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ABSTRACT 

 

DISCRETE-TIME CONTROL ALGORITHMS AND ADAPTIVE INTELLIGENT 

SYSTEMS DESIGNS 

Publication No. ______ 

 

Asma Azmi Al-Tamimi, PhD. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Frank L. Lewis 

In this work, approximate dynamic programming (ADP) designs based on 

adaptive critic structures are developed to solve the discrete-time 2 /H H∞  optimal 

control problems in which the state and action spaces are continuous. This work 

considers linear discrete-time systems as well as nonlinear discrete-time systems that 

are affine in the input. This research resulted in forward-in-time reinforcement learning 

algorithms that converge to the solution of the Generalized Algebraic Riccati Equation 

(GARE) for linear systems. For the nonlinear case, a forward-in-time reinforcement 

learning algorithm is presented that converges to the solution of the associated 

Hamilton-Jacobi Bellman equation (HJB). 



 v 

The results in the linear case can be thought of as a way to solve the GARE of 

the well-known discrete-time H∞  optimal control problem forward in time. Four design 

algorithms are developed: Heuristic Dynamic programming (HDP), Dual Heuristic 

dynamic programming (DHP), Action dependent Heuristic Dynamic programming 

(ADHDP) and Action dependent Dual Heuristic dynamic programming (ADDHP). The 

significance of these algorithms is that for some of them, particularly the ADHDP 

algorithm, a priori knowledge of the plant model is not required to solve the dynamic 

programming problem. 

Another major outcome of this work is that we introduce a convergent policy 

iteration scheme based on the HDP algorithm that allows the use of neural networks to 

arbitrarily approximate for the value function of the discrete-time HJB equation. This 

online algorithm may be implemented in a way that requires only partial knowledge of 

the model of the nonlinear dynamical system. 

The dissertation includes detailed proofs of convergence for the proposed 

algorithms, HDP, DHP, ADHDP, ADDHP and the nonlinear HDP. Practical numerical 

examples are provided to show the effectiveness of the developed optimization 

algorithms. For nonlinear systems, a comparison with methods based on the State-

Dependent Riccati Equation (SDRE) is also presented. In all the provided examples, 

parametric structures like neural networks have been used to find compact 

representations of the value function and optimal policies for the corresponding optimal 

control problems. 
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CHAPTER 1 

INTRODUCTION 

 

In this dissertation, adaptive critic designs that are based on the dynamic 

programming principle are developed to solve 2 /H H∞  optimal control problems for 

discrete-time dynamical systems. In the case of H∞  optimal control, the zero-sum game 

for discrete-time linear systems is solved by creating and developing adaptive critic 

structures that learn to co-exist. In the 2H  optimal control case, the dynamical 

programming problem associated with nonlinear discrete-time dynamical systems is 

solved, i.e. solving for the value function of the corresponding HJB equation. 

Approximate dynamic programming, also known as Neuro Dynamic 

Programming, was first proposed by Werbos  [27], Barto et. al.  [1], Widrow et. al.  [5], 

Howard  [28], Watkins  [8], Bertsekas and Tsitsiklis  [11], and others to solve optimal 

control problems forward-in-time. The optimal control law, i.e. the action network, and 

the value function, i.e. the critic network, are modeled as parametric structures, i.e. 

neural networks. This is combined with incremental optimization such as reinforcement 

learning to tune and improve both networks forward-in-time and hence can be 

implemented in actual control systems. This overcomes computational complexity 

associated with dynamic programming, which is an offline technique that requires a 

backward-in-time solution procedure  [15]. Moreover, as will be discussed in the 
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dissertation, some of the presented adaptive critic designs do not require the plant model 

for tuning the action network, the critic network, or both of them. 

Several approximate dynamic programming schemes appear in literature. 

Howard  [28] proposed iterations in the policy space in the framework of stochastic 

decision theory. In  [30], Bradtke et al. implemented a Q-learning policy iteration 

method for the discrete-time linear quadratic optimal control problem. Hagen  [29] 

discussed the relation between the Q-learning policy iteration method and model-based 

adaptive control with system identification. Werbos  [25] classified approximate 

dynamic programming approaches into four main schemes: Heuristic Dynamic 

Programming (HDP), Dual Heuristic Dynamic Programming (DHP), Action Dependent 

Heuristic Dynamic Programming (ADHDP), also known as Q-learning  [8], and Action 

Dependent Dual Heuristic Dynamic Programming (ADDHP). In  [9], Prokhorov and 

Wunsch developed new approximate dynamic programming schemes known as 

Globalized Dual Heuristic Dynamic Programming (GDHP) and Action Dependent 

Globalized Dual Heuristic Dynamic Programming (ADGDHP). Landelius  [31] applied 

HDP, DHP, ADHDP and ADDHP techniques to the discrete-time linear quadratic 

optimal control problem and discussed their convergence showing that they are equal to 

iterating on the underlying Riccati equation. The current status of work on approximate 

dynamic programming is given in  [20]. See also  [11]. 

Reinforcement learning methods to solve game theory problems have recently 

appeared in  [24] and  [18] in the framework of Markov games where multiagent Q-

learning methods are proposed and shown to converge to the Nash equilibrium under 
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specific conditions. Unlike the work in this dissertation, these are lookup-table-based 

methods concerned with discrete state and action spaces. 

In this dissertation, adaptive critic designs, namely HDP, DHP, ADHDP and 

ADDHP, are derived to solve dynamic programming problems online for discrete-time 

dynamical systems with continuous state and action spaces. Offline solutions of these 

optimal control problems based on the dynamic programming principle appear in  [7], 

 [6],  [15]. An off-line neural net policy iterations solution based on the dynamic 

programming principle appears in  [23] for the continuous-time case. 

The importance of this dissertation stems from the fact adaptive critics 

algorithms are used to design 2 /H H∞  controller without knowing the dynamics of 

linear systems, e.g. ADHDP algorithm, and partial knowledge of the dynamics of 

nonlinear systems, e.g. HDP algorithm. Therefore, these algorithms may be thought of 

as being direct adaptive optimal control architectures. 

The organization of this dissertation is as follows. In Chapter 2, zero-sum games 

for discrete-time linear systems with quadratic infinite horizon cost are revisited. 

Dynamic programming is used to derive the optimal policies for both the control and 

the disturbance inputs along with the associated Riccati equation. Although equivalent 

to those found in literature  [6], the derived policies are different in structure and appear 

in a form required for the design of adaptive critics. In Chapter 3, Heuristic Dynamic 

Programming (HDP) and Dual Heuristic Dynamic Programming (DHP) algorithms are 

proposed to solve the zero-sum game for linear systems forward-in-time. Chapter 4 

extends the results of Chapter 3 to Action Dependent Heuristic Dynamic Programming 
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(ADHDP) and Action Dependent Dual Heuristic Dynamic Programming (ADDHP). In 

Chapter 5, an application of the ADHDP algorithm to the design of load frequency 

control systems is demonstrated. In Chapter 6 the nonlinear HDP algorithm is derived, 

with proofs of convergence, to solve for the HJB equation. It is also shown that the 

optimal controller derived through the DT HJB outperforms that using the State 

Dependent Riccati Equation (SDRE). 
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CHAPTER 2 

DISCRETE-TIME H-INFINITY STATE FEEDBACK CONTROL FOR 

ZERO-SUM GAMES 

 

In this chapter, the solution of the zero-sum game of a linear discrete-time 

system with quadratic cost derived under state feedback information structure. The 

policies for each of the two players, control and disturbance, are derived with the 

associated Riccati equation. Specific forms for both the Riccati equation and the control 

and disturbance policies are derived that are required for applications in ADP these 

forms are not same as standard forms in the existing literature. The relation between the 

derived policies and the associated Riccati equation with those existing in literature is 

discussed 

Consider the following discrete-time linear system 

 
1

,

k k k k

k k

x Ax Bu Ew

y x

+ = + +

=
. (2.1) 

where n
x R∈ , py R∈ , 1m

k
u R∈  is the control input and 2m

k
w R∈  is the disturbance 

input. Consider the infinite-horizon cost function. For any stabilizing sequence of 

policies 
k

u  and 
k

w , one can write the infinite-horizon cost-to-go as 

 

2

2 2

1

2

1

1

( )

( )

( , , ) ( ).

T T T

k i i i i i ii k

T T T T T T

k k k k k k i i i i i ii k

T T T

k k k k k k k

k k k k

V x x Qx u u w w

x Qx u u w w x Qx u u w w

x Qx u u w w V x

r x u w V x

γ

γ γ

γ

∞

=

∞

= +

+

+

= + −

= + − + + −

= + − +

= +

∑

∑  (2.2) 
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It is desired to find the optimal control 
k

u
∗  and the worst case disturbance 

k
w

∗ , in 

which the infinite-horizon cost is to be minimized by player 1, 
k

u , and maximized by 

player 2, 
k

w . Here the class of strictly feedback stabilizing policies is considered  [6]. 

 2( ) min max T T T

k i i i i i ii ku w
V x x Qx u u w wγ

∞∗

=
= + −∑  (2.3) 

Using the dynamic programming principle, the optimization problem in equation (2.3) 

and (2.2) can be written as 

 
( ) min max( ( , , ) ( ))

max  min( ( , , ) ( )).

k k k k
u w

k k k k
uw

V x r x u w V x

r x u w V x

∗ ∗
+

∗

+

= +

= +
 (2.4) 

If we assume that there exists a solution to the GARE that is strictly feedback 

stabilizing, then it can be shown, see [10], that the policies are in saddle-point 

equilibrium, i.e. minimax is equal to maximin,  in the restricted class of feedback 

stabilizing policies under which 0
k

x →  as k → ∞  for all 0

n
x R∈  . See  [6], p. 340), and 

(  [7], p. 138) and   [13] [10].  It is known that the optimal cost is quadratic in the state, 

and it is given as  

 ( ) T

k k k
V x x Px

∗ =  (2.5) 

where 0P ≥ . 

Assuming that the game has a value and is solvable, then in order to have a 

unique feedback saddle-point in the class of strictly feedback stabilizing policies, the 

inequalities in (2.6) and (2.7) should be satisfied,  [7], 

 2 0TI E PEγ −− >  (2.6)  



 

 

 

7 

 0T
I B PB+ > . (2.7)  

Applying the Bellman optimality principle, one has 

 
1

1 1

( ) minmax( ( , , ) ( ))

minmax( ^ 2 ).

k k k k k
u w

T T T T

k k k k k k k k
u w

V x r x u w V x

x Qx u u w w x Pxγ

∗ ∗
+

+ +

= +

= + − +
 (2.8) 

Substituting (2.5) in equation(2.8) one has  

 
minmax( ^ 2

( ) ( ).

T T T T

k k k k k k k k
u w

T

k k k k k k

x Px x Qx u u w w

Ax Bu Ew P Ax Bu Ew

γ= + −

+ + + + +
 (2.9) 

To maximize with respect to the disturbance
k

w , one needs to apply the first order 

necessary condition 

 
2

0

2 2 ( ).

k

k

T

k k k

V

w

w E P A Bu Ewγ

∂
=

∂

= − + + +

 (2.10) 

Therefore, the disturbance can be written as 

 2 1( ) ( )T T T

k k k
w I E PE E PAx E PBuγ −= − + . (2.11) 

Similarly, to minimize with respect to the control input 
k

u  one has 

 
0

2 2 ( ).

k

k

T

k k k

V

u

u B P A Bu Ew

∂
=

∂

= + + +

 (2.12) 

Hence, the controller can be written as 

 1( ) ( )T T T

k k k
u I B PB B PAx B PEw

−= − + + . (2.13) 

Note that applying the 2
nd

 order sufficiency conditions for both players, one obtains 

(2.6) and (2.7). 

Substituting equation (2.11) in (2.12) 
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2 1 1

2 1

( ( ) )

( ( ) )

T T T T

k

T T T T

k

u I B PB B PE E PE I E PB

B PE E PE I E PA B PA x

γ

γ

∗ − −

−

= + − − ×

− −
, (2.14) 

so the optimal control is a state feedback with gain  

 

2 1 1

2 1

( ( ) )

( ( ) ).

T T T T

T T T T

L I B PB B PE E PE I E PB

B PE E PE I E PA B PA

γ

γ

− −

−

= + − − ×

− −
. (2.15) 

Substituting the equation (2.13) in (2.10) one can find the optimal policy to the 

disturbance  

 

2 1 1

1

( ( ) )

( ( ) )

T T T T

k

T T T

k

w E PE I E PB I B PB B PE

B PE I B PB BPA E PA x

γ∗ − −

−

= − − + ×

+ −
, (2.16) 

so the optimal disturbance is a state feedback with gain 

 

2 1 1

1

( ( ) )

( ( ) ).

T T T T

T T T

K E PE I E PB I B PB B PE

E PB I B PB BPA E PA

γ − −

−

= − − + ×

+ −
 (2.17) 

Note that the inversion matrices in (2.14) and (2.16) exists due to (2.6) and (2.7)  

It is now going to be shown that the policies obtained in equations (2.15) and 

(2.17) are equivalent to those known in the literature  [7]. The following Lemma is 

required. 

Lemma 2.1: If 2( )TI E PEγ −− is invertible, then ( 2 TI EE Pγ −− ) is also invertible.  

Proof: Since 2( )TI E PEγ −−  is invertible then the following expression is valid  

 2 2 1( )T TI E I E PE E Pγ γ− − −+ − . 

Applying the matrix inversion lemma,  [15], it can be shown that 

 2 2 1 2 1( ) ( )T T TI E I E PE E P I EE Pγ γ γ− − − − −+ − = −  

Hence, 2 TI EE Pγ −−  is invertible and 2 0TI EE Pγ −− > . □ 
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Lemma 2.2: The optimal policies for control L , and disturbance K , in equation (2.15) 

and (2.17) respectively are equivalent to the ones that appear in  [7], namely 

 

2 1

2 2 1

( ) )

( ) ) .

T T T

T T T

L B P I BB P EE P A

K E P I BB P EE P A

γ

γ γ

−

− −

= − − −

= − − −
 

Proof: To show the control policy part, L , one can rewrite (2.15) as follows  

 

2 1 1

2 1

( ( ( ) ) )

( ( ) ) .

T T T

T T T

L I B P I E E PE I E P B

B P E E PE I E P I A

γ

γ

− −

−

= + − − ×

− −
 (2.18)  

Applying the well known matrix inversion lemma,  [15], on the (2.18), one has 

 2 1 1 2 1( ( ) ) ( )T T T TL I B P I EE P B B P I EE P Aγ γ− − − −= − + − − . (2.19) 

Note that 2( )TI EE Pγ−  is invertible due to lemma 2.1. Applying the matrix inversion 

lemma on (2.19), one has 

 2 1 2 1( ( ) ) ( ) .T T T T TL I B P BB P I EE P B B P I EE P Aγ γ− − −= − − + − −  (2.20) 

One can rewrite equation (2.20) as follows 

 2 1 2 1( ( ) ) ( )T T T T TL B P I BB P I EE P BB P I EE P Aγ γ− − −= − − + − × − . (2.21)  

Applying the matrix inversion lemma on (2.21), one has 

 2 1( ) )T T TL B P I BB P EE P Aγ −= − + − . (2.22)  

Note that since 2 0TI EE Pγ −− > , then 2 0T TI BB P EE Pγ+ − >  and concludes that 

equation (2.22) is equivalent to the control policy that appears on  [7]. 

To show the control policy part, K , one can rewrite (2.17) as follows  

 2 1 1 1( ( ( ) ) ) ( ( ) )T T T T TK I E P E B I B PB B P E E P B I B PB BP I Aγ − − −= − + − + × + − .(2.23)  

Applying the matrix inversion Lemma on (2.23), on has  
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 2 1 1( ( ) ) ( )T T T TK I E P I BB P E E P I BB P Aγ − −= − − + + + . (2.24)  

Applying the matrix inversion lemma on equation (2.24), one has  

 2 2 2 1 1( ( ) ) ( )T T T T TK I E P BB P I EE P E E P I BB P Aγ γ γ− − − −= + + − × + . (2.25)  

One can rewrite (2.25) as follows  

 2 2 1 2 1( ( ) ) ( )T T T T TK E P I BB P I EE P EE P I BB P Aγ γ γ− − − −= + + − × + . (2.26)  

Applying the matrix inversion lemma on equation (2.26), one obtains 

 2 2 1( ) )T T TK E P I BB P EE P Aγ γ− −= + − . (2.27)  

Note that since 2 0TI EE Pγ −− > , then 2 0T TI BB P EE Pγ+ − >  and concludes 

that equation (2.27) is equivalent to the disturbance policy that appears in  [7].  

Next it is shown that the value function of the game ( ) T

k k k
V x x Px

∗ =  satisfies a 

Riccati equation. The form of the Riccati equation derived in this chapter, under state 

feedback information structure in order to perform ADP. It is similar to the one 

appearing in  [3] which was derived under full information structure. Moreover, it will 

be shown that the Riccati equation derived in this chapter is equivalent to the work in 

 [7] derived under the same state feedback information structure. 

Note that (2.9) can be rewritten as follows  

 2( ( ) ( ))T T T T T

k k k k k k k k k k k k k k
x Px x Qx u u w w Ax Bu Ew P Ax Bu Ewγ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= + − + + + + + .(2.28) 

This is equivalent  

 

2

2

( ) ( ))

.

T T T

T T T

cl cl

P Q L L K K A BL EK P A BL EK

Q L L K K A PA

γ

γ

= + − + + + + +

= + − +
 (2.29)  

where 
cl

A A BL EK= + + . Equation (2.29) is the closed-loop Riccati equation. 
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Next it is shown upon substituting (2.15) and (2.17) in (2.29), one obtains the 

desired Riccati equation upon which the adaptive critic designs are based. 

Lemma 2.3: Substituting the policies, (2.15) and (2.17), in (2.29) one can obtain the 

Riccati equation that appears in  [3] [34], and given by 

 

1

2
[ ]

T T T

T T T

T T T

I B PB B PE B PA
P A PA Q A PB A PE

E PB E PE I E PAγ

−
   +

= + −    
−   

. 

Proof: The control policy and the disturbance policy can be written as follows  

 1 1

11 12 22( )T T
L D A A E PA B PA

− −= − , (2.30)  

 1 1

22 21 11( ),T T
K D A A B PA E PA

− −= −  (2.31)  

where 

 

1 2 1 1

11

12

21

11

2

22

1 2 1 1

22

( ( ) )

( ( ) ) .

