
DISCRETE-TIME CONTROL ALGORITHMS AND ADAPTIVE INTELLIGENT

SYSTEMS DESIGNS

by

ASMA AZMI AL-TAMIMI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2007

Copyright © by Asma Al-Tamimi 2007

All Rights Reserved

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Professor Frank L.

Lewis for his supervision and guidance during my doctoral research work. I also extend

my thanks to Dr. Murad Abu-Khalaf for his close instrumental supervision during my

research work at ARRI.

My thanks also go to my defense committee: Kai-Shing Yeung, Wei-Jen Lee,

Dan Popa, and Kamesh Subbarao for their time, suggestions, and remarks to improve

this work. Moreover, I like to thank my colleagues in the ACS group and every one else

who helped me during my studies in the USA.

I would like to acknowledge the financial support of the Hashemite University. I

also acknowledge the financial support by the Electrical Engineering Department, and

the Automation Robotics Research Institute. The research in this dissertation was

funded by the National Science Foundation ECS-0501451 and the Army Research

Office W91NF-05-1-0314.

I am very indebted to my parents for their infinite support, care and attention

without which I would have not been at this stage in my life. I have been greatly

inspired by them and I dedicate this dissertation to my mother Khawla and father Azmi.

March 30, 2007

 iv

ABSTRACT

DISCRETE-TIME CONTROL ALGORITHMS AND ADAPTIVE INTELLIGENT

SYSTEMS DESIGNS

Publication No. ______

Asma Azmi Al-Tamimi, PhD.

The University of Texas at Arlington, 2007

Supervising Professor: Frank L. Lewis

In this work, approximate dynamic programming (ADP) designs based on

adaptive critic structures are developed to solve the discrete-time 2 /H H∞ optimal

control problems in which the state and action spaces are continuous. This work

considers linear discrete-time systems as well as nonlinear discrete-time systems that

are affine in the input. This research resulted in forward-in-time reinforcement learning

algorithms that converge to the solution of the Generalized Algebraic Riccati Equation

(GARE) for linear systems. For the nonlinear case, a forward-in-time reinforcement

learning algorithm is presented that converges to the solution of the associated

Hamilton-Jacobi Bellman equation (HJB).

 v

The results in the linear case can be thought of as a way to solve the GARE of

the well-known discrete-time H∞ optimal control problem forward in time. Four design

algorithms are developed: Heuristic Dynamic programming (HDP), Dual Heuristic

dynamic programming (DHP), Action dependent Heuristic Dynamic programming

(ADHDP) and Action dependent Dual Heuristic dynamic programming (ADDHP). The

significance of these algorithms is that for some of them, particularly the ADHDP

algorithm, a priori knowledge of the plant model is not required to solve the dynamic

programming problem.

Another major outcome of this work is that we introduce a convergent policy

iteration scheme based on the HDP algorithm that allows the use of neural networks to

arbitrarily approximate for the value function of the discrete-time HJB equation. This

online algorithm may be implemented in a way that requires only partial knowledge of

the model of the nonlinear dynamical system.

The dissertation includes detailed proofs of convergence for the proposed

algorithms, HDP, DHP, ADHDP, ADDHP and the nonlinear HDP. Practical numerical

examples are provided to show the effectiveness of the developed optimization

algorithms. For nonlinear systems, a comparison with methods based on the State-

Dependent Riccati Equation (SDRE) is also presented. In all the provided examples,

parametric structures like neural networks have been used to find compact

representations of the value function and optimal policies for the corresponding optimal

control problems.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. iv

LIST OF ILLUSTRATIONS... ix

Chapter

 1. INTRODUCTION... 1

 2. DISCRETE-TIME H-INFINITY STATE FEEDBACK

 CONTROL FOR ZERO-SUM GAMES ... 5

 3. HEURISTIC DYNAMIC PROGRAMMING H-INFINTY

 CONTROL DESIGN... 14

 3.1. Heuristic Dynamic Programming (HDP) ... 14

 3.1.1. Derivation of HDP for zero-sum game.................................... 15

 3.1.2. Online Implementation of the HDP Algorithm 17

 3.1.3. Convergence of the HDP Algorithm 20

 3.2. Dual Heuristic Dynamic Programming (DHP)....................................... 22

 3.2.1. Derivation of DHP for Zero-Sum Games 23

 3.2.2. Online Implementation of the DHP Algorithm 26

 3.2.3. Convergence of the DHP Algorithm 29

 3.3. Online ADP H∞ Autopilot Controller Design for an F-16 aircraft 31

 3.3.1. H∞ Solution Based on the Riccati Equation......................... 32

 vii

 3.3.2. HDP based H∞ Autopilot Controller Design 33

 3.3.3. DHP based H∞ Autopilot Controller Design 38

 3.4. Conclusion .. 43

 4. ACTION DEPENDENT HEURISTIC DYNAMIC PROGRAMMING

 H-INFINTY CONTROL DESIGN.. 44

 4.1 Q-Function Setup for Discrete-Time Linear Quadratic

 Zero-sum Games... 44

 4.2. Action Dependent Heuristic Dynamic Programming (ADHDP) 50

 4.2.1. Derivation of the ADHDP for the Zero-Sum Games 51

 4.2.2. Online Implementation of the ADHDP algorithm................... 55

 4.2.3. Convergence of the ADHDP Algorithm.................................. 58

 4.3. Action Dependent Dual Heuristic Dynamic Programming (ADDHP)... 61

 4.3.1. Derivation of the ADDHP Algorithm...................................... 62

 4.3.2. Online Implementation for the ADDHP algorithm 67

 4.3.3. Convergence of the ADDHP Algorithm.................................. 70

 4.4. Online ADP H∞ Autopilot Controller Design for an F-16 Aircraft 74

 4.4.1. H∞ Solution Based on the Riccati Equation.......................... 75

 4.4.2. ADHDP based H∞ Autopilot Controller Design 76

 4.4.3. ADDHP based H∞ Autopilot Controller Design 81

 4.5. Conclusion .. 84

 5. APPLICATION OF THE ADHDP FOR THE POWER

 SYSTEM AND SYTEM IDENTIFICATION .. 87

 5.1. Power System Model Plant... 87

 viii

 5.2. H-Infinity Control Design Using ADHDP Algorithm............................ 89

 5.3. System Identification .. 94

 5.4. Conclusion .. 97

 6. NONLINEAR HEURISTIC DYNAMIC PROGRAMMING

 OPTIMAL CONTROL DESIGN.. 98

 6.1. The Discrete-Time HJB Equation .. 98

 6.2. The Nonlinear HDP Algorithm .. 100

 6.3. Convergence of the HDP Algorithm .. 101

 6.4. Neural Network Approximation ... 104

 6.5. Discrete-time Nonlinear System Example.. 108

 6.5.1. Linear system example .. 108

 6.5.2. Nonlinear System Example ... 111

 6.5. Conclusion .. 115

 7. CONCLUSION AND FUTURE WORK.. 116

REFERENCES .. 119

BIOGRAPHICAL INFORMATION... 123

 ix

LIST OF ILLUSTRATIONS

Figure Page

3.1 The HDP Algorithm.. 20

3.2 The DHP Algorithm.. 28

3.3 The convergence of
i

P by iterating on the Riccati equation........................... 32

3.4 State trajectories with re-initialization for the HDP algorithm 34

3.5 The control and the disturbance in the HDP ... 35

3.6 Convergence of the critic network parameters in the HDP............................. 36

3.7 Convergence of the disturbance action network parameters in the HDP........ 37

3.8 Convergence of the control action network parameters in the HDP............... 37

3.9 State trajectories with re-initialization for the DHP algorithm 39

3.10 The control and the disturbance in the DHP ... 39

3.11 Convergence of the critic network parameters in the DHP............................. 40

3.12 Convergence of the disturbance action network parameters in the DHP........ 41

3.13 Convergence of the control action network parameters in the DHP............... 41

4.1 The ADHDP algorithm ... 57

4.2 The ADDHP algorithm ... 69

4.3 The convergence of
i

P by iterating on the Riccati equation........................... 75

4.4 State trajectories in the ADHDP algorithm... 77

4.5 The control and disturbance in the ADHDP ... 78

 x

4.6 Convergence of
i

P in the ADHDP.. 79

4.7 Convergence of the disturbance action network parameters in the ADHDP.. 80

4.8 Convergence of the control action network parameters in the ADHDP 80

4.9 State trajectories in the ADDHP ... 81

4.10 The control and the disturbance in the ADDHP ... 82

4.11 Convergence in the
i

P in the ADDHP .. 83

4.12 Convergence of the disturbance action network parameters in the ADDHP.. 83

4.13 Convergence of the control action network parameters in the ADDHP 84

5.1 The Convergence of
i

P P→ .. 90

5.2 The Convergence of the control policy... 91

5.3 The states trajectories for the system with the H∞ controller 92

5.4 The states trajectories for the system with the controller designed in [33] 93

5.5 The states trajectories for the system with the H∞ controller 93

5.6 The states trajectories for the system with the controller designed in [33]..... 94

6.1 The nonlinear HDP algorithm... 107

6.2 The state trajectories (1x) for both methods ... 113

6.3 The state trajectories (2x) for both methods ... 113

6.4 The cost function for both methods .. 114

6.5 The control input for both methods... 114

1

CHAPTER 1

INTRODUCTION

In this dissertation, adaptive critic designs that are based on the dynamic

programming principle are developed to solve 2 /H H∞ optimal control problems for

discrete-time dynamical systems. In the case of H∞ optimal control, the zero-sum game

for discrete-time linear systems is solved by creating and developing adaptive critic

structures that learn to co-exist. In the 2H optimal control case, the dynamical

programming problem associated with nonlinear discrete-time dynamical systems is

solved, i.e. solving for the value function of the corresponding HJB equation.

Approximate dynamic programming, also known as Neuro Dynamic

Programming, was first proposed by Werbos [27], Barto et. al. [1], Widrow et. al. [5],

Howard [28], Watkins [8], Bertsekas and Tsitsiklis [11], and others to solve optimal

control problems forward-in-time. The optimal control law, i.e. the action network, and

the value function, i.e. the critic network, are modeled as parametric structures, i.e.

neural networks. This is combined with incremental optimization such as reinforcement

learning to tune and improve both networks forward-in-time and hence can be

implemented in actual control systems. This overcomes computational complexity

associated with dynamic programming, which is an offline technique that requires a

backward-in-time solution procedure [15]. Moreover, as will be discussed in the

2

dissertation, some of the presented adaptive critic designs do not require the plant model

for tuning the action network, the critic network, or both of them.

Several approximate dynamic programming schemes appear in literature.

Howard [28] proposed iterations in the policy space in the framework of stochastic

decision theory. In [30], Bradtke et al. implemented a Q-learning policy iteration

method for the discrete-time linear quadratic optimal control problem. Hagen [29]

discussed the relation between the Q-learning policy iteration method and model-based

adaptive control with system identification. Werbos [25] classified approximate

dynamic programming approaches into four main schemes: Heuristic Dynamic

Programming (HDP), Dual Heuristic Dynamic Programming (DHP), Action Dependent

Heuristic Dynamic Programming (ADHDP), also known as Q-learning [8], and Action

Dependent Dual Heuristic Dynamic Programming (ADDHP). In [9], Prokhorov and

Wunsch developed new approximate dynamic programming schemes known as

Globalized Dual Heuristic Dynamic Programming (GDHP) and Action Dependent

Globalized Dual Heuristic Dynamic Programming (ADGDHP). Landelius [31] applied

HDP, DHP, ADHDP and ADDHP techniques to the discrete-time linear quadratic

optimal control problem and discussed their convergence showing that they are equal to

iterating on the underlying Riccati equation. The current status of work on approximate

dynamic programming is given in [20]. See also [11].

Reinforcement learning methods to solve game theory problems have recently

appeared in [24] and [18] in the framework of Markov games where multiagent Q-

learning methods are proposed and shown to converge to the Nash equilibrium under

3

specific conditions. Unlike the work in this dissertation, these are lookup-table-based

methods concerned with discrete state and action spaces.

In this dissertation, adaptive critic designs, namely HDP, DHP, ADHDP and

ADDHP, are derived to solve dynamic programming problems online for discrete-time

dynamical systems with continuous state and action spaces. Offline solutions of these

optimal control problems based on the dynamic programming principle appear in [7],

 [6], [15]. An off-line neural net policy iterations solution based on the dynamic

programming principle appears in [23] for the continuous-time case.

The importance of this dissertation stems from the fact adaptive critics

algorithms are used to design 2 /H H∞ controller without knowing the dynamics of

linear systems, e.g. ADHDP algorithm, and partial knowledge of the dynamics of

nonlinear systems, e.g. HDP algorithm. Therefore, these algorithms may be thought of

as being direct adaptive optimal control architectures.

The organization of this dissertation is as follows. In Chapter 2, zero-sum games

for discrete-time linear systems with quadratic infinite horizon cost are revisited.

Dynamic programming is used to derive the optimal policies for both the control and

the disturbance inputs along with the associated Riccati equation. Although equivalent

to those found in literature [6], the derived policies are different in structure and appear

in a form required for the design of adaptive critics. In Chapter 3, Heuristic Dynamic

Programming (HDP) and Dual Heuristic Dynamic Programming (DHP) algorithms are

proposed to solve the zero-sum game for linear systems forward-in-time. Chapter 4

extends the results of Chapter 3 to Action Dependent Heuristic Dynamic Programming

4

(ADHDP) and Action Dependent Dual Heuristic Dynamic Programming (ADDHP). In

Chapter 5, an application of the ADHDP algorithm to the design of load frequency

control systems is demonstrated. In Chapter 6 the nonlinear HDP algorithm is derived,

with proofs of convergence, to solve for the HJB equation. It is also shown that the

optimal controller derived through the DT HJB outperforms that using the State

Dependent Riccati Equation (SDRE).

5

CHAPTER 2

DISCRETE-TIME H-INFINITY STATE FEEDBACK CONTROL FOR

ZERO-SUM GAMES

In this chapter, the solution of the zero-sum game of a linear discrete-time

system with quadratic cost derived under state feedback information structure. The

policies for each of the two players, control and disturbance, are derived with the

associated Riccati equation. Specific forms for both the Riccati equation and the control

and disturbance policies are derived that are required for applications in ADP these

forms are not same as standard forms in the existing literature. The relation between the

derived policies and the associated Riccati equation with those existing in literature is

discussed

Consider the following discrete-time linear system

1

,

k k k k

k k

x Ax Bu Ew

y x

+ = + +

=
. (2.1)

where n
x R∈ , py R∈ , 1m

k
u R∈ is the control input and 2m

k
w R∈ is the disturbance

input. Consider the infinite-horizon cost function. For any stabilizing sequence of

policies
k

u and
k

w , one can write the infinite-horizon cost-to-go as

2

2 2

1

2

1

1

()

()

(, ,) ().

T T T

k i i i i i ii k

T T T T T T

k k k k k k i i i i i ii k

T T T

k k k k k k k

k k k k

V x x Qx u u w w

x Qx u u w w x Qx u u w w

x Qx u u w w V x

r x u w V x

γ

γ γ

γ

∞

=

∞

= +

+

+

= + −

= + − + + −

= + − +

= +

∑

∑ (2.2)

6

It is desired to find the optimal control
k

u
∗ and the worst case disturbance

k
w

∗ , in

which the infinite-horizon cost is to be minimized by player 1,
k

u , and maximized by

player 2,
k

w . Here the class of strictly feedback stabilizing policies is considered [6].

 2() min max T T T

k i i i i i ii ku w
V x x Qx u u w wγ

∞∗

=
= + −∑ (2.3)

Using the dynamic programming principle, the optimization problem in equation (2.3)

and (2.2) can be written as

() min max((, ,) ())

max min((, ,) ()).

k k k k
u w

k k k k
uw

V x r x u w V x

r x u w V x

∗ ∗
+

∗

+

= +

= +
 (2.4)

If we assume that there exists a solution to the GARE that is strictly feedback

stabilizing, then it can be shown, see [10], that the policies are in saddle-point

equilibrium, i.e. minimax is equal to maximin, in the restricted class of feedback

stabilizing policies under which 0
k

x → as k → ∞ for all 0

n
x R∈ . See [6], p. 340), and

([7], p. 138) and [13] [10]. It is known that the optimal cost is quadratic in the state,

and it is given as

 () T

k k k
V x x Px

∗ = (2.5)

where 0P ≥ .

Assuming that the game has a value and is solvable, then in order to have a

unique feedback saddle-point in the class of strictly feedback stabilizing policies, the

inequalities in (2.6) and (2.7) should be satisfied, [7],

 2 0TI E PEγ −− > (2.6)

7

 0T
I B PB+ > . (2.7)

Applying the Bellman optimality principle, one has

1

1 1

() minmax((, ,) ())

minmax(^ 2).

k k k k k
u w

T T T T

k k k k k k k k
u w

V x r x u w V x

x Qx u u w w x Pxγ

∗ ∗
+

+ +

= +

= + − +
 (2.8)

Substituting (2.5) in equation(2.8) one has

minmax(^ 2

() ().

T T T T

k k k k k k k k
u w

T

k k k k k k

x Px x Qx u u w w

Ax Bu Ew P Ax Bu Ew

γ= + −

+ + + + +
 (2.9)

To maximize with respect to the disturbance
k

w , one needs to apply the first order

necessary condition

2

0

2 2 ().

k

k

T

k k k

V

w

w E P A Bu Ewγ

∂
=

∂

= − + + +

 (2.10)

Therefore, the disturbance can be written as

 2 1() ()T T T

k k k
w I E PE E PAx E PBuγ −= − + . (2.11)

Similarly, to minimize with respect to the control input
k

u one has

0

2 2 ().

k

k

T

k k k

V

u

u B P A Bu Ew

∂
=

∂

= + + +

 (2.12)

Hence, the controller can be written as

 1() ()T T T

k k k
u I B PB B PAx B PEw

−= − + + . (2.13)

Note that applying the 2
nd

 order sufficiency conditions for both players, one obtains

(2.6) and (2.7).

Substituting equation (2.11) in (2.12)

8

2 1 1

2 1

(())

(())

T T T T

k

T T T T

k

u I B PB B PE E PE I E PB

B PE E PE I E PA B PA x

γ

γ

∗ − −

−

= + − − ×

− −
, (2.14)

so the optimal control is a state feedback with gain

2 1 1

2 1

(())

(()).

T T T T

T T T T

L I B PB B PE E PE I E PB

B PE E PE I E PA B PA

γ

γ

− −

−

= + − − ×

− −
. (2.15)

Substituting the equation (2.13) in (2.10) one can find the optimal policy to the

disturbance

2 1 1

1

(())

(())

T T T T

k

T T T

k

w E PE I E PB I B PB B PE

B PE I B PB BPA E PA x

γ∗ − −

−

= − − + ×

+ −
, (2.16)

so the optimal disturbance is a state feedback with gain

2 1 1

1

(())

(()).

T T T T

T T T

K E PE I E PB I B PB B PE

E PB I B PB BPA E PA

γ − −

−

= − − + ×

+ −
 (2.17)

Note that the inversion matrices in (2.14) and (2.16) exists due to (2.6) and (2.7)

It is now going to be shown that the policies obtained in equations (2.15) and

(2.17) are equivalent to those known in the literature [7]. The following Lemma is

required.

Lemma 2.1: If 2()TI E PEγ −− is invertible, then (2 TI EE Pγ −−) is also invertible.

Proof: Since 2()TI E PEγ −− is invertible then the following expression is valid

 2 2 1()T TI E I E PE E Pγ γ− − −+ − .

Applying the matrix inversion lemma, [15], it can be shown that

 2 2 1 2 1() ()T T TI E I E PE E P I EE Pγ γ γ− − − − −+ − = −

Hence, 2 TI EE Pγ −− is invertible and 2 0TI EE Pγ −− > . □

9

Lemma 2.2: The optimal policies for control L , and disturbance K , in equation (2.15)

and (2.17) respectively are equivalent to the ones that appear in [7], namely

2 1

2 2 1

())

()) .

