Arlington, 2007

Supervising Professor: Daniel R. Formanowicz

The Monte Carlo method can be a useful technique providing information on

central tendencies and tolerance for selection data. There are many statistical hypothesis

tests that are employed in selection studies, but most require the data to be normally

distributed in order to adhere to the assumption of normality. Monte Carlo methods

build a null distribution to test hypotheses based on available conditions and therefore

do not require distributions of data to be normal. A Monte Carlo is also an extremely

flexible technique and can be designed to test hypotheses for any particular

experimental design.

I designed a Monte Carlo method that uses use/availability data to detect

patterns of selection in a species population. The Monte Carlo randomly re-samples

from an available distribution a sample size equal to the sample size of the data making
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the used distribution with 1,000 permutations. For each re-sample, two statistics (mean

and standard deviation) are calculated and compared to the statistics of the used

distribution. A tail probability is then calculated. Because this method is not common

among selection studies and each Monte Carlo design potentially behaves with different

dynamics when considering sample size and Type I and II error rates, I performed

randomization tests on simulated datasets to evaluate Type I and II error rates for

sample sizes from 2 to 50.

Datasets were generated by drawing data points (samples) from a Gaussian

distribution (i.e., hypothetical species response curve) of specified parameters and

compared to conditions associated with an available distribution. The change in error

rates as a function of species selection away from mean available distribution as well as

differences in standard deviations were assessed using randomization procedures

(number of significant results). Type I error was generally low at all samples and

parameters of available distributions examined while power increased as a function of

sample size and divergence away from the mean of the available conditions. Power in

the standard deviation statistic of each hypothetical used distribution was more

influenced by the standard deviations associated with the available distributions. Power

in the mean statistic was unaffected by the standard deviation of the available

distributions. Power in the mean statistic also produced lower Type II error rates at

lower sample sizes than the standard deviation statistic and at smaller differences

between each hypothetical used distribution and the simulated available distributions.
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In a case study using the Monte Carlo method designed to evaluate refuge site

selection, I sampled abiotic variables including temperature, moisture, and rock size

related to potential refuge rocks in the Smoky and Flint Hills of Kansas. I collected data

associated with refuge sites for 9 species and large amounts of abiotic data from

haphazardly chosen rocks adjacent to the observed or used sites. Only five species were

abundant enough for analysis, Diadophis punctatus being the most abundant. I found

that thermal properties, humidity, and rock size varied in their importance among

species and between locations. I predict that along with thermal properties, a major

factor in selection of a particular refuge habitat is the refuge site’s humidity properties

and the relative homogeneity of thermal and humidity properties under refuge rocks

determined by rock size.
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CHAPTER 1

INTRODUCTION

1.1 Resources and Habitat Use

Resources, biotic and abiotic, are items used by species to meet their needs for

survival. Resources may include such categories as land, water, air, sunlight, food and

other aspects of habitat. Habitat is the subsection of the physical environment that

surrounds a species population and in which the species population lives. Each species

population requires a particular combination and varying amount of resources within its

habitat. Biologists document the use and availability of resources for species

populations to better understand which resources are selected more with respect to other

resources and to understand how species use and partition available resources.

Most resources are limited in local environments; thus, the potential for

competitive interactions is high. When more than one species occupies the same niche,

sympatric populations may respond in one of two ways to the limited supply or quality

of resources. Either the more competitive species drives the less competitive species to

extirpation or one species evolves a different set of resource requirements or resource

quality requirements for survival. This second scenario is resource partitioning and

allows species populations occupying similar niches to coexist with a limited amount of

resources (Rosenzweig 1981). Disproportionate resource use by a species as compared

to the availability of the resource is resource selection (Johnson 1980).
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Habitats are characteristically heterogenous and can be described on many

different scales ranging from the entire geographic range of a species, to regional

macrohabitat to microhabitat patches of varying spatial extents. Macrohabitat variables

include major vegetation, soil type, rock type, sources of water, precipitation, and

physiographic features of the landscape. Habitat variables include general features of an

individual home range. Microhabitat variables include amount of shading, sunlight

intensity, temperature, moisture, particular vegetation associations within the

microhabitat, and spatial extent. Microhabitat can be split further into particular

subclasses based on temporal use; such as, mating, nesting, gestation, and refuge sites.

Refuge sites are a particular subclass of microhabitat that serve as refugia or

protection for an individual in a species population from the surrounding stochastic

environment, and may aid in thermoregulation and in encountering prey items (Downes

1999, Beck and Jennings 2003, Howes and Lougheed 2004). Refuge sites can play an

important role in the survival of species populations with respect to the degree of

‘harshness’ or stochasticity in the environment by providing a buffering mechanism

from environmental extremes. The more stochastic the environment, the more important

the selection of the appropriate site becomes, because switching to a new site during

adverse conditions would be too costly. For ectotherms, refuge site selection may be an

especially important task. Ectotherms are dependent on their immediate environment

and are highly vulnerable due to their physiological need to thermoregulate, conserve

energy and avoid dehydration. In addition, many temperate-zoned reptiles spend most

of their day sequestered under rocks or in burrows, only emerging above ground during
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favorable conditions (Avery 1976; Huey 1982; Rutherford and Gregory 2003). The

amount of time spent in refuge sites then emphasizes the importance of refuge site

selection; some ectotherms spend over 99% of their total time in refuge sites (Beck

1990).

In a study on the refuge site selection of Gila Monsters, Heloderma suspectum,

Beck and Jennings (2003) investigated shelter use in a strongly seasonal desert

environment. They found Gila Monsters do not use shelters randomly, but use shelters

based on availability and quality of shelter, and that Gila Monsters show strong fidelity

to shelters. This indicates high variability in environmental parameters within shelters

and suggests that shelters of high quality are limited. Furthermore, adequate conditions

must be recognized by Gila Monsters; otherwise, shelters would (or would appear) to be

used randomly and Gila Monsters would not show strong site fidelity. On the contrary,

Garter Snakes (Thamnophis elegans) in northern California typically switch retreat sites

during the night showing low site fidelity (Huey et al. 1989). Huey et al. (1989) suggest

the switch could serve to find better refuge conditions for thermoregulatory purposes, or

to escape predators. Regardless, for this to be an effective strategy there must be

suitable alternative refuge sites available within the area for the reptiles to relocate. In a

mark recapture study describing characteristics of summer and hibernation sites for

Northern Alligator Lizards, Elgaria coerulea, and Western Skinks, Eumeces

(Plestiodon) skiltonianus, Rutherford and Gregory (2003) note that individuals were

recaptured on average within 10m of a previous capture site and individuals did not

travel long-distances. Although these reptiles along with the Garter snakes might switch
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amongst rocks in a local site, the relative area selected provides adequate amounts of

refuge sites with conditions flexible enough for species population survival.

Huey et al. (1989) emphasized the importance of refuge sites and highlighted

the lack of refuge site selection studies with respect to behavioral thermoregulation,

with notable exceptions (e.g. citations within). Since his review, there has been an

increase in studies on refuge sites demonstrating their importance in the thermal

biology, water regulation, dispersion patterns, disturbance patterns, and other biological

aspects of ectotherms (e.g., Schlesinger and Shine 1994; Web and Shine 1998;

Goldingay and Newell 2000; Whitaker and Shine 2002; Beck and Jennings 2003; Kerr

et al. 2003; Rutherford and Gregory 2003; Howes and Lougheed 2004; Kerr and Bull

2004; Webb et al. 2004).

1.2 Methods for Analyzing Microhabitat Use

Analyzing microhabitat selection is crucial to understanding the types,

quantities, and qualities of resources that species populations need for survival. There

are many methods for analyzing microhabitat use and the particular method a researcher

uses depends on many different aspects of the study. Particular consideration is given to

data types, study techniques, experimental designs, and particular questions of interest.

1.2.1 Data Types

Generally, there are two types of variables associated with microhabitat

selection studies. Discrete variables consist of categorical data, presence/absence data,

or count data; such as, cover rock, woody shrub, open field, or forest, shade or

presence/absence. Continuous variables consist of measurements, such as percent cover,
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measured rock or shrub size, moisture level, or temperature. Microhabitat selection

studies utilize both types of variables and often consist of a combination of both. There

exists a surplus of methods to analyze qualitative observations from microhabitats and

to extract quantitative data from biotic and abiotic factors associated with microhabitats

or refuge sites. For example, the availability of habitat can be quantified by using aerial

photography, maps, or visiting and sampling the sites. In sampling sites, one could take

random samples of the site, or divide the site into quadrants and systematically sample

all representative areas in the site. In most cases the objective is to better understand

proximate and/or ultimate factors involved in microhabitat selection.

1.2.2 Study Techniques

The use of a microhabitat can be evaluated several ways. Mark-recapture

studies, radio-telemetry studies, and snap shot studies all use different techniques to

quantify habitat selection. Mark-recapture studies consist of the researcher capturing an

organism, recording variables associated with that organism, marking the organism,

releasing the organism, and later having the possibility of recapturing the organism and

recording biotic and abiotic variables associated with its new capture. Mark-recapture

studies are preferable when the capture number and recapture number are both high due

to high site fidelity and/or observations are easily made and when the organisms are too

small to implant radio tracking devices. Radio-telemetry studies consist of the

researcher capturing an organism, recording variables associated with that organism,

implanting a tracking device inside the organism, and having the ability to relocate and

record microhabitat variables associated with the same individual at will. This type of
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study would be preferable when the organism is large enough to implant the radio

tracking device, when captured population size is low, and when the cost of finding

individual organisms is high. Snapshot studies consist of capturing many organisms in

one period (e.g. a day, a weekend, a week), as long as there is no re-sampling, and

recording the associated habitat variables. In essence, snapshot studies are replicated in

space as opposed to telemetric studies, which are replicated in time (Diamond 1986).

Snapshot studies are preferred when the captured population size is abundant, the

researcher is interested in the short term, and many independent samples are needed.

1.2.3 Sampling Designs

There are three identifiable sampling designs associated with microhabitat

selection described by Thomas and Taylor (1990) and outlined by Manly et al. (1993).

In design 1, measurements are taken at the level of the population. Individuals are not

identified; therefore, units of microhabitats that are used by a particular species

population and units of microhabitats that are available to the species population for use

(but are not necessarily being used during the sampling period) are pooled across all

samples taken. This design fits well with snapshot studies. Hereafter, units of

microhabitat that are used by a species population and data or distributions associated

with that microhabitat are referred to used, selected, or observed. Units of microhabitat

that are used or can potentially be used by a species population are referred to as

available. Design 2 takes into account specific individuals and the resources used by

each, but the availability data are pooled across the population level. This design fits

with both the mark recapture study and the radio telemetry study. If a design 2 study
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were to have only one observation for each individual, it would be equivalent to a

design 1 study. In design 3, individuals are identified, their resource use quantified, and

the availability in the surrounding habitat that is associated with each individual is

quantified. This design works well with radio telemetry studies. In both design 2 and 3

individuals are identified and inferences are extended to the species population level as

well as the individual level. In this case an assumption has to be made when inferring

habitat choice on a species population level that the individuals are sampled at random

from their species population.