T T T T

T

T

T

T

T T T T

D I B PB B PE E PE I E PB

A B PE

A E PB

A I B PB

A E PE I

D E PE I E PB I B PB B PE

γ

γ

γ

− − −

− − −

= + − −

=

=

= +

= −

= − − +

 

From (2.6) and (2.7), one concludes that 1

11D
−  and 1

22D
−  are invertible. Equations (2.30) 

and (2.31) can be written as follows 

 

1 1 1

11 11 12 22

1 1 1

22 21 22 22

T

T

L D D A A B PA

K D A A D E PA

− − −

− − −

   − 
= −     

    
. (2.32)  

It is known that,  [15], 

 

1 1 1 1
11 12 11 11 12 22

1 1 1
21 22 22 21 22 22

A A D D A A

A A D A A D

− − − −

− − −

 − 
=   

   
. 
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Therefore one can rewrite (2.32) as follows 

 

11

11 12

2
21 22

T T T T

T T T T

A AL B PA I B PB B PE B PA

A AK E PA E PB E PE I E PAγ

−−
     +  

= − = −       
−         

. (2.33)  

Equation (2.29) can be written as follows 

 

2

2

( ) ( )

0
.

0

T T T

T T T T T T T

T T

T T T T

T T

P A BL EK P A BL EK L L K K Q

A PA A PBL A PEK L B PA K E PA

L I LB PB B PE
L K L K Q

K I KE PB E PE

γ

γ

= + + + + + − +

= + + + +

       
   + + +           −      

 (2.34)  

Substituting (2.33) in (2.34), one has 

 

1

2 2

.

T T T T T T T

T T T T T

T T

T T T T T

T T T

P A PA A PBL A PEK L B PA K E PA

I B PB B PE I B PB B PE B PA
L K Q

E PB E PE I E PB E PE I E PA

A PA A PBL A PEK Q

γ γ

−

= + + + +

     + +
 − +       − −     

= + + +

.(2.35)  

Equation (2.35) can be written as    

 .T T T
L

P A PA A PB A PE Q
K

 
 = + +  

 
 (2.36)  

Substituting (2.32) in (2.36), one has the desired Riccati equation 

 

1

2
[ ]

T T T

T T T

T T T

I B PB B PE B PA
P A PA Q A PB A PE

E PB E PE I E PAγ

−
   +

= + −    
−   

 (2.37)  

It can be seen that (2.37) is the Riccati equation that appears in  [3] [34] [32].  

 It is shown in  [3] that (2.37) is equivalent to the Riccati equation that appears in 

 [7] and  [6], which is given as 2 1( ( ) )T T TP Q A P I BB EE P Aγ − −= + + − . 

It is important to note that the 2H  problem is a special case of the H∞  where in 

the system equation, (2.1) , 0E = or in the value function,(2.2) , γ → ∞ , i.e. P  will be 
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the solution of the discrete-time algebraic Riccati equation DARE. One form of the 

DARE is  

 1( )T T T TP A PA Q A PB I B PB B PA−= + − +  
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CHAPTER 3 

HUERISTC DYNAMIC PROGRAMING H-INFINTY COTROL DESIGN 

 

In this chapter, adaptive critic approximate dynamic programming designs are 

derived to solve the discrete-time zero-sum game in which the state and action spaces 

are continuous. This results in a forward-in-time reinforcement learning algorithm that 

converges to the Nash equilibrium of the corresponding zero-sum game. The results in 

this chapter can be thought of as a way to solve the Riccati equation of the well-known 

discrete-time H∞  optimal control problem forward in time. Two schemes are presented, 

a Heuristic Dynamic Programming (HDP) and a Dual Heuristic Dynamic Programming 

(DHP) to solve for the value function and the co-state of the game respectively. An H∞  

autopilot design for an F-16 aircraft is presented to illustrate the results 

3.1 Heuristic Dynamic Programming (HDP) 

In this section, an HDP algorithm is developed to solve the discrete-time linear 

system zero-sum game described in chapter 2. The HDP algorithm was originally 

proposed in  [25] to solve optimal control problems. The HDP algorithm has been 

applied earlier to solve the discrete-time Linear Quadratic Regulator (LQR) in optimal 

control theory  [31]. In the HDP approach, a parametric structure is used to approximate 

the cost-to-go function of the current control policy. Then the certainty equivalence 

principle is used to improve the policy of the action network. 



 

 

 

15 

In this section, we extend the HDP approach to linear quadratic discrete-time 

zero-sum games appearing in  [7], and prove the convergence of the presented 

algorithm. 

3.1.1 Derivation of HDP for Zero-Sum Games 

Consider the system  

 
1

,

k k k k

k k

x Ax Bu Ew

y x

+ = + +

=
 (3.1) 

and the cost-to-go function as 

 2( ) min max T T T

k i i i i i ii ku w
V x x Qx u u w wγ

∞

=
= + −∑  (3.2) 

The HDP is developed to solve the zero-sum game described in chapter 2, one 

starts with an initial cost-to-go 0 ( ) 0V x ≥  that is not necessarily optimal, and then finds 

1( )V x  by solving equation (3.3) with 0i =  according to 

 { }2

1 1( ) min max ( )
k k

T T T

i k k k k k k k i k
u w

V x x Qx u u w w V xγ+ += + − + . (3.3) 

Equation (3.3)  is a recurrence relation that is used to solve for the optimal cost-to-go, 

the game value function, forward in time. 

Note that since ( )
i

V x  is not initially optimal, optimal policies found using ( )
i

V x  

in (3.3) use the certainty equivalence principle and are denoted as ( )
i k

u x  and ( )
i k

w x . 

Then, 1( )
i

V x+  is given by 

 2

1 1( ) ( ) ( ) ( ) ( ) ( )T T T

i k k k i k i k i k i k i k
V x x Qx u x u x w x w x V xγ+ += + − + . (3.4) 
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Once 1( )
i

V x+  is found, one then repeats the same process for 0,1,2,i = … . In this 

chapter, it is shown that 1( ) ( )
i k k

V x V x
∗

+ →  as i → ∞ , where *( )
k

V x  is the optimal 

value function for the game based on the solution to the GARE (2.37). 

In the HDP approach, the cost-to-go function, ( )
i

V x , is generally difficult to 

obtain in closed-form except in special cases. Therefore, in general a parametric 

structure ˆ( , )
i

V x p , is used to approximate the actual ( )
i

V x . Similarly, parametric 

structures are used to obtain approximate closed-form representations of the two action 

networks ˆ( , )u x L  and ˆ ( , )w x K . Since in this chapter the zero-sum game considered is 

linear and quadratic, it is well-known that the cost-to-go function is quadratic in the 

state, i.e. ( ) TV x x Px= , and the two action networks are linear in the state. Therefore a 

natural choice of these parameter structures is given as 

 ˆ( , ) T

i i
V x p p x= , (3.5) 

 ˆ( , ) T

i i
u x L L x= , (3.6) 

 ˆ ( , ) T

i i
w x K K x= , (3.7) 

where 2 2 2

1 1 2 2 3 1( , , , , , , , )
n n n n

x x x x x x x x x x−= … … , is the Kronecker product quadratic 

polynomial basis vector  [21], and ( )p v P= , where ( )v ⋅  is a vector function that acts on 

n n×  matrices and outputs a ( 1)
2 1n n+ ×  column vector. The output vector of ( )v ⋅  is 

constructed by stacking the columns of the squared matrix into a one-column vector 

with the off-diagonal elements summed as 
ij ji

P P+ ,  [21]. The parameter structures (3.5)  

(3.6) and (3.7) give an exact closed-form representation of the functions in (3.4). 
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It can be shown that the parameters of the action networks, 
i

L  and 
i

K  of (3.6) 

and (3.7), are found as 

 

2 1 1

2 1

( ( ) )

( ( ) ),

T T T T

i i i i i

T T T T

i i i i

L I B PB B PE E PE I E PB

B PE E PE I E P A B P A

γ

γ

− −

−

= + − − ×

− −
 (3.8) 

 

2 1 1

1

( ( ) )

( ( ) ).

T T T T

i i i i i

T T T T

i i i i

K E PE I E PB I B PB B PE

E PB I B PB B P A E P A

γ − −

−

= − − + ×

+ −
 (3.9) 

These are greedy policy iterations that are based on the certainty equivalence principle 

when compared to (2.15) and (2.17), since they depend on 
i

P  which does not 

necessarily solve (2.37). Note that to update the action networks, it is necessary to know 

the plant model A  and B  matrices. 

After determining (3.8) and (3.9)  substituting them in (3.4), one then has 

 2

1( , ) ( ) ( ) ( ) ( )T T T T

k i k k i k i k i k i k i k
d x p x Qx L x L x K x K x p xγ += + − +  (3.10) 

which can be thought of as the desired target function to which one needs to fit 

1
ˆ( , )

i
V x p +  in least-squares sense to find 1i

p +  such that 

 1 ( , )T

i k k i
p x d x p+ =  (3.11) 

The parameter vector 1i
p +  is found by minimizing the error between the target value 

function (3.10) and (3.11) in a least-squares sense over a compact set, Ω , 

 
1

2

1 1arg min{ | ( , ) | }
i

T

i i i
p

p p x d x p dx
+

+ +

Ω

= −∫ . (3.12) 

3.1.2 Online Implementation of the HDP Algorithm 

The least-squares problem in (3.12) can be solved in real-time by collecting 

enough data points generated from ( , )
k i

d x p  in (3.10). This requires one to have 
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knowledge of the state information 
k

x , 1k
x +  as the dynamics evolve in time, and also of 

the reward function ( , , )
k k k

r x u w .  This can be determined by simulation, or, in real-

time applications, by observing the states on-line.  Therefore, in the HDP algorithm, the 

model of the system is not needed to update the critic network, though it is needed to 

update the actions. 

To satisfy the excitation condition of the least-squares problem, one needs to 

have the number of collected points N  at least 

 ( 1) / 2N n n≥ + , 

where n  is the number of states. Therefore, after several time steps that are enough to 

guarantee the excitation condition, one has the following least-squares problem 

 1

1 ( )T

i
p XX XY

−

+ = , (3.13) 

where 

 1 2 k-1

1 2 k-1

[ ]

[ ( , ) ( , ) ( , )] .

k N k Nx x x

T

k N i k N i i

X x x x

Y d x p d x p d x p

− − − −

− − − −

=

=

�

�
 

One can solve (3.13) recursively using the well-known recursive least-squares 

technique. In that case, the excitation condition is replaced by the persistency of 

excitation condition  

 0 1

1

1 T

k t k t

m

I x x I
α

ε ε
α

− −
=

≤ ≤∑  

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε  and 1ε  positive integers and 0 1ε ε≤ . 

The recursive least-squares algorithm is given as 
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1

1 1

( ) ( , ) ( 1)

( 1) ( )
( ) ( 1)

1 ( 1)

( 1) ( 1)
( ) ( 1)

1 ( 1)

T

i k i k i

i k i
i i T

k i k

T

i k k i
i i T

k i k

e t d x p x p t

t x e t
p t p t

x t x

t x x t
t t

x t x

+

+ +

= − −

Γ −
= − +

+ Γ −

Γ − Γ −
Γ = Γ − −

+ Γ −

 

where i  is the policy update index, t  is the index of the recursions of the recursive 

least-squares, and k  is the discrete time. Γ  is the covariance matrix of the recursion 

and ( )e t  is the estimation error of the recursive least-squares. Note that (0)
i

Γ  is a large 

number and 1(0)
i i+Γ = Γ . 

The on-line HDP algorithm developed in this chapter is summarized in the 

flowchart shown in Figure 3.1. The HDP algorithm for zero-sum games follows by 

iterating between (3.8) (3.9) and (3.13). As will be shown show next, this will cause 
i

P  

to converge to the optimal P , when it exists, that solves the GARE associated with the 

discrete time zero-sum game given in (2.37). Note that the model of the system is 

needed in the HDP algorithm to update the actions networks only. 
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Figure 3.1. The HDP algorithm 

3.1.3 Convergence of the HDP Algorithm 

Now the proof that the proposed HDP algorithm for zero-sum games converges 

to the optimal policies is given. 

Lemma 3.1 Iterating on equations (3.8) (3.9) and (3.12) is equivalent to the iteration on 

the Riccati equation (2.37) associated with zero-sum games problem. That is  

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
, (3.14) 
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under the assumption that the system is sufficiently excited. 

Proof: The least-squares problem is defined in (3.12) which is  

 
1

2

1 1arg min{ | ( , ) | }
i

T

i i i
p

p p x d x p dx
+

+ +

Ω

= −∫ . 

This can be rewritten as 

 1(2 2 ( , )) 0T T

i i
xx p xd x p dx+

Ω

− =∫ . (3.15) 

and implies that 

 

1

1 ( , )T

i ip xx dx xd x p dx

−

+

Ω Ω

 
=  
 
∫ ∫ . (3.16) 

Under the excitation condition assumption, the inverse operator exists.  Substituting 

(3.10) in (3.16), one has 

 

1

1 ( ( ( ) (( ) )T T T T

i k k k k i i i i i i i kp x x dx x x Q L L A BL EK P A BL EK x dx

−

+

Ω Ω

 
= + + + + + + 
 
∫ ∫ .(3.17) 

Using the Kronecker products  [21], equation (3.17) can be written as  

 

1

1

2

2

( ( ) ( ))

( ( ) ( )),

T T

i k k k k

T T T

i i i i i i i i i

T T T

i i i i i i i i i

p x x dx x x dx

v Q L L K K A BL EK P A BL EK

v Q L L K K A BL EK P A BL EK

γ

γ

−

+

Ω Ω

   
= ×   
   

+ − + + + + +

= + − + + + + +

∫ ∫

 

where v  is the vectorized function in the Kronecker product. 

Since the matrix 1i
P+  which reconstructed from 1i

p +  is symmetric, iteration on 

i
p  is equivalent to the following iteration 

 2

1 ( ) ( )T T T

i i i i i i i i i i
P Q L L K K A BL EK P A BL EKγ+ = + − + + + + + . (3.18) 

Using the same steps as in Lemma 2.3 equation (3.18) can be written 
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1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (3.19) 

which is equivalent to (3.14).    

Theorem 3.1: Assume that the game has a value and is solvable. If the sequence of 

least-squares problems in (3.12) is solvable, i.e. the corresponding excitation conditions 

hold, then the HDP algorithm converges to the value of the game that solves the Riccati 

equation (2.37) when starting with 0 0P ≥ . 

Proof. This follows from Lemma 3.1 and from  [3] where it is shown that iterating on 

(3.14) with 0 0P ≥  converges to P  that solves (2.37).  

The proof of convergence of the HDP algorithm has just been established 

assuming the least-squares problem (3.12) is solved completely; i.e. the excitation 

condition is satisfied. Note that an easy way to initialize the algorithm in Figure 3.1 is 

by selecting 0 0P = . 

3.2 Dual Heuristic Dynamic Programming (DHP) 

In this section, a DHP algorithm is developed to solve the discrete-time linear 

system zero-sum game described in chapter 2. The DHP algorithm has been applied 

earlier to solve the discrete-time Linear Quadratic Regulator (LQR) in optimal control 

theory  [31]. 

In the DHP approach, a parametric structure is used to approximate the co-state 

function, i.e. the gradient of the cost-to-go function, of the current control policies.  As 

in the HDP case, the certainty equivalence principle is used to improve the policies of 

the actions networks. 
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In this section, the DHP is extended approach to linear quadratic discrete-time 

zero-sum games appearing in  [7], and prove the convergence of the presented 

algorithm.  

3.2.1 Derivation of DHP for Zero-Sum Games 

Consider the system (3.1) and the cost-to-go function (3.2). In the DHP 

approach, the critic network approximates the co-state ( )
k

xλ∗  forward in time. It is 

known  [6] that the co-state of the zero-sum game is the gradient of the game value 

function given as 

 
*( )

( ) k
k

k

V x
x

x
λ

∗
∗ ∗

∗

∂
=

∂
. (3.20) 

In the zero-sum game DHP algorithm developed in this chapter, the following 

recurrence relation is derived to solve for the co-state forward in time. 

 

1
1

1 1 1

1

( )
( )

( , ( ), ( )) ( ) ( , ( ), ( ))

( )

( ) ( , ( ), ( ))

( )

( ) ( )

( )

i k
i k

k

T

k i k i k i k k i k i k

k k i k

T

i k k i k i k

k i k

T T

k i k i k k

k k k i k

V x
x

x

r x u x w x u x r x u x w x

x x u x

w x r x u x w x

x w x

x V x u x x

x x x u x

λ +
+

+ + +

+

∂
=

∂

 ∂ ∂ ∂
= + + 

∂ ∂ ∂ 

 ∂ ∂
+ 

∂ ∂ 

     ∂ ∂ ∂ ∂
+    

∂ ∂ ∂ ∂     

1

1

1 1

1

( )

( ) ( )
,

( )

T

i k

k

T T

i k k i k

k i k k

V x

x

w x x V x

x w x x

+

+

+ +

+

∂
+

∂

   ∂ ∂ ∂
   

∂ ∂ ∂   

 (3.21) 

The recurrence relation (3.21) is obtained by differentiating the recurrence relation on 

the cost-to-go function (3.4). Equation (3.21) can be rewritten as 
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1

1
1

1
1

( , ( ), ( ))
( )

( ) ( , ( ), ( ))
( )

( ) ( )

( ) ( , ( ), ( ))
( )

( ) ( )

k i k i k
i k

k

T T

i k k i k i k k
i k

k i k i k

T T

i k k i k i k k
i k

k i k i k

r x u x w x
x

x

u x r x u x w x x
x

x u x u x

w x r x u x w x x
x

x w x w x

λ

λ

λ

+

+
+

+
+

∂
= +

∂

    ∂ ∂ ∂ 
+ +    

∂ ∂ ∂     

    ∂ ∂ ∂ 
+ +    

∂ ∂ ∂     

∂ 1
1( ).

