
TOP K QUERY PROCESSING IN DISTRIBUTED DATABASE

by

AMRITA TAMRAKAR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2007

 ii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Gautam Das for his guidance and

constant support during my research work. This work helped me understand in depth

about the ranking in Database and information retrieval. Also I thank Dr. Das for

involving me in the Query Reformulation project through which I got to learn all the

research work going on in that area.

Also I thank my committee members Dr. Leonidas Fegaras and Dr. Nan Zhang

for their comments and suggestions.

I thank Lekhendro Lisam for his help throughout my thesis and Kavya Reddy

Musani for her strong belief in me.

Last but not the least, I would like to thank all my friends at UTA in helping me

concentrate in the research work and always motivating me to march ahead in face of

obstacles. I would like to thank my parents, brothers and sister for their constant support

in all I have done.

July 23, 2007

 iii

ABSTRACT

TOP K QUERY PROCESSING IN DISTRIBUTED DATABASE

Publication No. ______

Amrita Tamrakar, M.S.

The University of Texas at Arlington, 2007

Supervising Professor: Dr. Gautam Das

Today�s data is rarely stored in centralized location due to the enormous amount of

information that needs to be stored and also to increase reliability, availability and

performance of the system. Same data is stored in different format into different

company�s database as well as they may be partitioned or replicated. We consider

various scenarios of distributed database such as horizontal, vertical fragmentation and

attribute overlapping. Allowing access to integrated information from these multiple

datasets can provide accurate and wholesome information to the end-user. We research

on efficient querying to these distributed databases to get top k elements matching the

ranking order provided by the user. We also discuss ways of using the top k algorithm

and their limitations to our problem. We propose four different algorithms based on

NRA algorithm to solve this problem efficiently and compare and contrast these

 iv

methods. Once the combination of data sources has been identified, we use our

algorithms to get the top elements from these data source combination, process them to

get the top k elements according to the user�s ranking function.

 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... ii

ABSTRACT ... iii

LIST OF ILLUSTRATIONS... ix

Chapter

 1. INTRODUCTION��� ... 1

 1.1 Motivation.. 1

 2. RELATED WORK���. ... 8

 3. ISSUES IN DISTRIBUTED DATABASE ... 12

 3.1 Hybrid Fragmentation ... 12

 3.2 Overlapping Attributes and Duplicate records 13

 3.3 Issues not considered in the thesis ... 14

 3.3.1 Schema Matching .. 14

 3.3.2 Value Matching ... 15

 4. RANKING ALGORITHMS.. 16

 4.1 Ranking in Extreme Cases... 16

 4.1.1 NRA Algorithm... 16

 4.2 Ranking in Intermediate Cases .. 18

 4.2.1 Difficulties... ... 19

 4.2.2 Merge-Sort Operation.. 20

 vi

 4.2.3 Individual Attributes Ranking (INRA)...................................... 21

 4.2.4 Combined Attributes Ranking (CNRA)................................... 23

 4.2.5 MaxNRA.. 27

 4.2.6 LPNRA.. 28

 4.2.6.1 Linear Programming .. 28

 4.2.6.2 How does LPNRA works? 31

 4.2.6.3 LPNRA Algorithm... 34

 5. EXPERIMENTAL EVALUATION... 35

 5.1 Platforms......... ... 35

 5.1.1 Linear Programming .. 35

 5.2 Methodology..... ... 36

 6. CONCLUSION.. 41

REFERENCES ... 43

BIOGRAPHICAL INFORMATION ... 46

 vii

LIST OF ILLUSTRATIONS

Figure Page

1 Distributed database depicting data from various organizations 2

2 Sample tables of different databases of university, police and hospital

departments respectively... 3

3 Ranking in Distributed Hospital databases.. 4

4 Some more databases with incomplete attributes which we are
 not considering due to the complexity involved .. 6

5 Vertical overlapping of attributes in databases.. 13

6 Horizontal overlapping of tuples with partial attributes in databases���.. 14

7 Individual NRA using total vertical partitioning. .. 21

8 Individual NRA using merge-sort and basic NRA .. 22

9 Combined NRA with taking inputs from overlapped attributes 25

10 Combined NRA without using the overlapped attributes 26

11 Feasible region for two linear equations ... 30

12 Functioning of Linear programming NRA with three databases
 having vertical overlapping and fragmentation ... 32

13 Comparison of INRA and CNRA based on varying k value.......................... 38

14 Comparison of CNRA, LPNRA and INRA with varying k value.................. 38

15 Comparison of Scan, INRA, CNRA and LPNRA with
 varying database size.. 39

16 Comparison of performance by INRA with varying k
 and database size.. 39

 viii

17 Comparison of performance by CNRA with varying k and
 database size .. 40

18 Comparison of performance by LPNRA with varying k and
 database size .. 40

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

Top k query processing is among the most researched techniques for ranking in

huge databases and information retrieval. The web and the data storage is increasingly

moving away from centralized system to distributed system. The web is a huge database

repository which stores data in various locations. Similarly the relational databases have

also come along way from just a simple storage to Data Warehousing, Data Mining,

Replication and Integration. They are managed by independent entity so they have

different schema and different data. For e.g. In a real world scenario, every university

has it�s own database and even more than one database, similarly every hospital has one

or more databases. If an insurance company wants to find out the top k students who

have been in a car-accident, so as to research on its insurance policy for such group, it

needs to combine university, hospital and police database which are all independent

entity. Another example would be to research on the health risk of diabetes patient with

high blood pressure level. The research has to cover multiple hospital databases which

are autonomous in themselves.

In the example shown in the following figure, an insurance company wants to

find out the top k students who have been hurt in multiple car accidents so that they can

come up with new policies and market it to these groups. In order to get the results, they

2

need to get the students information based on their academic grade, no. of traffic

violation citations and their hospital visits. That means assimilating the information

present in three different databases and ranking them according to the attributes

distributed across them.

