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ABSTRACT

RESOLUTION AND LOCALIZATION IN SINGLE MOLECULE MICROSCOPY

Sripad Ram, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professors: Raimund J. Ober & E. Sally Ward

Rayleigh’s criterion is extensively used in optical microscopy to determine the resolution

of microscopes. Despite its widespread use, it is well known that this criterion is based on heuris-

tic notions and can be surpassed in a regular optical microscope. The inadequacy of Rayleigh’s

criterion has necessitated a reassessment of the resolution limits of optical microscopes. The

thesis proposes a new resolution criterion that overcomes the limitations of Rayleigh’s criterion.

The new result predicts that there is no resolution limit, but that the resolvability depends on

the number of detected photons. Analytical tools are introduced to estimate the distance from

microscopy images. By imaging fluorescently labeled DNA nano-rulers, it is shown that dis-

tances as small as 12 nm can be measured from experimental data with an accuracy as predicted

by the new resolution criterion. The new result is derived by adopting a stochastic framework

and using the theory concerning the Fisher information matrix. This approach is generalized

to a wide variety of estimation problems in optical microscopy by deriving expressions for the

limits to the accuracy of the parameter estimates. As an application, the thesis addresses the

location estimation problem. Analytical formulae are derived that provide a limit to the ac-

curacy with which the location of a microscopic object can be determined. These results are

illustrated by considering specific image profiles that describe the image of a single molecule.
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Another contribution of this thesis is the development of a new microscopy technique called

multifocal plane microscopy for tracking single molecules/particles in 3D. An important prop-

erty of this technique is its improved depth discrimination capability, which in turn enables

accurate determination of the axial location of the particle especially when it is close to the

plane of focus.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The imaging of cellular events with optical microscopes has been an indispensable tool

in biological research. Ever since the invention of the first compound microscope over three

centuries ago, optical microscopy has undergone several revolutionary changes. In the more

recent past, a variety of technological developments have led to a significant expansion of the

capabilities of optical microscopes. On the one hand, the advent of highly sensitive photon

counting imaging detectors, high speed computer control of imaging experiments and automated

image processing techniques have led to major improvements in microscopy hardware. On the

other hand, the introduction of genetic labeling approaches, in particular the use of green

fluorescent protein (GFP) fusion constructs, have allowed the specific labeling of proteins for

imaging their behavior in a live-cell environment. These advances have enabled several groups to

image biomolecular interactions at the single molecule level even within a cellular environment

(see [1, 2, 3, 4, 5, 6, 7]).

The study of cellular processes at the single molecule level is motivated by several consid-

erations. Traditionally, cellular imaging studies using fluorescently labeled proteins were bulk

studies, since an accumulation of proteins was required to yield a detectable fluorescence sig-

nal. However, the information from such studies is averaged over ensembles of molecules (i.e.,

hundreds and thousands of molecules) thereby masking subtle individual variations. These vari-

ations become particularly important when the system under study is heterogeneous as in the

case of live cells. For example, heterogeneity arises due to the dynamic nature of protein-protein

interactions wherein a cell membrane protein could exist in multimeric states (i.e., monomer,

dimer, trimer etc). Single molecule experiments remove the ensemble averaging that is charac-

teristic of bulk measurements and provide information on the behavior of individual molecules.

1
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Single molecule studies also remove the need for synchronization of many copies of individual

biomolecules that are involved in a time dependent process. For instance, in the study of pro-

tein conformation within a cellular environment the individual copies of a protein could exist in

different confirmations due to being in different folded states. Thus it is believed that imaging

biomolecular interactions at the single molecule level holds the promise that significant new

insights can be gained.

1.2 Single molecule microscopy

One of the initial studies on single molecule detection was carried out in the late 1980s

by Moerner and colleagues who observed single molecules in a solid material ([8]). In the last

two decades there has been tremendous progress in this field leading to the development of

several imaging approaches to enable single molecule detection in biological samples at room

temperature (see, for example, [9, 10] and references therein). Common to all these techniques

is that the biomolecule of interest has to be fluorescently labeled in order to be imaged. The

fluorescent dye is excited with a light source at a specific wavelength range. As a result of the

excitation, the dye emits photons at a higher wavelength, which is then detected as the signal

of interest. Classically, biomolecules were chemically coupled to fluorescent dye molecules. In

a cellular context, this approach, however, lacked specificity and moreover subjected the cells

to harsh conditions. Hence they were not suitable for live cell imaging studies. On the other

hand, the labeling technology based on GFP provides a highly specific approach to label the

protein of interest. GFP is a naturally occurring fluorescent protein which was first isolated

from the jelly fish Aequorea Victoria ([11]). By using DNA cloning techniques, GFP can be

expressed in cells as a fusion protein that is tagged to the protein of interest. This obviates the

need for chemical coupling of fluorescent dyes and paves the way for live cell imaging. Presently

several mutants of GFP exist which fluoresce at spectrally distinct wavelengths (for example,

Red Fluorescent Protein (RFP), Cyan Fluorescent Protein (CYP), Yellow Fluorescent Protein

(YFP) etc.).
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Single molecule experiments place several requirements on the properties of fluorophores

([9, 12]). They must 1) be bright (i.e., have high extinction coefficient and high quantum yield)

so that their signal is above background, 2) absorb and emit light in the visible to near-infrared

wavelengths, 3) not perturb or affect the functionality of the biomolecule to which they are

tagged, 4) be available in a form suitable for covalent conjugation to the molecule of interest,

5) show little fluctuations in the emitted light intensity during the course of experiment, and

6) be photostable, i.e., emit photons upon excitation for long periods of time. Most fluorescent

dyes are susceptible to photobleaching, which is a phenomenon in which subsequent to several

rounds (105−109) of excitation and emission, the fluorophores lose their ability to emit photons

when excited. This means that after a certain amount of time, the fluorescent dye and hence

the labeled biomolecule can no longer be imaged. As a result of this, proteins can only be

tracked for relatively short periods of time, which are typically in the order of a few seconds

in a live cell environment, when the sample is continuously illuminated. Recently, a new class

of fluorescent labels, known as quantum dots, has been developed to overcome the limitations

of conventional fluorescent dyes ([13, 14]). Quantum dots are extremely photostable under

continuous illumination (they emit photons for hours) and are also significantly brighter when

compared to conventional fluorescent dyes ([14]). However, unlike GFP, quantum dots have

to be tagged to the protein of interest through chemical coupling or through avidin-biotin

labeling. Moreover, many problems need to be overcome for quantum dots to be usable in a

routine fashion, such as the multivalency of the current streptavidin coating/labeling approach,

non-specific binding, blinking of the quantum dots etc.

1.3 Techniques for imaging single molecules

The different techniques used for imaging single molecules can be classified as confocal

and widefield. In confocal methods, the light source is focused to a diffraction limited spot

illuminating a very small volume ( 10−10 − 10−12 cm3) within the sample, from which the fluo-

rescence signal is collected. For example, fluorescence correlation spectroscopy (FCS) uses this
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method to estimate diffusion coefficients of the labeled molecules ([15]). Confocal techniques

typically use detectors that have very high temporal resolution (10−9 s). For imaging applica-

tions, the focused spot is sequentially scanned at each point on the sample. Hence when the

sample is being scanned at a particular location, important events can be missed in the other

parts of the sample. Thus, confocal imaging techniques do not provide spatial information.
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Figure 1.1. Image of single DNA molecules.
Panel A shows the image of four DNA molecules labeled with Cy5 dye. A cooled CCD camera
(ORCA-ER, Hamamatsu, Bridgewater, NJ) was used to acquire the image with an exposure
time of 1 s. Scale bar equals 1 µm. Panel B shows the single step photobleaching behavior of
the single molecule that is indicated by an arrow in Panel A. The photon count is calculated by
summing the pixel values of a 5 × 5 array that is centered at the brightest pixel in the image
of the single molecule.

Widefield imaging methods use high resolution, high sensitivity imaging detectors such

as cooled CCD cameras, which are capable of imaging multiple single molecules simultaneously

that are in the field of view (see Fig. 1.1A). In cellular imaging applications, due to the low signal

level, CCD cameras are often used in conjunction with image intensifiers ([16]). More recently,

CCDs based on electron multiplication technology have shown significant promise ([17, 18]). In

a live cell imaging application, widefield imaging techniques acquire the image of the entire cell

thereby providing important spatial information. Although the temporal resolution of CCD

based imaging detectors is limited (10−3 − 10−1 s), it is usually high enough to record typical

cellular events and to track single molecules in live cells.
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Total internal reflection fluorescence microscopy (TIRFM) ([19]) is a widefield imaging

technique that is used to image cellular events close to the plasma membrane. In this technique,

the illumination intensity decreases exponentially with the distance from the cover glass that

supports the cell. This has significant advantages in the study of membrane events. Often

intracellular components are very strongly labeled. With a standard illumination approach

these intracellular components produce strong signals that can completely overwhelm events

at the plasma membrane. With TIRFM, only the membrane adjacent to the cover glass is

illuminated. Most fluorophores in the intracellular compartments are not excited and can

therefore not contribute to background signal at the plasma membrane. This is often essential

to be able to detect single molecule events at the plasma membrane proximal to the coverslip.

One of the important aspects of single molecule imaging is the verification that the

detected signal does indeed arise from a single molecule rather than from the accumulation

of a large number of molecules. There are a number of ways of carrying out this verification

(see [20]). The most common approach is to use the single step photobleaching property of

single molecules. For a single molecule a constant signal level for the emitted fluorescence is

expected that drops in one (quantum) step to the background level at photobleaching (see

Fig. 1.1B). This analysis can be complicated to some extent due to the blinking behavior that

some fluorophores exhibit, such as GFP ([21]). In this behavior the fluorophore switches back

and forth between emitting photons and the dark state.

1.4 Challenges in single molecule imaging

Single molecule experiments place extraordinary demands on the capabilities of current

microscope setups and data analysis tools. There are severe technical problems that limit the

study of single molecules in particular in a live cell situation. The main reason for this limitation

is the high level of background noise that obscures the signal from the single molecule. The

background noise can be attributed to a variety of sources such as autofluorescence of the cell,

buffer etc. In addition, scattered photons that randomly reflect off optical components in the
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light path also contribute to the background signal. Aside from this, the dark current and the

readout noise that originates from the detector also contribute to the noise in the acquired data

(see [22]). Even without any noise sources the analysis of single molecule images would not be

devoid of problems, since the acquired data is stochastic due to photon emission being a random

process. Thus this means that detecting single molecules requires a very careful experimental

setup. However, even under the best circumstances the signal to noise ratio is very unfavorable

([16]). Therefore there is a considerable need for advanced signal and image processing methods

that allow the available information to be extracted from the experimental data as accurately

as possible. This is particularly so if quantitative results are to be obtained. In the following

sections some of the key problems encountered in single molecule imaging are discussed.

1.4.1 Single molecule localization accuracy

One of the fundamental problems in single molecule imaging concerns the accuracy with

which the location of a single molecule can be determined. Specifying the accuracy with which

the location of a single molecule can be established is not only of importance to be able to

characterize the level of accuracy that is achievable in single-molecule microscopy. The accuracy

with which a single molecule can be localized has significant influence on the type of studies

that can be carried out using single molecule microscopy. It is also of significance in the

analysis of single-molecule data. For instance, it has been shown in [23] that the accuracy of

the location estimates has to be taken into account when analyzing the diffusion behavior of

single molecules. Otherwise noisy measurements of the single molecule locations could lead to

the erroneous interpretation that subdiffusional behavior is present even though this is not the

case. Earlier approaches to the characterization of the localization accuracy mainly relied on an

approach by Bobroff ([24]) in which the localization accuracy problem was examined using the

least-squares criterion (see, for example, [25, 26, 27, 28, 29]). This criterion is ideally suited to

estimate parameters from data that has a Gaussian probability distribution. It does, however,

appear problematic to assume that single molecule data is in fact Gaussian distributed, since
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the photon detection process is typically modeled as a shot-noise (Poisson) process ([30, 31]).

Aside from the reliance on the least-squares algorithm other approximations are made in [24]

in the derivation of the result that are often difficult to verify. Moreover, in the application of

those results to single molecule microscopy the image profile of a single molecule predicted by

standard diffraction theory is often replaced by a Gaussian profile.

1.4.2 3D single molecule tracking

The study of bio-molecular interactions in cells is of fundamental importance to under-

standing cellular processes. The advent of single molecule/particle imaging technology has gen-

erated significant interest in studying these interactions at the individual biomolecule level ([9]).

Presently, widefield microscopy techniques are extensively used for imaging single molecules

within a cellular environment ([32, 33]). These techniques are well suited to study fast moving

single molecules in two dimensions. In the imaging modality that is typically used at present

only one focal plane is imaged at any given point in time. Single particle tracking in a 3D

environment such as a cell is therefore problematic since the particle can easily move out of the

focal plane that is currently being imaged. This is of particular relevance for the tracking of

fast intracellular dynamics that are not confined to one plane. Another shortcoming of wide-

field microscopes is their poor depth discrimination capability ([34, 35]). For instance, when

imaging cellular specimens in a widefield microscope the acquired image contains photons from

the region that is in focus with respect to the objective lens as well as from regions that are out

of focus with respect to the objective lens. The in focus region appears sharp and clear while

the out of focus regions appear hazy, which deteriorates the image quality and obscures the in

focus component. Due to this, images acquired in a widefield microscope provide inadequate

depth information ([35]). In the case of single particle tracking, this inadequacy becomes pro-

nounced. It has been shown that in a widefield microscope, there exists significant uncertainty

in determining the axial location of the single particle, especially when it is close to the plane

of focus ([36, 37]).
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Several techniques have been introduced in the past to address these and related problems

in the context of single particle tracking in three dimensions. One type of approach is based

on the scanning of the sample in 3D ([38, 39, 40, 41]). Successful implementations have been

reported, but they are typically limited to the tracking of one or very few particles. In addition

the approach has limitations in speed and the implementation is reliant on sophisticated online

processing schemes. Another type of approach is based on changing the point spread function

of the acquisition system and thereby either producing a much larger depth of focus or by

encoding the 3D position of the particle ([42, 43]). Increasing the depth of focus essentially

makes it even more difficult to obtain information on the axial position of the particle. The

approach based on encoding the 3D position requires repetitive defocusing and refocusing of the

sample, which compromises the temporal resolution and could also lead to alignment problems.

1.4.3 Rayleigh’s criterion and single molecule imaging

Rayleigh’s criterion is extensively used in optical microscopy for determining the 2D

resolution of microscopes. According to this criterion, the minimum resolvable distance between

two identical point sources that lie in the plane of focus is 0.61λ/na, where λ denotes the

wavelength of the point source and na denotes the numerical aperture of the objective lens. The

advent of single molecule microscopy has generated significant interest in studying nanoscale

biomolecular interactions. Classically, fluorescence resonance energy transfer-based methods

have been used to probe interactions in the distance range of 1 to 10 nm ([44]). It is widely

believed that Rayleigh’s criterion precludes the resolution of two single molecules at distances of

10-200 nm, which leaves a gap in the distance range of 10 to 200 nm that is vital for the study of

many biological processes with an optical microscope. However, it is well known that Rayleigh’s

criterion is based on intuitive notions ([16]). For example, Rayleigh’s criterion is formulated in

a deterministic setting that neglects the photon statistics of the acquired data. Hence it does

not take into account the number of detected photons, which, in turn, raises concern over the

use of Rayleigh’s criterion in photon-counting techniques such as single-molecule microscopy. It
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has been suggested that Rayleigh’s resolution limit can be superseded when objects are imaged

with modern detectors and when apriori information in conjunction with parameter estimation

approaches are used to analyze the acquired data ([45, 46, 47]). Not surprisingly, recent single

molecule experiments have shown that distances well below Rayleigh’s limit can be measured

in an optical microscope setup ([48, 49, 50]). Thus Rayleigh’s resolution limit is inadequate for

modern imaging techniques. This inadequacy has necessitated a reassessment of the resolution

limits of optical microscopes. In particular, for proper planning of an experiment, it is important

to have a methodology available to be able to assess with what accuracy the distance between

two point sources (single molecules) can be determined.

1.5 Overview of the thesis

In single molecule microscopy, parameter estimation approaches play an important role in

data analysis. Examples relate to determining the location of single molecules ([24, 26, 28, 51]),

determining the distance between two or more single molecules ([48, 49, 50, 52]), determining

the photon detection rate, estimating the defocus level of single molecules ([36, 37, 43, 53]) etc.

Common to all these problems is that it is helpful for the experimenter to have an analytical

method to assess with what accuracy the various parameters can be estimated. This in turn

has generated significant interest in quantifying the capabilities of optical microscopes. The

process of image acquisition in microscopy is inherently a stochastic one. For example, upon

excitation a fluorophore emits photons in a stochastic manner. Therefore the data acquired in

a fluorescence microscopy experiment is stochastic in nature. As a result questions concerning

the capabilities of microscopes are best addressed using a stochastic approach.

Here, by adopting a rigorous stochastic framework, analytical expressions are obtained

to calculate performance limits that quantify the capabilities of optical microscopes. The un-

derlying approach to calculating the performance limits is based on the theory concerning the

Fisher information matrix ([54, 55]), which plays a central role in the analysis of estimation

algorithms.
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The organization of the thesis is as follows. Chapter 2 contains the detailed mathemat-

ical derivation of results for a general parameter estimation problem encountered in optical

microscopy. The scope of these results are broad and are applicable to a wide variety of imag-

ing conditions such as TIRF illumination, polarized excitation/emission etc., and can be ex-

tended to several microscopy modalities such as confocal/multi-photon microscopy, brightfield

microscopy, phase-contrast/DIC microscopy etc. Analytical expressions for the Fisher infor-

mation matrix are derived for image models that allow both stationary and moving objects.

The effects of deteriorating experimental factors such as pixelation of the detector and additive

noise sources ([30, 31]) are also investigated and general expressions for the Fisher information

matrix are derived that take into account these factors. The results derived in Chapter 2 can

be used to obtain limits to the accuracy for a large class of estimation problems. These results

are illustrated in the subsequent chapters by considering specific problems in single molecule

microscopy and data analysis.

Chapter 3 deals with the localization accuracy problem, which is concerned with how ac-

curately the location of a microscopic object (for example, single molecules) can be determined

when imaged through a fluorescence (optical) microscope. Here, specific emphasis is placed

on the derivation of conditions that guarantee block diagonal or diagonal Fisher information

matrices, as this has several implications in parameter estimation (see Section 3.2 for details).

Throughout the chapter, examples are provided to illustrate the results by considering specific

image profiles that describe the image of an in focus single molecule. In particular, two image

profiles are considered, namely, the Airy profile and the 2D Gaussian profile. According to

optical diffraction theory, the image of an in focus point source that emits incoherent, unpolar-

ized light is given by the Airy profile ([56]). On the other hand, in single molecule applications

the 2D Gaussian profile is widely used to approximate the Airy profile ([24, 28, 26]). An un-

expectedly simple formula is derived that provides a fundamental limit to the 2D localization

accuracy of a single molecule (see Corollary 3.3.2 for derivation). A detailed analysis is pre-

sented on the effects of experimental parameters such as pixel size, magnification, detector size
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and noise sources, on the limit of the 2D localization accuracy. The implications of these results

in single molecule imaging are discussed and guidelines for experimental design are provided.

A maximum likelihood estimation algorithm is presented for determining the 2D location of

single molecules and is tested on simulated data. It is shown that the standard deviation of the

maximum likelihood estimates of the location comes consistently close to the predicted limit of

the localization accuracy for a wide variety of imaging conditions.

Chapter 4 discusses the development of a new microscope called multifocal plane microscope

(MUM), and the application of this microscope for 3D single particle tracking. The design and

construction of MUM is described. One of the important properties of MUM is its improved

depth discrimination capability. As a result, the axial location of the single particle can be

determined with relatively high accuracy. An estimation technique is introduced for determin-

ing the 3D particle locations from MUM images, and is tested on simulated and experimental

data. Using the results derived in Chapter 2, analytical expressions are obtained for the limits

to the accuracy with which the 3D particle locations can be estimated from MUM data. These

analytical expressions validate the improved depth discrimination capability of the MUM and

provide guidelines for optimizing the MUM setup for 3D single particle tracking.

Chapter 5 deals with the resolution problem. Here, a new 2D resolution measure is derived

which overcomes the limitation of classical Rayleigh’s criterion. The new result is referred

to as the fundamental resolution measure (FREM). Unlike Rayleigh’s criterion, the FREM

predicts that there is no resolution limit, but that the resolvability depends on the number

of photons collected from the point sources. Analytical expressions for the new resolution

measure are obtained that take into account the effect of deteriorating experimental factors

such as pixelation of the detector and extraneous noise sources. Experimental verification of the

resolution measure is carried out by imaging closely spaced single molecule pairs and measuring

distances that are above and well below Rayleigh’s limit. In particular by imaging fluorescently

labeled DNA nanorulers, distances as small as 12 nm are measured with an accuracy as predicted

by the new resolution measure. The implications of the new resolution measure for single
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molecule imaging are discussed. Numerous examples are provided to illustrate how the new

result can be used to design and optimize single molecule experimental setups for distance

measurement.
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CHAPTER 2

GENERAL RESULTS

2.1 Introduction

This chapters deals with the detailed derivation of results for a general parameter esti-

mation problem in optical microscopy. The results given in this chapter are broad in scope and

provide a framework to calculate the performance limit for a wide variety of estimation prob-

lems. The applications of these results are given in the subsequent chapters. The organization

of this chapter is as follows. Section 2.2 describes the rigorous stochastic framework that is

used to model the acquired data and contains the main result, i.e., the derivation of the Fisher

information matrix for a general parameter estimation problem in optical microscopy. Section

2.3 deals with the effect of detector size and investigates how this affects the performance limits.

Section 2.4 considers the effect of deteriorating experimental factors such as pixelation and noise

sources. Analytical expressions for the Fisher information matrix are obtained that take into

account these factors. In Section 2.4.1, a closed form expression is obtained that quantifies the

loss of information due to pixelation and noise sources. In many practical cases, the acquired

images are summed to improve the signal content. Section 2.4.2, investigates the effect of image

addition and analytical expressions of the Fisher information matrix are derived for a general

parameter estimation problem when using summed data. The results presented in this chapter

have been published in [51, 57].

2.2 General stochastic framework

A basic optical microscope setup consists of an object located in the object space, a

lens system and a detector in the image space that captures the image of the object (see Fig.

2.1). For example, the object could be an individual point source (for example, a fluorescent

single molecule or a fluorescent nano-particle), a collection of two or more point sources, or

14
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Figure 2.1. Schematic of an optical microscope based imaging setup.
Here, an object located in the object space is imaged by an optical lens system and the image
of the object is captured by the detector that is located in the image space.

a fluorescently labelled cellular organelle. Here, we are primarily interested in experiments in

which the detector detects photons from the object of interest for a fixed acquisition time. Since

the photon detection process is inherently a random phenomenon (see, for example, [58]), the

recorded image of the object is stochastic in nature.

We assume that the acquired data consists of the spatial coordinates of the arrival location

of the detected photons on the detector and the time points at which the photons are detected.

In a typical quantitative experiment, some attributes of the object such as the location, distance

of separation from other objects, orientation, size etc., are determined from the acquired data

by using a specific estimation procedure. The accuracy of the estimates can be determined

by calculating the standard deviation of the estimates of this attribute assuming repeated

experiments.

In any estimation problem, it is important to know whether the specific estimation tech-

nique used to estimate the desired attribute indeed comes close to the best possible accuracy.

This can be determined by calculating the Fisher information matrix ([55, 59]) for the un-
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derlying random process that characterizes the acquired data. According to the Cramer-Rao

inequality ([55, 59]), the (co)variance (matrix) of any unbiased estimator θ̂ of an unknown vec-

tor parameter θ is bounded from below by the inverse of the Fisher information matrix I(θ),

i.e.,

Cov(θ̂) ≥ I−1(θ).

Since we have defined the accuracy of an estimator in terms of its standard deviation, the square

root of the inverse Fisher information matrix provides a lower bound to the best possible

accuracy. It is important to note that the Fisher information matrix is independent of the

estimation procedure used to estimate the parameter θ and only depends on the statistical

nature of the acquired data. For instance, if the desired attribute is the location of an object,

then the above equation implies that for any (asymptotically) unbiased estimator of the location,

the accuracy of its location estimates can never be smaller than the square root of the inverse

Fisher information matrix. Therefore, the square root of the inverse Fisher information matrix

provides a limit to the accuracy with which the location of the object can be determined.

Generalizing this, in an optical microscope the performance limit in determining a specific

attribute of an object is defined as the square root of the inverse Fisher information matrix

calculated for that attribute.

Due to its stochastic nature, the acquired data is modeled as a space-time random process

(see, for example, [60]) which we refer to as the image detection process G. The temporal part

of G describes the time points of the detected photons and is modeled as a temporal Poisson

process with intensity function Λθ. The spatial part of G describes the spatial coordinates of

the arrival location of the detected photons and is modeled as a family of mutually independent

random variables {Uτ}τ≥t0 with probability densities {fθ,τ}τ≥t0 defined on the detector C, where

τ denotes the time point of a detected photon. The time dependence of the random variables

{Uτ}τ≥t0 denotes the fact that the spatial distribution of the detected photons can change

with time. For example, this is the case when photons from a moving object are detected.

In some applications the spatial part of G is independent of τ and in that case the random
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variables are independent and identically distributed. In all cases, we assume that the spatial

and temporal parts of G are mutually independent of each other. We note that the probability

density fθ,τ satisfies certain regularity conditions that are necessary for the calculation of the

Fisher information matrix (see [55]).

Definition 2.2.1 Let C denote a detector, i.e., an open subset of R
2 with non-zero Lebesgue

measure. Let Θ denote the parameter space that is an open subset of R
n and let t0 ∈ R.

For θ ∈ Θ, an image detection process G(Λθ, {fθ,τ}τ≥t0 , C) is defined as a spatio-temporal

process whose temporal part describes the time points of the photons detected on the detector

C and the spatial part describes the spatial coordinates of the arrival location of the photons

detected on the detector C.

The temporal part is modeled as a Poisson process {Z(τ); τ ≥ t0} with intensity Λθ, called

the photon detection rate, such that

C1. Λθ(τ) is piecewise continuously differentiable with respect to θ for each τ ≥ t0.

C2. Λθ(τ) is piecewise continuous with respect to τ for each θ ∈ Θ.

Let FΘ be the set of probability densities fθ on C parameterized by θ that satisfy the fol-

lowing regularity conditions

C3. ∂fθ(r)/∂θi exists for r ∈ C, i = 1, . . . , n and θ ∈ Θ.

C4.
∫

C |∂fθ(r)/∂θi|dr < ∞ for i = 1, . . . , n and θ ∈ Θ.

C5. The integral
∫

C
1

fθ(r)
∂fθ(r)

∂θi

∂fθ(r)
∂θj

dr exists and is finite for i, j = 1, . . . , n and θ ∈ Θ.

The spatial part of the image detection process is modeled as a family of mutually independent

random variables {Uτ}τ≥t0 that is assumed to be independent of {Z(τ); τ ≥ t0}. The corre-

sponding family of probability densities {fθ,τ}τ≥t0 ⊆ FΘ is called the photon distribution

profile, if Uτ with probability density fθ,τ describes the spatial distribution of the location of

the point of detection of a photon on the detector C that is detected at time τ , τ ≥ t0.

We next derive an expression for the Fisher information matrix of the image detection process

G.



18

Theorem 2.2.1 Let G(Λθ, {fθ,τ}τ≥t0 , C) be an image detection process. Then for θ ∈ Θ the

Fisher information matrix I(θ) of G corresponding to the time interval [t0, t] is given by

I(θ) =

∫ t

t0

1

Λθ(τ)

(
∂Λθ(τ)

∂θ

)T (∂Λθ(τ)

∂θ

)

dτ +

∫ t

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂fθ,τ (r)

∂θ

)T (∂fθ,τ (r)

∂θ

)

drdτ

=

∫

C

∫ t

t0

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T (∂[Λθ(τ)fθ,τ (r)]

∂θ

)

drdτ.

Proof: This result is a generalization of the Fisher information matrix for a spatio-temporal

random process whose temporal component is a Poisson process and the spatial component is

independent of the time points (see [60, pg 213]). The proof of this theorem can be found in

the appendix of Chapter 2 (see Section 2.5). •

In deriving the above result we made no specific assumptions about the geometry of the

imaging setup or the analytical expression for the photon distribution profile fθ. Hence the

above theorem provides a general result to calculate the Fisher information matrix for a wide

range of situations. Note that the two-term expression of I(θ) shows explicitly the dependence

of I(θ) on the temporal and spatial components of the image detection process.

We next consider the superposition of two image detection processes. In many concrete

situations the detected photons originate from different sources. For example, the detected

photons can result from a background component in addition to those detected from the object

of interest. In an incoherent imaging setup, such as in fluorescence microscopy, the photon de-

tection process that describes the collection of all the detected photons is then the superposition

of the object and the background image detection process.

Theorem 2.2.2 Let G1(Λ1
θ, {f1

θ,τ}τ≥t0 , C) and G2(Λ2
θ, {f2

θ,τ}τ≥t0 , C) be two independent image

detection processes. Then the superposition process is an image detection process G(Λθ, {fθ,τ}τ≥t0 , C)

whose photon detection rate Λθ is given by

Λθ(τ) = Λ1
θ(τ) + Λ2

θ(τ), τ ≥ t0, θ ∈ Θ, (2.1)

and the photon distribution profile {fθ,τ}τ≥t0 is given by

fθ,τ (r) = ε1θ(τ)f1
θ,τ (r) + ε2θ(τ)f2

θ,τ (r), r ∈ C, θ ∈ Θ, τ ≥ t0, (2.2)
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where ε1θ(τ) = Λ1
θ(τ)/Λθ(τ), ε2θ(τ) = Λ2

θ(τ)/Λθ(τ), θ ∈ Θ, τ ≥ t0.

Proof: This result is analogous to the result of the superposition of Poisson processes (see, for

example, [60]). The expression for the photon detection rate Λθ (eq. 2.1) immediately follows

from the fact that the time points of all the detected photons are described by a Poisson process

which is a superposition of the Poisson processes of G1 and G2. Let us suppose that the image

detection process G1 (G2) describes the detected photons from source 1 (source 2). For τ0 ≥ t0

and δ > 0, let Iτ0 denote the time interval [τ0 − δ, τ0 + δ] and let A ⊆ C. Let Dτ0 denote the

event that a photon is detected by the detector during the time interval Iτ0 and D1
τ0 (D2

τ0)

denote the event that a photon from source 1 (source 2) is detected by the detector during

the interval Iτ0 . By definition Dτ0 = D1
τ0 ∪ D2

τ0 and P (Dn(τ)) = P (D1,n(τ)) + P (D2,n(τ)),

since the events D1
τ0 and D2

τ0 are mutually exclusive. Uτ (U1
τ , U2

τ ) be the random variable that

describes the arrival location of a detected photon (from source 1, source 2) detected at time τ

on the detector C. Given that a photon is detected at time τ0, the probability that the arrival

location of this detected photon is in the set A is given by

P [Uτ0 ∈ A] = lim
δ→0

P [(Uτ ∈ A, τ ∈ Iτ0) | Dτ0 ] = lim
δ→0

P [(Uτ ∈ A, τ ∈ Iτ0) ∩ Dτ0 ]

P [Dτ0 ]

= lim
δ→0

P [(Uτ ∈ A, τ ∈ Iτ0) ∩
(
D1

τ0 ∪ D2
τ0

)
]

P [Dτ0 ]

= lim
δ→0

P [(Uτ ∈ A, τ ∈ Iτ0) ∩ D1
τ0 ]

P [Dτ0 ]
+ lim

δ→0

P [(Uτ ∈ A, τ ∈ Iτ0) ∩ D2
τ0 ]

P [Dτ0 ]

= lim
δ→0

P [(U1
τ ∈ A, τ ∈ Iτ0)]

P [D1
τ0 ]/δ

P [Dτ0 ]/δ
+ lim

δ→0
P [(U2

τ ∈ A, τ ∈ Iτ0)]
P [D2

τ0 ]/δ

P [Dτ0 ]/δ

= P [U1
τ0 ∈ A]

Λ1
θ(τ0)

Λθ(τ0)
+ P [U2

τ0 ∈ A]
Λ2

θ(τ0)

Λθ(τ0)

=

(
∫

A
f1

θ,τ0(r)m(dr)

)

ε1θ(τ0) +

(
∫

A
f2

θ,τ0(r)m(dr)

)

ε2θ(τ0), τ0 ≥ t0, (2.3)

where m denotes the Lebesgue measure in R
2 and by definition of the Poisson process, for

θ ∈ Θ, τ0 ≥ t0,

lim
δ→0

P [Di
τ0 ]/δ = lim

δ→0

(∫ τ0+δ

τ0−δ
Λi

θ(σ)dσ
)

exp
(

−
∫ τ0+δ

τ0−δ
Λi

θ(σ)dσ
)

/δ = Λi
θ(τ0), i = 1, 2
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and similarly limδ→0 P [Dτ0 ]/δ = Λθ(τ0). Note that eq. 2.3 holds for every A ⊆ C and τ0 ≥ t0.