T T T

T T T

L B P I BB P EE P A

K E P I BB P EE P A

γ

γ γ

−

− −

= − − −

= − − −

Proof: To show the control policy part, L , one can rewrite (2.15) as follows

2 1 1

2 1

((()))

(()) .

T T T

T T T

L I B P I E E PE I E P B

B P E E PE I E P I A

γ

γ

− −

−

= + − − ×

− −
 (2.18)

Applying the well known matrix inversion lemma, [15], on the (2.18), one has

 2 1 1 2 1(()) ()T T T TL I B P I EE P B B P I EE P Aγ γ− − − −= − + − − . (2.19)

Note that 2()TI EE Pγ− is invertible due to lemma 2.1. Applying the matrix inversion

lemma on (2.19), one has

 2 1 2 1(()) () .T T T T TL I B P BB P I EE P B B P I EE P Aγ γ− − −= − − + − − (2.20)

One can rewrite equation (2.20) as follows

 2 1 2 1(()) ()T T T T TL B P I BB P I EE P BB P I EE P Aγ γ− − −= − − + − × − . (2.21)

Applying the matrix inversion lemma on (2.21), one has

 2 1())T T TL B P I BB P EE P Aγ −= − + − . (2.22)

Note that since 2 0TI EE Pγ −− > , then 2 0T TI BB P EE Pγ+ − > and concludes that

equation (2.22) is equivalent to the control policy that appears on [7].

To show the control policy part, K , one can rewrite (2.17) as follows

 2 1 1 1((())) (())T T T T TK I E P E B I B PB B P E E P B I B PB BP I Aγ − − −= − + − + × + − .(2.23)

Applying the matrix inversion Lemma on (2.23), on has

10

 2 1 1(()) ()T T T TK I E P I BB P E E P I BB P Aγ − −= − − + + + . (2.24)

Applying the matrix inversion lemma on equation (2.24), one has

 2 2 2 1 1(()) ()T T T T TK I E P BB P I EE P E E P I BB P Aγ γ γ− − − −= + + − × + . (2.25)

One can rewrite (2.25) as follows

 2 2 1 2 1(()) ()T T T T TK E P I BB P I EE P EE P I BB P Aγ γ γ− − − −= + + − × + . (2.26)

Applying the matrix inversion lemma on equation (2.26), one obtains

 2 2 1())T T TK E P I BB P EE P Aγ γ− −= + − . (2.27)

Note that since 2 0TI EE Pγ −− > , then 2 0T TI BB P EE Pγ+ − > and concludes

that equation (2.27) is equivalent to the disturbance policy that appears in [7]. 

Next it is shown that the value function of the game () T

k k k
V x x Px

∗ = satisfies a

Riccati equation. The form of the Riccati equation derived in this chapter, under state

feedback information structure in order to perform ADP. It is similar to the one

appearing in [3] which was derived under full information structure. Moreover, it will

be shown that the Riccati equation derived in this chapter is equivalent to the work in

 [7] derived under the same state feedback information structure.

Note that (2.9) can be rewritten as follows

 2(() ())T T T T T

k k k k k k k k k k k k k k
x Px x Qx u u w w Ax Bu Ew P Ax Bu Ewγ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + − + + + + + .(2.28)

This is equivalent

2

2

() ())

.

T T T

T T T

cl cl

P Q L L K K A BL EK P A BL EK

Q L L K K A PA

γ

γ

= + − + + + + +

= + − +
 (2.29)

where
cl

A A BL EK= + + . Equation (2.29) is the closed-loop Riccati equation.

11

Next it is shown upon substituting (2.15) and (2.17) in (2.29), one obtains the

desired Riccati equation upon which the adaptive critic designs are based.

Lemma 2.3: Substituting the policies, (2.15) and (2.17), in (2.29) one can obtain the

Riccati equation that appears in [3] [34], and given by

1

2
[]

T T T

T T T

T T T

I B PB B PE B PA
P A PA Q A PB A PE

E PB E PE I E PAγ

−
   +

= + −    
−   

.

Proof: The control policy and the disturbance policy can be written as follows

 1 1

11 12 22()T T
L D A A E PA B PA

− −= − , (2.30)

 1 1

22 21 11(),T T
K D A A B PA E PA

− −= − (2.31)

where

1 2 1 1

11

12

21

11

2

22

1 2 1 1

22

(())

(()) .

T T T T

T

T

T

T

T T T T

D I B PB B PE E PE I E PB

A B PE

A E PB

A I B PB

A E PE I

D E PE I E PB I B PB B PE

γ

γ

γ

− − −

− − −

= + − −

=

=

= +

= −

= − − +

From (2.6) and (2.7), one concludes that 1

11D
− and 1

22D
− are invertible. Equations (2.30)

and (2.31) can be written as follows

1 1 1

11 11 12 22

1 1 1

22 21 22 22

T

T

L D D A A B PA

K D A A D E PA

− − −

− − −

   − 
= −     

    
. (2.32)

It is known that, [15],

1 1 1 1
11 12 11 11 12 22

1 1 1
21 22 22 21 22 22

A A D D A A

A A D A A D

− − − −

− − −

 − 
=   

   
.

12

Therefore one can rewrite (2.32) as follows

11

11 12

2
21 22

T T T T

T T T T

A AL B PA I B PB B PE B PA

A AK E PA E PB E PE I E PAγ

−−
     +  

= − = −       
−         

. (2.33)

Equation (2.29) can be written as follows

2

2

() ()

0
.

0

T T T

T T T T T T T

T T

T T T T

T T

P A BL EK P A BL EK L L K K Q

A PA A PBL A PEK L B PA K E PA

L I LB PB B PE
L K L K Q

K I KE PB E PE

γ

γ

= + + + + + − +

= + + + +

       
   + + +           −      

 (2.34)

Substituting (2.33) in (2.34), one has

1

2 2

.

T T T T T T T

T T T T T

T T

T T T T T

T T T

P A PA A PBL A PEK L B PA K E PA

I B PB B PE I B PB B PE B PA
L K Q

E PB E PE I E PB E PE I E PA

A PA A PBL A PEK Q

γ γ

−

= + + + +

     + +
 − +       − −     

= + + +

.(2.35)

Equation (2.35) can be written as

 .T T T
L

P A PA A PB A PE Q
K

 
 = + +  

 
 (2.36)

Substituting (2.32) in (2.36), one has the desired Riccati equation

1

2
[]

T T T

T T T

T T T

I B PB B PE B PA
P A PA Q A PB A PE

E PB E PE I E PAγ

−
   +

= + −    
−   

 (2.37)

It can be seen that (2.37) is the Riccati equation that appears in [3] [34] [32]. 

 It is shown in [3] that (2.37) is equivalent to the Riccati equation that appears in

 [7] and [6], which is given as 2 1(())T T TP Q A P I BB EE P Aγ − −= + + − .

It is important to note that the 2H problem is a special case of the H∞ where in

the system equation, (2.1) , 0E = or in the value function,(2.2) , γ → ∞ , i.e. P will be

13

the solution of the discrete-time algebraic Riccati equation DARE. One form of the

DARE is

 1()T T T TP A PA Q A PB I B PB B PA−= + − +

14

CHAPTER 3

HUERISTC DYNAMIC PROGRAMING H-INFINTY COTROL DESIGN

In this chapter, adaptive critic approximate dynamic programming designs are

derived to solve the discrete-time zero-sum game in which the state and action spaces

are continuous. This results in a forward-in-time reinforcement learning algorithm that

converges to the Nash equilibrium of the corresponding zero-sum game. The results in

this chapter can be thought of as a way to solve the Riccati equation of the well-known

discrete-time H∞ optimal control problem forward in time. Two schemes are presented,

a Heuristic Dynamic Programming (HDP) and a Dual Heuristic Dynamic Programming

(DHP) to solve for the value function and the co-state of the game respectively. An H∞

autopilot design for an F-16 aircraft is presented to illustrate the results

3.1 Heuristic Dynamic Programming (HDP)

In this section, an HDP algorithm is developed to solve the discrete-time linear

system zero-sum game described in chapter 2. The HDP algorithm was originally

proposed in [25] to solve optimal control problems. The HDP algorithm has been

applied earlier to solve the discrete-time Linear Quadratic Regulator (LQR) in optimal

control theory [31]. In the HDP approach, a parametric structure is used to approximate

the cost-to-go function of the current control policy. Then the certainty equivalence

principle is used to improve the policy of the action network.

15

In this section, we extend the HDP approach to linear quadratic discrete-time

zero-sum games appearing in [7], and prove the convergence of the presented

algorithm.

3.1.1 Derivation of HDP for Zero-Sum Games

Consider the system

1

,

k k k k

k k

x Ax Bu Ew

y x

+ = + +

=
 (3.1)

and the cost-to-go function as

 2() min max T T T

k i i i i i ii ku w
V x x Qx u u w wγ

∞

=
= + −∑ (3.2)

The HDP is developed to solve the zero-sum game described in chapter 2, one

starts with an initial cost-to-go 0 () 0V x ≥ that is not necessarily optimal, and then finds

1()V x by solving equation (3.3) with 0i = according to

 { }2

1 1() min max ()
k k

T T T

i k k k k k k k i k
u w

V x x Qx u u w w V xγ+ += + − + . (3.3)

Equation (3.3) is a recurrence relation that is used to solve for the optimal cost-to-go,

the game value function, forward in time.

Note that since ()
i

V x is not initially optimal, optimal policies found using ()
i

V x

in (3.3) use the certainty equivalence principle and are denoted as ()
i k

u x and ()
i k

w x .

Then, 1()
i

V x+ is given by

 2

1 1() () () () () ()T T T

i k k k i k i k i k i k i k
V x x Qx u x u x w x w x V xγ+ += + − + . (3.4)

16

Once 1()
i

V x+ is found, one then repeats the same process for 0,1,2,i = … . In this

chapter, it is shown that 1() ()
i k k

V x V x
∗

+ → as i → ∞ , where *()
k

V x is the optimal

value function for the game based on the solution to the GARE (2.37).

In the HDP approach, the cost-to-go function, ()
i

V x , is generally difficult to

obtain in closed-form except in special cases. Therefore, in general a parametric

structure ˆ(,)
i

V x p , is used to approximate the actual ()
i

V x . Similarly, parametric

structures are used to obtain approximate closed-form representations of the two action

networks ˆ(,)u x L and ˆ (,)w x K . Since in this chapter the zero-sum game considered is

linear and quadratic, it is well-known that the cost-to-go function is quadratic in the

state, i.e. () TV x x Px= , and the two action networks are linear in the state. Therefore a

natural choice of these parameter structures is given as

 ˆ(,) T

i i
V x p p x= , (3.5)

 ˆ(,) T

i i
u x L L x= , (3.6)

 ˆ (,) T

i i
w x K K x= , (3.7)

where 2 2 2

1 1 2 2 3 1(, , , , , , ,)
n n n n

x x x x x x x x x x−= … … , is the Kronecker product quadratic

polynomial basis vector [21], and ()p v P= , where ()v ⋅ is a vector function that acts on

n n× matrices and outputs a (1)
2 1n n+ × column vector. The output vector of ()v ⋅ is

constructed by stacking the columns of the squared matrix into a one-column vector

with the off-diagonal elements summed as
ij ji

P P+ , [21]. The parameter structures (3.5)

(3.6) and (3.7) give an exact closed-form representation of the functions in (3.4).

17

It can be shown that the parameters of the action networks,
i

L and
i

K of (3.6)

and (3.7), are found as

2 1 1

2 1

(())

(()),

T T T T

i i i i i

T T T T

i i i i

L I B PB B PE E PE I E PB

B PE E PE I E P A B P A

γ

γ

− −

−

= + − − ×

− −
 (3.8)

2 1 1

1

(())

(()).

T T T T

i i i i i

T T T T

i i i i

K E PE I E PB I B PB B PE

E PB I B PB B P A E P A

γ − −

−

= − − + ×

+ −
 (3.9)

These are greedy policy iterations that are based on the certainty equivalence principle

when compared to (2.15) and (2.17), since they depend on
i

P which does not

necessarily solve (2.37). Note that to update the action networks, it is necessary to know

the plant model A and B matrices.

After determining (3.8) and (3.9) substituting them in (3.4), one then has

 2

1(,) () () () ()T T T T

k i k k i k i k i k i k i k
d x p x Qx L x L x K x K x p xγ += + − + (3.10)

which can be thought of as the desired target function to which one needs to fit

1
ˆ(,)

i
V x p + in least-squares sense to find 1i

p + such that

 1 (,)T

i k k i
p x d x p+ = (3.11)

The parameter vector 1i
p + is found by minimizing the error between the target value

function (3.10) and (3.11) in a least-squares sense over a compact set, Ω ,

1

2

1 1arg min{ | (,) | }
i

T

i i i
p

p p x d x p dx
+

+ +

Ω

= −∫ . (3.12)

3.1.2 Online Implementation of the HDP Algorithm

The least-squares problem in (3.12) can be solved in real-time by collecting

enough data points generated from (,)
k i

d x p in (3.10). This requires one to have

18

knowledge of the state information
k

x , 1k
x + as the dynamics evolve in time, and also of

the reward function (, ,)
k k k

r x u w . This can be determined by simulation, or, in real-

time applications, by observing the states on-line. Therefore, in the HDP algorithm, the

model of the system is not needed to update the critic network, though it is needed to

update the actions.

To satisfy the excitation condition of the least-squares problem, one needs to

have the number of collected points N at least

 (1) / 2N n n≥ + ,

where n is the number of states. Therefore, after several time steps that are enough to

guarantee the excitation condition, one has the following least-squares problem

 1

1 ()T

i
p XX XY

−

+ = , (3.13)

where

 1 2 k-1

1 2 k-1

[]

[(,) (,) (,)] .

k N k Nx x x

T

k N i k N i i

X x x x

Y d x p d x p d x p

− − − −

− − − −

=

=

�

�

One can solve (3.13) recursively using the well-known recursive least-squares

technique. In that case, the excitation condition is replaced by the persistency of

excitation condition

 0 1

1

1 T

k t k t

m

I x x I
α

ε ε
α

− −
=

≤ ≤∑

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε and 1ε positive integers and 0 1ε ε≤ .

The recursive least-squares algorithm is given as

19

1

1 1

() (,) (1)

(1) ()
() (1)

1 (1)

(1) (1)
() (1)

1 (1)

T

i k i k i

i k i
i i T

k i k

T

i k k i
i i T

k i k

e t d x p x p t

t x e t
p t p t

x t x

t x x t
t t

x t x

+

+ +

= − −

Γ −
= − +

+ Γ −

Γ − Γ −
Γ = Γ − −

+ Γ −

where i is the policy update index, t is the index of the recursions of the recursive

least-squares, and k is the discrete time. Γ is the covariance matrix of the recursion

and ()e t is the estimation error of the recursive least-squares. Note that (0)
i

Γ is a large

number and 1(0)
i i+Γ = Γ .

The on-line HDP algorithm developed in this chapter is summarized in the

flowchart shown in Figure 3.1. The HDP algorithm for zero-sum games follows by

iterating between (3.8) (3.9) and (3.13). As will be shown show next, this will cause
i

P

to converge to the optimal P , when it exists, that solves the GARE associated with the

discrete time zero-sum game given in (2.37). Note that the model of the system is

needed in the HDP algorithm to update the actions networks only.

20

Policy iteration

Start of the Zero-Sum HDP

Initialization

Solving the least-squares

Finish

0

0:0)(000

=

≥≥=

i

PPvp

XYXXp

pxdpxdpxdY

xxxX

T
i

T
iiNkiNk

xxx NkNk

1
1

1-k21

)(

.]),(),(),([

][
1-k21

−
+

−−−−

=

=

=
−−−−

�

�

).)((

))((

),)((

))((

1

112

12

112

APEAPBBPBIBPE

EPBBPBIBPEIEPEK

APBAPEIEPEEPB

BPEIEPEEPBBPBIL

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i

−+

×+−−=

−−

×−−+=

−

−−

−

−−

γ

γ

γ

ε<−+ Fii pp 1

Yes

1+→ ii No

Figure 3.1. The HDP algorithm

3.1.3 Convergence of the HDP Algorithm

Now the proof that the proposed HDP algorithm for zero-sum games converges

to the optimal policies is given.

Lemma 3.1 Iterating on equations (3.8) (3.9) and (3.12) is equivalent to the iteration on

the Riccati equation (2.37) associated with zero-sum games problem. That is

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
, (3.14)

21

under the assumption that the system is sufficiently excited.

Proof: The least-squares problem is defined in (3.12) which is

1

2

1 1arg min{ | (,) | }
i

T

i i i
p

p p x d x p dx
+

+ +

Ω

= −∫ .

This can be rewritten as

 1(2 2 (,)) 0T T

i i
xx p xd x p dx+

Ω

− =∫ . (3.15)

and implies that

1

1 (,)T

i ip xx dx xd x p dx

−

+

Ω Ω

 
=  
 
∫ ∫ . (3.16)

Under the excitation condition assumption, the inverse operator exists. Substituting

(3.10) in (3.16), one has

1

1 ((() (())T T T T

i k k k k i i i i i i i kp x x dx x x Q L L A BL EK P A BL EK x dx

−

+

Ω Ω

 
= + + + + + + 
 
∫ ∫ .(3.17)

Using the Kronecker products [21], equation (3.17) can be written as

1

1

2

2

(() ())

(() ()),

T T

i k k k k

T T T

i i i i i i i i i

T T T

i i i i i i i i i

p x x dx x x dx

v Q L L K K A BL EK P A BL EK

v Q L L K K A BL EK P A BL EK

γ

γ

−

+

Ω Ω

   
= ×   
   

+ − + + + + +

= + − + + + + +

∫ ∫

where v is the vectorized function in the Kronecker product.

Since the matrix 1i
P+ which reconstructed from 1i

p + is symmetric, iteration on

i
p is equivalent to the following iteration

 2

1 () ()T T T

i i i i i i i i i i
P Q L L K K A BL EK P A BL EKγ+ = + − + + + + + . (3.18)

Using the same steps as in Lemma 2.3 equation (3.18) can be written

22

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (3.19)

which is equivalent to (3.14). 

Theorem 3.1: Assume that the game has a value and is solvable. If the sequence of

least-squares problems in (3.12) is solvable, i.e. the corresponding excitation conditions

hold, then the HDP algorithm converges to the value of the game that solves the Riccati

equation (2.37) when starting with 0 0P ≥ .

Proof. This follows from Lemma 3.1 and from [3] where it is shown that iterating on

(3.14) with 0 0P ≥ converges to P that solves (2.37). 

The proof of convergence of the HDP algorithm has just been established

assuming the least-squares problem (3.12) is solved completely; i.e. the excitation

condition is satisfied. Note that an easy way to initialize the algorithm in Figure 3.1 is

by selecting 0 0P = .

3.2 Dual Heuristic Dynamic Programming (DHP)

In this section, a DHP algorithm is developed to solve the discrete-time linear

system zero-sum game described in chapter 2. The DHP algorithm has been applied

earlier to solve the discrete-time Linear Quadratic Regulator (LQR) in optimal control

theory [31].

In the DHP approach, a parametric structure is used to approximate the co-state

function, i.e. the gradient of the cost-to-go function, of the current control policies. As

in the HDP case, the certainty equivalence principle is used to improve the policies of

the actions networks.

23

In this section, the DHP is extended approach to linear quadratic discrete-time

zero-sum games appearing in [7], and prove the convergence of the presented

algorithm.

3.2.1 Derivation of DHP for Zero-Sum Games

Consider the system (3.1) and the cost-to-go function (3.2). In the DHP

approach, the critic network approximates the co-state ()
k

xλ∗ forward in time. It is

known [6] that the co-state of the zero-sum game is the gradient of the game value

function given as

*()

() k
k

k

V x
x

x
λ

∗
∗ ∗

∗

∂
=

∂
. (3.20)

In the zero-sum game DHP algorithm developed in this chapter, the following

recurrence relation is derived to solve for the co-state forward in time.