Fig 1 Distributed database depicting data from various organizations

Even though the above picture depicts some individual organization, they may

have fully or partially replicated database. Each of these databases, if seen in detail

reveals the disparity of having different attributes and different records amongst

themselves. For e.g. university database, police database and hospital database contains

following tables.

Insurance
company

University
Database

Police
Database

Hospital
Database

3

ssn Name AccidentType No.of visits Diagnosis

xxx Joe M. Car 10 Fracture etc

ssn Name No. of visits

yyy Mary J. 20

Figure 2 Sample tables of different databases of university, police and
hospital departments respectively.

Even each of the databases may be partitioned and kept into different locations.

For e.g. patient records may be collected from hospitals around the universities.

Similarly another example can be taken from a diabetic research center which wants to

find out the relation between diabetes and high blood pressure. Hence it wants to find

out the top k patients for research purpose. The research center would have to take

ssn Name Dept Major Grade

xxx

yyy

Joe M.

Mary J.

CSE

EE

IT

Nano

A

B

Ssn Name Citations Vin LicenseNo AccidentType

xxx

yyy

Joe M

Mary J.

3

2

1

5

123456

457899

Car

Car

ssn Accident type Diagnosis

yyy Car clotting

4

many hospitals and diabetic centers into account. Each of these is maintained

individually and hence as seen from following figure, their attributes and records differ.

Figure 3 Ranking in Distributed Hospital databases

In our thesis, we try to focus on solving the top k query processing in such a

distributed environment. For simplicity we assume that the union of all these data

sources would give us a whole gigantic database in its full form. For eg. Student A has

attribute values in University database, hospital database and police database for the

researcher to give the ranking function comprising of academic grade, type of surgery

and no of accident. So if we combine all the three databases, it will contain all the

attribute values for Student A. We assume that each of the databases has sorted list for

Ssn
Age

Name
BP level

Heart cond

Ssn
Age

BPlevel

Ssn
Age

Heart Condition

Ssn
Age

BP level
Cholesterol

Diabetes

Replicated
Database Arlington

Hospital

Baylor Hospital

Diabetes Center
LA

Ssn
Age

BP level
Cholesterol

Diabetes

Diabetes Center
TX

Diabetic Research
Center

Find top k
people

having high
BP and

cholesterol

Relation between
Age and diabetes !
Find top 100 people
having that relation

5

each of their attributes as well as they are capable of producing the sorted lists of

attribute combinations as per the query request. We consider the distributed database as

managed by individual entity and hence are independent in their schema and data

management with each other. Since they are autonomous and distributed, we assume

that random accesses are not allowed and only sequential accesses are allowed due to

the cost factor as random access is cost higher than sequential access. Random access

denotes the querying of database using the unique key while sequential access means

getting the results one after another as output by the database.

These database can be considered as hybrid fragmentation of the gigantic

database as we assume that when all the databases are combined, they give us the

complete database i.e. each tuple element in the combined database contains every

attribute. For e.g. we don�t consider the following types of database partitions as

depicted in the figure 2. Here certain tuples in D1 doesn�t contain the values of

attributes A5 and A6. Similarly certain tuples in D2 doesn�t contain the values of

attributes A1 and A2.

6

 A1 A2 A3 A4 A5 A6

(a)

Fig 4: Some more databases with incomplete attributes which we are not considering
due to the complexity involved.(a)Hybrid fragmentation with unknown attributes and
also overlapping in records and attributes (b) Completely unknown partitions for all
records (c) Partial records have all known attribute values (d) Only few attributes
known to all records (e) few records have some unknown attributes

In our thesis we aim at providing a solution for ranking the results according to

monotonic aggregation function on the distributed database so as to avoid the total

scanning of all the databases.

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

A1 A2 A3
A1 A2 A3

A4 A5
A4 A5

(b (c)

(d) (e)

D1

 D2

7

An aggregation function f is said to be monotonic when the f (xi, x j � xn) < = f

(xi+1 , x j+1,�xn+1) is true where xi are the attributes for every i.

We assume that each of the databases allows sequential access i.e. gives the

output for each of its own attribute in the sorted order as a user demands. But our query

requires that the result be ranked in the combination of these attributes. To help solve

this problem without scanning the whole databases, we need to apply the top k selection

algorithms. But due to the unique problem presented by the nature of distributed

database, we cannot apply the top k algorithms as it is. Hence, we have proposed four

different variations of the top k algorithm which will take advantage of the combined

and the overlapped attributes present in different database in order to make the scanning

stop as soon as possible. With the help of these algorithms we focus on increasing the

efficiency for querying both in terms of access cost by round trip to the database and

time reduction for termination.

8

CHAPTER 2

RELATED WORK

The basic and naïve approach of finding out the top elements by scanning all the

database was almost revolutionized by the paper [20] published by Fagin et al and

others [4, 5]. Among the many top k popular algorithms, TA has been the most

researched and used in many variations throughout numerous other researches [6, 7, 8,

and 9] on Top k query processing. TA is an instance optimal algorithm and uses

bounded buffer to get the ranked results from a database limiting the scan depth on the

lists in order to terminate the algorithm as soon as possible.

The NRA algorithm is one of the variations of TA which uses similar method as

TA but doesn�t allow random access and works only with the sorted access. Hence

NRA is time consuming and requires unbounded buffer size unlike TA. But it is useful

when scenarios where random access is quite expensive or impossible is taken into

consideration. For the rest of our thesis we concentrate on the NRA or TA-Sorted

algorithm.

Most of the papers on Top k Selections are based on either the web based

information repositories or the lists where only one list per repository is involved. There

is not much of work done on the distributed database or hidden databases in the web,

which usually have duplicate attributes and duplicate records amid them.