T

k
i k

k

x
x

x
λ+

+

 
 

∂ 

 (3.22) 

As was the case in (3.8) and (3.9) in the HDP case, the improvement of the actions 

networks requires that 

 1
1

( , ( ), ( ))
( ) 0

( ) ( )

T

k i k i k k
i k

i k i k

r x u x w x x
x

u x u x
λ+

+

 ∂ ∂
+ = 

∂ ∂ 
, (3.23) 

 1
1

( , ( ), ( ))
( ) 0

( ) ( )

T

k i k i k k
i k

i k i k

r x u x w x x
x

w x w x
λ+

+

 ∂ ∂
+ = 

∂ ∂ 
. (3.24) 

Combining (3.22), (3.23) and (3.24), one has 

 1
1 1

( , ( ), ( ))
( ) ( )

T

k i k i k k
i k i k

k k

r x u x w x x
x x

x x
λ λ+

+ +

 ∂ ∂
= +  

∂ ∂ 
. (3.25) 

Hence, the DHP algorithm can be summarized as the successive iteration between 

(3.22) on one hand, and (3.23) and  (3.24) on the other. This results in a successive-

improvement of the value function derivatives sequence { }| 1, 2,i iλ = …  as the player 

policies are generated. In this chapter, it will be shown that the DHP algorithm 

converges to the co-state value function (3.20). When converged, equation (3.25) 

becomes 
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 1
1

( , ( ), ( ))
( ) ( )

T

k i k i k k
k k

k k

r x u x w x x
x x

x x
λ λ

∗ ∗ ∗
∗ ∗ ∗ ∗+

+∗ ∗

 ∂ ∂
= +  

∂ ∂ 
 

which is known as the co-state equation in Theorem 6.3 in  [6]. 

In DHP, a parametric structure ˆ( , )
i

x pλ  is used to approximate the actual ( )
i

xλ . 

Similarly, parametric structures are used to obtain approximate closed-form 

representations of the two action networks ˆ( , )u x L  and ˆ ( , )w x K . Since in this chapter 

the zero-sum game considered is linear and quadratic, it is well-known that co-state and 

the action networks are all linear in the state.  Therefore a natural choice of these 

parameter structures is given as 

 ˆ( , ) T

i i

x
x p p

x
λ

∂
=

∂
, (3.26) 

 ˆ( , ) T

i i
u x L L x= , (3.27) 

 ˆ ( , ) T

i i
w x K K x= , (3.28) 

where x  and p  are as described in equations (3.5). The parameter structures (3.26) 

(3.27) and (3.28) give an exact closed-form representation of the functions in (3.21) to 

(3.24). 

Using the parameter structures  (3.27) and (3.28) along with the certainty 

equivalence principle, it can be easily shown that the parameters of the actions networks 

are updates as in (3.8) and (3.9) respectively. 

Substituting (3.8) and (3.9) in (3.21) given the system model (2.1), one has 

 2

1( , ) 2 2 2 ( )T T T

k i k i k i k i i i k
d x P Qx L u K w A BL EK Pxγ += + − + + + . (3.29) 

Using the Kroncker product notation  [21], equation (3.29) can be rewritten as 
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 2( , ) ( ( ) ( ))T T T T

k i i i i i i i i i i

x
d x p v Q L L K K A BL EK P A BL EK

x
γ

∂
= + − + + + + +

∂
. (3.30) 

Equation (3.30) can be thought of as the desired target function to which one needs to 

fit 1
ˆ( , )

i
x pλ +  such that 1

ˆ( , ) ( , )
i k i

x p d x pλ + = . 

The parameter vector 1i
p +  is found by minimizing the error between the target value 

function (3.30) and (3.26) in a least-squares sense over a compact set, Ω , 

 
1

2

1 1arg min {| ( , ) | }
i

T
T

i i x k i
p

x
p p d x p dx

x+

+ +

Ω

∂
= −

∂∫ . (3.31) 

3.2.2 Online Implementation of the DHP Algorithm 

The least-squares problem in (3.31) can be solved in real-time by collecting 

enough data points generated from ( , )
k i

d x p  in (3.29). This requires having access to 

the state information
k

x , 1k
x +  as the dynamics evolve in time and gradients of the reward 

function 
k

r x∂ ∂ , 
i

r u∂ ∂ , 
i

r w∂ ∂ , as well as the plant model A  and B . Therefore, in 

the DHP algorithm developed in this chapter for the zero-sum game, the plant model is 

required to update the critic network. 

To satisfy the excitation condition of the least squares problem, one needs to 

have the number of collected points N  at least N n≥ , where n  is the number of states. 

Therefore, after several time steps that are enough to guarantee the excitation condition, 

one has the following least-squares problem 

 1

1 ( )T

i
p XX XY

−

+ = , (3.32) 

where 
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1 2 k-1

1 2 k-1

[ ]

[ ( , ) ( , ) ( , )] .

k N k Nx x x

T T T T

k N i k N i i

x x x
X

x x x

Y d x p d x p d x p

− − − −

− − − −

∂ ∂ ∂
=

∂ ∂ ∂

=

�

�

 

One can solve (3.32) recursively using the well-known recursive least squares 

technique. In that case, the excitation condition is replaced with the persistency of 

excitation condition 

 0 1

1

1
T

k t k t

m

x x
I I

x x

α

ε ε
α

− −
=

∂ ∂
≤ ≤

∂ ∂
∑  

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε  and 1ε  are positive integers and 0 1ε ε≤ . 

The recursive least-squares algorithm is given as 

 

1

1

1 1

1

( ) ( , ) ( 1)

( ) ( 1) ( 1) ( 1) ( )

( ) ( 1) ( 1) ( 1) ( 1)

T

k
i x k i i

T

k k k
i i i i i

T T

k k k k
i i i i i

x
e t d x p p t

x

x x x
p t p t t I t e t

x x x

x x x x
t t t I t t

x x x x

+

−

+ +

−

∂
= − −

∂

 ∂ ∂ ∂
= − + Γ − + Γ − 

∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
Γ = Γ − − Γ − + Γ − Γ − 

∂ ∂ ∂ ∂ 

 

where i  is the policy update index, t  is the index of the recursions of the recursive 

least-squares, and k  is the discrete time. Γ  is the covariance matrix of the recursion 

and ( )e t  is the estimation error of the recursive least-squares. Note that (0)
i

Γ  is a large 

number, and 1(0)
i i+Γ = Γ . 

The developed DHP algorithm is summarized in the flowchart shown in figure 

3.2. 
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Figure 3.2. The DHP algorithm 

The DHP algorithm for the zero-sum game considered in this chapter follows by 

iterating between (3.8) (3.9) and (3.32).  Next it will be shown that this will cause 
i

P  to 

converge to the optimal P , when it exists, which solves the GARE associated with the 

discrete time zero-sum game given in (2.37) . Note that the model of the system is 

needed in the DHP algorithm in both the critic network and the actions networks. 
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3.2.3 Convergence of the DHP Algorithm 

Lemma 3.2: Iterating on equation (3.8) (3.9) and (3.31) is equivalent to the iteration on 

the Riccati equation (2.37) associated with the zero-sum game problem. That is 

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (3.33) 

under the assumption that the system is sufficiently excited. 

Proof: The least-squares problem is defined in equation (3.31) which is  

 
1

2

1 1arg min {| ( , ) | }
i

T
T

i i x k i
p

x
p p d x p dx

x+

+ +

Ω

∂
= −

∂∫ . 

This can be written as  

 12 2 ( , ) 0
T

T

i k i

x x x
p d x P dx

x x x
+

Ω

 ∂ ∂ ∂
− = 

∂ ∂ ∂ 
∫ , (3.34) 

and that implies 

 

1

1 ( , ).
T

T

i k i

x x x
p dx d x p dx

x x x

−

+

Ω Ω

 ∂ ∂ ∂
=  

∂ ∂ ∂ 
∫ ∫ . (3.35) 

Under the excitation condition assumption, the inverse operator exists.  

Substituting (3.30) in (3.35), one has  

 

1

1

2( ( ) ( )) ,

T T

i

T
T T T

i i i i i i i i i

x x
p dx

x x

x x
v Q L L K K A BL EK P A BL EK dx

x x
γ

−

+

Ω

Ω

 ∂ ∂
= × 

∂ ∂ 

∂ ∂
+ − + + + + +

∂ ∂

∫

∫

 

which can be written as  

 2

1 ( ( ) ( ))T T T

i i i i i i i i i i
p v Q L L K K A BL EK P A BL EKγ+ = + − + + + + + , 
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where v  is the vectorized function in the Kronecker product. 

Since the matrix 1i
P+  reconstructed from 1i

p +  is symmetric, iteration on 
i

p  is 

equivalent to the following iteration  

 2

1 ( ) ( ).T T T

i i i i i i i i i i
P Q L L K K A BL EK P A BL EKγ+ = + − + + + + +  (3.36) 

Using the same steps as in Lemma 2.3 equation (3.36) can be written  

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A Q A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
. (3.37) 

which is equivalent to (3.33).   

Theorem 3.2: Assume that the game has a value and is solvable.  If the sequence of 

least-squares problems in (3.31), i.e. the corresponding excitation conditions hold, then 

the DHP algorithm converges to the value of the game that solves the Riccati equation 

(2.37) when starting with 0 0P ≥ . 

Proof. This follows from Lemma 3.2 and from  [3] where it is shown that iterating on 

(3.36) with 0 0P ≥  converges to P  that solves (2.37).  

The convergence proof of the DHP algorithm has just been establised assuming 

the least-squares problem (3.32) is solved completely; i.e. the exciting condition is 

satisfied. Note that an easy way to initialize the algorithm in Figure 3.2 is by selecting 

0 0P = . 

In the next section, the developed HDP and DHP zero-sum game algorithms are 

used to derive suboptimal H∞  controllers by the forward time solution technique.  The 

practical relevance of the developed algorithms will thus become clear. 
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3.3 Online ADP H∞ Autopilot Controller Design for an F-16 aircraft 

In this design application, the zero-sum game that corresponds to the H∞  

controller problem is solved for an F-16 aircraft autopilot design. The H-infinity 

approach is used, which is enabled by the ADP procedures in this chapter.  H-infinity 

design has been proven highly effective in the design of feedback control systems with 

robustness and disturbance rejection capabilities  [15]. 

The F-16 short period dynamics has three states given as 

 

e

x q

α

δ

 
 =  
  

 

where α  is the angle of attack, q  is the pitch rate and 
e

δ  is the elevator deflection 

angle. The discrete-time plant model of this aircraft dynamics is a discretized version of 

the continuous-time one given in  [4].  We used standard zero-order-hold discretization 

techniques explained in  [14] and easily implemented in the MATLAB control systems 

toolbox to obtain the sampled data plant 

 

0.906488 0.0816012 0.0005

0.0741349 0.90121 0.000708383

0 0 0.132655

A

− 
 = − 
  

 

 

0.00150808 0.00951892

0.0096 0.00038373

0.867345 0

B E

−   
   = − =   
      

. (3.38) 
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with sampling time 0.1T = .  In this H∞  design problem, the disturbance attenuation is 

1γ = . 

3.3.1 H∞ Solution Based on the Riccati Equation 

Since the ADP designs developed in this chapter to solve the H∞  controller 

design problem are based on an iterative form of the Riccati equation (3.14), in Figure 

3.3 the convergence of 
i

P  to the solution of the GARE (2.37) is shown when done 

offline with 0 0P = . 
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Figure 3.3. The convergence of 

i
P  by iterating on Riccati equation 

It is noticed from Figure 3.3 that for the discretized aircraft dynamics(3.38), 
i

P  

converges after at least 100 iterations with 1γ =  to 



 

 

 

33 

 

15.5109 12.4074 0.0089

12.4074 15.5994 0.0078

0.0089 0.0078 1.0101

P

− 
 = − 
 − − 

 (3.39) 

which solves the GARE (2.37). Note that 0P ≥  and hence from  [7] this implies that 

 20

0

T T

k k k k

k

T

k k

k

x Qx u u

w w

γ

∞
∗ ∗

=
∞

=

+

≤
∑

∑
 (3.40) 

for all finite energy disturbances, i.e.  

 
0

T

k k

k

w w
∞

=

∑ , 

are bounded, and hence ( )
k

u x
∗  has the well-known robustness and disturbance rejection 

capabilities of H∞  control. 

Next, the ADP algorithms developed in this chapter are used to design an H∞  

controller for the discretized aircraft dynamics (3.38)  with 1γ =  in forward time. 

3.3.2 HDP based H∞ Autopilot Controller Design 

In this part, the HDP algorithm developed in Section 3.1 of this chapter is 

applied to solve for the H∞  autopilot controller in forward time. The recursive least-

squares algorithm is used to tune the parameters of the critic network on-line. The 

parameters of the actions networks are updated according to (3.8) and (3.9). It is 

important to mention that using the LS to tune the parameter will cause faster 

convergence than using the RLS. 

In this HDP design, the states of the aircraft are initialized to be [ ]0 4 2 5x = . 

Any values could be selected. The parameters of the critic network and the actions 
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networks are initialized to zero. Following this initialization step, the aircraft dynamics 

are run forward in time and tuning of the parameter structures is performed by 

observing the states on-line. 

In Figures 3.4 and 3.5, the states and the inputs to the aircraft are shown with 

respect to time.  In order to maintain the excitation condition, one can use several 

standard schemes, including covariance resetting, state resetting, or injection of a small 

probing noise signal.  In this example, state resetting is used and the states are re-

initialized to [ ]0 4 2 5x =  periodically to prevent them from converging to zero. 

Hence the persistency of excitation condition required for the convergence of the 

recursive least-squares tuning, i.e. avoiding the parameter drift problem, will hold.  

State re-initialization has appeared recently in  [19] to solve the HJB equation associated 

with continuous-time optimal control problems. 
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Figure 3.4. States trajectories with re-initialization for the HDP algorithm. 
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Figure 3.5. The control and disturbance in the HDP 

In Figures 3.6, 3.7 and 3.8, the convergence of the parameters of the critic 

network, and the actions networks is shown. As expected, the parameters of the critic 

network converge to P  in (3.39) that solves the GARE equation. It takes the critic 

network 1500 time steps to converge to P . The reason for this is that 10 readings are 

required to tune the critic network at each update to solve for each 
i

P . Since as shown 

in Figure 3.3, the action networks require to be updated at least 100 times, this implies 

that the over all time steps required for the convergence of the HDP algorithm are about 

1000 time steps. 

It is important to realize that state is used resetting here to determine the optimal 

solution for the game problem, as given by the converged critic network parameters in 

Figure 3.6 and action network parameters in Figures 3.7 and 3.8.  State resetting 
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provides the excitation conditions needed to get parameter convergence.  Once these 

parameters are known, the H∞  controller has been found.  Then, one can use the 

parameters of the control action network as the final parameters of the controller in any 

on-line control runs, without having to deliberately insert any excitation signals to the 

system. 
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Figure 3.6. Convergence of the critic network parameters in the HDP. 
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Figure 3.7. Convergence of the disturbance action network parameters in the HDP. 
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Figure 3.8. Convergence of the control action network parameters in the HDP. 
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Next, the DHP algorithm developed in Section 3.4 is applied to this aircraft 

design problem. 

3.3.3 DHP based H∞ Autopilot Controller Design 

In this part, the DHP algorithm developed in Section 3.2 of this chapter is 

applied to solve for the H∞  autopilot controller in forward time. The recursive least-

squares algorithm is used to tune the parameters of the critic network. The parameters 

of the actions networks are updated according to (3.8) and (3.9). 

In this DHP design, the states of the aircraft are initialized to be [ ]0 4 2 5x = . 

The parameters of the critic network and the actions networks are initialized to zero. 

Following this initialization step, the aircraft dynamics are run forward in time and 

tuning of the parameter structures happen by observing the states on-line. 

In Figures 3.9 and 3.10, the states and the inputs to the aircraft are shown with 

respect to time. Note that the states are re-initialized to [ ]0 4 2 5x =  to prevent them 

from converging to zero. Hence the persistency of excitation condition required for the 

convergence of the recursive least-squares tuning, i.e. avoiding the parameter drift 

problem, will hold. 
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Figure 3.9. States trajectories with re-initialization for the DHP algorithm 
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Figure 3.10. The control and disturbance in the DHP  
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In Figures 3.11, 3.12 and 3.13, the convergence of the parameters of the critic 

network, and the action networks is shown. As expected, the parameters of the critic 

network converge to P  in (3.39)  that solves the GARE equation. It takes the critic 

network 600 time steps to converge to P . The reason for this is that 6 readings are 

required to tune the critic network at to solve for each 
i

P . Since as shown in Figure 3, 

the action networks require to be updated at least 100 times, this implies that the over 

all time steps required for the convergence of the DHP algorithm are about 600 time 

steps. 
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Figure 3.11. Convergence of the critic network parameters in the DHP. 
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Figure 3.12. Convergence of the disturbance action network parameters in the DHP. 
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Figure. 3.13. Convergence of the control action network parameters in the DHP. 
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It is clear that the in the DHP algorithm, the parameters of the critic network 

converge to the solution of the GARE faster than the case in the HDP algorithm.  This is 

because in DHP one has vector gradient information available for tuning, not only 

scalar information as in HDP.  That is, in DHP the target value for the action network is 

a vector, while in HDP it is a scalar. 

State resetting was used here to provide the excitation conditions needed to get 

parameter convergence in the critic and action networks.  Once these parameters are 

known, the H-infinity controller has been found.  Then, one can use the parameters of 

the control action network as the final parameters of the controller in any on-line control 

runs, without having to deliberately insert any excitation signals to the system. 

3.4 Conclusion  

In this chapter two on-line Approximate Dynamic Programming techniques are 

introduced to solve the discrete-time zero-sum game problem with continuous state and 

action spaces. Two of the ADP techniques, namely Heuristic Dynamic Programming, 

and Dual Heuristic Dynamic Programming are discussed. The derivation of the policies 

and the convergence of the HDP and DHP are provided. It is clear that the convergence 

to the optimal solution in the DHP algorithm is faster than the HDP, as gradient 

information, a vector, as used in DHP provides more information than scalar function 

information as used in HDP, therefore the number of points needed to solve the least-

squares problem in the DHP is less than that in HDP. On the other hand, in the HDP 

algorithm the system model is needed only to tune the action networks, while in the 
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DHP algorithm the system model is needed to tune both the critic network and the 

actions networks. 

The results presented herein are directly applicable in practice since they 

provide means to solve the H-infinity control problem, which is highly effective in 

feedback control systems design. A provided aircraft design example makes the point. It 

is interesting to see that when designing the H-infinity controller in forward time, one 

needs to provide an input signal that acts as a disturbance that is tuned to be the worst 

case disturbance in forward time. 