1
1

1 1 1

1

()
()

(, (), ()) () (, (), ())

()

() (, (), ())

()

() ()

()

i k
i k

k

T

k i k i k i k k i k i k

k k i k

T

i k k i k i k

k i k

T T

k i k i k k

k k k i k

V x
x

x

r x u x w x u x r x u x w x

x x u x

w x r x u x w x

x w x

x V x u x x

x x x u x

λ +
+

+ + +

+

∂
=

∂

 ∂ ∂ ∂
= + + 

∂ ∂ ∂ 

 ∂ ∂
+ 

∂ ∂ 

     ∂ ∂ ∂ ∂
+    

∂ ∂ ∂ ∂     

1

1

1 1

1

()

() ()
,

()

T

i k

k

T T

i k k i k

k i k k

V x

x

w x x V x

x w x x

+

+

+ +

+

∂
+

∂

   ∂ ∂ ∂
   

∂ ∂ ∂   

 (3.21)

The recurrence relation (3.21) is obtained by differentiating the recurrence relation on

the cost-to-go function (3.4). Equation (3.21) can be rewritten as

24

1

1
1

1
1

(, (), ())
()

() (, (), ())
()

() ()

() (, (), ())
()

() ()

k i k i k
i k

k

T T

i k k i k i k k
i k

k i k i k

T T

i k k i k i k k
i k

k i k i k

r x u x w x
x

x

u x r x u x w x x
x

x u x u x

w x r x u x w x x
x

x w x w x

λ

λ

λ

+

+
+

+
+

∂
= +

∂

    ∂ ∂ ∂ 
+ +    

∂ ∂ ∂     

    ∂ ∂ ∂ 
+ +    

∂ ∂ ∂     

∂ 1
1().

T

k
i k

k

x
x

x
λ+

+

 
 

∂ 

 (3.22)

As was the case in (3.8) and (3.9) in the HDP case, the improvement of the actions

networks requires that

 1
1

(, (), ())
() 0

() ()

T

k i k i k k
i k

i k i k

r x u x w x x
x

u x u x
λ+

+

 ∂ ∂
+ = 

∂ ∂ 
, (3.23)

 1
1

(, (), ())
() 0

() ()

T

k i k i k k
i k

i k i k

r x u x w x x
x

w x w x
λ+

+

 ∂ ∂
+ = 

∂ ∂ 
. (3.24)

Combining (3.22), (3.23) and (3.24), one has

 1
1 1

(, (), ())
() ()

T

k i k i k k
i k i k

k k

r x u x w x x
x x

x x
λ λ+

+ +

 ∂ ∂
= +  

∂ ∂ 
. (3.25)

Hence, the DHP algorithm can be summarized as the successive iteration between

(3.22) on one hand, and (3.23) and (3.24) on the other. This results in a successive-

improvement of the value function derivatives sequence { }| 1, 2,i iλ = … as the player

policies are generated. In this chapter, it will be shown that the DHP algorithm

converges to the co-state value function (3.20). When converged, equation (3.25)

becomes

25

 1
1

(, (), ())
() ()

T

k i k i k k
k k

k k

r x u x w x x
x x

x x
λ λ

∗ ∗ ∗
∗ ∗ ∗ ∗+

+∗ ∗

 ∂ ∂
= +  

∂ ∂ 

which is known as the co-state equation in Theorem 6.3 in [6].

In DHP, a parametric structure ˆ(,)
i

x pλ is used to approximate the actual ()
i

xλ .

Similarly, parametric structures are used to obtain approximate closed-form

representations of the two action networks ˆ(,)u x L and ˆ (,)w x K . Since in this chapter

the zero-sum game considered is linear and quadratic, it is well-known that co-state and

the action networks are all linear in the state. Therefore a natural choice of these

parameter structures is given as

 ˆ(,) T

i i

x
x p p

x
λ

∂
=

∂
, (3.26)

 ˆ(,) T

i i
u x L L x= , (3.27)

 ˆ (,) T

i i
w x K K x= , (3.28)

where x and p are as described in equations (3.5). The parameter structures (3.26)

(3.27) and (3.28) give an exact closed-form representation of the functions in (3.21) to

(3.24).

Using the parameter structures (3.27) and (3.28) along with the certainty

equivalence principle, it can be easily shown that the parameters of the actions networks

are updates as in (3.8) and (3.9) respectively.

Substituting (3.8) and (3.9) in (3.21) given the system model (2.1), one has

 2

1(,) 2 2 2 ()T T T

k i k i k i k i i i k
d x P Qx L u K w A BL EK Pxγ += + − + + + . (3.29)

Using the Kroncker product notation [21], equation (3.29) can be rewritten as

26

 2(,) (() ())T T T T

k i i i i i i i i i i

x
d x p v Q L L K K A BL EK P A BL EK

x
γ

∂
= + − + + + + +

∂
. (3.30)

Equation (3.30) can be thought of as the desired target function to which one needs to

fit 1
ˆ(,)

i
x pλ + such that 1

ˆ(,) (,)
i k i

x p d x pλ + = .

The parameter vector 1i
p + is found by minimizing the error between the target value

function (3.30) and (3.26) in a least-squares sense over a compact set, Ω ,

1

2

1 1arg min {| (,) | }
i

T
T

i i x k i
p

x
p p d x p dx

x+

+ +

Ω

∂
= −

∂∫ . (3.31)

3.2.2 Online Implementation of the DHP Algorithm

The least-squares problem in (3.31) can be solved in real-time by collecting

enough data points generated from (,)
k i

d x p in (3.29). This requires having access to

the state information
k

x , 1k
x + as the dynamics evolve in time and gradients of the reward

function
k

r x∂ ∂ ,
i

r u∂ ∂ ,
i

r w∂ ∂ , as well as the plant model A and B . Therefore, in

the DHP algorithm developed in this chapter for the zero-sum game, the plant model is

required to update the critic network.

To satisfy the excitation condition of the least squares problem, one needs to

have the number of collected points N at least N n≥ , where n is the number of states.

Therefore, after several time steps that are enough to guarantee the excitation condition,

one has the following least-squares problem

 1

1 ()T

i
p XX XY

−

+ = , (3.32)

where

27

1 2 k-1

1 2 k-1

[]

[(,) (,) (,)] .

k N k Nx x x

T T T T

k N i k N i i

x x x
X

x x x

Y d x p d x p d x p

− − − −

− − − −

∂ ∂ ∂
=

∂ ∂ ∂

=

�

�

One can solve (3.32) recursively using the well-known recursive least squares

technique. In that case, the excitation condition is replaced with the persistency of

excitation condition

 0 1

1

1
T

k t k t

m

x x
I I

x x

α

ε ε
α

− −
=

∂ ∂
≤ ≤

∂ ∂
∑

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε and 1ε are positive integers and 0 1ε ε≤ .

The recursive least-squares algorithm is given as

1

1

1 1

1

() (,) (1)

() (1) (1) (1) ()

() (1) (1) (1) (1)

T

k
i x k i i

T

k k k
i i i i i

T T

k k k k
i i i i i

x
e t d x p p t

x

x x x
p t p t t I t e t

x x x

x x x x
t t t I t t

x x x x

+

−

+ +

−

∂
= − −

∂

 ∂ ∂ ∂
= − + Γ − + Γ − 

∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
Γ = Γ − − Γ − + Γ − Γ − 

∂ ∂ ∂ ∂ 

where i is the policy update index, t is the index of the recursions of the recursive

least-squares, and k is the discrete time. Γ is the covariance matrix of the recursion

and ()e t is the estimation error of the recursive least-squares. Note that (0)
i

Γ is a large

number, and 1(0)
i i+Γ = Γ .

The developed DHP algorithm is summarized in the flowchart shown in figure

3.2.

28

Policy iteration

Start of the Zero-Sum DHP

Initialization

Solving the least-squares

Finish

0

0:0)(000

=

≥≥=

i

PPvp

XYXXp

pxdpxdpxdY

x

x

x

x

x

x
X

T
i

T
i

T
iNk

T
iNk

T

xxx NkNk

1
1

1-k21

)(

.]),(),(),([

][

1-k21

−
+

−−−−

=

=

∂

∂

∂

∂

∂

∂
=

−−−−

�

�

ε<−+ Fii pp 1

Yes

1+→ ii No

).)((

))((

),)((

))((

1

112

12

112

APEAPBBPBIBPE

EPBBPBIBPEIEPEK

APBAPEIEPEEPB

BPEIEPEEPBBPBIL

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i
T

i

−+

×+−−=

−−

×−−+=

−

−−

−

−−

γ

γ

γ

Figure 3.2. The DHP algorithm

The DHP algorithm for the zero-sum game considered in this chapter follows by

iterating between (3.8) (3.9) and (3.32). Next it will be shown that this will cause
i

P to

converge to the optimal P , when it exists, which solves the GARE associated with the

discrete time zero-sum game given in (2.37) . Note that the model of the system is

needed in the DHP algorithm in both the critic network and the actions networks.

29

3.2.3 Convergence of the DHP Algorithm

Lemma 3.2: Iterating on equation (3.8) (3.9) and (3.31) is equivalent to the iteration on

the Riccati equation (2.37) associated with the zero-sum game problem. That is

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (3.33)

under the assumption that the system is sufficiently excited.

Proof: The least-squares problem is defined in equation (3.31) which is

1

2

1 1arg min {| (,) | }
i

T
T

i i x k i
p

x
p p d x p dx

x+

+ +

Ω

∂
= −

∂∫ .

This can be written as

 12 2 (,) 0
T

T

i k i

x x x
p d x P dx

x x x
+

Ω

 ∂ ∂ ∂
− = 

∂ ∂ ∂ 
∫ , (3.34)

and that implies

1

1 (,).
T

T

i k i

x x x
p dx d x p dx

x x x

−

+

Ω Ω

 ∂ ∂ ∂
=  

∂ ∂ ∂ 
∫ ∫ . (3.35)

Under the excitation condition assumption, the inverse operator exists.

Substituting (3.30) in (3.35), one has

1

1

2(() ()) ,

T T

i

T
T T T

i i i i i i i i i

x x
p dx

x x

x x
v Q L L K K A BL EK P A BL EK dx

x x
γ

−

+

Ω

Ω

 ∂ ∂
= × 

∂ ∂ 

∂ ∂
+ − + + + + +

∂ ∂

∫

∫

which can be written as

 2

1 (() ())T T T

i i i i i i i i i i
p v Q L L K K A BL EK P A BL EKγ+ = + − + + + + + ,

30

where v is the vectorized function in the Kronecker product.

Since the matrix 1i
P+ reconstructed from 1i

p + is symmetric, iteration on
i

p is

equivalent to the following iteration

 2

1 () ().T T T

i i i i i i i i i i
P Q L L K K A BL EK P A BL EKγ+ = + − + + + + + (3.36)

Using the same steps as in Lemma 2.3 equation (3.36) can be written

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
. (3.37)

which is equivalent to (3.33). 

Theorem 3.2: Assume that the game has a value and is solvable. If the sequence of

least-squares problems in (3.31), i.e. the corresponding excitation conditions hold, then

the DHP algorithm converges to the value of the game that solves the Riccati equation

(2.37) when starting with 0 0P ≥ .

Proof. This follows from Lemma 3.2 and from [3] where it is shown that iterating on

(3.36) with 0 0P ≥ converges to P that solves (2.37). 

The convergence proof of the DHP algorithm has just been establised assuming

the least-squares problem (3.32) is solved completely; i.e. the exciting condition is

satisfied. Note that an easy way to initialize the algorithm in Figure 3.2 is by selecting

0 0P = .

In the next section, the developed HDP and DHP zero-sum game algorithms are

used to derive suboptimal H∞ controllers by the forward time solution technique. The

practical relevance of the developed algorithms will thus become clear.

31

3.3 Online ADP H∞ Autopilot Controller Design for an F-16 aircraft

In this design application, the zero-sum game that corresponds to the H∞

controller problem is solved for an F-16 aircraft autopilot design. The H-infinity

approach is used, which is enabled by the ADP procedures in this chapter. H-infinity

design has been proven highly effective in the design of feedback control systems with

robustness and disturbance rejection capabilities [15].

The F-16 short period dynamics has three states given as

e

x q

α

δ

 
 =  
  

where α is the angle of attack, q is the pitch rate and
e

δ is the elevator deflection

angle. The discrete-time plant model of this aircraft dynamics is a discretized version of

the continuous-time one given in [4]. We used standard zero-order-hold discretization

techniques explained in [14] and easily implemented in the MATLAB control systems

toolbox to obtain the sampled data plant

0.906488 0.0816012 0.0005

0.0741349 0.90121 0.000708383

0 0 0.132655

A

− 
 = − 
  

0.00150808 0.00951892

0.0096 0.00038373

0.867345 0

B E

−   
   = − =   
      

. (3.38)

32

with sampling time 0.1T = . In this H∞ design problem, the disturbance attenuation is

1γ = .

3.3.1 H∞ Solution Based on the Riccati Equation

Since the ADP designs developed in this chapter to solve the H∞ controller

design problem are based on an iterative form of the Riccati equation (3.14), in Figure

3.3 the convergence of
i

P to the solution of the GARE (2.37) is shown when done

offline with 0 0P = .

0 50 100 150 200
-2

0

2

4

6

8

10

12

14

16

Iteration no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 R

ic
c
a
ti
 e

q
u
a
ti
o
n

P
11

P
12

P
13

P
22

P
23

P
33

Figure 3.3. The convergence of

i
P by iterating on Riccati equation

It is noticed from Figure 3.3 that for the discretized aircraft dynamics(3.38),
i

P

converges after at least 100 iterations with 1γ = to

33

15.5109 12.4074 0.0089

12.4074 15.5994 0.0078

0.0089 0.0078 1.0101

P

− 
 = − 
 − − 

 (3.39)

which solves the GARE (2.37). Note that 0P ≥ and hence from [7] this implies that

 20

0

T T

k k k k

k

T

k k

k

x Qx u u

w w

γ

∞
∗ ∗

=
∞

=

+

≤
∑

∑
 (3.40)

for all finite energy disturbances, i.e.

0

T

k k

k

w w
∞

=

∑ ,

are bounded, and hence ()
k

u x
∗ has the well-known robustness and disturbance rejection

capabilities of H∞ control.

Next, the ADP algorithms developed in this chapter are used to design an H∞

controller for the discretized aircraft dynamics (3.38) with 1γ = in forward time.

3.3.2 HDP based H∞ Autopilot Controller Design

In this part, the HDP algorithm developed in Section 3.1 of this chapter is

applied to solve for the H∞ autopilot controller in forward time. The recursive least-

squares algorithm is used to tune the parameters of the critic network on-line. The

parameters of the actions networks are updated according to (3.8) and (3.9). It is

important to mention that using the LS to tune the parameter will cause faster

convergence than using the RLS.

In this HDP design, the states of the aircraft are initialized to be []0 4 2 5x = .

Any values could be selected. The parameters of the critic network and the actions

34

networks are initialized to zero. Following this initialization step, the aircraft dynamics

are run forward in time and tuning of the parameter structures is performed by

observing the states on-line.

In Figures 3.4 and 3.5, the states and the inputs to the aircraft are shown with

respect to time. In order to maintain the excitation condition, one can use several

standard schemes, including covariance resetting, state resetting, or injection of a small

probing noise signal. In this example, state resetting is used and the states are re-

initialized to []0 4 2 5x = periodically to prevent them from converging to zero.

Hence the persistency of excitation condition required for the convergence of the

recursive least-squares tuning, i.e. avoiding the parameter drift problem, will hold.

State re-initialization has appeared recently in [19] to solve the HJB equation associated

with continuous-time optimal control problems.

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (k)

s
ta

te
s
 x

1
,
x
2
,
x
3

x
1

x
2

x
3

Figure 3.4. States trajectories with re-initialization for the HDP algorithm.

35

0 500 1000 1500
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time (k)

T
h
e
 c

o
n
tr

o
l
in

p
u
t

a
n
d
 t

h
e
 d

is
tu

rb
a
n
c
e
 i
n
p
u
t

Control input

Disturbance input

Figure 3.5. The control and disturbance in the HDP

In Figures 3.6, 3.7 and 3.8, the convergence of the parameters of the critic

network, and the actions networks is shown. As expected, the parameters of the critic

network converge to P in (3.39) that solves the GARE equation. It takes the critic

network 1500 time steps to converge to P . The reason for this is that 10 readings are

required to tune the critic network at each update to solve for each
i

P . Since as shown

in Figure 3.3, the action networks require to be updated at least 100 times, this implies

that the over all time steps required for the convergence of the HDP algorithm are about

1000 time steps.

It is important to realize that state is used resetting here to determine the optimal

solution for the game problem, as given by the converged critic network parameters in

Figure 3.6 and action network parameters in Figures 3.7 and 3.8. State resetting

36

provides the excitation conditions needed to get parameter convergence. Once these

parameters are known, the H∞ controller has been found. Then, one can use the

parameters of the control action network as the final parameters of the controller in any

on-line control runs, without having to deliberately insert any excitation signals to the

system.

0 500 1000 1500
-2

0

2

4

6

8

10

12

14

16

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
P

P
11

P
12

P
13

P
22

P
23

P
33

Figure 3.6. Convergence of the critic network parameters in the HDP.

37

0 500 1000 1500
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 d

is
tu

rb
a
n
c
e
 p

o
lic

y

K
11

K
12

K
13

Figure 3.7. Convergence of the disturbance action network parameters in the HDP.

0 500 1000 1500
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 c

o
n
tr

o
l
p
o
lic

y

L
11

L
12

L
13

Figure 3.8. Convergence of the control action network parameters in the HDP.

38

Next, the DHP algorithm developed in Section 3.4 is applied to this aircraft

design problem.

3.3.3 DHP based H∞ Autopilot Controller Design

In this part, the DHP algorithm developed in Section 3.2 of this chapter is

applied to solve for the H∞ autopilot controller in forward time. The recursive least-

squares algorithm is used to tune the parameters of the critic network. The parameters

of the actions networks are updated according to (3.8) and (3.9).

In this DHP design, the states of the aircraft are initialized to be []0 4 2 5x = .

The parameters of the critic network and the actions networks are initialized to zero.

Following this initialization step, the aircraft dynamics are run forward in time and

tuning of the parameter structures happen by observing the states on-line.

In Figures 3.9 and 3.10, the states and the inputs to the aircraft are shown with

respect to time. Note that the states are re-initialized to []0 4 2 5x = to prevent them

from converging to zero. Hence the persistency of excitation condition required for the

convergence of the recursive least-squares tuning, i.e. avoiding the parameter drift

problem, will hold.

39

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (k)

s
ta

te
s
 x

1
,

x
2
,

x
3

x
1

x
2

x
3

Figure 3.9. States trajectories with re-initialization for the DHP algorithm

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time (k)

T
h
e
 c

o
n
tr

o
l
in

p
u
t

a
n
d
 t

h
e
 d

is
tu

rb
a
n
c
e
 i
n
p
u
t

Control input

Disturbance input

Figure 3.10. The control and disturbance in the DHP

40

In Figures 3.11, 3.12 and 3.13, the convergence of the parameters of the critic

network, and the action networks is shown. As expected, the parameters of the critic

network converge to P in (3.39) that solves the GARE equation. It takes the critic

network 600 time steps to converge to P . The reason for this is that 6 readings are

required to tune the critic network at to solve for each
i

P . Since as shown in Figure 3,

the action networks require to be updated at least 100 times, this implies that the over

all time steps required for the convergence of the DHP algorithm are about 600 time

steps.

0 100 200 300 400 500 600 700
-2

0

2

4

6

8

10

12

14

16

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
P P

11

P
12

P
13

P
22

P
23

P
33

Figure 3.11. Convergence of the critic network parameters in the DHP.

41

0 100 200 300 400 500 600 700
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time (k)

T
h
e

 c
o
n
v

e
rg

e
n
c
e
 o

f
th

e
 d

is
tu

rb
a
n

c
e
 p

o
lic

y

K
11

K
12

K
13

Figure 3.12. Convergence of the disturbance action network parameters in the DHP.

0 100 200 300 400 500 600 700
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 c

o
n
tr
o
l
p
o
lic

y

L
11

L
12

L
13

Figure. 3.13. Convergence of the control action network parameters in the DHP.