9

Among the top algorithm discussed in distributed environment is TPUT

algorithm [10]. It uses the TA algorithm and gets the results in a batch. There are three

phases in the algorithm. Fetching the k best entries (docid, score) from each of the peers

and compute the top k worst score 2) query each peer to send all tuples having

score>=top k worst score/no of attributes 3) do RA to fetch unseen attributes to compute

the actual score. Another algorithm KLEE [14] discuss about the information retrieval

from distributed peers using the modified version of TPUT that uses NRA method. It

uses bloom filters and histogram information to trim down the candidates in the second

step of retrieval from the peers. Similarly [7] paper discusses the ranking of the tuples

using modified TPUT but unlike KLEE which is based on approximate results, it give

absolute ranking and uses RA method and uses non-uniform threshold across the peers.

All of these works are focused on lists which are unique per peer.

Another work [2] related to distributed environment is done as early as in 2002.

In this paper, it considers a web search engine which needs to get top k result from both

the Random and Sequential access sources but it tries to minimize the random access. It

performs restaurant ranking using three different autonomous web accessible databases

with different interfaces. It assumes that one of the sorted lists provides the sequential

access and it contains all the record ids while other lists can perform only random

access. In our case, one of our main limitations is that a single list may not contain all

the records. Another important paper [11] has shown similar work in self-tuning query

expansion which uses nested top k and incremental merging of inverted list. It uses the

TA algorithm and also probabilistic estimators. Basically it involves candidate lists

10

which are list of the expansion terms with their frequency of occurrence as their score.

The incremental merging combines these candidates� lists incrementally using score

function which is the combination of similarity function and the score for each element

and continues until the threshold (top k min) value is reached.

Another area of top k algorithm is the join algorithms. [21] Discusses of TJA

algorithm which uses the peers as nodes which send their results to its parent. The

intermediate nodes perform the merging of all the received lists and send the top k to

the parents. So it acts like a tree which sends the results in batches from root to the

parents meanwhile the threshold information travels from top to bottom. Similarly [17]

uses the TopX search engine which uses hash joins for merging the partial scores and

uses efficient candidate queuing and index access scheduling, incremental merging of

inverted lists with potential expansion terms and forms virtual joins. It uses nested top k

query with tree structure for phrase matching. It reads complete blocks instead of single

element termed sorted block-scans but is capable of random access when needed.

RankSQL [12] discusses on changing the query algebra by interleaving the ranking in

the join conditions in the database itself instead of first querying and then ranking the

results. It advocates fundamental support of ranking in database itself instead of

middleware. Unlike our problem, these algorithms consider one attribute per peer or one

sorted list per peer. Though, we can also include the join conditions involving the tables

distributed across various locations as our future scope. Currently we focus mostly on

the selection condition involving certain attributes scattered in various databases

identified by their unique tid.

11

The more recent work on top k using preprocessed views [1] brings into play the

linear programming methods to terminate the algorithm efficiently. This is very near to

what our LPNRA algorithm performs during its threshold computation. It selects a set

of views available after determining the views which will give the top element faster. It

uses histogram information and convolution of histograms to determine them quickly.

Each of these views has different scoring functions and the algorithm gets the threshold

value or maximum of the unseen tuples using the linear programming. It performs

Random Access in the main relation table to get the rest of unseen attribute values of

the seen tuples in the top k buffer. In our problem, we assume that we do not have a

complete relation which has all the attributes for all the records.

12

CHAPTER 3

ISSUES IN DISTRIBUTED DATABASE

3.1 Hybrid Fragmentation

There are three type of fragmentation usually associated with databases. They

are as follows:

i) Vertical Fragmentation

ii) Horizontal Fragmentation

iii) Hybrid Fragmentation

Vertical Fragmentation deals with the attributes of the database. Assume a table

consisting of a1�an attributes and m tuples. When the table is partitioned into two

tables with a1�ak attributes in one table and ak+1�an in another, each table containing m

tuples, this type of fragmentation is called pure vertical fragmentation.

Horizontal fragmentation deals with the rows of database. Assume a table with

millions of record and we need to keep the records in separate disks to have a faster

retrieval, then table can be partitioned horizontally i.e. some records are kept in one

table while others in next table. The schema of the tables will remain the same.

Hybrid fragmentation involves both these types of partitioning. In this case, the

tables may have different schema, different data or same schema and different records

or same records. The fig. 3 below depicts a hybrid fragmented database, we can see that

tuple with id 25 has its attribute values stored in five different databases D1, D2, D3,

13

D5 and D6. Also all the tuples don�t reside in one database or rather no database may

contain the complete lists of tuples.

3.2 Overlapping Attributes and Duplicate records

This is one of the important situations considered in this research thesis. Most

of the on-going researches on ranking have not considered overlapping attributes but

this is a very common occurrence with the distributed environment and practical

problem. Same attributes may be stored in various databases since they are essential to

almost all of them meanwhile some attributes may be specific to some databases. This

overlapping of attributes makes it very difficult to find the efficient ranking solution in

the distributed databases.

Fig 5 Vertical overlapping of attributes in databases

Similarly there may be duplicity in records among all databases and hence our

solution needs to neglect the duplicate data from the ranking procedure.

D3

D4

D7
D8

D9

D5

D10

D6

D11

 tid A B C D E F G Attributes

tuples

25

D1 D2

Overlapped
attribute

Tables in
different
Databases

14

Fig 6 Horizontal overlapping of tuples with partial attributes in databases

3.3 Issues not considered in the thesis

3.3.1 Schema Matching

As seen in the above example of distributed database, the schema of the autonomous

database is determined individually. This is a basic problem in database related

applications such as Data warehousing, Data integration and Semantic query

processing. For e.g. If the database D1 has attributes �age� and �name� while database

D2 has attributes �year� and �name�, the two attributes �age� and �year� may denote

same attribute but it is not obvious from the schema. Similarly the attribute �name� in

these two databases may denote two different types of name i.e. they are not the same

attributes even if they have same attribute name. The domain of schema matching has

significantly grown from manual schema matching to automated schema matching with

many limitations [17]. But it is a different domain in itself which we are not focusing in

our research.