1.2.4 Analytical methods

Two types of analytical methods exist for selection studies; indices of selection

and hypothesis testing. Indices of selection quantify selectivity. Early researchers

attempted to quantify selectivity using an index ratio percentage of a resource used

compared to the percentage of the resource available (e.g., within Manly et at. 1993;

Scott 1920; Savage 1931; Hess and Swartz 1940). Statistical methods test hypotheses

and set confidence intervals that assist in evaluating if resources are being used

selectively and compare the strength of the selectivity. The number of statistical

methods that can be used in evaluating habitat selection is extremely large and

researchers often use several combinations of methods to infer species population

choices based on the type of data collected and the sampling design. Table 1.1 is

updated from Manly et al. (1993) and comprises a number of different statistical

methods and example references for each.
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Recently, both indices of selection and hypothesis testing have been commonly

used in concert for evaluating habitat selection. For example McLoughlin et al. (2004)

evaluated hierarchical habitat selection by tundra wolves and used a resource selection

index proposed by Manly et al. (1993) and Friedman’s nonparametric 2-way ANOVA.

Meik et al. (2002) also used a combination of indices of selection and hypothesis

testing. These analyses consisted of a chi-squared test, a stepwise regression, and the

resource selection index to evaluate the effects of bush encroachment on an assemblage

of diurnal lizard species. They used the chi-square test of independence to test the

homogeneity of species assemblages between two habitat types, for each species a

stepwise regression to quantify the associated macrohabitat, and an index of selection to

quantify preferences.

The use of a statistical test and/or selection index depends on many factors. Is

the intention of the test to describe, compare, quantify, or predict variables? Do the

variables come from a Gaussian population distribution, a binomial population

distribution, a uniform population distribution, or any other type of distribution? Table

1.2 describes the types of statistical tests suggested for use under specific conditions.

This table does not include all the statistical tests available for use, but it includes

commonly represented statistical tests in the literature.

In statistical testing, the null hypothesis is assumed to be true until statistical

evidence indicates otherwise. In habitat selection studies, the null hypothesis is typically

based on species populations utilizing habitat randomly. Although this is an appropriate

statistical hypothesis, most researchers would not expect organisms to use habitat in
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proportion to its availability. Thus, many researchers have abandoned hypothesis tests

focused on this question and have instead concentrated efforts on how populations use

habitat differentially (Cherry 1998). Of course, analyses designed to determine which

habitat variables are selected for would still require hypothesis testing or model fitting

approaches. I incorporate a Monte Carlo method to evaluate habitat selection, an

approach seldom used in microhabitat selection studies to determine which habitat

variables are selected.

1.3 Monte Carlo Analysis to Evaluate Refuge Site Selection

A Monte Carlo analysis is a powerful and extremely flexible statistical

technique that utilizes high numbers of permutations of randomized or reshuffled data

to build a distribution as a null reference for evaluating values of interest. These

simulations allow a researcher to create a statistical test to address a certain experiment

or specific question and data type rather than having to construct the experiment around

conventional statistical tests. The most powerful advantage of this method over

parametric methods is that it does not require data to be sampled from a specified

distribution. The Monte Carlo builds the null distribution from the actual used data

making clear the underlying assumptions of the test. This method is computationally

challenging, but, with today’s computer speed, easily tractable.

1.3.1 Designing a Monte Carlo

Gotelli and Ellison (2004) describe four steps in performing a Monte Carlo

analysis. First, a test statistic is specified that describes a pattern of interest. For

example, if a researcher is interested in a central tendency measure of a population, the
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test statistic used could be the mean or median. Likewise, if a researcher wanted to

describe a distance measure, the test statistic used could be a difference. Next, a null

distribution is created by randomly reassigning the treatment groups within the used

data many times to form new combinations of the existing data. To do this step a

computer is the most useful tool. Each new combination of the data is described by a

test statistic and a distribution can be created consisting of these test statistics generated

from the randomly reassigned data. Third, the same test statistic is calculated from the

original or used data and placed into the distribution of test statistics. Finally, a tail

probability is quantified by counting the number of test statistics between the used test

statistic and the tail of the distribution and then dividing by the number of test statistics

that were used to make the distribution.

Monte Carlo analyses can use categorical or continuous data measurements and

can handle multiple variables simultaneously depending on how the test statistic and

randomization technique is designed. The assumptions of a Monte Carlo are three fold.

First, the used data are independent and randomly sampled. Second, the test statistic

chosen for analysis describes the pattern of interest. Third, the null distribution created

by the randomization addresses the question of interest. The first two assumptions are

the same assumptions followed by all parametric and nonparametric tests. Although

normality tends to be an issue in many analyses, it is not an assumption of the Monte

Carlo method and therefore does not have to be considered.
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1.3.2 Monte Carlo Method for Refuge Site Selection

To evaluate refuge site selection, I designed a Monte Carlo analysis for a

snapshot design 1 use/availability study using two test statistics. These statistics

describe patterns of species populations of interest, one being a measure of central

tendency, the mean, and the other being a measure of variance, the standard deviation. I

then designed a simple randomization technique which randomly draws n samples 1000

times from a dataset combining both the used and available data, n equals the number of

samples used in the used dataset. The test statistics are calculated for each randomized

dataset and the distribution is compared to the used data test statistic. The p-value is

calculated by counting all the simulated test statistics between the used test statistic and

the end of the tail and then this value is divided by the number of test statistics that are

included in the entire distribution. This test can be one or two-tailed depending on

whether there are a priori assumptions about the directionality of either test statistic.

Measures of central tendency and variation in use/availability data are important

in characterizing selectivity. In designing a Monte Carlo test for evaluating refuge site

selection, I considered six possible patterns in the distribution of selectivity data (Figure

1.1.1). Throughout the following discussion, ‘availability’ datasets/distributions, etc.,

refers to all sampled units of data including randomly sampled data plus data associated

with any observations of interest. The ‘used’ datasets/distributions etc., refer to the

collective observations of interest for any given group or category. Selection is detected

if the variance in the used distribution is smaller or the mean diverges from that of the

availability distribution. Variance can be a highly explanatory statistic in selection data
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as it relates the tolerance levels of a species to the particular environmental variable

studied. Variance is also important to consider because refuge sites will likely be

occupied during periods when mean conditions within refugia tend to be ideal. Thus,

regardless of the used mean value, if the variance in the used distribution is smaller than

the availability distribution, selection is detected (Figure 1.1: A and B). The mean

statistic can also be highly explanatory in selectivity data. When the mean in the used

distribution diverges from the mean in the availability distribution, selection is detected

(Figure 1.1: C). The variance of the used distribution should not be larger than the

variance in the resource availability distribution. This pattern indicates error or high

selectivity of extreme conditions (Figure 1.1: D and E). No selection is detected when

the used/availability distributions do not differ (Figure 1.1: F).

1.3.3 Objectives

Herein, I examine Type I (detecting a pattern that does not actually exist) and

Type II (failure to detect a real pattern) error rates in using Monte Carlo methods for

evaluation of refuge site selection. I use a simulation approach to obtain data for

plotting power curves based on Type I and Type II error rates. These power curves can

be useful when making inferences about selectivity based on variance in the used data

and used sample sizes. Next, I present an empirical example using this Monte Carlo

method. I collected abiotic data from two geographically disparate, but ecologically

similar regions in Kansas that have very similar squamate assemblages and climate. I

use the data to make inferences about the selectivity of certain resources in context of

the power of the test as obtained from the simulations. I find that the power curves are
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particularly useful in helping justify inferences made when sample sizes are low and/or

when the variance between the used distribution and the resource availability

distribution is low.
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Table 1.1 Hypothesis tests for categorical and continuous data used to evaluate resource
selection updated from Manly et al. (1993).

Statistical test Example references

Categorical data
Chi-square goodness-of-fit Neu et al. (1974), Byers et al. (1984), Blouin-

Demers and Weatherhead (2001)
Johnson’s prefer method Johnson (1980)

Friedman’s test Pietz and Tester (1982, 1983)

Chi-squared test of homogeneity Marcum and Loftsgaarden (1980)

Quade’s test Alldredge and Ratti (1986, 1992)

Log-linear models Heisey (1985)

G-test Beck and Jennings (2003)

Wilcoxon’s signed rank test Kohler and Ney (1982), Talent et al. (1982),
Schlesinger and Shine (1994), Blouin-Demers
and Weatherhead (2001)

Continuous data
Analysis of Variance Webb and Shine (1998), Beck and Jennings

(2003), Kerr et al. (2003), Kerr and Bull
(2004)

Analysis of Covariance Blouin-Demers and Weatherhead (2001),
Beck and Jennings (2003), Webb et al. (2004)

Classification and Regression Tree Howes and Loughead (2004)

Kolmogorov-Smirnov two-sample test Raley and Anderson (1990), Petersen (1990)

Kruskal-Wallis test Beck and Jennings (2003)

Multiple regression Lagory et al. (1985), Grover and Thompson
(1986), Porter and Church (1987), Giroux and
Dedard (1988), Beck and Jennings (2003)

Logistic regression Hudgins et al. (1985), Thomasma et al. (1991)

Discriminant function analysis Dunn and Braun (1986), Rich (1986), Edge et
al. (1987), Dubuc et al. (1990)

Multivariate analysis of variance Stauffer and Peterson (1985)

Principal components Edwards and Collopy (1988)

Geometric method Kincaid and Bryant (1983)

Polytomous logistic regression Cross and Peterson (2001)

Multiple response permutation
procedures

Alldredge et al. (1991)

Mann-Whitney Test Beck and Jennings (2003)
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Table 1.2 Types of statistical tests suggested for use under noted conditions modified
from Motulsky (1995).

Purpose

Measurement (from
Gaussian
Population)

Rank, Score, or
Measurement (from
Non-Gaussian
Population)

Binomial (Two
Possible Outcomes)

Describe one group Mean, SD Median,
interquartile range

Proportion

Compare one group
to a hypothetical
value

One-sample t test Wilcoxon test Chi-squared or
Binomial test

Compare two
unpaired groups

Unpaired t test Mann-Whitney test Fisher’s test (chi-
square for larger
samples)

Compare two paired
groups

Paired t test Wilcoxon test McNemar’s test

Compare three or
more unmatched
groups

One-way ANOVA Kruskal-Wallis test Chi-squared test

Compare three or
more matched
groups

Repeated-measures
ANOVA

Friedman test Cochrane Q

Quantify
association between
two variables

Pearson correlation Spearman
correlation

Contingency
coefficients

Predict value from
another measured
variable

Simple linear or
nonlinear regression

Nonparametric
regression

Simple logistic
regression

Predict value from
several measured or
binomial variables

Multiple linear or
nonlinear regression

Multiple logistic
regression
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A

B

C F

E

D

availability
distribution

use distribution

Figure 1.1 Six possible response patterns in resource use/availability data. In patterns

similar to A, B and C, selectivity of a resource can be detected because the

use distribution has a smaller variance than the availability distribution

and/or the mean values of the two distributions are different. D and E

represent error, noise in the data, and/or selectivity of extreme conditions. F

detects no selectivity because there is no difference in mean or variance of

the use and availability distributions.
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CHAPTER 2

TYPE I AND TYPE II ERROR RATES IN MONTE CARLO METHODS DESIGNED
FOR REFUGE SITE SELECTION STUDIES

2.1 Introduction

In the past several decades, Monte Carlo methods have become increasingly

popular in many biological disciplines, although Monte Carlo methods are rarely used

in studies evaluating microhabitat selection in populations. One of the reasons for using

a Monte Carlo method is it does not require the tested data to have a specific underlying

distribution. Typically, the underlying distribution of data associated with a particular

species habitat is characterized by a normal curve (Gaussian response curve to

environmental gradients: McCrune and Grace 2002). Regardless of the fact that niche

data usually conform to normality, there are many other reasons the Monte Carlo is

becoming a more popular and applicable technique to use in all scientific disciplines.