42

It is clear that the in the DHP algorithm, the parameters of the critic network

converge to the solution of the GARE faster than the case in the HDP algorithm. This is

because in DHP one has vector gradient information available for tuning, not only

scalar information as in HDP. That is, in DHP the target value for the action network is

a vector, while in HDP it is a scalar.

State resetting was used here to provide the excitation conditions needed to get

parameter convergence in the critic and action networks. Once these parameters are

known, the H-infinity controller has been found. Then, one can use the parameters of

the control action network as the final parameters of the controller in any on-line control

runs, without having to deliberately insert any excitation signals to the system.

3.4 Conclusion

In this chapter two on-line Approximate Dynamic Programming techniques are

introduced to solve the discrete-time zero-sum game problem with continuous state and

action spaces. Two of the ADP techniques, namely Heuristic Dynamic Programming,

and Dual Heuristic Dynamic Programming are discussed. The derivation of the policies

and the convergence of the HDP and DHP are provided. It is clear that the convergence

to the optimal solution in the DHP algorithm is faster than the HDP, as gradient

information, a vector, as used in DHP provides more information than scalar function

information as used in HDP, therefore the number of points needed to solve the least-

squares problem in the DHP is less than that in HDP. On the other hand, in the HDP

algorithm the system model is needed only to tune the action networks, while in the

43

DHP algorithm the system model is needed to tune both the critic network and the

actions networks.

The results presented herein are directly applicable in practice since they

provide means to solve the H-infinity control problem, which is highly effective in

feedback control systems design. A provided aircraft design example makes the point. It

is interesting to see that when designing the H-infinity controller in forward time, one

needs to provide an input signal that acts as a disturbance that is tuned to be the worst

case disturbance in forward time.

Once the H-infinity controller is found, one can use the parameters of the control

action network as the final parameters of the controller, without having to deliberately

inserting any disturbance signal to the system. Disturbance is from now is determined

by the nature of the process and the surrounding environment.

The results in this chapter can be summarized as a way to solve the linear

quadratic discrete-time zero-sum game forward in time. The results presented here will

be extended to the Q-learning case and other Action Dependent Heuristic Dynamic

Programming (ADHDP) techniques in the next chapter.

44

CHAPTER 4

ACTION DEPENDENT HEURISTIC DYNAMIC PROGRAMMING

H-INFINTY CONTROL DESIGN

In this chapter, adaptive critic approximate dynamic programming designs are

derived to solve the discrete-time zero-sum game in which the state and action spaces

are continuous. In which, the concept of the Q-function to the zero-sum games that

continuous in the action and state spaces for linear discrete-time quadratic games is

developed. This results in a forward-in-time reinforcement learning algorithm that

converges to the Nash equilibrium of the corresponding zero-sum game. The results in

this chapter can be thought of as a way to solve the Riccati equation of the well-known

discrete-time H∞ optimal control problem forward in time. Two designs are presented.

An Action Dependent Heuristic Dynamic Programming (ADHDP) algorithm to solve

for the Q-function of the associated zero-sum game is presented, and this is a model free

design, i.e. they system dynamics is not needed, which can be thought as adaptive

control design. In a second algorithm, an Action Dependent Dual Heuristic Dynamic

Programming (ADDHP) is developed to solve the zero-sum game. Proofs of

convergence for both forward dynamic programming schemes are presented.

4.1 Q-Function Setup for Discrete-Time Linear Quadratic Zero-sum Games

In this section, the discrete-time linear quadratic zero-sum game appearing in

H∞ optimal control problems under full state measurement information structure is

45

considered. This problem has been solved in the literature using the dynamic

programming principle and results in a backward-in-time recurrence relation for the

game value function. In this chapter, the Bellman’s optimality principle for the zero-

sum-game is formulated using the concept of Q-functions [8] [26] [25] instead of the

standard value functions used elsewhere. Using Q-functions will allow us in the next

section to apply forward-in-time dynamic programming and the result is a model-free

tuning algorithm that is relevant to Adaptive control theory.

Consider the following discrete-time linear system

1

,

k k k k

k k

x Ax Bu Ew

y x

+ = + +

=
 (4.1)

where n
x R∈ , py R∈ , 1m

k
u R∈ is the control input and 2m

k
w R∈ is the disturbance

input. Also consider the infinite-horizon value function

 2() min max T T T

k i i i i i ii ku w
V x x Rx u u w wγ

∞∗

=
 = + − ∑ (4.2)

for a prescribed fixed value of γ. In the H-infinity control problem, γ is an upper bound

on the desired L2 gain disturbance attenuation [7] [34].

It is desired to find the optimal control
k

u
∗ and the worst case disturbance

k
w

∗ , in

which the infinite-horizon cost is to be minimized by player 1,
k

u , and maximized by

player 2,
k

w . Here the class of strictly feedback stabilizing policies is considered [6].

Using the dynamic programming principle, the optimization problem in equation

(4.1) and (4.2) can be written as

46

1

1

() min max((, ,) ())

max min((, ,) ()).

k
k

kk

k k k k k
u w

k k k k
uw

V x r x u w V x

r x u w V x

∗ ∗
+

∗

+

= +

= +
 (4.3)

Note that the minimax is equal to maximin since the linear system (4.1) is affine

in input and the cost is quadratic. Assuming that the game has a value and is solvable,

then in order to have a unique feedback saddle-point in the class of strictly feedback

stabilizing policies, then the value function is quadratic in the state

 () T

k k k
V x x Px

∗ = (4.4)

where 0P ≥ and the GARE solution and given as

1

2
[]

T T T

T T T

T T T

I B PB B PE B PA
P A PA R A PB A PE

E PB E PE I E PAγ

−
   +

= + −    
−   

 (4.5)

so the inequalities in (4.6) and (4.7) should be satisfied, [7],

 2 0TI E PEγ −− > , (4.6)

 0T
I B PB+ > (4.7)

Q-functions have been applied to zero-sum games in the context of Markov

Decision Problems [24]. In this chapter, we extend the concept of Q-functions to zero-

sum games that are continuous in the state and action space as in (4.3). The optimal Q-

function, Q∗ , of the zero-sum game is then defined to be

1(, ,) (, ,) ()

k k k k k k k

T
T T T T T T

k k k k k k

Q x u w r x u w V x

x u w H x u w

∗ ∗

+= +

   =    

, (4.8)

where H is the matrix associated with the solution of the GARE P , and is given as

47

1

2

1 1

2

(, ,) ()

0 0

0 0

0 0

T

k k

k k k k k k

k k

T T T T

k k k k k k k k

TT T T T

k k k k

T T

k k k k

T T

k k k

x x

u H u r x u w V x

w w

x Rx u u w w x Px

x R x x A A x

u I u u B P B u

w I w w E E w

γ

γ

∗

+

+ +

   
    = +   
      

= + − +

          
          = +           
          −            k

 
 
 
  

where ()
k k

u x Lx= , and ()
k k

w x Kx= so H can be written as

2

T

xx xu xw

ux uu uw

wx wu ww

T
T T

T T T T

T T

T T T

T T T

T T T

H H H A B E A B E

H H H G LA LB LE H LA LB LE

H H H KA KB KE KA KB KE

A I A

G B I L K H L B

E K E

A PA R A PB A PE

B PA B PB I B PE

E PA E PB E PE Iγ

    
    

= +     
          

    
     = +       
        

 +


= +
−





 


 (4.9)

where

2

0 0

0 0

0 0

R

G I

Iγ

 
 =  
 − 

,

and

 T T

I

P I L K H L

K

 
  =    
  

 (4.10)

with L , K are the optimal strategies

48

The optimal Q-function (, ,)
k k k

Q x u w
∗ is equal to the value function ()

k
V x

∗

when the policies
k

u ,
k

w are equal to the optimal policies, this can be written as

() min max (, ,)

min max

k k

k k

k k k k
u w

T
T T T T T T

k k k k k k
u w

V x Q x u w

x u w H x u w

∗ ∗=

   =    

. (4.11)

Combining (4.11) with (4.8), one obtains the following recurrence relation

{ }
{ }

1 1

11

1 1 1

1 1 1

min max (, ,) min max (, ,) min max (, ,)

max min (, ,) max min (, ,)

max min (, ,).

k k kk k k

k kk k

kk

k k k k k k k k k
u u uw w w

k k k k k k
u uw w

k k k
uw

Q x u w r x u w Q x u w

r x u w Q x u w

Q x u w

+ +

++

∗ ∗
+ + +

∗
+ + +

∗

= +

= +

=

 (4.12)

To maximize with respect to the disturbance
k

w , one needs to apply the first order

necessary condition

0

0 2 2 2

k

k

wx k wu k ww k

Q

w

H x H u H w

∗∂
=

∂

= + +

 (4.13)

Therefore, the disturbance can be written as

 1 ()
k ww wx wu

w H H x H u
−= − + . (4.14)

Similarly, to minimize with respect to the control input
k

u one has

0

0 2 2 2

k

k

ux k uw k uu k

Q

u

H x H w H u

∗∂
=

∂

= + +

 (4.15)

Hence, the controller can be written as

 1()
k uu ux k uw k

u H H x H w
−= − + . (4.16)

49

Note that applying the second order sufficiency conditions for both players one obtains

0

0

uu

ww

H

H

>

<

which implies (4.6) and (4.7).

Substituting equation (4.14) in (4.15) one has

 1 1 1() ()
k uu uw ww wu uw ww wx ux k

u H H H H H H H H x
∗ − − −= − − , (4.17)

so the optimal control is a state feedback with gain

 1 1 1() ()
uu uw ww wu uw ww wx ux

L H H H H H H H H
− − −= − − . (4.18)

Substituting the equation (4.16) in (4.13) one can find the optimal policy to the

disturbance

 1 1 1() ()
k ww wu uu uw wu uu ux wx k

w H H H H H H H H x
∗ − − −= − − , (4.19)

so the optimal disturbance is a state feedback with gain

 1 1 1() ()
ww wu uu uw wu uu ux wx

K H H H H H H H H
− − −= − − . (4.20)

Equation (4.18) and (4.20) depend only on the H matrix, and they are the main

equations needed in the algorithm to be proposed to find the control and disturbance

gains. The system model is not needed.

In the convergence proof, different expressions for L and K are required. One

can use (4.9) to obtain the gains (4.18) and (4.20) in terms of the P matrix

2 1 1

2 1

(())

(())

T T T T

T T T T

L I B PB B PE E PE I E PB

B PE E PE I E PA B PA

γ

γ

− −

−

= + − − ×

− −
 (4.21)

2 1 1

1

(())

(()).

T T T T

T T T T

K E PE I E PB I B PB B PE

E PB I B PB B PA E PA

γ − −

−

= − − + ×

+ −
 (4.22)

50

Note that the inverse matrices in (4.21) and (4.22) exist due to (4.6) and (4.7).

The policies (4.21) and (4.22) can be derived directly from (4.3) and requires the

knowledge of the system model matrices, A , B and E unlike the policies derived in

(4.18) and (4.20) which depends on H only. Hence, as will be seen in the next section,

this will allow the development of a model-free online tuning algorithm.

Now, it will be shown how to develop the ADHDP and ADDHP algorithm using

these constructions.

4.2 Action dependent Heuristic Dynamic programming (ADHDP)

In this section, an Q-Learning algorithm ADHDP to solve the discrete-time

linear quadratic zero-sum game described in chapter 2 is developed. The Q-Learning

algorithm was originally proposed in [8] [25] to solve optimal control problems. The Q-

Learning algorithm has been applied earlier to solve the discrete-time Linear Quadratic

Regulator (LQR) in optimal control theory [31]. In the Q-Learning approach, a

parametric structure is used to approximate the Q-function of the current control policy.

Then the certainty equivalence principle is used to improve the policy of the action

network. It can be thought of as a Q-learning algorithm in continuous state and action

spaces.

In this section, the Q-Learning approach is extended to discrete-time linear

quadratic zero-sum games appearing in [7], an the convergence proof of the presented

algorithm is provided. This can be thought of as a Q-learning for zero-sum games that

have continuous state and action spaces.

51

4.2.1 Derivation of the ADHDP for zero-sum games

In the Q-Learning, one starts with an initial Q-function 0 (, ,) 0Q x u w ≥ that is not

necessarily optimal, and then finds 1(, ,)Q x u w by solving equation (4.23) with 0i = as

{ }

{ }

{ }

1 1

1

2

1 1 1

2

1

2

(, ,)

min max (, ,) ,

()

()

k k

i k k k

T T T

k k k k k k i k k k
u w

T T T

k k k k k k i k

T T T

k k k k k k i k k k

Q x u w

x Rx u u w w Q x u w

x Rx u u w w V x

x Rx u u w w V Ax Bu Ew

γ

γ

γ

+ +

+

+ + +

+

=

+ − +

= + − +

= + − + + +

 (4.23)

then applying the following incremental optimization on the Q function as

 1 1min max (, ,) min max
k kk k

T
T T T T T T

i k k k k k k i k k k
u uw w

Q x u w x u w H x u w+ +
   =    

According to(4.18) and (4.20) the corresponding state feedback policy updates are

given by

1 1 1

1 1 1

() (),

() ().

i i i i i i i i

i uu uw ww wu uw ww wx ux

i i i i i i i i

i ww wu uu uw wu uu ux wx

L H H H H H H H H

K H H H H H H H H

− − −

− − −

= − −

= − −
 (4.24)

with

()

()

i k i k

i k i k

u x L x

w x K x

=

=
 (4.25)

Note that since (, ,)
i

Q x u w is not initially optimal, the improved policies ()
i k

u x and

()
i k

w x use the certainty equivalence principle. Note that to update the action networks,

the plant model A , B and E matrices are not needed.

This is a greedy policy iteration method that is based on the Q -function. In

chapter 3, a greedy policy updates on V is shown and this can now be recovered from

(4.23) as

52

{ }

1 1

2

min max (, ,) ()

min max () .

k k

k k

i k k k i k
u w

T T T

k k k k k k i k k k
u w

Q x u w V x

x Rx u u w w V Ax Bu Ewγ

+ +=

= + − + + +

Note that in equation (4.23), the Q -function is given for any policy u and w .

To develop solutions to (4.23) forward in time, one can substitute (4.25) in (4.23) to

obtain the following recurrence relation on

2

1

1 1 1 1 1 1

(, (), ()) () () () ()

() () () ()

T T T

i k i k i k k k i k i k i k i k

T T T T T T

k i k i k i k i k i k

Q x u x w x x Rx u x u x w x w x

x u x w x H x u x u x

γ+

+ + + + + +

= + − +

      
 (4.26)

that is used to solve for the optimal Q -function forward in time.

The idea to solve for 1i
Q + , then once determined, one repeats the same process

for 0,1,2,i = … . In this chapter, it is shown that 1 ,(, (), () (,)i k i k i k k k kQ x u x w x Q x u w
∗

+ →

as i → ∞ , which means
i

H H→ ,
i

L L→ and
i

K L→ .

In the ADHDP approach, the Q-function is generally difficult to obtain in

closed-form except in special cases like the linear system (4.1) . Therefore, in general, a

parametric structure is used to approximate the actual (, ,)
i

Q x u w . Similarly, parametric

structures are used to obtain approximate closed-form representations of the two action

networks ˆ(,)u x L and ˆ (,)w x K . Since in this chapter linear quadratic zero-sum games

are considered, the Q-function is quadratic in the state and the policies, i.e. (4.8).

Moreover, the two action networks are linear in the state, i.e. (4.17) and (4.19).

A natural choice of these parameter structures is given as

 ˆ ()
i i

u x L x= , (4.27)

 ˆ ()
i i

w x K x= , (4.28)

53

ˆ (,) T

i i

T

i

Q z h z H z

h z

=

=
, (4.29)

where
T

T T Tz x u w =   1 2n m m q
z R

+ + =∈ , 2 2 2

1 1 2 2 3 1(, , , , , , ,)q q q qz z z z z z z z z z−= … … is the

Kronecker product quadratic polynomial basis vector [21], and ()h v H= with ()v ⋅ a

vector function that acts on q q× matrices and gives a (1)
2 1q q+ × column vector. The

output of ()v ⋅ is constructed by stacking the columns of the squared matrix into a one-

column vector with the off-diagonal elements summed as
ij ji

H H+ , [21]. In the linear

case, the parametric structures (4.27) (4.28) and (4.29) give an exact closed-form

representation of the functions in (4.26). Note that (4.27) and (4.28) are updated using

(4.23).

To solve for 1i
Q + in (4.26), the right hand side of (4.26) is written as

2

1 1 1

ˆ ˆ ˆ ˆ((),) () () () ()

ˆ ˆ(, (), ()

T T T

k k i k k i k i k i k i k

i k i k i k

d z x H x Rx u x u x w x w x

Q x u x w x

γ

+ + +

= + − +
 (4.30)

which can be thought of as the desired target function to which one needs to fit

1
ˆ (,)

i
Q z h + in least-squares sense to find 1i

h + such that

 1 () ((),)T

i k k i
h z x d z x h+ = . (4.31)

The parameter vector 1i
h + is found by minimizing the error between the target value

function (4.30) and (4.29) in a least-squares sense over a compact set Ω ,

1

2

1 1arg min{ | () ((),) | }
i

T

i i k k i k
h

h h z x d z x h dx
+

+ +

Ω

= −∫ . (4.32)

Solving the least-squares problem one obtains

54

1

1 () () () ((),)T

i k k k k ih z x z x dz z x d z x h dx

−

+

Ω Ω

 
=  
 
∫ ∫ (4.33)

Note however that ()
k

z x is

() ()

() ()

()

ˆ ˆ() () ()
T

T TT

k k i k i k

T
T TT

k i k i k

T
T

T T T

k i i

z x x u x w x

x L x K x

x I L K

 =
 

 =
 

 =  

, (4.34)

from (4.34) one can note that ˆ
i

u and ˆ
i

w are linearly dependent on
k

x , see (4.27) and

(4.28), therefore

 () ()T

k k k
z x z x dx

Ω

∫

is never invertible, which means that the least-squares problem (4.32), (4.33) will never

be solvable. To overcome this problem one, exploration noise is added to both inputs in

(4.25) to obtain

1

2

ˆ ()

ˆ ()

ei k i k k

ei k i k k

u x L x n

w x K x n

= +

= +
, (4.35)

where 1 1(0,)n σ and 2 2(0,)n σ are zero-mean exploration noise with variances 2

1σ and

2

2σ respectively, therefore ()
k

z x in (4.34) becomes

 1 1

2 2

ˆ() ()

ˆ ()

k k k

k ei k i k k i k k

ei k i k k i k k

x x x

z x u x L x n L x n

w x K x n K x n

       
       = = + = +       
       +       

0

.

Evaluating (4.31) at several points 1, 2, 3,p p p ∈Ω… , one has

 1

1 ()T

i
h ZZ ZY

−

+ = (4.36)

with

55

[(1) (2) ()]

[((1),) ((2),) ((),)] .T

i i i

Z z p z p z pN

Y d z p h d z p h d z pN h

=

=

�

�

It is not enough to add the noise to the control and disturbance inputs, In order the

algorithm to converge to optimal solution, the target in equation (4.30) is modified to

become

2

1 1 1

ˆ ˆ ˆ ˆ((),) () () () ()

ˆ ˆ(, (), ()

T T T

k k i k k ei k ei k ei k ei k

i k i k i k

d z x H x Rx u x u x w x w x

Q x u x w x

γ

+ + +

= + − +
 (4.37)

with ˆ
i

u and ˆ
i

w used for
i

Q instead of ˆ
ei

u and ˆ
ei

w . The invertiblity of the matrix in

(4.36) is therefore guaranteed by the excitation condition. This can be written as

2

1 1 1 1 1 1

ˆ ˆ ˆ ˆ((),) () () () ()

() () () ()

T T T

k k i k k ei k ei k ei k ei k

T
T T T T T T

k i k i k i k i k i k

d z x H x Rx u x u x w x w x

x L x K x H x L x K x

γ

+ + + + + +

= + − +

      

where

 1
ˆ ˆ()

k k ei k ei
x Ax Bu x Ew+ = + +

4.2.2 Online implementation of the ADHDP Algorithm

The least-squares problem in (4.36) can be solved in real-time by collecting

enough data points generated from (,)
k i

d z h in (4.37). This requires one to have

knowledge of the state information
k

x , 1k
x + as the dynamics evolve in time, and also of

the reward function 2ˆ ˆ ˆ ˆ() () () () ()T T T

k k k ei k ei k ei k ei k
r z x Rx u x u x w x w xγ= + − and

i
Q . This

can be determined by simulation, or in real-time applications, by observing the states

on-line. Therefore, in the Q-Learning algorithm, the model of the system is not needed

to update the critic network and the action network. This results in a model-free tuning

algorithm suitable for adaptive control application.