D1 D2

D3

D4

D7
D8

D9

D5

D10

D6

D11

 A B C D E F G Attributes

Duplicate
tuples

tuples

25

15

3.3.2 Value Matching

Similar to the schema matching, the attribute values of the same tuple may be different

in different database due to misinterpretation, error or conformance rules. Finding these

is very tough job and we consider in our research that they are all same wherever they

occur. So if a tuple with tid ti has attribute A value ai in Database D1 then we assume

that tuple with tid ti in any other databases will also have value ai for it�s A attribute.

16

CHAPTER 4

RANKING ALGORITHMS

4.1 Ranking in Extreme Cases

In this thesis, we consider two extreme cases for distributed database. They are the

pure horizontal and vertical fragmentations. For these types of partitions, we can

easily provide a ranking solution.

If we have a pure horizontal fragmentation, we can get the top most elements

from each database and then compare the top elements and then output the highest.

For a pure vertical fragmentation, we cannot apply this method because of the

missing attributes. The solution is provided by basic NRA algorithm.

4.1.1. NRA Algorithm

According to Fagin et al, NRA is performed on situations where random

accesses are not possible and we are given m sorted lists where m is the number of

attributes. This can be considered pure vertical fragmentation. The algorithm is as

follows:

1) Let ScoreQ () be the monotonous aggregation ranking function.

2) Do sorted access in parallel to each of the m sorted lists and loop until the

top object is found. Maintain the top k min found in the lists.

17

3) For each tuple encountered, compute it�s worst score based on the ScoreQ

function on seen values and unseen values as 0, compute it�s best score similarly but

take maximum value seen till now for the unseen attributes.

4) Let Tk be the current top k list, containing the k objects with highest worst

scores seen so far; ties are broken arbitrarily if the scores are same. Let top k min be the

kth largest worst score tuples.

5) Call an object viable if Best Score of the tuples is greater than top k min.

Halt when at least k distinct objects have been seen and there are no viable objects left

outside Tk.

18

4.2 Ranking in Intermediate Cases

In this research, we consider intermediate case as the one when we have hybrid

fragmentation. As we had discussed earlier, NRA works on two or more different

attributes which are sorted in descending order. In our case, we have various problems

which cannot be solved by simple NRA algorithm as it exists. The main problem is

database independence and although we assume that the data is consistent through out

the system, the design of database schema and the records in the database is solely

maintained by the individual organizations. These will very likely result in same

attributes across the different databases. These databases may share the same records or

they may be disjoint or may have certain percentage of intersection.

One of the main interests in our research is to show that we can exploit the

combined attribute ranking as needed by the scoring function. For e.g. If the query

desires A+B+C as the scoring function and if one of the database has A and B, then

instead of getting A and B as separate attributes sorted individually, we can gain more

time and access cost by getting them as A+B sorted. Since the results will be already

sorted according to our requirements, we are certain to gain in our efficiency. While this

seems to be a very thoughtful process, it becomes more interesting when we see the

practical sides of the distributed system which consists of many overlapping in the

attributes. Hence the intermediate case involves the following:

i) Overlapping Attributes

ii) Hybrid Fragmentation

19

4.2.1 Difficulties

Let us go a bit into detail of how this simple practical problem renders it very

difficult to find out the solution using simple NRA.

In order to apply the top k algorithms we need to find out the three important

variables. They are the threshold value per parallel access, Best Score and Worst score

value per tuple and the top k min value. Among these, the worst score and top k min is

easy to find as they are the aggregation of the seen values. But computing the threshold

value and the best score for each tuples gets tricky and complex due to the lists that are

ordered in the combined attribute scores rather than individual ones.

Suppose we have a database which has A, B and C as attributes and another

database which has B and D as the attributes. If our scoring function is the aggregation

of A, B, C and D, and the tuple ti and tuple tk are seen from the current access from D1

and D2. What will be the threshold value? We can take Score (ti) for A+B+C but for D

value we cannot take the D value of tuple tk as the highest. That is because the tk has the

Score (tk) but it�s D value may be less than any unseen tuples whose combined score

Score(tunseen) is less than Score(tk) but D value of tunseen > D value of tk . So determining

the maximum D value gets harder.

20

We propose four different algorithms to solve this type of ranking. They are as

follows:

1) Individual Attributes Ranking (INRA)

2) Combined Attributes Ranking (CNRA)

3) Max NRA

4) LPNRA

We use merge-sort operation in all of these algorithms.

4.2.2 Merge-Sort Operation

This operation gets one object at a time from the input queues. It operates as

follows:

Merge-sort

Let qi, qj....qn be the sorted attribute lists of the same attributes located in

different databases.

while (true)

if the top buffer is empty

 {Do parallel access to each of the list

 Do merge-sort opertion in the buffer}

else

{Perform sequential access to the database (Dt)

 Do merge-sort operation in the buffer}

 Record the database with top object (Dt)

 Output the top object

21

4.2.3 Individual Attributes Ranking (INRA)

As in the original NRA algorithm, here we use the basic individual attributes

from each database. To solve the problem of overlapping attributes, we do the algorithm

in three steps:

1) Get the database schema for the all of the databases.

2) Create a merge-sort tree for all the attributes that are overlapping, thus

eliminating the duplicate attributes for the final NRA. Access the output from this tree

for the attribute.

3) Perform NRA over all attributes.

