
PERSONALIZING (RE-RANKING) WEB SEARCH RESULTS USING

INFORMATION PRESENT ON A SOCIAL NETWORK

BY

SUSHRUTH PUTTASWAMY

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE & ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

DECEMBER 2006

 ii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Gautam Das, for his

constant guidance and support, and for giving me a wonderful opportunity to work on

such a challenging project, which involved in depth knowledge of probability and

statistics, and also for discussing various practical and interesting aspects of the problem

in hand.

I am also grateful to Dr. Nan Zhang and Dr. Leonidas Fegaras for serving on my

committee.

I would also like to thank Manos Pappagelis, Dr. Nick Koudas for helping me

throughout the design and implementation of the conference paper version of this work. I

would also like to thank my parents, my sister and all my friends for their constant help

and support for this project and throughout my academic career.

Finally I would like to thank Arjun Dasgupta for his consistent support during my

thesis work.

November 8, 2006

 iii

ABSTRACT

PERSONALIZING (RE-RANKING) WEB SEARCH RESULTS USING

INFORMATION PRESENT ON A SOCIAL NETWORK

Sushruth Puttaswamy, MS

The University of Texas at Arlington, 2006

Supervising Professor: Dr. Gautam Das

We describe a social search engine paradigm which can be built on top of a classic search

engine (e.g. Google, Yahoo, etc.) and a social information network (such as FriendSter). In

this thesis, the objective was to design algorithms and develop methods to efficiently

combine information available in the underlying systems (Search Engine & Social

Information Network) to better satisfy the search needs of a user. We are interested on how to

efficiently employ social information to re-order a list of URLs retrieved by querying a

search engine. The objective was to re-order the list of URLs in a way that favors URLs that

are more relevant to user’s interest towards a personalized search engine. We conduct a

thorough user study & come up with certain experiments to show some of the functionality

of the system.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT.. iii

LIST OF ILLUSTRATIONS .. vi

Chapter

 1. INTRODUCTION ………………………………………………………… 1

 2. RELATED WORK…….. ... 5

 3. FRAMEWORK…………………………………………………………….. 7

 3.1 Methodology………. 7

 3.1.1 User Query History Document (UQHD) 7

 3.1.2 User Interconnectivity ... 9

 3.1.3 Re-Ranking Algorithm .. 9

 4. ARCHITECTURE …….. 13

 4.1 User Registration Data …………………... 13

 4.2 Searching & Book Marking……………………………………………. 14

 4.3 Algorithm Selections .. 15

 4.4 System Components …………...……………………………………… 15

 4.5 Similarity Function...…………...……………………………………… 16

 4.6 Database Schema......…………...……………………………………… 18

 v

 5. ALGORITHMS……….. .. . 20

 6. SNAPSHOTS………….. . 27

 7. EXPERIMENTS……………….. 32

 7.1 Experimental methodology ... 32

 7.2 Accuracy based results .. 35

 7.3 Evaluation based results .. 37

 7.4 Interesting observations…………………... 39

 8. CONCLUSION………………... 42

REFERENCES.. 43

BIOGRAPHICAL INFORMATION .. 45

 vi

LIST OF ILLUSTRATIONS

Figure Page

3.1 Example of a simple UQHD for a random User u……………….....………... 8

3.2 Re-ranking algorithm: Users selected based on query…………………………. 11

3.3 Re-ranking algorithm: A ranked list of URLs ………………………………… 12

3.4 Re-ranking algorithm: Merging of the two ranked lists……………………... 12

4.1 System Components…………………………………………………………... 16

4.2 Database Schema of the Social Search system………………………………. 19

6.1 Login screen to the Social Search system……………………………………. 28

6.2 “My Network” option within the Social Search system……………………... 29

6.3 Query Log for the user………………….……………………………………. 30

6.4 Google & Social Search results for a query…………………………………. 31

7.1 Accuracy of each algorithm based on variation time.. 36

7.2 Accuracy of each algorithm based on variation Log size…………………… 37

7.3 Time taken by each algorithm based on varying Log size…………………… 38

7.4 Time taken by each algorithm based on varying the level ‘k’……………….. .. 39

7.5 Percentage of similar queries/tags based on varying level ‘k’……………….. 40

7.6 Number of users based on varying level ‘k’…………………………………. 40

 1

CHAPTER 1

INTRODUCTION

Millions of users seek content using the search engines. They issue queries asking for

content meeting specific criteria, follow some of the links in the results, click on ads, explore

the pages, reformulate their queries, and perform other necessary actions. Search engines

index large numbers of documents and let users query desired documents. However, most of

the available search engines are not designed to meet individual user preferences. [7] Noted

that almost half of the documents returned by search engines are deemed irrelevant by their

users. Current information retrieval and data mining research tries to enhance user’s web

experience from several aspects. Two of them are,

• Create a better structural model of the web, such that it can interface more efficiently

with search engines.