Once the H-infinity controller is found, one can use the parameters of the control 

action network as the final parameters of the controller, without having to deliberately 

inserting any disturbance signal to the system. Disturbance is from now is determined 

by the nature of the process and the surrounding environment. 

The results in this chapter can be summarized as a way to solve the linear 

quadratic discrete-time zero-sum game forward in time. The results presented here will 

be extended to the Q-learning case and other Action Dependent Heuristic Dynamic 

Programming (ADHDP) techniques in the next chapter. 
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CHAPTER 4 

ACTION DEPENDENT HEURISTIC DYNAMIC PROGRAMMING  

H-INFINTY CONTROL DESIGN  

 

In this chapter, adaptive critic approximate dynamic programming designs are 

derived to solve the discrete-time zero-sum game in which the state and action spaces 

are continuous. In which, the concept of the Q-function to the zero-sum games that 

continuous in the action and state spaces for linear discrete-time quadratic games is 

developed. This results in a forward-in-time reinforcement learning algorithm that 

converges to the Nash equilibrium of the corresponding zero-sum game. The results in 

this chapter can be thought of as a way to solve the Riccati equation of the well-known 

discrete-time H∞  optimal control problem forward in time. Two designs are presented. 

An Action Dependent Heuristic Dynamic Programming (ADHDP) algorithm to solve 

for the Q-function of the associated zero-sum game is presented, and this is a model free 

design, i.e. they system dynamics is not needed, which can be thought as adaptive 

control design.  In a second algorithm, an Action Dependent Dual Heuristic Dynamic 

Programming (ADDHP) is developed to solve the zero-sum game. Proofs of 

convergence for both forward dynamic programming schemes are presented.  

4.1 Q-Function Setup for Discrete-Time Linear Quadratic Zero-sum Games 

In this section, the discrete-time linear quadratic zero-sum game appearing in 

H∞  optimal control problems under full state measurement information structure is 
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considered. This problem has been solved in the literature using the dynamic 

programming principle and results in a backward-in-time recurrence relation for the 

game value function. In this chapter, the Bellman’s optimality principle for the zero-

sum-game is formulated using the concept of Q-functions  [8] [26] [25] instead of the 

standard value functions used elsewhere. Using Q-functions will allow us in the next 

section to apply forward-in-time dynamic programming and the result is a model-free 

tuning algorithm that is relevant to Adaptive control theory. 

Consider the following discrete-time linear system 

 
1

,

k k k k

k k

x Ax Bu Ew

y x

+ = + +

=
 (4.1)  

where n
x R∈ , py R∈ , 1m

k
u R∈  is the control input and 2m

k
w R∈  is the disturbance 

input. Also consider the infinite-horizon value function 

 2( ) min max T T T

k i i i i i ii ku w
V x x Rx u u w wγ

∞∗

=
 = + − ∑  (4.2) 

for a prescribed fixed value of γ.  In the H-infinity control problem, γ is an upper bound 

on the desired L2 gain disturbance attenuation  [7] [34]. 

It is desired to find the optimal control 
k

u
∗  and the worst case disturbance 

k
w

∗ , in 

which the infinite-horizon cost is to be minimized by player 1, 
k

u , and maximized by 

player 2, 
k

w . Here the class of strictly feedback stabilizing policies is considered [6]. 

Using the dynamic programming principle, the optimization problem in equation 

(4.1) and (4.2) can be written as 



 

 

 

46 

 
1

1

( ) min max( ( , , ) ( ))

max min( ( , , ) ( )).

k
k

kk

k k k k k
u w

k k k k
uw

V x r x u w V x

r x u w V x

∗ ∗
+

∗

+

= +

= +
 (4.3) 

Note that the minimax is equal to maximin since the linear system (4.1) is affine 

in input and the cost is quadratic. Assuming that the game has a value and is solvable, 

then in order to have a unique feedback saddle-point in the class of strictly feedback 

stabilizing policies, then the value function is quadratic in the state  

 ( ) T

k k k
V x x Px

∗ =  (4.4) 

where 0P ≥  and  the GARE solution and given as  

 

1

2
[ ]

T T T

T T T

T T T

I B PB B PE B PA
P A PA R A PB A PE

E PB E PE I E PAγ

−
   +

= + −    
−   

 (4.5) 

so the inequalities in (4.6) and (4.7) should be satisfied,  [7], 

 2 0TI E PEγ −− > , (4.6) 

 0T
I B PB+ >  (4.7) 

Q-functions have been applied to zero-sum games in the context of Markov 

Decision Problems  [24]. In this chapter, we extend the concept of Q-functions to zero-

sum games that are continuous in the state and action space as in (4.3). The optimal Q-

function, Q∗ , of the zero-sum game is then defined to be 

 
1( , , ) ( , , ) ( )

k k k k k k k

T
T T T T T T

k k k k k k

Q x u w r x u w V x

x u w H x u w

∗ ∗

+= +

   =    

, (4.8) 

where H  is the matrix associated with the solution of the GARE P , and is given as 
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1

2

1 1

2

( , , ) ( )

0 0

0 0

0 0

T

k k

k k k k k k

k k

T T T T

k k k k k k k k

TT T T T

k k k k

T T

k k k k

T T

k k k

x x

u H u r x u w V x

w w

x Rx u u w w x Px

x R x x A A x

u I u u B P B u

w I w w E E w

γ

γ

∗

+

+ +

   
    = +   
      

= + − +

          
          = +           
          −            k

 
 
 
  

 

where ( )
k k

u x Lx= , and ( )
k k

w x Kx=  so H can be written as  

 

2

T

xx xu xw

ux uu uw

wx wu ww

T
T T

T T T T

T T

T T T

T T T

T T T

H H H A B E A B E

H H H G LA LB LE H LA LB LE

H H H KA KB KE KA KB KE

A I A

G B I L K H L B

E K E

A PA R A PB A PE

B PA B PB I B PE

E PA E PB E PE Iγ

    
    

= +     
          

    
     = +       
        

 +


= +
−





 


 (4.9) 

where 

 
2

0 0

0 0

0 0

R

G I

Iγ

 
 =  
 − 

, 

and 

 T T

I

P I L K H L

K

 
  =    
  

 (4.10) 

with L ,  K  are the optimal strategies 
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The optimal Q-function ( , , )
k k k

Q x u w
∗  is equal to the value function ( )

k
V x

∗   

when the policies 
k

u , 
k

w  are equal to the optimal policies, this can be written as  

 

( ) min max ( , , )

min max

k k

k k

k k k k
u w

T
T T T T T T

k k k k k k
u w

V x Q x u w

x u w H x u w

∗ ∗=

   =    

. (4.11) 

Combining (4.11) with (4.8), one obtains the following recurrence relation 

 

{ }
{ }

1 1

11

1 1 1

1 1 1

min max ( , , ) min max ( , , ) min max ( , , )

max min ( , , ) max min ( , , )

max min ( , , ).

k k kk k k

k kk k

kk

k k k k k k k k k
u u uw w w

k k k k k k
u uw w

k k k
uw

Q x u w r x u w Q x u w

r x u w Q x u w

Q x u w

+ +

++

∗ ∗
+ + +

∗
+ + +

∗

= +

= +

=

 (4.12) 

To maximize with respect to the disturbance 
k

w , one needs to apply the first order 

necessary condition 

 
0

0 2 2 2

k

k

wx k wu k ww k

Q

w

H x H u H w

∗∂
=

∂

= + +

 (4.13) 

Therefore, the disturbance can be written as 

 1 ( )
k ww wx wu

w H H x H u
−= − + . (4.14) 

Similarly, to minimize with respect to the control input 
k

u  one has 

 
0

0 2 2 2

k

k

ux k uw k uu k

Q

u

H x H w H u

∗∂
=

∂

= + +

 (4.15) 

Hence, the controller can be written as 

 1( )
k uu ux k uw k

u H H x H w
−= − + . (4.16) 
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Note that applying the second order sufficiency conditions for both players one obtains 

 
0

0

uu

ww

H

H

>

<
 

which implies (4.6) and (4.7). 

Substituting equation (4.14) in (4.15) one has 

 1 1 1( ) ( )
k uu uw ww wu uw ww wx ux k

u H H H H H H H H x
∗ − − −= − − , (4.17) 

so the optimal control is a state feedback with gain  

 1 1 1( ) ( )
uu uw ww wu uw ww wx ux

L H H H H H H H H
− − −= − − . (4.18)  

Substituting the equation (4.16) in (4.13) one can find the optimal policy to the 

disturbance  

 1 1 1( ) ( )
k ww wu uu uw wu uu ux wx k

w H H H H H H H H x
∗ − − −= − − , (4.19) 

so the optimal disturbance is a state feedback with gain 

 1 1 1( ) ( )
ww wu uu uw wu uu ux wx

K H H H H H H H H
− − −= − − . (4.20) 

Equation (4.18) and (4.20) depend only on the H  matrix, and they are the main 

equations needed in the algorithm to be proposed to find the control and disturbance 

gains. The system model is not needed. 

In the convergence proof, different expressions for L  and K  are required. One 

can use (4.9) to obtain the gains (4.18) and (4.20) in terms of the P  matrix 

 

2 1 1

2 1

( ( ) )

( ( ) )

T T T T

T T T T

L I B PB B PE E PE I E PB

B PE E PE I E PA B PA

γ

γ

− −

−

= + − − ×

− −
 (4.21) 

 

2 1 1

1

( ( ) )

( ( ) ).

T T T T

T T T T

K E PE I E PB I B PB B PE

E PB I B PB B PA E PA

γ − −

−

= − − + ×

+ −
 (4.22) 
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Note that the inverse matrices in (4.21) and (4.22) exist due to (4.6) and (4.7). 

The policies (4.21) and (4.22) can be derived directly from (4.3) and requires the 

knowledge of the system model matrices, A , B  and E  unlike the policies derived in 

(4.18) and (4.20) which depends on H  only. Hence, as will be seen in the next section, 

this will allow the development of a model-free online tuning algorithm. 

Now, it will be shown how to develop the ADHDP and ADDHP algorithm using 

these constructions. 

4.2 Action dependent Heuristic Dynamic programming (ADHDP) 

In this section, an Q-Learning algorithm ADHDP to solve the discrete-time 

linear quadratic zero-sum game described in chapter 2 is developed. The Q-Learning 

algorithm was originally proposed in  [8] [25] to solve optimal control problems. The Q-

Learning algorithm has been applied earlier to solve the discrete-time Linear Quadratic 

Regulator (LQR) in optimal control theory  [31]. In the Q-Learning approach, a 

parametric structure is used to approximate the Q-function of the current control policy. 

Then the certainty equivalence principle is used to improve the policy of the action 

network. It can be thought of as a Q-learning algorithm in continuous state and action 

spaces. 

In this section, the Q-Learning approach is extended to discrete-time linear 

quadratic zero-sum games appearing in  [7], an the convergence proof of the presented 

algorithm is provided. This can be thought of as a Q-learning for zero-sum games that 

have continuous state and action spaces. 
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4.2.1 Derivation of the ADHDP for zero-sum games 

In the Q-Learning, one starts with an initial Q-function 0 ( , , ) 0Q x u w ≥  that is not 

necessarily optimal, and then finds 1( , , )Q x u w  by solving equation (4.23) with 0i =  as 

 
{ }

{ }

{ }

1 1

1

2

1 1 1

2

1

2

( , , )

min max ( , , ) ,

( )

( )

k k

i k k k

T T T

k k k k k k i k k k
u w

T T T

k k k k k k i k

T T T

k k k k k k i k k k

Q x u w

x Rx u u w w Q x u w

x Rx u u w w V x

x Rx u u w w V Ax Bu Ew

γ

γ

γ

+ +

+

+ + +

+

=

+ − +

= + − +

= + − + + +

 (4.23) 

then applying the following incremental optimization on the Q  function as 

 1 1min max ( , , ) min max
k kk k

T
T T T T T T

i k k k k k k i k k k
u uw w

Q x u w x u w H x u w+ +
   =      

According to(4.18) and (4.20) the corresponding state feedback policy updates are 

given by 

 

1 1 1

1 1 1

( ) ( ),

( ) ( ).

i i i i i i i i

i uu uw ww wu uw ww wx ux

i i i i i i i i

i ww wu uu uw wu uu ux wx

L H H H H H H H H

K H H H H H H H H

− − −

− − −

= − −

= − −
 (4.24) 

with 

 
( )

( )

i k i k

i k i k

u x L x

w x K x

=

=
 (4.25) 

Note that since ( , , )
i

Q x u w  is not initially optimal, the improved policies ( )
i k

u x  and 

( )
i k

w x  use the certainty equivalence principle. Note that to update the action networks, 

the plant model A  , B  and  E  matrices are not needed. 

This is a greedy policy iteration method that is based on the Q -function. In 

chapter 3, a greedy policy updates on V  is shown and this can now be recovered from 

(4.23) as 



 

 

 

52 

 
{ }

1 1

2

min max ( , , ) ( )

min max ( ) .

k k

k k

i k k k i k
u w

T T T

k k k k k k i k k k
u w

Q x u w V x

x Rx u u w w V Ax Bu Ewγ

+ +=

= + − + + +
 

Note that in equation (4.23), the Q -function is given for any policy u  and w . 

To develop solutions to (4.23)  forward in time, one can substitute (4.25) in (4.23) to 

obtain the following recurrence relation on  

2

1

1 1 1 1 1 1

( , ( ), ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

i k i k i k k k i k i k i k i k

T T T T T T

k i k i k i k i k i k

Q x u x w x x Rx u x u x w x w x

x u x w x H x u x u x

γ+

+ + + + + +

= + − +

      
 (4.26) 

that is used to solve for the optimal Q -function forward in time. 

The idea to solve for 1i
Q + , then once determined, one repeats the same process 

for 0,1,2,i = … . In this chapter, it is shown that 1 ,( , ( ), ( ) ( , )i k i k i k k k kQ x u x w x Q x u w
∗

+ →  

as i → ∞ , which means 
i

H H→ , 
i

L L→  and 
i

K L→ . 

In the ADHDP approach, the Q-function is generally difficult to obtain in 

closed-form except in special cases like the linear system (4.1) . Therefore, in general, a 

parametric structure is used to approximate the actual ( , , )
i

Q x u w . Similarly, parametric 

structures are used to obtain approximate closed-form representations of the two action 

networks ˆ( , )u x L  and ˆ ( , )w x K . Since in this chapter linear quadratic zero-sum games 

are considered, the Q-function is quadratic in the state and the policies, i.e. (4.8). 

Moreover, the two action networks are linear in the state, i.e. (4.17) and (4.19). 

A natural choice of these parameter structures is given as 

 ˆ ( )
i i

u x L x= , (4.27) 

 ˆ ( )
i i

w x K x= , (4.28) 
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ˆ ( , ) T

i i

T

i

Q z h z H z

h z

=

=
, (4.29) 

where 
T

T T Tz x u w =    1 2n m m q
z R

+ + =∈ , 2 2 2

1 1 2 2 3 1( , , , , , , , )q q q qz z z z z z z z z z−= … …  is the 

Kronecker product quadratic polynomial basis vector  [21], and ( )h v H=  with ( )v ⋅  a 

vector function that acts on q q×  matrices and gives a ( 1)
2 1q q+ ×  column vector. The 

output of ( )v ⋅  is constructed by stacking the columns of the squared matrix into a one-

column vector with the off-diagonal elements summed as 
ij ji

H H+ ,  [21]. In the linear 

case, the parametric structures (4.27) (4.28) and (4.29) give an exact closed-form 

representation of the functions in (4.26). Note that (4.27) and (4.28) are updated using 

(4.23). 

To solve for 1i
Q +  in (4.26), the right hand side of (4.26) is written as 

 

2

1 1 1

ˆ ˆ ˆ ˆ( ( ), ) ( ) ( ) ( ) ( )

ˆ ˆ( , ( ), ( )

T T T

k k i k k i k i k i k i k

i k i k i k

d z x H x Rx u x u x w x w x

Q x u x w x

γ

+ + +

= + − +
 (4.30) 

which can be thought of as the desired target function to which one needs to fit 

1
ˆ ( , )

i
Q z h +  in least-squares sense to find 1i

h +  such that 

 1 ( ) ( ( ), )T

i k k i
h z x d z x h+ = . (4.31) 

The parameter vector 1i
h +  is found by minimizing the error between the target value 

function (4.30) and (4.29) in a least-squares sense over a compact set Ω , 

 
1

2

1 1arg min{ | ( ) ( ( ), ) | }
i

T

i i k k i k
h

h h z x d z x h dx
+

+ +

Ω

= −∫ . (4.32) 

Solving the least-squares problem one obtains 
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1

1 ( ) ( ) ( ) ( ( ), )T

i k k k k ih z x z x dz z x d z x h dx

−

+

Ω Ω

 
=  
 
∫ ∫  (4.33) 

Note however that ( )
k

z x  is 

 

( ) ( )

( ) ( )

( )

ˆ ˆ( ) ( ) ( )
T

T TT

k k i k i k

T
T TT

k i k i k

T
T

T T T

k i i

z x x u x w x

x L x K x

x I L K

 =
 

 =
 

 =  

, (4.34) 

from (4.34) one can note that ˆ
i

u  and ˆ
i

w   are linearly dependent on 
k

x , see (4.27)  and 

(4.28), therefore 

 ( ) ( )T

k k k
z x z x dx

Ω

∫  

is never invertible, which means that the least-squares problem (4.32), (4.33) will never 

be solvable. To overcome this problem one, exploration noise is added to both inputs in 

(4.25) to obtain 

 
1

2

ˆ ( )

ˆ ( )

ei k i k k

ei k i k k

u x L x n

w x K x n

= +

= +
, (4.35) 

where 1 1(0, )n σ  and 2 2(0, )n σ  are zero-mean exploration noise with variances 2

1σ  and 

2

2σ  respectively, therefore ( )
k

z x  in (4.34) becomes  

 1 1

2 2

ˆ( ) ( )

ˆ ( )

k k k

k ei k i k k i k k

ei k i k k i k k

x x x

z x u x L x n L x n

w x K x n K x n

       
       = = + = +       
       +       

0

. 