 A B C D E F G
D3 D1 D2

D9

D6 D5

D7

D10

D8

D11

Fig 7 Individual NRA using total vertical partitioning

22

In the fig no 5, Database D1 will provide individually sorted list A and List B;

similarly Database D2 will provide sorted lists C and D. The list with common

attributes are merged first and sorted, then NRA is performed on the output of these

sorted buffer list. The following figure is another example of how this occurs.

The improvement here from the original NRA is that instead of performing the

access for the objects in sequential way for the duplicate attributes, we are using a

merge-sort operation (section 4.2.2.2) which is more efficient. Nonetheless, this is the

basic approach we are undertaking for solving the problem.

Fig 8 Individual NRA using merge-sort and basic NRA

In the above algorithm, we take advantage of the fact that they are the same

attributes which are already sorted. So once we have seen one object, we know that the

next object will have lesser score than the currently seen one.

In the first access, we do parallel access to all the databases, perform merge

operation in a buffer, sort it and output the topmost object. Suppose that object was seen

Age

BP Level

Age

Cholesterol

NRA

BP, Age
Age, cholesterol

Merge
-sort

23

in D2, and then we need to access the next object from D2 only, since we already know

the top objects of all other databases which were lower than the top object of D2. Hence

we gain the access cost from all the other databases.

4.2.4 Combined Attributes Ranking (CNRA)

This approach is one of the main causes of our research. We have two

approaches for this system of solving the problem.

In the first approach, we try to solve the problem using the advantage of already

ranked attributes by various databases.

As opposed to earlier approach, when we take individual attributes and perform

the top k processing, we are not performing duplicate computations. If the attributes can

already be ranked in the individual databases, then we are sure to get the candidates

which are more likely to be in the top most categories. for e.g. Given A, B and C

attributes, the resulting tuples from A+B ranked lists are more likely to be in the list

than the tuples from A or B alone.

Hence we try to match up more combined attribute list as possible. The main

obstacles here are same as in the pervious approach. We have vertical as well as

horizontal fragmentation.

How do we get the top element from two databases which share common

attributes?

The difficulty here is finding of the threshold values and the best score for each

object. By threshold value in NRA or any other top k algorithm, we mean a value which

24

is the highest that any unseen object can get till now. This value is calculated by

applying the scoring function on the top value from the most recent parallel access to all

the lists.

For e.g. Attribute Ai, Aj .. An have values vi,vj,..vn after kth parallel access, and

if the scoring function is the summation of all the attribute values, then the threshold

will be SUM(vi,..vn) even if the object ids are different for these values.

Now when we have overlapping attributes, say A1, ... An then, how to calculate

the threshold value? It cannot be the summation of all these attribute values. The point

to remember here is that the value per access for the same attribute from two databases

may differ as they are getting two different records. Another important thing to consider

is that we are accessing the database according to the combined attribute sets. This does

not guarantee that each individual attributes are highest seen till now. i.e. If v11�vn1 are

the values of these attributes for Database D1 in kth access, then ScoreQ(tk) >

ScoreQ(tk+1) but v1k may not be greater than v1(k+1). Since we do not know the individual

best of the attributes, we cannot calculate the threshold and the best score for each

object.

As a solution to this deadlock, we use the combined Algorithm which takes two

approaches.

In the first variation of the algorithm, we take only those combined attributes

which are common to both the databases. For e.g. if Database D1 has A, B and C

attributes and Database D2 has B, C and D attributes, then we take, A, B+C from D1

and B+C, D from D2. We perform a merge-sort operation on D1 and D2 for B+C

25

attributes as the first step and then perform the NRA over A, B+C result and D. We can

calculate the threshold as A + max (B+C) + D. Since (B+C) acts as a separate attribute

say �X �for each database here, we don't have to calculate the individual attributes

separately. Similarly to calculate the best score for each object we can get the total score

of the attributes and get the maximum among them.

Fig 9 Combined NRA with taking inputs from overlapped attributes

CNRA Algorithm

! Find the combined attributes (eg. A+B) that are present in all database

! Query the sorted list for these same set of combined attributes

! Merge and sort the results to give the top output.

! Compute NRA over these outputs with dissimilar attributes.

! Loop until top k output

Age + BP Level Age + BP Level

Diabetes Cholesterol
Merge -Sort

Age, BP, Diabetes

NRA

Age, BP,
cholesterol

26

In the above figure, the Age and BP level are two attributes which are common

to both the database and hence we query the sorted lists for these combined attribute

and perform merge-sort operation. Then we compute NRA algorithm on the output with

other dissimilar attributes.

Another approach is that we do sequential access on the database having the

maximum combined attribute. Then access other database for the remaining attributes.

For e.g. in the above database D1 and D2, we access D1 for A+B+C and D2 for D

alone.

! Query the sorted list for the combined attributes from all database

! Check if the attribute has been already present in another database

! Merge and sort the results to give the top output.

! Compute NRA over these outputs with dissimilar attributes.

! Loop until top k output

Fig 10 Combined NRA without using the overlapped attributes

BP Level + Age Cholesterol

BP, Age
Age, cholesterol

NRA

27

There are various forms of database schema, which may require some extra

work to find out the most efficient way applicable to them.

4.2.5 MaxNRA

This is the most flexible yet least efficient method and hence least preferable

method. In this method, we assume that the unknown values for the unseen attributes

are 1 i.e. maximum possible value.

MaxNRA Algorithm

! Query the sorted list all attributes from all database

! Compute the bestscore and threshold for tuple with unseen attribute value as 1

! Perform NRA over all the sorted lists.

! Loop until top k output

 This causes more flexibility as regardless of database schema, we can do

parallel access in all databases and get the results in buffer meanwhile inputting 1 for all

unseen attribute values per object. The threshold can also be calculated in the same way.

For e.g. If A+B = 1.4 from Database D1 and B+C=1.6 from Database D2, we can say

that the max A+B+C for D1 can get 1.4+1=2.4 while for D2, it can be 1.6+1=2.6.