• Model user behavior as to predict users’ interests better.

Search engines have become a modern paradox. While intended to make the Web more

accessible and easier to use, more often than not, more questions than answers tend to crop

up, as they retrieve thousands, if not millions of links, besides producing advertisements and

sponsored links which are of little or no relevance to the user. Search engine results have

improved over the past couple of years to a certain degree, but these improvements typify just

a tiny fraction of what’s needed, and what’s possible in the world of web search engines.

 2

As the amount of information on the Web increases rapidly, it gives rise to many new

challenges for Web search. When the same query is submitted by different users, a typical

search engine returns the same result, regardless of who submitted the query. This may not be

desirable for users with different information needs. Clearly, work in user profiling is closely

related to building better personalized systems. Different methods of gathering user data is

often coupled with various personalization systems. Personalized search is the fine-tuning of

search results and advertising based on an individual’s preferences, demographic information

and other factors. Presumably, the better a search engine understands a user’s interests and

preferences, the better it is able to target search results, advertising, sponsored links, etc.

For example, suppose a user searches for information to help him plan a vacation to

California. Without personalized search, the user receives thousands of content links and ads

based purely on their global relevance i.e., how relevant they are to consumers in general,

without regard for this individual consumer’s demographic data, lifestyle and interests. With

personalized search, the results take on an entirely new level of relevance. Results returned to

a budget-conscious traveler vacationing with his wife and children are different from those

returned to, for example, a more upscale traveler, a Native American who vacations with

friends or he may be a single traveling alone. These personalized results are first filtered

according to a search engine’s basic criteria, such as popularity, keyword relevance, etc., and

then they are automatically tuned to meet the individual’s specific needs.

 3

In this thesis we initiate a study of personalizing search by using data available on

a social network. Rather than just using the user’s search profile to give him better

results, why don’t we take into account all people whom we think would share his

interest? This is where a social network comes into picture. A social network is a social

structure made of nodes which are generally individuals or organizations. It indicates the

ways in which they are connected through various social familiarities ranging from casual

acquaintance to sharing similar interests. The essential idea is that people make decisions

based primarily on a few people whom they trust. The average person has a set of experts

whom they consult in designated areas: the computer expert, the car expert, the fashion

expert, the financial expert. If the opinions of these experts can be collected, they are

incredibly useful: it is this metadata (data about other data) that gives the most intelligent

filtering and sorting of the information on the internet. In particular we make the

following contributions:

• We initiate the study of personalized search, based on information present

on a social network. We present a framework within which each user gets

results pertaining to his interest & his neighboring friends interests.

• We show the architecture of the system designed along with the individual

components involved, the database schema.

 4

• We present efficient algorithms based on similarity between queries,

tokens & URL’s to obtain better search results pertaining to the user’s

interest.

• We show how our algorithms can be applied to extract similar results

among the neighbors of a user.

• We present the results of a thorough experimental evaluation of our

algorithms using data provided from a set of users who have registered in

our system.

This thesis is organized as follows: Chapter 2 reviews related work. In Chapter 3

we present our overall framework and demonstrate several important properties of Social

Networks & how they are useful in personalizing search results. In Chapter 4 we present

the architecture of the system including the individual components of the system. In

Chapter 5 we present our algorithms and methodology to enable search results

personalization. In Chapter 6 we provide some snapshots of the actual social search

engine. In Chapter 7 we present the results of our experimental validation of our overall

methodology. We conclude in Chapter 8.

 5

CHAPTER 2

RELATED WORK

Personalization applications cover a gamut of spectrum. We have filtering

systems at one end of this spectrum, which filter input from an information resource;

from the input, information of possible interest is marked. One such example of a

filtering system is SmartPush [8] which combines different novel ideas together. The

system filters through information using semantic meta-data embedded in news articles.