Evaluating (4.31) at several points 1, 2, 3,p p p ∈Ω… , one has 

 1

1 ( )T

i
h ZZ ZY

−

+ =  (4.36) 

with 
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[ ( 1) ( 2) ( )]

[ ( ( 1), ) ( ( 2), ) ( ( ), )] .T

i i i

Z z p z p z pN

Y d z p h d z p h d z pN h

=

=

�

�
 

It is not enough to add the noise to the control and disturbance inputs, In order the 

algorithm to converge to optimal solution,  the target in equation (4.30)  is modified  to 

become 

 

2

1 1 1

ˆ ˆ ˆ ˆ( ( ), ) ( ) ( ) ( ) ( )

ˆ ˆ( , ( ), ( )

T T T

k k i k k ei k ei k ei k ei k

i k i k i k

d z x H x Rx u x u x w x w x

Q x u x w x

γ

+ + +

= + − +
 (4.37) 

with ˆ
i

u  and ˆ
i

w  used for 
i

Q  instead of  ˆ
ei

u  and ˆ
ei

w . The invertiblity of the matrix in 

(4.36) is therefore guaranteed by the excitation condition. This can be written as  

 

2

1 1 1 1 1 1

ˆ ˆ ˆ ˆ( ( ), ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

k k i k k ei k ei k ei k ei k

T
T T T T T T

k i k i k i k i k i k

d z x H x Rx u x u x w x w x

x L x K x H x L x K x

γ

+ + + + + +

= + − +

      

 

where  

 1
ˆ ˆ( )

k k ei k ei
x Ax Bu x Ew+ = + +  

4.2.2 Online implementation of the ADHDP Algorithm 

The least-squares problem in (4.36) can be solved in real-time by collecting 

enough data points generated from ( , )
k i

d z h  in (4.37). This requires one to have 

knowledge of the state information
k

x , 1k
x +  as the dynamics evolve in time, and also of 

the reward function 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )T T T

k k k ei k ei k ei k ei k
r z x Rx u x u x w x w xγ= + −  and 

i
Q .  This 

can be determined by simulation, or in real-time applications, by observing the states 

on-line.  Therefore, in the Q-Learning algorithm, the model of the system is not needed 

to update the critic network and the action network. This results in a model-free tuning 

algorithm suitable for adaptive control application. 
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To satisfy the excitation condition of the least-squares problem, one needs to 

have the number of collected points N  at least ( 1) / 2N q q≥ + ,where 1 2q n m m= + +  is 

the number of states and both policies, control and disturbance. In online 

implementation of the least-squares problem, Y  and Z  matrices are obtained in real-

time as 

 
[ ]

[ ]

1 2 1

1 2 1

( ) ( ) ( )

( ( ), ) ( ( ), ) ( ( ), ) .

k N k N k

T

k N i k i k i

Z z x z x z x

Y d z x h d z x h d z x h

− − − − −

− − − −

=

=

�

�
 (4.38) 

One can also solve (4.38) recursively using the well-known recursive least-

squares technique. In that case, the excitation condition is replaced by the persistency of 

excitation condition  

 0 1

1

1 T

k t k t

m

I z z I
α

ε ε
α

− −
=

≤ ≤∑  

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε  and 1ε  positive integers and 0 1ε ε≤ . The 

recursive least-squares algorithm is given as 

 

1

1 1

( ) ( , ) ( 1)

( 1) ( )
( ) ( 1)

1 ( 1)

( 1) ( 1)
( ) ( 1)

1 ( 1)

T

i k i k i

i k i
i i T

k i k

T

i k k i
i i T

k i k

e t d z h z h t

t z e t
h t h t

z t z

t z z t
t t

z t z

+

+ +

= − −

Γ −
= − +

+ Γ −

Γ − Γ −
Γ = Γ − −

+ Γ −

 

where i  is the policy update index, t  is the index of the recursions of the recursive 

least-squares, and k  is the discrete time. Γ  is the covariance matrix of the recursion 

and ( )e t  is the estimation error of the recursive least-squares. Note that (0)
i

Γ  is a large 
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number and 1(0)
i i+Γ = Γ . The on-line Q-Learning algorithm (ADHDP) developed in this 

chapter is summarized in the flowchart shown in Figure 4.1. 
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Figure 4.1. The ADHDP algorithm. 

The ADHDP algorithm for zero-sum games follows by iterating between (4.23) 

and (4.38). In the remaining of this section, it will be shown that this policy iteration 
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technique will cause 
i

Q  to converge to the optimal Q∗ . Note that the model of the 

system is not required to update the actions networks and the critic network. 

4.2.3 Convergence of the ADHDP Algorithm 

The proof of convergence for the proposed Q-Learning algorithm, i.e. ADHDP 

algorithm, for zero-sum games converges to the optimal policies is provided. 

Lemma 4.1 Iterating on equations (4.23), and (4.38) is equivalent to 

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

. (4.39) 

Proof: Since equation (4.37) is equivalent to 

 ( ( ), )

T

T

k k i k i i i i i i i

i i i i i i

A B E A B E

d z x h z v G L A L B L E H L A L B L E

K A K B K E K A K B K E

    
    

= × +    
         

, 

then using the Kronecker products  [21], the least-squares (4.38) becomes 

 1

1 ( ) ( )

T

T

i i i i i i i i

I
i i i i i i

A B E A B E

h ZZ ZZ v G L A L B L E H L A L B L E

K A K B K E K A K B K E

−
+

    
    

= × +    
         

�������
. 

where v  is the vectorized function in Kronecker products. 

Since the matrix 1i
H +  reconstructed from 1i

h +  is symmetric, iterating on 
i

h  is 

equivalent to 

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

  
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Lemma 4.2 The matrices 1i
H + , 1i

L +  and 1i
K +  can be written as 

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

 (4.40) 

 

2 1 1

1

2 1

( ( ) )

( ( ) ),

T T T T

i i i i i

T T T T

i i i i

L I B PB B PE E PE I E PB

B PE E PE I E P A B P A

γ

γ

− −

+

−

= + − − ×

− −
 (4.41) 

 

2 1 1

1

1

( ( ) )

( ( ) ).

T T T T

i i i i i

T T T T

i i i i

K E PE I E PB I B PB B PE

E PB I B PB B P A E P A

γ − −

+

−

= − − + ×

+ −
 (4.42) 

where 
i

P  is given as 

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

. (4.43) 

Proof: Equation (4.39) can be written as 

 

[ ]

1

.

T

i i i i i i i i

i i i i i i

T

T T T

i i i i

T

i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

A I

G B I L K H L A B E

E K

+

   
   

= +    
   
   

   
    = +      
     

 

Since 

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

, 

then it follows that 
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 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

 

Using equations (4.24) and (4.40), one obtains (4.41) and (4.42).  

Lemma 4.3: Iterating on 
i

H  is similar to iterating on  
i

P  as  

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (4.44) 

with 
i

P  defined as in (4.43). 

Proof: From (4.43), one has  

 1 1 1 1 1

1

T T

i i i i i

i

I

P I L K H L

K

+ + + + +

+

 
  =    
  

, 

and using (4.40), one obtains  

 
1 1 1 1

2

1

2

1 1 1 1 1 1 1 1( ) ( )

T T T

i i i

T T T T T

i i i i i i i

T T T

i i i i

T T T T T T T

i i i i i i i i i

A P A R A PB A PE I

P I L K B P A B PB I B PE L

E P A E PB E PE I K

R L L K K A L B K E P A BL EK

γ

γ

+ + + +

+

+ + + + + + + +

 +  
    = +    
   −   

= + − + + + + +

 (4.45) 

Using (4.41), and (4.42), one has 

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
.  

Theorem 4.1: Assume that the linear quadratic zero-sum game is solvable and has a 

value under the state feedback information structure. Then, iterating on equation (4.39) 

in Lemma 4.1, with 0 0H = ,  0 0L =  and 0 0K =  converges with 
i

H H→ , where H  is 

corresponds to ( , )
k k k

Q x u w
∗  and  
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 min max ( , , ) max min ( , , )
u uw w

xPx Q x u w Q x u w
∗ ∗= =  

with  P  solving the GARE (4.5). 

 

Proof: In  [3] it is shown that iterating on the algebraic Riccati equation (4.44) with 

0 0P =  converges to P  that solves (4.5). Since Lemma 4.3 shows that iterating on 
i

H  

matrix is equivalent to iterating on 
i

P , then as i → ∞  

 
2

T T T

T T T

i

T T T

A PA R A PB A PE

H B PA B PB I B PE

E PA E PB E PE Iγ

 +
 

→ + 
 − 

. 

hence from (4.9), and since from (4.43) 0 0H = ,  0 0L =  and 0 0K =  implies that 

0 0P = , one concludes that 
i

Q Q
∗→ .   

The proof of convergence of the ADHDP has been established assuming the 

least-squares problem (4.38) is solved completely; i.e. the excitation condition is 

satisfied. Note that this implies that ADHDP can be interpreted as solving the algebraic 

Riccati equation of the zero-sum game without requiring the plant model. 

4.3 Action Dependent Dual Heuristic Dynamic Programming (ADDHP) 

In this section, an ADDHP algorithm is developed to solve the discrete-time 

linear system zero-sum game described in chapter 2. The ADDHP algorithm has been 

applied earlier to solve the discrete-time Linear Quadratic Regulator (LQR) in optimal 

control theory  [31]. In the ADDHP approach, a parametric structure is used to 

approximate the co-state function, i.e. the gradient of the cost-to-go function, of the 

current control policies.  As in the ADHDP case, the certainty equivalence principle is 

used to improve the policies of the actions networks. 
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In this section, we extend the ADDHP approach to linear quadratic discrete-time 

zero-sum games appearing in  [7], and prove the convergence of the presented 

algorithm.  

4.3.1 Derivation of the ADDHP algorithm 

Consider the system (4.1) and the cost-to-go function (4.2). In the ADDHP 

approach, the critic network approximates the Q co-state ( )
k

zλ  forward in time. In the 

zero-sum game ADDHP algorithm developed in this chapter, the following recurrence 

relation is derived to solve for the Q co-state forward in time. 

 

1
1

1 1 1

1 1

1

1 1

1

1

( )
( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

i k
i k

k

T
T T T

i k i k i k

k k k

T

k i k k

k k k

T

k i k k

k k k

k i k

k

Q z
z

z

Q z Q z Q z

x u w

zr z Q z

x z x

zr z Q z

u z u

r z Q z

u z

λ +
+

+ + +

+ +

+

+ +

+

+

∂
=

∂

      ∂ ∂ ∂
 =      

∂ ∂ ∂       

∂   ∂ ∂
+    

∂ ∂ ∂   

∂   ∂ ∂
= +    

∂ ∂ ∂   

∂ ∂
+

∂ ∂
1

1

T

k

k k

z

w

+

+

 
 
 
 
 
 
 
    ∂    
 ∂    

 (4.46) 

The recurrence relation (4.46) is obtained by differentiating the recurrence 

relation on the Q- function, which given as follows  

 

2

1

1 1 1 1 1 1

( , ( ), ( )) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

i k i k i k k k i k i k i k i k

T T T T T T

k i k i k i k i k i k

Q x u x w x x Rx u x u x w x w x

x u x w x H x u x u x

γ+

+ + + + + +

= + − +

      
 

Let 
T

T T Tz x u w =   , Equation (4.46) can be rewritten as 



 

 

 

63 

 

1
1

1
1 1

1
1

( )
( )

( )
( ) ( ) .

( )
( )

Tk k
i k

k k

Tk k
i k i k

k k

Tk k
i k

k k

r z z
z

x x

r z z
z z

u u

r z z
z

w w

λ

λ λ

λ

+
+

+
+ +

+
+

  ∂ ∂
+  

∂ ∂  
  ∂ ∂ = +  
 ∂ ∂ 
 

 ∂ ∂ 
+   ∂ ∂  

 (4.47) 

The improvement of the actions networks requires that 

 1
1

( , ( ), ( ))
( ) 0

( )

Tk i k i k k
i k

i k k

r x u x w x z
z

u x u
λ +

+

 ∂ ∂
+ = 

∂ ∂ 
, (4.48) 

 1
1

( , ( ), ( ))
( ) 0

( )

Tk i k i k k
i k

i k k

r x u x w x z
z

w x w
λ +

+

 ∂ ∂
+ = 

∂ ∂ 
. (4.49) 

Combining (4.47), (4.48) and (4.49), one has 

 

1
1

1

( , ( ), ( ))
( )

( ) 0

0

Tk i k i k k
i k

k k

i k

r x u x w x z
z

x x

z

λ

λ

+
+

+

  ∂ ∂
+  

∂ ∂  
 =
 
 
  
 

. (4.50) 

Hence, the ADDHP algorithm can be summarized as the successive iteration 

between (4.47) on one hand, and (4.48), (4.49) on the other. This results in a successive-

improvement of the Q function derivatives sequence { }| 1, 2,i iλ = …  as the player 

policies are generated. In this chapter, it will be shown that the ADDHP algorithm 

converges. When converged, equation (4.50) becomes 
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1
1

( , ( ), ( ))
( )

( ) 0

0

Tk i k i k k
k

k k

k

r x u x w x x
x

x x

z

λ

λ

∗ ∗ ∗
∗ +

+∗ ∗

∗ ∗

  ∂ ∂
+  

∂ ∂  
 =
 
 
 
 

, 

the top element is known as the co-state equation in Theorem 6.3 in  [6]. 

In ADDHP, a parametric structure ˆ( , )
i

z hλ  is used to approximate the actual 

( )
i

zλ . Similarly, parametric structures are used to obtain approximate closed-form 

representations of the two action networks ˆ( , )u x L  and ˆ ( , )w x K . Since in this chapter 

the zero-sum game considered is linear and quadratic, it is well-known that  Q co-state 

and the action networks are all linear in the state.  Therefore a natural choice of these 

parameter structures is given as 

 ˆ( , ) T

i i

z
z h h

z
λ

∂
=

∂
, (4.51) 

 ˆ ( )
i i

u x L x= , (4.52) 

 ˆ ( )
i i

w x K x= , (4.53) 

where 
T

T T Tz x u w =    1 2n m m q
z R

+ + =∈ , 2 2 2

1 1 2 2 3 1( , , , , , , , )q q q qz z z z z z z z z z−= … …  is the 

Kronecker product quadratic polynomial basis vector  [21], and ( )h v H=  with ( )v ⋅  a 

vector function that acts on q q×  matrices and gives a ( 1)
2 1q q+ ×  column vector. The 

output of ( )v ⋅  is constructed by stacking the columns of the squared matrix into a one-

column vector with the off-diagonal elements summed as 
ij ji

H H+ ,  [21].. The 
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parametric structures (4.51) (4.52) and (4.53) give an exact closed-form representation 

of the functions in (4.47) to (4.50). 

Using the parameter structures (4.52) and (4.52) along with the certainty 

equivalence principle, it can be easily shown form (4.18) and (4.20)  that the parameters 

of the actions networks are updates as. 

 

1 1 1

1 1 1

( ) ( ),

( ) ( ).

i i i i i i i i

i uu uw ww wu uw ww wx ux

i i i i i i i i

i ww wu uu uw wu uu ux wx

L H H H H H H H H

K H H H H H H H H

− − −

− − −

= − −

= − −
 (4.54) 

Substituting (4.54) in (4.51) given the system model (4.1) , one has 

 1( , ) 2

T

k i k i i i i k

i i i

A B E

d z P Gz L A L B L E H z

K A K B K E

+

 
 = +  
  

. (4.55) 

Using the Kroncker product notation  [21], equation (4.34) can be rewritten as 

 ( , ) ( )

T

T

k i i i i i i i i

i i i i i i

A B E A B E
z

d z h v G L A L B L E H L A L B L E
z

K A K B K E K A K B K E

   
∂   = +     ∂

      

. (4.56) 

Equation (4.56) can be thought of as the desired target function to which one 

needs to fit 1
ˆ( , )

i
z hλ +  such that 1

ˆ( , ) ( , )
i k i

z h d z hλ + = . 

The parameter vector 1i
h +  is found by minimizing the error between the target 

value function (4.56) and (4.51) in a least-squares sense over a compact set, Ω , 

 
1

2

1 1

( )
arg min {| ( ( , ) | }

i

T
T k

i i k k i
h

z x
h h d z x h dx

z+

+ +

Ω

∂
= −

∂∫ . (4.57) 

This least square problem can be solved as  
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1

1

( )) ,

T

i

T

T

i

z z
h dx

z z

A B E A B E
z z

v G LA LB LE H LA LB LE dx
z z

KA KB KE KA KB KE

−

+

Ω

Ω

 ∂ ∂
= × 

∂ ∂ 

   
∂ ∂    +    ∂ ∂

      

∫

∫

, (4.58) 

note that z  is  

 

( ) ( )

( ) ( )

( )

ˆ ˆ( ) ( )
T

T TT

k i k i k

T
T TT

k i k i k

T
T

T T T

k i i

z x u x w x

x L x K x

x I L K

 =
 

 =
 

 =  

, (4.59) 

from (4.59) one can note that ˆ
i

u  and ˆ
i

w   are linearly dependent on 
k

x , so T
zz  will never 

be invertible, which means that the least-square problem (4.57), (4.58) will never be 

solvable. 

To solve this problem one can we redefine z as  

  

( ) ( )

( ) ( )1 2

ˆ ˆ( ) ( )
T TT

k ei k ei k

T
T TT

k i k k i k k

z x u x w x

x L x n K x n

 =
 

 = + +
 

,  

where  

 
1

2

ˆ ( )

ˆ ( )

ei k i k k

ei k i k k

u x L x n

w x K x n

= +

= +
, (4.60) 

Evaluation (4.58) at several points 1, 2, 3,p p p ∈Ω… , one has 

 1

1 ( )T

i
h ZZ ZY

−

+ =  (4.61) 

with 
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( 1) ( 2) ( )
[ ]

[ ( ( 1), ) ( ( 2), ) ( ( ), )] .T

i i i

z p z p z pN
Z

z z z

Y d z p h d z p h d z pN h

∂ ∂ ∂
=

∂ ∂ ∂

=

�

�

 

The invertiblity of the matrix in (4.60) is therefore guaranteed by the excitation 

condition  

4.3.1 Online Implementation of the ADDHP algorithm 

The least-squares problem in (4.57) can be solved in real-time by collecting 

enough data points generated from ( , )
k i

d z h  in (4.56). This requires having access to 

the state and the policies information
k

z , 1k
z +  as the dynamics evolve in time and 

gradients of the reward function 
k

r x∂ ∂ , 
i

r u∂ ∂ , 
i

r w∂ ∂ , as well as the plant model A  

and B . Therefore, in the ADDHP algorithm developed in this chapter for the zero-sum 

game, the plant model is required to update the critic network. 