Hence the threshold can be max (2.4, 2.6). Similarly the best score will be 2.4 for D1

and 2.6 for D2.

The inefficiency of this solution is that the stopping condition, which is

threshold < top k min value. The worst Score value i.e. top k min will be quite small in

28

comparison to the threshold value which takes maximum of all. Until the unseen value

is seen, it assumes the score of 1 and hence doesn't decrease. This causes the maximum

buffer space and increased number of access to find out the top values. Hence this

procedure may not be suitable for the distributed natured system.

4.2.6 LPNRA

This is among the important approach we have taken to resolve the problem we

face when we take combined attributes. So it actually tries to minimize the number of

accesses than the 2nd and 3rd approaches. This is the strictest algorithm as it demands

that there be no horizontal fragmentation before the final NRA.

It takes the combined attributes from all the databases. The results from each

database are ranked accordingly and we try to get as many combined attributes as

possible. Now when we need to find the threshold value, we can use the linear

programming methods to get the maximum value.

4.2.6.1 Linear Programming

LP method is mostly used in solving the complex business and statistic

problems. In situations when we need to maximize profit given some constraints, we

can convert the problem into linear equations and use various methods like simplex

method, ellipsoid methods and interior-point techniques to get the maximum or

minimum value.

A linear function to be maximized

e.g. maximize c1x1 + c2x2

Problem constraints of the following form

29

e.g. a11x1 + a12x2 <=b1

 a12x1 + a22x2 <=b2

Non-negative variables

e.g. x1>=0, x2>=0

For e.g. a typical linear programming problem would be as following:

Given wheat (2$/lb) and corn (3$/lb), we need to prepare bread dough with 50$

so that we get the maximum profit. Each dough will weigh 1lb. What can be the

maximum profit?

Let x and y be the amount of wheat and corn. Maximize c1x + c2y where c1 and

c2 are the cost profit per unit of dough produced.

Constraints will be 2x +3y < =50, x+y <= 1.

In our case, we have the following cost function. Assume we have attributes

A,B,C and D and database D1 has A,B and C attributes while D2 has A, C and D

attributes. toti and totj are two scores from D1 and D2. Converting to linear problem :

Maximize A+B+C+D

Subject to

a1 + b1 + c1 <= tot1

a2 + c2 + d2 <= tot2

0 =< ai , bi , ci <= 1 i ={1...n}

Cost function for a linear program may be maximization as well as

minimization. In our case, we will maximize the cost function. Similarly the constraints

can be of various types such as greater than inequality, less than inequality and equals

30

to. In our case, the total score is always less than inequality since the tuples cannot get

more score than presently seen scores since they are already sorted in descending order.

Graphical depiction can help understand Linear programming solution and also help

solve the problem.

In the following picture, the intersection of the two constraints depicts all the

points that can be the solution satisfying the constraints, hence called feasible region.

Since we need to maximize our solution, the vertices of the feasible region will give the

solution to this problem

Fig 11 Feasible region for two linear equations

31

4.2.6.2 How does LPNRA works?

In case of our algorithm, we can get the threshold value for each access parallel

access by converting it to a linear program. For e.g.

If Database D1 gives ai + bi + ci with total score as 2.9 and Database D2 gives ai

+ ci + di with total score 2.3. To find out the threshold value or the unseen maximum for

the upcoming tuples, the cost function will be to maximize (ai + bi + ci + di)

Constraints will be ai + bi + ci <= 2.9

 ai + ci + di <= 2.3

Subject to 0 <= ai, bi, ci >= 1

Similarly, to calculate the best score for each object seen, we apply the same technique.

We get the maximum seen from other databases till now and subtract the overlapped

attribute we already have. For e.g. we have database D1 giving the tuples in the ranked

order of A+B+C, while the other database have the results coming in B+C+D order.

Suppose tuples t1 (a1+b1+c1=score1) is from database D1 and t2 (a2+b2+d2=score2) from

Database D2. Now to get the best score for tuple t1, we need to find max d1, which we

can get by subtracting b1+c1 from score2 seen in database D2. We cannot get the d2

value directly as the maximum d1 can get, although the tuple t2 has the maximum score

seen till now , it is the total combined score of B+C+D attributes till now hence as

discussed above, doesn't mean that the individual D attribute is also the maximum seen

till now. Hence if we subtract the overlapped attribute values from the whole

summation, we can say that the combination will not get maximum

32

score.

Fig 12 Functioning of Linear programming NRA with three databases having
vertical overlapping and fragmentation.

In the above figure, we can see that we have BP and Age attributes overlapping

in D1 and D2 while Age and Cholesterol attributes overlapping in D2 and D3 databases.

In such cases, we can query all these databases according to the ranking that is already

performed by the individual databases with respect to the scoring function provided by

the query. This gives us the already sorted tuples faster than individual ones. Also since

the combined NRA will not get the tuples according to the overlapped attributes but

only get the overlapped attributes once, they will have less percentage of already ranked

tuples.

One important thing to keep in mind here is that we need to have all the tuples

in all databases even if the attributes are not the same. This is to ensure correct result is

obtained by solving linear program. Linear program assumes that the input variables

constraints will apply to the variable everywhere the situation occurs. For e.g. If we

BP Level + Age Age + Cholesterol

LP NRA

BP,
Age

Age,
cholesterol Cholesterol,

BP

BP+ Cholesterol

D3 D2 D1

33

have x1+x2>200, this condition should be satisfied no matter where it occurs. But in our

case, one database may have x1+x2>200 while another may be having x1+x2>300

which will not be useful if we want to use linear programming. Hence we need all the

tuples in each database.