In addition, it builds a user profile using a hierarchical concept model.

At present, many available systems allow for personalization to some extent. Some

systems like ‘Yahoo’ allow users to specify page content, while some others recommend

web pages, books, music, etc. [9] Contains a survey of many of the available systems and

their methodologies.

[7] Explores the utility of incorporating noisy implicit feedback obtained in a real web

search setting to improve web search ranking. Two alternatives of incorporating implicit

feedback into the search process are proposed here, namely re-ranking with implicit

feedback and, incorporating implicit feedback features directly into the trained ranking

function.

 6

[2] Describes a strategy for personalization of web search by making use of the

following concepts:

 (1) A user's search history can be collected without direct user involvement.

(2) The user's profile can be constructed automatically from the user's search

history.

(3) The user's profile is augmented by a general profile which is extracted

automatically from a common category hierarchy.

The common feature in all these approaches is that the data of only the user who

instigates the search session is recorded & processed upon. Again the search pattern,

preferences & objectives of the user in question is the one who posed the query. Our

approach extends this idea by incorporating such kind of information from people whom

the user considers relevant to him & based on that does re-ranking. This way not only are

we taking into consideration the user’s personal interest but we are also trying to refine &

add more value to his profile by looking at all the neighbors of this user whom he

considers relevant.

 7

CHAPTER 3

FRAMEWORK

In this chapter we describe algorithms which do re-ranking based on user & his

friends profiles. Our actual algorithms are described in more detail in the subsequent

chapters.

3.1 Methodology

Before describing the re-ranking algorithm we define two components that will

be useful in the algorithm: (a) the User Query History Document (UQHD) and (b) the

user interconnectivity property.

3.1.1 User Query History Document (UQHD)

UQHD may be considered a virtual and dynamic document that is created by appending

to a file all query information submitted by a user. In the simple case it is enough to think

of it as a document that is compiled by appending to it submitted user query terms. Query

terms may be repeated.

 8

Conference conference management system Confious social search search

engines infocious teoma database research trends social networks Papagelis

collaborative filtering indexing database group Greece kos island Toronto ttc routes

patio world cup zidane personalization google checkout …

Figure 3.1 Example of a simple UQHD for a random User u.

Bear in mind that people are not static as they have many fleeting and seasonal

interests. A student might intensely research Abraham Lincoln for a school project but

may care nothing at all about it later. S/he may read about spectacular tragedies such as a

recent fire in Paraguay that led to hundreds of deaths, but s/he is not generally concerned

with death, fire, Paraguay, or supermarkets. Seasonal phenomena like elections, the

Olympics, sports leagues, etc. also lead to variable interests.

In a more complex case the UQHD may include much more useful information

for each query (query aging, query locality, query disambiguation, query frequency, etc.).

This depends in our policy and the nature of algorithms we would like to design in the

future. Sliding Window algorithms may be designed to identify current trends in user’s

search behavior.

 9

Social information should be able to easily identify the click-through behavior of

users in my network for a recent period of time and be able to suggest better URLs than

classic link-based algorithms (e.g., Google). Therefore, we may assume that a UQHD is

associated with each user, or otherwise a UQHD index exists in the system.

3.1.2 User Interconnectivity

Consider a subset of users in the system that have at least one common query

term in their UQHDs. It is able to assess the interconnectivity of these users by

comparing the similarity between their UQHDs (many methods are available to assess the

similarity of two documents). Based on the similarity of two UQHDs we can infer the

similarity of two users’ query behavior. More similar UQHDs imply more similar users.

A natural extension of this algorithm should take into account the whole click-through

analysis of the form user�query�clicked-pages and is expected to be more accurate in

assessing interconnectivity between users for a specific query q.

3.1.3 Re-Ranking Algorithm

The following steps describe a re-ordering algorithm that takes into account

social information of a user’s network. The focus here is on the conceptualization of an

algorithm that is able to assess social information to re-order a ranked list of search

results. Optimizations should be considered to make it efficient, mainly based on random

sampling and offline computations.