Hence the probability measure P [Uτ0 ∈ A] is absolutely continuous with respect to the Lebesgue

measure m and there exists a probability density function fθ,τ such that

fθ,τ (r) = ε1θ(τ)f1
θ,τ (r) + ε2θ(τ)f2

θ,τ (r), r ∈ C.

Since, by definition f1
θ,τ and f2

θ,τ satisfy conditions C3 - C5 of Definition 2.2.1, it can be verified

that fθ,τ also satisfies these conditions. •

2.3 Effects of reduced detector size

The results derived in the previous section assume that the photon distribution profile

{fθ,τ}τ≥t0 is defined on the detector C which is used to acquire the data. In many cases, the

photon distribution profile is defined on the two dimensional Euclidean space (R2). However, in

practice, microscopy images are acquired with finite sized detectors. Moreover, when analyzing

microscopy images typically only small regions of interest are used. This raises the question of

how the detector size or the region of interest influences the performance limits.

In the following proposition we show how an image detection process G(Λθ, {fθ,τ}τ≥t0 ,

C) has to be adjusted when instead of the detector C, the photons are detected on a reduced

part Crd of C, i.e., on an open subset Crd of C.

Proposition 2.3.1 Let G(Λθ, {fθ,τ}τ≥t0 , C) be an image detection process and let Crd ⊆ C be

open. For θ ∈ Θ and τ ≥ t0, let αθ,τ :=
∫

Crd fθ,τ (r)dr. The time points and the spatial coordi-

nates of the arrival location of the photons detected on the reduced detector Crd are described by

an image detection process Grd whose photon detection rate Λrd
θ and photon distribution profile

f rd
θ,τ are given by

Λrd
θ (τ) = αθ,τΛθ(τ), τ ≥ t0, θ ∈ Θ, f rd

θ,τ (r) =
1

αθ,τ
fθ,τ (r), r ∈ Crd, θ ∈ Θ, τ ≥ t0.

Proof: By definition of the image detection process G, the time points of the detected photons

on the detector C are modeled as a Poisson process with intensity function Λθ. It then follows
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that the time points of the detected photons on the detector Crd form a Poisson process with

intensity function αθ,τΛθ, τ ≥ t0, θ ∈ Θ ([61, pg 381]).

Let A ⊆ Crd. Let Uτ denote the random variable that describes the arrival location of a

photon that is detected on the detector Crd at time τ , τ ≥ t0. Then the probability that the

arrival location of the detected photon is in the set A given that the arrival location is in the

detector Crd is given by

P [Uτ ∈ A | Uτ ∈ Crd] =
P [(Uτ ∈ A)

⋂
(Uτ ∈ Crd)]

P [Uτ ∈ Crd]
=

P [Uτ ∈ A]

P [Uτ ∈ Crd]

=

∫

A fθ,τ (r)m(dr)
∫

Crd fθ,τ (r)m(dr)
=

∫

A fθ,τ (r)m(dr)

αθ,τ
,

where m denotes the Lebesgue measure in R
2. Since the above equation holds for every A ⊆ Crd

and τ ≥ t0, the term P [Uτ ∈ A | Uτ ∈ Crd] is absolutely continuous with respect to m. Hence

there exists a probability density function f rd
θ,τ such that

f rd
θ,τ (r) =

1

αθ,τ
fθ,τ (r), r ∈ Crd, θ ∈ Θ, τ ≥ t0.

Since, by definition fθ,τ satisfies conditions C3 - C5 of Definition 2.2.1, it can be verified that

f rd
θ,τ also satisfies these conditions. •

We refer to the image detection process Grd as the reduced version of G corresponding

to the detector Crd. We next derive a general expression for the Fisher information matrix of

Grd. We also derive a formula to calculate the loss of information when a detector of reduced

size is used.

Theorem 2.3.1 Let G(Λθ, {fθ,τ}τ≥t0 , C) be an image detection process and Grd be the reduced

version of G corresponding to the detector Crd, where Crd ⊆ C. For θ ∈ Θ, let I(θ) denote the

Fisher information matrix of G corresponding to the time interval [t0, t]. Then for θ ∈ Θ,

1. the Fisher information matrix of Grd corresponding to the time interval [t0, t] is given by

Ird(θ) =

∫ t

t0

∫

Crd

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T (∂[Λθ(τ)fθ,τ (r)]

∂θ

)

drdτ,

2. ∆I(θ) := I(θ) − Ird(θ) =

∫ t

t0

∫

C\Crd

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T (
∂[Λθ(τ)fθ,τ (r)]

∂θ

)

drdτ,
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3. I(θ) ≥ Ird(θ).

Proof: 1. For θ ∈ Θ and τ ≥ t0, let αθ,τ =
∫

Crd fθ,τ (r)dr. For the image detection process Grd,

by Proposition 2.3.1 the photon detection rate Λrd
θ (τ) = αθ,τΛθ(τ) and the photon distribution

profile f rd
θ,τ (r) = (1/αθ,τ )fθ,τ (r) for r ∈ Crd, θ ∈ Θ, τ ≥ t0. Substituting for Λrd

θ and f rd
θ,τ in

Theorem 2.2.1 the result immediately follows.

2. The result immediately follows by using the expressions for the Fisher information matrix

of G and Grd that are given in Theorem 2.2.1 and in part 1 of this Theorem, respectively.

3. The integrand in the integral expression of ∆I(θ) given in result 2 of this theorem is non-

negative. This implies that ∆I(θ) is positive semidefinite for θ ∈ Θ and from this the result

follows. •

From result 1 of the above theorem we see that the expression for the Fisher information

matrix of Grd is analogous to that of G (see Theorem 2.2.1) with the only difference being that

the region of integration of the spatial integral is now the reduced detector Crd.

2.4 Effects of pixelation

In all our results so far the detector C is such that the acquired data consist of the

time points and the spatial coordinates of the detected photons. However, in the presence

of pixelation the acquired data consist of the number of detected photons at each pixel. We

next show how this data can be described in terms of the photon distribution profile and the

photon detection rate of an image detection process. Let G1(Λ1
θ, {f1

θ,τ}τ≥t0 , C) denote an image

detection process that models the detected photons from the object of interest. The pixelated

version of the detector C is defined as a collection {C1, . . . , CNp} of open, disjoint subsets of R
2

such that ∪Np

k=1Ck = C, where Np denotes the total number of pixels. For k = 1, . . . , Np and

t ≥ t0, assume that nk photons are detected in the pixel Ck during the time interval [t0, t]. Let

K denote the total number of detected photons from the object of interest, i.e.,
∑Np

k=1 nk = K.

Then it can be shown that for k = 1, . . . , Np, nk is independently Poisson distributed with
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mean µθ(k, t) =
∫ t
t0

∫

Ck
Λ1

θ(τ)f1
θ,τ (r)drdτ , θ ∈ Θ (see Lemma 2.5.3 in Appendix of Chapter 2).

Similarly, the number of detected photons at the kth pixel during the time interval [t0, t] from

a background component G2(Λ2, {f2
τ }τ≥t0 , C) is independently Poisson distributed with mean

β(k, t) =
∫ t
t0

∫

Ck
Λ2(τ)f2

τ (r)drdτ , θ ∈ Θ. Hence the acquired data in the time interval [t0, t]

from a pixelated detector can be described by a collection {Iθ,1, . . . , Iθ,Np} of random variables

given by

Iθ,k = Sθ,k + Bk, θ ∈ Θ, k = 1, . . . , Np.

Using the standard expression for the Fisher information matrix of a Poisson distribution

([60]), the Fisher information matrix for {Iθ,1, . . . , Iθ,Np} corresponding to the time interval

[t0, t] is given by

I(θ) =

Np∑

k=1

1

µθ(k, t) + β(k, t)

(
∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ
. (2.4)

In a pixelated detector the acquired image contains measurement noise, which, for exam-

ple, arises due to the readout process ([31]). At each pixel this can be modeled as a Gaussian

random variable Wk with mean ηk and variance σ2
w,k, k = 1, . . . , Np. The acquired image is then

given by Iθ,k = Sθ,k + Bk + Wk, θ ∈ Θ, k = 1, . . . , Np. To derive the Fisher information matrix

for the present case, we first note that Iθ,k is a sum of a Poisson and independent Gaussian

random variable, and its probability density function is given by (see [31], also see Lemma 2.5.6

in Appendix of Chapter 2)

pθ,k(z) :=
1√

2πσw,k

∞∑

l=0

[νθ(k, t)]le−νθ(k,t)

l!
e
− 1

2

„

z−l−ηk
σw,k

«2

, z ∈ R, k = 1, . . . , Np, (2.5)

where νθ(k, t) := µθ(k, t) + β(k, t), k = 1, . . . , Np. If {n1, . . . , nNp} denotes the acquired data,

then the log likelihood function is given by L(θ | n1, . . . , nNp) :=
∑Np

k=1 ln[pθ,k(nk)], θ ∈ Θ and

the partial derivative of the log-likelihood function with respect to θ is given by

∂L(θ | n1, . . . , nNp)

∂θ
=

Np∑

k=1

[
∂µθ(k, t)

∂θ
(ζθ,k(nk) − 1)

]

, θ ∈ Θ, (2.6)

where

ζθ,k(z) :=

∑∞
l=1

l[νθ(k,t)]l−1e−νθ(k,t)

(l−1)!
1√

2πσw,k
e
− 1

2

„

z−l−ηk
σk,w

«

pθ,k(z)
, θ ∈ Θ, k = 1, . . . , Np, z ∈ R.
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It can be shown that E[ζθ,k(nk)] = 1 for θ ∈ Θ and k = 1, . . . , Np. Further, it can be verified

that the random variables {Iθ,1, . . . , Iθ,Np} are mutually independent. Using these results and

eq. 2.6, the Fisher information matrix for {Iθ,1, . . . , Iθ,Np} corresponding to the time interval

[t0, t] is given by

I(θ) = E

[(
∂L(θ | n1, . . . , nNp)

∂θ

)T ∂L(θ | n1, . . . , nNp)

∂θ

]

= E





Np∑

k=1

Np∑

m=1

(
∂µθ(k, t)

∂θ

)T ∂µθ(m, t)

∂θ
(ζθ,k(nk)ζθ,m(nm) − ζθ,k(nk) − ζθ,m(nm) + 1)





=

Np∑

k=1

(
∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ

(
E[ζ2

θ,k(nk)] − 1
)

+

Np∑

k 6=m,k,m=1

(
∂µθ(k, t)

∂θ

)T ∂µθ(m, t)

∂θ
(E[ζθ,k(nk)]E[ζθ,m(nm)] − 1)

=

Np∑

k=1

(
∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ
×












∫

R




∑∞

l=1
[νθ(k,t)]l−1e−νθ(k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

„

z−l−ηk
σw,k

«2




2

pθ,k(z)
dz − 1












, θ ∈ Θ. (2.7)

The above expressions are valid for general intensities µθ(k, t) (νθ(k, t)), k = 1, . . . , Np,

t > t0. These intensities depend on the photon distribution profiles fθ,τ , τ ≥ t0, through

the above identities. The approach is therefore generally applicable to a large class of photon

distributions profiles/image functions. Note that in the above expressions no assumptions are

made about the size or shape of the pixels. In [62] an expression was derived that is essentially a

special case of eq. 2.4, i.e. for a two-dimensional estimation problem of the location parameters

for a Gaussian photon distribution profile in a stationary imaging scenario for square pixels in

the absence of Gaussian noise.
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2.4.1 Loss of information due to pixelation

In the description of the acquired data given in Section 2.2, we considered an ideal

detector that provides the time points and the spatial coordinates of the detected photons.

However, in a pixelated detector the acquired data consists of the number of detected photons

at each pixel. That is, the image acquired by a pixelated detector is a discretized version of

the actual image. We next show that the Fisher information matrix for a pixelated detector

is smaller than the Fisher information matrix for a non-pixelated detector. An implication of

this result is that the Cramer-Rao lower bound for a pixelated detector is bigger than that for

a non-pixelated (ideal) detector.

Lemma 2.4.1 Let Θ ⊆ R
n be the parameter space, G(Λθ, {fθ,τ}τ≥t0 , C) denote an image de-

tection process and {C1, . . . , CNp} be a pixelated detector where for j 6= k, j, k = 1, . . . , Np,

Cj
⋂

Ck = ∅ and
⋃Np

k=1 Ck = C.

1. For θ ∈ Θ and k = 1, . . . , Np, let κθ(k, t) := 1
m(Ck)

∫ t
t0

∫

Ck
Λθ(τ)fθ,τ (r)drdτ , where m denotes

the Lebesgue measure. Then for θ ∈ Θ,

∫ t

t0

∫

Ck

(
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
− ∂ ln[κθ(k, t)]

∂θ

)T

×

(
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
− ∂ ln[κθ(k, t)]

∂θ

)

Λθ(τ)fθ,τ (r)drdτ ≥ 0. (2.8)

2. Let I(θ) be the Fisher information matrix given by Theorem 2.2.1 corresponding to the

detector C and Ip(θ) be the Fisher information matrix given by eq. 2.4 for the pixelated detector

{C1, . . . , CNp} in the absence of additive Poisson noise i.e., β(k, t) = 0, k = 1, . . . , Np, t ≥ t0.

Then for θ ∈ Θ, I(θ) ≥ Ip(θ).

Proof: 1. For θ ∈ Θ, τ ≥ t0 and r ∈ R
2, define

Ψθ(r, τ) :=
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
− ∂ ln[κθ(k, t)]

∂θ
.

Without loss of generality let θ denote an n-dimensional vector parameter and let v ∈ R
n

denote a column vector. By definition Λθ(τ)fθ,τ (r) ≥ 0, r ∈ R
2, τ ≥ t0 and θ ∈ Θ and

ΨT
θ (r, τ)Ψθ(r, τ)Λθ(τ)fθ,τ (r) is positive semidefinite, since for every v ∈ R

n, r ∈ R
2, τ ≥ t0 and
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θ ∈ Θ, Ψθ(r, τ)v is a scalar and (vΨθ(r, τ))T (vΨθ(r, τ)) ≥. From this the result immediately

follows.

2. For θ ∈ Θ and k = 1, . . . , Np, define µθ(k, t) :=
∫ t
t0

∫

Ck
Λθ(τ)fθ,τ (r)drdτ and let

Ik(θ) :=

∫ t

t0

∫

Ck

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T ∂[Λθ(τ)fθ,τ (r)]

∂θ
drdτ,

Ip,k(θ) :=
1

µθ(k, t)

(
∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ
.

From the above equations, it follows that I(θ) = I1(θ) + · · · + INp(θ), θ ∈ Θ and Ip(θ) =

Ip,1(θ) + · · · + Ip,Np(θ), θ ∈ Θ. From result 1 of this Lemma, we have

0 ≤

Z t

t0

Z

Ck

„

∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
−

∂ ln[κθ(k, t)]

∂θ

«T „
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
−

∂ ln[κθ(k, t)]

∂θ

«

Λθ(τ)fθ,τ (r)drdτ

=

Z t

t0

Z

Ck

 

∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
−

∂ ln[µθ(k,t)
m(Ck)

]

∂θ

!T  

∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
−

∂ ln[µθ(k,t)
m(Ck)

]

∂θ

!

Λθ(τ)fθ,τ (r)drdτ

=

Z t

t0

Z

Ck

„

∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
−

∂ ln[µθ(k, t)]

∂θ

«T „
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
−

∂ ln[µθ(k, t)]

∂θ

«

Λθ(τ)fθ,τ (r)drdτ

=

Z t

t0

Z

Ck

„

∂ ln[Λθ(τ)fθ,τ (r)]

∂θ

«T
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
Λθ(τ)fθ,τ (r)drdτ

−

Z t

t0

Z

Ck

„

∂ ln[Λθ(τ)fθ,τ (r)]

∂θ

«T
∂ ln[µθ(k, t)]

∂θ
Λθ(τ)fθ,τ (r)drdτ

−

Z t

t0

Z

Ck

„

∂ ln[µθ(k, t)]

∂θ

«T
∂ ln[Λθ(τ)fθ,τ (r)]

∂θ
Λθ(τ)fθ,τ (r)drdτ

+

Z t

t0

Z

Ck

„

∂ ln[µθ(k, t)]

∂θ

«T
∂ ln[µθ(k, t)]

∂θ
Λθ(τ)fθ,τ (r)drdτ

=

Z t

t0

Z

Ck

1

Λθ(τ)fθ,τ (r)

„

∂[Λθ(τ)fθ,τ (r)]

∂θ

«T ∂[Λθ(τ)fθ,τ (r)]

∂θ
drdτ − 1

µθ(k, t)

Z t

t0

Z

Ck

„

∂[Λθ(τ)fθ,τ (r)]

∂θ

«T

drdτ
∂µθ(k, t)

∂θ

− 1

µθ(k, t)

„

∂µθ(k, t)

∂θ

«T Z t

t0

Z

Ck

∂[Λθ(τ)fθ,τ (r)]

∂θ
drdτ +

R t
t0

R

Ck
Λθ(τ)fθ,τ (r)drdτ

µ2
θ
(k, t)

„

∂µθ(k, t)

∂θ

«T ∂µθ(k, t)

∂θ
,

where θ ∈ Θ. Dividing the above expression by µθ(k, t)
(
=
∫ t
t0

∫

Ck
Λθ(τ)fθ,τ (r)drdτ

)
we get

0 ≤
1

µθ(k, t)

Z t

t0

Z

Ck

1

Λθ(τ)fθ,τ (r)

„

∂[Λθ(τ)fθ,τ (r)]

∂θ

«T
∂[Λθ(τ)fθ,τ (r)]

∂θ
drdτ −

1

µ2
θ(k, t)

„

∂µθ(k, t)

∂θ

«T
∂µθ(k, t)

∂θ

−
1

µ2
θ(k, t)

„

∂µθ(k, t)

∂θ

«T
∂µθ(k, t)

∂θ
+

1

µ2
θ(k, t)

„

∂µθ(k, t)

∂θ

«T
∂µθ(k, t)

∂θ

= Ik(θ) − Ip,k(θ), θ ∈ Θ. (2.9)

Hence Ik(θ) ≥ Ip,k(θ), θ ∈ Θ. Since this is true for every k = 1, . . . , Np, it follows that

I1(θ) + I2(θ) + · · · + INp(θ) ≥ Ip,1(θ) + Ip,2(θ) + · · · +Ip,Np(θ), θ ∈ Θ and from this the result

follows. •
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The above result considers the scenario when the data acquired by a pixelated detector is

not corrupted by additive noise sources. However, if these noise sources are taken into account,

then a further deterioration would be expected in the limit to the accuracy of the unknown

parameter θ. The verification of this will be carried out in the next chapter through a concrete

example.

2.4.2 Effect of image addition

The Fisher information matrix derived in eqs. 2.4 and 2.7 are obtained for the problem

of estimating θ from a single image acquired by a pixelated detector. However, in many appli-

cations, the analysis is carried out on a composite image, which is a sum of N distinct images.

In the following theorem, an expression is derived for the probability density function of the

detected photon count at each pixel of the composite image.

Theorem 2.4.1 For θ ∈ Θ and k = 1, . . . , N , let {Ik
θ,1, . . . , Ik

θ,Np
} denote a sequence of inde-

pendent random variables that model the kth image acquired by a pixelated finite detector, where

N denotes the total number of acquired images. Let Ii
θ,k be given by

Ii
θ,k := Si

θ,k + Bi
k + W i

k, k = 1, . . . , Np, θ ∈ Θ, i = 1, . . . , N,

where Si
θ,k (Bi

k) is a Poisson random variable with mean µi
θ(k) (βi(k)) and W i

k is a Gaussian

random variable with mean ηi
k and variance (σi

w,k)
2, for k = 1, . . . , Np and i = 1, . . . , N .

Assume that for θ ∈ Θ and i = 1, . . . , N , {Si
θ,1, . . . , S

i
θ,Np

}, {Bi
1, . . . , B

i
Np

} and {W i
1, . . . , W

i
Np

}

are mutually independent and independent of each other. For k = 1, . . . , Np and θ ∈ Θ, define

Yθ,k :=
∑N

i=1 Ii
θ,k.

1. For k = 1, . . . , Np and θ ∈ Θ, the probability density function of Yθ,k is given by

p̃θ,k(z) :=
1√

2πσw,k

∞∑

l=0

[µθ(k) + β(k)]le−[µθ(k)+β(k)]

l!
e
− 1

2

„

z−l−ηk
σw,k

«2

, z ∈ R
2,

where

µθ(k) :=

N∑

i=1

µi
θ(k), β(k) :=

N∑

i=1

βi(k), θ ∈ Θ, k = 1, . . . , Np, (2.10)
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ηk :=
N∑

i=1

ηi
k, σ2

w,k :=
N∑

i=1

[σi
w,k]

2, k = 1, . . . , Np, θ ∈ Θ. (2.11)

2. For θ ∈ Θ and k = 1, . . . , Np, assume that µ1
θ(k) = · · · = µN

θ (k), β1(k) = · · · = βN (k),

η1
k = · · · = ηN

k , and σ1
w,k = · · · = σN

w,k. Then for k = 1, . . . , Np and θ ∈ Θ, the probability

density function of Iθ,k is given by

p̃θ,k(z) :=
1√

2πNσ1
w,k

∞∑

l=0

[N(µ1
θ(k) + β1(k))]le−N [µ1

θ(k)+β1(k)]

l!
e
− 1

2

 

z−l−Nη1
k

Nσ1
w,k

!2

, z ∈ R
2.

Proof: For θ ∈ Θ, k = 1, . . . , Np and i = 1, . . . , N define Xi
θ,k := Si

θ,k + Bi
k. Then Ii

θ,k =

Xi
θ,k + W i

k, where Xi
θ,k is a Poisson random variable with mean µi

θ(k) + βi(k), i = 1, . . . , N ,

k = 1, . . . , Np and θ ∈ Θ. Consider the term

Yθ,k =

N∑

i=1

Iθ,k = (X1
θ,k + W 1

k ) + (X2
θ,k + W 2

k ) + · · · + (XN
θ,k + WN

k )

= (X1
θ,k + X2

θ,k + · · · + XN
θ,k) + (W 1

k + W 2
k + · · · + WN

k ) =
N∑

i=1

Xi
θ,k

︸ ︷︷ ︸

T1

+
N∑

i=1

W i
k

︸ ︷︷ ︸

T2

.

The sum term T1 is a sum of N independent Poisson random variables, which is a Poisson

random variable with mean µθ(k) + β(k), where µθ(k) = µ1
θ(k) + ... + µN

θ (k) and β(k) =

β1(k) + ... + βN (k). Similarly, the sum term T2 is a Gaussian random variable with mean

ηk = η1
k + ...ηN

k and variance [σw,k]
2 = [σ1

w,k]
2 + ... + [σN

w,k]
2. Further, the sum terms T1 and

T2 are statistically independent. Hence Yθ,k is the sum of a Poisson and independent Gaussian

random variable. Since by definition Ii
θ,k is also a sum of a Poisson and an independent Gaussian

random variable whose probability density function is given by eq. 2.5, substituting µθ(k), β(k),

ηk and [σw,k]
2 in eq. 2.5, the result immediately follows.

2. The result immediately follows from result 2. •

From the above theorem we see that for a composite image the expression for the prob-

ability density function of the photon count in the kth pixel is analogous to that of a single

image, which is given in eq. 5.9. From this it can be deduced that the expression of Fisher
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information matrix for the problem of estimating θ from a composite image is also analogous

to that for a single image (eqs. 2.4 and 2.7).

2.5 Appendix to Chapter 2

Lemma 2.5.1 Proof of Theorem 2.2.1: the expression for the Fisher information matrix of

the image detection process G corresponding to a time interval [t0, t].

Proof: By definition of the temporal process {Z(τ), τ ≥ t0} of G, the random variable Z(t) is

Poisson distributed with mean
∫ t
t0

Λθ(τ)dτ and denotes the total number of detected photons in

the time interval [t0, t]. Let {w1, . . . , wK} denote a realization of the image detection process in

the time interval [t0, t], where wk := (rk, τk), rk = (xk, yk) ∈ C denotes the spatial coordinates

of the arrival location of the kth detected photon, k = 1, . . . , K, t0 ≤ τ1 ≤ · · · ≤ τK ≤ t denotes

the time points at which the photons are detected and K denotes the total number of detected

photons that is a realization of the random variable Z(t).

Let Tk : Ω̃ → [t0,∞), k = 1, 2, . . . , denote a random variable that describes the time

point of the kth detected photon, where Ω̃ denotes the sample space and let TK denote the

event {T1 = τ1, . . . , TK = τK}. Using the fact that the spatial and temporal components

of the image detection process are independent, that the spatial coordinates {r1, . . . , rK} are

mutually independent and that the probability density function of the spatial coordinates of

the kth detected photon only depends on the time point τk, k = 1, . . . , K, the sample function

density is given by

p[U1 = r1, . . . , UK = rK , T1 = τ1, . . . , TK = τK , Z(t) = K]

= p[U1 = r1, . . . , UK = rK | TK , Z(t) = K]p[TK | Z(t) = K]p[Z(t) = K]

= p[U1 = r1 | TK ]p[U2 = r2 | TK ] . . . p[UK = rK | TK ]p[TK | Z(t) = K]p[Z(t) = K]

= p[U1 = r1 | T1 = τ1]p[U2 = r2 | T2 = τ2] . . . p[UK = rK | TK = τK ]×

p[TK | Z(t) = K]p[Z(t) = K]

=

(
K∏

k=1

fθ,τk
(rk)

)

p[TK | Z(t) = K]p[Z(t) = K]



30

=

(
K∏

k=1

fθ,τk
(rk)

)

K!
∏K

k=1 Λθ(τk)
(

∫ t
t0

Λθ(τ)dτ

)K




1

K!
e
−
R t

t0
Λθ(τ)dτ

(
∫ t

t0

Λθ(τ)dτ

)K




=

(
K∏

k=1

fθ,τk
(rk)

)(
K∏

k=1

Λθ(τk)

)

exp

(

−
∫ t

t0

Λθ(τ)dτ

)

,

where fθ,τk
(rk) denotes the density function of the spatial coordinates rk of the kth detected

photon, p[TK | Z(t) = K] = p[T1 = τ1, . . . , TK = τK | Z(t) = K] denotes the conditional

probability density function of the time points of the detected photons and p[Z(t) = K] denotes

the probability of detecting K photons in the time interval [t0, t]. In the above equation the

expression for p[TK | Z(t) = K] pertains to the ordered sequence t0 ≤ τ1 ≤ · · · ≤ τK ≤ t of the

occurrence times (see e.g., [60]).

The log likelihood function is given by

L(θ|w1, . . . , wK) := ln(p[U1 = r1, . . . , UK = rK , T1 = τ1, . . . , TK = τK , Z(t) = K])

=
K∑

k=1

ln[fθ,τk
(rk)] +

K∑

k=1

ln[Λθ(τk)] −
∫ t

t0

Λθ(τ)dτ, θ ∈ Θ.

By definition of Λθ, the integral
∫ t
t0

Λθ(τ)dτ exists and is finite for θ ∈ Θ, t ≥ t0 and ∂Λθ(τ)/∂θ

is piecewise continuous with respect to θ for every θ ∈ Θ and τ ≥ t0. Hence (∂/∂θ)
∫ t
t0

Λθ(τ)dτ

=
∫ t
t0

(∂Λθ(τ)/∂θ)dτ , θ ∈ Θ. For θ ∈ Θ and τ ≥ t0, define

Jθ,τ (r) :=
1

fθ,τ (r)

∂fθ,τ (r)

∂θ
, r ∈ C, Mθ(σ) :=

1

Λθ(σ)

∂Λθ(σ)

∂θ
, σ ≥ t0.

Then the derivative of the log likelihood function with respect to θ ∈ Θ is given by

∂L(θ|w1, . . . , wK)

∂θ
=

K∑

k=1

1

fθ,τk
(rk)

∂fθ,τk
(rk)

∂θ
+

K∑

k=1

1

Λθ(τk)

∂Λθ(τk)

∂θ
− ∂

∂θ

∫ t

t0

Λθ(τ)dτ

=

K∑

k=1

Jθ,τk
(rk) +

K∑

k=1

Mθ(τk) −
∫ t

t0

∂Λθ(τ)

∂θ
dτ.

The Fisher information matrix is given by ([55])

I(θ) = E

[(
∂L(θ|w1, . . . , wK)

∂θ

)T (∂L(θ|w1, . . . , wK)

∂θ

)]
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= E

[(
K∑

k=1

J T
θ,τk

(rk) +
K∑

k=1

MT
θ (τk) −

∫ t

t0

(
∂Λθ(τ)

∂θ

)T

dτ

)

×

(
K∑

l=1

Jθ,τl
(rl) +

K∑

l=1

Mθ(τl) −
∫ t

t0

∂Λθ(τ)

∂θ
dτ

)]

= E

[
K∑

k=1

J T
θ,τk

(rk)
K∑

l=1

Jθ,τl
(rl)

]

︸ ︷︷ ︸

T1

+ E

[
K∑

k=1

J T
θ,τk

(rk)
K∑

l=1

Mθ(τl)

]

︸ ︷︷ ︸

T T
2

−E

[
K∑

k=1

J T
θ,τk

(rk)

]

︸ ︷︷ ︸

T T
3

∫ t

t0

∂Λθ(τ)

∂θ
dτ + E

[
K∑

k=1

MT
θ (τk)

K∑

l=1

Jθ,τl
(rl)

]

︸ ︷︷ ︸

T2

+ E

[
K∑

k=1

MT
θ (τk)

K∑

l=1

Mθ(τl)

]

︸ ︷︷ ︸

T4

−E

[
K∑

k=1

MT
θ (τk)

]

︸ ︷︷ ︸

T T
5

∫ t

t0

∂Λθ(τ)

∂θ
dτ

−
∫ t

t0

(
∂Λθ(τ)

∂θ

)T

dτ

(

E

[
K∑

k=1

Jθ,τk
(rk)

]

︸ ︷︷ ︸

T3

+ E

[
K∑

k=1

Mθ(τk)

]

︸ ︷︷ ︸

T5

−
∫ t

t0

∂Λθ(τ)

∂θ
dτ

)

, θ ∈ Θ. (2.12)

Let N denote any function that depends on {z1, . . . , zK}. Then using the fact that the

spatial and temporal processes of G are independent, and that the spatial coordinates of the

detected photons are mutually independent, we have

E[N (r1, . . . , rK , τ1, . . . , τK)] =
∞∑

K=1

∫ t

t0

. . .

∫ t

t0

∫

C
. . .

∫

C
N (r1, . . . , rK , τ1, . . . , τK)×

p(r1, . . . , rK , τ1, . . . , τK , Z(t) = K)dr1 . . . drKdτ1 . . . dτK

=
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
∫

C
. . .

∫

C
N (r1, . . . , rK , τ1, . . . , τK)×

p(r1, . . . , rK | τ1, . . . , τK , Z(t) = K)dr1 . . . drK

]

×
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p(τ1, . . . , τK | Z(t) = K)dτ1 . . . dτK

)

P (Z(t) = K)

=
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
∫

C
. . .

∫

C
N (r1, . . . , rK , τ1, . . . , τK)fθ,τ1(r1) . . . fθ,τK

(rK)dr1 . . . drK

]

×p(τ1, . . . , τK | Z(t) = K)dτ1 . . . dτK

)

P (Z(t) = K). (2.13)

Now, consider a special case where N is given by N (r1, . . . , rK , τ1, . . . , τK) =
∑K

k=1 U(rk, τk)

and U is a real-valued vector function defined on C × [t0,∞). Note that for fixed K, a random

reordering of the acquired data (r1, τ1), . . . , (rK , τK) does not change the value of the sum-

mation
∑K

k=1 U(rk, τk) and hence the value of N would remain the same for the given data.