56

To satisfy the excitation condition of the least-squares problem, one needs to

have the number of collected points N at least (1) / 2N q q≥ + ,where 1 2q n m m= + + is

the number of states and both policies, control and disturbance. In online

implementation of the least-squares problem, Y and Z matrices are obtained in real-

time as

[]

[]

1 2 1

1 2 1

() () ()

((),) ((),) ((),) .

k N k N k

T

k N i k i k i

Z z x z x z x

Y d z x h d z x h d z x h

− − − − −

− − − −

=

=

�

�
 (4.38)

One can also solve (4.38) recursively using the well-known recursive least-

squares technique. In that case, the excitation condition is replaced by the persistency of

excitation condition

 0 1

1

1 T

k t k t

m

I z z I
α

ε ε
α

− −
=

≤ ≤∑

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε and 1ε positive integers and 0 1ε ε≤ . The

recursive least-squares algorithm is given as

1

1 1

() (,) (1)

(1) ()
() (1)

1 (1)

(1) (1)
() (1)

1 (1)

T

i k i k i

i k i
i i T

k i k

T

i k k i
i i T

k i k

e t d z h z h t

t z e t
h t h t

z t z

t z z t
t t

z t z

+

+ +

= − −

Γ −
= − +

+ Γ −

Γ − Γ −
Γ = Γ − −

+ Γ −

where i is the policy update index, t is the index of the recursions of the recursive

least-squares, and k is the discrete time. Γ is the covariance matrix of the recursion

and ()e t is the estimation error of the recursive least-squares. Note that (0)
i

Γ is a large

57

number and 1(0)
i i+Γ = Γ . The on-line Q-Learning algorithm (ADHDP) developed in this

chapter is summarized in the flowchart shown in Figure 4.1.

Policy iteration

Start of the Zero-Sum

 Q-Learning

Initialization

Solving the least-squares

Finish

0 0 0

0 0

() 0 : 0

0, 0, 0.

h v H P

i L K

= = =

= = =

[]

[]

)(

)(

)),(()),(()),((

)()()(

11

1
1

121

121

++

−
+

−−−−

−−−−−

=

=

=

=

ii

T
i

T
ikikiNk

kNkNk

hfH

ZYZZh

hxzdhxzdhxzdY

xzxzxzZ

�

�

ε<−+ Fihih 1

Yes

No1+→ ii

)()(

),()(

11111111111
1

11111111111
1

++−++−+−+++
+

++−++−+−+++
+

−−=

−−=

i
wx

i
ux

i
uu

i
wu

i
uw

i
uu

i
wu

i
wwi

i
ux

i
wx

i
ww

i
uw

i
wu

i
ww

i
uw

i
uui

HHHHHHHHK

HHHHHHHHL

Figure 4.1. The ADHDP algorithm.

The ADHDP algorithm for zero-sum games follows by iterating between (4.23)

and (4.38). In the remaining of this section, it will be shown that this policy iteration

58

technique will cause
i

Q to converge to the optimal Q∗ . Note that the model of the

system is not required to update the actions networks and the critic network.

4.2.3 Convergence of the ADHDP Algorithm

The proof of convergence for the proposed Q-Learning algorithm, i.e. ADHDP

algorithm, for zero-sum games converges to the optimal policies is provided.

Lemma 4.1 Iterating on equations (4.23), and (4.38) is equivalent to

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

. (4.39)

Proof: Since equation (4.37) is equivalent to

 ((),)

T

T

k k i k i i i i i i i

i i i i i i

A B E A B E

d z x h z v G L A L B L E H L A L B L E

K A K B K E K A K B K E

    
    

= × +    
         

,

then using the Kronecker products [21], the least-squares (4.38) becomes

 1

1 () ()

T

T

i i i i i i i i

I
i i i i i i

A B E A B E

h ZZ ZZ v G L A L B L E H L A L B L E

K A K B K E K A K B K E

−
+

    
    

= × +    
         

�������
.

where v is the vectorized function in Kronecker products.

Since the matrix 1i
H + reconstructed from 1i

h + is symmetric, iterating on
i

h is

equivalent to

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

 

59

Lemma 4.2 The matrices 1i
H + , 1i

L + and 1i
K + can be written as

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

 (4.40)

2 1 1

1

2 1

(())

(()),

T T T T

i i i i i

T T T T

i i i i

L I B PB B PE E PE I E PB

B PE E PE I E P A B P A

γ

γ

− −

+

−

= + − − ×

− −
 (4.41)

2 1 1

1

1

(())

(()).

T T T T

i i i i i

T T T T

i i i i

K E PE I E PB I B PB B PE

E PB I B PB B P A E P A

γ − −

+

−

= − − + ×

+ −
 (4.42)

where
i

P is given as

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

. (4.43)

Proof: Equation (4.39) can be written as

[]

1

.

T

i i i i i i i i

i i i i i i

T

T T T

i i i i

T

i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

A I

G B I L K H L A B E

E K

+

   
   

= +    
   
   

   
    = +      
     

Since

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

,

then it follows that

60

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

Using equations (4.24) and (4.40), one obtains (4.41) and (4.42). 

Lemma 4.3: Iterating on
i

H is similar to iterating on
i

P as

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (4.44)

with
i

P defined as in (4.43).

Proof: From (4.43), one has

 1 1 1 1 1

1

T T

i i i i i

i

I

P I L K H L

K

+ + + + +

+

 
  =    
  

,

and using (4.40), one obtains

1 1 1 1

2

1

2

1 1 1 1 1 1 1 1() ()

T T T

i i i

T T T T T

i i i i i i i

T T T

i i i i

T T T T T T T

i i i i i i i i i

A P A R A PB A PE I

P I L K B P A B PB I B PE L

E P A E PB E PE I K

R L L K K A L B K E P A BL EK

γ

γ

+ + + +

+

+ + + + + + + +

 +  
    = +    
   −   

= + − + + + + +

 (4.45)

Using (4.41), and (4.42), one has

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
. 

Theorem 4.1: Assume that the linear quadratic zero-sum game is solvable and has a

value under the state feedback information structure. Then, iterating on equation (4.39)

in Lemma 4.1, with 0 0H = , 0 0L = and 0 0K = converges with
i

H H→ , where H is

corresponds to (,)
k k k

Q x u w
∗ and

61

 min max (, ,) max min (, ,)
u uw w

xPx Q x u w Q x u w
∗ ∗= =

with P solving the GARE (4.5).

Proof: In [3] it is shown that iterating on the algebraic Riccati equation (4.44) with

0 0P = converges to P that solves (4.5). Since Lemma 4.3 shows that iterating on
i

H

matrix is equivalent to iterating on
i

P , then as i → ∞

2

T T T

T T T

i

T T T

A PA R A PB A PE

H B PA B PB I B PE

E PA E PB E PE Iγ

 +
 

→ + 
 − 

.

hence from (4.9), and since from (4.43) 0 0H = , 0 0L = and 0 0K = implies that

0 0P = , one concludes that
i

Q Q
∗→ . 

The proof of convergence of the ADHDP has been established assuming the

least-squares problem (4.38) is solved completely; i.e. the excitation condition is

satisfied. Note that this implies that ADHDP can be interpreted as solving the algebraic

Riccati equation of the zero-sum game without requiring the plant model.

4.3 Action Dependent Dual Heuristic Dynamic Programming (ADDHP)

In this section, an ADDHP algorithm is developed to solve the discrete-time

linear system zero-sum game described in chapter 2. The ADDHP algorithm has been

applied earlier to solve the discrete-time Linear Quadratic Regulator (LQR) in optimal

control theory [31]. In the ADDHP approach, a parametric structure is used to

approximate the co-state function, i.e. the gradient of the cost-to-go function, of the

current control policies. As in the ADHDP case, the certainty equivalence principle is

used to improve the policies of the actions networks.

62

In this section, we extend the ADDHP approach to linear quadratic discrete-time

zero-sum games appearing in [7], and prove the convergence of the presented

algorithm.

4.3.1 Derivation of the ADDHP algorithm

Consider the system (4.1) and the cost-to-go function (4.2). In the ADDHP

approach, the critic network approximates the Q co-state ()
k

zλ forward in time. In the

zero-sum game ADDHP algorithm developed in this chapter, the following recurrence

relation is derived to solve for the Q co-state forward in time.

1
1

1 1 1

1 1

1

1 1

1

1

()
()

() () ()

() ()

() ()

() ()

i k
i k

k

T
T T T

i k i k i k

k k k

T

k i k k

k k k

T

k i k k

k k k

k i k

k

Q z
z

z

Q z Q z Q z

x u w

zr z Q z

x z x

zr z Q z

u z u

r z Q z

u z

λ +
+

+ + +

+ +

+

+ +

+

+

∂
=

∂

      ∂ ∂ ∂
 =      

∂ ∂ ∂       

∂   ∂ ∂
+    

∂ ∂ ∂   

∂   ∂ ∂
= +    

∂ ∂ ∂   

∂ ∂
+

∂ ∂
1

1

T

k

k k

z

w

+

+

 
 
 
 
 
 
 
    ∂    
 ∂    

 (4.46)

The recurrence relation (4.46) is obtained by differentiating the recurrence

relation on the Q- function, which given as follows

2

1

1 1 1 1 1 1

(, (), ()) () () () ()

() () () ()

T T T

i k i k i k k k i k i k i k i k

T T T T T T

k i k i k i k i k i k

Q x u x w x x Rx u x u x w x w x

x u x w x H x u x u x

γ+

+ + + + + +

= + − +

      

Let
T

T T Tz x u w =   , Equation (4.46) can be rewritten as

63

1
1

1
1 1

1
1

()
()

()
() () .

()
()

Tk k
i k

k k

Tk k
i k i k

k k

Tk k
i k

k k

r z z
z

x x

r z z
z z

u u

r z z
z

w w

λ

λ λ

λ

+
+

+
+ +

+
+

  ∂ ∂
+  

∂ ∂  
  ∂ ∂ = +  
 ∂ ∂ 
 

 ∂ ∂ 
+   ∂ ∂  

 (4.47)

The improvement of the actions networks requires that

 1
1

(, (), ())
() 0

()

Tk i k i k k
i k

i k k

r x u x w x z
z

u x u
λ +

+

 ∂ ∂
+ = 

∂ ∂ 
, (4.48)

 1
1

(, (), ())
() 0

()

Tk i k i k k
i k

i k k

r x u x w x z
z

w x w
λ +

+

 ∂ ∂
+ = 

∂ ∂ 
. (4.49)

Combining (4.47), (4.48) and (4.49), one has

1
1

1

(, (), ())
()

() 0

0

Tk i k i k k
i k

k k

i k

r x u x w x z
z

x x

z

λ

λ

+
+

+

  ∂ ∂
+  

∂ ∂  
 =
 
 
  
 

. (4.50)

Hence, the ADDHP algorithm can be summarized as the successive iteration

between (4.47) on one hand, and (4.48), (4.49) on the other. This results in a successive-

improvement of the Q function derivatives sequence { }| 1, 2,i iλ = … as the player

policies are generated. In this chapter, it will be shown that the ADDHP algorithm

converges. When converged, equation (4.50) becomes

64

1
1

(, (), ())
()

() 0

0

Tk i k i k k
k

k k

k

r x u x w x x
x

x x

z

λ

λ

∗ ∗ ∗
∗ +

+∗ ∗

∗ ∗

  ∂ ∂
+  

∂ ∂  
 =
 
 
 
 

,

the top element is known as the co-state equation in Theorem 6.3 in [6].

In ADDHP, a parametric structure ˆ(,)
i

z hλ is used to approximate the actual

()
i

zλ . Similarly, parametric structures are used to obtain approximate closed-form

representations of the two action networks ˆ(,)u x L and ˆ (,)w x K . Since in this chapter

the zero-sum game considered is linear and quadratic, it is well-known that Q co-state

and the action networks are all linear in the state. Therefore a natural choice of these

parameter structures is given as

 ˆ(,) T

i i

z
z h h

z
λ

∂
=

∂
, (4.51)

 ˆ ()
i i

u x L x= , (4.52)

 ˆ ()
i i

w x K x= , (4.53)

where
T

T T Tz x u w =   1 2n m m q
z R

+ + =∈ , 2 2 2

1 1 2 2 3 1(, , , , , , ,)q q q qz z z z z z z z z z−= … … is the

Kronecker product quadratic polynomial basis vector [21], and ()h v H= with ()v ⋅ a

vector function that acts on q q× matrices and gives a (1)
2 1q q+ × column vector. The

output of ()v ⋅ is constructed by stacking the columns of the squared matrix into a one-

column vector with the off-diagonal elements summed as
ij ji

H H+ , [21].. The

65

parametric structures (4.51) (4.52) and (4.53) give an exact closed-form representation

of the functions in (4.47) to (4.50).

Using the parameter structures (4.52) and (4.52) along with the certainty

equivalence principle, it can be easily shown form (4.18) and (4.20) that the parameters

of the actions networks are updates as.

1 1 1

1 1 1

() (),

() ().

i i i i i i i i

i uu uw ww wu uw ww wx ux

i i i i i i i i

i ww wu uu uw wu uu ux wx

L H H H H H H H H

K H H H H H H H H

− − −

− − −

= − −

= − −
 (4.54)

Substituting (4.54) in (4.51) given the system model (4.1) , one has

 1(,) 2

T

k i k i i i i k

i i i

A B E

d z P Gz L A L B L E H z

K A K B K E

+

 
 = +  
  

. (4.55)

Using the Kroncker product notation [21], equation (4.34) can be rewritten as

 (,) ()

T

T

k i i i i i i i i

i i i i i i

A B E A B E
z

d z h v G L A L B L E H L A L B L E
z

K A K B K E K A K B K E

   
∂   = +     ∂

      

. (4.56)

Equation (4.56) can be thought of as the desired target function to which one

needs to fit 1
ˆ(,)

i
z hλ + such that 1

ˆ(,) (,)
i k i

z h d z hλ + = .

The parameter vector 1i
h + is found by minimizing the error between the target

value function (4.56) and (4.51) in a least-squares sense over a compact set, Ω ,

1

2

1 1

()
arg min {| ((,) | }

i

T
T k

i i k k i
h

z x
h h d z x h dx

z+

+ +

Ω

∂
= −

∂∫ . (4.57)

This least square problem can be solved as

66

1

1

()) ,

T

i

T

T

i

z z
h dx

z z

A B E A B E
z z

v G LA LB LE H LA LB LE dx
z z

KA KB KE KA KB KE

−

+

Ω

Ω

 ∂ ∂
= × 

∂ ∂ 

   
∂ ∂    +    ∂ ∂

      

∫

∫

, (4.58)

note that z is

() ()

() ()

()

ˆ ˆ() ()
T

T TT

k i k i k

T
T TT

k i k i k

T
T

T T T

k i i

z x u x w x

x L x K x

x I L K

 =
 

 =
 

 =  

, (4.59)

from (4.59) one can note that ˆ
i

u and ˆ
i

w are linearly dependent on
k

x , so T
zz will never

be invertible, which means that the least-square problem (4.57), (4.58) will never be

solvable.

To solve this problem one can we redefine z as

() ()

() ()1 2

ˆ ˆ() ()
T TT

k ei k ei k

T
T TT

k i k k i k k

z x u x w x

x L x n K x n

 =
 

 = + +
 

,

where

1

2

ˆ ()

ˆ ()

ei k i k k

ei k i k k

u x L x n

w x K x n

= +

= +
, (4.60)

Evaluation (4.58) at several points 1, 2, 3,p p p ∈Ω… , one has

 1

1 ()T

i
h ZZ ZY

−

+ = (4.61)

with

67

(1) (2) ()
[]

[((1),) ((2),) ((),)] .T

i i i

z p z p z pN
Z

z z z

Y d z p h d z p h d z pN h

∂ ∂ ∂
=

∂ ∂ ∂

=

�

�

The invertiblity of the matrix in (4.60) is therefore guaranteed by the excitation

condition

4.3.1 Online Implementation of the ADDHP algorithm

The least-squares problem in (4.57) can be solved in real-time by collecting

enough data points generated from (,)
k i

d z h in (4.56). This requires having access to

the state and the policies information
k

z , 1k
z + as the dynamics evolve in time and

gradients of the reward function
k

r x∂ ∂ ,
i

r u∂ ∂ ,
i

r w∂ ∂ , as well as the plant model A

and B . Therefore, in the ADDHP algorithm developed in this chapter for the zero-sum

game, the plant model is required to update the critic network.

To satisfy the excitation condition of the least squares problem, one needs to

have the number of collected points N at least N q≥ . Therefore, after several time

steps that are enough to guarantee the excitation condition, one has the following least-

squares problem

 1

1 ()T

i
h ZZ ZY

−

+ = , (4.62)

where

1 2 k-1

1 2 k-1

[]

[(,) (,) (,)] .

k N k Nz z z

T T T T

k N i k N i i

z z z
Z

z z z

Y d z h d z h d z h

− − − −

− − − −

∂ ∂ ∂
=

∂ ∂ ∂

=

�

�

68

One can solve (4.62) recursively using the well-known recursive least squares

technique. In that case, the excitation condition is replaced with the persistency of

excitation condition

 0 1

1

1
T

k t k t

m

z z
I I

x z

α

ε ε
α

− −
=

∂ ∂
≤ ≤

∂ ∂
∑

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε and 1ε are positive integers and 0 1ε ε≤ .

The recursive least-squares algorithm is given as

1

1

1 1

1

() (,) (1)

() (1) (1) (1) ()

() (1) (1) (1) (1)

T

k
i x k i i

T

k k k
i i i i i

T T

k k k k
i i i i i

z
e t d x p p t

z

z x x
p t p t t I t e t

z x x

z z z z
t t t I t t

z z z z

+

−

+ +

−

∂
= − −

∂

 ∂ ∂ ∂
= − + Γ − + Γ − 

∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
Γ = Γ − − Γ − + Γ − Γ − 

∂ ∂ ∂ ∂ 

where i is the policy update index, t is the index of the recursions of the recursive

least-squares, and k is the discrete time. Γ is the covariance matrix of the recursion

and ()e t is the estimation error of the recursive least-squares. Note that (0)
i

Γ is a large

number, and 1(0)
i i+Γ = Γ .

The developed ADDHP algorithm is summarized in the flowchart shown in

Figure 4.2.

69

Policy iteration

Start of the Zero-Sum

 AD HDP

Initialization

Solving the least-squares

Finish

() 0 : 00 0 0

0 , 0, 0.0 0

h v H P

i L K

= = =

= = =

ε<−+ Fihih 1

Yes

No1+→ ii

)()(

),()(

11111111111
1

11111111111
1

++−++−+−+++
+

++−++−+−+++
+

−−=

−−=

i

wx

i

ux

i

uu

i

wu

i

uw

i

uu

i

wu

i

wwi

i

ux

i

wx

i

ww

i

uw

i

wu

i

ww

i

uw

i

uui

HHHHHHHHK

HHHHHHHHL

ZY
T

ZZ
i

h

T

i
hz

T
d

i
h

Nk
z

T
d

i
h

Nk
z

T
dY

z
z

z

Nkz
z

z

Nkz
z

z

Z

1
)(

1

.]),
1-k

(),
2

(),
1

([

]

1-k21

[

−
=

+

−−−−
=

∂

∂

−−
∂

∂

−−
∂

∂

=

�

�

Figure 4.2.The ADDHP algorithm

The ADDHDP algorithm for zero-sum games follows by iterating between

(4.54) and (4.62). In the remaining of this section, it will be shown that this policy

iteration technique will cause
i

Q to converge to the optimal Q∗ . Note that the model of

the system is required to update the critic network.