Computational power is no longer a restriction, and the Monte Carlo approach is

flexible and easily applicable to most scenarios.

Gotelli and Ellison (2004) describe 4 steps in designing a Monte Carlo analysis

to fit any experimental design for hypothesis testing: describe a test statistic, build null

distributions from re-sampling available data, compare the used data distribution to each

re-sampled distribution, and calculate a tail probability. The last three of these four

steps require computer simulations; however, codes have become increasingly simple,

the technique more defined and straight-forward, and an increasing number of programs
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are becoming available for ease of use when computing a Monte Carlo. Another

positive aspect of using a Monte Carlo is that it does not require underlying distribution

assumptions of normality; the method builds null distributions from the available data

distribution instead of using the normal curve as the null distribution. The

characterization of these 4 steps, an increase in computing power, and the generality of

the Monte Carlo makes it an appealing technique, and accordingly its popularity has

increased in a number of disciplines.

Selectivity is measured by the unequal use of a resource when compared to the

availability of that resource (Johnson 1980). Here, I use two test statistics, mean and

standard deviation, to describe and compare the resource use distribution and the

available distribution of resources in the Monte Carlo analysis I designed to evaluate

refuge site selection. Using these two statistics I am able to identify six patterns

regarding the use/availability distributions (Figure 1.1). If the distributions resulting

from Monte Carlo analyses follow the pattern of any of the distributions in Figure 1.1

A, B, or C, selectivity is detected.

Although the Monte Carlo method has been around for decades, each particular

Monte Carlo design possesses unique qualities and has the potential to behave

differently when subjected to a power analysis. In order to make accurate and justified

inferences with the Monte Carlo analysis for a snapshot, design 1, use/availability study

to evaluate refuge site selection, I performed a power analysis to estimate Type I and

Type II error rates. I simulated used and available datasets with ‘known’ distribution

parameters and examined error rates associated with varying sample sizes. With this
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method I am able to determine the sample sizes necessary for the Monte Carlo method

to detect selection of particular environmental variables. Type I error occurs when the

Monte Carlo returns a significant result when there should not be a significant result.

Type II error occurs when the Monte Carlo does not return a significant result when the

result should be significant.

2.2 Methods

Using computer simulations, I created known distributions of used (i.e.,

variables associated with the use of a particular refugium) and available data by

drawing from a normal curve. I had five varying parameters; including alpha, sample

size, mean and standard deviation of the used distribution (in units away from a ‘fixed’

available distribution), and the standard deviation of the fixed available distribution.

The mean and standard deviation of each used distribution were decreased separately,

away from the mean and standard deviation of each available distribution. The units

consisted of 1/4th of the available condition’s standard deviation until the used

distribution was 3 standard deviations away from the mean and standard deviation of

the available distribution. To calculate the difference in mean between the used

distribution and available distribution measured in standard deviations, I used the

absolute value of the used mean minus the available mean divided by the available

standard deviation. The available data distribution consisted of an infinite number of

samples and the samples in the used distribution varied from 2 through 50. These

simulated samples were drawn from a normal distribution with specified mean and

standard deviation. For judging significance of results, I used three alpha values 0.01,
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0.05, and 0.1. The standard deviation of the fixed available distribution varied and had

the values of 2, 4, 6, 8, 10, and 12 SDs. For the available distribution standard deviation

of 2, the 1/4th standard deviation units ended at 1 3/4th instead of 3 because at this point

there are no standard deviations away from the mean left to decrease. For each of the

146,016 simulated datasets, a Monte Carlo analysis was performed with 1,000

permutations. I wrote and implemented all simulations in C Programming Language for

all analyses (see Appendix A).

The Monte Carlo analysis used the simulated data from each parameter

combination. For every used distribution, a random sample was drawn without

replacement within each sample size, starting at 2 and increasing in units of 1 sample

until a sample size of 50 was reached. The samples drawn from the used distribution

were replaced after all samples were drawn for a single sample size. With 1,000

permutations, each of the samples drawn from the available distribution had both test

statistics calculated and a frequency of number of test statistics greater than or equal to

the test statistics calculated for the used distribution. This frequency was used to

generate p-values at each of the three alpha levels considered.

Each distribution of available conditions was simulated with respect to

distributions A, B, C, and F (Figure 1.1). I neglect to simulate distributions D and E

because they represent excessive noise in data collection or selection of extreme

conditions. Selection of extrema is unlikely unless there is disruptive selection and can

be tested by evaluating the fit of the data to a bimodal distribution; however, this

procedure is beyond the scope of this study.
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2.3 Results

An alpha equal to 0.01, 0.05, and 0.10 in the Monte Carlo simulations produces

Type I error rates approximately equal to 1%, 5%, and 10% as expected, regardless of

sample size and amount of variance in resource availability distributions (Table 2.1).

Figure 2.1 displays Type I error for both test statistics with alpha equal to 0.10 for

sample sizes 2 through 10. The number of significant results, which theoretically should

be zero, tends to oscillate around 100 out of 1000 possible significant results, making

the Type I error rate approximately 0.10. The Type I error rate remains approximately

0.10 for all sample sizes up to 50 (data not shown).

Type II error decreases as a function of increasing sample size (Figure 2.2 and

Figure 2.3): as the mean of the used distribution increases away from the mean of the

available distribution (Figure 2.2), and as the standard deviation of the used distribution

decreases away from the standard deviation of the available distribution (Figure 2.3).

The standard deviation of the available distribution does not have a noticeable effect on

the power dynamics of the mean statistic (Figure 2.2). Type II error rates, with respect

to the mean statistic, begin decreasing toward zero when sample size is greater than or

equal to 4 and the difference in the mean test statistic between the two distributions

increases above 1 standard deviation. However, the standard deviation of the available

distribution has a large effect on the power dynamics of the decreased standard

deviation in the used distribution (Figure 2.3). Type II error rates, with respect to the

standard deviation statistic, require samples greater than 10 to approach an error rate

close to zero. For low sample sizes (2 ≤ n ≤ 10), statistical power adequate to detect
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selection in the standard deviation statistic alone is only achievable at very low standard

deviations for the available distributions (σ ≤ 2). Type II errors are high when the mean

and standard deviation statistics in the used distribution differ little from the available

distribution.

The mean statistic, rather than the SD statistic, has more power associated with

it as both the mean and SD in the used distributions deviates away from the available

distributions (Figure 2.4). There is little detectable interaction between the two test

statistics as they both decrease away from the conditions in the available distribution, as

indicated by the extremely vertical and extremely horizontal patterns in Figure 2.4.

As expected, the power increases for the Monte Carlo designed for refuge site

selection as a function of sample size for both the mean and SD test statistics. In Table

2.2, the sample size required for adequate power (80%, sensu Cohen 1977) to detect a

pattern that is actually present in the data is listed with respect to amount of deviation

required amongst the used and available distributions, the initial available conditions,

and the alpha value.

2.4 Discussion

Sample size effects in analysis of refuge site selection data can present

difficulties. Tables 2.2 can be used both for evaluating whether meaningful inferences

can be made from an assembled dataset, or in the design phase of a project to determine

sample sizes required for adequate power. Obtaining a greater number of samples to

avoid power loss in various statistical methods may require more time, money, and/or

researcher assistance. Some research questions are time/money sensitive or research
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efforts don’t provide high samples of individuals being studied and researchers have to

either analyze and interpret data or neglect data with smaller sample sizes. For example,

Butler et al. (2000) studied relationships between sexual size dimorphism and habitat

use in many Anolis lizards species and excludes several species due to limited sample

sizes n<15.

For any sample size, detecting a pattern that is not present is, as expected,

approximately equal to the alpha value (Type I error) used in the Monte Carlo analyses.

Type II error decreases with increased sample size and as the use distribution

parameters deviate from those of the available distributions. Careful consideration

should be given to the standard deviation of the available conditions and the amount of

deviation in the statistic that is required to detect selection with respect to sample size.

For example, if the standard deviation in a used/observed variable (σ = 1) deviates from

available conditions (σ = 4) by 3 standard deviations and the mean does not deviate, the

minimum sample size required to obtain results with at least 80% statistical power (a

commonly accepted level; see Cohen 1977) is 7 when α = 0.01, 5 when α = 0.05, and 4

when α = 0.1. If the available distribution has a larger standard deviation (σ = 8), then

the sample size of 4 would yield a result with a power of 10% or less. The minimum

sample size required to obtain 80% power would be 26 when α = 0.01, 24 when α =

0.05, and 17 when α = 0.1.

Figures 2.3 and 2.4 show the dynamics of the power analyses and can be used to

identify the amount of deviation required in the species use distribution and the

available distribution to avoid encountering Type II errors. In Figure 2.2, effects of the
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SD in the available distributions seem nonexistent. This can be expected and is a useful

property. The units increased in the use distribution are measured by 1/4th a standard

deviation which is directly proportional to the available distribution by the total amount

increased. This feature gives a researcher the ability to interpolate between and beyond

the 6 availability distributions analyzed with 6 different standard deviations because the

dynamics remain the same between the different available distributions for the mean

statistic.

Two steps are used in the interpolation process. First, divide the difference

between the standard deviation of the used and available distributions by three. Three is

the largest difference in the used standard deviation from the available standard

deviation calculated in Table 2.2. Second, the standard deviation in the available

distribution is then divided by the value obtained from the first step and the result is the

new standard deviation value that is used for the standard deviation of the available

distribution. The difference used to calculate the necessary sample size is three. If the

new standard deviation is not equal or less than 12 (the maximum available

distribution’s standard deviation that I calculated), another division is appropriate.

Divide both the new difference value and the new available standard deviation by a

value that will allow the available standard deviation to be reduced to a value of 12 or

less. The results are used to calculate the necessary sample size for adequate statistical

power.

In Figure 2.3, the decreasing standard deviation in the used distribution does not

decrease in large enough increments to have high power for detecting selectivity of a
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resource, except in the available distribution with a standard deviation of 2. This is an

intuitive outcome in that the higher the standard deviation in available resources, the

smaller in standard deviation the selection data has to be to detect patterns. The mean

statistic is more powerful in small sample sizes and a better predictor of real patterns

when the divergence between a used distribution and the mean in the available

distribution differ by more than 1 standard deviation.

Although the standard deviation statistic is not as powerful as the mean statistic

in the Monte Carlo methods presented, it provides useful information in the evaluation

of tolerance levels in resource selection at which individual species or populations

reside. The mean statistic is more powerful at lower sample sizes, but when the mean of

the available distribution is selected for, the standard deviation statistic can provide

further insight into the selection tolerance of a species population. Combing both

statistics and looking at the patterns of the use distributions compared to the available

distributions is the most insightful approach, as it incorporates more information. If

there is a significant result in the mean or the standard deviation statistic and the

patterns between the two distributions follow Figure 1.1 A, B, or C, then selection is

detected.

The Monte Carlo methods presented can be highly useful when exploring

patterns in refuge-site selection. Animals often do not reside in refuge-sites year around

and may only seek refuge in particular refugia when the likelihood of the mean

available conditions present converge to that of the preference for the animal’s

physiology; therefore, a prediction of seasonal refugia use would be that a population
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use mean would be very similar to the available mean conditions but would likely have

a lower standard deviation. This might present additions to Johnson’s (1980) definition

of selection; in that, selectivity is a not only a function of disproportionate use versus

availability of a resource, but also a function of species tolerance and seasonality. The

next chapter includes analysis of refuge-site selection with use/availability data where I

use the Monte Carlo analysis presented in Chapter 1 and, adhering to the power

analyses presented in this chapter, I make inferences on refuge site selection in

correlated multiple response variables.
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Table 2.1 Averages of Type I error rates for n = 2–10 for test statistics mean and
standard deviation. The error rates were calculated for three alpha values.