However, with this reordering the occurrence times can treated as independent and identically

distributed random variables with probability density pθ that is given by (see [60, pg 65], [63,

pg 272])

pθ(τ) =
Λθ(τ)

∫ t
t0

Λθ(τ)dτ
, τ ∈ [t0, t], θ ∈ Θ.

This implies that in evaluating the expectation value of the above special case of N , the prob-

ability density p(τ1, . . . , τK | Z(t) = K) can be replaced by pθ(τ1) . . . pθ(τK) in eq. 2.13 and we

have

E

[
K∑

k=1

U(rk, τk)

]

=
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
∫

C
. . .

∫

C

(

U(r1, τ1) + · · · + U(rK , τK)

)

×

fθ,τ1(r1) . . . fθ,τK
(rK)dr1 . . . drK

]

pθ(τ1) . . . pθ(τK)dτ1 . . . dτK

)

P (Z(t) = K)

=
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
∫

C
U(r, τ1)fθ,τ1(r)dr

∫

C
fθ,τ2(r)dr . . .

∫

C
fθ,τK

(r)dr + . . .

+

∫

C
fθ,τ1(r)dr

∫

C
fθ,τ2(r)dr . . .

∫

C
U(r, τK)fθ,τK

(r)dr

]

×

pθ(τ1) . . . pθ(τK)dτ1 . . . dτK

)

P (Z(t) = K)

=
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
K∑

k=1

∫

C
U(r, τk)fθ,τk

(r)dr

]

pθ(τ1) . . . pθ(τK)dτ1 . . . dτK

)

P (Z(t) = K)
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=
∞∑

K=1

(
∫ t

t0

[
∫

C
U(r, τ1)fθ,τ1(r)dr

]

pθ(τ1)dτ1

∫ t

t0

pθ(τ2)dτ2 . . .

∫ t

t0

pθ(τK)dτK + . . .

+

∫ t

t0

pθ(τ1)dτ1

∫ t

t0

pθ(τ2)dτ2 . . .

∫ t

t0

[
∫

C
U(r, τK)fθ,τK

(r)dr

]

pθ(τK)dτ1

)

P (Z(t) = K)

=

∞∑

K=1

(

K

∫ t

t0

[
∫

C
U(r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

)

P (Z(t) = K)

=
∞∑

K=1

KP (Z(t) = K)

∫ t

t0

[
∫

C
U(r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

=

∫ t

t0

Λθ(τ)dτ

∫ t

t0

[
∫

C
U(r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

=

∫ t

t0

Λθ(τ)

[
∫

C
U(r, τ)fθ,τ (r)dr

]

dτ, (2.14)

where we have substituted for pθ in the last step and the term
∑∞

K=1 KP (Z(t) = K) =

∑∞
K=0 KP (Z(t) = K) is the mean of the Poisson random variable Z(t). Note that for K = 0, the

term KP (Z(t) = K) is zero and hence does not change the infinite sum. If U is only a function

of τ , then eq. 2.14 becomes
∫ t
t0

Λθ(τ)
[∫

C U(τ)fθ,τ (r)dr
]

dτ =
∫ t
t0

Λθ(τ)U(τ)
[∫

C fθ,τ (r)dr
]

dτ =

∫ t
t0

Λθ(τ)U(τ)dτ .

Consider another special case of N given by

N (r1, . . . , rK , τ1, . . . , τK) =
K∑

k=1

U(rk, τk)
K∑

l=1

VT (rl, τl),

where V is also a real-valued vector function defined on C × [t0,∞). Here again, a random

reordering of the acquired data for a fixed value of K leaves the value of N unchanged. Hence

replacing the term p(τ1, . . . , τK | Z(t) = K) by pθ(τ1) . . . pθ(τK) in eq. 2.13 and using eq. 2.14

we have

E

[
K∑

k=1

U(rk, τk)
K∑

l=1

VT (rl, τl)

]

= E

[
K∑

k=1

U(rk, τk)VT (rk, τk)

]

+ E

[
K∑

k 6=l,k,l=1

U(rk, τk)VT (rl, τl)

]

=

∫ t

t0

Λθ(τ)

[∫

C
U(r, τ)VT (r, τ)fθ,τ (r)dr

]

pθ(τ)dτ
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+
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
∫

C
. . .

∫

C

(
K∑

k 6=l,k,l=1

U(rk, τk)VT (rl, τl)

)

fθ,τ1(r1) . . . fθ,τK
(rK)dr1 . . . drK

]

×

pθ(τ1) . . . pθ(τK)dτ1 . . . dτK

)

P (Z(t) = K)

=

∫ t

t0

Λθ(τ)

[∫

C
U(r, τ)VT (r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

+
∞∑

K=1

(
∫ t

t0

. . .

∫ t

t0

[
K∑

k 6=l,k,l=1

∫

C
U(r, τk)fθ,τk

(r)dr

∫

C
VT (r, τl)fθ,τl

(r)dr

]

×

pθ(τ1) . . . pθ(τK)dτ1 . . . dτK

)

P (Z(t) = K)

=

∫ t

t0

Λθ(τ)

[∫

C
U(r, τ)VT (r, τ)fθ,τ (r)dr

]

pθ(τ)dτ +

∞∑

K=1

(K2 − K)P (Z(t) = K)

×
(
∫ t

t0

[
∫

C
U(r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

∫ t

t0

[
∫

C
VT (r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

)

=

∫ t

t0

Λθ(τ)

[∫

C
U(r, τ)VT (r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

+

(
∫ t

t0

Λθ(τ)dτ

)2 ∫ t

t0

[
∫

C
U(r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

∫ t

t0

[
∫

C
VT (r, τ)fθ,τ (r)dr

]

pθ(τ)dτ

=

∫ t

t0

Λθ(τ)

[
∫

C
U(r, τ)VT (r, τ)fθ,τ (r)dr

]

dτ

+

∫ t

t0

Λθ(τ)

[
∫

C
U(r, τ)fθ,τ (r)dr

]

dτ

∫ t

t0

Λθ(τ)

[
∫

C
VT (r, τ)fθ,τ (r)dr

]

dτ, θ ∈ Θ, (2.15)

where we have substituted for pθ in the last step and the term
∑∞

K=1(K
2 −K)P (Z(t) = K) =

E[K2]−E[K] = Var(K)+(E[K])2−E[K] =
(∫ t

t0
Λθ(τ)dτ

)2
with E[·] denoting the expectation

operator.

Using Lemma 2.5.2, we
∫

C Jθ,τ (r)fθ,τ (r)dr =
∫

C(∂fθ,τ (r)/∂θ)dr = 0 for θ ∈ Θ and τ ≥ t0.

Using this and eq. 2.14 the term T1 is given by

E

[
K∑

k=1

J T
θ,τk

(rk)

K∑

l=1

Jθ,τl
(rl)

]

=

∫ t

t0

Λθ(τ)

[
∫

C
J T

θ,τ (r)Jθ,τ (r)fθ,τ (r)dr

]

dτ

+

∫ t

t0

Λθ(τ)

[
∫

C
J T

θ,τ (r)fθ,τ (r)dr

]

dτ

∫ t

t0

Λθ(τ)

[
∫

C
Jθ,τ (r)fθ,τ (r)dr

]

dτ
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=

∫ t

t0

Λθ(τ)

[
∫

C

1

fθ,τ (r)

(

∂fθ,τ (r)

∂θ

)T
1

fθ,τ (r)

∂fθ,τ (r)

∂θ
fθ,τ (r)dr

]

dτ

=

∫ t

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂fθ,τ (r)

∂θ

)T ∂fθ,τ (r)

∂θ
dτdr, θ ∈ Θ. (2.16)

Similarly, the term T2 is given by

E

[
K∑

k=1

MT
θ (τk)

K∑

l=1

Jθ,τl
(rl)

]

=

∫ t

t0

Λθ(τ)

[
∫

C
MT

θ (τ)Jθ,τ (r)fθ,τ (r)dr

]

dτ

+

∫ t

t0

Λθ(τ)

[
∫

C
MT

θ (τ)fθ,τ (r)dr

]

dτ

∫ t

t0

Λθ(τ)

[
∫

C
Jθ,τ (r)fθ,τ (r)dr

]

dτ

=

∫ t

t0

Λθ(τ)MT
θ (τ)

[
∫

C
Jθ,τ (r)fθ,τ (r)dr

]

dτ

+

∫ t

t0

Λθ(τ)MT
θ (τ)

[
∫

C
fθ,τ (r)dr

]

dτ

∫ t

t0

Λθ(τ)

[
∫

C
Jθ,τ (r)fθ,τ (r)dr

]

dτ

= 0, θ ∈ Θ. (2.17)

By definition of Mθ,
∫ t
t0

Λθ(τ)Mθ(τ)dτ =
∫ t
t0

(∂Λθ(τ)/∂θ)dτ , θ ∈ Θ. Using this, the term T4 is

given by

E

[
K∑

k=1

MT
θ (τk)

K∑

l=1

Mθ(τl)

]

=

∫ t

t0

Λθ(τ)MT
θ (τ)Mθ(τ)dτ +

∫ t

t0

Λθ(τ)MT
θ (τ)dτ

∫ t

t0

Λθ(τ)Mθ(τ)dτ

=

∫ t

t0

Λθ(τ)

Λθ(τ)

(
∂Λθ(τ)

∂θ

)T 1

Λθ(τ)

∂Λθ(τ)

∂θ
dτ +

∫ t

t0

(
∂Λθ(τ)

∂θ

)T

dτ

∫ t

t0

∂Λθ(τ)

∂θ
dτ

=

∫ t

t0

1

Λθ(τ)

(
∂Λθ(τ)

∂θ

)T ∂Λθ(τ)

∂θ
dτ +

∫ t

t0

(
∂Λθ(τ)

∂θ

)T

dτ

∫ t

t0

∂Λθ(τ)

∂θ
dτ, θ ∈ Θ. (2.18)

Using eq. 2.14 the term T3 is given by

E

[
K∑

k=1

Jθ,τk
(rk)

]

=

∫ t

t0

Λθ(τ)

[
∫

C
Jθ,τ (r)fθ,τ (r)dr

]

dτ = 0, θ ∈ Θ. (2.19)

Finally, using eq. 2.14 the term T5 is given by

E

[
K∑

k=1

Mθ(τk)

]

=

∫ t

t0

Λθ(τ)

[∫

C
Mθ(τ)fθ,τ (r)dr

]

dτ =

∫ t

t0

Λθ(τ)Mθ(τ)dτ
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=

∫ t

t0

∂Λθ(τ)

∂θ
dτ, θ ∈ Θ. (2.20)

Substituting eqs. 2.16 - 2.20 in eq. 2.12 and using the fact that
∫

C fθ,τ (r)dr = 1, θ ∈ Θ, τ ≥ t0,

we get

I(θ) =

∫ t

t0

1

Λθ(τ)

(
∂Λθ(τ)

∂θ

)T (∂Λθ(τ)

∂θ

)

dτ +

∫

C

∫ t

t0

Λθ(τ)

fθ,τ (r)

(
∂fθ,τ (r)

∂θ

)T (∂fθ,τ (r)

∂θ

)

drdτ

=

∫ t

t0

∫

C

fθ,τ (r)

Λθ(τ)

(
∂Λθ(τ)

∂θ

)T (∂Λθ(τ)

∂θ

)

drdτ +

∫

C

∫ t

t0

Λθ(τ)

fθ,τ (r)

(
∂fθ,τ (r)

∂θ

)T (∂fθ,τ (r)

∂θ

)

drdτ

+

∫ t

t0

(
∂Λθ(τ)

∂θ

)T

dσ

∫

C

(
∂fθ,τ (r)

∂θ

)

dr

︸ ︷︷ ︸

S1

+

∫

C

(
∂fθ,τ (r)

∂θ

)T

dr

∫ t

t0

(
∂Λθ(τ)

∂θ

)

dτ

︸ ︷︷ ︸

S2

=

∫ t

t0

∫

C

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T (∂[Λθ(τ)fθ,τ (r)]

∂θ

)

drdτ, θ ∈ Θ.

Since by Lemma 2.5.2
∫

C(∂fθ,τ (r)/∂θ)dr = 0, θ ∈ Θ, τ ≥ t0, adding the terms S1 and S2 does

not change the expression for the Fisher information matrix and aids in writing it in a compact

form. •

Lemma 2.5.2 Let C be a detector and Θ denote a parameter set that is an open subset of

R
n. Let FΘ be the set of probability densities fθ defined on C that satisfy conditions C3-C5 of

Definition 2.2.1. Then

∫

C

∂fθ(r)

∂θi
dr = 0, i = 1, . . . , n, θ ∈ Θ.

Proof: See [55, pg 182-183] for proof. •

Lemma 2.5.3 Let Θ ⊆ R
n be open. For θ ∈ Θ, let G(Λθ, {fθ,τ}τ≥t0 , C} be an image detection

process and {C1, . . . , CNp} denote a pixelated detector, where Np denotes the total number of

pixels. Then the number of photons detected at the kth pixel, k = 1, . . . , Np during the time

interval [t0, t] is independently Poisson distributed with µθ(k, t), which is given by

µθ(k, t) :=

∫ t

t0

∫

Ck

Λθ(τ)fθ,τ (r)drdτ, k = 1, . . . , Np, θ ∈ Θ, t ≥ t0.
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Proof: Using Proposition 2.3.1, it can be shown that the time points and the spatial coordi-

nates of the photons detected at the kth pixel Ck, k = 1, . . . , Np, can be described by an image

detection process Gk(Λk
θ , {fk

θ,τ}τ≥t0 , Ck), which is the reduced version of G corresponding to the

detector Ck, where

Λk
θ(τ) := Λθ(τ)

∫

Ck

fθ,τ (r)dr, θ ∈ Θ, τ ≥ t0, k = 1, . . . , Np, (2.21)

fk
θ,τ (r) =







1
R

Ck
fθ,τ (r)

fθ,τ (r), r ∈ Ck, θ ∈ Θ, τ ≥ t0, k = 1, . . . , Np,

0 otherwise.

This implies that the time points of the detected photons at the kth pixel Ck is described by

a Poisson process with intensity function Λk
θ . Moreover, by definition of the pixelated detector

the pixels are disjoint and hence the image detection processes G1, G2,..., GNp are mutually

independent. Finally by using the well known result that for a Poisson process with intensity

Λ, the number of detected photons detected over the time interval [t1, t2] is Poisson distributed

with mean
∫ t2
t1

Λ(τ)dτ , the result immediately follows. •

2.5.1 Sum of a discrete and a continous random variable

In this section we derive an analytical expression for the probability density function of

a random variable Z which is the sum of a discrete and a continuous random variable. First,

we state without proof two well known results that will be used in the derivation of the density

function.

Lemma 2.5.4 Let S ⊆ R and {fn} be a sequence of functions defined on S. If {Mn} is a

sequence of nonnegative numbers such that

0 ≤ |fn(x)| ≤ Mn, n = 0, 1, . . . , x ∈ S,

then
∑∞

n=0 fn(x) converges uniformly on S if
∑∞

n=1 Mn converges.

Proof: See [64, pg 223] for proof. •

Lemma 2.5.5 Let S ⊂ R be an open interval and let {fn} be a real valued function defined

on S such that the derivative f
′

n(x) exists for every x ∈ S. Assume that for at least one
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point x0 in S,
∑∞

n=1 fn(x) converges. Assume further that there exists a function g such that

∑∞
n=1 f

′

n(x) = g(x) uniformly on S. Then

1. For every x ∈ S there exists a function f(x) such that
∑∞

n=1 fn(x) = f(x) uniformly on S.

2. For every x ∈ S the derivative f
′
(x) exists and equals g(x).

Proof: See [64, pg 230, theorem 9.14] for proof. •

Lemma 2.5.6 Let Θ ⊆ R
p be open and let (Ω,F , P ) denote a probability space. Define X :

Ω → Z+ to be a discrete random variable with finite first moment where Z+ denotes the set

of non negative integers (including zero) and define Y : Ω → R to be a continuous random

variable. Let pY denote the probability density function of Y such that 0 ≤ pY ≤ V0 < ∞ except

on a Lebesgue null set and let pX,θ denote the probability mass function of X that depends on

a vector parameter θ ∈ Θ. Then

1.
∂

∂z

[ ∞∑

n=0

pX,θ(n)

∫ z−n

−∞
pY (y)dy

]

=

∞∑

n=0

pX,θ(n)pY (z − n), z ∈ R, θ ∈ Θ,

except on a Lebesgue null set.

2. If Z = X + Y and X and Y are independent, then Z is a real valued random variable with

density function pZ,θ given by

pZ,θ(z) =
∞∑

n=0

pX,θ(n)pY (z − n), z ∈ R, θ ∈ Θ, except on a Lebesgue null set.

3. For θ ∈ Θ,
∫ ∞

−∞

( ∞∑

n=0

npX,θ(n)pY (z − n)

)

dz =
∞∑

n=0

npX,θ(n).

4. For θ ∈ Θ,
∫ ∞

−∞

( ∞∑

n=0

pX,θ(n)pY (z − n)

)

dz =

∞∑

n=0

pX,θ(n).

5. Suppose X is a Poisson random variable with parameter µθ that depends on a vector param-

eter θ ∈ Θ such that ∂µθ/∂θi exist and is finite for every θ ∈ Θ, i = 1, . . . , p, then

∂

∂θi

[ ∞∑

n=0

pX,θ(n)pY (z − n)

]

=
∞∑

n=0

∂pX,θ(n)

∂θi
pY (z − n), i = 1, . . . , p z ∈ R, θ ∈ Θ,

except on a Lebesgue null set.
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Proof: 1. Let Fn,θ be given by

Fn,θ(z) := pX,θ(n)

∫ z−n

−∞
pY (y)dy = pX,θ(n)PY (z − n), z ∈ R,

where n = 0, 1, . . . , θ ∈ Θ and PY denotes the distribution function of Y . Consider the term

∞∑

n=0

Fn,θ(z) =
∞∑

n=0

pX,θ(n)PY (z − n) ≤
∞∑

n=0

pX,θ(n) = 1,

since 0 ≤ PY ≤ 1. Thus by Lemma 2.5.4 the series Fn,θ(z) converges uniformly for z ∈ R. Let

fn,θ be given by

fn,θ(z) :=
∂Fn,θ(z)

∂z
= pX,θ(n)

∂

∂z

∫ z−n

−∞
pY dy = pX,θpY (z − n), n = 0, 1, . . . , z ∈ R, θ ∈ Θ.

Consider the term

∞∑

n=0

fn,θ(z) =
∞∑

n=0

pX,θ(n)pY (z − n) ≤ V0

∞∑

n=0

pX,θ(n) ≤ V0, (2.22)

since 0 ≤ pY ≤ V0 by definition. Using Lemma 2.5.4
∑∞

n=0 fn,θ(z) converges uniformly for

z ∈ R. Hence using Lemma 2.5.5 we have

∂

∂z

[ ∞∑

n=0

pX,θ(n)

∫ z−n

−∞
pY (y)dy

]

=
∞∑

n=0

pX,θ(n)pY (z − n), z ∈ R, θ ∈ Θ.

2. Let n be a non negative integer, y, z ∈ R. Consider the term P [Z ≤ z] = P [X + Y ≤ z]. In

terms of conditional probability P [X + Y ≤ Z] is given by

P [X + Y ≤ z] =
∞∑

n=0

P [X + Y ≤ z|X = n]P [X = n] =
∞∑

n=0

P [Y ≤ z − n|n]P [X = n]

=
∞∑

n=0

P [Y ≤ z − n]P [X = n] =
∞∑

n=0

pX,θ(n)

∫ z−n

−∞
pY (y)dy,

where we have the fact that X and Y are independent in the third step. Differentiating the

above equation with respect to z and using result 1 we get the desired result.

3. Let γ = {0, 1} and let fn,θ, fθ be given by

fn,θ(z) :=
n∑

k=0

kγpX,θ(k)pY (z − k), n = 0, 1, . . . , z ∈ R, θ ∈ Θ,
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fθ(z) :=
∞∑

k=0

kγpX,θ(k)pY (z − k), n = 0, 1, . . . , z ∈ R, θ ∈ Θ.

Then fn,θ(z) → fθ(z) for all z ∈ R, θ ∈ Θ except possibly on a Lebesgue null set. Also

fn,θ(z) > fm,θ(z) when n > m since by definition pX,θ and pY are non negative. Hence by

Monotone Convergence Theorem we have

∫

R

fθ(z)dz =

∫

R

lim
n→∞

fn,θ(z)dz = lim
n→∞

∫

R

fn,θ(z)dz = lim
n→∞

∫

R

n∑

k=0

kγpX,θ(k)pY (z − k)dz

= lim
n→∞

n∑

k=0

kγpX,θ(k)

∫

R

pY (z − k)dz = lim
n→∞

n∑

k=0

kγpX,θ(k) =
∞∑

k=0

kγpX,θ(k), θ ∈ Θ.

Setting γ = 1 we get result 3 and settting γ = 0 we get result 4.

4. See above for proof.

5. We prove this result similar to result 1. Let fn,θ be given by

fn,θ(z) = pX,θ(n)pY (z − n), z ∈ R, θ ∈ Θ, n = 0, 1, . . .

From eq. 2.22 we know
∑∞

n=0 fn,θ(z) converges uniformly for every z ∈ R. Let gn,θ be given by

gn,θ(z) =
∂fn,θ(z)

∂θi
=

∂µθ

∂θi

[
n

µθ
− 1

]

pX,θ(n)pY (z − n), z ∈ R, θ ∈ Θ, n = 0, 1, . . . , (2.23)

where θi ∈ θ and i = 1, . . . , p. Consider the term

∞∑

n=0

gn,θ(z) =
∞∑

n=0

∂pX,θ

∂θi
pY (z − n) =

∂µθ

∂θi

∞∑

n=0

[
n

µθ
− 1

]

pX,θ(n)pY (z − n)

≤ ∂µθ

∂θi

∞∑

n=0

n

µθ
pX,θ(n)pY (z − n) ≤ V0

µθ

∂µθ

∂θi

∞∑

n=0

npX,θ(n) = V0
∂µθ

∂θi
, z ∈ R, θ ∈ Θ,

since 0 ≤ pY ≤ V0 and i = 1, . . . , p. Hence using Lemma 2.5.4 the series
∑∞

n=1 gn,θ(z) converges

uniformly for z ∈ R and θ ∈ Θ and using Lemma 2.5.5 we get the desired result. •



CHAPTER 3

LOCALIZATION ACCURACY PROBLEM

3.1 Introduction

The localization accuracy problem is concerned with how accurately the location of a

microscopic object (for example, single molecule) can be estimated from data acquired in an

optical microscope. Here, the results derived in Chapter 2 are used to obtain analytical expres-

sions of the Fisher information matrix for the location estimation problem. The organization of

this chapter is as follows. In Section 3.2 a general expression for the Fisher information matrix

is derived corresponding to the location estimation problem. Conditions that guarantee block

diagonality or diagonality of the Fisher information matrix are also derived.

In Section 3.3 the image function is introduced. Previously, the derivation of the Fisher

information matrix made no specific assumptions about the functional form of the image profile

of the object. In many practical cases, the image profile can be assumed to be shift-invariant. In

such cases, the image of the object can be described as a scaled and shifted version of the image

function. In this section, analytical expressions of the Fisher information matrix are obtained

in terms of the image function. These results are illustrated by considering specific image

profiles that describe the image of a fluorescent point source (for example, single molecule). In

particular by using the Airy profile, which, according to optical diffraction theory, describes

the image of an infocus point source, a simple formulae is derived that provides a fundamental

limit to the 2D localization accuracy of a single molecule.

Section 3.4 considers the effects of pixelation and noise sources. Here analytical expres-

sions for the limit of the 2D localization accuracy are derived for an Airy profile. The results

are extensively illustrated by investigating the effect of various parameters such as magnifica-

tion, pixel size, pixel array size, photon detection rate etc., on the limit of the 2D localization

accuracy. Concrete examples are given to show how these results can be used to design and op-

41
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timize single molecule imaging setups from the point of view of achieving maximum accuracy in

location estimation. A maximum likelihood estimation algorithm is introduced for determining

the 2D location of a single molecule from optical microscopy data. Throughout the chapter the

algorithm is tested for different imaging configurations. It is shown that the maximum likeli-

hood estimator can correctly determine 2D location of single molecules with an accuracy that

is consistently close to the theoretical result given by the limit of the 2D localization accuracy.

3.2 Performance limits and Fisher information matrix

For the location estimation problem the parameter vector θ := (θl, θa, θΛ) is decomposed

into three components, where θl denotes the location component, θa denotes an auxiliary com-

ponent and θΛ denotes the rate component. The location component θl typically consists of the

x and y coordinates of the object location. The auxiliary component θa, if present, may consist

of other relevant parameters such as the z coordinate of the object location. In single molecule

microscopy it is often reasonable to assume that the photon detection rate is a constant, i.e.,

Λθ(τ) = Λ0, τ ≥ t0, and that the intensity level Λ0 needs to be estimated. In this case θΛ would

consist of the parameter Λ0. For example, in tracking problems for vesicles, due to photobleach-

ing effects the photon detection rate can often be modeled as Λθ(τ) = Λ0 exp(−(τ − t0)kb),

τ ≥ t0. In this case θΛ would consist of the parameters Λ0 and kb.

In the following theorem, we consider two independent image detection processes G1 and

G2. The image detection process G1 is such that its photon detection rate Λ1
θ only depends on

the rate component θΛ, and its photon distribution profile f1
θ,τ only depends on the location

component θl and the auxiliary component θa. The image detection process G2 is such that its

photon detection rate Λ2 and photon distribution profile f2
τ are independent of θ. For example,

G1 can model the detected photons from the object of interest, whereas G2 might model a

background component.

Theorem 3.2.1 Let G1(Λ1
θ, {f1

θ,τ}τ≥t0 , C) and G2(Λ2, {f2
τ }τ≥t0 , C) be two independent image

detection processes such that G2 is independent of θ, θ ∈ Θ. Let G be the superposition of G1
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and G2. Assume that

A1. for θ = (θl, θa, θΛ) ∈ Θ and τ ≥ t0, ∂f1
θ,τ (r)/∂θΛ = 0, r ∈ C, ∂Λ1

θ(τ)/∂θl = 0, ∂Λ1
θ(τ)/∂θa

= 0.

Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t] is

given by

I(θ) =









Il,l(θ) Il,a(θ) Il,Λ(θ)

IT
l,a(θ) Ia,a(θ) Ia,Λ(θ)

IT
l,Λ(θ) IT

a,Λ(θ) IΛ,Λ(θ)









, (3.1)

where, for θ ∈ Θ,

Iα,β(θ) :=

∫ t

t0

∫

C

[Λ1
θ(τ)]2

Λ1
θ(τ)f1

θ,τ (r) + Λ2(τ)f2
τ (r)

(

∂f1
θ,τ (r)

∂θα

)T (
∂f1

θ,τ (r)

∂θβ

)

drdτ, α, β ∈ {l, a},

(3.2)

Iα,Λ(θ) :=

∫ t

t0

∫

C

Λ1
θ(τ)f1

θ,τ (r)

Λ1
θ(τ)f1

θ,τ (r) + Λ2(τ)f2
τ (r)

(

∂f1
θ,τ (r)

∂θα

)T (
∂Λ1

θ(τ)

∂θΛ

)

drdτ, α ∈ {l, a}, (3.3)

IΛ,Λ(θ) :=

∫ t

t0

∫

C

(f1
θ,τ (r))

2

Λ1
θ(τ)f1

θ,τ (r) + Λ2(τ)f2
τ (r)

(
∂Λθ(τ)

∂θΛ

)T (∂Λ1
θ(τ)

∂θΛ

)

drdτ. (3.4)

Proof: By Theorem 2.2.2, for the image detection process G(Λθ, {fθ,τ}τ≥t0 , C), Λθ(τ) :=

Λ1
θ(τ) + Λ2(τ) and fθ,τ (r) := ε1θ(τ)f1

θ,τ (r) +ε2θ(τ)f2
τ (r) for r ∈ C, θ ∈ Θ, τ ≥ t0, where ε1θ(τ) :=

Λ1
θ(τ)/(Λ1

θ(τ) + Λ2(τ)) and ε2θ(τ) := Λ2(τ)/(Λ1
θ(τ) + Λ2(τ)), τ ≥ t0, θ ∈ Θ. Thus we have

Λθ(τ)fθ,τ (r) = (Λ1
θ(τ) + Λ2(τ)) (ε1θ(τ)f1

θ,τ (r) + ε2θ(τ)f2
τ (r)) = Λ1

θ(τ)f1
θ,τ (r) + Λ2(τ)f2

τ (r), r ∈ C,

θ ∈ Θ, τ ≥ t0. Substituting this in Theorem 2.2.1, using condition A1 and the fact that Λ2

and f2
τ are independent of θ, we get

I(θ) =

∫

C

∫ t

t0

1

Λθ(τ)fθ,τ (r)

(
∂[Λθ(τ)fθ,τ (r)]

∂θ

)T (∂[Λθ(τ)fθ,τ (r)]

∂θ

)

drdτ

=

∫ t

t0

∫

C

1

Λ1
θ(τ)f1

θ,τ (r) + Λ2(τ)f2
τ (r)











Λ1
θ(τ)

(
∂f1

θ,τ (r)

∂θl

)T

Λ1
θ(τ)

(
∂f1

θ,τ (r)

∂θa

)T

f1
θ,τ (r)

(
∂Λ1

θ(τ)
∂θΛ

)T











×

[

Λ1
θ(τ)

∂f1
θ,τ (r)

∂θl
Λ1

θ(τ)
∂f1

θ,τ (r)

∂θa
f1

θ,τ (r)
∂Λ1

θ(τ)
∂θΛ

]

drdτ, θ ∈ Θ.
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From the above equation the result immediately follows. •

In many practical situations it is important to know whether the Fisher information

matrix I(θ) is diagonal, as the diagonality of I(θ) has several implications. For example, it is well

known that under certain conditions the maximum likelihood estimator of a vector parameter θ

is asymptotically Gaussian distributed with asymptotic mean θ and covariance I−1(θ) (see e.g.,

[55]). Here, if I(θ) is diagonal, this implies that the components of the maximum likelihood

estimate of θ are asymptotically independent. Note that if an efficient estimator of θ exists

(i.e., an unbiased estimator whose covariance matrix is equal to I−1(θ), θ ∈ Θ), then a diagonal

I(θ) ensures that the estimates of θ are uncorrelated.

In general, for θ = (θ1, . . . , θn) ∈ Θ, if I(θ) is diagonal, then this implies that the limit

of the accuracy of the unbiased estimates of θi, i = 1, . . . , n, does not depend on the other

unknown parameters in θ. For an unbiased estimator of the object location, this means that

the limit of the localization accuracy of the x coordinate of the location is the same whether or

not the y and z coordinates of the location are known.

We next investigate the conditions under which the Fisher information matrix given in

Theorem 3.2.1 is block diagonal. As will be shown, for the parameter vector θ = (θl, θa, θΛ), it

turns out that I(θ) is block diagonal when the detector C and the photon distribution profiles

f1
θ,τ and f2

τ satisfy certain symmetry conditions. Furthermore, for some special cases of θ,

I(θ) becomes fully diagonal (see Corollary 3.3.1). We next define a symmetric detector and a

symmetric function.

Definition 3.2.1 1. A detector C is said to be symmetric if there exists a point (cx, cy) ∈ R
2,

known as the center of C, such that for every (x, y) ∈ C, (2cx − x, y) ∈ C, (x, 2cy − y) ∈ C and

(2cx − x, 2cy − y) ∈ C.

2. Let C be a symmetric detector with center (cx, cy). A function f : C → R is said to be

symmetric (antisymmetric) along the x axis with respect to cx if for every (x, y) ∈ C,

f(x, y) = f(2cx − x, y) (f(x, y) = −f(2cx − x, y)). If f is symmetric along both the x and y
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axes with respect to cx and cy respectively, then f is said to be symmetric with respect to

the center of C.

In the following theorem we assume the location component θl to be θl = (θ1, θ2). Further,

we assume that (∂f1
θ,τ (r)/∂θ1) = −ϑx(∂f1

θ,τ (r)/∂x) and (∂f1
θ,τ (r)/∂θ2) = −ϑy (∂f1

θ,τ (r)/∂y),

r = (x, y) ∈ C, θ ∈ Θ, τ ≥ t0, where ϑx and ϑy are constants that are independent of

(x, y) ∈ C. This assumption is satisfied if the photon distribution profile f1
θ,τ is a function of

(x/ϑx − θ1, y/ϑy − θ2), where (x, y) ∈ C (see Section 3.3).