 10

Input: Query q is submitted by active user a

Output: A ranked list L’ of relevant to the query URLs that exploits social

information

A ranked list Lq of (all) relevant to query q URLs is retrieved by redirecting the

query q to a link analysis based search engine (e.g., Google)

A subset S of (all) users that have previously submitted the query q is retrieved by

scanning through the UQHD index. User a and users in S have at least one common

query q in their UQHDs, thus it is able to compute the similarity of user a and each of the

users in S by computing the similarity of their associated UQHDs. The result is a ranked

list Na,q of users in the network of the active user a based on the query q. The list N can

be considered as the list of neighbors of user a when the query q is submitted and the

ranking of the list indicates which users in the social network of user a have more similar

query behavior. This implies a weighting scheme of the users in the virtual dynamic

network. The list Na,q needs to be normalized (e.g., weights should sum to 1)

 11

Figure 3.2 Re-ranking algorithm: Users selected based on query.

For each of the users in the list Na,q of the active user a and for query q we need

to scan the set of URLs that this user has visited (this can be liked/ saved/ bookmarked/

tagged/ or whatever) when submitted the query q (in case of multiple occurrences of q a

user’s UQHD). Each of these URLs is associated with the user’s interconnectivity weight

as it is assessed in the list Na,q. The set of these URLs can be represented as a weighted

list of URLs WLa,q. Thus WLa,q represents a list of URLs as they have been retrieved

based on query q and user’s a prior query behavior. Bear in mind that the list WLa,q may

contain duplicates (Identical URLs as they have been assessed by different users in the

network of user a as formed by query q.). To make sure that each URL coming from

network information exists only once in the list we need to aggregate the weights of

URLs that appear in WLa,q more than once. This results in a ranked list SLa,q of URLs.

SLa,q provides a ranked list of all URLs that are relevant to a user’s a query q by

assessing social information.

 12

Figure 3.3 Re-ranking algorithm: A ranked list of URLs.

Based on the list SLa,q that has been compiled using social information it is

possible to employ algorithms that merge overlapping ranked (ordered) lists and compile

a re-ordered ranked list L’ (e.g., similar to the way that meta search engines combine

results from many search engines, or similar to the work of determining the top-k queries

from multiple sources)

Figure 3.4 Re-ranking algorithm: Merging of the two ranked lists.

 13

CHAPTER 4

ARCHITECTURE

We present the architecture of Social Search, an online social search engine at

University of Texas at Arlington. Through the Social Search site we were able to study a

reflection of the real world community structure & ways of using it to do re-ranking.

Social Search was introduced at UTA in the summer of 2006. Members can use Social

Search to send e-mail and invitations, chat, find friends with similar interests. But

primarily the system was designed to provide user’s the option to search on the web.

4.1 User Registration Data

Users could register in the system by automatically signing up for it or by using

invitations sent by already registered members. Upon registering, users were required to

supply their names, e-mail addresses, first & last names (for searching other people on

the network).

In the second registration step, users were asked to list their friends and acquaintances. In

Social Search these people are called ‘search-buddies’. Users identified their search-

buddies by searching for them in the registered list of user’s or by entering their names

manually.

 14

 If a user adds a search-buddy who is already registered, the search-buddy will get

a notification that the user has requested to be their search-buddy and can accept or

decline the request. If the ‘search-buddy’ is not yet registered, they will get an invitation

to join Social Search. The resulting dataset was a social network with profiles for each of

the members.

4.2 Searching & Book Marking

Once a user has been registered & all his friends’ information gathered up, the

next step is to incorporate searching ability for each user & gather book marks. This

process is crucial for the system because based on the data gathered during this process

itself the re-ranking of URL’s is done.

User is presented with a search box similar to Google where in he can enter his

search query. The query is then sent to Google making use of the API provided & the

results are got which are displayed to the user in groups of 10. User would now go

through the link text, snippet below the link & other information & decide to explore a

link further which he thinks is relevant to the query by clicking on the link. These clicks

on links are recorded & associated with the query issued.

User’s can then go to their search history by clicking on the ‘My Knowledge’ tab

which shows them the list of queries issued along with the links clicked on for each of the

 15

queries. Here the link along with the query can be book marked by providing a small

description regarding the link along with some labels or tags for the link. Again these tags

are very important in our algorithms as certain similarity is done between the query & the

tags. So, finally for each user we have their search history along with book marking

information for certain links.