SD of Simulated Available Distribution

2 4 6 8 10 12

α
Mean

0.01 0.0100 0.0112 0.0103 0.0080 0.0126 0.0122

0.05 0.0542 0.0503 0.0503 0.0539 0.0487 0.0459

0.1 0.1041 0.1076 0.1027 0.1210 0.1002 0.1071

SD

0.01 0.0138 0.0109 0.0114 0.0084 0.0102 0.0118

0.05 0.0497 0.0560 0.0544 0.0442 0.0468 0.0476

0.1 0.0987 0.1136 0.0997 0.1077 0.0980 0.0946
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Table 2.2 Sample size required for adequate power to detect patterns in each available
distribution’s standard deviation equaling σ. The difference in mean (∆ Mean) and the
difference in standard deviation (∆ SD) are calculated between the used and available
distributions and are measured in standard deviations. Alpha (α) is the level of Type I
error the allowed in the analysis.

∆Mean
σ α ∆ SD 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3

2

0.01 0 - >50 47 20 12 8 6 4 3 3 2 2 2
1/4 >50 >50 43 20 11 7 5 4 3 3 2 2 2
1/2 >50 >50 42 19 11 7 5 4 3 3 2 2 2
3/4 37 37 36 17 11 7 5 4 3 2 2 2 2
1 16 16 16 16 11 7 5 4 3 2 2 2 2

1 1/4 11 11 10 10 9 6 4 3 2 2 2 2 2
1 1/2 7 7 7 7 7 6 4 3 3 2 2 2 2
1 3/4 5 5 5 5 5 4 3 3 2 2 2 2 2

0.05 0 - >50 28 12 8 5 4 3 2 2 2 2 2
1/4 >50 >50 28 12 7 5 4 3 2 2 2 2 2
1/2 >50 >50 28 11 7 5 3 2 2 2 2 2 2
3/4 21 20 20 11 7 5 3 3 2 2 2 2 2
1 14 14 14 10 6 4 3 2 2 2 2 2 2

1 1/4 8 8 8 8 6 4 3 2 2 2 2 2 2
1 1/2 5 5 5 5 5 3 3 2 2 2 2 2 2
1 3/4 4 4 4 4 4 3 2 2 2 2 2 2 2

0.1 0 - >50 23 11 6 4 3 2 2 2 2 2 2
1/4 >50 >50 23 11 6 4 3 2 2 2 2 2 2
1/2 46 46 21 10 6 4 3 2 2 2 2 2 2
3/4 19 18 18 9 5 3 3 2 2 2 2 2 2
1 10 10 10 8 5 3 2 2 2 2 2 2 2

1 1/4 6 6 6 6 4 3 2 2 2 2 2 2 2
1 1/2 4 4 4 4 4 3 2 2 2 2 2 2 2
1 3/4 3 3 3 3 3 3 2 2 2 2 2 2 2



29

Table 2.2 – continued
∆Mean

σ α ∆ SD 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3

4

0.01 0 - >50 >50 24 13 9 6 5 4 3 3 2 2
1/4 >50 >50 46 21 12 8 5 4 3 3 2 2 2
1/2 >50 >50 46 20 11 8 5 4 3 3 2 2 2
3/4 >50 >50 42 19 11 8 5 4 3 2 2 2 2
1 >50 >50 42 19 11 8 5 4 3 3 2 2 2

1 1/4 >50 >50 39 19 11 8 5 4 3 2 2 2 2
1 1/2 31 31 31 19 11 8 5 4 3 2 2 2 2
1 3/4 22 22 21 18 10 7 5 4 3 2 2 2 2

2 21 21 21 17 10 7 5 4 3 2 2 2 2
2 1/4 14 14 14 14 10 7 4 3 3 2 2 2 2
2 1/2 11 11 11 11 8 6 4 3 3 2 2 2 2
2 3/4 8 8 8 8 8 6 4 3 3 2 2 2 2

3 7 7 7 7 7 6 4 3 2 2 2 2 2

0.05 0 - >50 30 15 9 6 4 3 3 2 2 2 2
1/4 >50 >50 30 14 9 5 4 3 2 2 2 2 2
1/2 >50 >50 30 14 9 5 4 3 2 2 2 2 2
3/4 >50 >50 26 14 7 5 4 3 2 2 2 2 2
1 >50 >50 26 11 7 5 3 3 2 2 2 2 2

1 1/4 33 32 26 11 7 4 3 2 2 2 2 2 2
1 1/2 20 20 20 11 7 4 3 2 2 2 2 2 2
1 3/4 17 16 16 11 7 4 3 2 2 2 2 2 2

2 12 12 11 10 6 4 3 2 2 2 2 2 2
2 1/4 9 9 9 9 6 4 3 2 2 2 2 2 2
2 1/2 7 7 7 7 6 4 3 2 2 2 2 2 2
2 3/4 6 6 6 6 6 4 3 2 2 2 2 2 2

3 5 5 5 5 5 4 3 2 2 2 2 2 2

0.1 0 - >50 26 12 7 4 3 3 2 2 2 2 2
1/4 >50 >50 26 12 7 4 3 3 2 2 2 2 2
1/2 >50 >50 26 10 6 4 3 2 2 2 2 2 2
3/4 >50 >50 22 9 5 4 3 2 2 2 2 2 2
1 40 40 18 9 5 4 3 2 2 2 2 2 2

1 1/4 34 34 18 9 5 4 3 2 2 2 2 2 2
1 1/2 21 20 17 8 5 3 2 2 2 2 2 2 2
1 3/4 13 12 12 8 4 3 2 2 2 2 2 2 2

2 10 10 10 8 4 3 2 2 2 2 2 2 2
2 1/4 8 7 7 7 4 3 2 2 2 2 2 2 2
2 1/2 7 6 6 6 4 3 2 2 2 2 2 2 2
2 3/4 5 5 5 5 4 3 2 2 2 2 2 2 2

3 4 4 4 4 4 3 2 2 2 2 2 2 2
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Table 2.2 – continued
∆Mean

σ α ∆ SD 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3

6

0.01 0 - >50 >50 26 13 8 6 4 4 3 2 2 2
1/4 >50 >50 >50 26 13 8 6 4 3 3 2 2 2
1/2 >50 >50 47 23 12 8 6 4 3 3 2 2 2
3/4 >50 >50 47 23 11 8 6 4 3 3 2 2 2
1 >50 >50 41 21 11 8 6 4 3 3 2 2 2

1 1/4 >50 >50 41 19 11 7 5 4 3 3 2 2 2
1 1/2 >50 >50 41 19 11 7 5 4 3 3 2 2 2
1 3/4 >50 >50 41 19 11 7 5 4 3 2 2 2 2

2 41 41 41 19 11 7 5 4 3 2 2 2 2
2 1/4 35 35 34 17 9 6 5 3 3 2 2 2 2
2 1/2 23 23 23 17 9 6 5 3 3 2 2 2 2
2 3/4 21 21 21 17 9 6 5 3 3 2 2 2 2

3 17 17 17 17 9 6 5 3 3 2 2 2 2

0.05 0 - >50 34 18 9 6 4 3 3 2 2 2 2
1/4 >50 >50 30 15 9 6 4 3 3 2 2 2 2
1/2 >50 >50 30 14 8 5 4 3 2 2 2 2 2
3/4 >50 >50 30 12 7 5 4 3 2 2 2 2 2
1 >50 >50 30 12 7 5 4 3 2 2 2 2 2

1 1/4 >50 >50 30 11 7 5 3 3 2 2 2 2 2
1 1/2 >50 >50 30 11 7 5 3 3 2 2 2 2 2
1 3/4 31 31 30 11 7 4 3 2 2 2 2 2 2

2 27 27 24 11 7 4 3 2 2 2 2 2 2
2 1/4 27 27 22 11 6 4 3 2 2 2 2 2 2
2 1/2 18 18 18 10 6 4 3 2 2 2 2 2 2
2 3/4 15 15 14 10 6 4 3 2 2 2 2 2 2

3 12 12 12 10 6 4 3 2 2 2 2 2 2

0.1 0 - >50 24 13 7 5 3 2 2 2 2 2 2
1/4 >50 >50 23 13 7 5 3 2 2 2 2 2 2
1/2 >50 >50 23 12 7 5 3 3 2 2 2 2 2
3/4 >50 >50 21 11 6 4 3 2 2 2 2 2 2
1 >50 >50 21 11 6 4 3 2 2 2 2 2 2

1 1/4 >50 >50 21 10 6 4 3 2 2 2 2 2 2
1 1/2 49 49 21 10 6 4 3 2 2 2 2 2 2
1 3/4 28 28 20 9 6 4 3 2 2 2 2 2 2

2 22 20 19 9 5 4 3 2 2 2 2 2 2
2 1/4 19 19 19 9 5 4 3 2 2 2 2 2 2
2 1/2 14 14 13 9 5 4 3 2 2 2 2 2 2
2 3/4 11 11 11 8 5 4 2 2 2 2 2 2 2

3 8 8 8 8 5 4 2 2 2 2 2 2 2
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Table 2.2 – continued
∆Mean

σ α ∆ SD 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3

8

0.01 0 - >50 >50 25 14 9 6 5 4 3 3 2 2
1/4 >50 >50 44 24 14 9 5 5 4 3 3 2 2
1/2 >50 >50 44 24 14 9 5 5 4 3 3 2 2
3/4 >50 >50 44 21 11 8 5 4 3 3 2 2 2
1 >50 >50 44 21 11 8 5 4 3 3 2 2 2

1 1/4 >50 >50 42 20 11 8 5 4 3 3 2 2 2
1 1/2 >50 >50 42 20 11 8 5 4 3 3 2 2 2
1 3/4 >50 >50 42 19 11 7 5 4 3 3 2 2 2

2 >50 >50 42 19 11 7 5 4 3 3 2 2 2
2 1/4 >50 >50 42 17 10 7 5 4 3 3 2 2 2
2 1/2 >50 >50 42 17 10 7 5 4 3 3 2 2 2
2 3/4 33 33 32 16 10 6 5 3 3 3 2 2 2

3 26 26 26 16 10 6 5 3 3 3 2 2 2

0.05 0 - >50 37 16 9 6 4 3 3 2 2 2 2
1/4 >50 >50 37 16 9 6 4 3 3 2 2 2 2
1/2 >50 >50 32 14 8 5 4 3 2 2 2 2 2
3/4 >50 >50 32 14 8 5 4 3 2 2 2 2 2
1 >50 >50 31 14 8 5 4 3 2 2 2 2 2

1 1/4 >50 >50 30 14 8 5 4 3 2 2 2 2 2
1 1/2 >50 >50 29 14 8 5 4 3 2 2 2 2 2
1 3/4 >50 >50 29 14 8 5 4 3 2 2 2 2 2

2 >50 >50 29 13 7 5 4 3 2 2 2 2 2
2 1/4 44 44 29 13 7 5 4 3 2 2 2 2 2
2 1/2 32 32 27 12 7 5 3 3 2 2 2 2 2
2 3/4 26 26 25 12 7 5 3 3 2 2 2 2 2

3 24 24 24 12 7 5 3 2 2 2 2 2 2

0.1 0 - >50 25 12 7 4 3 2 2 2 2 2 2
1/4 >50 >50 25 11 7 4 3 2 2 2 2 2 2
1/2 >50 >50 25 11 7 4 3 2 2 2 2 2 2
3/4 >50 >50 24 11 7 4 3 2 2 2 2 2 2
1 >50 >50 24 11 7 4 3 3 2 2 2 2 2