Theorem 3.2.2 Let G1(Λ1
θ, {f1

θ,τ}τ≥t0 , C), G2(Λ2, {f2
τ }τ≥t0 , C) and G be image detection pro-

cesses as given in Theorem 3.2.1. Assume that

A1. for θ = (θl, θa, θΛ) ∈ Θ, θl = (θ1, θ2), θa = (θ3, . . . , θk) and θΛ = (θk+1, . . . , θn),

∂f1
θ,τ (r)/∂θΛ = 0, r ∈ C, τ ≥ t0, ∂Λ1

θ(τ)/∂θl = 0, τ ≥ t0 and ∂Λ1
θ(τ)/∂θa = 0, τ ≥ t0,

A2. ∂f1
θ,τ (r)/∂θ1 = −ϑx(∂f1

θ,τ (r)/∂x), ∂f1
θ,τ (r)/∂θ2 = −ϑy(∂f1

θ,τ (r)/∂y), r = (x, y) ∈ C,

θ ∈ Θ, τ ≥ t0, where ϑx and ϑy are constants that are independent of x and y,

A3. the detector C is symmetric, and

A4. f1
θ,τ and f2

τ are symmetric with respect to the center of the detector C for θ ∈ Θ and τ ≥ t0.

1. Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t]

is given by

I(θ) =









Il,l(θ) Il,a(θ) 0

IT
l,a(θ) Ia,a(θ) Ia,Λ(θ)

0 IT
a,Λ(θ) IΛ,Λ(θ)









,

where for θ ∈ Θ, Il,a(θ) and Ia,a(θ) are given by eq. 3.2, Ia,Λ(θ) is given by eq. 3.3, IΛ,Λ(θ) is

given by eq. 3.4 and

Il,l(θ) :=

2

6

6

4

ϑ2
x

R t

t0

R

C

[Λ1
θ(τ)]2

Λ1
θ
(τ)f1

θ,τ
(r)+Λ2(τ)f2

τ (r)

„

∂f1
θ,τ (r)

∂x

«2

drdτ 0

0 ϑ2
y

R t

t0

R

C

[Λ1
θ(τ)]2

Λ1
θ
(τ)f1

θ,τ
(r)+Λ2(τ)f2

τ (r)

„

∂f1
θ,τ (r)

∂y

«2

drdτ

3

7

7

5

. (3.5)

2. In addition to conditions A1 - A4, assume that

A5. all the elements of the vector ∂f1
θ,τ (r)/∂θa, r ∈ C, are symmetric with respect to the center

of the detector C for θ ∈ Θ and τ ≥ t0.
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Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t] is

given by

I(θ) =









Il,l(θ) 0 0

0 Ia,a(θ) Ia,Λ(θ)

0 IT
a,Λ(θ) IΛ,Λ(θ)









,

where all the non-zero entries of I(θ) are given in result 1.

3. In addition to conditions A1 - A5, assume that

A6. the photon detection rate of G2 is zero, i.e., Λ2(τ) = 0, τ ≥ t0.

Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t] is

given by

I(θ) =









Il,l(θ) 0 0

0 Ia,a(θ) 0

0 0 IΛ,Λ(θ)









, (3.6)

where for θ ∈ Θ,

Il,l(θ) :=







ϑ2
x

∫ t
t0

∫

C
Λ1

θ(τ)

f1
θ,τ

(r)

(
∂f1

θ,τ (r)

∂x

)2

drdτ 0

0 ϑ2
y

∫ t
t0

∫

C
Λ1

θ(τ)

f1
θ,τ

(r)

(
∂f1

θ,τ (r)

∂y

)2

drdτ







, (3.7)

Ia,a(θ) =

∫ t

t0

∫

C

Λ1
θ(τ)

f1
θ,τ (r)

(

∂f1
θ,τ (r)

∂θa

)T
∂f1

θ,τ (r)

∂θa
drdτ, (3.8)

IΛ,Λ(θ) =

∫ t

t0

1

Λ1
θ(τ)

(
∂Λ1

θ(τ)

∂θΛ

)T
∂Λ1

θ(τ)

∂θΛ
dτ. (3.9)

Proof: 1. Using condition A1 and the fact that Λ2 and f2
τ are independent of θ, we can show

that the general expression for the Fisher information matrix is given by Theorem 3.2.1 (see eq.

3.1). Consider the matrix Il,l(θ) that is given by eq. 3.2. Using condition A2 we immediately

obtain the integral expressions of [Il,l(θ)]11 and [Il,l(θ)]22 that are given in eq. 3.5. To obtain

the desired result, we need to show that the off-diagonal terms of Il,l(θ) (i.e., [Il,l(θ)]12 and

[Il,l(θ)]21) and all the terms of Il,Λ(θ) (i.e., [Il,Λ(θ)]ij , i = 1, 2, j = k + 1, . . . , n) are zero.
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Let (cx, cy) denote the center of the detector C and define TX : C → R
2, (x, y) 7→

(2cx −x, y). By condition A4, f1
θ,τ (x, y) = (f1

θ,τ ◦TX)(x, y), (x, y) ∈ C, θ ∈ Θ and τ ≥ t0. Using

the chain rule of differentiation we get

∂f1
θ,τ (x, y)

∂x
=

∂[(f1
θ,τ ◦ TX)(x, y)]

∂x
=

∂f1
θ,τ (2cx − x, y)

∂x

∂(2cx − x)

∂x
= −

(

∂f1
θ,τ

∂x
◦ TX

)

(x, y),

(3.10)

where (x, y) ∈ C, θ ∈ Θ and τ ≥ t0. Similarly, by using condition A4 we can show that for

θ ∈ Θ and τ ≥ t0,

∂f1
θ,τ (x, y)

∂y
=

∂[(f1
θ,τ ◦ TX)(x, y)]

∂y
=

(

∂f1
θ,τ

∂y
◦ TX

)

(x, y), (x, y) ∈ C, (3.11)

Λ1
θ(τ)f1

θ,τ (x, y) + Λ2(τ)f2
τ (x, y) =

(
(Λ1

θ(τ)f1
θ,τ + Λ2(τ)f2

τ ) ◦ TX

)
(x, y), (x, y) ∈ C. (3.12)

Consider the term [I(θ)]12 that is given by eq. 3.2. Hence using this result, condition A2

and eqs. 3.10 - 3.12, we get for θ ∈ Θ,

[Il,l(θ)]12 =

∫ t

t0

∫

C

[Λ1
θ(τ)]2

Λ1
θ(τ)f1

θ,τ (r) + Λ2(τ)f2
τ (r)

∂fθ,τ (r)

∂θ1

∂fθ,τ (r)

∂θ2
drdτ

= ϑxϑy

∫ t

t0

∫

C

[Λ1
θ(τ)]2

Λ1
θ(τ)f1

θ,τ (x, y) + Λ2(τ)f2
τ (x, y)

∂f1
θ,τ (x, y)

∂x

∂f1
θ,τ (x, y)

∂y
dxdydτ

= −ϑxϑy

∫ t

t0

∫

C

((

[Λ1
θ(τ)]2

Λ1
θ(τ)f1

θ,τ + Λ2(τ)f2
τ

∂f1
θ,τ

∂x

∂f1
θ,τ

∂y

)

◦ TX

)

(x, y)dxdydτ

= −ϑxϑy

∫ t

t0

∫

C

[Λ1
θ(τ)]2

Λ1
θ(τ)f1

θ,τ (x, y) + Λ2(τ)f2
τ (x, y)

∂f1
θ,τ (x, y)

∂x

∂f1
θ,τ (x, y)

∂y
dxdydτ = −[Il,l(θ)]12,

(3.13)

where we have used the Theorem on change of variables (see [65, pg 153-155]) in the final

step. Similarly we can show that [Il,l(θ)]21 = −[Il,l(θ)]21, θ ∈ Θ. Thus we have [Il,l(θ)]12 =

[Il,l(θ)]21 = 0, θ ∈ Θ.

If TY : C → R
2, (x, y) 7→ (x, 2cy − y), then similar to eqs. 3.10 and 3.12, we can show

that for θ ∈ Θ and τ ≥ t0,

∂f1
θ,τ (x, y)

∂y
=

∂[(f1
θ,τ ◦ TY )(x, y)]

∂y
= −

(

∂f1
θ,τ

∂y
◦ TY

)

(x, y), (x, y) ∈ C, τ ≥ t0, θ ∈ Θ, (3.14)
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Λ1
θ(τ)f1

θ,τ (x, y) + Λ2(τ)f2
τ (x, y) =

(
(Λ1

θ(τ)f1
θ,τ + Λ2(τ)f2

τ ) ◦ TY

)
(x, y), (x, y) ∈ C. (3.15)

Hence by using eqs. 3.10, 3.12, 3.14 and 3.15 and condition A2, we can show that [Il,Λ(θ)]ij =

−[Il,Λ(θ)]ij , for i = 1, 2, j = k + 1, . . . , n and θ ∈ Θ. Hence Il,Λ(θ) = 0, θ ∈ Θ. From this the

result follows.

2. By condition A5, for ζ ∈ {X, Y }, ∂f1
θ,τ (x, y)/∂θa = ∂[(f1

θ,τ ◦ Tζ)(x, y)]/∂θa =
(

(∂f1
θ,τ/∂θa)

◦Tζ) (x, y), (x, y) ∈ C, θ ∈ Θ and τ ≥ t0, where TX and TY are defined above. Hence using this

result, eqs. 3.10 - 3.12, eqs. 3.14 - 3.15, condition A2 and by taking an approach similar to

that of eq. 3.13, we can show that [Il,a(θ)]ij = −[Il,a(θ)]ij , i = 1, 2, j = 3, . . . , k, θ ∈ Θ. From

this it follows that Il,a(θ) = 0, θ ∈ Θ. Substituting this in result 1 of this Theorem the result

follows immediately.

3. Substituting for Λ2 in eq. 3.5 we immediately obtain the expression for Il,l(θ) that is given

by eq. 3.7. Consider the term Ia,Λ(θ) that is given by eq. 3.3 (see Theorem 3.2.1). Since f1
θ,τ

is a density function that satisfies conditions C3 - C5 of Definition 2.2.1,
∫

C(∂f1
θ,τ (r)/∂θ) = 0,

θ ∈ Θ and τ ≥ t0 ([55, pg 182-183]). Using this result and substituting for Λ2, we get

Ia,Λ(θ) =

∫ t

t0

(
∫

C

∂f1
θ,τ (r)

∂θa

)T

dr
∂Λθ(τ)

∂θΛ
dτ = 0, θ ∈ Θ.

Finally, consider the term IΛ,Λ(θ) that is given by eq. 3.4. Substituting for Λ2 and using the

fact that
∫

C f1
θ,τ (r)dr = 1, τ ≥ t0, θ ∈ Θ, we obtain the desired expression that is given in eq.

3.9. •

Remark 3.2.1 Note that when condition A6 is satisfied, the photon detection rate and the

photon distribution profile of G are equal to that of G1. In this case, the condition that (see

condition A4) f2
τ is symmetric with respect to the center of the detector is no longer required.

From the above theorem we see that the number of symmetry conditions imposed on

the partial derivatives of f1
θ,τ (i.e., ∂f1

θ,τ (r)/∂θl and ∂f1
θ,τ (r)/∂θa) determines the number of

off-diagonal terms that are zero in the Fisher information matrix I(θ). Note that the photon

detection rate Λ2 also plays a crucial role in making I(θ) block diagonal. Consider a special

case, where the parameter vector θ = (θl, θΛ) only consists of the location θl and the rate θΛ
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components. In this case the Fisher information matrix given in result 1 of the above theorem

is block diagonal, even when the photon detection rate Λ2(τ) 6= 0, τ ≥ t0. Finally, we note that

in result 3 of the above theorem if the auxiliary component θa and the rate component θΛ are

scalars, then I(θ) is diagonal.

3.3 Image function

In the previous sections we made no assumptions about the specific functional form of

the photon distribution profile. In an optical microscope, the image of an object can often

be considered to be invariant with respect to shifts in the object location ([66]). Hence the

photon distribution profile f1
θ,τ can be expressed as a scaled and shifted version of the image

of the object. For example, in the case of a moving object, f1
θ,τ can be written as f1

θ,τ (x, y) =

1
M2 qθe(

x
M − x0,τ ,

y
M − y0,τ ), (x, y) ∈ R

2, θ ∈ Θ, τ ≥ t0, where qθe denotes an image function,

M > 0 denotes the lateral magnification and (x0,τ , y0,τ ) denotes the time dependent x − y

location of the object. An image function qθe describes the image of a fixed object on the

detector plane at unit lateral magnification when the object is located along the z axis in the

object space. Here, θe is a vector that parameterizes the image function. For example, θe

could be the z position of the object and/or the angles that specify the 3D orientation of the

object. In some applications the θe parameterization is not required and in such cases the image

function is denoted as q. Since f1
θ,τ is a probability density function that satisfies conditions

C3 - C5 of Definition 2.2.1, to express f1
θ,τ in terms of qθe we impose appropriate conditions

on the image function that are given below.

Definition 3.3.1 Let Θe ⊆ R
m be a parameter space. For θe = (θe,1, . . . , θe,m) ∈ Θe, we define

qθe : R
2 → [0,∞) to be an image function if the following properties are satisfied.

1.
∫

R
2 qθe(x, y)dxdy = 1,

2.
∂qθe (x,y)

∂x ,
∂qθe (x,y)

∂y and
∂qθe (x,y)

∂θe,i
exist for every (x, y) ∈ R

2,

3.
∫

R
2

∣
∣
∣
∂qθe (x,y)

∂x

∣
∣
∣ dxdy < ∞,

∫

R
2

∣
∣
∣
∂qθe (x,y)

∂y

∣
∣
∣ dxdy < ∞ and

∫

R
2

∣
∣
∣
∂qθe (x,y)

∂θe,i

∣
∣
∣ dxdy < ∞, and

4.
∫

R
2

1
qθe (x,y)

∂qθe (x,y)
∂ζk

∂qθe (x,y)
∂ζl

dxdy,
∫

R
2

1
qθe (x,y)

∂qθe (x,y)
∂ζk

∂qθe (x,y)
∂θe,i

dxdy and
∫

R
2

1
qθe (x,y)

∂qθe (x,y)
∂θe,i

∂qθe (x,y)
∂θe,j
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dxdy exist and are finite, where ζ1 = x, ζ2 = y, k, l = 1, 2 and i, j = 1, . . . , m.

The image function qθe and its derivative (∂qθe/∂θe,i) are said to be symmetric if, for θe ∈ Θe,

qθe(x, y) = qθe(−x, y) = qθe(x,−y) and
∂qθe (x,y)

∂θe,i
=

∂qθe (−x,y)
∂θe,i

=
∂qθe (x,−y)

∂θe,i
, respectively, for

(x, y) ∈ R
2.

In several applications the image of the object can be considered to be invariant with

respect to time, for example, when the object is not moving during the acquisition of its image.

In such cases, the expression for the photon distribution profile will be independent of time. In

the following Corollary we derive a general expression for the Fisher information matrix for such

applications. Here, the parameter vector is set to be θ = (θl, θa, θΛ) ∈ Θ, where θl = (x0, y0)

denotes the x−y location of the object and θΛ = Λ0 is a scalar parameter that characterizes the

photon detection rate Λ1
θ. We assume that the photon distribution profile f1

θ,τ is given in terms

of a symmetric image function. We also assume the detector to be infinite, i.e., C = R
2. An

infinite detector provides the best case scenario, where all the photons that reach the detector

plane are detected by the detector. Hence the square root of the inverse Fisher information

matrix for an infinite detector provides the fundamental limit to the accuracy with which the

components of the parameter vector θ can be determined. We then consider a special case,

where θl and θΛ are as given above and the auxiliary component θa = ε0 is a scalar. For

this special case we show that the Fisher information matrix is diagonal. Finally, we assume

the photon distribution profile f1
θ,τ to be independent of θa and the parameter vector to be

θ = (θl, θΛ) with θl and θΛ as given above.

Corollary 3.3.1 Let Θ ⊆ R
n be a parameter space. Let G1(Λ1

θ, {f1
θ,τ}τ≥t0 , R

2) and G2(Λ2,

{f2
τ }τ≥t0 , R

2) be two independent image detection processes such that G2 is independent of θ.

Let G be the superposition of G1 and G2. For θ = (θl, θa, θΛ) ∈ Θ, let θl = (x0, y0) and θΛ = Λ0,

where x0, y0 and Λ0 are scalar parameters. Assume that for θ ∈ Θ,

A1. ∂Λ1
θ(τ)/∂θl = 0, ∂Λ1

θ(τ)/∂θa = 0 and Λ2(τ) = 0 for τ ≥ t0,
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A2. there exists a symmetric image function qθa such that for M > 0, the photon distribution

profile f1
θ,τ is given by

f1
θ,τ (x, y) =

1

M2
qθa

( x

M
− x0,

y

M
− y0

)

, (x, y) ∈ R
2, τ ≥ t0,

A3. all the elements of the vector (∂qθa(x, y)/∂θa) are symmetric, (x, y) ∈ R
2.

1. Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t]

is given by

I(θ) =









Il,l(θ) 0 0

0 Ia,a(θ) 0

0 0 IΛ,Λ(θ)









,

where for θ ∈ Θ,

Il,l(θ) =






∫ t
t0

Λ1
θ(τ)dτ

∫

R
2

1
qθa (x,y)

(
∂qθa (x,y)

∂x

)2
dxdy 0

0
∫ t
t0

Λ1
θ(τ)dτ

∫

R
2

1
qθa (x,y)

(
∂qθa (x,y)

∂y

)2
dxdy




 ,

Ia,a(θ) =

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

qθa(x, y)

(
∂qθa(x, y)

∂θa

)T ∂qθa(x, y)

∂θa
dxdy, θ ∈ Θ,

IΛ,Λ(θ) =

∫ t

t0

1

Λ1
θ(τ)

(
∂Λ1

θ(τ)

∂Λ0

)2

dτ, θ ∈ Θ.

2. If θa = ε0 is scalar, then for θ = (x0, y0, ε0, Λ0) ∈ Θ the Fisher information matrix of G
corresponding to the time interval [t0, t] is given by

I(θ) =

2

6

6

6

6

6

6

6

6

6

6

6

4

R

t
t0

Λ1
θ(τ)dτ

R

R
2

1
qε0

(x,y)

„

∂qε0
(x,y)

∂x

«2
dxdy 0 0 0

0
R

t
t0

Λ1
θ(τ)dτ

R

R
2

1
qε0

(x,y)

„

∂qε0
(x,y)

∂y

«2
dxdy 0 0

0 0
R

t
t0

Λ1
θ(τ)dτ

R

R
2

1
qε0

(x,y)

„

∂qε0
(x,y)

∂ε0

«2
dxdy 0

0 0 0
R

t
t0

1
Λ1

θ
(τ)

 

∂Λ1
θ
(τ)

∂Λ0

!2

dτ

3

7

7

7

7

7

7

7

7

7

7

7

5

.

(3.16)

3. If θ = (x0, y0, Λ0) ∈ Θ, then the Fisher information matrix of G corresponding to the time

interval [t0, t] is given by

I(θ) =

2

6

6

6

6

4

R t

t0
Λ1

θ(τ)dτ
R

R
2

1
q(x,y)

“

∂q(x,y)
∂x

”2

dxdy 0 0

0
R t

t0
Λ1

θ(τ)dτ
R

R
2

1
q(x,y)

“

∂q(x,y)
∂y

”2

dxdy 0

0 0
R t

t0

1
Λ1

θ
(τ)

“

∂Λ1
θ(τ)

∂Λ0

”2

dτ

3

7

7

7

7

5

. (3.17)
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Proof: 1. Let M > 0. By conditions A1 and A2, ∂f1
θ,τ (r)/∂θΛ = 0, ∂Λ1

θ(τ)/∂θl = 0 and

∂Λ1
θ(τ)/∂θa = 0 for r ∈ R

2, θ ∈ Θ and τ ≥ t0. Further, from condition A2 we can verify that

∂f1
θ,τ (r)/∂x0 = −M(∂f1

θ,τ (r)/∂x) and ∂f1
θ,τ (r)/∂y0 = −M(∂f1

θ,τ (r)/∂y) for r = (x, y) ∈ R
2,

θ ∈ Θ and τ ≥ t0. Since (Mx0, My0) ∈ R
2, for every (x, y) ∈ R

2, (2Mx0−x, y) ∈ R
2, (x, 2My0−

y) ∈ R
2 and (2Mx0 − x, 2My0 − y) ∈ R

2. Hence R
2 is symmetric with respect to the point

(Mx0, My0) (see Definition 3.2.1). From conditions A2 - A3 we can easily verify that f1
θ,τ (x, y)

and all the elements of the vector ∂f1
θ,τ (x, y)/∂θa = (1/M2)(∂qθa (x/M − x0, y/M − y0)/∂θa)

are symmetric with respect to the point (Mx0, My0), where (x, y) ∈ R
2, θ ∈ Θ and τ ≥ t0.

Finally we note that by condition A1, Λ2(τ) = 0, τ ≥ t0.

Thus from the above and from Remark 3.2.1, we see that the photon distribution profile

and the photon detection rate of G1 and G2 satisfy all of the conditions of result 3 of Theorem

3.2.2. Hence for the present case, the Fisher information matrix I(θ) is block diagonal (see eq.

3.6).

From eq. 3.7 we see that Il,l(θ) is diagonal and we evaluate its diagonal terms [Il,l(θ)]11

and [Il,l(θ)]22. Substituting for Λ1
θ and f1

θ,τ in the integral expression of [Il,l(θ)]11, we get

[Il,l(θ)]11 = M2

∫ t

t0

∫

R
2

Λ1
θ(τ)

f1
θ,τ (r)

(

∂f1
θ,τ (r)

∂x

)2

drdτ

= M2

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1
1

M2 qθa

(
x
M − x0,

y
M − y0

)

(

1

M2

∂qθa

(
x
M − x0,

y
M − y0

)

∂x

)2

dxdy

=

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

Λ1
θ(τ)

qθa(u, v)

(
∂qθa(u, v)

∂u

1

M

)2

(Mdu)(Mdv)

=

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

qθa(x, y)

(
∂qθa(x, y)

∂x

)2

dxdy, θ ∈ Θ,

where in the pen-ultimate step u := x
M − x0 and v := y

M − y0. Similarly, we can show that

[Il,l(θ)]22 =

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

qθa(x, y)

(
∂qθa(x, y)

∂y

)2

dxdy,

Ia,a(θ) =

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

f1
θ,τ (r)

(

∂f1
θ,τ (r)

∂θa

)T
∂f1

θ,τ (r)

∂θa
dr
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=

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

qθa(x, y)

(
∂qθa(x, y)

∂θa

)T ∂qθa(x, y)

∂θa
dxdy,

IΛ,Λ(θ) =

∫ t

t0

1

Λ1
θ(τ)

(
∂Λ1

θ(τ)

∂θΛ

)T
∂Λ1

θ(τ)

∂θΛ
dτ =

∫ t

t0

1

Λ1
θ(τ)

(
∂Λ1

θ(τ)

∂Λ0

)2

dτ,

where θ ∈ Θ, and Ia,a(θ) and IΛ,Λ(θ) are given by eqs. 3.8 and 3.9 respectively. From this the

result follows.

2. If θa = ε0 is scalar, then for θ ∈ Θ,

Ia,a(θ) =

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

qθa(x, y)

(
∂qθa(x, y)

∂θa

)T ∂qθa(x, y)

∂θa
dxdy

=

∫ t

t0

Λ1
θ(τ)dτ

∫

R
2

1

qε0(x, y)

(
∂qε0(x, y)

∂ε0

)2

dxdy.

Substituting this in result 1 of this Corollary we obtain the desired result.

3. The result immediately follows from result 2 of this Corollary. •

From the above Corollary we see that the Fisher information matrix I(θ) is independent

of (x0, y0) and only depends on the image function and its partial derivatives. Moreover, I(θ)

is diagonal when θ = (x0, y0, ε0, Λ0) and θ = (x0, y0, Λ0). Note that if ε0 = z0 denotes the z

coordinate of the object location, then I(θ) that is given in result 2 of the above Corollary can

be used to calculate the three dimensional fundamental limit of the localization accuracy of the

object. In [51], we recently reported integral expressions for I(θ) that are analogous to eqs. 3.16

and 3.17, where the parameter vector was set to be θ = (x0, y0), Λ0 was assumed to be known

and I(θ) was a 2 × 2 diagonal matrix. We note that eqs. 3.16 and 3.17 are generalizations

of our earlier result and show that the diagonality of I(θ) is preserved even when additional

parameters such as ε0 and Λ0 are assumed to be unknown.

3.3.1 Examples

We now illustrate the results derived in this section by considering specific image functions

that describe the image of a fixed point source. According to optical diffraction theory, when a

point source is in focus with respect to the detector, the intensity distribution of the image of
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the point source is described by the Airy profile ([56, pg 440]). The 2D Gaussian profile, on the

other hand, has been widely used to approximate the Airy profile, for example, in the analysis

of data from single molecule fluorescence experiments ([28, 26, 67]). In the following Corollary,

the parameter vector is set to be θ = (x0, y0, Λ0) ∈ Θ and the photon distribution profile f1
θ,τ

is assumed to be given in terms of an image function q. The photon detection rate is assumed

to be a constant, i.e., Λ1
θ(τ) = Λ0, τ ≥ t0. For each image function, we derive a simple formula

for the fundamental limit of the localization accuracy
√

[I−1(θ)]11 (
√

[I−1(θ)]22) of x0 (y0) and

for the fundamental limit of the accuracy
√

[I−1(θ)]33 of Λ0. We note that the following results

are extensions of the results reported in [51].

Corollary 3.3.2 Let Θ ⊆ R
3 be a parameter space. Let G1, G2 and G be image detection

processes that are given in Corollary 3.3.1. For θ = (x0, y0, Λ0) ∈ Θ and τ ≥ t0, let Λ2(τ) = 0,

Λ1
θ(τ) = Λ0 and for M > 0, assume that there exist a symmetric image function q such that

f1
θ,τ (x, y) = (1/M2)q(x/M − x0, y/M − y0), (x, y) ∈ R

2.

1. Airy profile: If, for na, λ > 0, q is given by

q(x, y) =
J2

1 (2πna

λ

√

x2 + y2)

π(x2 + y2)
, (x, y) ∈ R

2, (3.18)

then for θ = (x0, y0, Λ0) ∈ Θ the Fisher information matrix of G corresponding to the time

interval [t0, t] is given by

I(θ) =









(2πna)2Λ0(t−t0)
λ2 0 0

0 (2πna)2Λ0(t−t0)
λ2 0

0 0 t−t0
Λ0









.

Further, the fundamental limit of the localization accuracy δ2d
x0

(δ2d
y0

) of x0 (y0) and the funda-

mental limit of the accuracy δ2d
Λ0

of Λ0 are given by

δ2d
x0

= δ2d
y0

=
λ

2πna

√

Λ0(t − t0)
, δ2d

Λ0
=

√

Λ0

(t − t0)
. (3.19)

2. 2D Gaussian profile: If, for σ > 0, q is given by

q(x, y) :=
1

2πσ2
exp

(

−x2 + y2

2σ2

)

, (x, y) ∈ R
2, (3.20)
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then for θ = (x0, y0, Λ0) ∈ Θ the Fisher information matrix of G corresponding to the time

interval [t0, t] is given by

I(θ) =









Λ0(t−t0)
σ2 0 0

0 Λ0(t−t0)
σ2 0

0 0 t−t0
Λ0









.

Further, the fundamental limit of the localization accuracy δgau
x0 (δgau

y0 ) of x0 (y0) and the fun-

damental limit of the accuracy δgau
Λ0

of Λ0 are given by

δgau
x0

= δgau
y0

=
σ

√

Λ0(t − t0)
, δgau

Λ0
=

√

Λ0

(t − t0)
. (3.21)

Proof: 1. It can be verified that the Airy profile is a symmetric image function. By definition,

for θ = (x0, y0, Λ0) ∈ Θ and τ ≥ t0, Λ2(τ) = 0, ∂Λ1
θ(τ)/∂x0 = ∂Λ1

θ(τ)/∂y0 = 0, ∂f1
θ,τ (r)/∂Λ0 =

0, r ∈ R
2, and f1

θ,τ is expressed as a shifted and scaled version of q. Hence for the present

case result 3 of Corollary 3.3.1 holds and the Fisher information matrix I(θ) is diagonal (see

eq. 3.17). Using eq. 3.17 we can easily show that [I(θ)]33 = (t − t0)/Λ0. Let α := 2πna/λ.

Using the identity (∂/∂x) [x−nJn(x)] = −x−nJn+1(x), x ∈ R (see [68, pg 18]) with n = 1, we

can show that

∂

∂ζ

J2
1 (α
√

x2 + y2)

x2 + y2
= −2ζα

J1(α
√

x2 + y2)
√

x2 + y2

J2(α
√

x2 + y2)

x2 + y2
, (x, y) ∈ R

2, ζ ∈ {x, y}. (3.22)

Hence by using this result and the integral identity
∫∞
0 (J2

n(t)/t)dt = 1/(2n) ([68, pg 405]) with

n = 2, we can show that [I(θ)]11 = [I(θ)]22 = (2πna)
2Λ0(t − t0)/λ2 (see also [51]).

2. We can easily verify that the 2D Gaussian profile is a symmetric image function. Further,

we can show that for the present situation the Fisher information matrix is diagonal and is

given by eq. 3.17 (see proof of result 1). Substituting for Λ1
θ and q in eq. 3.17 we get [I(θ)]33

= (t − t0)/Λ0, and it can be shown that [I(θ)]11 = [I(θ)]22 = Λ0(t − t0)/σ2 (see [51]).

In both cases, the fundamental limit of the localization accuracy of x0 (y0) and the

fundamental limit of the accuracy of Λ0 are obtained by inverting the Fisher information matrix

and taking the square root of the corresponding leading diagonal elements. •



56

The Airy profile depends on the term α that is given by α = 2πna/λ, where na denotes

the numerical aperture of the objective lens and λ denotes the wavelength of the detected

photons. For a given experimental configuration, the numerical values of na and λ are known

and hence α is known. On the other hand, the 2D Gaussian profile depends on the term σ that

needs to be empirically determined from calibration experiments (see [28, 26]).

We use the term fundamental here to describe the fact that the model which underlies

this expression does not take into account any deteriorating effects in the acquisition system

such as pixelation of the detector and the various noise sources that typically occur in experi-

mental settings. This expression only takes into consideration the basic optical and stochastic

phenomena that are inherent in any single molecule experiment.

The result given in eq. 3.18 provides a simple analytical expression that quantitatively

exhibits the dependence of the limit of the localization accuracy on the optical properties of

the microscope and the photophysical properties of the single molecule. The fundamental limit

exhibits an inverse square root dependence on the expected number of detected photons, which

is in agreement with previously published results, see e.g. [27, 28]. The result, in particular,

implies that to improve the limit of the localization accuracy by a factor of two (i.e halve the

value of δ2d
x0

), we either need to double the numerical aperture of the objective lens, or increase

the photon detection rate by a factor of four, or halve the emission wavelength of the single

molecule. This means that the location of a single molecule emitting blue light can be more

accurately determined than one that is emitting red light, provided all other factors remain the

same. It should be noted that the fundamental limit is independent of the magnification M of

the optical system.

Eq. 3.18 provides a limit for the smallest possible value of the standard deviation of a

reasonable estimator of the location of a single molecule. It is therefore important to know

whether an estimator exists whose standard deviation comes close to this limit. It is well

known from large sample statistics that the variance of a large class of estimators asymptotically

approaches the inverse of the Fisher information matrix ([54, 55]). We therefore consider one
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such estimator, namely the maximum likelihood estimator (see Section 3.5 for details). Fig. 3.1

shows the standard deviations of the maximum likelihood estimates of the single molecule

location for two different acquisition methods, one when the acquisition time is fixed and the

other when the total number of detected photons is fixed. In both cases the standard deviation

of the maximum likelihood estimates approaches the fundamental limit as the expected (total)

number of detected photons increases.
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Figure 3.1. Fundamental limit to the localization accuracy of x0 for a GFP single molecule.
The figure shows the behavior of the fundamental limit to the localization accuracy of the
x0 coordinate of a single molecule with experimental parameters similar to those for a GFP
molecule as a function of the expected number of detected photons Λ0(t− t0). The x axis range
corresponds to an acquisition time range of t = 0.01 s to t = 1 s (with t0 = 0) when the photon
detection rate is Λ0 = 66000 photons/s. The figure also shows the standard deviation of the
maximum likelihood estimates of the single molecule position as a function of the expected
number Λ0(t − t0) of detected photons (+) and as a function of the total number of detected
photons (�). The standard deviations of both the estimates approach the fundamental limit as
the expected (total) number of detected photons increases. Note that the standard deviation
for the latter case is uniformly closer to the fundamental limit than for the former case.