4.3 Algorithm Selections

Users are provided the option of selecting which algorithm they want to include

for getting re-ranked results. These options are represented by checkboxes. User can

select which algorithm to be included for processing & get the respective results. The

options provided range from algorithm 1 to 4 along with Google’s results & a

combination of both.

4.4 System Components

Figure showing the whole system as a collection of components.

 16

Figure 4.1 System Components

4.5 Similarity Function

Similarity function based on TF/IDF is used to find similar queries. Some of the

algorithms involve mapping user queries to similar queries present in the user log. Such

kind of mapping is also done based on the similarity between user query & a token also.

This section explains the similarity function provided by the spider software which is

made use to find similar words or tokens.

 17

In this section, we present a detailed description of tf-idf (term frequency, inverse

document frequency) and cosine similarity for matching against the values in a single

relational attribute.

Let Base denote a base table with a string-valued attribute sva against which the

flexible matching needs to be performed, and let Search denote the table containing the

search strings (this may consist of just a single record with a single attribute value, or

may be more complex). Flexible string matching is performed in two stages:

• At pre-processing time, the Base table is preprocessed, and tokens (words,

q-grams, etc.) are extracted from each database string in Base.sva. A

variety of auxiliary tables get created, to compute the idf’s of each token,

and ultimately to associate each database string with a (normalized)

weight vector (incorporating both tf and idf) corresponding to the tokens

extracted from it.

• At query time, a similar process is first done with respect to the Search

table. Then, an SQL query that operates on the auxiliary tables created

from Base and Search is executed, which identifies the matching records,

along with their similarity score. Essentially, this query computes the

cosine similarity (inner product) of the weight vectors of the search string

 18

with the weight vectors of the database strings in Base.sva, taking the

weights of the common tokens

4.6 Database Schema

Figure below describes the schema of the database that was used in the xxxx

system. The name of the database is socialsearch

 19

Figure 4.2 Database Schema of the Social Search system

 20

CHAPTER 5

ALGORITHMS

We present an analysis of the algorithms that are used as part of the re-ranking process.

Totally the numbers of algorithms which are present are 4 with variations of 2, 3 & 4

being present. Below is the description of each of the algorithms along with an analysis

of the time & space constraints for each of them.

 For easy understandability & readability the following annotations have been

used.

Annotation:

Ls: An ordered list of web pages based on social information

U: A set of users

Q: A set of queries

T: A set of tags

W: A set of web pages

ua: The active user

qa: The active query submitted by the active user

ta: The active tag assigned by the active user for an webpage

 21

wa: The active webpage that the active user ua visited for the submitted query qa

va: The vote of the active user ua to the active webpage wa (either 0 or 1)

Na(k): Set of Neighbors of user ua in a neighborhood of size k. (includes ua)

Wua,qq: Set of WebPages visited by user ua for the query qa

Wua,ta: Set of WebPages assigned by user ua with the tag ta

Sq: The set of queries similar to the query qa (based on 3-grams)

St: The set of tags similar to the query qa (based on 3-grams)

Method 1:

This method is the simplest & intuitively the most obvious one. In this method

when a query is submitted, a sequence of events happen which starts of by finding all the

users who are in the neighborhood of the active user who submitted the query. Then for

each of the users in the neighborhood we find the set of web pages visited by that user for

that particular query. We get a list of URL’s which have been visited by all the neighbors

of the active user for that particular query. Next step is to aggregate the votes given by

users to each of these URL’s. Finally we sort the list of URL’s based on the number of

votes obtained for each of them. So, we have a set of URL’s along with the votes for each

of them obtained from the social network with respect to the query issued.

INPUT: Submitted query qa

 22

OUTPUT: A sorted list of WebPages Ls

Compute Na(3) for user ua

For each user ua in Na(3)

 Compute Wua,qa

 For each wa in Wua,qa

 Aggregate user (weighted) vote va to the list Ls

Sort Ls

Method 2:

This method is similar to method one expect that along with getting the URL’s

visited by the neighbors for the query in question, we also get the URL’s visited by the

user & his neighbors for queries which are similar to the initial query based on the

similarity function. As in method one, we find all the neighbors of the user who are at a

distance of 3-hops. Then we find all queries similar to the issued query based on the

similarity function. Once this is done we then find the list of URL’s visited by each of the

users in the neighborhood for the query issued & each of the queries returned by the

similarity function. As similar to method 1 we aggregate the votes for each URL & then

sort the list of URL’s based on votes.