The LP algorithm helps solve the problem of overlapping by determining the

best score and the threshold value. Best Score value is the highest score any tuples can

get. For this, the maximum score for all unseen attributes of that tuples needs to be

determined. Since the attributes are overlapping, we use linear programming to get the

maximum cost function. For e.g. If x1+x2+x3>200 and x1+x2+x4 > 500 are two

constraints, we can use linear programming to find out the maximize cost function

x1+x2+x3+x4. Hence we can find the best score any tuples can get.

Similarly threshold can be found out by supplying the constraints from each

database having overlapping attributes and aggregating with non-overlapping attributes.

34

4.2.6.3 LPNRA Algorithm

Let Q = (ScoreQ, k, ∗) � Query

topkBuffer = List topkmin = 0

for all database di(1 ≤ i ≤ n) loop

Let (tid, ScoreQ (tid)) be the ith tuple from dj

// check viability of the tuple to be in topk-Buffer

if ScoreQ(tid) > topkmin then

if (|topkBuffer| = k) then

Remove min score tuple from topkBuffer

end if

Add (tid, ScoreQ(tid)) to topk-Buffer

topkmin = min score of topkBuffer

end if

//check for stopping condition

Compute threshold = LP ((ScoreQd) ≤ sd)

where 1≤ d≤ n and sd is actual score

0 ≤ Xj ≤1 1 ≤ j ≤ m (m attributes in cost function)

if (|topkBuffer| = k) and (unseenmax ≤ topkmin) then

Return topkBuffer

end if

end for

35

CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Platforms

In our experimental evaluation, we present the methodologies for our

experiment. We used Intel Pentium 2 Ghz processor with 1 MB memory with Windows

XP SP2 o/s. We performed the experiment using Microsoft Visual Studio.Net with

Windows form and C#.Net. Our Database constitutes of around 20000 records from

Yahoo Autos. We generated synthetic data for increasing our attribute lists to 15. We

normalized the data to have the upper bound 1 and lower bound as 0 for all the

attributes.

5.1.1 Linear Programming

We used the API provided by extreme optimization for finding out the solution

to the linear programming. It provides the complete platform for technical and statistical

computing for .Net 2.0 platform. It has math, vector, matrix and statistics library in one

package.

We have used the library provided for Optimization by using State of art

algorithms for finding the minimum or maximum of a function in one or more

variables.

This is under the package of �Extreme.Mathematics.Optimization.LinearProgramming�.

It provides a Linear Program class where one can add the cost function, constraints with

36

coefficients and variables and the inequalities. The solve () method will calculate the

cost function according to our requirement of maximization or minimization. We tested

the results with various other linear programs provided by educational and vendor sites.

This solution uses the simplex method to calculate the solution. The primal

problem has an extreme point at the intersection of any two constraints, including the

non-negativity constraints. Each extreme point is called a basic solution but only the

points in the feasible region are called the basic feasible solutions. An optimum basic

feasible solution for the primal problem maximizes the objective function P on the

feasible set and that is what we get as the solution for our linear programming method.

5.2 Methodology

We conducted series of run varying the data base sizes and their horizontal and

vertical fragmentation. In the first experiment, we have 10 data sources with the

following schemas for total 10 dimensions.

D1 (A, B) Record size:

D2 (B, C, D)

D3 (C, D, E, F)

D4 (E, F)

D5 (G, H, I, J)

D6 (G, H)

D7 (I, J)

D8 (C, D, E, F, G, H)

D9 (I, J)

37

D10 (I, J)

We had input box for every database to vary their record sizes so as to vary the

horizontal fragmentation.

For the second experiment, we took 5 data sources with 15 dimensions and with the

schema as follows.

D1 (A, B)

D2 (B, C, D)

D3 (E, F)

D4 (G, H, I, J)

D5 (I, J, K, L, M, N, O)

The overlapping attributes were present in both the experiments. For each of the data

sources, we took a series of experiments with varying database size and top k value. In

Fig 11 shows the performance of both INRA and CNRA. As we can observe that the

CNRA performs significantly less data access than INRA. Also the k value increase will

steadily increase the access of database in LPNRA but it does not have a drastic impact

on INRA as well. Similarly Fig 12 shows the comparison between CNRA, LPNRA and

INRA as the k increase. This is based on only vertical fragmentation and overlapping to

include LPNRA as well. We observed that the INRA improved with k value, as it

already has most of the top candidates in the buffer while LPNRA is able to quickly

find the top elements and so it doesn't have to scan deep enough in the list for first few

tuples but as k increases, it will need to do more database access as the buffer doesn't

contain much of data.

38

Performance of two methods wrt K

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 5 10 20 30 40 50

K value

N
o.

 o
f A

cc
es

s

INRA
CNRA

Fig 13 Comparison of INRA and CNRA based on varying k value

Performance Comparision

0

50000

100000

150000

200000

250000

1 6 11 16 21 26 31 36 41 46

K value

N
o.

 o
f A

cc
es

s CNRA

LPNRA

INRA

Scan

Fig 14 Comparison of CNRA, LPNRA and INRA with varying k value

39

Performance comparison wrt to Database size(k=1)

0

50000

100000

150000

200000

250000

1000 5000 10000 150000 20000

Database Size

N
o.

 o
f A

cc
es

s Scan

INRA

CNRA

LPNRA

Fig 15 Comparison of Scan, INRA, CNRA and LPNRA with varying database
size

The INRA database access increased drastically with the increase in the record

size, while LPNRA was the least to increase even though they had the same database

schema.

INRA: Performance comparision wrt K

0

50000

100000

150000

200000

250000

300000

5000 10000 15000 20000

Database Size

N
o.

 o
f A

cc
es

s

K=1

K=25

K=50

Fig 16 Comparison of performance by INRA with varying k and database size

40

CNRA: Performance comparision wrt K

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

5000 10000 15000 20000

Database size

N
o.

 o
f A

cc
es

s

K=1

K=25

K=50

Fig 17 Comparison of performance by CNRA with varying k and database size

In the figure 14, comparison of Combined NRA with the database size and k

size, we see that the performance decreases with database size quite consistently

whatever the k size is.