It can be shown that the maximum likelihood estimator of the photon detection rate Λ0

is given by Λ̂0 := Ntot/(t − t0), where Ntot denotes the total number of detected photons and

t − t0 denotes the acquisition time (e.g., see [60, pg 74-75]), and the standard deviation of Λ̂0
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is given by
√

Λ0/(t − t0). From the above results, we see that for both the Airy profile and

the 2D Gaussian profile, the performance limit to determining the parameter Λ0 is given by
√

Λ0/(t − t0), which is equal to the standard deviation of Λ̂0. Thus for the above scenario, the

maximum likelihood estimator of the photon detection rate is an efficient estimator.

3.3.2 Upper and lower bounds to the performance limits

In Section 3.3.1 the integral expressions of the Fisher information matrix I(θ) for an

infinite detector reduced to simple formulae. However, in a practical situation the calculation of

I(θ) can become cumbersome, for example, due to the shape of the finite sized detector C. Hence

determining the limit of the accuracy
√

[I−1(θ)]ii for the components of θ can become difficult.

We next address this concern by deriving integral expressions for matrices Iu(θ) and Il(θ) that

provide an upper and lower bound to the Fisher information matrix I(θ), respectively, i.e.,

Iu(θ) ≥ I(θ) ≥ Il(θ). Note that if Il(θ) is invertible, then it can be shown that
√

[I−1
l (θ)]ii and

√

[I−1
u (θ)]ii provide an upper and lower bound to

√

[I−1(θ)]ii, respectively, i.e.,
√

[I−1
u (θ)]ii ≤

√

[I−1(θ)]ii ≤
√

[I−1
l (θ)]ii, i = 1, . . . , n. This is of particular relevance since in a number of

situations the upper and lower bounds are diagonal matrices whose diagonal entries can be

analytically calculated. We will show that this is the case for the 2D Gaussian profile and the

Airy profile if the ‘bounding detectors’ are circular with center at the center of the image profile.

The integral expression for Iu(θ) (Il(θ)) is derived in such a way that its integrand is identical

to that of I(θ) and its spatial integral is evaluated over a circular region Brc(u) (Brc(l)) known

as the upper (lower) circular bounding detector that is centered at a point rc ∈ C with radius

u (l). The circular bounding detectors are defined below.

Definition 3.3.2 Let C be a detector and rc = (rc,x, rc,y) ∈ C. For ρ > 0, let Brc(ρ) := {(x, y)

| (x − rc,x)2 + (y − rc,y)
2 < ρ2, (x, y) ∈ R

2} denote a circular region centered at rc with radius

ρ and let Brc(∞) := R
2. We define Brc(u) and Brc(l) to be the upper and lower circular

bounding detectors of C, respectively, if l = sup{ρ | Brc(ρ) ⊆ C} and u = inf{ρ | C ⊆ Brc(ρ)}.
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In Section 2.3, we discussed the relationship between an image detection process described

on a large, possibly infinite, detector and a more realistic smaller detector (see Proposition

2.3.1). In the derivation of the upper and lower bounds for the Fisher information matrix it

will be useful to have the notion of an ‘extended’ version of an image detection process. We

refer to any image detection process Ge as an extended version of G if G is the reduced version

of Ge.

Theorem 3.3.1 Let Θ ⊆ R
n be a parameter space and let G be an image detection process that

is defined over the detector C. Assume that Ge(Λe
θ, {fe

θ,τ}τ≥t0 , Ce) is an extended version of G.

For rc ∈ C, let Brc(l) and Brc(u) denote the circular bounding detectors of C. Let I(θ) be the

Fisher information matrix of G corresponding to the time interval [t0, t]. If C ⊆ Brc(u) ⊆ Ce,

then

1. Iu(θ) ≥ I(θ) ≥ Il(θ), θ ∈ Θ, (3.23)

where

Iβ(θ) :=

∫ t

t0

∫

Brc (β)

1

Λe
θ(τ)fe

θ,τ (r)

(

∂[Λe
θ(τ)fe

θ,τ (r)]

∂θ

)T (
∂[Λe

θ(τ)fe
θ,τ (r)]

∂θ

)

drdτ, β ∈ {u, l}.

(3.24)

2. Further, if Il(θ) is invertible, then

[I−1
u (θ)]ii ≤ [I−1(θ)]ii ≤ [I−1

l (θ)]ii, i = 1, . . . , n, θ ∈ Θ. (3.25)

Proof: 1. Since Ge is an extended extension of G, it follows that G is the reduced version of

Ge and the expression for the Fisher information matrix I(θ) of G corresponding to the time

interval [t0, t] is given by result 1 of Theorem 2.3.1. Note that Brc(β) is open and Brc(β) ⊆ Ce,

β ∈ {u, l}. Hence from Proposition 2.3.1 it follows that the detected photons on the circular

bounding detector Brc(u) (Brc(l)) can be modeled as an image detection process Grd
u (Grd

l ),

which is the reduced version of Ge corresponding to Brc(u) (Brc(l)). If the Fisher information

matrix of Grd
u (Grd

l ) corresponding to the time interval [t0, t] is denoted as Iu(θ) (Il(θ)), then

from result 1 of Theorem 2.3.1 we obtain the desired integral expression that is given by eq.
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3.24. Further, since Brc(l) ⊆ C ⊆ Brc(u), from result 3 of Theorem 2.3.1 it can be deduced that

Iu(θ) ≥ I(θ) ≥ Il(θ), θ ∈ Θ.

2. If Il(θ) is invertible for θ ∈ Θ, then by result 1 of this Theorem I(θ) and Iu(θ) are also

invertible. It then follows that I−1
u (θ) ≤ I−1(θ) ≤ I−1

l (θ) ([69, pg 169]) and from this the result

follows. •

The above result provides a general formula to calculate the upper and lower bound to the

(inverse) Fisher information matrix I(θ). We next consider a special case in which the extended

version Ge is defined over R
2. Here, the parameter vector is given by θ = (x0, y0, Λ0) ∈ Θ, the

photon distribution profile fe
θ,τ of Ge is assumed to be given in terms of a symmetric image

function q and the photon detection rate Λe
θ of Ge is independent of x0 and y0 for θ ∈ Θ. We

assume that the circular bounding detectors of C are centered at the point rc := (Mx0, My0) ∈

C, where M > 0 denotes the lateral magnification. For this case, we show that the matrices

Il(θ) and Iu(θ) are diagonal.

Corollary 3.3.3 Let Θ ⊆ R
3 be a parameter space and let G be an image detection pro-

cess that is defined over the detector C. Let M > 0. Assume that Ge(Λe
θ, {fe

θ,τ}τ≥t0 , R
2)

is an extended version of G and that there exist a symmetric image function q such that

fe
θ,τ (r) = 1

M2 q
(

x
M − x0,

y
M − y0

)
for r = (x, y) ∈ R

2, θ = (x0, y0, Λ0) ∈ Θ and τ ≥ t0. As-

sume that ∂Λe
θ(τ)/∂x0 = ∂Λe

θ(τ)/∂y0 = 0 for τ ≥ t0 and θ ∈ Θ. Let θ ∈ Θ, assume that

rc := (Mx0, My0) ∈ C, and let Brc(l) and Brc(u) denote the circular bounding detectors of C.

Then

1. Iu(θ) ≥ I(θ) ≥ Il(θ). (3.26)

where

I(θ) =

∫ t

t0

∫

C

Λe
θ(τ)

fe
θ,τ (r)









M
∂fe

θ,τ (r)

∂x

M
∂fe

θ,τ (r)

∂y

− fe
θ,τ (r)

Λθ(τ)
∂Λe

θ(τ)
∂Λ0









[

M
∂fe

θ,τ (r)

∂x
M

∂fe
θ,τ (r)

∂y
− fe

θ,τ (r)

Λθ(τ)
∂Λe

θ(τ)
∂Λ0

]

drdτ, (3.27)

Iβ(θ) = Diag

 

Z t

t0

Λe
θ(τ)dτ

Z

B0( β
M

)

1

q(x, y)

„

∂q(x, y)

∂x

«2

dxdy,
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Z t

t0

Λe
θ(τ)dτ

Z

B0( β
M

)

1

q(x, y)

„

∂q(x, y)

∂y

«2

dxdy,

Z t

t0

1

Λe
θ(τ)

„

∂Λe
θ(τ)

∂Λ0

«2

dτ

Z

B0( β
M

)

q(x, y)dxdy

!

, (3.28)

with B0(β/M) = {(x, y) |
√

x2 + y2 < β
M } and β ∈ {u, l}.

2. Further, if Il(θ) is invertible, then

[I−1
u (θ)]ii ≤ [I−1(θ)]ii ≤ [I−1

l (θ)]ii, i = 1, 2, 3. (3.29)

Proof: Let θ ∈ Θ. Eqs. 3.26 and 3.29 immediately follow by noting that Brc(l) ⊆ C ⊆

Brc(u) ⊆ R
2 and that the results of Theorem 3.3.1 hold for the present case. In rest of this

proof we derive the integral expressions for I(θ) and Iβ(θ) that are given in eqs. 3.27 and 3.28,

respectively.

By assumption, ∂Λe
θ(τ)/∂x0 = ∂Λe

θ(τ)/∂y0 = ∂fe
θ,τ (r)/∂Λ0 = 0 and it can be shown that

∂fe
θ,τ (r)/∂x0 = −M(∂fe

θ,τ (r)/∂x) and ∂fe
θ,τ (r)/∂y0 = −M(∂fe

θ,τ (r)/∂y), for r = (x, y) ∈ R
2

and τ ≥ t0. Using these results and substituting for Λe
θ and fe

θ,τ in result 1 of Theorem 2.3.1,

we obtain the expression for I(θ) that is given in eq. 3.27. By definition, for β ∈ {u, l},

Brc(β) = {(x, y) |
√

(x/M − x0)2 + (y/M − y0)2 < β/M}, (x, y) ∈ R
2}. Substituting for fe

θ,τ

and Λe
θ in eq. 3.24, we have for β ∈ {u, l},

Iβ(θ) =

∫ t

t0

∫

Brc (β)

1

Λe
θ(τ)fe

θ,τ (r)









Λe
θ(τ)

∂fe
θ,τ (r)

∂x0

Λe
θ(τ)

∂fe
θ,τ (r)

∂y0

fe
θ,τ (r)

∂Λe
θ
(τ)

∂Λ0









×

[

Λe
θ(τ)

∂fe
θ,τ (r)

∂x0
Λe

θ(τ)
∂fe

θ,τ (r)

∂y0
fe

θ,τ (r)
∂Λe

θ(τ)
∂Λ0

]

drdτ

=
1

M2

∫ t

t0

Λe
θ(τ)

∫

Brc (β)

1

q
(

x
M − x0,

y
M − y0

)









−M
∂q( x

M
−x0, y

M
−y0)

∂x

−M
∂q( x

M
−x0, y

M
−y0)

∂y

q( x
M

−x0, y
M

−y0)
Λe

θ
(τ)

∂Λe
θ(τ)

∂Λ0









×









−M
∂q( x

M
−x0, y

M
−y0)

∂x

−M
∂q( x

M
−x0, y

M
−y0)

∂y

q( x
M

−x0, y
M

−y0)
Λe

θ
(τ)

∂Λe
θ(τ)

∂Λ0









T

dxdydτ
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=
1

M2

∫ t

t0

Λe
θ(τ)

∫

B0( β
M

)

1

q(u, v)









M ∂q(u,v)
∂u

∂u
∂x

M ∂q(u,v)
∂v

∂v
∂y

− q(u,v)
Λe

θ
(τ)

∂Λe
θ(τ)

∂Λ0









×









M ∂q(u,v)
∂u

∂u
∂x

M ∂q(u,v)
∂v

∂v
∂y

− q(u,v)
Λe

θ
(τ)

∂Λe
θ(τ)

∂Λ0









T

(Mdu)(Mdv)dτ

=

∫ t

t0

Λe
θ(τ)

∫

B0( β
M

)

1

q(x, y)









∂q(x,y)
∂x

∂q(x,y)
∂y

− q(x,y)
Λe

θ
(τ)

∂Λe
θ(τ)

∂Λ0









[

∂q(x,y)
∂x

∂q(x,y)
∂y − q(x,y)

Λe
θ
(τ)

∂Λe
θ(τ)

∂Λ0

]

dxdydτ,

(3.30)

where in the third step u := x
M − x0 and v := y

M − y0, for (x, y) ∈ R
2, θ ∈ Θ. Since the image

function q is symmetric, it can be shown that ∂q(x, y)/∂x = −∂q(−x, y)/∂x and ∂q(x, y)/∂y

= ∂q(−x, y)/∂y for (x, y) ∈ R
2 (see eqs. 3.10 - 3.11). Thus we have

[Iβ(θ)]12 = [Iβ(θ)]21 =

∫ t

t0

Λe
θ(τ)dτ

∫

B0( β
M

)

1

q(x, y)

∂q(x, y)

∂x

∂q(x, y)

∂y
dxdy

= −
∫ t

t0

Λe
θ(τ)dτ

∫

B0( β
M

)

1

q(−x, y)

∂q(−x, y)

∂x

∂q(−x, y)

∂y
dxdy

= −
∫ t

t0

Λe
θ(τ)dτ

∫

B0( β
M

)

1

q(u, y)

∂q(u, y)

∂u

∂u

∂x

∂q(u, y)

∂y
(−du)dy (u := −x)

= −
∫ t

t0

Λe
θ(τ)dτ

∫

B0( β
M

)

1

q(u, y)

∂q(u, y)

∂u

∂q(u, y)

∂y
dudy = −[Il(θ)]12 = −[Il(θ)]21, β ∈ {u, l}.

Hence [Iβ(θ)]12 = [Iβ(θ)]21 = 0, β ∈ {u, l}. Similarly, we can show that [Iβ(θ)]13 = [Iβ(θ)]31 = 0,

β ∈ {u, l}. Further, by using the symmetry property of q we can also show that ∂q(x, y)/∂y =

−∂q(−x, y)/∂y for (x, y) ∈ R
2 (see eq. 3.14). From this it follows that [Iβ(θ)]23 = [Iβ(θ)]32 = 0,

β ∈ {u, l}. Substituting these in eq. 3.30 the result follows. •

For the localization accuracy problem the upper and lower bounds of the limit of the

localization accuracy of (x0, y0) are referred to as the localization accuracy bounds.
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3.3.3 Examples

We now illustrate the results derived in this section by considering specific image func-

tions that describe the image of a point source. Here, the parameter vector is set to be

θ = (x0, y0, Λ0) ∈ Θ and the photon distribution profile fe
θ,τ is assumed to be given in terms of

a symmetric image function q. Further, the photon detection rate is assumed to be a constant,

i.e., Λe
θ(τ) = Λ0, τ ≥ t0. For each image function, we derive the expression for the Fisher

information matrix I(θ) corresponding to the detector C and also derive the upper and lower

bound for
√

[I−1(θ)]ii, i = 1, 2, 3, which denotes the limit of the accuracy of the components of

θ.

Corollary 3.3.4 Let Θ ⊆ R
3 be a parameter space and let G be an image detection process

that is defined over the detector C. Let M > 0. Assume that Ge(Λe
θ, {fe

θ,τ}τ≥t0 , R
2) is an

extended version of G and that there exists a symmetric image function q such that fe
θ,τ (r) =

1
M2 q

(
x
M − x0,

y
M − y0

)
for r = (x, y) ∈ R

2, θ = (x0, y0, Λ0) ∈ Θ and τ ≥ t0. Assume that

Λe
θ(τ) = Λ0 for τ ≥ t0 and θ ∈ Θ. Let θ ∈ Θ, assume that rc := (Mx0, My0) ∈ C, and let Brc(l)

and Brc(u) denote the circular bounding detectors of C.

1. Airy profile: If q is given by eq. 3.18, then the Fisher information matrix of G corre-

sponding to the time interval [t0, t] is given by

I(θ) = Λ0(t − t0)

∫

C

1
J2
1 (a||r−rc||)
π||r−rc||2

QT
θ (r)Qθ(r)dr,

where a = 2πna/(λM), ||r − rc|| :=
√

(x − Mx0)2 + (y − My0)2 and

QT
θ (r) :=

J1(a||r − rc||)
π||r − rc||









2aM(x−Mx0)
||r−rc||2 J2(a||r − rc||)

2aM(y−My0)
||r−rc||2 J2(a||r − rc||)

− 1
Λ0

J1(a||r−rc||)
||r−rc||









.

Moreover, if u and l are as defined above, then for i = 1, 2,

λ/
(

2πna

√

Λ0(t − t0)
)

√

1 −
(
J2

0 (au) + 2J2
1 (au) + J2

2 (au)
) ≤

√

[I−1(θ)]ii ≤
λ/
(

2πna

√

Λ0(t − t0)
)

√

1 −
(
J2

0 (al) + 2J2
1 (al) + J2

2 (al)
) ,

(3.31)
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√

Λ0/(t − t0)
√

1 −
(
J2

0 (au) + J2
1 (au)

) ≤
√

[I−1(θ)]33 ≤
√

Λ0/(t − t0)
√

1 −
(
J2

0 (al) + J2
1 (al)

) , (3.32)

where Jn denotes the nth order Bessel function of the first kind, n = 0, 1, 2.

2. 2D Gaussian profile: If q is given by eq. 3.20, then the Fisher information matrix of G

corresponding to the time interval [t0, t] is given by

I(θ) = Λ0(t − t0)

∫

C

2π(Mσ)2

e
− ||r−rc||2

2(Mσ)2

QT
θ (r)Qθ(r)dr,

where σ > 0, ||r − rc|| :=
√

(x − Mx0)2 + (y − My0)2 and

Qθ(r) :=
1

2π(Mσ)2
e
− ||r−rc||

2

2(Mσ)2

[

(x−Mx0)
Mσ2

(y−My0)
Mσ2 − 1

Λ0

]

.

If u and l are as defined above, then for i = 1, 2,

σ/
√

Λ0(t − t0)
√

1 − e−
1
2(

u
Mσ )

2 (

1 + 1
2

(
u

Mσ

)2
)
≤
√

[I−1(θ)]ii ≤
σ/
√

Λ0(t − t0)
√

1 − e−
1
2(

l
Mσ )

2 (

1 + 1
2

(
l

Mσ

)2
)

, (3.33)

√

Λ0/(t − t0)
√

1 − e−
1
2(

u
Mσ )

2
≤
√

[I−1(θ)]33 ≤
√

Λ0/(t − t0)
√

1 − e−
1
2(

l
Mσ )

2
. (3.34)

Proof: We can show that the Airy profile and the 2D Gaussian profile satisfy the properties

of a symmetric image function. Let θ ∈ Θ. It can be verified that for the present case the

results of Corollary 3.3.3 hold. Then the expressions for the Fisher information matrix I(θ)

immediately follow by substituting the corresponding image function in eq. 3.27. Further, we

can also verify that I−1(θ) exists for each image function. In rest of this proof we derive the

expressions for the upper and lower bounds of I(θ).

1. Let α := 2πna/λ. Substituting for Λe
θ and q in the integral expression of [Iβ(θ)]11 ([Iβ(θ)]22)

that is given in eq. 3.28, we have for β ∈ {u, l},

[Iβ(θ)]11 = [Iβ(θ)]22 =

∫ t

t0

Λ0dτ

∫

B0( β
M

)

1

J2
1 (α

√
x2+y2)

π(x2+y2)

[

∂

∂x

(

J2
1 (α
√

x2 + y2)

π(x2 + y2)

)]2

dxdy

=
4α2

π
Λ0(t − t0)

∫

{(x,y)|
√

x2+y2<β/M}

J2
2 (α
√

x2 + y2)

(x2 + y2)2
dxdy
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=
4α2

π
Λ0(t − t0)

∫ 2π

0
cos2 φdφ

∫ β
M

0

J2
2 (αρ)

ρ
dρ

= 4α2Λ0(t − t0)

∫ aβ

0

J2
2 (w)

w
dw

= 4α2Λ0(t − t0)

(∫ ∞

0

J2
2 (w)

w
dw −

∫ ∞

aβ

J2
2 (w)

w
dw

)

=
1 −

(
J2

0 (aβ) + 2J2
1 (aβ) + J2

2 (aβ)
)

λ2/((2πna)2Λ0(t − t0))
,

where x = ρ cos φ, y = ρ sinφ, a = α/M , the partial derivative of q with respect to x is given

in eq. 3.22, and the integral expressions in the final step are evaluated by using the integral

identities
∫∞
0 (J2

n(t)/t)dt = (1/2n) ([68, pg 405]) and n
∫∞
x (J2

n(t)/t)dt = (1/2)J2
0 (x) + J2

1 (x) +

· · · + J2
n−1(x) + (1/2)J2

n(x) ([70, pg 95]) with n = 2 and x ∈ R. Similarly, for β ∈ {u, l}, we

have

[Iβ(θ)]33 =
1

π

∫ t

t0

1

Λ0
dτ

∫

B0( β
M

)

J2
1 (α
√

x2 + y2)

x2 + y2
dxdy =

(t − t0)

πΛ0

∫ 2π

0
dφ

∫ β
M

0

J2
1 (αρ)

ρ
dρ

=
2(t − t0)

Λ0

∫ aβ

0

J2
1 (w)

w
dw =

1 − (J2
0 (aβ) + J2

1 (aβ))

Λ0/(t − t0)
.

Using result 2 of Corollary 3.3.3 the result follows.

2. Substituting for Λe
θ and q in the integral expression of [Iβ(θ)]11 ([Iβ(θ)]22) that is given in

eq. 3.28, we have for β ∈ {u, l},

[Iβ(θ)]11 = [Iβ(θ)]22 =

∫ t

t0

Λ0dτ

∫

B0( β
M

)

1

1
2πσ2 e−

x2+y2

2σ2

(
∂

∂x

(
1

2πσ2
e−

x2+y2

2σ2

))2

dxdy

=
Λ0(t − t0)

2πσ2

∫

B0( β
M

)

x2

σ2
e−

x2+y2

2σ2
dxdy

σ2
=

Λ0(t − t0)

2πσ2

∫ 2π

0
dφ

∫ β
Mσ

0
ρ3e−

ρ2

2 dρ

=
Λ0(t − t0)

4σ2

∫ β
Mσ

0
ρ2e−

ρ2

2 2ρdρ =
Λ0(t − t0)

4σ2

∫ ( β
Mσ )

2

0
we−

w
2 dw

=

1 − e−
1
2(

β
Mσ )

2
(

1 + 1
2

(
β

Mσ

)2
)

σ2/(Λ0(t − t0))
,

[Iβ(θ)]33 =
1

2πσ2

∫ t

t0

1

Λ0
dτ

∫

B0( β
M

)
e−

x2+y2

2σ2 dxdy =
(t − t0)

Λ02π

∫ 2π

0
dφ

∫ β
Mσ

0
ρe−

ρ2

2 dρ
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=
(t − t0)

2Λ0

∫ β
Mσ

0
2ρe−

ρ2

2 dρ =
(t − t0)

2Λ0

∫ ( β
Mσ )

2

0
e−

w
2 dw =

1 − e−
1
2(

β
Mσ )

2

Λ0/(t − t0)
.

Using result 2 of Corollary 3.3.3 we obtain the desired result. •

From the above Corollary we see that for both image functions, the localization accuracy

bounds for x0 (y0) and the bounds for the limit of the accuracy of Λ0 reduce to simple formulae.

Note that the above results for the upper and lower bounds hold only if the point (Mx0, My0)

is located on the detector Crd. In most experimental situations this condition is satisfied.

We now discuss the results derived in Corollary 3.3.4 by considering a finite-sized square

detector. Fig. 3.2A (Fig. 3.2B) shows the behavior of the limit of the localization accuracy
√

[I−1(θ)]11 for x0 for a square detector corresponding to the Airy profile (2D Gaussian profile)

as a function of detector size. A reduced detector detects relatively lower number of photons

than an infinite detector. Hence the limit of the localization accuracy for the reduced detector is

greater (worse) than the fundamental limit of the localization accuracy that is calculated for the

infinite detector (see Corollary 3.3.2). As the detector size increases, more photons are detected

by the reduced detector and the limit of the localization accuracy approaches the fundamental

limit. Fig. 3.2A (Fig. 3.2B) also shows the behavior of the localization accuracy bounds given

by eq. 3.31 (eq. 3.33) for a square detector corresponding to the Airy profile. Here, we see

that the localization accuracy bounds provide a tight bound, as they are consistently close to

the limit of the localization accuracy for the square detector.

Note that the behavior of the limit of the localization accuracy for a square detector

also depends on the functional form of the image function. In the case of the 2D Gaussian

profile (see Fig. 3.2B), the limit of the localization accuracy for a square detector with side

length 80 µm is close to the fundamental limit of the localization accuracy. However, this is

not the case for the Airy profile (see Fig. 3.2A), where even for a square detector with side

length 140 µm, the limit of the localization accuracy does not come close to the fundamental

limit. In a practical application such as single molecule data analysis, the above observation

provides guidelines for choosing the optimal size of the region of interest on the acquired image.
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Figure 3.2. Effect of finite detector size on the limit of the 2D localization accuracy.
Panel A shows the behavior of the limit of the localization accuracy of x0 (y0) for a square
detector corresponding to the Airy profile (•) as a function of detector size and Panel B shows
the same for the 2D Gaussian profile (•). Panel C shows the behavior of the limit of the
accuracy of Λ0 for a square detector corresponding to the Airy profile (•) as a function of
detector size and Panel D shows the same for the 2D Gaussian profile (•). In all the panels the
corresponding fundamental limit of the accuracy (—) and the upper (�) and lower (∗) bound
to the limit of the accuracy for the square detector are shown. For a square detector with side
length s, the position of the point source on the detector is set to be rc = (s/2, s/2), the radius
of the lower circular bounding detector Brc(l) is l = s/2 and the radius of the upper circular
bounding detector Brc(u) is u = s/

√
2. For the Airy profile, the numerical aperture is set to be

na = 1.4 and the wavelength of the detected photons is set to be λ = 0.52 µm. The parameter
σ corresponding to the Gaussian profile is set to be σ = 0.083 µm and is determined by fitting
a 2D Gaussian profile to a Airy profile (na = 1.4, λ = 0.52 µm) through the least squares
criterion. For all the plots, Λ0 = 104 photons/s, the acquisition time is set to be t = 50 ms
(with t0 = 0) and the magnification is set to be M = 100.
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Moreover, it also shows the importance of using the correct image function, as this influences

the behavior of the limit of the localization accuracy.

Fig. 3.2C (Fig. 3.2D) shows the variation of the limit of the accuracy
√

[I−1(θ)]33 of Λ0

for a square detector corresponding to the Airy profile (2D Gaussian profile) as a function of

detector size. Analogous to the behavior of the limit of the localization accuracy, the limit of

the accuracy of Λ0 approaches the fundamental limit of the accuracy of Λ0 (=
√

Λ0/(t − t0),

see eqs. 3.19 and 3.21) as the detector size increases. Moreover, the behavior of the limit of

the accuracy of Λ0 also depends on the functional form of the image function. Fig. 3.2C (Fig.

3.2D) also shows the behavior of the upper and lower bounds to the limit of the accuracy of Λ0

that given by eq. 3.32 (eq. 3.34) for a square detector corresponding to the Airy profile (2D

Gaussian profile). Similar to the localization accuracy bounds (Figs. 3.2A and 3.2B), we see

that the upper and lower bounds for the limit of the accuracy of Λ0 provide a tight bound.

3.4 Effects of pixelation and noise

In this section we derive expressions for the limit of the 2D localization accuracy when

the data is acquired by a pixelated detector and is corrupted by extraneous noise sources. Here,

we consider an Airy profile and assume the unknown parameter to be θ = (x0, y0).

Theorem 3.4.1 Let {C1, . . . , CNp} denote a pixelated detector and Θ ⊆ R
2 be open. Let q be

given by

q(x, y) :=
J2

1 (α
√

x2 + y2)

π(x2 + y2)
, (x, y) ∈ R

2,

where α := 2πna/λ. For θ ∈ Θ and τ ≥ t0, define

hθ(k) :=
1

M2

∫

Ck

q
( x

M
− x0,

y

M
− y0

)

dxdy, k = 1, . . . , Np.

For θ ∈ Θ, t ≥ t0 and k = 1, . . . , Np, let µθ(k, t) := Λ0(t−t0)hθ(k) and β(k, t) = bk, where Λ0 ≥

0 (bk ≥ 0) denotes the photon detection rate of the single molecule (background component).
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1. The limit of the 2D localization accuracy for a pixelated detector in the absence of extraneous

noise sources is given by

δpix
x0

=
λ

4πna

√

Λ0(t − t0)






Np∑

k=1

J 2
x (k)

hθ(k)
−

(
∑K

k=1
Jx(k)Jy(k)

hθ(k)

)2

∑Np

k=1

J 2
y (k)

hθ(k)






− 1
2

,

δpix
y0

=
λ

4πna

√

Λ0(t − t0)






Np∑

k=1

J 2
y (k)

hθ(k)
−

(
∑K

k=1
Jx(k)Jy(k)

hθ(k)

)2

∑Np

k=1
J 2

x (k)
hθ(k)






− 1
2

,

where for k = 1, . . . , Np, Jx(k) and Jy(k) are given by

Jx(k) :=

∫

Ck

(x − Mx0) ·
J1(a||r − r0||)

π||r − r0||
· J2(a||r − r0||)

||r − r0||2
dr, (3.35)

Jy(k) :=

∫

Ck

(y − My0) ·
J1(a||r − r0||)

π||r − r0||
· J2(a||r − r0||)

||r − r0||2
dr, (3.36)

with r0 = M(x0, y0) and a := α/M .

2. The limit of the 2D localization accuracy for a pixelated detector in the presence of additive

Poisson noise is given by

δpix
x0,p =

λ

4πna

√

Λ0(t − t0)








Np∑

k=1

J 2
x (k)

hθ(k) + bk

Λ0

−

(
∑Np

k=1
Jx(k)Jy(k)

hθ(k)+
bk
Λ0

)2

∑Np

k=1

J 2
y (k)

hθ(k)+
bk
Λ0








− 1
2

,

δpix
y0,p =

λ

4πna

√

Λ0(t − t0)








Np∑

k=1

J 2
y (k)

hθ(k) + bk

Λ0

−

(
∑Np

k=1
Jx(k)Jy(k)

hθ(k)+
bk
Λ0

)2

∑Np

k=1
J 2

x (k)

hθ(k)+
bk
Λ0








− 1
2

,

where Jx and Jy are given in eqs. 3.35- 3.36.

3. The limit of the 2D localization accuracy for a pixelated detector in the presence of additive

Poisson and Gaussian noise is given by

δpix
x0,p,g =

λ

4πnaΛ0(t − t0)






Np∑

k=1

J 2
x (k)Ψ(k) −

(
∑K

k=1 Jx(k)Jy(k)Ψ(k)
)2

∑Np

k=1 J 2
y (k)Ψ(k)






− 1
2

,



70

δpix
y0,p,g =

λ

4πnaΛ0(t − t0)






Np∑

k=1

J 2
y (k)Ψ(k) −

(
∑Np

k=1 Jx(k)Jy(k)Ψ(k)
)2

∑K
k=1 J 2

x (k)Ψ(k)






− 1
2

,

where Jx(k) and Jy(k) are given in eqs. 3.35- 3.36, Ψ(k) is given by

Ψ(k) :=












∫

R




∑∞

l=1
[νθ(k,t)]l−1e−νθ(k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

„

z−l−ηk
σw,k

«2




2

pθ,k(z)
dz − 1












, k = 1, . . . , Np,

(3.37)

with νθ(k) := Λ0(t − t0)µθ(k) + β(k), k = 1, . . . , Np and pθ,k is given by eq. 2.5.

Proof: Note that result 1 is a special case of result 2 with bk = 0 for k = 1, . . . , Np. So we

first derive result 2. For k = 1, . . . , Np, define

Jx(k) :=

∫

Ck

(x − Mx0) ·
J1(a||r − r0||)

π||r − r0||
· J2(a||r − r0||)

||r − r0||2
dr,

Jy(k) :=

∫

Ck

(y − My0) ·
J1(a||r − r0||)

π||r − r0||
· J2(a||r − r0||)

||r − r0||2
dr,

where r0 := M(x0, y0). Consider the term

∂µθ(k)

∂x0
= Λ0(t − t0)

∫

Ck

∂fθ,τ (r)

∂x0
dr = −Λ0(t − t0)M

∫

Ck

∂fθ,τ (r)

∂x
dr

= −Λ0t

M

∫

Ck

∂q( x
M − x0,

y
M − y0)

∂x
dxdy

= −Λ0(t − t0)

M

∫

Ck

−2a(x − Mx0)

π

J1(a||r − r0||)
||r − r0||

J2(a||r − r0||)
||r − Mr0||2

dxdy

= 2Λ0(t − t0)αJx(k), k = 1, . . . , Np.