70

4.3.3 Convergence of the ADDHP Algorithm

Now the convergence proof of the proposed ADDHP algorithm for zero-sum

games is presented.

Lemma 4.4: Iterating on equations (4.54), and (4.62) is equivalent to

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

, (4.63)

under the assumption that the system is sufficiently excited.

Proof: The least-squares problem is defined in equation (4.62) which is

 1

1 ()T

i
h ZZ ZY

−

+ = .

Under the excitation condition assumption, the inverse operator exists.

Substituting (4.56) in (4.62), one has

 1

1 () ()

T

T T

i i

A B E A B E

h ZZ ZZ v G LA LB LE H LA LB LE

KA KB KE KA KB KE

−

+

   
   = +    
      

, (4.64)

which can be written as

 1 ()

T

i i

A B E A B E

h v G LA LB LE H LA LB LE

KA KB KE KA KB KE

+

   
   = +    
      

,

where v is the vectorized function in the Kronecker product.

Since the matrix 1i
H + which reconstructed from 1i

h + is symmetric, iteration on

i
h is equivalent to the following iteration

71

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

, (4.65)

which is equivalent to (4.63). 

Lemma 4.5 The matrices 1i
H + , 1i

L + and 1i
K + can be written as

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

 (4.66)

2 1 1

1

2 1

(())

(()),

T T T T

i i i i i

T T T T

i i i i

L I B PB B PE E PE I E PB

B PE E PE I E P A B P A

γ

γ

− −

+

−

= + − − ×

− −
 (4.67)

2 1 1

1

1

(())

(()).

T T T T

i i i i i

T T T T

i i i i

K E PE I E PB I B PB B PE

E PB I B PB B P A E P A

γ − −

+

−

= − − + ×

+ −
 (4.68)

where
i

P is given as

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

. (4.69)

Proof: Equation (4.66) can be written as

[]

1

.

T

i i i i i i i i

i i i i i i

T

T T T

i i i i

T

i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

A I

G B I L K H L A B E

E K

+

   
   

= +    
   
   

   
    = +      
     

Since

72

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

,

then it follows that

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

Using equations (4.54) and (4.66), one obtains (4.67) and (4.68). 

Lemma 4.6: Iterating on
i

H is similar to iterating on
i

P as

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (4.70)

with
i

P defined as in (4.69).

Proof: From (4.69), one has

 1 1 1 1 1

1

T T

i i i i i

i

I

P I L K H L

K

+ + + + +

+

 
  =    
  

,

and using (4.66), one obtains

1 1 1 1

2

1

2

1 1 1 1 1 1 1 1() ()

T T T

i i i

T T T T T

i i i i i i i

T T T

i i i i

T T T T T T T

i i i i i i i i i

A P A R A PB A PE I

P I L K B P A B PB I B PE L

E P A E PB E PE I K

R L L K K A L B K E P A BL EK

γ

γ

+ + + +

+

+ + + + + + + +

 +  
    = +    
   −   

= + − + + + + +

 (4.71)

Using (4.41) and (4.42), one has

1

1 2
[]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
. 

73

Theorem 4.2: Assume that the linear quadratic zero-sum game is solvable and has a

value under the state feedback information structure. Then, iterating on equation (4.63),

with 0 0H = , 0 0L = and 0 0K = converges. Moreover
i

Q Q
∗→ and

 min max (, ,) max min (, ,)
u uw w

xPx Q x u w Q x u w
∗ ∗= =

with P solving the algebraic Riccati equation (4.5).

Proof: In [3] it is shown that iterating on the algebraic Riccati equation (4.70) with

0 0P = converges to P that solves (4.5). Since Lemma 4.6 shows that iterating on
i

H

matrix is equivalent to iterating on
i

P , then as i → ∞

2

T T T

T T T

i

T T T

A PA R A PB A PE

H B PA B PB I B PE

E PA E PB E PE Iγ

 +
 

→ + 
 − 

.

hence from (4.69) 0 0H = , 0 0L = and 0 0K = implies that 0 0P = , one concludes that

i
Q Q

∗→ . 

The convergence proof has been just established for the ADDHP algorithm

assuming the least-squares problem (4.62) is solved completely; i.e. the exciting

condition is satisfied. Note that an easy way to initialize the algorithm in Figure 2 is by

selecting 0 0H = , 0 0u = and 0 0w = .

In the next section, the developed ADHDP and ADDHP algorithms are used to

derive suboptimal H∞ controllers by the forward time solution technique. The practical

relevance of the developed algorithms will thus become clear.

74

4.4 Online ADP H∞ Autopilot Controller Design for an F-16 Aircraft

In this design application, the zero-sum game that corresponds to the H∞

controller problem is solved for an F-16 aircraft autopilot design. The H-infinity

approach is used, which is enabled by the ADP procedures in this chapter. H-infinity

design has been proven highly effective in the design of feedback control systems with

robustness and disturbance rejection capabilities [15].

The F-16 short period dynamics has three states given as

e

x q

α

δ

 
 =  
  

where α is the angle of attack, q is the pitch rate and
e

δ is the elevator deflection

angle. The discrete-time plant model of this aircraft dynamics is a discretized version of

the continuous-time one given in [4]. We used standard zero-order-hold discretization

techniques explained in [14] and easily implemented in the MATLAB control systems

toolbox to obtain the sampled data plant

0.906488 0.0816012 0.0005

0.0741349 0.90121 0.000708383

0 0 0.132655

A

− 
 = − 
  

0.00150808 0.00951892

0.0096 0.00038373

0.867345 0

B E

−   
   = − =   
      

. (4.72)

with sampling time 0.1T = . In this H∞ design problem, the disturbance attenuation is

1γ = .

75

4.4.1 H∞ Solution Based on the Riccati Equation

Since the ADP designs developed in this chapter to solve the H∞ controller

design problem are based on an iterative form of the Riccati equation, in Figure 4.3 the

convergence of
i

P to the solution of the GARE (4.5) is shown when done offline with

0 0P = .

0 50 100 150 200
-2

0

2

4

6

8

10

12

14

16

Iteration no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 R

ic
c
a
ti
 e

q
u
a
ti
o
n

P
11

P
12

P
13

P
22

P
23

P
33

Figure 4.3. The convergence of

i
P by iterating on Riccati equation

It is noticed from Figure 4.3 that for the discretized aircraft dynamics (4.72),
i

P

converges after at least 100 iterations with 1γ = to

15.5109 12.4074 0.0089

12.4074 15.5994 0.0078

0.0089 0.0078 1.0101

P

− 
 = − 
 − − 

 (4.73)

the policies that associated with the are

 []0.0733 0.0872 0.0661L = −

76

 []0.1476 0.1244 0K =

Note that 0P ≥ and hence from [7] this implies that

 20

0

T T

k k k k

k

T

k k

k

x Qx u u

w w

γ

∞
∗ ∗

=
∞

=

+

≤
∑

∑
 (4.74)

for all finite energy disturbances, i.e.

0

T

k k

k

w w
∞

=

∑

bounded, and hence ()
k

u x
∗ has the well-known robustness and disturbance rejection

capabilities of H∞ control.

Next, the ADP algorithms developed in this chapter are used to design an H∞

controller for the discretized aircraft dynamics (4.72) with 1γ = in forward time.

4.4.2 ADHDP based H∞ Autopilot Controller Design

In this part, the ADHDP algorithm developed in Section 4.2 of this c is applied

to solve for the H∞ autopilot controller forward in time. The recursive least-squares

algorithm is used to tune the parameters of the critic network on-line. The parameters of

the actions networks are updated according to (4.23).

In this ADHDP design, the states of the aircraft are initialized to be

[]0 10 5 2x = − . Any values could be selected. The parameters of the critic network

and the actions networks are initialized to zero. Following this initialization step, the

aircraft dynamics are run forward in time and tuning of the parameter structures is

performed by observing the states on-line.

77

In Figures 4.4 and 4.5, the states and the inputs to the aircraft are shown with

respect to time. In order to maintain the excitation condition, one can use several

standard schemes, including covariance resetting, state resetting, or injection of a small

probing noise signal. In this example, probing noise is injected to the control and

disturbance policies. Hence the persistency of excitation condition required for the

convergence of the recursive least-squares tuning, i.e. avoiding the parameter drift

problem, will hold.

0 2000 4000 6000 8000
-4

-2

0

2

4

6

8

10

The time step

T
h
e
 s

ta
te

s

x1

x2

x3

Figure 4.4. States trajectories of the ADHDP algorithm.

78

0 2000 4000 6000 8000
-5

0

5

10

The time step

T
h
e
 c

o
n
tr

o
l
in

p
u
t

a
n
d
 t

h
e
 d

is
tu

rb
a
n
c
e
 i
n
p
u
t

u

w

Figure 4.5. The control and disturbance in the ADHDP.

In Figures 4.6, 4.7 and 4.8, the convergence of P , which is found from the

parameters ()
i

H of the critic network and action networks as in (4.10), and the actions

networks is shown. As expected,
i

P converges to P in (4.73) that solves the GARE

equation. It takes the critic network 4000 time steps to converge to P . The reason for

this is that 40 readings are required to tune the critic network at each update to solve for

each
i

H . Since as shown in Figure 4.3, the action networks require to be updated at

least 100 times, this implies that the over all time steps required for the convergence of

the ADHDP algorithm are about 4000 time steps. It is important to note that if the

problem is solved using the least-square less time step is needed for the algorithm to

converge to the solution.

It is important to realize that here we used probing noise, see (4.57), which is

injected to the control and disturbance inputs, to determine the optimal solution for the

game problem, as given by the converged P associated with the converged critic

79

network parameters in Figure 4.6 and action network parameters in Figures 4.7 and 4.8.

Probing noise provides the excitation conditions needed to get parameter convergence.

Once these parameters are known, the H∞ controller has been found. Then, one can

use the parameters of the control action network as the final parameters of the controller

in any on-line control runs, without having to deliberately insert any excitation signals

to the system.

0 2000 4000 6000 8000
-5

0

5

10

15

20

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
P P

11

P
12

P
13

P
22

P
23

P
33

Figure 4.6. Convergence of

i
P . in the ADHDP.

80

0 2000 4000 6000 8000
-0.05

0

0.05

0.1

0.15

The policies update no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 d

is
tu

rb
a
n
c
e
 p

o
lic

y
K

11

K
12

K
13

Figure 4.7. Convergence of the disturbance action network parameters in the ADHDP.

0 2000 4000 6000 8000
-0.1

-0.05

0

0.05

0.1

The policies update no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 c

o
n
tr

o
l
p
o
lic

y

L
11

L
12

L
13

Figure.4.8. Convergence of the control action network parameters in the ADHDP.

Next, the ADDHP algorithm developed in Section 4 is applied to this aircraft

design problem.

81

4.4.3 ADDHP based H∞ Autopilot Controller Design

In this part, the ADDHP algorithm developed in Section 4.3 of this chapter is

applied to solve for the H∞ autopilot controller in forward time. The recursive least-

squares algorithm is used to tune the parameters of the critic network. The parameters

of the actions networks are updated according to (4.60).

In this ADDHP design, the states of the aircraft are initialized to be

[]0 10 5 2x = − . The parameters of the critic network and the actions networks are

initialized to zero. Following this initialization step, the aircraft dynamics are run

forward in time and tuning of the parameter structures happen by observing the states

on-line.

0 200 400 600 800 1000 1200 1400
-4

-2

0

2

4

6

8

10

The time step

T
h
e
 s

ta
te

s

x1

x2

x3

Figure 4.9. States trajectories in the ADDHP.

In Figures 4.9 and 4.10, the states and the inputs to the aircraft are shown with

respect to time. Note that the probing noise are used to inject the inputs, see (4.60), so

82

the persistency of excitation condition required for the convergence of the recursive

least-squares tuning, i.e. avoiding the parameter drift problem, will hold.

0 500 1000 1500
-5

0

5

10

The time step

T
h
e
 c

o
n
tr

o
l
in

p
u
t

a
n
d
 t

h
e
 d

is
tu

rb
a
n
c
e
 i
n
p
u
t

u

w

Figure 10. The control and disturbance in the ADDHP.

In Figures 4.11, 4.12 and 4.13, the convergence of P , which is found from the

parameters of the critic network and the actions networks as in (4.10). and the action

networks is shown. As expected,
i

P converge to P in (4.73) that solve the GARE

equation. It takes the critic network 700 time steps to converge to
i

P The reason for this

is that 7 readings are required to tune the critic network at to solve for each
i

H . Since

as shown in Figure 4.3, the action networks require to be updated at least 100 times, this

implies that the over all time steps required for the convergence of the ADDHP

algorithm are about 700 time steps.

83

0 500 1000 1500
-5

0

5

10

15

20

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
P P

11

P
12

P
13

P
22

P
23

P
33

Figure 4.11. Convergence of the

i
P in the ADDHP.

0 500 1000 1500
-0.05

0

0.05

0.1

0.15

The time step no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 d

is
tu

rb
a
n
c
e
 p

o
lic

y

K(1,1)

K(1,2)

K(1,3)

Figure 4.12. Convergence of the disturbance action network parameters in the ADDHP.

84

0 500 1000 1500
-0.1

-0.05

0

0.05

0.1

The time step no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 c

o
n
tr

o
l
p
o
lic

y
L(1,1)

L(1,2)

L(1,3)

Figure 4.13. Convergence of the control action network parameters in the ADDHP.

It is clear that in the ADDHP algorithm, the parameters of the critic network

converge to the solution of the GARE faster than the case in the ADHDP algorithm.

This is because in ADDHP one has vector gradient information available for tuning, not

only scalar information as in ADHDP. That is, in ADDHP the target value for the

action network is a vector, while in ADHDP it is a scalar.

Probing noise was used here to provide the excitation conditions needed to get

parameter convergence in the critic and action networks. Once these parameters are

known, the H-infinity controller has been found. Then, one can use the parameters of

the control action network as the final parameters of the controller in any on-line control

runs, without having to deliberately insert any excitation signals to the system

4.5 Conclusion

In this chapter, two on-line Approximate Dynamic Programming techniques is

introduced to solve the discrete-time zero-sum game problem with continuous state and

85

action spaces. Two of the ADP techniques, namely Action Dependent Heuristic

Dynamic Programming, and Action Dependent Dual Heuristic Dynamic Programming

are discussed. The derivation of the policies and the convergence of the ADHDP and

ADDHP are provided. It is clear that the convergence to the optimal solution in the

ADDHP algorithm is faster than the ADHDP, as gradient information, a vector, as used

in ADDHP provides more information than scalar function information as used in

ADHDP, therefore the number of points needed to solve the least-squares problem in

the ADDHP is less than that in ADHDP. On the other hand, in the ADHDP algorithm

the system model is not needed to tune the action networks nor the critic network, while

in the ADDHP algorithm the system model is needed to tune the critic network.

The results presented herein are directly applicable in practice since they

provide means to solve the H-infinity control problem, which is highly effective in

feedback control systems design. A provided aircraft design example makes the point. It

is interesting to see that when designing the H-infinity controller in forward time, one

needs to provide an input signal that acts as a disturbance that is tuned to be the worst

case disturbance in forward time.

Once the H-infinity controller is found, one can use the parameters of the control

action network as the final parameters of the controller, without having to deliberately

inserting any disturbance signal to the system. Disturbance is from now is determined

by the nature of the process and the surrounding environment.

86

The results in this chapter can be summarized as a way to solve the linear

quadratic discrete-time zero-sum game forward in time without knowing the dynamical

model.

87

CHAPTER 5

APPLICATION OF THE ADHDP FOR THE POWER SYTEM AND SYTEM

IDENTIFICATION

5.1 Power System Model Plant

Power system generators are complex nonlinear systems [33], [17]. However

during normal operation the system load, which causes the nonlinearity, has only small

variations. Linear models can be used to represent the system dynamics around an

operating point specified by a constant load value. Although this assumption seems to

have simplified the design problem of a load-frequency controller for the system, a

problem rises from the fact that in an actual plant the parameter values are not precisely

known.

The ADHDP algorithm in this chapter is used to find an H∞ controller for

Discrete-time (DT) power system without knowing the system dynamics. In this part

the simulation is done by using the Matlab, so for simulation purposes a system

dynamics should be adapted to simulate the plant model. The DT model is obtained

from the continuous-time (CT) model of the system by using the zero-order hold (ZOH)

technique. The CT system model is adapted from [33], and it is given as

 () () ()
d

x Ax t Bu t E P t= + + ∆� (5.1)

where

88

[]

() [() () () ()]

1/ / 0 0

0 1/ 1/ 0

1/ 0 1/ 1/

0 0 0

0 0 1/ 0

1 / 0 0 0

T

g g

p p p

T T

G G G

E

T

G

T

p p

x t f t P t X t F t

T K T

T T
A

RT T T

K

B T

E K T

= ∆ ∆ ∆ ∆

− 
 − =
 − − −
 
 

=

 = − 

The system states are: ()f t∆ - incremental frequency deviation (Hz), ()
g

P t∆ -

incremental change in generator output (p.u. MW), ()
g

X t∆ - incremental change in

governor position (p.u. MW), ()F t∆ - incremental change in integral control. ()
d

P t∆ is

the load disturbance (p.u. MW); and the system parameters are:
G

T - the governor time

constant,
T

T - turbine time constant,
P

T - plant model time constant,
P

K - planet model

gain, R - speed regulation due to governor action,
E

K - integral control gain.

The system parameter ranges as specified in [33] are:

1/ [0.033,0.1]

/ [4,12]

1/ [2.564,4.762]

1/ [9.615,17.857]

1/ [3.081,10.639]

p

p p

T

G

G

T

K T

T

T

RT

∈

∈

∈

∈

∈

Though the ranges of the system parameters are known, the exact values are not

known, so the system model for power system usually has a certain degree of

uncertainty. Therefore, the goal of this chapter is to design an H∞ load-frequency

controller without knowing the system dynamics.

89

5.2 H-Infinity Control Design Using ADHDP Algorithm

H∞ Controllers have been proven to be highly effective in the design of

feedback control systems with robustness and disturbance rejection capabilities. The

presented H∞ controller design is a model-free online tuning design that is based on the

Q-learning method presented in this chapter 4.

In this section, the ADHDP algorithm proposed in chapter 4 will be used to

design an load-frequency H∞ controller for single generator. A comparison between

the designed controller in this chapter and the controller in [33] will be provided.

The adapted power system appears in [33]. The system in [33] is in continuous-

time (CT) representation. Our proposed control design is for discrete-time (DT), so

zero-order holder is used to discretize the CT system. Note the system model is needed

to simulate the system response with the applied control law, not for tuning the control

input.

The CT system matrices with nominal value is given as

-0.0665 8.000 0 0

 0 -3.663 3.663 0

 -6.86 0 -13.736 -13.736

 0.60 0 0 0

Ac

 
 
 =
 
 
 

 0

 0

 13.736

 0

Bc

 
 
 =
 
 
 

 -8

 0

 0

 0

Ec

 
 
 =
 
 
 

so the DT system matrices with sampling time .1T = sec. is give as

90

 0.9704 0.6629 0.0849 -0.0446

 -0.0762 0.6724 0.1584 -0.1462

 -0.3954 -0.1663 0.2367 -0.7403

 0.0594 0.0212 0.0019 0.9993

Ad

 
 
 =
 
 
 

 (5.2)

 0.0446

 0.1462

 0.7403

 0.0007

Bd

 
 
 =
 
 
 

 -0.7924

 0.0230

 0.1893

 -0.0239

Ed

 
 
 =
 
 
 

It is important to note that the ADHDP algorithm the system matrices are not

needed to design the controller. It is used only to simulate the plant model.

In Figure 5.1, the convergence of the value
i

P P→ that solve the GARE is

provided

0 500 1000 1500
-0.5

0

0.5

1

1.5

2

2.5

3

time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
P

P
11

P
12

P
13

P
22

P
23

P
33

P
34

P
44

Figure 5.1 The convergence of

i
P P→

In figure 5.2, the convergence of the control policy to the optimal policy is

shown.