LPNRA: Performance comparision w rt K

0
5000

10000
15000
20000

25000
30000
35000
40000

5000 10000 15000 20000

Database Size

N
o.

 o
f A

cc
es

s

K=1

K=25

K=50

Fig 18 Comparison of performance by LPNRA with varying k and database size

41

CHAPTER 6

CONCLUSION

We have focused on a very novel but realistic problem in this research.

Previous research work has not been done in the case of overlapping database and

taking combined attributes as sorted lists. Even though the problem is unique and very

interesting, it is quite complex due to its unpredictable nature of fragmentations and

overlapping as well as the distributed environment where we need to keep track of

schema matching problems. Most of the previous work focused on minimizing the

query rounds using batch processing and it�s variation on pruning the candidates. Also

significant work has been focused towards the ranking aware query optimization and

also moving of the computation to different nodes. They have considered overlapping in

the sense of duplicate records but not duplicate records with partial combined attributes

in multiple databases. Our algorithm has invariably less access cost than the general top

k selection algorithms since we take advantage of already ranked tuples and overlapping

attributes in the local databases.

For the future scope, we can use the batch processing instead of getting

individual tuples from each database. In this way we can reduce the latency occurrence

for querying each peer. Also one of the obvious drawbacks here is the increase in per-

peer load. We can evaluate the cost for this drawback and see if this is worth pursuing

42

and if we can generalize and automate the system to capture the most efficient

algorithms among the CNRA, INRA and LPNRA depending on the fragmentations of

our distributed databases. We can have a schema controller which keeps the schemas of

all the database and helps in schema matching. This will help automate the finding of

combined attributes as well as the missing attributes.

Also we can take approximate answers instead of exact answers by pruning of

candidates early in the stage using probabilistic methods or using the database statistics

like histogram structures.

We can further refine our experiment results by adding the performance wrt

dimension expansion and also the performance wrt to data source expansion.

43

REFERENCES

1) Gautam Das, Dimitrios Gunopulos, Nick Koudas: Answering Top-k Queries Using

Views VLDB 2006

2) Nicolas Bruno, Luis Gravano und Am´elie Marian: Evaluating Top-k Queries over

Web-Accessible Databases. In ICDE, 2002.

3) Hailing Yu, Hua-Gang Li, Ping Wu, Divyakant Agrawal, Amr El Abbadi: Efficient

Processing of Distributed Top-k Queries DEXA 2005

4) Ulrich Guntzer, Wolf-Tilo Balke und Werner Kiesling : Optimizing Multi-Feature

Queries for Image Databases, VLDB 2000

5) Ulrich G¨untzer, Wolf-Tilo Balke und Werner Kiesling: Towards Efficient

MultiFeature Queries in Heterogenous Environments ITCC 2001

6) I.F. Illyas, W. G. Aref, A. k. Elmagarmid: Supporting top k join Queries in

Relational databases, VLDB 2004

7) A. Marian, N. Bruno, L. Gravano: Evaluating Top-k Queries over Web-Accessible

Databases. ACM TODS

8) Apostol Natsev, Yuan-Chi Chang, John R. Smith, Chung-Sheng Li, Jeffrey Scott

Vitter : Supporting incremental join Queries on Ranked inputs VLDB 2001

9) Martin Theobald, Gerhard Weikum, Ralf Schenkel: Top K query evaluation with

probabilistic guarantees, VLDB 2004

44

10) P. Cao, Z. Wang: Efficient Top k Query Calculation in distributed Networks.

PODC 2004

11) Martin Theobald, Ralf Schenkel, Gerhard Weikum: Efficient and Self tuning

Incremental Query Expansion for Top k Query Processing, SIGIR 2005

12) Chengkai Li, Kevin chen-Chuan Chang, lhab F. llyas: RankSQL: Query Algebra

and Optimization for Relational Top-k Queries

13) Holger Bast Debapriyo Majumdar Ralf Schenkel Martin Theobald Gerhard

Weikum: IO-Top-k: Index-access Optimized Top-k Query Processing, VLDB 2006,

Seoul, Korea.

14) Sebastian Michel, Peter Triantafillou, Gerhard Weikum : KLEE: A Framework for

Distributed Top-k Query Algorithms VLDB Conference, Trondheim, Norway, 2005

15) Nikos Mamoulis, Kit Hung Cheng, Man Lung Yiu, and David W. Cheung :

Efficient Aggregation of Ranked Inputs, ICDE 2006

16) Zhigang Chen, Zhongding Huang, Bo Ling, Jiang Li: P2P-Join: A Keyword Based

Join Operation in Relational Database Enabled Peer-to-Peer Systems, IEEE 2006

17) Martin Theobald Ralf Schenkel Gerhard Weikum : TopX � Efficient and Versatile

Top-k Query Processing for Text, Structured, and Semistructured Data

18) Surajit Chaudhuri, Luis Gravano: Evaluating Top-k Selection Queries: Proceedings

of VLDB 1999

19) Ronald Fagin, Amnon Lotem, Moni Naor : Optimal aggregation algorithms for

middleware

45

21) D. ZeinalipourYazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V. Tsotras, M.

Vlachos N. Koudas D. Srivastava : The Threshold Join Algorithm for Topk Queries in

Distributed Sensor Networks

46

BIOGRAPHICAL INFORMATION

Amrita Tamrakar was born in Kathmandu, capital of Nepal. She completed her

B.E from REC, Durgapur in India after winning a scholarship from Indian Embassy.

After working in Telecom industry in Nepal for few years, she pursued her Masters

Degree in Computer Science and Engineering to fulfill her constant yearning to learn

more on the database field.