Similarly we have

∂µθ(k)

∂y0
= 2Λ0(t − t0)αJy(k), k = 1 . . . , Np.

Substituting the above partial derivatives in the Fisher information matrix given by eq. 2.4 we

get

I(θ) =
K∑

k=1

1

Λ0(t − t0)(hθ,τ (k) + bk

Λ0
)
×
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(2Λ0(t − t0)α)2J 2
x (k) (2Λ0(t − t0)α)2Jx(k)Jy(k)

(2Λ0(t − t0)α)2Jx(k)Jy(k) (2Λ0(t − t0)α)2J 2
y (k)









and

I−1(θ) =
1

∆(θ)











∑K
k=1

4Λ0(t−t0)α2J 2
y (k)

hθ,τ (k)+
bk
Λ0

−∑K
k=1

4Λ0(t−t0)α2Jx(k)Jy(k)

hθ,τ (k)+
bk
Λ0

−∑K
k=1

4Λ0(t−t0)α2Jx(k)Jy(k)

hθ,τ (k)+
bk
Λ0

∑K
k=1

4Λ0(t−t0)α2J 2
x (k)

hθ,τ (k)+
bk
Λ0











,

where ∆(θ) denotes the determinant of I(θ) and is given by

∆(θ) =
K∑

k=1

4Λ0(t − t0)α
2J 2

x (k)

hθ,τ (k) + bk

Λ0

K∑

k=1

4Λ0(t − t0)α
2J 2

y (k)

hθ,τ (k) + bk

Λ0

−
[

K∑

k=1

4Λ0(t − t0)α
2Jx(k)Jy(k)

hθ,τ (k) + bk

Λ0

]2

.

Substituting for α = 2πna/λ in I−1(θ) we get result 2. Setting bk = 0, k = 1, . . . , Np we get

result 1.

3. Substituting for ∂µθ(k,t)
∂x0

and ∂µθ(k,t)
∂y0

in eq. 2.7 and making use of the terms Jx(k) and Jy(k)

that are defined above, we have

I(θ) =









∑K
k=1(2Λ0(t − t0)α)2J 2

x (k)Ψ(k)
∑K

k=1(2Λ0(t − t0)α)2Jx(k)Jy(k)Ψ(k)

∑K
k=1(2Λ0(t − t0)α)2Jx(k)Jy(k)Ψ(k)

∑K
k=1(2Λ0(t − t0)α)2J 2

y (k)Ψ(k)









,

where Ψ(k) is given by eq. 3.37. Inverting the above matrix we get

I−1(θ) =
1

∆(θ)









∑K
k=1(2Λ0(t − t0)α)2J 2

y (k)Ψ(k) −∑K
k=1(2Λ0(t − t0)α)2Jx(k)Jy(k)Ψ(k)

−∑K
k=1(2Λ0(t − t0)α)2Jx(k)Jy(k)Ψ(k)

∑K
k=1(2Λ0(t − t0)α)2J 2

x (k)Ψ(k)









,

where ∆(θ) denotes the determinant of I(θ) and is given by

∆(θ) =

K∑

k=1

(2Λ0(t − t0)α)2J 2
x (k)Ψ(k)

K∑

k=1

(2Λ0(t − t0)α)2J 2
y (k)Ψ(k)

−
[

K∑

k=1

(2Λ0(t − t0)α)2Jx(k)Jy(k)Ψ(k)

]2

Substituting for α in the above equation, we get the desired result. •
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From the above theorem, we see that the expression for the limit of the localization

accuracy for a pixelated detector is a modification of the fundamental limit δu given in eq. 3.18.

In fact, the expression involves the fundamental limit δ2d
x0

and a correction term (given in

parentheses) that expresses the deterioration of the limit due to pixelation and noise.

3.4.1 Examples and applications

We next illustrate the results derived in Theorem 3.4.1 by showing how various experi-

mental aspects such as magnification, pixel array size, pixel dimensions and noise levels influence

the accuracy with which the location of a single molecule can be determined. The fundamental

limit (eq. 3.18) serves as an important reference point to establish how closely the specific

experimental implementation approaches the best possible localization accuracy.

For the numerical illustrations we chose parameters that are typical values for single

molecule experiments with GFP molecules, see also [26] where similar values were used. In all

figures, unless otherwise specified, the photon detection rate of the single molecule is assumed

to be Λ0 = 66000 photons/s. The emission wavelength is set to be λ = 520 nm corresponding

to a GFP molecule, the numerical aperture is set to be na = 1.4 and the magnification is set

to be M = 100. The single molecule is assumed to be located at the center of the pixel array.

We also assume that the detector consists of square pixels with no dead space region between

adjacent pixels.

We first consider the effect of pixelation on the localization accuracy in the absence of

noise. Figs. 3.3a and 3.3c illustrate the limit of the localization accuracy for a 11 × 11 pixel

array as a function of different magnification values for t = 0.01 s and t = 1 s respectively. For

very low magnification values the image of the single molecule is to a large extent concentrated

on one pixel. Therefore there is little information in the data about the location of the single

molecule on the pixel. By increasing the magnification, the image of the single molecule spreads

out over the pixel array and the localization accuracy improves. However, due to the finite size
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Figure 3.3. Effect of magnification on the limit of the 2D localization accuracy.
The figure shows the limit of the localization accuracy for the x0 coordinate of a single molecule
with experimental parameters similar to those for a GFP molecule for a 11 × 11 pixel array
(5 µm× 5 µm pixel size) as a function of magnification for different acquisition times and noise
levels. Panels A and C show results in the noise free case for t = 0.01 s (�) and t = 1 s (◦),
respectively. In both Panels, the fundamental limit (—) is also shown for reference. Panel
B shows results for two different sets of noise parameter values. Here, (×) corresponds to a
scattering rate (bk) of 6600 photons/pixel/s and a readout noise (σk) of 57 e−/pixel (rms), (•)
corresponds to a scattering rate of 660 photon/pixel/s and a readout noise of 7 e−/pixel (rms).
In both cases the acquisition time is 10 ms.

of the pixel array, for larger magnification values only a small fraction of the image of the

single molecule is detected by the pixel array which results in a deterioration of the localization

accuracy. This shows that if data is only acquired or analyzed for a fixed pixel array, care

has to be taken to match the pixel array and magnification. With an appropriate choice of

magnification it is, however, possible to come close to the fundamental limit.

We next consider the effect of pixel array size on the limit of the localization accuracy.

Fig. 3.4a shows the effect of the number of pixels on the limit of the localization accuracy in

the noise free case for a 5 × 5 array and for a 21 × 21 array. In both cases the pixel size is

fixed to 6.8 µm × 6.8 µm. By increasing the pixel array size from a 5 × 5 array to a 21 × 21

array the limit of the localization accuracy comes closer to the fundamental limit. As is to be

expected, increasing the size of the pixel array improves the localization accuracy by increasing

the amount of data that is available for analysis. However, in practical situations it is not always
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Figure 3.4. Effects of pixel array size and extraneous noise sources on the limit of the 2D
localization accuracy.
The figure shows the limit of the localization accuracy of the x0 coordinate of a single molecule
with experimental parameters similar to those for a GFP molecule as a function of the expected
number of detected photons for a pixelated detector in the presence of different noise levels.
Panel A shows the results in the noise free case for a 5 × 5 pixel array (•) and for a 21 × 21
pixel array (.). The fundamental limit (—) is also shown for reference. Panel B shows the
limit of the localization accuracy (◦) in the presence of noise with a scattering rate (bk) of 660
photons/pixel/s and a readout noise (σk) of 7 e−/pixel (rms) for a 5× 5 pixel array. Similarly,
Panel C shows the limit of the localization accuracy (�) with a scattering rate (bk) of 6600
photons/pixel/s and a readout noise (σk) of 57 e−/pixel (rms). For all the plots the pixel size
is fixed to 6.8 µm × 6.8 µm and the x axis range corresponds to an acquisition time range of
t = 0.01 s to t = 1 s. In Panels A and C, the limit of the localization accuracy in the noise free
case (•) for a 5 × 5 pixel array is also shown for reference.

possible to arbitrarily increase the size of the pixel array as often other elements are present in

the image. This limits the number of pixels that can be used to determine the location of the

single molecule unless a significant effort is made to model these other elements in the image.

The expression for the limit of the localization accuracy in the presence of noise sources

allows for two noise sources, Gaussian noise as it arises, for example, in the readout process

of the CCD camera and Poisson noise which can be used, for example, to model dark current

in the CCD chip, scattered photons and autofluorescence. In order to study the effect of noise

sources on the limit of the localization accuracy, we consider two sets of noise parameter values.

In one, we set the standard deviation (σk) of the Gaussian noise, e.g. the readout noise, to

be 7 e−/pixel (rms). In our simulations we assume that the mean of the Gaussian noise is

zero. This value for the readout noise is on the lower level of reported noise levels for current
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CCD cameras. For the low noise simulations we assume that the Poisson noise has a rate

bk of 0.01Λ0 = 660 photons/pixel/s. This means, for example, that we assume that in each

pixel scattered photons are collected at a rate that is 1 percent of the rate at which the photons

emitted by the single molecule arrive in the detector plane. In the second set of noise parameters

we consider parameters that correspond to high noise levels, in particular for the readout noise.

In this case we set the standard deviation of the readout noise to be 57 e−/pixel (rms) and

the scattering rate to be 0.1Λ0 = 6600 photons/pixel/s. This level of readout noise is towards

the high end on the scale of readout noise levels for current CCD cameras. The smaller value

for the scattering rate is typically observed when imaging single molecules in solution ([71]),

whereas the larger value is observed when imaging single molecules in a cellular environment

([26]). In all figures we assume that the noise statistics are the same for all pixels.

The dramatic effect that noise can have on the limit of the localization accuracy is shown

in Fig. 3.4b, where the limit of the localization accuracy is plotted as a function of the expected

number of detected photons for low scattering and measurement noise levels for a 5 × 5 pixel

array with 6.8 µm × 6.8 µm pixel size. Fig. 3.4c shows the same for high scattering and

measurement noise levels. The effect is especially pronounced for low photon count numbers

where the limit of the localization accuracy can be an order of magnitude larger than in the

noise free case (see Fig. 3.4c). However, by increasing the total number of detected photons it

is possible to come close to the fundamental limit even at high noise levels.

A similar effect of the noise sources on the limit of the localization accuracy is shown in

Fig. 3.3b, where the limit of the localization accuracy is plotted as a function of magnification

for different measurement and scattering noise levels and for the noise free case for a 11×11 pixel

array with a pixel size of 5 µm×5 µm. For a given magnification value, the presence of high noise

levels can deteriorate the best possible localization accuracy by an order of magnitude when

compared to the noise free case. Also, at high noise levels the limit of the localization accuracy

deteriorates by a factor of four when the magnification varies from 50× to 200×. For example,

consider the image of a GFP single molecule centered on a 11 × 11 pixel array with a pixel
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size of 5 µm × 5 µm. At 50× magnification (na = 1.4), the image of the GFP single molecule

in the pixel array will contain 93% of the expected number of detected photons. At 100×

magnification (na = 1.4), the image of the GFP single molecule in the pixel array will contain

87% of the expected number of detected photons. Although by increasing the magnification

from 50× to 100× we only lose about 6% of the total number of detected photons, the limit of

the localization accuracy significantly deteriorates from 38 nm at 50× magnification to 60 nm

at 100× magnification at high noise levels.

As mentioned earlier, it is important to determine whether an estimation algorithm can

attain the limit of the localization accuracy. In Table 1 we list the standard deviations of

the maximum likelihood estimates of the single molecule location for different experimental

conditions typically reported in the single molecule microscopy literature. The table also lists

the limits of the localization accuracy that is calculated using Theorem 3.4.1. From the table

we see that the standard deviations of the maximum likelihood estimates come reasonably close

to the limit of the localization accuracy under the various experimental conditions. However,

there are differences and in some cases the standard deviation of the estimates is even lower

than the limit of the localization accuracy. This points to an important aspect of the theory

that underlies the approach presented here. Whereas the theoretical derivations are based on

considerations of the standard deviations of random variables, the simulations in Table 1 report

estimates of those standard deviations, which can differ from the actual values.
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Table 3.1. Verification of the limit of the 2D localization accuracy - practical imaging conditions

Para- Pixel Readout Scattering Pixel Acqui- Funda- Limit of the Limit of the Standard
meter dimensions noise noise array sition mental localization localization deviation
set# size time limit accuracy in accuracy in of the

the pixelated the pixelated maximum
case in the case with likelihood
absence of readout and estimator

noise scattering
e−/pixel photons/ sources noise

µm × µm (rms) pixel/s ms nm nm nm nm

1 6.45 × 6.45 6 660 13 × 13 10 2.3010 2.9152 6.6469 6.6903

2 6.8 × 6.8 18 660 12 × 12 10 2.3010 2.9377 14.8733 14.8175

3 13 × 13 4 660 7 × 7 10 2.3010 3.4338 4.4387 4.6287

4 15 × 15 32 660 6 × 6 10 2.3010 3.9379 13.5599 13.0138

5 6.45 × 6.45 6 6600 13 × 13 100 0.7277 0.9219 2.5138 2.6835

6 6.45 × 6.45 6 660 13 × 13 100 0.7277 0.9219 1.4241 1.4059

7 6.45 × 6.45 6 0 13 × 13 100 0.7277 0.9219 1.1951 1.4174

8 6.8 × 6.8 18 660 12 × 12 100 0.7277 0.9290 1.9855 1.8245

9 13 × 13 4 660 7 × 7 100 0.7277 1.0859 1.2319 1.3837

10 15 × 15 32 660 6 × 6 100 0.7277 1.2453 1.9365 1.7012

The table shows the limit of the localization accuracy for the x0 coordinate of a single molecule with parameters similar to those
of a GFP molecule under typical experimental conditions. The pixel dimensions and readout noise correspond to CCD cameras
often used to image single molecules. For all calculations we set the photon detection rate to be Λ0 = 66000 photons/s, the
magnification to be M = 100, the numerical aperture to be na = 1.4, the emission wavelength to be λ = 520 nm and the mean of
the measurement noise to be zero. For a given pixel dimension, the pixel array is chosen such that 92% of the photons that reach
the image plane are collected. For all calculations and simulations we assume that all pixels have the same noise statistics and
the single molecule is positioned at the center of the pixel array. The standard deviation of the maximum likelihood estimator
for each parameter set was calculated based on maximum likelihood estimates of the single molecule location in 300 simulated
images.
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In Table 1, for a given pixel size, the pixel array was chosen such that approximately 92%

of the photons that reach the detect or plane are collected by the pixel array. Despite this, we

see that the limit of the localization accuracy varies widely for different experimental conditions,

especially for short acquisition times (t = 10 ms, parameter sets 1-4). If the acquisition time

is increased (t = 100 ms, parameter sets 6, 8-10), we see that the variation of the limits of

the localization accuracy diminishes for the different experimental conditions. In addition, the

limits of the localization accuracy also come close to the fundamental limit. So far we have

shown that noise sources can significantly deteriorate the limit of the localization accuracy. It

is instructive to investigate the contribution of the different noise types to the deterioration of

the localization accuracy. In parameter sets 5-7 of Table 1, we show that when the scattering

noise parameter is decreased from 6600 photons/pixel/s to 0 photons/pixel/s with measurement

noise fixed to 6 e−/pixel (rms), the limit of the localization accuracy decreases from 2.5138 nm

to 1.1951 nm. However, in parameter set 7 we see that if the measurement noise is also set to

0, then the limit of the localization accuracy in the noise free case reduces to 0.9219 nm, which

is significantly closer to the fundamental limit of 0.7277 nm.

Fig. 3.5 shows the effect of pixel size on the limit of the localization accuracy for a

1000 µm× 1000 µm pixel array at different measurement noise levels with the scattering noise

parameters set to zero, i.e. bk = 0. The figure also shows the results in the noise free case and

the fundamental limit. We consider a 1000 µm×1000 µm pixel array to ensure that a sufficient

number of photons are detected in the case of large pixels. We note that the measurement noise

is independent of the number of detected photons and only depends on the readout process of

the CCD camera. Hence it is kept fixed when the pixel size is varied. However, since the number

of pixels decreases as the pixel size increases, less noise is added to the total accumulated data.

In the noise free case the limit of the localization accuracy decreases with decreasing pixel size,

since with reduced pixel sizes the effect of pixelation diminishes and the limit of the localization

accuracy approaches the fundamental limit. However, in the presence of measurement noise

the limit of the localization accuracy first decreases but then increases with decreasing pixel
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Figure 3.5. Effect of pixel size on the limit of the 2D localization accuracy.
The figure shows the limit of the localization accuracy of the x0 coordinate of a single molecule
with experimental parameters similar to those for a GFP molecule as a function of pixel size
for a pixelated detector in the presence of measurement noise. (�) corresponds to a readout
noise (σk) of 57 e−/pixel (rms), (◦) corresponds to a readout noise (σk) of 7 e−/pixel (rms) and
the scattering rate (bk) is set to 0 in both the cases. The limit of the localization accuracy in
the noise free case (•) and the fundamental limit (—) are also shown for reference. For all the
plots the acquisition time is set to be t = 0.05 s and the pixel array size is 1000 µm× 1000 µm.
The pixel sizes were chosen such that the pixel array consists of an odd number of rows and
columns.

size, since by decreasing the pixel size the number of detected photons in each pixel decreases,

while the measurement noise remains the same.

We recall that a similar behavior was observed in Fig. 3.3 due to the variation in magni-

fication. However, the present effect is different from that shown in Fig. 3.3, since by varying

the magnification the size of the single molecule image was varied and this in turn affected the

number of photons captured by the pixel array. In the present case, the pixel array is fixed

to 1000 µm × 1000 µm ensuring that the same number of photons are captured by the pixel

array for all pixel sizes. From this we deduce that for a given experimental setup, the limit of

the localization accuracy depends not only on the total number of detected photons but also

on the number of photons captured in each pixel in the pixel array. We note that an analogous
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behavior was reported in [28], where the effect of pixel size on the localization accuracy was

discussed for a specific estimation procedure.
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Figure 3.6. Effect of single molecule loaction on the limit of the 2D localization accuracy.
The figure shows the limit of the localization accuracy of the x0 coordinate of a single molecule
with experimental parameters similar to those for a GFP molecule for a pixelated detector as
a function of the single molecule position for different noise levels and pixel sizes. Panel A (.)
shows results in the presence of noise with a scattering rate (bk) of 6600 photons/pixel/s and a
readout noise (σk) of 57 e−/pixel (rms) for a 5×5 pixel array with a pixel size of 20 µm×20 µm.
Panel B shows the same for a scattering rate (bk) of 660 photons/pixel/sec and a readout noise
(σk) of 7 e−/pixel (rms) (/). Panel C shows results in the noise free case for a 10 × 10 pixel
array with 10 µm× 10 µm pixels (�) and for a 50× 50 pixel array with 2 µm× 2 µm pixels (◦).
The fundamental limit (—) is also shown for reference. In all three plots the acquisition time
is t = 0.01 s, the pixel array size is 100 µm× 100 µm and (•) shows the limit of the localization
accuracy in the noise free case for a 5 × 5 pixel array with 20 µm × 20 µm pixels. The x axis
of the plots denotes the position of the single molecule with respect to the center of the pixel
array (in the detector plane). The single molecule is moved in steps of 10 nm in the specimen
plane which corresponds to 1 µm steps in the detector plane. All movements are parallel to the
pixel edges. For a 20 µm × 20 µm pixel this corresponds to moving the single molecule from
one edge of the central pixel to the opposite edge of the pixel, while for a 10 µm× 10 µm pixel
this corresponds to moving the single molecule over a pair of pixels that are centrally located
on the detector and for a 5 µm × 5 µm pixel this corresponds to moving the single molecule
over a set of 4 pixels centrally located on the detector.

We next consider the effect of the location of the single molecule with respect to the pixel

array on the limit of the localization accuracy. Fig. 3.6a shows the variation of the limit of

the localization accuracy as a function of the single molecule position for a 5 × 5 pixel array

with a pixel size of 20 µm× 20 µm for high measurement and scattering noise levels. Fig. 3.6b



81

shows the same for low measurement and scattering noise levels. In both figures, the result for

the noise free case is also shown for reference. From Figs. 3.6a and 3.6b, we observe that the

localization accuracy varies periodically as the single molecule is moved along the x direction.

The best, i.e. the smallest, values for the limit of the localization accuracy are achieved when

the image of the single molecule is centered on the edge of a pixel. This is due to the fact that

small changes in the location of the single molecule at the edge of a pixel lead to significant

changes in the collected data. The worst, i.e. largest, values for the limit of the localization

accuracy are achieved when the image of the single molecule is located at the center of a pixel.

From Figs. 3.6a and 3.6b, we see that the worst case value can be anywhere between 10% - 80%

higher than the best case value depending on the noise level. Note that the variation of the limit

of the localization accuracy is particularly pronounced for large pixel sizes. This periodicity

for a pixelated detector is in contrast to the fundamental limit (eq. 3.18) which is independent

of the location of the single molecule. As shown in Fig. 3.6c, by reducing the pixel size the

effect of pixelation is diminished and hence the periodic variation in the localization accuracy

also decreases. An immediate implication of the above result is that moderate variations in the

single molecule position within a pixel can lead to substantially different localization accuracy

values in the presence of high noise levels. This analysis also provides an explanation of the

phenomenon that was reported in [29], where it was observed using numerical investigations

that the localization accuracy depends on the location of the single molecule with respect to

the pixels. It should be noted that other published expressions for the localization accuracy

([26, 28]) do not show a dependence on the magnification and on the location of the single

molecule. This is due to approximations that were used in the model for the acquired signal in

the pixels.

The results presented in this section give an indication as to the type of phenomena that

can be investigated with our approach. Further applications are easily conceivable such as the

evaluation of the effect of pixel shape or the presence of dead space regions on the detector

(e.g. due to the presence of anti blooming gates) on the limit of the localization accuracy.
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While the expressions for the limit of the localization accuracy in the pixelated case are not as

straightforward to analyze as the expression for the fundamental limit they can be numerically

evaluated in a relatively straightforward way.

3.5 Appendix to Chapter 3

3.5.1 Simulations and parameter values

All simulations and calculations were carried out in the MATLAB programming environ-

ment ([72]). We assume the fluorescent single molecule to have an emission wavelength of 520

nm. For all calculations, unless explicitly stated, the numerical aperture is set to be na = 1.4,

the magnification is set to be M = 100 and the acquisition time is in the range of t = 0.01 s

to t = 1 s (with t0 = 0). We set the photon detection rate to be Λ0 = 66000 photons/s, which

is in the range of values typically observed in single molecule experiments ([71, 25, 26, 73]). In

the figures given in Section 3.4, we assume square pixels with no dead space between adjacent

pixels and unless otherwise stated, the single molecule is positioned at the center of the pixel

array.

3.5.2 Maximum likelihood estimation

In the non-pixelated case, maximum likelihood estimation was carried out for two different

acquisition methods, one when the acquisition time was fixed and the other when the total

number of detected photons was fixed. In the former case, due to the stochastic nature of

photon emission, the total number of detected photons varied for every image, while in the

latter case, the number of detected photons remained the same.

For the first acquisition method, a Poisson random number N1 with mean Λ0(t − t0)

(denoting the expected number of detected photons) was generated and N1 random vectors

were generated (see Random number generation) that describe the spatial coordinates of the

detected photons. The maximum likelihood estimation was carried out using a gradient based

search algorithm (Optimization Toolbox of Matlab [74]). For every value of Λ0(t − t0), 300
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estimates of position were computed from which the standard deviation was calculated. For

the second acquisition method the same procedure was followed except that no Poisson random

number was generated since the number of detected photons was fixed.

In the pixelated case, the maximum likelihood estimation was performed for the fixed

acquisition time method. For a given pixel array size, pixel dimensions, single molecule location

and Λ0(t − t0), 300 images were simulated by first generating a noise free pixelated image

and then adding Poisson and Gaussian noise to the pixel values. Using the simulated data,

maximum likelihood estimation was carried out using an algorithm analogous to the one that

was mentioned above. The standard deviation of the estimates of the single molecule location

was then calculated.

3.5.3 Random number generation

The simulation of the two-dimensional distribution corresponding to the point spread

function can be carried out by reducing the simulation to that of two one-dimensional dis-

tributions. Let Φ denote a uniform random variable with density function fΦ(φ) = 1/2π,

0 ≤ φ ≤ 2π and let R denote a one-dimensional continuous random variable with density func-

tion fR,a(r) =
2J2

1 (ar)
r , r ≥ 0, where a = (2πna)/(λemM). Let R and Φ be independent of each

other. Define X := R cos Φ + Mu and Y := R sin Φ + Mv, where u, v denote the coordinates

of location of the single molecule and M denotes the magnification of the objective lens. Then

the joint density function of X and Y is given by

fX,Y (x, y) =
1

2πr
fR,a(

√

(x − Mu)2 + (y − Mv)2) =
J2

1 (a
√

(x − Mu)2 + (y − Mv)2)

π((x − Mu)2 + (y − Mv)2)
,

where −∞ < x, y < ∞. To generate a random vector (x, y) that describes the spatial coor-

dinates of the detected photons on the detector, we first generate a uniform random number

φ between 0 and 2π, then generate a random number r with density function fR,a and set

x := r cos φ + Mu, y := r sinφ + Mv. The uniform random number φ is generated using a

standard random number generator ([72]). The random number r is generated by the trans-
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formation method ([63]) in conjunction with a numerical inversion of the distribution function

corresponding to fR,a using a look-up table.



CHAPTER 4

MULTIFOCAL PLANE MICROSCOPY & 3D SINGLE PARTICLE TRACKING

4.1 Introduction

Fluorescence microscopy is an important tool to study cellular trafficking pathways in live

cells. Significant progress has been made in the understanding of cellular events by conducting

new types of experiments with fluorescent proteins. This has been possible due to advances

in fluorescent labeling techniques ([75]) along with the use of highly sensitive detectors ([16]).

The standard microscope design is very well suited to image cellular events in one focal plane.

For example, the advent of total internal reflection fluorescence (TIRF) microscopy ([19]) has

enabled the study of trafficking dynamics on the cellular membrane with high sensitivity and in

great detail. In TIRF imaging, the illumination intensity decreases exponentially with the dis-

tance from the cover glass. Hence the out of focus fluorescence typically does not interfere with

the emitted signal. This has allowed events at the plasma membrane to be imaged with unprece-

dented sensitivity. However, for example in the study of exocytic events, the advantage of TIRF

microscopy also has a negative aspect. Due to the shallow illumination layer, exocytic events

cannot be related to intracellular events. On the other hand, in epifluorescence microscopy,

the cell is uniformly illuminated, which enables the imaging of events that occur in the cell

interior. However, in epifluorescence imaging the out-of-focus haze on the plasma membrane of

the intracellular fluorescence typically overwhelms the signals from the plasma membrane and

thereby makes high sensitivity imaging of events at the plasma membrane impossible.

The above limitations of current imaging techniques make it difficult to image relatively

rapid intracellular trafficking processes that are not confined to one focal plane. Such trafficking

events are of central interest to cell biologists. For example, the imaging of rapidly moving

tubules or vesicles on the recycling pathway leading from sorting endosomes to exocytosis on

the plasma membrane has not been possible with the existing microscopy techniques. A central

85
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problem with the current microscope design is that only one focal plane can be imaged at a time.

A classical solution to overcome this problem is to sequentially scan the sample at different focal

planes by using a z-focusing device (for example, piezo nano-positioner). However, such focusing

devices are relatively slow, typically taking tens of milliseconds to move the focal plane even

by a fairly short distance. As a result, when the cell-sample is imaged at one plane important

events occurring in the other planes can be missed.

This chapter discusses the design and implementation of a new microscope that overcomes

the above problems by simultaneously imaging two or more distinct focal planes within the

specimen. This is achieved by a modification of the emission pathway of a standard fluorescence

microscope, where multiple detectors are placed at specific, calibrated distances from the tube

lens. The new microscope is referred to as multifocal plane microscope or MUM for short. The

construction of MUM is simple and can be done with readily available off-the-shelf components.

As an application, the chapter discusses the use of MUM for tracking single molecules/particles

in 3D within a cellular environment. Analytical tools are introduced to estimate the 3D particle

locations and to characterize the accuracy with which the 3D locations can be determined.

By using the results derived in Chapter 2, it is shown that the MUM has improved depth

discrimination capability when compared to a regular optical microscope. As a result, the axial

location of the single particle can be determined with relatively high accuracy even when the

particle is close to the plane of focus. This capability is verified through simulations and from

experimental data.

The organization of this chapter is as follows. Section 4.2 deals with the design, con-

struction and calibration of the MUM. Section 4.3 discusses the improved depth discrimination

capability of the MUM and the implications for 3D single particle tracking. In Section 4.4,

a global estimation algorithm is introduced for determining the 3D location of single particles

from MUM data. The design, implementation and calibration of the MUM have been published

in [76, 77, 78]. The analysis pertaining to the improved depth discrimination capability has

been published in [36, 53].
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Figure 4.1. Principle of MUM.
Panel A shows the principle and schematic of a multifocal focal plane microscope. The figure
illustrates the effect of changing the position of the detector relative to the tube lens, which
results in imaging a plane that is distinct from the plane that is imaged by the detector posi-
tioned at the design location. Panel B shows simulated 3D images of single molecules acquired
at different defocus levels when imaged through a multifocal plane microscope. Here, the de-
focus levels are specified with respect to focal plane 1 and the distance between the two focal
planes in the object space is assumed to be 500 nm.

4.2 Principle of MUM

Figure 4.1A shows a schematic illustrating the principle behind MUM. Here, the sample

is illuminated in widefield mode and the light collected from the sample is split into two paths

by a beam splitter. In each path the split light is focused onto a detector by a tube lens. The

detector is located at a specific calibrated distance from the tube lens, and this distance is

different in every light path. As a result of this, the detectors capture images of distinct planes

within the specimen. For example, if one of the detectors is located at the design position (i.e.,

focal plane of tube lens) and the other detector is shifted towards (away from) the tube lens,

then the detector at the shifted location will image a plane in the specimen that is above (below)

the plane imaged by the detector at the design position. In the schematic shown in Figure 4.1A,
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two distinct planes can be simultaneously imaged. By introducing additional beam splitters

in each light path, the design can be modified to image more than two planes. Presently, a

multifocal plane microscope has been constructed that can image up to four distinct planes (see

Fig. 4.2).

Figure 4.2. Schematic of a MUM setup that can image upto four distinct planes.

Now, consider a point source which lies between the two focal planes that are simulta-

neously imaged. Because the point source is out of focus with respect to both focal planes,

each of the detectors will record a defocused image. Figure 4.1B shows the intensity profile of

simulated images at various defocus levels for a two plane imaging setup. Here, the defocus

level is specified with respect to focal plane 1. If we only have images acquired from focal plane

1, which pertains to the imaging scenario in a regular widefield microscope, then we see that for

a range of defocus levels (0 - 250 nm), the images show negligible change in their shape thereby

providing very little information about the depth of the point source. On the other hand, if we

also consider images acquired from focal plane 2 then for the same range of defocus, the images
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acquired at focal plane 2 show significant change in the shape thereby providing relatively more

information about the depth of the point source when compared to images acquired at focal

plane 1.

4.2.1 Construction of MUM

The implementation of MUM is straightforward and can be done in any widefield mi-

croscope. Here, the details of the implementation that was carried out with Zeiss microscopes

are described. Two different multifocal plane imaging configurations were implemented. The

first configuration supported simultaneous imaging of two distinct planes within the specimen.

A Zeiss dual video adaptor (Part # 1058640000) was attached to the bottom port of a Zeiss

Axiovert 100 microscope and two EM CCD cameras (iXon DV887, Andor Technologies, South

Windsor, CT) were used. Here, one of the cameras was attached to the video adaptor through a

standard Zeiss camera-coupling adaptor (Part# 4561059901). The other camera was attached

to the video adaptor by using C-mount/spacer rings (Edmund Industrial Optics, Barrington,

NJ) and a custom machined camera-coupling adaptor (which is identical to but shorter than a

standard Zeiss camera-coupling adaptor).