91

 []-1.6299 -2.9620 -0.6958 -0.9747iL → (5.3)

0 500 1000 1500
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Time (k)

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f
th

e
 c

o
n
tr

o
l
p
o
lic

y

L
11

L
12

L
13

L
14

Figure 5.2. The convergence of the control policy

In the next figures, the system will be run using the H∞ controller designed in

this section, and it will be compared with the controller designed in [33]

Figure 5.3 shows the system state trajectories when applying the controller

found using the ADHDP algorithm. The simulation will be run applying constant

disturbance 0.1 p.u .

92

0 2 4 6 8 10 12 14 16
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

X: 0.5

Y: -0.2024

Time in sec

s
ta

te
s
 x

1
,

x
2
,

x
3
,x

4

Frequency deviation

Incrmental change of the generator output

Incrmental change of the governer postion

Incrmental change of the in itegral control

Figure 5.3. The states trajectories for the system with the H∞ controller

Figure 5.4 shows the system state trajectories when using the controller found in

 [33]. The simulation will be run applying constant disturbance 0.1 p.u, where

 []1.839 4.762 1.516 1.658L = (5.4)

From Figure 5.3 and 5.4 , one can notice that the maximum frequency deviation

when using the H∞ controller is less than the maximum frequency deviation when

using the controller in [33] by 19.3%

93

0 2 4 6 8 10 12 14 16
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time sec

s
ta

te
s
 x

1
,

x
2
,

x
3
,x

4

X: 0.7085

Y: -0.2511

Frequency deviation

Incrmental change of the generator output

Incrmental change of the governer postion

Incrmental change of the in itegral control

Figure 5.4 The states trajectories for the system with the controller designed in [33]

Next the same simulation will be run by applying a spike disturbance.

0 2 4 6 8 10 12 14 16
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

X: 0.5

Y: -0.2024

Time in sec

s
ta

te
s
 x

1
,

x
2
,

x
3
,x

4

Frequency deviation

Incrmental change of the generator output

Incrmental change of the governer postion

Incrmental change of the in itegral control

Figure 5.5. The states trajectories for the system with the H∞ controller

94

0 2 4 6 8 10 12 14 16
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X: 0.5794

Y: -0.2507

Time sec

s
ta

te
s
 x

1
,

x
2
,

x
3
,x

4

Frequency deviation

Incrmental change of the generator output

Incrmental change of the governer postion

Incrmental change of the in itegral control

Figure 5.6. The states trajectories for the system with controller designed in [33].

From Figure 5.5 and 5.6, one can notice that the maximum frequency deviation

when using the H∞ control is less than the maximum frequency deviation when using

the controller in [33] by 19.4%.

5.3 System Identification

In this section dynamical system identification will be discussed. The

information used in the ADHDP algorithm will be used to identify the dynamical

system.

In general, any DT linear system can be described as

 1k k k k
x Ax Bu Ew+ = + +

where nxnA R∈ , 1mB R∈ , 2mE R∈ . The number of unknowns are equal to

((1 2))n n m m× + + , and as the system is linear one can solve for the unknowns’ by

collecting at least

95

 1 2 1q n m m= + + + (5.5)

measurements. Every measurement will give n excited information, so the total number

of equations will be ((1 2))n n m m× + + , the same as the number of the unknowns. The

measurements are collected as follows

1

2 1 1 1

1 1 1

. .

. .

. .

k k k k

k k k k

k q k q k q k q

x Ax Bu Ew

x Ax Bu Ew

x Ax Bu Ew

+

+ + + +

+ + − + − + −

+ +   
   + +   
   

=   
   
   
   

+ +      

where k is any arbitrary sampling time. One can rewrite the above equation as

1

12 1 1

11 1

.. . .

.. . .

.. . .

T T

kk k k

T T

kk k k T

T

T

T T
k qk q k q k q

wx x u

wx x u
A

B

E

wx x u

+

++ + +

+ −+ + − + −

   
   
     
     

=     
     

    
   
      

Solving the least-square problem one has

1

1 1 11 1 1 1 1 1

1 11 1 1 1 1 1

.

.

.

T
T T T

k k kk k k k k k

T T T

k k kk k k k k k

T T T
k q k qk q k q k q k q k q k q

w w wx u x u x u

w w wx u x u x u

w wx u x u x u

−

+ + ++ + + + + +

+ − + −+ − + − + − + − + − + −

    
    
    
    
    
    
    
    
        

1

2

1

.

.

. .

T
T

k

T

k T

T

T

T
k q k q

x

x
A

B

E

w x

+

+

+ − +

   
   
     
     

=     
     

    
   
      

(5.6)

96

Note that the states measurements are the same as the one are used to tune the

ADHDP algorithm, and as the noise is injected in the control input the measurements

are linearly independent, so the least-square problem appears in (5.6) is solvable.

Now the measurements used to find the H∞ controller in the previous section

will be used to identify the dynamical system. The number of unknowns for the system

described in (5.1) are equal to (4 (4 1 1))× + + , so one needs at least 6+1 measurements

which will give 6 4× information. The information is collected starting form the

sampling time 500k = .

 0.3372 -0.0894 -0.2239 0.0203

 0.3503 -0.1490 -0.3220 0.0412

 0.2889 -0.1717 -0.1652 0.0604

 0.2542 -0.1576 -0.1036 0.0767

 0.2548 -0.1582 -0.1933 0.0920

 0.1427 -0.1524 -0.1017 0.1039

 0.2161 -0.0136 -0.3501 0.0034 -0.0207 -0.2110

 0.3372 -0.0894 -0.2239 0.0203 -0.1479 -0.1374

 0.3503 -0.1490

 
 
 
 

= 
 
 
 
 

 -0.3220 0.0412 0.0981 -0.0915

 0.2889 -0.1717 -0.1652 0.0604 0.1210 -0.1250

 0.2542 -0.1576 -0.1036 0.0767 -0.0105 -0.1581

 0.2548 -0.1582 -0.1933 0.0920 0.1219 -0.0194

T

T

T

A

B

E

 
 
   
   
   
   

  
 
 

 0.9704 -0.0762 -0.3954 0.0594

 0.6629 0.6724 -0.1663 0.0212

 0.0849 0.1584 0.2367 0.0019

 -0.0446 -0.1462 -0.7403 0.9993

 0.0446 0.1462 0

T

T

T

A

B

E

 
 

= 
 
  .7403 0.0007

 -0.7924 0.0230 0.1893 -0.0239

 
 
 
 
 
 
 
 
 

 (5.7)

97

 0.9704 0.6629 0.0849 -0.0446

 -0.0762 0.6724 0.1584 -0.1462

 -0.3954 -0.1663 0.2367 -0.7403

 0.0594 0.0212 0.0019 0.9993

A

 
 
 =
 
 
 

 0.0446

 0.1462

 0.7403

 0.0007

B

 
 
 =
 
 
 

.

 -0.7924

 0.0230

 0.1893

 -0.0239

E

 
 
 =
 
 
 

 (5.8)

As expected the values obtained from (5.7) are the same as in (5.2).

5.4 Conclusion

In this chapter the on-line ADP technique based on Q-learning appears in

chapter 4 is used to find H∞ load-frequency power system controller. The tuning

algorithm is used in this chapter is ADHDP. In the ADHDP algorithm the system

model is not needed to tune the action networks, i.e. the controller, nor the critic

network. The results in this chapter can be summarized as a model-free approach to

solve the linear quadratic discrete-time zero-sum game forward in time.

In this chapter the measurements used to tune the controller also used to identify

the system dynamics. As shown one needs only a few measurements which are equal to

equation (5.5). The noise injection allows the measurements to be excited, and solve for

the least square problem.

It is interesting to see that when designing the H∞ controller in forward time,

one needs to provide an input signal that acts as a disturbance that is tuned to be the

worst case disturbance in forward time. Once the H∞ controller is found, one can use

the parameters of the control action network as the final parameters of the controller,

without having to deliberately inserting any disturbance signal to the system.

98

CHAPTER 6

NONLINEAR HEURISTIC DYNAMIC PROGRAMMING OPTIMAL

CONTROL DESIGN

In this chapter, a policy iteration scheme based on approximate dynamic

programming (ADP), namely Heuristic Dynamic Programming (HDP), is used to solve

for the optimal control policy and the value function of the Hamilton Jacobi Bellman

equation (HJB) that appears in infinite-horizon discrete-time (DT) nonlinear optimal

control. Two neural networks are used; the first is used to approximate the value

function while a second network is used to approximate the optimal control policy. A

significant result of this cahpter is that a rigorous proof of convergence of the HDP

algorithm is provided when applied to input-affine nonlinear discrete-time systems with

continuous state and action spaces. Furthermore, because of the use of a neural network

to approximate the action policy, complete knowledge of the plant model does not

become a requirement. Two examples are included to illustrate the developed theory

6.1 The Discrete-Time HJB Equation

Consider an affine in input nonlinear dynamical-system of the form

 1 () () ()
k k k k

x f x g x u x+ = + (6.1)

where n
x ∈� , () nf x ∈� , () n mg x ×∈� and the input m

u ∈� . Assume that the system

(6.1) is stabilizable on compact set nΩ∈� .

99

Definition 1. Stabilizable system: A nonlinear dynamical system is defined to be

stabilizable on a compact set Ω , if there exist a control input m
u ∈� such that, if the

states start from anywhere in the region Ω , the state 0x → as t → ∞

It is desired to find ()
k

u x which minimize the infinite-horizon cost function

given as

 () () ()T T

k n n n nn k
V x x Qx u x Ru x

∞

=
= +∑ (6.2)

where n nQ ×∈� and m mR ×∈� are positive definite matrices. Hence, the class of

controllers need to be stable and guarantee that (6.2) is finite, i.e. admissible controls

 [2].

Definition 2. Admissible Control: A control ()
k

u x is defined to be admissible with

respect to (6.2) on a compact set Ω if ()
k

u x is continuous on Ω , (0) 0u = , u stabilizes

(6.1) on Ω , and 0 0 ()x V x∀ ∈Ω is finite.

Equation (6.2) can be written as

 1

1

()

()

T T T T

k k k k k i i i ii k

T T

k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑
 (6.3)

From Bellman optimality principle, the discrete-time HJB equation comes out to be

 1() min(())
k

T T

k k k k k k
u

V x x Qx u Ru V x∗ ∗
+= + + (6.4)

Note that the discrete-time HJB equation develops backward-in time. It is

known that for the infinite-horizon optimization case, the value function is time-

invariant and hence the discrete-time HJB in infinite-horizon becomes

100

 1() min(())
k

T T

k k k k k k
u

V x x Qx u Ru V x∗ ∗
+= + + (6.5)

The optimal control u
∗ satisfies the first order necessity condition for the

gradient of right hand side of (6.5) with respect to u

 1 1

1

() () ()
0

T T

k k k k k k k

k k k k

V x x Qx u Ru x V x

u u u x

∗ ∗

+ +

+

∂ ∂ + ∂ ∂
= + =

∂ ∂ ∂ ∂
 (6.6)

and therefore

 1 1

1

()1
() ()

2

T k
k k

k

V x
u x R g x

x

∗
∗ − +

+

∂
=

∂
 (6.7)

Substituting (6.7) in (6.5), one may write the discrete-time HJB

 11 1
1

1 1

() ()1
() () () ()

4

T
T Tk k

k k k k k k

k k

V x V x
V x x Qx g x R g x V x

x x

∗ ∗
∗ − ∗+ +

+

+ +

∂ ∂
= + +

∂ ∂
 (6.8)

where ()V x∗ is the value function corresponding to the of the optimal control policy

()u x∗ .

In the next section the nonlinear HDP algorithm is applied to solve for the value

function V
∗ of the HJB equation (6.8) and present a convergence proof of the HDP

policy iteration algorithm.

6.2 The Nonlinear HDP Algorithm

In the HDP algorithm, one starts with an initial cost function 0 () 0V x = , which is

not necessarily the value function, and then finds a control policy 0u as follows

 0 1() arg min(())T T

o k k k k
u

u x x Qx u Ru V x += + + (6.9)

Once the policy 0u is determined, one updates the cost function by computing 1V

101

1 0 0 0 0

0 0 0 1

() () () (() () ())

() () ()

T T

k k k k k k k k

T T

k k k k k

V x x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x +

= + + +

= + +
 (6.10)

The HDP policy iterations scheme therefore requires iterating between a

sequence of policies ()
i

u x determined by

 1() arg min(() () ())T T

i k k k k k i k
u

u x x Qx u x Ru x V x += + + (6.11)

and a sequence of costs () 0
i

V x ≥ where

1 1() min(())

() () (() () ())

T T

i k k k i k
u

T T

k k i k i k i k k i k

V x x Qx u Ru V x

x Qx u x Ru x V f x g x u x

+ += + +

= + + +
 (6.12)

with i is an index representing iterations on the control policy while k is the time

index. The result is an incremental optimization that is implemented forward in-time.

6.3 Convergence of the HDP Algorithm

In this section, the nonlinear case is considered as the proof of convergence is

presented for the iteration between (6.11) and (6.12), that is
i

V V
∗⇒ and the control

policy
i

u u
∗⇒ as i ⇒ ∞ .

Lemma 1 Let
i

µ be any arbitrary sequence of control policies, and
i

u be the policies

as in (6.11). Let
i

V be as in (6.12) and
i

Λ as

 1 1() ()T

i k k k i i i k
x x Qx R xµ µ+ +Λ = + + Λ . (6.13)

If 0 0 0V = Λ = , then
i i

V ≤ Λ i∀ .

Proof: It is straightforward from the fact that 1i
V + is a result of minimizing the right

hand side of equation (6.11) with respect to the control input u , while
i

Λ is a result of

any arbitrary control input. 

102

Lemma 2 Let the sequence { }iV be defined as in (6.12). If the system is stabilizable,

then there is an upper bound Y such that 0
i

V Y≤ ≤ i∀ .

Proof : Let ()
k

xη be any stabilizing and admissible control input, and Let 0 0 0V Z= =

where
i

V is updated as (6.12) and
i

Z is updated as

 1 1() () () ()T

i k k k k k i k
Z x x Qx x R x Z xη η+ += + + . (6.14)

It follows that the difference

1 1 1 1

1 2 2 2

2 3 3 3

1 0

() () () ()

() ()

() ()

.

.

.

() ()

i k i k i k i k

i k i k

i k i k

k i k i

Z x Z x Z x Z x

Z x Z x

Z x Z x

Z x Z x

+ + − +

− + − +

− + − +

+ +

− = −

= −

= −

= −

 (6.15)

Then (6.15) can be written as

 1 1 0() () () (),
i k i k k i k i

Z x Z x Z x Z x+ + +− = −

Since 0 () 0
k

Z x = , so one has

1 1

1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 1

() () ()

() () ()

() () () ()

() () () ()

i k k i i k

k i k i i k

k i k i k i i k

k i k i k i k

Z x Z x Z x

Z x Z x Z x

Z x Z x Z x Z x

Z x Z x Z x Z x

+ +

+ + − −

+ + − + − −

+ + − + −

= +

= + +

= + + +

= + + + +

 (6.16)

so equation (6.16) can be written as

1 10

0

0

() ()

(() ())

(() ())

i

i k k jj

i T T

k j k j k j k jj

T T

k j k j k j k jj

Z x Z x

x Qx x R x

x Qx x R x

η η

η η

+ +=

+ + + +=

∞

+ + + +=

=

= +

≤ +

∑

∑

∑

 (6.17)

103

Note that the system is stable, i.e. 0
k

x → as k → ∞ , as the control input ()
k

xη

is stabilizable and admissible, then

 1 10
: () ()

i k k ii
i Z x Z x Y

∞

+ +=
∀ ≤ ≤∑

Form Lemma 1, one has

 1 1: () ()
i k i k

i V x Z x Y+ +∀ ≤ ≤ ■

Now Lemma 1 and Lemma 2 will be used in the next main theorem.

Theorem 1 Define the sequence { }iV as in (6.12), with 0 0V = . Then { }iV is a

nondecreasing sequence in which 1() ()
i k i k

V x V x+ ≥ i∀ , and converges to the value

function of the DT HJB, i.e.
i

V V
∗⇒ as i ⇒ ∞ .

Proof: Let 0 0 0V = Φ = where
i

V is updated as in (6.12) and, and
i

Φ is updated as

 1 1 1 1() (())T

i k k k i i i k
x x Qx u Ru x+ + + +Φ = + + Φ (6.18)

with the policies
i

u as in (6.11). We will first prove by induction that 1() ()
i k i k

x V x+Φ ≤ .

Note that

 1 0

1 0

() () 0

() ()

T

k k k k

k k

V x x x Qx

V x x

− Φ = ≥

≥ Φ

Assume that 1() ()
i k i k

V x x−≥ Φ
k

x∀ . Since

 1 1() ()T

i k k k i i i k
x x Qx u Ru x− +Φ = + + Φ

 1 1() ()T

i k k k i i i k
V x x Qx u Ru V x+ += + + ,

then

 1 1 1 1() () () () 0
i k i k i k i k

V x x V x x+ + − +− Φ = − Φ ≥ ,

104

and therefore

 1() ()
i k i k

x V x+Φ ≤ . (6.19)

From Lemma 1 () ()
i k i k

V x x≤ Φ and therefore

1

1

() () ()

() ()

i k i k i k

i k i k

V x x V x

V x V x

+

+

≤ Φ ≤

≤

hence proving that { }iV is a nondecreasing sequence bounded from above as shown in

Lemma 2. Hence
i

V V
∗→ as i → ∞ . □

Corollary: As the approximated cost function converges to the optimal value,

i.e.
i

V V
∗→ , the control policy will converge to the optimal value, i.e.

i
u u

∗→ , and it

will be equal to (6.7).

6.4 Neural Network Approximation

In this section, it is shown how to implement the HDP policy iterations

algorithm with parametric structures like neural networks. It is well known that neural

networks can be used to approximate smooth functions on prescribed compact sets.

Neural networks are natural for this application. Therefore, to solve (6.12),

()
i

V x and ()
i

u x are approximated by

1

ˆ () () ()
L

j T

i vi j Vi

j

V x w x W xφ
=

= =∑ φφφφ (6.20)

1

ˆ () () ()
L

j T

i ui j ui

j

u x w x W xσ
=

= =∑ σσσσ (6.21)

which are a neural networks with the activation functions 1(), () ()j jx x Cσ φ ∈ Ω , with

(0) (0) 0
j j

σ φ= = .

105

The neural network weights that approximate the cost function as in (6.12) are

j

vi
w . L is the number of hidden-layer neurons. []1 2() () () ()

T

L
x x x xφ φ φ≡ �φφφφ is the

vector activation function, 1 2
T

L

Vi vi vi vi
W w w w ≡  � is the vector weight.

The weights are tuned to minimize the residual error between (6.20) and the

target function defined in equation (6.22) in a least-squares sense over a set of points

sampled from a compact set Ω .

1

1

ˆˆ ˆ((), ,) () () ()

ˆ ˆ() () ()

T T T T

k Vi ui k k i k i k i k

T T T

k k i k i k Vi k

d x W W x Qx u x Ru x V x

x Qx u x Ru x W x

+

+

= + +

= + +

φφφφ

φφφφ
 (6.22)

The least square problem can be defined as

 1

1

() (), ()
L

j

vi j L

j

d x w x u e xσ+
=

 
− = 

 
∑ . (6.23)

Note that in equation (6.23) the relation between the weight 1Vi
W + and the target

function is explicit.

To find the least squares solution, the method of weighted residuals is used [16].

The weights, 1Vi
W + , are determined by projecting the residual error onto 1()

L Vi
de x dW +

and setting the result to zero x∀ ∈Ω using the inner product, i.e.

()

, () 0L
L

Vi+1

de x
e x

dW
= , (6.24)

where f,g T
fg dx

Ω

= ∫ is a Lebesgue integral. One has

 10 ()(() ((), ,)T T T T

k k Vi k Vi ui k
x x W d x W W dxφ φ φ+

Ω

= −∫ (6.25)

106

Therefore a unique solution for 1Vi
W + exists and is computed as

1

1 () () () ((), ,)T T T T

Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+

Ω Ω

 
=  
 
∫ ∫ (6.26)

Assumption 1. { }()
L

j
xφ is linearly independent on the compact set Ω .