To satisfy the excitation condition of the least squares problem, one needs to 

have the number of collected points N  at least N q≥ . Therefore, after several time 

steps that are enough to guarantee the excitation condition, one has the following least-

squares problem 

 1

1 ( )T

i
h ZZ ZY

−

+ = , (4.62) 

where 

 
1 2 k-1

1 2 k-1

[ ]

[ ( , ) ( , ) ( , )] .

k N k Nz z z

T T T T

k N i k N i i

z z z
Z

z z z

Y d z h d z h d z h

− − − −

− − − −

∂ ∂ ∂
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∂ ∂ ∂

=

�
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One can solve (4.62) recursively using the well-known recursive least squares 

technique. In that case, the excitation condition is replaced with the persistency of 

excitation condition 

 0 1

1

1
T

k t k t

m

z z
I I

x z

α

ε ε
α

− −
=

∂ ∂
≤ ≤

∂ ∂
∑  

for all 0k α> , 0α α> , with 0 1ε ε≤ , 0ε  and 1ε  are positive integers and 0 1ε ε≤ . 

The recursive least-squares algorithm is given as 

 

1

1

1 1

1

( ) ( , ) ( 1)

( ) ( 1) ( 1) ( 1) ( )

( ) ( 1) ( 1) ( 1) ( 1)

T

k
i x k i i

T

k k k
i i i i i

T T

k k k k
i i i i i

z
e t d x p p t

z

z x x
p t p t t I t e t

z x x

z z z z
t t t I t t

z z z z

+

−

+ +

−

∂
= − −

∂

 ∂ ∂ ∂
= − + Γ − + Γ − 

∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
Γ = Γ − − Γ − + Γ − Γ − 

∂ ∂ ∂ ∂ 

 

where i  is the policy update index, t  is the index of the recursions of the recursive 

least-squares, and k  is the discrete time. Γ  is the covariance matrix of the recursion 

and ( )e t  is the estimation error of the recursive least-squares. Note that (0)
i

Γ  is a large 

number, and 1(0)
i i+Γ = Γ . 

The developed ADDHP algorithm is summarized in the flowchart shown in 

Figure 4.2.  
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Figure 4.2.The ADDHP algorithm  

The ADDHDP algorithm for zero-sum games follows by iterating between 

(4.54) and (4.62). In the remaining of this section, it will be shown that this policy 

iteration technique will cause 
i

Q  to converge to the optimal Q∗ . Note that the model of 

the system is required to update the critic network. 
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4.3.3 Convergence of the ADDHP Algorithm 

Now the convergence proof of the proposed ADDHP algorithm for zero-sum 

games is presented. 

Lemma 4.4: Iterating on equations (4.54), and (4.62) is equivalent to 

 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

, (4.63) 

under the assumption that the system is sufficiently excited. 

Proof: The least-squares problem is defined in equation (4.62) which is  

 1

1 ( )T

i
h ZZ ZY

−

+ = . 

Under the excitation condition assumption, the inverse operator exists. 

Substituting (4.56) in (4.62), one has  

 1

1 ( ) ( )

T

T T

i i

A B E A B E

h ZZ ZZ v G LA LB LE H LA LB LE

KA KB KE KA KB KE

−

+

   
   = +    
      

, (4.64) 

which can be written as  

 1 ( )

T

i i

A B E A B E

h v G LA LB LE H LA LB LE

KA KB KE KA KB KE

+

   
   = +    
      

, 

where v  is the vectorized function in the Kronecker product. 

Since the matrix 1i
H +  which reconstructed from 1i

h +  is symmetric, iteration on 

i
h  is equivalent to the following iteration 
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 1

T

i i i i i i i i

i i i i i i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

+

   
   

= +    
   
   

, (4.65) 

which is equivalent to (4.63).   

Lemma 4.5 The matrices 1i
H + , 1i

L +  and 1i
K +  can be written as 

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

 (4.66) 

 

2 1 1

1

2 1

( ( ) )

( ( ) ),

T T T T

i i i i i

T T T T

i i i i

L I B PB B PE E PE I E PB

B PE E PE I E P A B P A

γ

γ

− −

+

−

= + − − ×

− −
 (4.67) 

 

2 1 1

1

1

( ( ) )

( ( ) ).

T T T T

i i i i i

T T T T

i i i i

K E PE I E PB I B PB B PE

E PB I B PB B P A E P A

γ − −

+

−

= − − + ×

+ −
 (4.68) 

where 
i

P  is given as 

 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

. (4.69) 

Proof: Equation (4.66) can be written as 

 

[ ]

1

.

T

i i i i i i i i

i i i i i i

T

T T T

i i i i

T

i

A B E A B E

H G L A L B L E H L A L B L E

K A K B K E K A K B K E

A I

G B I L K H L A B E

E K

+

   
   

= +    
   
   

   
    = +      
     

 

Since 
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 T T

i i i i i

i

I

P I L K H L

K

 
  =    
  

, 

then it follows that 

 1

2

.

T T T

i i i

T T T

i i i i

T T T

i i i

A P A R A PB A PE

H B P A B PB I B PE

E P A E PB E PE Iγ
+

 +
 

= + 
 − 

 

Using equations (4.54) and (4.66), one obtains (4.67) and (4.68).  

Lemma 4.6: Iterating on 
i

H  is similar to iterating on  
i

P  as  

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
 (4.70) 

with 
i

P  defined as in (4.69). 

Proof: From (4.69), one has  

 1 1 1 1 1
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i i i i i

i
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P I L K H L
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+ + + + +

+

 
  =    
  

, 

and using (4.66), one obtains  

 
1 1 1 1

2

1

2

1 1 1 1 1 1 1 1( ) ( )

T T T

i i i

T T T T T

i i i i i i i

T T T

i i i i

T T T T T T T

i i i i i i i i i

A P A R A PB A PE I
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 +  
    = +    
   −   

= + − + + + + +

 (4.71) 

Using (4.41) and (4.42), one has 

 

1

1 2
[ ]

T T T

T T T i i i

i i i i T T T

i i i

I B PB B PE B P A
P A P A R A PB A PE

E PB E PE I E P Aγ

−

+

   +
= + −    

−   
.  
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Theorem 4.2: Assume that the linear quadratic zero-sum game is solvable and has a 

value under the state feedback information structure. Then, iterating on equation (4.63), 

with 0 0H = ,  0 0L =  and 0 0K =  converges. Moreover 
i

Q Q
∗→  and  

 min max ( , , ) max min ( , , )
u uw w

xPx Q x u w Q x u w
∗ ∗= =  

with  P  solving the algebraic Riccati equation (4.5). 

 

Proof: In   [3] it is shown that iterating on the algebraic Riccati equation (4.70) with 

0 0P =  converges to P  that solves (4.5). Since Lemma 4.6 shows that iterating on 
i

H  

matrix is equivalent to iterating on 
i

P , then as i → ∞  

 
2

T T T

T T T

i

T T T

A PA R A PB A PE

H B PA B PB I B PE

E PA E PB E PE Iγ

 +
 

→ + 
 − 

. 

hence from (4.69) 0 0H = ,  0 0L =  and 0 0K =  implies that 0 0P = , one concludes that 

i
Q Q

∗→ .  

The convergence proof has been just established for the ADDHP algorithm 

assuming the least-squares problem (4.62) is solved completely; i.e. the exciting 

condition is satisfied. Note that an easy way to initialize the algorithm in Figure 2 is by 

selecting 0 0H = , 0 0u =  and 0 0w = .  

In the next section, the developed ADHDP and ADDHP algorithms are used to 

derive suboptimal H∞  controllers by the forward time solution technique.  The practical 

relevance of the developed algorithms will thus become clear. 
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4.4 Online ADP H∞ Autopilot Controller Design for an F-16 Aircraft 

In this design application, the zero-sum game that corresponds to the H∞  

controller problem is solved for an F-16 aircraft autopilot design. The H-infinity 

approach is used, which is enabled by the ADP procedures in this chapter.  H-infinity 

design has been proven highly effective in the design of feedback control systems with 

robustness and disturbance rejection capabilities  [15]. 

The F-16 short period dynamics has three states given as 

 

e

x q

α

δ

 
 =  
  

 

where α  is the angle of attack, q  is the pitch rate and 
e

δ  is the elevator deflection 

angle. The discrete-time plant model of this aircraft dynamics is a discretized version of 

the continuous-time one given in  [4].  We used standard zero-order-hold discretization 

techniques explained in  [14] and easily implemented in the MATLAB control systems 

toolbox to obtain the sampled data plant 

 

0.906488 0.0816012 0.0005

0.0741349 0.90121 0.000708383

0 0 0.132655

A

− 
 = − 
  

 

 

0.00150808 0.00951892

0.0096 0.00038373

0.867345 0

B E

−   
   = − =   
      

. (4.72) 

with sampling time 0.1T = .  In this H∞  design problem, the disturbance attenuation is 

1γ = . 
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4.4.1 H∞  Solution Based on the Riccati Equation 

Since the ADP designs developed in this chapter to solve the H∞  controller 

design problem are based on an iterative form of the Riccati equation, in Figure 4.3 the 

convergence of 
i

P  to the solution of the GARE (4.5) is shown when done offline with 

0 0P = . 
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Figure 4.3. The convergence of 

i
P  by iterating on Riccati equation 

It is noticed from Figure 4.3 that for the discretized aircraft dynamics (4.72), 
i

P  

converges after at least 100 iterations with 1γ =  to 

 

15.5109 12.4074 0.0089

12.4074 15.5994 0.0078

0.0089 0.0078 1.0101

P

− 
 = − 
 − − 

 (4.73) 

the policies that associated with the are  

 [ ]0.0733 0.0872 0.0661L = −  
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 [ ]0.1476 0.1244 0K =  

Note that 0P ≥  and hence from  [7] this implies that 

 20

0

T T

k k k k

k

T

k k

k

x Qx u u

w w

γ

∞
∗ ∗

=
∞

=

+

≤
∑

∑
 (4.74) 

for all finite energy disturbances, i.e. 

 
0

T

k k

k

w w
∞

=

∑  

bounded, and hence ( )
k

u x
∗  has the well-known robustness and disturbance rejection 

capabilities of H∞  control. 

Next, the ADP algorithms developed in this chapter are used to design an H∞  

controller for the discretized aircraft dynamics (4.72) with 1γ =  in forward time. 

4.4.2 ADHDP based H∞  Autopilot Controller Design 

In this part, the ADHDP algorithm developed in Section 4.2 of this c is applied 

to solve for the H∞  autopilot controller forward in time. The recursive least-squares 

algorithm is used to tune the parameters of the critic network on-line. The parameters of 

the actions networks are updated according to (4.23). 

In this ADHDP design, the states of the aircraft are initialized to be 

[ ]0 10 5 2x = − . Any values could be selected. The parameters of the critic network 

and the actions networks are initialized to zero. Following this initialization step, the 

aircraft dynamics are run forward in time and tuning of the parameter structures is 

performed by observing the states on-line. 
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In Figures 4.4 and 4.5, the states and the inputs to the aircraft are shown with 

respect to time.  In order to maintain the excitation condition, one can use several 

standard schemes, including covariance resetting, state resetting, or injection of a small 

probing noise signal.  In this example, probing noise is injected to the control and 

disturbance policies. Hence the persistency of excitation condition required for the 

convergence of the recursive least-squares tuning, i.e. avoiding the parameter drift 

problem, will hold. 
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Figure 4.4. States trajectories of the ADHDP algorithm. 
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Figure 4.5. The control and disturbance in the ADHDP. 

In Figures 4.6, 4.7 and 4.8, the convergence of P , which is found from the  

parameters ( )
i

H  of the critic network and action networks as in (4.10), and the actions 

networks is shown. As expected, 
i

P  converges to P  in (4.73) that solves the GARE 

equation. It takes the critic network 4000 time steps to converge to P . The reason for 

this is that 40 readings are required to tune the critic network at each update to solve for 

each 
i

H . Since as shown in Figure 4.3, the action networks require to be updated at 

least 100 times, this implies that the over all time steps required for the convergence of 

the ADHDP algorithm are about 4000 time steps. It is important to note that if the 

problem is solved using the least-square less time step is needed for the algorithm  to 

converge to the solution. 

It is important to realize that  here we used probing noise, see (4.57), which is 

injected to the control and disturbance inputs, to determine the optimal solution for the 

game problem, as given by the converged  P  associated with the converged critic 
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network parameters in Figure 4.6 and action network parameters in Figures 4.7 and 4.8.  

Probing noise provides the excitation conditions needed to get parameter convergence.  

Once these parameters are known, the H∞  controller has been found.  Then, one can 

use the parameters of the control action network as the final parameters of the controller 

in any on-line control runs, without having to deliberately insert any excitation signals 

to the system. 
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Figure 4.6. Convergence of 

i
P . in the ADHDP. 



 

 

 

80 

0 2000 4000 6000 8000
-0.05

0

0.05

0.1

0.15

The policies update no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f 
th

e
 d

is
tu

rb
a
n
c
e
 p

o
lic

y
K

11

K
12

K
13

 
Figure 4.7. Convergence of the disturbance action network parameters in the ADHDP. 

0 2000 4000 6000 8000
-0.1

-0.05

0

0.05

0.1

The policies update no.

T
h
e
 c

o
n
v
e
rg

e
n
c
e
 o

f 
th

e
 c

o
n
tr

o
l 
p
o
lic

y

L
11

L
12

L
13

 
Figure.4.8. Convergence of the control action network parameters in the ADHDP. 

Next, the ADDHP algorithm developed in Section 4 is applied to this aircraft 

design problem. 
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4.4.3 ADDHP based H∞  Autopilot Controller Design 

In this part, the ADDHP algorithm developed in Section 4.3 of this chapter is 

applied to solve for the H∞  autopilot controller in forward time. The recursive least-

squares algorithm is used to tune the parameters of the critic network. The parameters 

of the actions networks are updated according to (4.60). 

In this ADDHP design, the states of the aircraft are initialized to be 

[ ]0 10 5 2x = − . The parameters of the critic network and the actions networks are 

initialized to zero. Following this initialization step, the aircraft dynamics are run 

forward in time and tuning of the parameter structures happen by observing the states 

on-line. 
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Figure 4.9. States trajectories in the ADDHP. 

In Figures 4.9 and 4.10, the states and the inputs to the aircraft are shown with 

respect to time. Note that the probing noise are used to inject the inputs, see (4.60), so 
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the persistency of excitation condition required for the convergence of the recursive 

least-squares tuning, i.e. avoiding the parameter drift problem, will hold. 
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Figure 10. The control and disturbance in the ADDHP. 

In Figures 4.11, 4.12 and 4.13, the convergence of P  , which is found from the 

parameters of the critic network and the actions networks as in (4.10). and the action 

networks is shown. As expected, 
i

P converge to P  in (4.73) that solve the GARE 

equation. It takes the critic network 700 time steps to converge to 
i

P The reason for this 

is that 7 readings are required to tune the critic network at to solve for each 
i

H . Since 

as shown in Figure 4.3, the action networks require to be updated at least 100 times, this 

implies that the over all time steps required for the convergence of the ADDHP 

algorithm are about 700 time steps. 
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Figure 4.11. Convergence of the 

i
P  in the ADDHP. 
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Figure 4.12. Convergence of the disturbance action network parameters in the ADDHP. 
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Figure 4.13. Convergence of the control action network parameters in the ADDHP. 

It is clear that in the ADDHP algorithm, the parameters of the critic network 

converge to the solution of the GARE faster than the case in the ADHDP algorithm.  

This is because in ADDHP one has vector gradient information available for tuning, not 

only scalar information as in ADHDP.  That is, in ADDHP the target value for the 

action network is a vector, while in ADHDP it is a scalar. 

Probing noise was used here to provide the excitation conditions needed to get 

parameter convergence in the critic and action networks.  Once these parameters are 

known, the H-infinity controller has been found.  Then, one can use the parameters of 

the control action network as the final parameters of the controller in any on-line control 

runs, without having to deliberately insert any excitation signals to the system 

4.5 Conclusion 

In this chapter, two on-line Approximate Dynamic Programming techniques is 

introduced to solve the discrete-time zero-sum game problem with continuous state and 
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action spaces. Two of the ADP techniques, namely Action Dependent Heuristic 

Dynamic Programming, and Action Dependent Dual Heuristic Dynamic Programming 

are discussed. The derivation of the policies and the convergence of the ADHDP and 

ADDHP are provided. It is clear that the convergence to the optimal solution in the 

ADDHP algorithm is faster than the ADHDP, as gradient information, a vector, as used 

in ADDHP provides more information than scalar function information as used in 

ADHDP, therefore the number of points needed to solve the least-squares problem in 

the ADDHP is less than that in ADHDP. On the other hand, in the ADHDP algorithm 

the system model is not needed to tune the action networks nor the critic network, while 

in the ADDHP algorithm the system model is needed to tune the critic network. 

The results presented herein are directly applicable in practice since they 

provide means to solve the H-infinity control problem, which is highly effective in 

feedback control systems design. A provided aircraft design example makes the point. It 

is interesting to see that when designing the H-infinity controller in forward time, one 

needs to provide an input signal that acts as a disturbance that is tuned to be the worst 

case disturbance in forward time. 

Once the H-infinity controller is found, one can use the parameters of the control 

action network as the final parameters of the controller, without having to deliberately 

inserting any disturbance signal to the system. Disturbance is from now is determined 

by the nature of the process and the surrounding environment. 
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The results in this chapter can be summarized as a way to solve the linear 

quadratic discrete-time zero-sum game forward in time without knowing the dynamical 

model. 
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CHAPTER 5 

APPLICATION OF THE ADHDP FOR THE POWER SYTEM AND SYTEM 

IDENTIFICATION 

 

5.1 Power System Model Plant  

Power system generators are complex nonlinear systems  [33], [17]. However 

during normal operation the system load, which causes the nonlinearity, has only small 

variations.  Linear models can be used to represent the system dynamics around an 

operating point specified by a constant load value. Although this assumption seems to 

have simplified the design problem of a load-frequency controller for the system, a 

problem rises from the fact that in an actual plant the parameter values are not precisely 

known.  