1 1/4 >50 >50 21 11 6 4 3 2 2 2 2 2 2
1 1/2 >50 >50 21 11 6 4 3 2 2 2 2 2 2
1 3/4 36 34 21 11 6 4 3 2 2 2 2 2 2

2 29 29 21 9 6 4 3 2 2 2 2 2 2
2 1/4 30 29 21 9 5 4 3 2 2 2 2 2 2
2 1/2 25 25 21 9 5 4 3 2 2 2 2 2 2
2 3/4 21 21 19 9 5 3 3 2 2 2 2 2 2

3 17 17 17 9 5 3 3 2 2 2 2 2 2
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Table 2.2 – continued
∆Mean

σ α ∆ SD 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3

10

0.01 0 - >50 47 22 13 8 6 5 4 3 2 2 2
1/4 >50 >50 47 22 13 8 6 5 4 3 2 2 2
1/2 >50 >50 44 22 12 8 6 4 3 3 2 2 2
3/4 >50 >50 44 22 12 8 6 4 3 3 2 2 2
1 >50 >50 43 22 12 8 6 4 3 3 2 2 2

1 1/4 >50 >50 43 21 11 7 6 4 3 3 2 2 2
1 1/2 >50 >50 43 21 11 7 6 4 3 3 2 2 2
1 3/4 >50 >50 43 20 11 7 5 4 3 3 2 2 2

2 >50 >50 43 20 11 7 5 4 3 3 2 2 2
2 1/4 >50 >50 43 20 11 7 5 4 3 3 2 2 2
2 1/2 >50 >50 38 20 11 7 5 4 3 3 2 2 2
2 3/4 >50 >50 38 20 11 7 5 4 3 2 2 2 2

3 >50 >50 37 20 11 7 5 4 3 2 2 2 2

0.05 0 - >50 39 17 10 6 4 3 3 2 2 2 2
1/4 >50 >50 39 15 8 6 4 3 2 2 2 2 2
1/2 >50 >50 34 15 8 5 4 3 2 2 2 2 2
3/4 >50 >50 34 15 8 5 4 3 2 2 2 2 2
1 >50 >50 34 15 8 5 4 3 2 2 2 2 2

1 1/4 >50 >50 34 13 7 5 4 3 2 2 2 2 2
1 1/2 >50 >50 34 12 7 5 4 3 2 2 2 2 2
1 3/4 >50 >50 29 12 7 5 4 3 2 2 2 2 2

2 >50 >50 29 12 7 5 4 3 2 2 2 2 2
2 1/4 >50 >50 29 12 7 5 4 3 2 2 2 2 2
2 1/2 >50 >50 28 11 6 5 4 3 2 2 2 2 2
2 3/4 39 37 28 11 6 5 3 3 2 2 2 2 2

3 39 37 23 11 6 5 3 3 2 2 2 2 2

0.1 0 - >50 26 12 7 4 3 2 2 2 2 2 2
1/4 >50 >50 26 12 7 4 3 2 2 2 2 2 2
1/2 >50 >50 25 12 7 4 3 2 2 2 2 2 2
3/4 >50 >50 25 12 7 4 3 2 2 2 2 2 2
1 >50 >50 24 11 7 4 3 2 2 2 2 2 2

1 1/4 >50 >50 24 11 7 4 3 2 2 2 2 2 2
1 1/2 >50 >50 23 11 6 4 3 2 2 2 2 2 2
1 3/4 >50 >50 21 11 6 4 3 2 2 2 2 2 2

2 >50 >50 21 10 6 4 3 2 2 2 2 2 2
2 1/4 >50 >50 21 10 6 4 3 2 2 2 2 2 2
2 1/2 42 40 21 10 6 4 3 2 2 2 2 2 2
2 3/4 - >50 47 22 13 8 6 5 4 3 2 2 2

3 >50 >50 47 22 13 8 6 5 4 3 2 2 2
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Table 2.2 – continued
∆Mean

σ α ∆ SD 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3

12

0.01 0 - >50 >50 24 14 8 6 4 3 3 2 2 2
1/4 >50 >50 >50 22 13 8 6 4 3 3 2 2 2
1/2 >50 >50 47 22 13 8 6 4 3 3 2 2 2
3/4 >50 >50 47 22 13 8 6 4 3 3 2 2 2
1 >50 >50 46 21 13 8 6 4 3 3 2 2 2

1 1/4 >50 >50 46 21 12 8 6 4 3 3 2 2 2
1 1/2 >50 >50 43 21 12 8 6 4 3 3 2 2 2
1 3/4 >50 >50 43 20 12 8 6 4 3 3 2 2 2

2 >50 >50 39 19 11 8 6 4 3 3 2 2 2
2 1/4 >50 >50 39 19 11 8 6 4 3 3 2 2 2
2 1/2 >50 >50 38 18 11 7 6 4 3 3 2 2 2
2 3/4 >50 >50 38 18 11 7 5 4 3 2 2 2 2

3 >50 >50 38 18 10 7 5 4 3 3 2 2 2

0.05 0 - >50 39 16 9 6 4 3 3 2 2 2 2
1/4 >50 >50 31 16 9 6 4 3 3 2 2 2 2
1/2 >50 >50 30 14 9 6 4 3 3 2 2 2 2
3/4 >50 >50 30 14 9 6 4 3 3 2 2 2 2
1 >50 >50 30 14 9 6 4 3 3 2 2 2 2

1 1/4 >50 >50 30 14 8 6 4 3 3 2 2 2 2
1 1/2 >50 >50 29 13 8 5 4 3 2 2 2 2 2
1 3/4 >50 >50 29 13 8 5 4 3 2 2 2 2 2

2 >50 >50 29 13 8 5 4 3 2 2 2 2 2
2 1/4 >50 >50 29 13 8 5 4 3 2 2 2 2 2
2 1/2 >50 >50 29 13 8 5 4 3 2 2 2 2 2
2 3/4 >50 >50 29 13 8 5 4 3 2 2 2 2 2

3 47 44 23 12 8 5 4 3 2 2 2 2 2

0.1 0 - >50 26 12 9 7 3 3 2 2 2 2 2
1/4 >50 >50 26 12 9 7 3 3 2 2 2 2 2
1/2 >50 >50 26 12 9 7 3 3 2 2 2 2 2
3/4 >50 >50 23 11 7 4 3 3 2 2 2 2 2
1 >50 >50 23 11 7 4 3 3 2 2 2 2 2

1 1/4 >50 >50 23 11 7 4 3 3 2 2 2 2 2
1 1/2 >50 >50 23 10 7 4 3 2 2 2 2 2 2
1 3/4 >50 >50 22 10 7 4 3 2 2 2 2 2 2

2 >50 >50 22 10 6 4 3 2 2 2 2 2 2
2 1/4 - >50 >50 24 14 8 6 4 3 3 2 2 2
2 1/2 >50 >50 >50 22 13 8 6 4 3 3 2 2 2
2 3/4 >50 >50 47 22 13 8 6 4 3 3 2 2 2

3 >50 >50 47 22 13 8 6 4 3 3 2 2 2
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Figure 2.1 Type I error for each sample size 2 through 10 from a Monte Carlo
randomization procedure, with 1,000 iterations and alpha = 0.1. The
availability distribution’s standard deviations are represented in the key.
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Figure 2.2 Power curves for the mean test statistic resulting from a Monte Carlo
randomization procedure, with 1,000 iterations and an alpha value of 0.1.
Each line represents 1/4th of a unit away from the mean of the available
distribution. Sigma is the standard deviation of the available distribution.
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Figure 2.3 Power curves for the SD test statistic resulting from a Monte Carlo
randomization procedure, with 1,000 iterations and an alpha value of 0.1.
Each line represents 1/4th of a unit from the SD of the available distribution.
Sigma is the standard deviation of the available distribution.
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Figure 2.4 Dynamics between the change in mean and the change in standard deviation
of each used distribution. Number of significant results using the mean
statistic, column A, and the standard deviation statistic, column B, using the
availability distribution of σ = 4 and an alpha value of 0.1. White coloration
on the graph represents significant results greater than or equal to 95%.
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CHAPTER 3

REFUGE SITE SELECTION IN TWO KANSAS
SQUAMATE ASSEMBLAGES

3.1 Introduction

For ectothermic vertebrates, the importance of microhabitat features that

provide refugia from environmental periodicity, predation, extreme temperatures, etc.,

is well known (Blouin-Demers and Weatherhead 2001, Beck and Jennings 2003, Howes

and Lougheed 2004). In addition to providing a buffer from harsh and often stochastic

environmental conditions, refuge sites are also of fundamental importance to

thermoregulation and maintaining water balance (Huey et al. 1989, Adolf 1990, Webb

and Shine 1998). Refuge site selection is likely influenced by multiple ecological

parameters (Kerr and Feldman 2003), and the potential costs of making poor refuge site

decisions are often context dependent (Huey et al 1989, Orians and Wittenberg 1991).

For example, reptiles inhabiting temperate climates may be particularly vulnerable to

mortality resulting from poor selection of either over-wintering sites or temporary

refuge sites selected during active periods (e.g., temperature under cover rocks may

reach lethal maximum limits during the day or lethal minimum limits during the night).

As a result, while refuge site selection is often vital for achieving and maintaining the

most advantageous physiological states, while poor refuge site selection can be fatal.

In the central and southern Great Plains region various squamate reptile species

are seasonally associated with rock fields and utilize rocks extensively as refuge sites.
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Particularly in spring and early summer, individuals of many nocturnal snake and

diurnal lizard species remain sequestered under cover rocks for extended periods.

Abiotic parameters associated with cover rocks often vary dramatically within a given

rock field, and individuals have the opportunity to select the sites that are most suitable

for their physiological requirements. Herein, I report the results of a snapshot field

study designed to evaluate the relative importance of various abiotic factors in cover

rock selection by squamate reptile species in two regions: the Smoky Hills of central

Kansas and the Flint Hills of eastern Kansas.

3.2 Methods

3.2.1 Study Sites

The three study sites were located at two distinct areas in Kansas; 1 site in the

western portion of the Smoky Hills (site 1: 39.420 N, 96.470 W, altitude 384) and 2

proximal sites in the north central region of the Flint Hills (site 2: 38.765 N, 98.843 W,

altitude 562 m; site 3: 39.067 N, 96.539 W, altitude 439). The Smoky Hills are located

in the north-central part of Kansas and are delineated by outcrops of Cretaceous-age

limestone (Buchanan and McCauley 1987). Site 1 was located within the Greenhorn

Limestone outcrop belt in the west Smoky Hills. The chalky limestone beds are mostly

made up of large and fragmented thin sheets of limestone. The vegetation consisted of

mixed prairie grasslands. The Flint Hills are located to the east of the Smoky Hills and

run from the northern border of Kansas beyond the southern border into northern

Oklahoma. Sites 2 and 3 were within outcrops of Permian-age limestone and shale. Site

2 was partially burned, with no overstory and sparse to moderate grass cover. Site 3 had
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open canopy Konza prairie with moderate to dense ground cover. For the purposes of

this study, I pooled the data from sites 2 and 3 based on their close proximity (hereafter

referred to as Flint Hills).