The second configuration supported simultaneous imaging of up to four distinct planes

within the specimen. Here, a Zeiss video adaptor was first attached to the side port of a Zeiss

Axiovert 200 microscope. Then two Zeiss video adaptors were concatenated by attaching each

of them to the output ports of the first Zeiss video adaptor. Four high resolution CCD cameras

(2 ORCA-ERs, 2 C8484-05, Hamamatsu, Bridgewater, NJ) were attached to the output ports of

the concatenated video adaptors by using C-mount/spacer rings and custom machined camera

coupling adaptors.

To image more than four planes, the procedure described above can be repeated by

concatenating additional video adaptors. It should be pointed out that the design of the

input and output ports of the Zeiss video adaptor allows them to be concatenated. If dual
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video adaptors from other vendors are used, then concatenation of video adaptors may not be

possible, thereby limiting the implementation to image only two distinct planes.

4.2.2 Demonstration of simultaneous multifocal plane imaging

To verify if the above proposed design can image distinct planes, an imaging experiment

was carried out. Images of 100 nm beads (Polysciences Inc. Warrington, PA) were acquired

in a multifocal plane microscope that was configured to image two distinct planes within the

specimen. Here, one of the cameras (camera-1) was positioned at the focal plane of the tube

lens, i.e., the detector position in a regular microscope setup, and the other camera (camera-2)

was positioned 8 mm towards the tube lens from the parfocal position. During the acquisition,

the objective lens was moved in 25 nm increments by a piezo focusing device (Polytec PI,

Auburn, MA). Fig. 4.3A shows a montage of bead images acquired with the MUM. The bead

is clearly seen to be in focus at different positions of the objective z-focus. This shows that the

imaging system indeed produces images at different focal planes.

4.2.3 Determination of focal plane separation

An important aspect of MUM is the calibration of the distances between the different

focal planes that are being simultaneously imaged. To do this, a sample containing 1µm beads

(Polysciences Inc, Warrington, PA) in water was imaged in a MUM setup. Here a two plane

imaging setup was used where one of the cameras (camera-1) was positioned at the focal plane

of the tube lens and the other camera (camera-2) was moved towards the tube lens in steps of

1 mm. At each position of camera-2, a 3D image stack of an isolated bead was simultaneously

acquired in both cameras while the z-focus of the objective lens was changed in 25 nm steps by

a piezo focusing device (Polytec PI, Auburn, MA). For each camera, the fluorescence intensity

of the bead was plotted as a function of the piezo z-position and a low order polynomial was fit

around the maxima of the intensity plot to find the peak (see Fig. 4.3B). Then the difference

between the z-positions of the peaks for each camera was calculated and this was plotted as

a function of camera-2 position. The resulting plot provides a calibration graph which relates
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A

B C

Figure 4.3. Calibration of MUM.
Panel A shows a montage of images taken of a 100-nm-diameter fluorescent bead with a MUM
setup capable of imaging two distinct planes. One of the cameras (Camera 1) was positioned at
the focal plane of the tube lens, whereas the other camera (camera 2) was positioned 8.8 mm
away from the focal position toward the tube lens corresponding to a 1 µm distance between the
two focal planes (based on calibration data obtained from Panel C). The top row shows images
acquired by camera 2 whereas the bottom row shows images acquired by camera 1. The images
were taken at different positions of the z-focus of the objective. It is clearly seen that the bead is
in focus at different planes for the two cameras, thereby confirming that the MUM setup allows
the imaging of different focal planes. Panel B shows the plot of the fluorescent intensities of the
images acquired as in Panel A and plotted against objective z-focus levels. Here images were
acquired at 25-nm increments. The fluorescence intensity plots have different peaks indicating
that the focal planes for the two cameras are different. Panel C shows the calibration graph
obtained for the MUM setup. For a given position of camera-1, the measurement of the distance
between the peaks of the plots shown in Panel B gives a measurement of the difference in the
focal planes between camera 1 and camera 2. For different positions of camera 2, analyses of the
images were carried out as in Panel B that result in estimates of the difference in focal planes
between the two cameras. The current plot reveals a linear relationship between the position
of camera 2 (X mm) and the difference in focal planes between the two cameras (Y µm), given
by Y = 0.113X.
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the distance between the two focal planes in the object space to the location of camera-2 in the

image space (see Fig.4.3C).

Figure 4.4. Improved depth discrimination capability of MUM.
Panel A (B) shows the variation of the 3D localization measure of z0 (x0/y0) as a function of
the defocus level for a conventional widefield microscope (◦) and for a multifocal microscope
that can image two distinct planes (∗,�). In all the plots the numerical aperture of the objective
lens is set to na = 1.45, the wavelength is set to λ = 0.665 µm, the pixel array size is set to
11 × 11, the pixel size is set to 16 µm × 16 µm, the X-Y location coordinates of the particle
are assumed to coincide with the center of the pixel array, the background level is set to 300
photons/pixel/s, the exposure time is set to 1 s, the mean and standard deviation of the readout
noise is set to 0 e− and 8 e− rms, respectively. For the conventional widefield microscope, the
photon detection rate is set to 5000 photons/s. For the multifocal plane microscope, the photon
detection rate is either set to 2500 photons/s (∗) or set to 5000 photons/s (�) and the distance
between the two planes in the object space was set to be 500 nm.

4.3 Depth discrimination and 3D localization measure

In Section 4.2, qualitative explanation was provided for the improved depth discrimina-

tion capability of MUM (4.1B). Here, we provide a quantitative evaluation of the improvements

from the point of view of 3D tracking. One of the fundamental questions in 3D particle tracking

experiments concerns the accuracy with which the location of a particle/object of interest can
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be determined. By making use of the results derived in Chapter 2, analytical expressions are

derived to calculate the 3D localization measure, i.e., the limit to the 3D localization accuracy,

of the single particle that is imaged through a MUM (see Section 4.5.5 for details).

Figure 4.4A shows the 3D localization measure for the z0 coordinate as a function of the

defocus level for a regular microscope setup. Here, we assume imaging conditions typical of

single-molecule experiments and consider a point object emitting 665 nm light that is imaged by

a 1.45 NA objective lens. From the figure we see that as the point object comes into focus, the

3D localization measure deteriorates and becomes infinitely large thereby implying that there

exists significant uncertainty in determining the z0 (axial) coordinate of a point object when it

is close to the plane of focus ([36, 37]). For instance, our result predicts that defocus levels of

200 nm, 100 nm, 50 nm and 10 nm can be determined with an accuracy no better than 14.2 nm,

26.4 nm, 51.8 nm and 357.2 nm, respectively, when 5000 photons are collected from the object.

This implies that defocus levels of 100 nm and 200 nm can be determined with moderate to high

accuracy. In contrast, for defocus levels of 10 nm and 50 nm, the predicted accuracy is either

equal to or much greater than the corresponding defocus level itself, thereby implying poor

accuracy in determining the defocus level. As a result of this, it is problematic to carry out 3D

single-particle tracking in a regular widefield microscope especially when the single particle is

near the plane of focus. Figure 4.4A also shows the 3D localization measure of z0 for the MUM

that can simultaneously image two distinct planes. In stark contrast to a regular microscope,

the 3D localization measure of z0 for the MUM does not deteriorate as the point object comes

into focus. In fact, the 3D localization measure of z0 remains relatively constant for a range

of defocus levels. For example, our result predicts that defocus levels of 200 nm, 100 nm, 50

nm and 10 nm, can be determined with an accuracy no better than 14.4 nm, 15 nm, 15.5 nm

and 15.8 nm, respectively, with the MUM when 2500 photons are collected in each plane. This

implies that the axial location of the point object can be determined with relatively the same

level of accuracy for a range of defocus levels using the MUM. It should be pointed out that

the 3D localization measure depends on the photon count, as a result of which the predicted
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accuracy for the MUM can be further improved by collecting more photons (see Figure 4.4A).

We have also investigated the 3D localization measure of the x0/y0 coordinates and we observe

a similar behavior to that of the z0 coordinate (see Fig. 4.4B). The investigation of the 3D

localization measure presented here, can be extended for multifocal plane configurations that

can simultaneously image more than two planes (see Chapter 4 Appendix for details).

4.4 Verification of improved depth discrimination capability

The results given in the previous section are predictions based on the theory concerning

the Fisher information matrix. To verify if these predictions can be attained in practice with

the MUM we carried out test experiments on simulated data for a GFP and a QD label that

is imaged in a two plane imaging setup. Here, images of the GFP/QD label were simulated

for different defocus levels. A global estimation algorithm was implemented to extract the

defocus level from simulated data. The details of the estimation algorithm are given in the

Chapter Appendix (see Data Analysis Section). The results of the analysis are shown in Fig.

4.5 and table 4.1 lists the mean and standard deviation of the defocus level estimates along

with predicted 3D localization measure (see Chapter Appendix for details). From the table we

see that the standard deviation of the defocus-level estimates comes consistently close to the

predicted 3D localization measure thereby validating the improvement in depth discrimination.

For example, for the GFP label, defocus levels of 10 nm, 20 nm, 50 nm, 100 nm and 200

nm, are estimated with an accuracy of 15.37 nm, 15.17 nm, 14.09 nm, 15.17 nm and 13.91

nm, respectively. These values are in reasonable agreement to the predicted 3D localization

measure, which, for the above defocus levels are, 14.21 nm, 14.25 nm, 14.34 nm, 14.43 nm and

14.51 nm, respectively. Note that the defocus level estimates for the GFP label show greater

variability than the QD label (See Fig. 4.5). That is the standard deviation of the defocus level

estimates for the GFP label is greater than that for the QD label. This behavior is due to the

fact that the total number of detected photons for the GFP images wase assumed to be 1500
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Figure 4.5. Results of defocus level estimation for simulated and experimental data.
The figure shows the results of the global estimation of the defocus levels from multifocal plane
data. Panels A and B show results from simulated data for GFP and QD label, respectively,
and Panel C shows results from experimental data. In all panels, the imaging data is acquired
from a two plane imaging setup. The distance between the two focal planes in the object space
is set to 350 nm in panel A, 500 nm in panel B and 300 nm in panel C. For data simulation,
the pixel size is set to 16µm×µm, the pixel array size is set to 11× 11, the numerical aperture
is set to na = 1.45, the wavelength is set to λ = 520 nm for GFP label and λ = 665 nm for
the QD label, the background photon count is set to 150 photons/pixel/s for the GFP label
and 300 photons/pixel/s for the QD label, the mean and standard deviation of the readout
noise is set to 0 e−/pixel and 8 e− /pixel, respectively, the photon detection rate is set to 1500
photon/s for the GFP label and 10000 photons/s for the QD label, the expsoure time is set to
1 s, the X-Y coordinates is assumed to concide with the center of the pixel array and the noise
statistics is assumed to be the same for all pixels.
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per focal plane image, whereas for the QD label it was assumed to be 10,000 per focal plane

image.

We next conducted test experiments on experimental data. Here, quantum dot labeled

IgG (QD-IgG) molecules were pulsed in human endothelial cells that were transiently trans-

fected with the IgG receptor, FcRn [79]. The presence of FcRn resulted in a three dimensional

distribution of QD-IgG molecules within the cell. The cell sample was fixed, mounted on a

microscope slide and imaged in a two plane imaging setup. To obtain images of the QD label

at different defocus levels, the objective lens was moved with a piezo-nanopositioner in 50 nm

steps and at each piezo position several images of the two planes were simultaneously captured.

The images of the QD label acquired at the two focal planes were then analyzed with the

maximum global estimation algorithm that was used above. Fig. 4.5C shows the results of the

analysis for one of the QD labels. From the figure we see that the estimation algorithm is able

to follow the stepwise movement of the piezo nanopositioner. For instance, defocus levels of

15 nm, 73 nm, 130 nm, and 194 nm, are estimated with an accuracy of 14.84 nm, 17.6 nm,

13.6 nm and 13.9 nm, respectively. For the above estimated defocus levels, the predicted 3D

localization measure values are 8.8 nm, 8.7 nm, 8.65 nm and 7.98 nm, respectively. Unlike

simulated data, the accuracy of the defocus level estimates for experimental data is not very

close to the predicted 3D localization measure. This behavior can be attributed to the fact that

in the experimental data the standard deviation is calculated from a relatively small number

of defocus level estimates (N = 12), whereas for the simulated data the standard deviation is

calculated from a large number of defocus level estimates (N = 70).

4.5 Appendix to Chapter 4

4.5.1 Determination of appropriate plane spacing

For tracking experiments, the distance between the membrane plane and the top plane

was determined in the following manner. First the 3D localization measure for different defocus

levels was calculated at various focal plane spacings. Then the appropriate plane spacing was
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Table 4.1. Results of global estimation from MUM data

Defocus Mean of Std-dev of 3D localization Label
level z0 [nm] z0 estimates [nm] z0 estimates [nm] measure of z0 [nm]

0 0.63 12.01 14.16 GFP

10 9.38 15.37 14.21 GFP

20 18.99 15.37 14.25 GFP

50 49.28 14.09 14.34 GFP

75 72.85 14.77 14.40 GFP

100 98.36 15.17 14.43 GFP

150 148.85 15.11 14.46 GFP

200 199.53 13.91 14.51 GFP

250 251.57 13.67 14.45 GFP

0 0.77 5.50 5.66 QD

10 10.37 5.97 5.65 QD

25 24.90 5.25 5.64 QD

50 49.86 5.95 5.60 QD

75 74.83 5.32 5.54 QD

100 98.83 4.98 5.48 QD

150 149.95 4.65 5.35 QD

200 200.75 4.49 5.25 QD

250 250.05 5.01 5.21 QD

The table lists the results of the global estimation for simulated multifocal plane data for a GFP
and a QD label. The data is simulated for a two plane imaging setup, where the focal plane
spacing is 350 nm for the GFP label and 500 nm for the QD label. For each defocus level, the
standard deviation is calculated from 70 estimates of z0, which are shown in fig. 4.5. For the
GFP (QD) label, the photon detection rate is set to 1500 (10000) photons/s, the wavelength
is set to 520 nm (665 nm), the background is set to 150 (300) photons/pixel/s, the numerical
aperture is set to 1.45, the exposure time is set to 1 s, the pixel size is set to 16 µm × 16 µm,
the ROI size is set to 11× 11, the mean and standard deviation of the readout noise is set to 0
e− and 8 e−/pixel, respectively, the magnification is set to 100, the X-Y coordinates is set to
be equal to the center of the ROI for all the focal plane images and the noise statistics is set to
be the same for all pixels. The global estimation is carried out by estimating the 3D location
coordinates (x0, y0, z0) from the simulated MUM data.
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set to be that value at which the 3D localization measure was constant for a range of defocus

levels.

4.5.2 Imaging experiments

Images were acquired on Axiovert microscopy (Zeiss, Thornwood, NY) imaging worksta-

tions that were modified to simultaneously image different focal planes within the specimen.

with a 100x, 1.45 NA α-plan Fluar Zeiss objective lens. For cellular imaging experiments the

sample was illuminated in epifluorescence with a 488 nm laser line (Reliant 150M, Laser Physics,

Salt Lake City, UT).

4.5.3 Cells, transfection and reagents

Human microvasculature endothelial cell line HMEC1.CDC ([80]), generously provided

by F. Candal at the Centers for Disease Control (Atlanta, GA), was used for all experiments.

Plasmids to express fusion protein constructs of wild type human FcRn (pHluorin-hFcRn)

and mutant human FcRn (GFP-mut hFcRn and mut hFcRn-mRFP), and the construct of

human beta2 microglobulin (hb2m) have been described previously ([81, 78]). HMEC cells were

transiently transfected with protein expression plasmids using Nucleofector technology (Amaxa

Systems, Cologne, Germany). Quantum dot 655 coated with streptavidin (QD) and alexa555

labeled transferrin were purchased from Invitrogen Corporation (Carlsbad, CA). Mutant human

IgG1 (MST-HN) was expressed and purified as described previously ([82]). QD-IgG complexes

were prepared by mixing QD and site-specifically biotinylated IgG at a molar ratio of 1:0.5 of

QD to IgG.

4.5.4 Data analysis

All data processing was carried out in MATLAB and viewed using the Microscopy Image

Analysis Tool (MIATool) software package1. To determine the defocus level of the quantum

dots, a small region of interest containing the QD image was selected from each focal plane

1http://www4.utsouthwestern.edu/wardlab/miatool
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image. Prior to curve fitting, the pixel values in the selected ROIs were converted to photon

counts by subtracting the constant offset from each pixel value and then multiplying it by the

conversion factor. The constant offset and the conversion factor are specific to a given camera

and are typically reported by the camera manufacturer. The defocus level of the QD was then

determined by fitting image profiles based on 3D point spread function models to the selected

ROIs through a global estimation algorithm (lsqnonlin) implemented using the optimization

toolbox of Matlab.

For a two plane imaging setup, the 3D PSF based image profiles ν1
θ and ν2

θ are given by
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where Ck (Cl) denotes the region on the detector plane occupied by the kth (lth) pixel, k =

1, . . . , N1, l = 1, . . . , N2, and N1 and N2 denote the total number of pixels in the ROIs selected

from plane 1 and plane 2, respectively.

In the above expressions z0 denotes the axial location of the point source, (x01, y01) and

(x02, y02) denote the lateral (X-Y) location of the point source corresponding to focal plane 1

and focal plane 2, respectively, Λ0 denotes the photon detection rate, t denotes the exposure

time, c is a constant, δzf denotes the distance between the two focal planes in the object space,

α := 2πna/λ, M1 and M2 (B1 and B2) denote the lateral magnification (background component)

corresponding focal plane 1 and focal plane 2, respectively, and θ = (x01, y01, x02, y02, z0, α, A)

denotes the parameters that are estimated. The magnification M1 is set to the magnification of

the objective lens, and the magnification M2 is determined as described in Section 4.5.4.1 (see

below). The above expressions of µ1
θ and µ2

θ make use of the Born and Wolf model of the 3D point

spread function ([83]) for which the phase aberration term Wz0 is given by Wz0(ρ) := πn2
az0

λnoil
ρ2

for ρ ∈ [0, 1]. The constant c specifies the fraction of photons detected at focal plane 2 relative

to focal plane 1. Here the value of c is set to during curve fitting.
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4.5.4.1 Magnification correction

In a multifocal plane microscope the lateral magnifications of the focal planes are different

([76]). To determine the magnification for each plane, an experiment was carried out where

z-stack images of 100 nm tetraspeck fluorescent beads (Invitrogen, Carlsbad, CA) were acquired

on the mutlifocal plane microscope setup. One of the focal planes was arbitrarily chosen as

reference and for each focal plane the frame that contains the in-focus image of the beads was

selected. Then for a given image, the X-Y location of arbitrarily selected beads was determined

by independently fitting a 2D Airy profile to their image and the distance between the two beads

was then determined. The ratio of the distance between the two beads in a given focal plane

to the distance between the same two beads in the reference plane was calculated. This was

repeated for several bead pairs and the average of all the ratios provided the (de)magnification

factor for that focal plane.

4.5.5 Fisher information matrix for a MUM setup

In a multifocal plane microscope, N distinct planes within the specimen are imaged

and the acquired data consists of N images. The N images can be assumed to be statistically

independent of each other. Therefore, the analytical expression of the Fisher information matrix

corresponding to a general parameter estimation problem in a multifocal plane microscope is

given by

Itot(θ) := Iplane1(θ) + · · · + IplaneN
(θ), θ ∈ Θ, (4.3)

where Iplanek
(θ), k = 1, . . . , N , denotes the Fisher information matrix pertaining to the data

acquired from the kth plane and the expression for Iplanek
(θ) is analogous to that given for a

conventional microscope. In the present work, the 3D location estimation for quantum dots

is carried out by simultaneously imaging two distinct planes within the specimen. For this
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configuration, eq. 4.3 becomes Itot(θ) := Iplane1(θ) + Iplane2(θ), θ ∈ Θ, where the general

expression for Iplane1(θ) and Iplane2(θ) is given by
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where νj
θ(k, t) := µj

θ(k, t) + βj(k, t), k = 1, . . . , Np, θ ∈ Θ, t ≥ t0 and j = 1, 2. Here, [t0, t]

denotes the exposure time interval, µ1
θ(k, t) and µ2

θ(k, t) (β1(k, t) and β2(k, t)) denote the mean

detected photon count of the object of interest (background component) at the kth pixel in the

image of focal plane 1 and focal plane 2, respectively, k = 1, . . . , Np, t ≥ t0, and η1
k and η2

k

(σ1
w,k and σ2

w,k) denote the mean (standard deviation) of the readout noise at the kth pixel in

the image of focal plane 1 and focal plane 2, respectively.

4.5.5.1 Calculation of the Fisher information matrix

In this section we present results for the calculation of the Fisher information matrix for

a multifocal plane microscope that can image up to two distinct planes (N = 2). The analytical

expressions for µ1
θ and µ2

θ are given by

µ1
θ(k, t) =

Λ0t

M2
1

∫

Ck

qz0

(
x

M1
− x01,

y

M1
− y01

)

dxdy, k = 1, . . . , Np, t ≥ t0, θ ∈ Θ,

µ2
θ(k, t) =

cΛ0t

M2
2

∫

Ck

qz0−δzf

(
x

M2
− x02,

y

M2
− y02

)

dxdy, k = 1, . . . , Np, t ≥ t0, θ ∈ Θ,

where qz0 denotes the image function of the object, c is a constant, Λ0 denotes the photon

detection rate of the object t denotes the exposure time, δzf denotes the plane spacing between

the two focal planes in the object space, and M1 and M2 denote the lateral magnification in the

two focal planes. The image of a self-luminous point source (e.g., fluorescent single particle)
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that is located at (0, 0, z0) in the object space and imaged by a fluorescence microscope is given

by ([84])

Iz0(x, y) =

∣
∣
∣
∣
C

∫ 1

0
J0

(
2πna

λ
(
√

x2 + y2)ρ

)

exp(jWz0(ρ))ρdρ

∣
∣
∣
∣

2

, (4.5)

where (x, y) ∈ R
2 denotes an arbitrary point on the detector plane, C is a constant with

complex amplitude, λ denotes the wavelength of the detected photons, na denotes the numerical

aperture of the objective lens, J0 denotes the zeroth order Bessel function of the first kind and

Wz0(ρ), ρ ∈ [0, 1], denotes the phase aberration term. We note that eq. 4.5 provides a general

expression for several 3D point spread function models ([84]) which describe the image of a

point-source/single-molecule and are based on scalar diffraction theory. Rewriting eq. 4.5 in

terms of an image function, we have

qz0(x, y) =
1

Cz0

(
U2

z0
(x, y) + V 2

z0
(x, y)

)
, (x, y) ∈ R

2, z0 ∈ R, (4.6)

where

Uz0(x, y) :=

∫ 1

0
J0

(
2πna

λ
(
√

x2 + y2)ρ

)

cos(Wz0(ρ))ρdρ, (x, y) ∈ R
2, z0 ∈ R,

Vz0(x, y) :=

∫ 1

0
J0

(
2πna

λ
(
√

x2 + y2)ρ

)

sin(Wz0(ρ))ρdρ, (x, y) ∈ R
2, z0 ∈ R,

Cz0 =

∫

R
2
(U2

z0
(x, y) + V 2

z0
(x, y))dxdy, z0 ∈ R. (4.7)

In the above equation Uz0 (Vz0) denotes the real (imaginary) part of Iz0 given in eq. 4.5. The

term Cz0 is the normalization constant, and the 1/Cz0 scaling in eq. 4.6 ensures that

1

M2

∫

R
2
qz0

( x

M
− x0,

y

M
− y0

)

dxdy = 1, (x0, y0, z0) ∈ Θ,

where M denotes the lateral magnification of the objective lens. Through numerical calcula-

tions, it was found that the normalization constant is approximately equal to the ratio π/α2,

where α = 2πna/λ for z0 values in the range of [0, 2µm].

Although, not shown explicitly, it can be verified that qz0 and the partial derivative of

qz0 with respect to z0 are laterally symmetric along the x and y axes with respect to (0, 0), for

z0 ∈ R.
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To calculate the 3D point spread function, we require an explicit analytical expression

for the phase aberration term Wz0 and here, we set Wz0 to be

Wz0(ρ) :=
π(na)

2z0

noilλ
ρ2, ρ ∈ [0, 1], z0 ∈ R, (4.8)

where na denotes the numerical aperture of the objective lens, noil denotes the refractive index

of the immersion oil and z0 denotes the axial coordinate of the single molecule in the object

space. The above expression for Wz0 corresponds to the classical ‘Born and Wolf’ 3D point

spread function model ([56]).

To calculate the Fisher information matrix, we also require the partial derivatives of µj
θ,

j = 1, 2, with respect to the components of θ and and these are given below.

∂µ1
θ(k, t)

∂x01
=

2α3At

πM1
×

2
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dρ

«
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3
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+

ZZ

Ck

r1

„
Z 1

0

J0(
α

M1
r1ρ)sin(Wz0(ρ))ρdρ

«„
Z 1

0

J1(
α

M1
r1ρ) sin(Wz0(ρ))ρ2

dρ

«

dxdy

3

7

5
,

∂µ1
θ(k, t)

∂A
=

1

A
µ

1
θ(k, t),

where θ = (x0, y0, z0) ∈ Θ, k = 1, . . . , Np, α := 2πna/λ, r1 :=
√

(x − M1x01)2 + (y − M1y01)2,

Wz0(ρ) := πn2
aρ2z0

λnoil
, ρ ∈ [0, 1], and

∂Wz0 (ρ)
∂z0

:= πn2
aρ2

λnoil
, ρ ∈ [0, 1]. The expression for the partial

derivative of µ2
θ is analogous to that of µ1

θ expect that in the above equations M1 is replaced

by M2, x01 and y01 are replaced by x02 and y02, respectively, r1 is replaced by r2, where

r2 :=
√

(x − M2x02)2 + (y − M2y02)2, z0 is replaced by z0 − δzf , and A is replaced by cA.



CHAPTER 5

REDEFINING THE RESOLUTION LIMITS IN OPTICAL MICROSCOPY

5.1 Introduction

Rayleigh’s resolution criterion, although extensively used, is well known to be based

on heuristic notions and is inadequate for current microscopy techniques. This inadequacy

has necessitated a reassessment of the resolution limits of optical microscopes. By using the

general results given in Chapter 2, a new resolution measure is obtained that overcomes the

shortcomings of Rayleigh’s criterion and provides a quantitative measure of a microscope’s

ability to determine the distance between two point sources. The new result is referred to as the

fundamental resolution measure (FREM). Unlike Rayleigh’s criterion, the FREM predicts that

the resolution of a microscope can be improved by increasing the number of photons collected

from the point sources. The FREM is given in terms of quantities such as the expected number

of detected photons, the numerical aperture of the objective lens and the wavelength of the

detected photons. The effect of various experimental factors on the FREM is also investigated.

The new resolution measure is experimentally verified by measuring distances of closely spaced

single molecules. These results show that distances well below Rayleigh’s resolution limit can

be determined with an accuracy as specified by the new resolution measure.

The organization of this chapter is as follows. Section 5.2 discusses the FREM, which

provides the best case scenario for resolving two infocus point sources that emit incoherent,

unpolarized light. Section 5.3 discusses how deteriorating experimental factors such as pixela-

tion of the detector and noise sources affect the FREM. The derivation of the FREM assumes

that the acquired data contains photons detected from both single molecules. In many situ-

ations, the single molecule pair exhibits double-step photobleaching behavior. In such cases,

the distance of separation between the two single molecules can be estimated with relatively

high accuracy when using the data collected after the first photobleaching step. In Section 5.4,

105
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a detailed analysis is presented, which shows how the use of additional information (i.e., data

collected after the first photobleaching step) improves the resolution measure. Section 5.5 deals

with the experimental verification of the new resolution measure. The derivation of the FREM

in Section 5.2 considers a specific imaging condition, i.e., two infocus point sources that emit

unpolarized incoherent light. Section 5.6 deals with the generalization of the FREM (g-FREM)

and an analytical expression is given which is applicable to a wide variety of imaging scenar-

ios. Section 5.7 discusses the implications of the new resolution measure for single molecule

experiments. Specific examples are provided to illustrate how the new result can be used to

evaluate the feasibility of carrying out single molecule imaging studies that involve distance

determination between two single molecules.

The detailed derivation of the results given in Sections 5.2 - 5.6 can be found in the

Appendix at the end of this chapter. All the results presented in this chapter have been

published in [52].

5.2 Fundamental resolution measure (FREM)

Our approach to the derivation of the resolution measure is to obtain a bound/limit to

the accuracy with which the distance between two point sources can be estimated based on

the acquired data. Analogous to Rayleigh’s criterion, we consider an optical microscope setup

that images two identical, self-luminous, in-focus point sources emitting unpolarized, incoherent

light. The analytical expression of the fundamental resolution measure (FREM) for this imaging

condition is given by (see Chapter Appendix for derivation)

δd :=
1

√

4π · Λ0 · (t − t0) · Γ0(d)
· λ

na
, (FREM) (5.1)

where λ denotes the emission wavelength of the detected photons, na denotes the numerical

aperture of the objective lens, Λ0 denotes the photon detection rate (intensity) per point source,
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[t0, t] denotes the acquisition time interval, and Γ0(d) is given by (see Appendix at the end of

this chapter for derivation)

Γ0(d) :=

∫

R
2

1
J2
1 (αr01)

r2
01

+
J2
1 (αr02)

r2
02

×

(

(x +
d

2
)
J1(αr01)J2(αr01)

r3
01

− (x − d

2
)
J1(αr02)J2(αr02)

r3
02

)2

dxdy, (5.2)

with r01 :=
√

(x + d/2)2 + y2, r02 :=
√

(x − d/2)2 + y2, Jn denoting the nth order Bessel

function of the first kind and α := 2πna/λ. According to Rayleigh’s criterion, the minimum

resolvable distance between two point sources is given by 0.61λ/na. The FREM, on the other

hand, provides a more complex expression, which, in addition to the dependence on the ratio

λ/na, exhibits an inverse square root dependence on other factors, i.e., the expected number

of detected photons (Λ0 · (t − t0)) and the term Γ0(d) given by eq. 5.2. Note that the FREM

depends on the distance of separation d through the term Γ0(d). Moreover, the presence of the

ratio λ/na in Γ0(d) through the term α (= 2πna/λ) shows that the FREM exhibits a non-linear

dependence on λ/na.

The stochastic framework used to obtain the FREM models the photon emission (de-

tection) process as a random process (shot noise process). The spatial locations at which the

photons hit the detector are assumed to be randomly distributed according to the image profiles

of the point-sources/single-molecules. This framework considers an optical microscope setup

in which the detector provides the time points and the spatial coordinates of every detected

photon without adding any extraneous noise. For any imaging condition, this can be thought

of as an idealization of current imaging detectors in which the presence of finite-sized pixels

and measurement noise deteriorates the acquired data. Thus the resolution measure derived

within this framework provides a result that is fundamental for the given imaging condition.

In the present context, the FREM is obtained for imaging conditions analogous to those of

Rayleigh’s criterion. Hence the spatial distribution of the detected photons from each point

source is described by the Airy profile ([56]).
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Figure 5.1. Behavior of the FREM as a function of distance and photon count.
Panel A shows the FREM as a function of the distance of separation between two point-
sources/single-molecules. The inset shows the same for a distance range of 1 − 50 nm. Panel
B shows the PREM as a function of the expected number of detected photons per molecule for
a distance of separation of 10 nm. In both panels, the PREM is calculated for a pair of GFP
molecules (∗) and for a pair of Cy5 molecules (◦). For all the plots, the numerical aperture is
set to be na = 1.45 and the wavelength of the detected photons from the GFP (Cy5) molecule
is set to be λ = 520 nm (λ = 690 nm). In Panel A, the photon detection rate Λ0 of each
GFP/Cy5 molecule is set to be Λ0 = 3000 photons/s and the acquisition time is set to be 1 s.