INPUT: Submitted query qa

OUTPUT: A sorted list of WebPages Ls

 23

Compute Na(3)

Compute Sq

For each user ua in Na(3)

 For each qa in Sq

 Compute Wua,qa

 For each wa in Wua,qa

 Aggregate user (weighted) vote va to the list Ls

Sort Ls

Method 3:

In this method instead of finding queries which are similar to the issued query we

find the tokens which are similar to the issued query. The set St is the set obtained by

finding similarity between the issued query & tokens present in the database. After this

set is found the method is similar to method 2. For each of the neighbors we find all the

URL’s visited for each of the keywords in the set St. Finally the votes are aggregated &

the list of URL’s are sorted based on the vote values.

INPUT: Submitted query qa

OUTPUT: A sorted list of WebPages Ls

Compute Na(3)

Compute St

 24

For each user ua in Na(3)

 For each qa in St

 Compute Wua,qa

 For each wa in Wua,qa

 Aggregate user (weighted) vote va to the list Ls

Sort Ls

Method 4:

This method makes use of the concepts present in both method 2 & method 3.

What this means is that this method makes use of similarity between the issued query to

both the queries & tokens present in the database & based on this does aggregation of

URL’s.

Method 4 (2 Union 3):

INPUT: Submitted query qa

OUTPUT: A sorted list of WebPages Ls

Compute Na(3)

Compute Sq

For each user ua in Na(3)

 25

 For each qa in Sq

 Compute Wua,qa

 For each wa in Wua,qa

 Aggregate user (weighted) vote va to the list Ls

Compute St

For each user ua in Na(3)

 For each qa in St

 Compute Wua,qa

 For each wa in Wua,qa

 Aggregate user (weighted) vote va to the list Ls

Sort Ls

Re-ranking

The re-ranking algorithm is basically a sort-merge between the lists obtained

from Google & social information.

Ls: An ordered list of WebPages based on social information

Lg: An ordered list of WebPages based on link-analysis (e.g., retrieved from

Google)

L: An ordered list of WebPages based on link-analysis and social information

w: A webpage

 26

Rw: The rank of wi in a list

IRw: The inverted rank of wi in a list

For each (or top-k) w in Ls

 IRw �1/Rw

 Aggregate IRw to the list L

For each (or top-k) w in Lg

 IRw �1/Rw

 Aggregate IRw to the list L

Sort L

 27

CHAPTER 6

SNAPSHOTS

Here are some snapshots of the Social Search system.

 28

Figure 6.1 Login screen to the Social Search system.

 29

Figure 6.2 “My Network” option within the Social Search system.

 30

Figure 6.3 Query Log for the user.

 31

Figure 6.4 Google & Social Search results for a query.

 32

CHAPTER 7

EXPERIMENTS

In this chapter we present an experimental evaluation of our frame- work. Our

implementation of our techniques is in PHP and Mysql and our evaluations are performed on

an Intel Pentium 2GHz processor system with 1GB of memory. The system was hosted on a

Linux machine with Apache as the web server. Some of the other technologies made use

within the system are JavaScript for client side scripting, Ajax, CSS for a consistent user

interface. For comparison and accuracy measures, we report the algorithms presented in

chapter 5.

The feedback provided by users provides a baseline measurement to compare the

accuracy of our methods. All of our experiments provide information on the accuracy &

some interesting features about the system. In all the experiments separate studies are done

for each of the algorithms & analyzed.

7.1 Experimental methodology

All of our results have been taken by the study of the xxx system. The data set

consists of real world data provided by actual users. Experiments were carried out in two

steps.

 33

 In the first step the system was initially launched & invitations were sent out to

people asking them to sign up. People were asked to login to the system after signing up

& conduct certain specific search queries on the system. The algorithms were not

included in the system initially because of lack of user query logs. So users were given

specific topics like Cars, Cricket & asked to make searches specific on these topics. Users

were also asked to bookmark those links which they thought were relevant to the query.

This was simulated by initial click on the link & then by providing much more

information about the link by specifying certain tags & a small description for each of the

link clicked. This way the initial part of the experiments included collecting user queries

& building up the query log.