From assumption 1,

1

() ()T

k kx x dxφ φ

−

Ω

 
 
 
∫ is full rank, which mean it is invertible and a

unique solution of (6.26) exists.

Similarly, a neural network is used to find the parameters of the control policy

ˆ (,)
i k ui

u x W . The neural network weights that approximate the control policy function as

in (6.11) are j

ui
w . L is the number of hidden-layer neurons.

[]1 2() () () ()
T

L
x x x xσ σ σ≡ �σσσσ is the vector activation function, 1 2

T
L

ui ui ui ui
W w w w ≡  �

is the vector weight They are found by solving for

ˆ ˆ(,) (,)

arg min
ˆ ˆ(() () (,))

T T

k k k k

ui

i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

 + +
=   + 

 (6.27)

Note that the relation between the control weights
ui

W in (6.27) is implicit. That

is one can use a gradient steepest decent algorithm on a training set constructed from Ω

to update the weights as

() () 1

(1) ()

()

ˆˆ ˆ(()T T

k k i j i j i k

ui j ui j

ui j

x Qx u Ru V x
W W

W
α +

+

∂ + +
= −

∂
 (6.28)

where α is a positive stepsize. Equation (6.28) can be written as

107

1

1
()

1

()
ˆ()(2 ())

j j

ui ui

T Tk
k i j k Vi

k

W W

x
x Ru g x W

x

φ
ασ

+

+

+

= −

∂
+

∂

where 1
ˆ() () (,)j

k k k k ui
x f x g x u x W+ = + . The weights j

ui ui
W W⇒ as j ⇒ ∞ , which satisfies

(6.27). Note that one can use different gradient methods like Newton’s method and

Levenberg-Marquardt method.

Updating the value function

Start of the HDP

Initialization

Solving the minimizing problem

0 0V =

1
ˆ ˆ
i iV V ε+ <−

Yes

No1+→ ii

ˆ ˆ(,) (,)
arg min

ˆ ˆ(() () (,))

T T

k k k k

ui

i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

 + +
=   + 

1

1 () () () ((), ,)T T T T

Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+

Ω Ω

 
=  
 
∫ ∫

ˆ (,) ()T

i k ui ui k
u x W W xσ=

1

1

ˆˆ ˆ((), ,) () () ()

ˆ ˆ() () ()

T T T T

k Vi ui k k i k i k i k

T T T

k k i k i k Vi k

d x W W x Qx u x Ru x V x

x Qx u x Ru x W x

+

+

= + +

= + +

φφφφ

φφφφ

Figure 6.1. The nonlinear HDP algorithm.

In Figure 6.1, the flow chart of the HDP iteration is shown. Note that because of the

neural network used to approximate the control policy the internal dynamics, i.e. ()
k

f x ,

is not needed.

108

6.5 Discrete-time Nonlinear System Example

In this section, two examples are provided to demonstrate the solution of the DT

HJB equation. The first example will be a linear dynamical system, which is a special

case of the nonlinear case. The second example is for a DT nonlinear system. MATLAB

simulation is used to implement some of the functions discussed in this section.

6.5.1 Linear system example

Consider the linear system

 1k k
x Ax Bu+ = + (6.29)

It is known that the solution of the optimal control problem for the linear system

is quadratic in the state and given as

 () T

k k k
V x x Px

∗ =

where P is the solution of the ARE. This example is taken from [4], a linearized model

of the short-period dynamics of an advanced (CCV-type) fighter aircraft. The state

vector is

 []T

e fx qα γ δ δ=

where the state components are, respectively, angle of attack, pitch rate, flight-path,

elevator deflection and flaperon deflection. The control input are the elevator and the

flaperon and given as

 []T

ec fcu δ δ=

The plant model is discretized version of a continues model given in [4]

109

1.0722 0.0954 0 -0.0541 -0.0153

 4.1534 1.1175 0 -0.8000 -0.1010

A= 0.1359 0.0071 1.0 0.0039 0.0097

 0 0 0 0.1353 0

 0 0 0 0 0.1353

 
 
 
 
 
 
  

-0.0453 -0.0175

-1.0042 -0.1131

B= 0.0075 0.0134

 0.8647 0

 0 0.8647

 
 
 
 
 
 
  

Note that is a multi input unstable plant. The ARE solution for the given linear

system is

 55.8348 7.6670 16.0470 -4.6754 -0.7265

 7.6670 2.3168 1.4987 -0.8309 -0.1215

 16.0470 1.4987 25.3586 -0.6709 0.0464

 -4.6754 -0.8309 -0.6709 1.5394 0.0782

P =

 -0.7265 -0.1215 0.0464 0.0782 1.0240

 
 
 
 
 
 
  

 (6.30)

and the optimal control
k k

u Lx
∗ = , where L is the optimal policy

-4.1136 -0.7170 -0.3847 0.5277 0.0707

-0.6315 -0.1003 0.1236 0.0653 0.0798
L

 
=  
 

 (6.31)

The ARE solution in (6.30) and the optimal control policy in (6.31) is given to

be later compared with the results of the nonlinear HDP algorithm.

In the nonlinear HDP algorithm, the control is approximated as follows

 ˆ ()T

i ui k
u W xσ= (6.32)

where
u

W is the weights, and the ()
k

xσ is the basis. The basis is given as

110

 1 2 3 4 5()T x x x x x xσ  =  

and the weights are

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

T u u u u u

u

u u u u u

w w w w w
W

w w w w w

 
=  
 

The choice of the control policy weights is done such that it will exactly

approximate the control policy, as it is known it is linear on the state. The control

weights should converge to

1,1 1,2 1,3 1,4 1,5
11 12 13 14 15

2,1 2,2 2,3 2,4 2,5
21 22 23 24 25

u u u u u

u u u u u

L L L L Lw w w w w

L L L L Lw w w w w

   
= −   

  

The approximation of the value function is given as

 1 1 1
ˆ (,) ()T

i k Vi Vi k
V x W W xφ+ + += (6.33)

where
V

W is the weight of the neural network and ()
k

xφ is the neuron vector

1 2

2 2 2 2 2

1 2 1 3 1 4 1 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5

()T
x

x x

φ =

  

and the weights are given as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

V v v v v v v v v v v v v v v v
W w w w w w w w w w w w w w w w =  

As it is known that the cost function will be quadratic in the states, the natural

choice of the cost function weights as in equation (6.33). Note that the Kronecker

product is used in (6.33) to approximate the cost function. In the simulation the weights

of the value function are related to the P matrix given in (6.30) as follows

111

1 2 3 4 5
11 12 13 14 15

2 6 7 8 9
21 22 23 24 25

3 7 10 11 12
31 32 33 34 35

4 8 11 13
41 42 43 44 45

51 52 53 54 55

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0

v v v v v

v v v v v

v v v v v

v v v v

P P P P P w w w w w

P P P P P w w w w w

P P P P P w w w w w

P P P P P w w w w

P P P P P

 
 
 
  =
 
 
  

14

5 9 12 14 15

.5

0.5 0.5 0.5 0.5

v

v v v v v

w

w w w w w

 
 
 
 
 
 
 
 

The value function weights converge to

[55.5411 15.2789 31.3032 -9.3255 -1.4536 2.3142 2.9234 -1.6594 -0.2430

 24.8262 -1.3076 0.0920 1.5388 0.1564 1.0240]

T

V
W =

The control weights converge to

4.1068 0.7164 0.3756 -0.5274 -0.0707

 0.6330 0.1005 -0.1216 -0.0653 -0.0798
u

W
 

=  
 

Note that the value function weights converge to the solution of the ARE (6.30),

also the control policy weights converge to the optimal policy (6.31) as expected.

6.5.2 Nonlinear System Example

Consider the following affine in input nonlinear system

 1 () ()
k k k k

x f x g x u+ = + (6.34)

where

2

3

00.2 (1) exp((2))
() ()

.2.3 (2)

k k

k k

k

x x
f x g x

x

   
= =   −  

To approximation of the value function is given as

 1 1 1
ˆ (,) ()T

i k Vi Vi k
V x W W xφ+ + +=

and the control input is approximated as

 ˆ ()T

i ui k
u W xσ=

112

The neuron vector of the Neural network that approximates the value function

2 2 4 3

1 1 2 2 1 1 2

2 2 3 4 6 5 4 2

1 2 1 2 2 1 1 2 1 2

3 3 2 4 5 6

1 2 1 2 1 2 2

() [

]

x x x x x x x x

x x x x x x x x x x

x x x x x x x

φ =

and the weights are given as

 1 2 3 4 15.....T

V v v v v v
W w w w w w =   .

The neuron vector of the neural network that approximates the control is given

as

3 2 2

1 2 1 1 2 1 2

3 5 4 3 2 2 3

2 1 1 2 1 2 1 2

4 5

1 2 2

() [

]

T x x x x x x x x

x x x x x x x x

x x x

σ =

and the policy weights are given as

 1 2 3 4 12.....T

u u u u u u
W w w w w w =  

The result of the algorithm is compared to the discrete-time State Dependent

Riccati Equation (SDRE).

The training sets is 1 [2, 2]x ∈ − , 2 [1,1]x ∈ − . The value function weights

converged to the following

[1.0382 0 1.0826 .0028 -0 -.053 0 -.2792

-.0004 0 -.0013 0 .1549 0 .3034]

T

V
W =

and the control weights converged to

 =[0 -.0004 0 0 0 .0651 0 0 0 -.0003 0 -.0046]T

u
W

113

In the next figures, a comparison between the results obtained using the SDRE

and the HDP based method is shown. Figure 6.2 and 6.3 show the states trajectories for

the system for both methods.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

Time step

S
ta

te
 t

ra
je

c
te

o
ry

x
1optimal

x
1SDRE

Figure 6.2. The states trajectories (1x) for both methods

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Time step

S
ta

te
 t

ra
je

c
te

o
ry

x
2optimal

x
2SDRE

Figure 6.3. The states trajectories (2x) for both methods

114

In Figure 6.4, the cost function of the SDRE solution and the cost function of

the proposed algorithm in this chapter are compared. It is clear from the simulation that

the cost function for the control policy derived from the HDP method is lower than the

one obtained from the SDRE method.

0 1 2 3 4 5 6 7
10

11

12

13

14

15

16

17

Time step

T
h
e
 C

o
s
t

V
optimal

V
SDRE

Figure 6.4. The cost function for both methods

0 1 2 3 4 5 6 7
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time step

T
h
e
 c

o
n
tr

o
l

u
Optimal

u
SDRE

Figure 6.5. The control input for both methods

115

In figure 6.5, the control signals for both methods are shown.

6.5 Conclusion

A rigorous computationally effective algorithm to find the discrete-time

nonlinear optimal state feedback control laws by solving the corresponding DT HJB

equation. The algorithm proposed in this chapter namely nonlinear Heuristic Dynamic

programming (HDP) is used to find the optimal controller. The main contribution in this

chapter is the proof of convergence for the nonlinear HDP algorithm to the value

function of DT HJB.

Neural networks are used as parametric structures to approximate the critics, i.e.

ˆ
i

V , and the actors networks, i.e. ˆ
i

u . In the simulation part it is shown that the linear

system critic network converges to the solution of the ARE, and the actor network

converges to the optimal policy. In the nonlinear example, it is shown that the optimal

controller obtained using the nonlinear HDP outperforms that derived using the

discrete-time SDRE method.

It is important to mention that in the nonlinear HDP algorithm the full

information of the system dynamic is not needed, as a result of the neural network used

to approximate the control policy.

116

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, 2 /H H∞ controllers have been designed using Approximate

Dynamic Programming techniques, also known as Neuro Dynamic Programming. The

Approximate Dynamic Programming techniques allow us to solve the dynamical

programming problem forward-in-time. This allows us to perform on-line control policy

tuning, that is direct adaptive optimal control.

This dissertation considers two classes of dynamical systems. The first one is the

linear discrete-time system and the second one is the affine-in-input nonlinear discrete-

time system.

Four on-line Approximate Dynamic Programming techniques are introduced in

this dissertation to solve the discrete-time zero-sum game for linear systems, namely

HDP, DHP, AHDP and ADDHP. The derivation of the policies and the proofs of

convergence for the four algorithms are provided. The results can be though of as a

direct H∞ adaptive optimal control. The results presented herein are directly applicable

in practice since they provide means to solve the H∞ control problem, which is highly

effective in feedback control systems design. It is interesting to see that when designing

the H∞ controller in forward time, one needs to provide an input signal that acts as a

disturbance that is tuned to be the worst case disturbance in forward time. Among the

117

proposed four algorithms, the most important is the ADHDP algorithm, where the

dynamics of the linear system is not needed at all for tuning. This direct adaptive

optimal control scheme will converge to the solution of the associated GARE, i.e. the

optimal H∞ control policy.

Note that if γ → ∞ in the GARE, one obtains the special case Algebraic Riccati

Equation (ARE). In other words, the four proposed algorithms for linear systems can

solve the Linear Quadratic Regulator problem (LQR).

In the nonlinear affine-in-input dynamical systems, one ADP technique, namely

HDP, is proposed to find the discrete-time nonlinear optimal state feedback control

policy by solving the corresponding DT HJB equation. One main contribution in this

research is the proof of convergence for the application of the HDP algorithm to

nonlinear systems and it convergence to the solution of the DT HJB.

Neural networks are used as parametric structures to approximate the critics,

i.e. ˆ
i

V , and the actors networks, i.e. ˆ
i

u throughout the dissertation. It is important to

mention that in the nonlinear HDP algorithm appearing in Chapter 6, only partial

knowledge of the system’s model is required as a result of using a neural network to

approximate the action network, i.e. control policy.

The HDP algorithm mentioned in this dissertation can be extended to solve

zero-sum games for nonlinear dynamical systems, i.e. discrete-time Hamilton-Jacobi-

Isaacs equation (DT HJI). Additionally, the work in this dissertation could be a basis for

a future work to extend Q-learning to nonlinear dynamical systems that are continuous

118

in state and action space. This is advantageous as it allows solving the DT HJB/DT HJI

without knowing the nonlinear model of the dynamical systems.

119

REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike elements that can

solve difficult learning control problems,” IEEE Trans. yst., Man, Cybern., vol.

SMC-13, pp. 835–846, 1983.

[2] Abu-Khalaf, M., F. L. Lewis, “Nearly Optimal Control Laws for Nonlinear

Systems with Saturating Actuators Using a Neural Network HJB Approach,”

Automatica, vol. 41, pp. 779 – 791, 2005

[3] Anton A. Stoorvogle, Arie J. T. M Weeren, “The discrete-time Riccati Eqaution

Related to the H∞ Control Problem,” IEEE Trans. Automat. Control, vol. 39, no.

3, pp. 686-691. March, 1994.

[4] B. Stevens, F. L. Lewis, Aircraft Control and Simulation, 2nd edition, John

Wiley, New Jersey, 2003

[5] B. Widrow, N. Gupta, and S. Maitra, “Punish/reward: Learning with a critic in

adaptive threshold systems,” IEEE Trans. Syst., Man, ybern., vol. SMC-3, pp.

455–465, 1973.

[6] Başar, T., Greet Jan Olsder, Dynamic Noncooperative Game Theory, SIAN,

1999.

[7] Başar, T., P. Bernhard, H∞ Optimal Control and Related Minimax Design

Problems, Birkhäuser, 1995.

120

[8] C. Watkins, Learning from Delayed Rewards, Ph.D. Thesis, Cambridge

University, Cambridge, England, 1989.

[9] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Transactions on

Neural Networks, vol. 8, no. 5, September 1997.

[10] D.H.Jacobson,” On values and strategies for infinite-time linear quadratic games,”

IEEE TAC, Vol 22, No 3, pp 490-491, 1977

[11] D.P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena

Scientific, MA, 1996.

[12] David Kleinman, “ Stabilizing a discrete, Constant, Linear System with

Application to iterative Methods for Solving the Riccati Equation,” IEEE Trans.

Automat. Control, pp. 252-254, June 1974.

[13] E. F. Mageirou, “Value and strategies for infinite time linear quadratic games,”

IEEE TAC, Vol 21, No 4, pp 547-550, 1976.

[14] F. L. Lewis, Applied Optimal Control and Estimation, Prentice-Hall, New Jersey,

1992

[15] F. L. Lewis, Vassilis L. Syrmos, Optimal Control, Jhon Wiley and Sons, 1995

[16] Finlayson, B. A.. The Method of Weighted Residuals and Variational Principles.

Academic Press, New York, 1972

[17] H.Jiang, J.F.Dorsey, Z.Qu, J.Bond, J.M.McCalley, ”Global robust adaptive

control of power systems,” IEE Proc.-Gener. Transmit. Distib., Vol. 141, No5,

September 1994.

121

[18] J. Hu and M. P. Wellman. “Multiagent reinforcement learning: Theoretical

framework and an algorithm”, in the 15
th

 Intl Conference on Machine Learning,

pages 242--250, 1998.

[19] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive Dynamic

Programming,” IEEE Trans. on Sys., Man. and Cyb., Vol. 32, No. 2, pp 140-153,

2002.

[20] J. Si, A. Barto, W. Powell, D. Wunsch, Handbook of Learning and Approximate

Dynamic Programming, IEEE Press, USA, 2004.

[21] John W.Brewer,”Kronecker Products and Matrix Calculus in System

Theory,”IEEE Trans. on Circuit and System, Vol. CAS-25, No. 9, 1978.

[22] K.S. Narendra and F.L. Lewis, Special Issue on Neural Network feedback

Control, Automatica, vol. 37, no. 8, Aug. 2001.

[23] M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Hamilton-Jacobi-Isaacs formulation

for constrained input nonlinear systems,” in 43rd IEEE Conference on Decision

and Control, 2004, pp. 5034 - 5040 Vol.5, Bahamas, 2004.

[24] M. L. Littman, “Value-function reinforcement learning in Markov games,”

Journal of Cognitive Systems Research, vol 2., pp. 55-66, 2002.

[25] P.J. Werbos, “Approximate dynamic programming for real-time control and

neural modeling,” Handbook of Intelligent Control, ed. D.A. White and D.A.

Sofge, New York: Van Nostrand Reinhold, 1992.

[26] P.J. Werbos, “Neural networks for control and system identification,” Proc. IEEE

Conf. Decision and Control, Fla., 1989.

122

[27] P.J. Werbos., “A menu of designs for reinforcement learning over time,” , Neural

Networks for Control, pp. 67-95, ed. W.T. Miller, R.S. Sutton, P.J. Werbos,

Cambridge: MIT Press, 1991.

[28] R. Howard, Dynamic Programming and Markov Processes, MIT Press,

Cambridge, MA, 1960.

[29] Stephan ten Hagen, Ben Krose, “Linear quadratic Regulation using

Reinforcement Learning,” Belgian_Dutch Conference on Mechanical Learning,

pp. 39-46, 1998.

[30] Steven J. Bradtke, B. Erik Ydestie, Andrew G. Barto, ”Adaptive linear quadratic

control using policy iteration,” Proceedings of the American Control Conference ,

pp. 3475-3476, Baltmore, Myrland, June, 1994.

[31] Tomas Landelius, Reinforcement Learning and Distributed Local Model

Synthesis, PhD Chapter, Linkoping University, Sweden, 1997.

[32] W. H Kwon and S. Han, Receding Horizon Control, Springer-Verlag, London,

2005.

[33] Wang, Y., R. Zhou, C. Wen, “Robust load-frequency controller design for power

systems”, IEE Proc.-C, Vol. 140, No. I , 1993

[34] Wei Lin and Christopher I. Byrnes, “Dissipative, 2L -Gain and H ∞ Control for

Discrete-Time Nonlinear System,” Proceeding of The American Control

conference, Maryland, June, 1994.

123

BIOGRAPHICAL INFORMATION

Asma Al-Tamimi was born in Amman, Jordan in 1976. She did her high school

studies at Ajnadeen high school in Zarqa. She received her Bachelor’s Degree in

Electromechanicl Engineering from Al-Balqa University in Amman, Jordan in 1999.

She then joined The University of Texas at Arlington from which she received the

Master’s of Science and PhD in Electrical Engineering in 2003 and 2007 respectively.