The ADHDP algorithm in this chapter is used to find an H∞  controller for  

Discrete-time (DT) power system without knowing the system dynamics. In this part 

the simulation is done by using the Matlab, so for simulation purposes a system 

dynamics should be  adapted to simulate the plant model.  The DT model is obtained 

from the continuous-time (CT) model of the system by using the zero-order hold (ZOH) 

technique. The CT system model is adapted from  [33], and it is given as  

 ( ) ( ) ( )
d

x Ax t Bu t E P t= + + ∆�  (5.1) 

where  
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[ ]

( ) [ ( ) ( ) ( ) ( )]

1/ / 0 0

0 1/ 1/ 0

1/ 0 1/ 1/

0 0 0

0 0 1/ 0

1 / 0 0 0
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g g

p p p

T T

G G G
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T

G

T

p p

x t f t P t X t F t

T K T

T T
A

RT T T

K

B T

E K T

= ∆ ∆ ∆ ∆

− 
 − =
 − − −
 
 

=

 = − 

  

The system states are: ( )f t∆ - incremental frequency deviation (Hz), ( )
g

P t∆  - 

incremental change in generator output (p.u. MW), ( )
g

X t∆  - incremental change in 

governor position (p.u. MW), ( )F t∆  - incremental change in integral control. ( )
d

P t∆  is 

the load disturbance (p.u. MW); and the system parameters are: 
G

T  - the governor time 

constant, 
T

T - turbine time constant, 
P

T - plant model time constant, 
P

K - planet model 

gain, R - speed regulation due to governor action, 
E

K - integral control gain. 

The system parameter ranges as specified in  [33] are: 

 

1/ [0.033,0.1]

/ [4,12]

1/ [2.564,4.762]

1/ [9.615,17.857]

1/ [3.081,10.639]

p

p p

T

G

G

T

K T

T

T

RT

∈

∈

∈

∈

∈

 

Though the ranges of the system parameters are known, the exact values are not 

known, so the system model for power system usually has a certain degree of 

uncertainty. Therefore, the goal of this chapter is to design an H∞  load-frequency 

controller without knowing the system dynamics.  
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5.2 H-Infinity Control Design Using ADHDP Algorithm 

H∞  Controllers have been proven to be highly effective in the design of 

feedback control systems with robustness and disturbance rejection capabilities. The 

presented H∞  controller design is a model-free online tuning design that is based on the 

Q-learning method presented in this chapter 4. 

In this section, the ADHDP algorithm proposed in chapter 4 will be used to 

design an load-frequency H∞  controller for single generator.  A comparison between 

the designed controller in this chapter and the controller in  [33] will be provided.  

The adapted power system appears in  [33]. The system in  [33] is in continuous-

time (CT) representation. Our proposed control design is for discrete-time (DT), so 

zero-order holder is used to discretize the CT system. Note the system model is needed 

to simulate the system response with the applied control law, not for tuning the control 

input. 

The CT system matrices with nominal value is given as 

 

-0.0665    8.000         0         0

         0   -3.663    3.663         0

   -6.86         0  -13.736  -13.736
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so the DT system matrices with sampling time .1T = sec. is give as  
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 0.9704    0.6629    0.0849   -0.0446

   -0.0762    0.6724    0.1584   -0.1462

   -0.3954   -0.1663    0.2367   -0.7403

    0.0594    0.0212    0.0019    0.9993

Ad

 
 
 =
 
 
 

 (5.2) 
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    0.1893

   -0.0239

Ed

 
 
 =
 
 
 

 

It is important to note that the ADHDP algorithm the system matrices are not 

needed to design the controller. It is used only to simulate the plant model. 

In Figure 5.1, the convergence of the value 
i

P P→  that solve the GARE is 

provided 
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Figure 5.1 The convergence of 

i
P P→  

In figure 5.2, the convergence of the control policy to the optimal policy is 

shown. 
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 [ ]-1.6299   -2.9620   -0.6958   -0.9747iL →  (5.3) 
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Figure 5.2. The convergence of the control policy 

In the next figures, the system will be run using the H∞  controller designed in 

this section, and it will be compared with the controller designed in  [33]  

Figure 5.3 shows the system state trajectories when applying the controller 

found using the ADHDP algorithm. The simulation will be run applying constant 

disturbance 0.1 p.u . 
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Figure 5.3. The states trajectories for the system with the H∞  controller  

Figure 5.4 shows the system state trajectories when using the controller found in 

 [33]. The simulation will be run applying constant disturbance 0.1 p.u, where  

 [ ]1.839 4.762 1.516 1.658L =  (5.4) 

From Figure 5.3 and 5.4 , one can notice that the maximum frequency deviation 

when using the H∞  controller is less than the maximum frequency deviation when 

using the controller in  [33] by 19.3% 
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Figure 5.4 The states trajectories for the system with the controller designed in  [33] 

Next the same simulation will be run by applying a spike disturbance. 
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Figure 5.5. The states trajectories for the system with the H∞  controller  
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Figure 5.6. The states trajectories for the system with controller designed in  [33].  

From Figure 5.5 and 5.6, one can notice that the maximum frequency deviation 

when using the H∞  control is less than the maximum frequency deviation when using 

the controller in  [33] by 19.4%. 

5.3 System Identification   

In this section dynamical system identification will be discussed. The 

information used in the ADHDP algorithm will be used to identify the dynamical 

system.  

In general, any DT linear system can be described as  

 1k k k k
x Ax Bu Ew+ = + +   

where nxnA R∈ , 1mB R∈ , 2mE R∈ . The number of unknowns are equal to 

( ( 1 2))n n m m× + + , and as the system is linear one can solve for the unknowns’ by 

collecting at least  
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 1 2 1q n m m= + + +  (5.5) 

measurements. Every measurement will give n  excited information, so the total number 

of equations will be ( ( 1 2))n n m m× + + , the same as the number of the unknowns. The 

measurements are collected as follows  
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where k  is any arbitrary sampling time. One can rewrite the above equation as 
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Solving the least-square problem one has 
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(5.6)  
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Note that the states measurements are the same as the one are used to tune the 

ADHDP algorithm, and as the noise is injected in the control input the measurements 

are linearly independent, so the least-square problem appears in (5.6) is solvable. 

Now the measurements used to find the H∞  controller in the previous section 

will be used to identify the dynamical system. The number of unknowns for the system 

described in (5.1) are equal to (4 (4 1 1))× + + , so one needs at least 6+1 measurements 

which will give 6 4×  information. The information is collected starting form the 

sampling time 500k = . 

 

   0.3372   -0.0894   -0.2239    0.0203

    0.3503   -0.1490   -0.3220    0.0412

    0.2889   -0.1717   -0.1652    0.0604

    0.2542   -0.1576   -0.1036    0.0767

    0.2548   -0.1582   -0.1933    0.0920

    0.1427   -0.1524   -0.1017    0.1039

    0.2161   -0.0136   -0.3501    0.0034   -0.0207   -0.2110

    0.3372   -0.0894   -0.2239    0.0203   -0.1479   -0.1374

    0.3503   -0.1490  

 
 
 
 

= 
 
 
 
 

 -0.3220    0.0412    0.0981   -0.0915

    0.2889   -0.1717   -0.1652    0.0604    0.1210   -0.1250

    0.2542   -0.1576   -0.1036    0.0767   -0.0105   -0.1581

    0.2548   -0.1582   -0.1933    0.0920    0.1219   -0.0194

T

T

T

A

B

E

 
 
   
   
   
   

  
 
 

  

 

  0.9704   -0.0762   -0.3954    0.0594

    0.6629    0.6724   -0.1663    0.0212

    0.0849    0.1584    0.2367    0.0019

   -0.0446   -0.1462   -0.7403    0.9993

    0.0446    0.1462    0

T

T

T

A

B

E

 
 

= 
 
  .7403    0.0007

   -0.7924    0.0230    0.1893   -0.0239

 
 
 
 
 
 
 
 
 
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 (5.8) 

As expected the values obtained from (5.7) are the same as in (5.2). 

5.4 Conclusion 

In this chapter the on-line ADP technique based on Q-learning appears in 

chapter 4 is used to find H∞  load-frequency power system controller. The tuning 

algorithm is used in this chapter is ADHDP.  In the ADHDP algorithm the system 

model is not needed to tune the action networks, i.e. the controller, nor the critic 

network. The results in this chapter can be summarized as a model-free approach to 

solve the linear quadratic discrete-time zero-sum game forward in time. 

In this chapter the measurements used to tune the controller also used to identify 

the system dynamics. As shown one needs only a few measurements which are equal to 

equation (5.5). The noise injection allows the measurements to be excited, and solve for 

the least square problem. 

It is interesting to see that when designing the H∞  controller in forward time, 

one needs to provide an input signal that acts as a disturbance that is tuned to be the 

worst case disturbance in forward time. Once the H∞  controller is found, one can use 

the parameters of the control action network as the final parameters of the controller, 

without having to deliberately inserting any disturbance signal to the system. 
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CHAPTER 6  

NONLINEAR HEURISTIC DYNAMIC PROGRAMMING OPTIMAL 

CONTROL DESIGN 

 

In this chapter, a policy iteration scheme based on approximate dynamic 

programming (ADP), namely Heuristic Dynamic Programming (HDP), is used to solve 

for the optimal control policy and the value function of the Hamilton Jacobi Bellman 

equation (HJB) that appears in infinite-horizon discrete-time (DT) nonlinear optimal 

control. Two neural networks are used; the first is used to approximate the value 

function while a second network is used to approximate the optimal control policy. A 

significant result of this cahpter is that a rigorous proof of convergence of the HDP 

algorithm is provided when applied to input-affine nonlinear discrete-time systems with 

continuous state and action spaces. Furthermore, because of the use of a neural network 

to approximate the action policy, complete knowledge of the plant model does not 

become a requirement. Two examples are included to illustrate the developed theory 

6.1 The Discrete-Time HJB Equation  

Consider an affine in input nonlinear dynamical-system of the form 

 1 ( ) ( ) ( )
k k k k

x f x g x u x+ = +  (6.1) 

where n
x ∈� , ( ) nf x ∈� , ( ) n mg x ×∈�  and the input m

u ∈� . Assume that the system 

(6.1) is stabilizable on compact set nΩ∈� . 
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Definition 1. Stabilizable system: A nonlinear dynamical system is defined to be 

stabilizable on a compact set Ω , if there exist a control input m
u ∈�  such that, if the 

states start from anywhere in the region Ω , the state 0x →  as t → ∞  

It is desired to find ( )
k

u x  which minimize the infinite-horizon cost function 

given as 

 ( ) ( ) ( )T T

k n n n nn k
V x x Qx u x Ru x

∞

=
= +∑  (6.2) 

where n nQ ×∈�  and m mR ×∈�  are positive definite matrices. Hence, the class of 

controllers need to be stable and guarantee that (6.2) is finite, i.e. admissible controls 

 [2]. 

Definition 2. Admissible Control: A control ( )
k

u x  is defined to be admissible with 

respect to (6.2) on a compact set Ω  if ( )
k

u x  is continuous on Ω , (0) 0u = , u  stabilizes 

(6.1) on Ω , and 0 0 ( )x V x∀ ∈Ω  is finite. 

Equation (6.2) can be written as 

 1

1

( )

( )

T T T T

k k k k k i i i ii k

T T

k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑
 (6.3) 

From Bellman optimality principle, the discrete-time HJB equation comes out to be 

 1( ) min( ( ))
k

T T

k k k k k k
u

V x x Qx u Ru V x∗ ∗
+= + +  (6.4) 

Note that the discrete-time HJB equation develops backward-in time. It is 

known that for the infinite-horizon optimization case, the value function is time-

invariant and hence the discrete-time HJB in infinite-horizon becomes 
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 1( ) min( ( ))
k

T T

k k k k k k
u

V x x Qx u Ru V x∗ ∗
+= + +  (6.5) 

The optimal control u
∗  satisfies the first order necessity condition for the 

gradient of right hand side of (6.5) with respect to u  

 1 1

1

( ) ( ) ( )
0

T T

k k k k k k k

k k k k

V x x Qx u Ru x V x

u u u x

∗ ∗

+ +

+

∂ ∂ + ∂ ∂
= + =

∂ ∂ ∂ ∂
 (6.6) 

and therefore 

 1 1

1

( )1
( ) ( )

2

T k
k k

k

V x
u x R g x

x

∗
∗ − +

+

∂
=

∂
 (6.7) 

Substituting (6.7) in (6.5), one may write the discrete-time HJB 

 11 1
1

1 1

( ) ( )1
( ) ( ) ( ) ( )

4

T
T Tk k

k k k k k k

k k

V x V x
V x x Qx g x R g x V x

x x

∗ ∗
∗ − ∗+ +

+

+ +

∂ ∂
= + +

∂ ∂
 (6.8) 

where ( )V x∗  is the value function corresponding to the of the optimal control policy 

( )u x∗ . 

In the next section the nonlinear HDP algorithm is applied to solve for the value 

function V
∗  of the HJB equation (6.8) and present a convergence proof of the HDP 

policy iteration algorithm. 

6.2 The Nonlinear HDP Algorithm 

In the HDP algorithm, one starts with an initial cost function 0 ( ) 0V x = , which is 

not necessarily the value function, and then finds a control policy 0u  as follows 

 0 1( ) arg min( ( ))T T

o k k k k
u

u x x Qx u Ru V x += + +  (6.9) 

Once the policy 0u  is determined, one updates the cost function by computing 1V  
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1 0 0 0 0

0 0 0 1

( ) ( ) ( ) ( ( ) ( ) ( ))

( ) ( ) ( )

T T

k k k k k k k k

T T

k k k k k

V x x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x +

= + + +

= + +
 (6.10) 

The HDP policy iterations scheme therefore requires iterating between a 

sequence of policies ( )
i

u x  determined by 

 1( ) arg min( ( ) ( ) ( ))T T

i k k k k k i k
u

u x x Qx u x Ru x V x += + +  (6.11) 

and a sequence of costs ( ) 0
i

V x ≥  where 

 
1 1( ) min( ( ))

( ) ( ) ( ( ) ( ) ( ))

T T

i k k k i k
u

T T

k k i k i k i k k i k

V x x Qx u Ru V x

x Qx u x Ru x V f x g x u x

+ += + +

= + + +
 (6.12) 

with i  is an index representing iterations on the control policy while k  is the time 

index. The result is an incremental optimization that is implemented forward in-time. 

6.3 Convergence of the HDP Algorithm 

In this section, the nonlinear case is considered as the proof of convergence is 

presented for the iteration between (6.11) and (6.12), that is 
i

V V
∗⇒  and the control 

policy 
i

u u
∗⇒  as i ⇒ ∞ . 

Lemma 1 Let  
i

µ  be any arbitrary sequence of control policies, and  
i

u  be the policies 

as in (6.11). Let  
i

V  be as in (6.12) and 
i

Λ  as 

 1 1( ) ( )T

i k k k i i i k
x x Qx R xµ µ+ +Λ = + + Λ . (6.13) 

If 0 0 0V = Λ = , then 
i i

V ≤ Λ  i∀ . 

Proof: It is straightforward  from the fact that 1i
V +  is a result of minimizing the right 

hand side of equation (6.11) with respect to the control input u , while 
i

Λ  is a result of 

any arbitrary control input.  
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Lemma 2 Let the sequence { }iV  be defined as in (6.12). If the system is  stabilizable, 

then there is an upper bound  Y  such that  0
i

V Y≤ ≤  i∀ . 

Proof : Let  ( )
k

xη   be any stabilizing and admissible control input, and Let 0 0 0V Z= =  

where 
i

V  is updated as (6.12) and 
i

Z  is updated as 

 1 1( ) ( ) ( ) ( )T

i k k k k k i k
Z x x Qx x R x Z xη η+ += + + . (6.14) 

It follows that the difference 

 

1 1 1 1

1 2 2 2

2 3 3 3

1 0

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

.

.

.

( ) ( )

i k i k i k i k

i k i k

i k i k

k i k i

Z x Z x Z x Z x

Z x Z x

Z x Z x

Z x Z x

+ + − +

− + − +

− + − +

+ +

− = −

= −

= −

= −

 (6.15) 

Then (6.15) can be written as 

 1 1 0( ) ( ) ( ) ( ),
i k i k k i k i

Z x Z x Z x Z x+ + +− = −  

Since 0 ( ) 0
k

Z x = , so one has 

 

1 1

1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ....... ( )

i k k i i k

k i k i i k

k i k i k i i k

k i k i k i k

Z x Z x Z x

Z x Z x Z x

Z x Z x Z x Z x

Z x Z x Z x Z x

+ +

+ + − −

+ + − + − −

+ + − + −

= +

= + +

= + + +

= + + + +

 (6.16) 

so equation (6.16) can be written as 

 

1 10

0

0

( ) ( )

( ( ) ( ))

( ( ) ( ))

i

i k k jj

i T T

k j k j k j k jj

T T

k j k j k j k jj

Z x Z x

x Qx x R x

x Qx x R x

η η

η η

+ +=

+ + + +=

∞

+ + + +=

=

= +

≤ +

∑

∑

∑

 (6.17) 



 

 

 

103 

Note that the system is stable, i.e. 0
k

x →  as k → ∞ , as the control input ( )
k

xη  

is stabilizable and admissible, then 

 1 10
: ( ) ( )

i k k ii
i Z x Z x Y

∞

+ +=
∀ ≤ ≤∑  

Form Lemma 1, one has 

 1 1: ( ) ( )
i k i k

i V x Z x Y+ +∀ ≤ ≤  ■ 

Now Lemma 1 and Lemma 2 will be used in the next main theorem. 

Theorem 1 Define the sequence  { }iV  as in (6.12), with 0 0V = .  Then { }iV  is a 

nondecreasing sequence in which 1( ) ( )
i k i k

V x V x+ ≥ i∀ , and converges to the value 

function of the DT HJB, i.e.  
i

V V
∗⇒  as i ⇒ ∞ . 

Proof: Let 0 0 0V = Φ =  where  
i

V  is updated as in (6.12) and, and 
i

Φ  is updated as  

 1 1 1 1( ) ( ( ))T

i k k k i i i k
x x Qx u Ru x+ + + +Φ = + + Φ  (6.18)  

with the policies 
i

u  as in (6.11). We will first prove by induction that 1( ) ( )
i k i k

x V x+Φ ≤ . 