After the end of the first part of the experiments the system had sufficient users,

queries, URL’s & query log for the algorithms to be run. In the second part of the

experiments the algorithms were included in the system & users were asked to search for

something which they had already searched or something to similar to their previous

query. Users were given the option for selecting which of the algorithms they wanted to

be included in the re-ranking process. Based on the selected algorithm the corresponding

results were displayed.

The results were displayed in two columns where in the left column had the

original Google results for the issued query & the right column had the results obtained

 34

from the social search engine. The results also display the score that was obtained for

each of the URL. Currently only the first 10 results from Google & a combination of

Google & social search results are displayed.

Users were also provided a checkbox where in they could give out their opinion

regarding the results obtained. For each query issued & the results obtained users could

compare the results obtained by Google & the social search engine & give out their

satisfaction by checking on the checkbox based on whether they are satisfied or not. So

for each of the queries a survey was conducted as to whether the user was satisfied with

the social search results compared to the Google results.

Lastly, an option to vote for the best algorithm was also included within the

system. Six different radio buttons were provided for each of the algorithms & users were

asked to vote for which algorithm they thought was the best. Every time user issued a

query he was asked to make a selection as to which algorithm gave him the best results.

All these data was collected over a period of 2 months. As of the first of

November there were 105 people on the network with a total of 400 queries & around

600 bookmarked URL’s. The system also had around 100 tags associated with the

URL’s. The diameter of the network was 4.

 35

7.2 Accuracy based results

These experiments give a rough estimate of the accuracy of the social search system.

As mentioned above all the experiments were carried out on real data provided by actual

users. The accuracy was calculated based on the feedback provided by users. The feedback

was in the form of a Yes or a No based on whether the user was satisfied with the results

obtained by the social search system when compared to Google. The number of Yes’s was

recorded over a period of 2 months.

Figure 7.1 shows the feedback of users over time for each of the algorithms. To give

an accurate estimate of the actual number of Yes’s, average of the number of Yes’s was used.

The graph shows an estimate as to how the user’s opinion about the algorithms varied over

time. As seen by the graph during the initial stages of the experiment the accuracy of the

system was relatively low. As the number of users increased & considerable amount of log

was recorded over time the accuracy of the system began to improve.

 36

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

week-

1

week-

2

week-

3

week-

4

week-

5

week-

6

week-

7

Time

A
v
e
ra
g
e
 n
u
m
b
e
r
o
f
Y
e
s
's

Method-1

Method-2

Method-3

Method-4

Figure 7.1 Accuracy of each algorithm based on variation time

Figure 7.2 shows the feedback of users varying over the number of records in the query log.

Put in simple words this shows how the accuracy of the system changed as the log size

increased. The log size shown is the average number of records within the query log per user.

Here again the log size kind of directly proportional to the accuracy of the system. This

experiment shows that for large number of records within the query log of each user the

system performs really well & has high accuracy.

 37

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

100 200 300 400

Average log Size

A
v
e
ra
g
e
 n
u
m
b
e
r
o
f
Y
e
s
's

Method-1

Method-2

Method-3

Method-4

Figure 7.2 Accuracy of each algorithm based on variation Log size

7.3 Evaluation based results

These experiments are intended at providing some insight into the performance of the

system. Main purpose is to find out how fast or slow the system is. The particular attribute

that we focus on is the time taken. We compare the time taken for each of the algorithms

along with Google. The situations are varied based on the log size, depth of the network &

the average number of users in the network.

 Figure 7.3 shows the variation of the time taken by each of the algorithms with respect to

the average number of records within the query log per user. As show by the graph when the

log size is relatively smaller the algorithms are pretty fast. When the log size exceeds 100 the

time taken by the algorithms is more.

 38

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400

Average log size

T
im

e
 T
a
k
e
n Method-1

Method-2

Method-3

Method-4

Figure 7.3 Time taken by each algorithm based on varying Log size

Figure 7.4 shows the variation of the time taken by each of the algorithms with

respect to the depth of the network used within the network. As mentioned in chapter 5 the

algorithms define a value called ‘k’ which basically says till what depth in the network, user

logs are searched. The graph does a study on the variation of the time taken by each of the

algorithms when the ‘k’ value is varied. As shown in the graph the time taken increases as ‘k’

value increases because the numbers of user logs which need to be scanned grow almost

exponentially.