3.2.2 Data Collection

I collected data during daylight hours on 16−17 April 2005, spending a day at

each study site. For both study sites, potential cover rocks were haphazardly selected,

and measurements were taken for the following variables: rock dimensions in

millimeters (length, width, and depth), soil moisture beneath the rock, and surface

temperature beneath the rock. Rock length and width were measured with metric tape,

and rock depth was obtained with a metric tree caliper. I used a MiniiiIR Traceable

Thermometer (±1°C accuracy between 15°−40°C) for measuring ground temperature

and a Portable Soil Moisture Meter (PSMM) for measuring soil moisture. The PSMM

records the amount of soil moisture on a 0−10 scale (0 = completely dry, 10 =

saturated). I locally calibrated the PSMM to adjust for between-site variation in soil

composition. At each site, I attempted to select a representative profile of available rock

sizes, ranging from approximately 200 mm in diameter to larger rocks that could be

lifted by two individuals. I also attempted to select rocks from various slope aspects. I

excluded potential cover rocks that had rock substrata, and rocks for which I could not

obtain moisture measurements.

In addition to measuring abiotic variables, I also documented which surface

rocks were actually used as cover rocks by snakes or lizards. For each cover rock, I

recorded the species and number of individuals encountered. Photographs were taken of
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representative species and deposited as voucher transparencies at the University of

Texas at Arlington Amphibian and Reptile Diversity Research Center.

3.2.3 Data Analysis

I reduced rock length and rock width to a single variable (rock area) for all

analyses. I examined distributions of variables for normality prior to inclusion in

parametric analyses (only rock area deviated from assumptions of normality and this

problem was ameliorated by log-transformation). I evaluated relationships among

abiotic variables using a Pearson correlation matrix. Variables were compared between

the Smoky and Flint Hills using two-sample t-tests (α = 0.05). All parametric analyses

were performed using Systat 8.0 (SPSS Inc., 1998).

Most studies of habitat selection incorporate indices and/or conventional

hypothesis tests to evaluate specific habitat use proportional to habitat availability. For

this study, I used a Monte Carlo approach to determine if species’ selection of variables

deviated significantly from random based on the range of available values from both

potential and actual cover rocks. For each study site, I compared the used means and

standard deviation (SD) of variables from cover rocks used by each species to a

simulated (null) distribution generated from 1000 permutations of the entire site-

specific dataset. Sample statistics from the randomized data were based on the number

of observations from each used dataset (e.g., if the used dataset was based on 10

individuals, the randomized datasets were also based on groups of n = 10). Although I

performed analyses on all species with sample size ≥ 2, I only made inferences where

appropriate on the basis of the power analyses presented in the previous chapter.
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Since cover rocks are used seasonally, it may be expected that particular species

will utilize cover rocks during times when the mean values of parameters in a rock field

are most suitable. Under such conditions, the Monte Carlo test alone may fail to detect

selection. For this reason, comparisons from multiple sites that vary in available mean

values (e.g., both disparate regions in Kansas), as well as testing for variation around

the mean (in this case using SD) may strengthen the interpretation of results. Because of

the exploratory nature of my study I used a two-tailed test with α = 0.10 for all

comparisons. This choice was made for two reasons: (1) I had no a priori reason to

hypothesize on the direction of deviation from the mean (in variable measurements,

mean, and SD) and (2) to reduce the likelihood of type II errors in exploratory analysis

(Jaeger and Halliday 1998). All Monte Carlo analyses were performed using a program

written in C Programming Language (see previous chapters and Appendix B).

3.3 Results

I recorded data for abiotic variables from 409 surface rocks (n = 200 for Smoky

Hills, n = 209 for Flint Hills). A Pearson correlation matrix revealed relatively weak (r

≤ 0.36), but expected, relationships among variables (Table 3.1), For example, rock

depth was positively associated with rock area but negatively associated with surface

temperature. The relatively low correlation coefficients were likely the result of noise

created by variability in topography and different slope aspects at the study sites. The

Smoky Hills and Flint Hills differed significantly in all abiotic variables except for rock

depth (Table 3.1). In general, surface rocks from the Smoky Hills had lower
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temperatures, higher soil moisture, and more rocks with greater rock area than did

surface rocks from the Flint Hills.

A total of 91 individuals from 9 species were found using cover rocks (n = 52

for Smoky Hills, n = 39 for Flint Hills; Table 3.2). The sample sizes required for

sufficient inferential power at alpha = 0.10 are listed in Table 3.3 and 3.4. Species were

excluded from analyses when sample size was ≤ 2. I included all other species in

analyses but did not make inference in instances when sample sizes were insufficient

based on the power analyses from simulations (see Chapter 2 and discussion). The

ringneck snake (Diadophis punctatus) was the most commonly encountered species and

comprised over half of the total observations. In addition to D. punctatus, four other

species encountered were included in the analysis: the common collared lizard

(Crotaphytus collaris) from the Smoky Hills, the lined snake (Tropidoclonion lineatum)

from the Flint Hills, the milksnake (Lampropeltis triangulum), and the great plains

skink (P. obsoletus) from both locales. For C. collaris, D. punctatus, and L. triangulum

at least one of the variables had a large enough sample size to detect patterns of

selection.

Results from Monte Carlo analyses revealed that the importance of abiotic

variables potentially associated with cover rock selection differed among species

(Tables 3.5 and 3.6). Overall patterns in cover rock selection among species were

generally congruent when differences in abiotic parameters between sites were

considered concomitantly. One lizard species was evaluated using Monte Carlo

simulations (Crotaphytus collaris in the Smoky Hills) and it selected cover rocks with
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less mean soil moisture than expected from random permutations of the data. However,

the variance of the used distribution is significantly larger than the variance of the

available distribution, which indicates the data collected are either not a true

representation of the population variance or the population is selecting extreme

conditions (refer to Figure 1.1 D). Temperature and measures of rock depth and area did

not appear to be selected by this species; however, sample sizes were below the

accepted level for sufficient power, thus insignificant results may represent Type II

errors.

The influence of variables on cover rock selection differed for each of the two

snake species analyzed (Lampropeltis triangulum and Diadophis punctatus). In the

Smoky Hills, L. triangulum selected the largest rocks available and the pattern of

selection followed Figure 1.1C, but L. triangulum had no other significant selected

variables. For moisture and rock depth, this may be a result of Type II error; L.

triangulum did not have a sufficient sample size to detect selection. Alternatively, L.

triangulum may select for these variables but with less strength than rock size. I did

have an adequate sample size to detect selection for temperature by L. triangulum, but

selection was not detected. The pattern of distribution in this variable resembles Figure

1.1 F. At this time of year, surface temperature itself does not seem to be selected by L.

triangulum, because this species had an adequate sample size to detect selection in the

Flint Hills as well, but selection was not detected.

I found relatively large numbers of Diadophis puncatus sheltering under rocks

in both the Smoky and Flint Hills. Despite geographic variation in temperature and
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moisture, D. punctatus were consistently found selecting moisture levels with less

variation than available at both sites. In the Flint Hills, D. punctatus also selected for a

higher moisture level of 7.92, rather than the available mean moisture level of 6.89,

following a distribution pattern similar to Figure 1.1A. This is consistent with the level

of moisture selected in the Smoky hills, which was not significantly different from the

mean conditions of 8.06, following the distribution pattern similar to Figure 1.1 B. The

moisture levels selected from these two distinct populations of D. punctatus converge to

a value approximately equal to 8.

Temperature effects on Diadophis punctatus are significant in both geographic

regions, but do not converge on the same value. In the Smoky Hills, the temperature

variable’s distribution followed pattern B in Figure 1.1 and the mean temperature

selected was higher than that of the available temperature distribution (mean selected =

24.85; mean available = 23.27). In the Flint Hills, the used mean temperature was

significantly less than the mean available temperature and the temperature distribution

follows pattern C in Figure 1.1 (mean selected = 22.70; mean available = 24.58).

However, power was less than 80% for the temperature analysis of D. punctatus from

the Flint Hills. Detecting selection in such a variable would likely require very strong

selective forces.

Refuge site selection in Diadophis punctatus is also related to rock depth and

area at both sites. Rocks selected were approximately 60-70mm in depth. The mean

used distributions for rock depth at both sites did not converge on the same value. For

the rock depth variable for D. punctatus, Figure 1.1A represents the distribution pattern
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used from the Smoky Hills while Figure 1.1C more closely reflects the distribution

pattern from the Flint Hills. In addition, there is not an adequate sample size of D.

punctatus to detect selection for available and used distributions of data associated with

rock area in the Smoky Hills. In the Flint Hills, rock area was selected for with a pattern

of distribution similar to Figure 1.1 C. The mean of the used distribution in the Flint

Hills is very similar to the available mean in the Smoky Hills. The fact that selection

was not detected in the Smoky Hills is likely a result of favorable conditions mirroring

available conditions for D. punctatus.

In an analysis combining all lizards found in the Smoky Hills, rock depth and

rock area are selected for (Table 3.8). Lizards used the mean available conditions, but

with a smaller variance than the available conditions, following pattern A in Figure 1.1.

All used snakes in the Smoky Hills selected for the mean available temperature, but for

larger rocks than the mean available, following pattern B in Figure 1.1. All used snakes

in the Flint Hills apparently selected for a lower mean temperature than the mean

available. The mean available temperature in the Smoky Hills was 23.143°C, and

snakes showed selection for the mean (as detected through decreased variation). In the

Flint Hills the mean available temperature was 24.657°C, and snakes selected for lower

temperatures. All squamates at both sites selected larger rock area than the mean

available, mean available moisture, and lower temperature than the mean available

(Figure 1.1C).
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3.4 Discussion

All sample sizes were relatively low (n < 10), except for Diadophis punctatus

(Table 3.2), in some cases, the differences between the used and available distributions

did not differ greatly. The overall result is that power to detect selection was relatively

low, even at seemingly adequate sample sizes. Therefore, when making inferences

about selectivity careful consideration must be given to sample size, amount of

deviation in mean and standard deviation, and the standard deviation in available

conditions. There was not adequate power to detect patterns of selection for six of the

nine species sampled in both the Smoky and Flint Hills. For the remaining three species,

one to several of the variables within each of them also did not have adequate power to

detect selection.

Another consideration must be given when interpreting results by considering

the way used and available distributions are dispersed with respect each other (e.g.,

Figure 1.1 D and E). For example, Crotaphytus collaris falsely appears to be selecting

for moisture in the Smoky Hills (Table 3.5). The variance in the available conditions is

higher than the variance in the used conditions. Even though the used statistic is

significantly different from the available statistic, I do not suggest that these are the

conditions C. collaris is selecting based on consideration of both the used and available

variances. Several conclusions are possible. The data are best represented by a bimodal

distribution, selection of extreme conditions, too much noise in the data, and/or

insufficient sample size. It is likely one or a combination of the last two. In the

following paragraphs, I discuss biological inferences regarding refuge site selection in
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the two most commonly encountered species, Diadophis punctatus and Lampropeltis

triangulum.

Diadophis punctatus selected for rock area in the Flint Hills but did not deviate

from the mean available rock area in the Smoky Hills. On average, rocks in the Smoky

Hills were larger (in terms of area) than in the Flint Hills; thus sufficient-sized rocks

appear to be at a premium in the Flint Hills and snakes appeared to congregate under the

fewer, suitable rocks. This inference illustrates the value of using multiple sites in a

snapshot study using the Monte Carlo approach—it is apparent from the consideration

of both sites that rock area is an important variable in refuge site selection for D.

punctatus. Simply evaluating D. punctatus populations from the Smoky Hills may lead

to erroneous inference, since selection by a species cannot be detected if selected

parameters do not deviate from the mean available parameters. Thus, the ability to make

accurate inferences increases when evaluating multiple sites that may differ somewhat

in available conditions.