Note that  

 1 0

1 0

( ) ( ) 0

( ) ( )

T

k k k k

k k

V x x x Qx

V x x

− Φ = ≥

≥ Φ
 

Assume that 1( ) ( )
i k i k

V x x−≥ Φ  
k

x∀ . Since  

 1 1( ) ( )T

i k k k i i i k
x x Qx u Ru x− +Φ = + + Φ  

 1 1( ) ( )T

i k k k i i i k
V x x Qx u Ru V x+ += + + , 

then 

 1 1 1 1( ) ( ) ( ) ( ) 0
i k i k i k i k

V x x V x x+ + − +− Φ = − Φ ≥ ,  
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and therefore 

 1( ) ( )
i k i k

x V x+Φ ≤ . (6.19)  

From Lemma 1 ( ) ( )
i k i k

V x x≤ Φ  and therefore  

 
1

1

( ) ( ) ( )

( ) ( )

i k i k i k

i k i k

V x x V x

V x V x

+

+

≤ Φ ≤

≤
 

hence proving that { }iV  is a nondecreasing sequence bounded from above as shown in 

Lemma 2. Hence  
i

V V
∗→  as i → ∞ . □ 

Corollary: As the approximated cost function converges to the optimal value, 

i.e.
i

V V
∗→ , the control policy will converge to the optimal value, i.e. 

i
u u

∗→ , and it 

will be equal to (6.7). 

6.4 Neural Network Approximation 

In this section, it is shown how to implement the HDP policy iterations 

algorithm with parametric structures like neural networks. It is well known that neural 

networks can be used to approximate smooth functions on prescribed compact sets. 

Neural networks are natural for this application. Therefore, to solve (6.12), 

( )
i

V x  and ( )
i

u x  are approximated by 

 
1

ˆ ( ) ( ) ( )
L

j T

i vi j Vi

j

V x w x W xφ
=

= =∑ φφφφ  (6.20) 

 
1

ˆ ( ) ( ) ( )
L

j T

i ui j ui

j

u x w x W xσ
=

= =∑ σσσσ  (6.21) 

which are a neural networks with the activation functions  1( ), ( ) ( )j jx x Cσ φ ∈ Ω , with 

(0) (0) 0
j j

σ φ= = . 
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The neural network weights that approximate the cost function as in (6.12) are 

j

vi
w . L  is the number of hidden-layer neurons. [ ]1 2( ) ( ) ( ) ( )

T

L
x x x xφ φ φ≡ �φφφφ  is the 

vector activation function, 1 2
T

L

Vi vi vi vi
W w w w ≡  �  is the vector weight.  

The weights are tuned to minimize the residual error between (6.20) and the 

target function defined in equation (6.22) in a least-squares sense over a set of points 

sampled from a compact set Ω  . 

 
1

1

ˆˆ ˆ( ( ), , ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

T T T T

k Vi ui k k i k i k i k

T T T

k k i k i k Vi k

d x W W x Qx u x Ru x V x

x Qx u x Ru x W x

+

+

= + +

= + +

φφφφ

φφφφ
 (6.22) 

 

The least square problem can be defined as  

 1

1

( ) ( ), ( )
L

j

vi j L

j

d x w x u e xσ+
=

 
− = 

 
∑ . (6.23) 

Note that in equation (6.23) the relation between the weight 1Vi
W +  and the target 

function is explicit. 

To find the least squares solution, the method of weighted residuals is used  [16]. 

The weights, 1Vi
W + , are determined by projecting the residual error onto 1( )

L Vi
de x dW +  

and setting the result to zero x∀ ∈Ω  using the inner product, i.e. 

 
( )

, ( ) 0L
L

Vi+1

de x
e x

dW
= , (6.24) 

where f,g T
fg dx

Ω

= ∫  is a Lebesgue integral. One has 

 10 ( )( ( ) ( ( ), , )T T T T

k k Vi k Vi ui k
x x W d x W W dxφ φ φ+

Ω

= −∫  (6.25) 
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Therefore a unique solution for 1Vi
W +  exists and is computed as 

 

1

1 ( ) ( ) ( ) ( ( ), , )T T T T

Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+

Ω Ω

 
=  
 
∫ ∫  (6.26) 

Assumption 1. { }( )
L

j
xφ  is linearly independent on the compact set Ω . 

From assumption 1, 

1

( ) ( )T

k kx x dxφ φ

−

Ω

 
 
 
∫  is full rank, which mean it is invertible and a 

unique solution of (6.26) exists. 

Similarly, a neural network is used to find the parameters of the control policy 

ˆ ( , )
i k ui

u x W . The neural network weights that approximate the control policy function as 

in (6.11) are j

ui
w . L  is the number of hidden-layer neurons. 

[ ]1 2( ) ( ) ( ) ( )
T

L
x x x xσ σ σ≡ �σσσσ  is the vector activation function, 1 2

T
L

ui ui ui ui
W w w w ≡  �  

is the vector weight They are found by solving for  

 
ˆ ˆ( , ) ( , )

arg min
ˆ ˆ( ( ) ( ) ( , ))

T T

k k k k

ui

i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

 + +
=   + 

 (6.27) 

Note that the relation between the control weights 
ui

W  in (6.27) is implicit. That 

is one can use a gradient steepest decent algorithm on a training set constructed from Ω  

to update the weights as 

 
( ) ( ) 1

( 1) ( )

( )

ˆˆ ˆ( ( )T T

k k i j i j i k

ui j ui j

ui j

x Qx u Ru V x
W W

W
α +

+

∂ + +
= −

∂
 (6.28) 

where α  is a positive stepsize. Equation (6.28) can be written as   
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1

1
( )

1

( )
ˆ( )(2 ( ) )

j j

ui ui

T Tk
k i j k Vi

k

W W

x
x Ru g x W

x

φ
ασ

+

+

+

= −

∂
+

∂

 

where 1
ˆ( ) ( ) ( , )j

k k k k ui
x f x g x u x W+ = + . The weights j

ui ui
W W⇒  as j ⇒ ∞ , which satisfies 

(6.27). Note that one can use different gradient methods like Newton’s method and 

Levenberg-Marquardt method.  

Updating the value function

Start of the  HDP

Initialization

Solving the  minimizing problem

0 0V =

1
ˆ ˆ
i iV V ε+ <−

Yes

No1+→ ii

ˆ ˆ( , ) ( , )
arg min

ˆ ˆ( ( ) ( ) ( , ))

T T

k k k k

ui

i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

 + +
=   + 

1

1 ( ) ( ) ( ) ( ( ), , )T T T T

Vi k k k k Vi uiW x x dx x d x W W dxφ φ φ φ

−

+

Ω Ω

 
=  
 
∫ ∫

ˆ ( , ) ( )T

i k ui ui k
u x W W xσ=

1

1

ˆˆ ˆ( ( ), , ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

T T T T

k Vi ui k k i k i k i k

T T T

k k i k i k Vi k

d x W W x Qx u x Ru x V x

x Qx u x Ru x W x

+

+

= + +

= + +

φφφφ

φφφφ

 
Figure 6.1. The nonlinear HDP algorithm. 

In Figure 6.1, the flow chart of the HDP iteration is shown. Note that because of the 

neural network used to approximate the control policy the internal dynamics, i.e. ( )
k

f x , 

is not needed. 
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6.5 Discrete-time Nonlinear System Example 

In this section, two examples are provided to demonstrate the solution of the DT 

HJB equation. The first example will be a linear dynamical system, which is a special 

case of the nonlinear case. The second example is for a DT nonlinear system. MATLAB 

simulation is used to implement some of the functions discussed in this section. 

6.5.1 Linear system example 

 

Consider the linear system   

 1k k
x Ax Bu+ = +  (6.29) 

It is known that the solution of the optimal control problem for the linear system 

is quadratic in the state and given as  

 ( ) T

k k k
V x x Px

∗ =  

where P  is the solution of the ARE. This example is taken from  [4], a linearized model 

of the short-period dynamics of an advanced (CCV-type) fighter aircraft. The state 

vector is 

 [ ]T

e fx qα γ δ δ=  

where the state components are, respectively, angle of attack, pitch rate, flight-path, 

elevator deflection and flaperon deflection. The control input are the elevator and the 

flaperon and given as 

 [ ]T

ec fcu δ δ=   

The plant model is discretized version of a continues model given in  [4]  
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1.0722    0.0954        0    -0.0541    -0.0153

    4.1534    1.1175          0    -0.8000    -0.1010

A=     0.1359    0.0071      1.0     0.0039     0.0097

         0         0                 0     0.1353         0

         0         0                 0         0          0.1353

 
 
 
 
 
 
  

 

 

-0.0453   -0.0175

-1.0042   -0.1131

B=  0.0075    0.0134

  0.8647         0

      0       0.8647

 
 
 
 
 
 
  

   

Note that is a multi input unstable plant. The ARE solution for the given linear 

system is  

 

 55.8348    7.6670   16.0470   -4.6754   -0.7265

    7.6670    2.3168    1.4987   -0.8309   -0.1215

   16.0470    1.4987   25.3586   -0.6709    0.0464

   -4.6754   -0.8309   -0.6709    1.5394    0.0782

P =

   -0.7265   -0.1215    0.0464    0.0782    1.0240

 
 
 
 
 
 
  

 (6.30) 

and the optimal control 
k k

u Lx
∗ = , where L  is the optimal policy 

 
-4.1136   -0.7170   -0.3847    0.5277    0.0707

-0.6315   -0.1003    0.1236    0.0653    0.0798
L

 
=  
 

 (6.31) 

The ARE solution in (6.30) and the optimal control policy in (6.31) is given to 

be later compared with the results of the nonlinear HDP algorithm. 

In the nonlinear HDP algorithm, the control is approximated as follows  

 ˆ ( )T

i ui k
u W xσ=  (6.32) 

where 
u

W  is the weights, and the ( )
k

xσ  is the basis. The basis is given as 
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 1 2 3 4 5( )T x x x x x xσ  =    

and the weights are 

 

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

T u u u u u

u

u u u u u

w w w w w
W

w w w w w

 
=  
 

 

The choice of the control policy weights is done such that it will exactly 

approximate the control policy, as it is known it is linear on the state. The control 

weights should converge to 

 

1,1 1,2 1,3 1,4 1,5
11 12 13 14 15

2,1 2,2 2,3 2,4 2,5
21 22 23 24 25

u u u u u

u u u u u

L L L L Lw w w w w

L L L L Lw w w w w

   
= −   

  
 

The approximation of the value function is given as  

 1 1 1
ˆ ( , ) ( )T

i k Vi Vi k
V x W W xφ+ + +=  (6.33) 

where 
V

W  is the weight of the neural network and ( )
k

xφ  is the neuron vector  

1 2

2 2 2 2 2

1 2 1 3 1 4 1 2 3 4 2 2 5 3 3 4 3 5 4 4 5 5

( )T
x

x x x x x x x x x x x x x x x x x x x x x x x x x

φ =

  
 

and the weights are given as  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15T

V v v v v v v v v v v v v v v v
W w w w w w w w w w w w w w w w =    

As it is known that the cost function will be quadratic in the states, the natural 

choice of the cost function weights as in equation (6.33). Note that the Kronecker 

product is used in (6.33) to approximate the cost function. In the simulation the weights 

of the value function are related to the P  matrix given in (6.30) as follows 
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1 2 3 4 5
11 12 13 14 15

2 6 7 8 9
21 22 23 24 25

3 7 10 11 12
31 32 33 34 35

4 8 11 13
41 42 43 44 45

51 52 53 54 55

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0

v v v v v

v v v v v

v v v v v

v v v v

P P P P P w w w w w

P P P P P w w w w w

P P P P P w w w w w

P P P P P w w w w

P P P P P

 
 
 
  =
 
 
  

14

5 9 12 14 15

.5

0.5 0.5 0.5 0.5

v

v v v v v

w

w w w w w

 
 
 
 
 
 
 
 

 

The value function weights converge to 

[55.5411   15.2789   31.3032   -9.3255   -1.4536    2.3142    2.9234   -1.6594   -0.2430

 

   24.8262   -1.3076    0.0920    1.5388    0.1564    1.0240]

T

V
W =

 

The control weights converge to  

 
4.1068    0.7164    0.3756   -0.5274   -0.0707

 0.6330    0.1005   -0.1216   -0.0653   -0.0798
u

W
 

=  
 

 

Note that the value function weights converge to the solution of the ARE (6.30), 

also the control policy weights converge to the optimal policy (6.31) as expected. 

6.5.2 Nonlinear System Example 

 

Consider the following affine in input nonlinear system 

 1 ( ) ( )
k k k k

x f x g x u+ = +  (6.34) 

where 

 

2

3

00.2 (1) exp( (2))
( )      ( )

.2.3 (2)

k k

k k

k

x x
f x g x

x

   
= =   −  

 

To approximation of the value function is given as   

 1 1 1
ˆ ( , ) ( )T

i k Vi Vi k
V x W W xφ+ + +=  

and the control input is approximated as   

 ˆ ( )T

i ui k
u W xσ=  
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The neuron vector of the Neural network that approximates the value function 

 

2 2 4 3

1 1 2 2 1 1 2

2 2 3 4 6 5 4 2

1 2 1 2 2 1 1 2 1 2

3 3 2 4 5 6

1 2 1 2 1 2 2

( ) [

]

x x x x x x x x

x x x x x x x x x x

x x x x x x x

φ =

 

and the weights are given as  

 1 2 3 4 15.....T

V v v v v v
W w w w w w =   . 

The neuron vector of the neural network that approximates the control is given 

as  

 

3 2 2

1 2 1 1 2 1 2

3 5 4 3 2 2 3

2 1 1 2 1 2 1 2

4 5

1 2 2

( ) [

  ]

T x x x x x x x x

x x x x x x x x

x x x

σ =

 

and the policy weights are given as  

 1 2 3 4 12.....T

u u u u u u
W w w w w w =    

The result of the algorithm is compared to the discrete-time State Dependent 

Riccati Equation (SDRE). 

The training sets is 1 [ 2, 2]x ∈ − , 2 [ 1,1]x ∈ − . The value function weights 

converged to the following 

 
[1.0382   0  1.0826   .0028  -0  -.053  0 -.2792   

-.0004  0  -.0013  0   .1549  0  .3034]

T

V
W =

 

and the control weights converged to  

 =[ 0  -.0004  0   0   0  .0651  0   0   0  -.0003  0  -.0046]T

u
W  
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In the next figures, a comparison between the results obtained using the SDRE 

and the HDP based method is shown. Figure 6.2 and 6.3 show the states trajectories for 

the system for both methods. 
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Figure 6.2.  The states trajectories ( 1x ) for both methods 
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Figure 6.3.  The states trajectories ( 2x ) for both methods 
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In Figure 6.4, the cost function of the SDRE solution and the cost function of 

the proposed algorithm in this chapter are compared. It is clear from the simulation that 

the cost function for the control policy derived from the HDP method is lower than the 

one obtained from the SDRE method.  
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Figure 6.4. The cost function for both methods 
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Figure 6.5. The control input for both methods 



 

 

 

115 

In figure 6.5, the control signals for both methods are shown. 

6.5 Conclusion 

A rigorous computationally effective algorithm to find the discrete-time 

nonlinear optimal state feedback control laws by solving the corresponding DT HJB 

equation. The algorithm proposed in this chapter namely nonlinear Heuristic Dynamic 

programming (HDP) is used to find the optimal controller. The main contribution in this 

chapter is the proof of convergence for the nonlinear HDP algorithm to the value 

function of DT HJB. 

Neural networks are used as parametric structures to approximate the critics, i.e. 

ˆ
i

V , and the actors networks, i.e. ˆ
i

u . In the simulation part it is shown that the linear 

system critic network converges to the solution of the ARE, and the actor network 

converges to the optimal policy. In the nonlinear example, it is shown that the optimal 

controller obtained using the nonlinear HDP outperforms that derived using the 

discrete-time SDRE method. 

It is important to mention that in the nonlinear HDP algorithm the full 

information of the system dynamic is not needed, as a result of the neural network used 

to approximate the control policy. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

In this dissertation, 2 /H H∞  controllers have been designed using Approximate 

Dynamic Programming techniques, also known as Neuro Dynamic Programming. The 

Approximate Dynamic Programming techniques allow us to solve the dynamical 

programming problem forward-in-time. This allows us to perform on-line control policy 

tuning, that is direct adaptive optimal control. 

This dissertation considers two classes of dynamical systems. The first one is the 

linear discrete-time system and the second one is the affine-in-input nonlinear discrete-

time system. 

Four on-line Approximate Dynamic Programming techniques are introduced in 

this dissertation to solve the discrete-time zero-sum game for linear systems, namely 

HDP, DHP, AHDP and ADDHP. The derivation of the policies and the proofs of 

convergence for the four algorithms are provided. The results can be though of as a 

direct H∞  adaptive optimal control. The results presented herein are directly applicable 

in practice since they provide means to solve the H∞  control problem, which is highly 

effective in feedback control systems design. It is interesting to see that when designing 

the H∞  controller in forward time, one needs to provide an input signal that acts as a 

disturbance that is tuned to be the worst case disturbance in forward time. Among the 
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proposed four algorithms, the most important is the ADHDP algorithm, where the 

dynamics of the linear system is not needed at all for tuning. This direct adaptive 

optimal control scheme will converge to the solution of the associated GARE, i.e. the 

optimal H∞  control policy. 

Note that if γ → ∞  in the GARE, one obtains the special case Algebraic Riccati 

Equation (ARE). In other words, the four proposed algorithms for linear systems can 

solve the Linear Quadratic Regulator problem (LQR). 

In the nonlinear affine-in-input dynamical systems, one ADP technique, namely 

HDP, is proposed to find the discrete-time nonlinear optimal state feedback control 

policy by solving the corresponding DT HJB equation. One main contribution in this 

research is the proof of convergence for the application of the HDP algorithm to 

nonlinear systems and it convergence to the solution of the DT HJB. 

Neural networks are used as parametric structures to approximate the critics, 

i.e. ˆ
i

V , and the actors networks, i.e. ˆ
i

u  throughout the dissertation. It is important to 

mention that in the nonlinear HDP algorithm appearing in Chapter 6, only partial 

knowledge of the system’s model is required as a result of using a neural network to 

approximate the action network, i.e. control policy. 

The HDP algorithm mentioned in this dissertation can be extended to solve 

zero-sum games for nonlinear dynamical systems, i.e. discrete-time Hamilton-Jacobi-

Isaacs equation (DT HJI). Additionally, the work in this dissertation could be a basis for 

a future work to extend Q-learning to nonlinear dynamical systems that are continuous 
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in state and action space. This is advantageous as it allows solving the DT HJB/DT HJI 

without knowing the nonlinear model of the dynamical systems. 
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