 39

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

method-1 method-2 method-3 method-4

Algorithm

T
im

e
 T
a
k
e
n

1

2

3

Figure 7.4 Time taken by each algorithm based on varying the level ‘k’

7.4 Interesting observations

The following set of experiments shows certain properties & interesting features within the

network. Certain observations made during the evolution of the network & the query logs are

shown below.

 Figure 7.5 shows an experiment showing what percentage of the queries in the logs

are same for users within their same network. For a particular user we make an observation

as to how many queries & tags are similar based on the spider software. This gives as

estimate as to the search pattern of users who are connected directly in a social network.

 40

0

10

20

30

40

50

60

70

80

90

level1 level2 level3 level4

Level in the network

P
e
rc
e
n
ta
g
e
 o
f
s
im

il
a
r
q
u
e
ri
e
s
 &

ta
g
s queries

tags

Figure 7.5 Percentage of similar queries/tags based on varying level ‘k’

Figure 7.6 shows an estimate as to how the network is distributed. It compares the

number of users at each level. As mentioned before the length of the longest path in the graph

is 3, so estimation up to level 3 is shown.

0

10

20

30

40

50

60

level-1 level-2 level-3 level-4

Depth in the network

Users

Users

Figure 7.6 Number of users based on varying level ‘k’

 41

The experimental results suggest that the overhead approach is relatively small.

The actual Re-ranking process takes very little time as shown by the graphs. Moreover

the results vary a lot as users are added onto the network. The process is very subjective

in that a new user might contribute a lot to the system. Our experiments show that the

probability of good contribution made by such kind of a user is very likely. Still this is a

very subjective kind of study where a lot of things depend on the user involved. But

based on the above experimental user study the behavior of the system can be predicted

to certain levels.

 42

CHAPTER 8

CONCLUSION

In this thesis we have presented an approach for personalizing search results using

information present on a social network. Our framework can be applied on any kind of social

network. We have discussed and analytically demonstrated several properties of our

framework regarding the behavior of the system. Through a detailed experimental study we

have demonstrated the practical utility of our approach.

 43

REFERENCES

[1] F. Tanudjaja, and L. Mui. Persona: A contextualized & personalized web search.

Proceedings of the Hawaii International Conference on System Sciences, Copyright IEEE

2002.

[2] F. Liu, C. Yu, and W. Meng. Personalized Web Search by Mapping User Queries to

Categories. CIKM, Nov. 2002.

[3] E. Agichtein, E. Brill, and S. Dumais. Improved Web Search Ranking by Incorporating

User Behavior Information. SIGIR, Aug. 2006.

[4] L. A. Adamic, O. Buyukkokten, and E. Adar. A Social Network Caught in the Web.

Proceedings of ICDE, Apr. 2002.

[5] N. Koudas, A. Marathe, and D. Srivastava. Flexible String Matching against Large

Databases. VLDB, 2004.

[6] M. Pazzani, and D. Billsus. Learning & Revising User Profiles: The Identification of

Interesting Websites . Proceedings of ICDE, Apr. 2002.

 [7] A. Pretschner, and S. Gauch, Ontology Based Personalized Search, Proceedings of the

Eleventh IEEE International Conference on Tools with Artificial Intelligence, 1999

 [8] T. Kurki, S. Jokela, R. Sulonen, and M. Turpeinen, Agents in Delivering Personalized

Content Based on Semantic Metadata, Proceedings of AAAI Spring SymposiumWorkshop

on Intelligent Agents in Cyberspace, 1999.

 44

 [9] A. Pretschner, and S. Gauch, Personalization on the Web, University of Kansas, ITTC-

FY2000-TR-13591-01, 199 [10] M. Mcnee, I. Albert, D. Cosley, P. Gopalkrishna, K. Lam,

M. Rashid, A. Konstan, and J. Riedl, On the Recommending of Citations for Research

Papers, CSCW, 2002.

[10] B. Yu, and P. Singh, Searching Social Networks, AAMAS, 2003.

 45

BIOGRAPHICAL INFORMATION

Sushruth Puttaswamy was born in Karnataka, India in 1983. He received his BE

in Computer Science & Engineering from SJCE, Visweswaraiaha Technological

University in 2005. His constant interest on search engines & their working influenced

him to pursue study on Information Retrieval while doing masters in UT Arlington.