Diadophis punctatus also appeared to select mean available moisture and higher

than mean available temperatures in the Smoky Hills. In the Flint Hills, D. punctatus

selected higher than mean available moisture and lower than average temperatures.

Furthermore, rock area seems to have a more important role in refuge site selection in

the Flint Hills (see above). Consideration of mean available conditions at both sites

provides insight into the proximate factors influencing refuge site selection in this

species. With respect to measured variables, conditions in the Flint Hills were both drier

and warmer than the Smoky Hills. During the study period, it is probable that D.
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punctatus refuge site selection was based primarily on thermoregulation in the favorable

Smoky Hills. The higher selectivity of variables in the Flint Hills, suggests that

conditions in this region appeared to be less favorable, and selection was based more on

encountering cooler, wetter conditions (hence the selection for larger rock area in the

Flint Hills).

Refuge site selection for Lampropeltis triangulum differed considerably from

Diadophis punctatus. L. triangulum selected for the largest cover rocks available in the

Smoky Hills, as well as in the analysis combining data from the Smoky and Flint Hills

(Table 3.7). On average, L. triangulum selected rocks over 2.5 times and nearly 1.8

times the mean available rock area in the Smoky and Flint hills, respectively. Other

variables were not selected more frequently than random expectation. Temperature, in

particular, did not appear to influence refuge site selection in L. triangulum, since

variance in this parameter exceeded available variance at both study sites.

The differences in refuge site selection between these two snake species may

relate to the temporal properties of the measured variables. Physical properties of rocks

(i.e., area, depth, etc.) are static variables, whereas the other variables are highly

dynamic. Moisture is a function of season, and especially rainfall. Temperature is

exceptionally dynamic, varying on both seasonal and daily scales. The importance of

rock area suggests that Lampropeltis triangulum may be more sedentary and choose

conditions on the basis of relative stability. Larger rocks are expected to provide more

stable conditions, with respect to the under-rock environment, regardless of ambient

conditions when the refuge site is chosen. Reasons for this expectation are physics-
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based. The surface area to volume ratio of a rock dictates the amount of time the rock

takes to heat up or cool off. The larger the rock, the slower the heating or cooling rate;

thus, larger rocks provide more stable environments. Larger rocks will likely dry at

lower rates as well, and will not experience the extreme daily temperature fluctuations

that smaller rocks are susceptible to undergo. Thus, I hypothesize that environmental

stability of the refugium is more important in selection for L. triangulum. This would

suggest that it is either less costly for Diadophis punctatus to switch refugia, or the

physiological requirements of D. punctatus are more sensitive to fluctuations in ambient

conditions.

Overall, the Monte Carlo analysis appears to provide meaningful insight into

differences among species in refuge selection. In this analysis, I inferred species

differences in selection without testing them directly; however, such tests could easily

be modified to look directly at species differences. For example, rather than compare a

species’ use distribution to an available distribution, two species’ use distributions could

be compared. In most cases, it would be of greater interest to dissect variables that are

important to individual species since one would not expect two species to overlap in

their use of available resources. There are other points to consider when using this test,

some of which have already been outlined above. In a snapshot study, stronger

inference can be gained by examining multiple, different sites that will most likely

differ somewhat in available conditions. Temporal studies may also be amenable to

such analyses; however, special consideration of non-independence of samples needs to

be made when using this approach. Also, it would generally be difficult to definitively
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distinguish relative contributions of the multiple variables examined since most are

likely interdependent. Finally, potential aggregations of individuals under a single rock

may induce a social component to refuge site selection, influencing the distributions of

used means and variance and thus lending to Type I error.
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Table 3.1 Pearson correlation matrix of abiotic variables from both the Flint and Smoky
Hills of Kansas.

Moisture Temperature Rock Depth Rock Area
Moisture 1.000
Temperature -0.141 1.000
Rock Depth 0.194 -0.350 1.000
Rock Area 0.187 -0.342 0.356 1.000
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Table 3.2 Available distribution means, SDs, and p-values for two-sample t-tests
assuming unequal variances.

Smoky Hills Flint Hills
Mean SD Mean SD p-value

Moisture 8.015 1.598 6.809 1.839 <0.001
Temperature 23.143 3.528 24.657 3.272 <0.001
Rock Depth 78.085 26.663 75.526 29.409 0.357
Rock Area 303567.3 206229.3 201307.6 165748.8 <0.001
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Table 3.3 Observed species from two Kansas squamate assemblages.
Smoky Hills Flint Hills

Aspidoscelis sexlineatus 2 -
Crotaphytus collaris 7 1
Coluber constrictor - 1
Diadophis punctatus 31 17
Lampropeltis getula 2 -
L. triangulum 8 5
Pantherophis emoryi - 1
Plestiodon obsoletus 2 7
Tropidoclonion lineatum - 4
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Table 3.4 Required sample size for adequate power (>80%) to detect patterns from the
Smoky Hills dataset. The differences are measured in SDs. *SD interpolated to obtain

required samples for available distributions SDs > 12 and differences > 3.
n Used

mean
Used
SD

Difference
in mean

Difference
in SD

Required
n

Smoky Hills

A. sexlineatus 2
Moisture 7.25 1.77 0.48 0.17 3
Temperature 23.10 5.66 0.01 2.13 10
Rock Depth 78.40 9.90 0.01 16.76* 17
Rock Area 185472.50 15941.72 0.57 190287.58* 4

C. collaris 7
Moisture 6.50 2.48 0.95 0.89 5
Temperature 21.97 3.77 0.33 0.24 >50
Rock Depth 77.71 13.85 0.01 12.81* 8
Rock Area 334912.14 88173.24 0.15 118056.06* 8

D. punctatus 31
Moisture 8.19 0.77 0.11 0.83 10
Temperature 24.85 2.32 0.48 1.20 18
Rock Depth 69.81 17.79 0.31 8.87* 17
Rock Area 299375.4 233076.91 0.02 26847.61* >50

L. getula 2
Moisture 6.25 0.35 1.11 1.25 4
Temperature 26.20 4.38 0.87 0.853 5
Rock Depth 66.50 7.78 0.43 18.88* 4
Rock Area 297800.00 17253.41 0.03 188975.89* 4

L. triangulum 8
Moisture 7.94 1.21 0.05 0.38 46
Temperature 21.09 4.24 1.58 0.71 5
Rock Depth 88.00 37.07 0.37 10.41* 17
Rock Area 766548.1 268407.10 2.25 62177.81* 2

P. obsoletus 2
Moisture 7.50 0.71 0.32 0.89 10
Temperature 23.20 4.67 0.02 1.14 34
Rock Depth 77.50 16.26 0.02 10.40* 17
Rock Area 306150.00 113066.37 0.01 93162.93* 8
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Table 3.5 Required sample size for adequate power (>80%) to detect patterns from the
Flint Hills dataset. The differences are measured in SDs. *SD interpolated to obtain

required samples for available distributions SDs > 12 and differences > 3.
n Used

mean
Used
SD

Difference
in mean

Difference
in SD

Required
n

Flint Hills

D. punctatus 17
Moisture 7.82 0.64 0.55 1.20 6
Temperature 22.81 2.30 0.56 0.97 18
Rock Depth 60.18 39.78 0.52 10.37* 17
Rock Area 321504.80 284459.10 0.73 118710.31* 4

L. triangulum 5
Moisture 7.50 2.06 0.38 0.26 23
Temperature 20.92 3.24 1.14 0.03 4
Rock Depth 82.80 25.48 0.25 3.92* >50
Rock Area 313069.60 134603.10 0.67 31145.69* 11

P. obsoletus 7
Moisture 6.7 1.57 0.06 0.27 >50
Temperature 23.5 3.13 0.35 0.14 >50
Rock Depth 71.8 21.37 0.13 8.04* 27
Rock Area 255976.6 132567.90 0.33 33180.89* >50

T. lineatum 4
Moisture 5.38 0.48 0.78 1.36 6
Temperature 23.73 1.89 0.28 1.38 20
Rock Depth 73.50 21.61 0.07 7.80* 38
Rock Area 157992.50 82830.71 0.26 82918.08* 8
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Table 3.6 Used and available data from a squamate assemblage in the Smoky Hills of
Kansas. The simulated datasets are randomly chosen subsets of the available data.

Asterisks denote variables that may be subject to Type II error due to low sample sizes.

Used mean
Available

mean
P-

value Used SD
Available

SD
P-

value

C. collaris
Moisture 6.50 7.97 0.01 2.48 1.64 0.05

Temperature* 21.97 23.20 0.17 3.77 3.52 0.34
Rock Depth* 77.71 77.96 0.49 13.86 26.87 0.10

Rock Area* 334912.20 304026.20 0.32 88182.38 204427.22 0.06

D. punctatus
Moisture 8.19 8.06 0.32 0.95 1.55 0.00

Temperature 24.85 23.27 0.00 1.98 3.48 0.00
Rock Depth 69.81 76.28 0.07 19.95 26.65 0.05
Rock Area* 299375.40 290661.90 0.40 204413.52 207910.46 0.47

L. triangulum
Moisture* 7.94 8.06 0.38 1.21 1.57 0.28

Temperature 21.09 23.13 0.06 4.24 3.48 0.12
Rock Depth* 88.00 77.94 0.15 37.07 26.55 0.09

Rock Area 766548.10 304176.26 0.00 268445.14 209607.86 0.20

Lizards
Moisture 6.82 8.01 0.01 2.07 1.61 0.12

Temperature 22.40 23.16 0.22 3.77 3.52 0.31
Rock Depth 77.91 77.45 0.47 12.32 26.74 0.01

Rock Area 302511.81 300788.13 0.45 97197.04 204054.67 0.03
Snakes

Moisture 7.94 8.05 0.29 0.92 1.52 0.00
Temperature 24.19 23.43 0.06 3.19 3.42 0.80
Rock Depth 70.73 75.89 0.08 23.52 26.52 0.19

Rock Area 421623.20 295814.30 0.00 288095.13 213962.48 0.00
Squamates

Moisture 7.78 8.06 0.09 1.30 1.53 0.16
Temperature 23.83 23.35 0.15 3.37 3.42 0.42
Rock Depth 71.68 75.57 0.14 22.82 26.61 0.14

Rock Area 363842.80 282899.00 0.00 258910.54 204988.62 0.03
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Table 3.7 Used and available data from a squamate assemblage in the Flint Hills of
Kansas. The simulated datasets are randomly chosen subsets of the available data.

Asterisks denote variables that may be subject to Type II error due to low sample sizes.
Used
mean

Available
mean

P-
value Used SD

Available
SD

P-
value

D. punctatus
Moisture 7.92 6.89 0.00 0.73 1.83 0.00

Temperature* 22.70 24.58 0.01 2.28 3.21 0.08
Rock Depth 60.11 74.49 0.02 38.59 30.05 0.06

Rock Area 310475.40 202844.20 0.01 279893.57 176149.90 0.09

L. triangulum
Moisture* 7.60 6.84 0.19 1.82 1.81 0.41

Temperature 23.62 24.69 0.23 5.23 3.26 0.05
Rock Depth* 80.40 75.17 0.33 26.99 29.07 0.45

Rock Area* 357837.60 202126.40 0.04 355404.30 161761.76 0.03
Lizards

Moisture 6.06 6.85 0.12 2.43 1.82 0.08
Temperature 23.58 24.66 0.17 3.55 3.30 0.35
Rock Depth 63.50 75.01 0.12 25.30 29.28 0.40

Rock Area 221330.25 201413.65 0.30 219338.28 166649.65 0.14

Snakes
Moisture 7.13 6.96 0.32 1.59 1.83 0.14

Temperature 22.74 24.49 0.00 3.82 3.17 0.06
Rock Depth 69.42 73.31 0.21 36.87 29.32 0.03

Rock Area 226563.50 197450.20 0.17 224705.68 169412.27 0.14

Squamates
Moisture 7.35 6.95 0.14 1.38 1.83 0.02

Temperature 22.97 24.58 0.01 2.94 3.18 0.31
Rock Depth 73.44 74.35 0.44 29.60 29.26 0.42

Rock Area 269835.10 194555.80 0.02 177848.31 162512.46 0.26



59

Table 3.8 Used and available data from two combined squamate assemblages from
Kansas. The simulated datasets are randomly chosen subsets of the available data.

Used
mean

Available
mean

P-
value Used SD

Available
SD

P-
value

C. collaris
Moisture 6.69 7.42 0.123 2.36 1.84 0.123

Temperature 22.73 23.91 0.177 4.11 3.47 0.198
Rock Depth 73.13 76.87 0.347 18.25 28.03 0.169

Rock Area 311893.80 251286.20 0.182 104422.04 192434.97 0.196
D. punctatus

Moisture 8.09 7.50 0.01 0.88 1.79 0.00
Temperature 24.06 23.84 0.32 2.32 3.38 0.00
Rock Depth 66.25 75.32 0.01 28.26 28.38 0.47

Rock Area 303452.90 243792.70 0.02 232141.47 193815.20 0.14
L. triangulum

Moisture 7.89 7.47 0.199 1.39 1.80 0.16
Temperature 21.91 23.63 0.03 4.47 3.60 0.069
Rock Depth 80.86 75.85 0.244 35.03 28.78 0.136

Rock Area 578883.80 254426.50 0.00 204114.43 195017.91 0.01
P. obseleta

Moisture 6.17 7.43 0.02 2.29 1.82 0.149
Temperature 22.99 23.91 0.215 3.29 3.48 0.43
Rock Depth 69.11 76.27 0.21 23.31 28.11 0.35

Rock Area 248019.70 250190.60 0.469 209923.87 192571.70 0.288
Lizards

Moisture 6.50 7.45 0.01 2.19 1.83 0.11
Temperature 22.90 23.85 0.12 3.63 3.43 0.34
Rock Depth 71.84 76.35 0.24 19.66 27.94 0.07

Rock Area 268330.09 248815.10 0.31 160166.23 192757.06 0.45
Snakes

Moisture 7.59 7.51 0.34 1.31 1.78 0.00
Temperature 23.57 23.86 0.22 3.52 3.32 0.18
Rock Depth 70.17 74.40 0.07 29.78 28.03 0.24

Rock Area 337639.2 244491.7 0.00 278484.81 197011.41 0.00
Squamates

Moisture 7.62 7.53 0.32 1.34 1.80 0.00
Temperature 23.50 23.83 0.19 3.22 3.36 0.31
Rock Depth 72.35 74.84 0.20 25.42 27.84 0.19

Rock Area 328093.31 239656.9 0.00 234619.53 192061.04 0.04
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APPENDIX A

C CODE FOR ERROR ANALYSIS OF MONTE CARLO METHOD
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#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

#define DATAFILE "outfile8.1.txt"
#define RECNUM 1000
#define PERMUT 1000 //for the monte carlo
#define availableSD 8.0
#define SS 2 //start sample size
#define TSS 51 //to end sample size
#define ALPHA 50

int sim_cnter, sim_cnter2;
FILE *outfile;

int GetSeed(void);
int Permute(double mean, int n, float obsSD, double *data);
void AvailableData(double *data);
double GetNormal(double mu, double sd);
void Monte(int n,double iave,double ivar, double *data);

int main(void) {
int k=0, n=0, x=0, s=0, stop=0;
float q=0, m=0, p=0, obsSD=0;
double data[RECNUM];
outfile = fopen(DATAFILE,"w");

fprintf(outfile,"obsSD\tN\tDmean\tDsd\n");
for(x=0;x<13;x++)
{

for(s=0;s<RECNUM;s++)
data[s]=0;

srand48(GetSeed());
AvailableData(data);
obsSD=availableSD-p;
if (obsSD>0)
{
for(n=SS;n<TSS;n++)
{

q=0;
stop=0;

//while(stop==0) {
for (k=0;k<13;k++)
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{
m = availableSD*q;
stop = Permute((m+100),n,obsSD,data);
//if(stop==1)

//fprintf(outfile,"-\n");
q += 0.25;

}
//}

}
p+=0.25;
}
printf("%d\n",x);

}
fclose(outfile);
return (0);

}

void AvailableData(double *data)
{

int x;
double ranvalue, mean;

for (x=0;x<RECNUM;x++)
{

ranvalue = 0; mean = 100;
ranvalue = GetNormal(mean, availableSD);
data[x] = ranvalue;

}
}

double GetNormal(double mu, double sdin)
{

double value1, value2, normal;
value1 = value2 = normal = 0;
value1 = drand48();
value2 = drand48();
normal = mu +

(sqrt(-2*log(value1)))*(sdin*(sin(2*3.141592654*value2)));
return normal;

}

int Permute(double mean, int n, float obsSD, double *data)
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{
int x, j, z, temp, temp2;
double ranvalue=0;
double values[RECNUM][n];
double iave, ivar, iave1[RECNUM], ivar1[RECNUM];

temp = temp2 = 0;
for (x=0;x<RECNUM;x++)
{

iave = ivar = 0;
for (j=0;j<n;j++)
{

ranvalue = GetNormal(mean, obsSD);
values[x][j] = ranvalue;
iave += values[x][j];

}
iave = iave/n;
for (j=0;j<n;j++)

{ivar += pow((values[x][j] - iave),2);}
ivar = ivar / (n-1);
iave1[x] = iave; ivar1[x] = ivar;

}

for(x=0;x<RECNUM;x++)
{

sim_cnter = sim_cnter2 = 0;
Monte(n, iave1[x], ivar1[x], data);
if(ALPHA>sim_cnter) temp++;
if((1000-ALPHA)<sim_cnter) temp++;
if(ALPHA>sim_cnter2) temp2++;
if((1000-ALPHA)<sim_cnter2) temp2++;

}

fprintf(outfile,"%.2f\t%d\t%d\t%d\n", obsSD, n, temp, temp2);
if(temp>799) return 0;
else return 0;

}

void Monte(int n, double iave, double ivar, double *data)
{

int j, i, x, records;
double thisval[n];
double rvar, rave, avar, aave;
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rvar = rave = avar = aave = 0;

for (j=0;j<PERMUT;j++)
{

records = PERMUT-1;
rave = rvar = 0;
for (i=0;i<n;i++)
{

x = (int)records*drand48();
thisval[i] = data[x];
data[x] = data[records];
data[records] = thisval[i];
rave += thisval[i];
records--;

}
rave = rave / n;
for (i=0;i<n;i++)
{ rvar += pow((thisval[i] - rave),2); }
rvar = rvar / (n-1);
aave += rave;
avar += rvar;
if (rave >= iave) sim_cnter++;
if (rvar >= ivar) sim_cnter2++;

}
}

int GetSeed()
{

int seed;
struct tm *preztime;
time_t nowtime;

time(&nowtime);
preztime = localtime(&nowtime);
seed = (int)((preztime->tm_sec + 1)*(preztime->tm_min + 1)*

(preztime->tm_hour + 1)*(preztime->tm_year)*
(preztime->tm_year));

if(seed%2==0) seed++;
return(seed);

}
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APPENDIX B

C CODE FOR MONTE CARLO ANALYSIS OF REFUGE SITE SELECTION
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#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>
#define DATA_FILE "D_punctatus.txt"
#define PERMUT 1000
#define RECNUM 1000
struct RockInfo {

float depth;
float area;

};
struct RockRecord {

float moisture;
float temperature;
struct RockInfo size;
float observations;

}; 
 struct RockRecord rocks[RECNUM];

int recnum, obs;
int i, j, x, y, temp;
float iave, isd, ivar;
float rave, rsd, rvar, rtotal;
float aave, asd, avar;
float sim_cnter;

void GetObservedVar(int k);
void Permute(int k);
int ReadDataFile();
char *GetType(int k);
float GetData(int k, int x);
int main(void) {

char *line;
char *filename;
int k;
time_t *thistime;
recnum = obs = 0;
x = y = temp = 0;
srand48(time(thistime));

recnum = ReadDataFile();
printf("\nNumber of records read: %d\n\n", recnum);

for (k=0;k<4;k++) {
iave = isd = ivar = 0;
rave = rsd = rvar = rtotal = 0;
asd = avar = aave = 0;
sim_cnter = 0;
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printf("--------------------------------------------\nCalculations for %s\n-------------------
-------------------------\n",GetType(k));

GetObservedVar(k);
printf(" Selected Average:\t %.3f\n", iave);
printf(" Selected SD:\t %.3f\n", isd);
printf(" Selected Variance:\t %.3f\n", ivar);

Permute(k);
printf(" p-value:\t %.3f\n", sim_cnter/PERMUT);
printf(" Average of Average:\t %.3f\n", aave/PERMUT);
printf("Average of Variance:\t %.3f\n", avar/PERMUT);

}
return (0);

}
char *GetType(int k) {
// char *type;
// type = malloc(100);

if (k == 0)
return "Moisture";

else if (k == 1)
return "Temperature";

else if (k == 2)
return "Rock Depth";

else if (k == 3)
return "Rock Area";

return "";
}
float GetData(int k, int x) {

if (k == 0)
return rocks[x].moisture;

if (k == 1)
return rocks[x].temperature;

if (k == 2)
return rocks[x].size.depth;

if (k == 3)
return rocks[x].size.area;

return -1;
}
void GetObservedVar(int k) {

for (i=0;i<recnum;i++) {
if (rocks[i].observations) {

iave += GetData(k, i);
}

}
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iave = iave / obs;
for (i=0;i<recnum;i++)

if (rocks[i].observations) {
ivar += pow((GetData(k, i) - iave),2);

}
ivar = ivar / (obs-1);
isd += sqrt(ivar);

}
void Permute(int k) {

float values[recnum];
float thisval[obs];
int records;
for (j=0;j<PERMUT;j++) {

for (i=0;i<recnum;i++) { values[i] = GetData(k, i); }
records = recnum-1;
rvar = rsd = rave = 0;
for (i=0;i<obs;i++) {

x = (int)records*drand48();
thisval[i] = values[x];
values[x] = values[recnum-1];
values[records-1] = thisval[i];
rave += thisval[i];

}
rave = rave / obs;
for (i=0;i<obs;i++)

rvar += pow((thisval[i] - rave),2);
rvar = rvar / (obs-1);
rsd += sqrt(rvar);
aave += rave;
avar += rvar;
asd += rsd;
if (rave >= iave)

sim_cnter++;
}

}
int ReadDataFile() {

FILE *datafile;
int dindex;
char *line;
line = malloc(1000);
dindex = 0;
datafile = fopen(DATA_FILE, "r");
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while (!feof(datafile)) {
fgets(line, 1000, datafile);
sscanf(line, "%f,%f,%f,%f,%f", &rocks[dindex].moisture,

&rocks[dindex].temperature,
&rocks[dindex].size.depth,
&rocks[dindex].size.area,
&rocks[dindex].observations);

if (rocks[dindex].observations) { obs++; }
dindex++;

}
fclose(datafile);
dindex--;
return dindex;

}
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