The new resolution measure FREM predicts how accurately the distance d between two

point sources can be resolved. A small numerical value for the FREM predicts a high accuracy in

determining d, while a large numerical value of the FREM predicts a low accuracy in determining

d. Fig. 5.1A shows the behavior of the FREM as a function of the distance of separation between

a pair of GFP molecules (λ = 520 nm) and for a pair of Cy5 molecules (λ = 690 nm) that are

imaged with an objective lens of numerical aperture 1.45. In the figure, it is assumed that the

expected photon count is the same for both the fluorophores. For the GFP molecules, Rayleigh’s

criterion predicts the smallest resolvable distance to be about 220 nm (≈ 0.61λ/na). In contrast,

Fig. 5.1A shows that the FREM has a small numerical value for distances in the range of 50

- 220 nm, which are well below Rayleigh’s criterion. For distances less than 50 nm, however,

the FREM deteriorates (i.e. increases) significantly with decreasing distance of separation (see

Fig. 5.1A inset). In particular, as the distance of separation decreases to zero, the FREM
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becomes infinitely large, since the term Γ0(d) (eq. 5.2), which appears in the denominator

of the FREM, tends to zero. An analogous behavior of the FREM is also seen for the Cy5

molecules. Note that the numerical value of the FREM for the Cy5 molecules is consistently

larger than that of the GFP molecules for the same expected photon count per fluorophore.

For example, the FREM predicts that a distance of 10 nm between two GFP molecules can be

determined with an accuracy not better than ±6 nm when the expected photon count per GFP

molecule is 3000. On the other hand, for the same distance of separation and photon count per

molecule, the FREM predicts an accuracy not better than ±9 nm for the Cy5 molecules. In

the case of the Cy5 molecules, however, the numerical value of the FREM is comparable to the

distance of separation itself. Since the FREM exhibits an inverse square root dependence on the

expected number of detected photons, this deterioration can be compensated for by increasing

the expected number of detected photons, as shown in Fig. 5.1B. Thus in the above example, if

we increase the expected photon count per Cy5 dye molecule to 104, then the FREM predicts

that a distance of 10 nm can be determined with an accuracy not better than ±5 nm.

5.3 Practical resolution measure (PREM)

The FREM provides the best case scenario for a microscope setup, where experimental

factors that potentially deteriorate the acquired data were not taken into account. We next

investigate how the resolution measure is affected by such experimental factors. Here we obtain

an analytical expression for the resolution measure that takes into account these experimental

factors. We refer to this result as the practical resolution measure (PREM). The PREM can

be thought of as an extension to the FREM. For instance, the PREM takes into account

the presence of additive noise sources, namely Poisson and Gaussian noise. Poisson noise is

used to model the spurious photons in the acquired image which, for example, arises due to

autofluorescence of the sample and dark current of the detector ([31]). Gaussian noise is used

to model the measurement noise in the acquired data which, for example, arises during the

readout process in the detector ([31]). The additive Poisson noise considered here is distinct
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from the shot noise, which describes the statistics of the photon detection process from the

single molecules and this is already accounted for by the FREM. Aside from these extraneous

noise sources, the PREM also takes into account the effect of pixelation of the detector (see

Chapter Appendix for the details).

Fig. 5.2A shows the behavior of the PREM as a function of the distance between two

Cy5 molecules in the presence and absence of noise sources for a pixelated detector. The

figure also shows the FREM for reference. Note that even in the absence of extraneous noise

sources the numerical value of the PREM is consistently greater than that of the FREM due

to the pixelation of the detector. Moreover, in the presence of noise sources this behavior of

the PREM becomes more pronounced. In particular, for very small distances (≤ 50 nm), the

numerical value of the PREM is at least 3-5 times greater than that of the FREM (see Fig. 5.2A

inset). Analogous to Fig. 5.1B, the deterioration of the PREM at very small distances can be

compensated for by collecting more photons from the point sources (Fig. 5.2B). In contrast, for

distances in the range of 100 - 250 nm, which are below Rayleigh’s criterion (≈ 0.61λ/na ≈ 290

nm), the numerical value of the PREM approaches that of the FREM even in the presence of

noise, as shown in Fig. 5.2A. As an application of these results, consider a practical scenario

in which we require distances in the range of 50 nm - 200 nm to be resolved between two Cy5

molecules with an accuracy of at least 5 nm. From Fig. 5.2B, we know that to estimate a

distance of 50 nm with an accuracy not better than 5 nm, the PREM predicts the expected

number of detected photons per single molecule to be at least 15000. On the other hand,

from Fig. 5.2A we see that to estimate a distance of 200 nm with similar accuracy, the PREM

predicts the expected number of detected photons per single molecule to be at least 2500. Hence

to resolve distances in the range of 50 − 200 nm between two Cy5 molecules with an accuracy

not better than 5 nm, on average at least 15000 photons must be collected per single molecule.
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5.4 Improving the resolution measure by using additional spatial information

It was shown in Figs. 5.1B and 5.2B that the resolution measure can be improved by

increasing the number of detected photons from each of the point sources. In single molecule

experiments this is not always possible, since the fluorophores may photobleach. However, for a

single-molecule pair that exhibits a double-step photobleaching behavior, additional information

can be obtained from the photons collected from the fluorophore that remains after the first

photobleaching event ([48]). Fig. 3.2C shows the behavior of the resolution measure for a pair

of Cy5 molecules spaced 10 nm apart by taking into account the number of photons collected

before and after the first photobleaching event. Here the resolution measure is determined for an

imaging condition with numerical values analogous to those used in Fig. 3.2A. From the figure

we see that the resolution measure predicts an accuracy not smaller than ±6 nm to determine

a distance of 10 nm, when on average 5000 photons are collected from each fluorophore before

and after the first photobleaching event. This is in contrast to the case when the additional

information obtained from after the first photobleaching event is not used. In this case, the

resolution measure predicts an accuracy not smaller than ±40 nm to resolve a distance of 10

nm for the same photon count per fluorophore.

5.5 Experimental verification

The resolution measure provides a bound/limit to the smallest possible standard devia-

tion of any unbiased estimator of the distance between the point sources. To verify if this can

be attained in experiments, images of closely spaced Cy5 molecules were collected and their

distances of separation were estimated by using the maximum likelihood estimator. According

to Rayleigh’s criterion, the minimum resolvable distance is given by 0.61λ/na, which, in the

present case is about 290 nm. Table 5.1 lists the results of distance estimation along with the

predicted resolution measure for two pairs of single molecules. One of the single molecule pairs

has a mean distance of separation of 293 nm (data analysis 1), which is close to Rayleigh’s

criterion, and the other single molecule pair has a mean distance of separation of 207 nm (data
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analysis 2), which is below Rayleigh’s criterion (see Fig. 5.3). From the Table we see that for

each data analysis the standard deviation of the maximum likelihood estimates of the distance

comes close to the resolution measure. Note that the numerical values of the standard devi-

ations are themselves only estimates based on the acquired data. With larger data sets, the

agreement with the resolution measure is expected to increase further.

The above data sets were also analyzed by estimating the distances of separation through

the global maximum likelihood estimator, which used the additional spatial information avail-

able in the acquired data, i.e. the images collected after the first photobleaching event. Table

5.1 lists the results of the distance estimates (data analyses 3 and 4) for the Cy5 single-molecule

pairs analyzed above. From the table we see that the accuracy of the distance estimates ob-

tained by using the additional spatial information is consistently smaller than the accuracy

obtained when the additional information is not used (data analyses 1 and 2). This is also in

agreement with the resolution measure for the data sets. For example, in the case when the

additional spatial information is not used, the standard deviation of the distance estimates for

the Cy5 single-molecule pair with a mean distance of separation of 207 nm is equal to ±10.1

nm (data analysis 2). On the other hand, for the same single-molecule pair, when additional

spatial information is used the standard deviation of the distance estimates is equal to ±3.8

nm (data analysis 4). Table 5.1 also lists the mean end-to-end distance estimates of the DNA

molecular ruler, which are determined by using the global estimation approach (also see Fig.

5.4). From the table it can be seen that for each DNA data set the standard deviation of the

global maximum likelihood estimator comes close to the resolution measure. For example, in

data analysis 6 the standard deviation of the distance estimates is equal to ±8.7 nm and the

resolution measure predicts an accuracy not smaller than ±7.39 nm to resolve the distance of

12 nm. We note that in the same data set, if the additional spatial information is not used,

then the resolution measure predicts an accuracy not smaller than ±52 nm to resolve a distance

of 12 nm.
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Table 5.1. Experimental verification of the new resolution measure

Data Data Exposure Estimation N1 N2 Mean Std-dev Resolution
analysis set no. time method value of d measure for

(s) of d a pixelated
(nm) (nm) detector (nm)

1 1 3 direct 1 0 293 3.60 2.81

2 2 1 direct 1 0 207 10.10 7.01

3 1 3 global 3 3 293 1.87 1.36

4 2 1 global 2 2 211 3.80 4.41

5 3 1 global 6 6 12.5 5.20 6.85

6 4 1 global 4 4 14.8 8.77 7.39

Data sets 1 and 2 correspond to two closely spaced Cy5 molecules, and data sets 3 and 4 cor-
respond to the DNA molecular ruler. The experimental data used for estimating the distances
consists of time-lapse images of single-molecule pairs that exhibit a double-step photobleaching
behavior. In the direct estimation method each distance estimate is obtained from an image
that is acquired before the first photobleaching event. In the global estimation method, each
distance estimate is obtained from two summed images. One of the summed images is obtained
by adding N1 frames that are acquired before the first photobleaching event, and the other
summed image is obtained by adding N2 frames that are acquired after the first photobleaching
event. The data sets used in analyses 1 and 3 (2 and 4) are the same. For each data analysis,
the resolution measure is calculated for a pixelated detector in the presence of noise sources.

5.6 Generalization of the FREM

The FREM given in eq. 5.1 was derived for imaging conditions analogous to those of

Rayleigh’s criterion, which considered two equal intensity, in-focus point sources that emit

unpolarized, incoherent light. However, in several applications these conditions are not met, for

example, when using polarized illumination and detection ([9]). We now consider a situation

where the point sources can potentially have unequal intensities that vary as a function of

time, and where the image profiles of the point sources can be distinct. The expression for the

‘generalized’ fundamental resolution measure (g-FREM) is given by (see Appendix at the end

of this chapter for derivation)

[

1

4

∫ t

t0

∫

R
2

1

Λ1(τ)q1(x + d
2 , y) + Λ2(τ)q2(x − d

2 , y)
×
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− 1
2

, (5.3)

where q1 and q2 denote the image functions of the point sources and Λ1 and Λ2 denote the

intensities of the point sources. In many situations the image of the point source significantly

differs from the Airy profile, for example, due to the defocus in the objective lens ([85]), or due to

the different orientations of the point-source emission dipole ([9, 86]) or due to the aberrations

present in the imaging setup ([87]). Moreover, depending upon the nature of illumination,

the intensity of the point sources can be unequal when their emission dipole orientations are

different ([9, 86]). We note that eq. 5.3 provides a general expression for the FREM that is

applicable to a wide variety of imaging conditions including the above mentioned scenarios. If in

the above equation we set the intensities to be constant and identical, i.e., Λ1(τ) = Λ2(τ) = Λ0,

τ ≥ t0, and assume the image functions to be given by the Airy profile, then we immediately

obtain the expression for the FREM given in eq. 5.1. Analogous to the g-FREM, an expression

has also been derived for the ‘generalized’ practical resolution measure (see Chapter Appendix).

The stochastic framework used to derive the g-FREM models the photon detection pro-

cess for each point source as a Poisson process (shot noise process). Recently, there have been

reports of the generation of non-classical states of light from a fluorescent light source in which

the photon statistics deviate from the classical shot noise process ([88, 89, 90]). In order to take

into account this deviation, a further generalization of the FREM can be obtained by modeling

the photon detection process as a general counting process ([60], see Chapter Appendix).

5.7 Discussion

The advent of single molecule microscopy has generated significant interest in studying

nanoscale biomolecular interactions. Classically, fluorescence resonance energy transfer based

methods have been used to probe interactions in the distance range of 1 − 10 nm ([44]). It

is widely believed that Rayleigh’s criterion precludes the resolution of two single molecules at

distances of less than 200 nm. This leaves a gap in the distance range of 10 − 200 nm that
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is vital for the study of many biological processes with an optical microscope. It has been

suggested that Rayleigh’s resolution limit can be superseded if the distance between two point

sources is determined by curve fitting the image with the sum of two point-source image profiles

([46]). In fact, by adopting this approach several groups have shown that Rayleigh’s limit can

be surpassed in experiments ([48, 49, 50]).

The FREM (eq. 5.1) is a resolution measure that overcomes several deficiencies of

Rayleigh’s criterion. It gives a bound for the accuracy with which the distance between two

point sources can be estimated when the acquired data is not affected by deteriorating ex-

perimental factors. An important property of the FREM is that it provides a quantitative

assessment of how the optical characteristics of the experimental setup and the photon budget

influence the resolution performance in determining a particular distance of separation. Fig.

5.1A shows that the numerical value of the FREM for a pair of GFP molecules is consistently

smaller than that for a pair of Cy5 molecules when the expected photon count per fluorophore

is 3000 in both cases. For example, to resolve distances of 8 nm, 50 nm and 200 nm between

a pair of GFP molecules, the FREM predicts an accuracy not smaller than ±6.5 nm, ±2.7

nm and ±1.9 nm, respectively. On the other hand, for a pair of Cy5 molecules with the same

expected photon count per fluorophore and distances, the FREM predicts an accuracy not

smaller than ±10 nm, ±4 nm and ±2.67 nm, respectively. For the 50 nm and 200 nm distances,

the numerical value of the FREM for the GFP and the Cy5 molecules are significantly smaller

than the corresponding actual distances. This implies that the FREM predicts a relatively high

accuracy in resolving distances in the range of 50 − 200 nm between single molecules. For the

8 nm distance, however, the numerical value of the FREM for the GFP and the Cy5 molecules

are either comparable to or greater than the actual distance. This suggests that even in the

best case scenario, i.e. in the absence of deteriorating experimental factors, distances of less

than 8 nm are difficult to resolve between the GFP/Cy5 molecules, unless a higher than av-

erage number of photons are detected. In single molecule experiments typically 3000 photons

can be collected before a GFP molecule irreversibly photobleaches (see e.g., [26, 91]), while for
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Cy5 molecules typically greater than 104 photons can be collected (see [92]). Thus, to resolve

distances of 8 nm, 50 nm and 200 nm with an expected photon count of 104 per Cy5 molecule,

the FREM predicts an accuracy not smaller than ±5.5 nm, ±2.2 nm and ±1.5 nm, respectively,

i.e. about a two-fold improvement from the case when on average 3000 photons are collected

per Cy5 molecule. Note that the localization accuracy of a single molecule, i.e. the accuracy

with which the position of a single molecule can be determined also depends on the number of

collected photons ([28, 51]).

The practical resolution measure (PREM) derived here extends the results of the FREM

by illustrating how the resolution measure is deteriorated by experimental factors such as pixe-

lation of the detector and extraneous noise sources. The PREM, i.e. the bound on the accuracy

with which the distance can be estimated, for typical imaging conditions (see Fig 2A) is given

by ±31.6 nm, ±5.3 nm and ±2.2 nm for the case when the Cy5 single molecules are 8 nm,

50 nm and 200 nm apart, respectively, and the expected photon count per fluorophore is 104.

For the same distances, if the expected photon count is 3000 per Cy5 molecule, the PREM is

significantly higher at ±76.5 nm, ±12.5 nm and ±4.5 nm, respectively. Similarly, for a pair of

GFP molecules with an expected photon count of 3000 per molecule, the PREM predicts an

accuracy not smaller than ±42 nm, ±7.4 nm and ±3 nm to resolve distances of 8 nm, 50 nm and

200 nm, respectively. This shows that especially for small distances the predicted resolution

measure is probably not acceptable for many applications. This deterioration in the limit of the

accuracy with which the distance can be measured is due to the fact that the data acquired by

a pixelated detector is a discretized version of the actual image, and the presence of extraneous

noise sources corrupts the acquired data (e.g. scattered photons, noise in the acquisition elec-

tronics). Moreover, a comparison with the FREM illustrates that control of the noise sources

is also of great importance to improve the accuracy of the estimated distance parameter in a

practical scenario (Fig. 5.2A).

The above results suggest that the distance between two single molecules can be estimated

with a reasonable level of accuracy, depending on the photon count, certainly for distances
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above 50 nm, but possibly also for smaller distances. For distances around 10 nm, however,

the predicted resolution measures are typically worse. To be able to resolve such distances

the number of detected photons would have to be increased substantially, which is typically

not possible due to photobleaching. For instance, if a PREM of 7 nm is to be achieved for a

Cy5 single molecule pair spaced 10 nm apart, then under the noisy imaging conditions of Fig.

5.2A at least 1.5 × 105 photons need to be detected per Cy5 molecule. This underscores the

importance of the development of brighter and more photostable fluorescent markers to carry

out such studies ([9, 93]).

In [94] it was shown that GFP single molecule pairs typically photobleach together.

However, in the case where two step photobleaching occurs, additional information can be used

by imaging the remaining single molecule ([48]). The development of the FREM and the PREM

discussed so far was based on the case when both point sources/single molecules do not bleach

during the acquisition of the image. The approach can, however, also be applied to investigate

the accuracy that can be achieved when additional information is taken into account from the

remaining single molecule that did not bleach in the first photobleaching step. For example,

consider a pair of GFP molecules that are 8 nm, 15 nm, 25 nm or 50 nm apart. Assume that

2000 photons are collected from the single molecules before and after the first photobleaching

event. If the photons collected before and after the first photobleaching event are taken into

account, and assuming the experimental conditions for pixelation and noise sources of Fig. 2A,

then an accuracy of no better than ±8.1 nm, ±7.9 nm, ±7.6 nm, and ±6.7 nm, respectively,

can be expected for these distances. Under the present assumptions on the expected number of

detected photons, this shows that for distances up to 15 nm probably unreasonably large errors

would be incurred in the estimation. However, for distances above 25 nm an error level of less

than 30% could be expected.

The resolution measure provides a bound to the accuracy/standard-deviation with which

the distance between two point sources can be estimated. This was experimentally verified

by imaging closely spaced Cy5 molecules and estimating their distance of separation from the



118

acquired data. Here, the maximum likelihood estimator was used, since it possesses favorable

properties for estimating parameters ([55]). In general, other estimation algorithms can also

be used for determining the distance of separation between two point sources. However, a

question that arises is which of the different estimation algorithms is the most suitable for

estimating the distance of separation. In such a scenario, the knowledge of the resolution

measure becomes crucial, since it can be used as a standard to compare the performance of

the different estimation algorithms. The experimental results presented in Table 5.1 show that

the standard deviations of the maximum likelihood distance estimates come close to the bound

predicted by the resolution measure, thereby validating the choice of this estimator.

The FREM was derived for imaging conditions that were analogous to those assumed in

Rayleigh’s criterion. In some single molecule experiments, however, the conditions are different

to those assumed in the derivation of Rayleigh’s criterion and which formed the basis for the

derivation of the FREM. Whereas the FREM assumes that the image of a point source is given

by an Airy profile, the generalized FREM (g-FREM) was derived so that more complex image

profiles can be analyzed. Such profiles could arise, for example, due to out of focus conditions

([85]), the presence of aberrations ([87]), or the use of polarized illumination ([9]). We note that

the g-FREM can also be used to calculate the resolution measure for determining the distance of

separation between any two (distinct) objects such as cellular organelles, provided the intensities

and the image functions of the objects are known. The resolution limit of Rayleigh’s criterion

is thought to arise due to the finite width of the central peak of the point-source image, i.e.

the point spread function ([16]). This led to the development of microscopy techniques such

as 4Pi confocal microscopy ([95]), stimulated emission depletion (STED) microscopy ([96])

and image interference microscopy (or I5M) ([97]) in which the width of the central peak of

the point spread function is smaller than that of the conventional optical microscope. These

techniques have reported improvement in resolving features that are typically unresolvable in

conventional optical microscopes. However, for some of the techniques it was reported that

this was achieved at a severe cost to the signal (i.e., number of collected photons) ([98]). This
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illustrates the importance of considering the photon/light budget when discussing resolution

performance, especially in fluorescence imaging applications that typically use photobleachable

fluorophores. In the present context, the expression for the FREM/g-FREM explicitly shows

the tradeoff between the intensities of the point sources, which determine the photon budget,

and the image functions of the point sources, which determine the point spread function shape.

5.8 Appendix to Chapter 5

5.8.1 Single molecule microscopy

A molecular ruler consisting of a 30 base pair DNA duplex was used. The oligonucleotide

5
′
-ATC TCG GTG CGT AAT ACT CAC GGG CAG GAC-3

′
([99] and personal communi-

cation, Dr. D. Holowka) and its complementary sequence (both labeled with Cy5 at the 5
′

end) were purchased from Synthegen (Houston, TX). The oligonucleotides were annealed in

200 mM Tris-HCl, 10 mM MgCl2, pH 8.0 and stored at 4◦C. Molecular modeling by the vendor

of the DNA duplex labeled with Cy5 dye at both ends predicts the distance between the two

Cy5 dyes to be 12 nm. Cy5 dye purchased from GE Healthcare (Piscataway, NJ) was used for

calibration purposes. To image single DNA molecules, a cleaned glass bottomed dish (MatTek

Corp, MA) was coated with a layer of Poly-Lysine (0.01% solution) followed by the fluorescent

sample at a concentration of 1 pM. Imaging experiments were carried out in a custom setup that

was built on a Zeiss Axiovert S100 fluorescence microscope. The setup consisted of a 643 nm

laser (Research Electro-Optics, Boulder, CO), a cooled CCD Camera (ORCA-ER, Hamamatsu,

Bridgewater, NJ), and an αPlan-FLUAR (NA 1.45, 100x) Zeiss objective lens. The sample was

illuminated with circularly polarized light in wide-field mode, the camera was operated in 2× 2

binning mode, and the exposure time was either 1 s or 3 s.

5.8.2 Derivation of the new resolution measure

By making use of the image detection process described in Section 2.2, we derive analyti-

cal expression for the new resolution measure. The image detection process G(Λθ, {fθ,τ}τ≥t0 , C)
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describes the data acquired by the detector. For the resolution problem, the object of interest

is a pair of point sources, Λθ and fθ,τ can be written as

Λθ(τ) := Λ1(τ) + Λ2(τ), (5.4)

fθ,τ (r) :=
ε1θ(τ)

M2
q1

(
x

M
+

d

2
,

y

M

)

+
ε2θ(τ)

M2
q2

(
x

M
− d

2
,

y

M

)

, (5.5)

where r := (x, y) ∈ R
2, τ ≥ t0, θ ∈ Θ, Θ denotes the parameter space and εi

θ(τ) := Λi(τ)/Λθ(τ),

τ ≥ t0, θ ∈ Θ, i = 1, 2. In Eqs. 5.4 and 5.5, Λ1 and Λ2 denote the photon detection rate of

the two point sources, M denotes the total lateral magnification of the microscope setup, d

denotes the distance of separation between the point sources, and q1 and q2 denote the image

functions of the two point sources (see Section 3.3 for definition of image function). In Eq. 5.5

we consider an arrangement (potentially after a suitable translation of the coordinate axes) in

which the point sources lie along the x axis in the specimen plane and are equidistant from

the origin of the coordinate axes. Substituting for fθ,τ and Λθ in Theorem 2.2.1 the Fisher

information matrix is given by

I(θ) =

∫ t

t0

∫

R
2

1
Λ1(τ)
M2 q1

(
x
M + d

2 , y
M

)
+ Λ2(τ)

M2 q2

(
x
M − d

2 , y
M

)×

(

Λ1(τ)

M2

∂q1

(
x
M + d

2 , y
M

)

∂d
+

Λ2(τ)

M2

∂q2

(
x
M − d

2 , y
M

)

∂d

)2

dxdydτ

=

∫ t

t0

∫

R
2

1

Λ1(τ)q1

(
x
M + d

2 , y
M

)
+ Λ2(τ)q2

(
x
M − d

2 , y
M

)×

(

Λ1(τ)

2

∂q1

(
x
M + d

2 , y
M

)

∂x
− Λ2(τ)

2

∂q2

(
x
M − d

2 , y
M

)

∂x

)2

dxdydτ

=
1

4

∫ t

t0

∫

R
2

1

Λ1(τ)q1(x + d
2 , y) + Λ2(τ)q2(x − d

2 , y)
×

(

Λ1(τ)
∂q1(x + d

2 , y)

∂x
− Λ2(τ)

∂q2(x − d
2 , y)

∂x

)2

dxdydτ. (5.6)

Inverting Eq. 5.6 and taking the square root, we obtain the expression for the g-FREM.
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5.8.2.1 Derivation of the FREM

Rayleigh’s resolution criterion considers two identical, self-luminous, in-focus point sources

that are imaged with a conventional wide-field optical microscope. Here we derive the expres-

sion of the fundamental resolution measure with similar assumptions. We assume the two point

sources to have equal, constant intensities i.e., Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0, and identical image

functions i.e., q1 = q2. According to optical diffraction theory ([56]), the image of an in-focus

point source is described by the Airy profile, which is given by

qi(x, y) :=
J2

1 (α
√

x2 + y2)

π(x2 + y2)
, (x, y) ∈ R

2, i = 1, 2, (5.7)

where J1 denotes the first order Bessel function of the first kind, α := 2πna/λ, na denotes

the numerical aperture of the objective lens, and λ denotes the wavelength of the detected

photons. Using the well known recurrence relations for Bessel functions (see e.g., ref. 5,

pp. 17 and 18), the partial derivative of qi with respect to x is given by ∂qi(x, y)/∂x =

−2αxJ1(α
√

x2 + y2)J2(α
√

x2 + y2)/(π(x2 + y2)
3
2 ), (x, y) ∈ R

2, i = 1, 2, where α = 2πna/λ,

and J2 denotes the second-order Bessel function of the first kind. Substituting for qi(x, y) and

∂qi(x, y)/∂x in Eq. 5.6 and setting Λi(τ) = Λ0, for i = 1, 2, we get

I(d) =
Λ0 · (t − t0)
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=
4n2

a

λ2
π · Λ0 · (t − t0) · Γ0(d),

where r01 :=
√

(x + d/2)2 + y2, (x, y) ∈ R
2, r02 :=

√

(x − d/2)2 + y2, (x, y) ∈ R
2 and Γ0 be

given by
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∫
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)2

dxdy.

Note that the Fisher information matrix I(d) is a scalar quantity. The FREM is obtained

by taking the square root of the inverse Fisher information matrix (i.e, 1/I(d)), and is given by

δd :=
1

√

I(d)
=

1
√

4π · Λ0 · (t − t0) · Γ0(d)

λ

na
.

5.8.2.2 Extension to Non-Poissonian Statistics

The derivation of the Fisher information matrix given in Eq. 5.6 assumes the time points

of the detected photons in the acquired data to be Poisson distributed. We next consider the

scenario in which the times points of the detected photons are described by a general counting

process {N(τ), τ ≥ t0} that has finite first and second moment, i.e., 0 ≤ E[N(τ)], E[N2(τ)] <

∞. Analogous to eq. 5.6, the spatial and temporal components of the acquired data are

assumed to be independent of each other. The general expression of the FREM for the case of

non-Poissonian photon statistics is then given by




E[N(t)]

4

∫

R
2

1

q1(x + d
2 , y) + q2(x − d

2 , y)

(

∂q1(x + d
2 , y)

∂x
− ∂q2(x − d

2 , y)

∂x

)2

dxdy





− 1
2

, (5.8)

where q1 and q2 denote the image functions of the two point sources and d denotes the distance

of separation.

5.8.3 Effects of pixelation and noise

In the derivation of the FREM/g-FREM, it was assumed that the detector records the

time points and the spatial coordinates of the detected photons, which was described by an
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image detection process. However, current imaging detectors have pixels, and the acquired

data only consists of the number of detected photons at each pixel. For a pixelated detector

{C1, . . . , CNp} with Np pixels, the photon count at the kth pixel is independently Poisson dis-

tributed. We consider two types of additive noise sources, namely Poisson and Gaussian noise

source. Poisson noise is used to model the effect of spurious light sources such as autofluores-

cence, and Gaussian noise is used to model measurement noise such as readout noise in the

detector.

Hence the data acquired by a pixelated detector during the time interval [t0, t] is described

by a sequence of independent random variables {Iθ,1, . . . , Iθ,Np}, where Iθ,k := Sθ,k +Bk +Wk,

k = 1, . . . , Np, θ ∈ Θ, and Sθ,k, Bk and Wk are random variables such that {Sθ,1, . . . , Sθ,Np},

{B1, . . . , BNp} and {W1, . . . , WNp} are mutually independent and independent of each other.

The random variable Sθ,k is Poisson distributed with mean µθ(k, t) and describes the total

number of detected photons at the kth pixel from the two point sources. The random variable

Bk is Poisson distributed with mean β(k, t) and describes the total number of detected photons

at the kth pixel from spurious sources. The random variable Wk is Gaussian distributed with

mean ηk and standard deviation σw,k and describes the measurement noise at the kth pixel.

We assume that β(k, t), ηk and σw,k are independent of θ, for θ ∈ Θ and k = 1, . . . , Np.

5.8.3.1 Fisher Information Matrix for a Pixelated Detector

In the absence of Gaussian noise (i.e., Wk = 0, k = 1, . . . , Np), the Fisher information

matrix for a pixelated detector corresponding to the time interval [t0, t] is given by

I(θ) :=

Np∑

k=1

1

µθ(k, t) + β(k, t)

(
∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ
, θ ∈ Θ,

where µθ(k, t) (β(k, t)) denotes mean number of detected photons at the kth pixel from the two

point (spurious) sources. Setting β(k, t) = 0 in the above equation, we obtain an expression for

the Fisher information matrix of a pixelated detector in the absence of additive noise sources.
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In the presence of Gaussian noise, the Fisher information matrix is given by (see ref. 3 for

details)

I(θ) :=

Np∑

k=1

(
∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ
×
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,

where θ ∈ Θ, νθ(k, t) := µθ(k, t) + β(k, t), k = 1, . . . , Np, θ ∈ Θ, µθ and β are as given above,

and

pθ,k(z) :=
1√

2πσw,k

∞∑

l=0

[νθ(k, t)]le−νθ(k,t)

l!
e
− 1

2

„

z−l−ηk
σw,k

«2

, θ ∈ Θ, z ∈ R. (5.9)

Analogous to the result given in Theorem 2.2.1, the above expressions of the Fisher information

matrix for a pixelated detector are applicable to a wide variety of imaging conditions. To calcu-

late the Fisher information matrix in the present context, we require the analytical expression

for µθ(k, t) (and ∂µθ(k, t)/∂θ), which is given in Eq. 5.10. In addition, the numerical values of

the noise parameters β(k, t), ηk and σw,k need to be known, which depend on the experimental

setup.

5.8.3.2 The Generalized PREM

For the derivation of the g-PREM, we consider a geometry shown in Fig. 5.5, where

the two point sources are located at arbitrary locations P1 and P2 on the specimen plane.

Here (x0, y0) denotes the coordinates of the point P1, d denotes the distance of separation

between the point sources and φ denotes the angle of inclination of the line segment joining

the two point sources with respect to the x axis. The coordinates of the point P2 are given

by (x0 + d cos φ, y0 + d sinφ). In a practical situation, in addition to d, the other parameters,

namely x0, y0 and φ are also unknown and therefore must be estimated along with d. Hence
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the unknown parameter vector is given by θ := (x0, y0, d, φ). The general expression for µθ is

given by

µθ(k, t) := µ1
θ(k, t) + µ2

θ(k, t), θ ∈ Θ, k = 1, . . . , Np, (5.10)

where, for θ ∈ Θ and k = 1, . . . , Np,

µ1
θ(k, t) :=

1

M2

∫ t

t0

Λ1(τ)dτ

∫

Ck

q1

( x

M
− x0,

y

M
− y0

)

dxdy, (5.11)

µ2
θ(k, t) :=

1

M2

∫ t

t0

Λ2(τ)dτ

∫

Ck

q2

( x

M
− x0 − d cos φ,

y

M
− y0 − d sin φ

)

dxdy. (5.12)

In eqs. 5.10 - 5.12, Ck denotes the kth pixel, [t0, t] denotes the acquisition time interval, M

denotes the magnification of the microscope setup, Λ1(τ) and Λ2(τ), τ ≥ t0, denote the photon

detection rates of the point sources, and q1 and q2 denote the image functions of the point

sources.

Because the parameter θ is a 1 × 4 vector, by definition the Fisher information matrix

I(θ) is a 4 × 4 matrix. The g-PREM is given by the square root of the leading diagonal entry

in I−1(θ) that corresponds to the distance parameter d. In the present case, this is the third

leading diagonal entry, i.e.,
√

[I−1(θ)]33, as d is the third component of θ.

5.8.3.3 Derivation of the PREM

The PREM is a special case of the g-PREM in which the photon detection rates of the

point sources are assumed to be a constant, i.e., Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0, and image

functions of the point sources are assumed to be the Airy profile. In the Section Analytical

expression of µθ (Analytical expression of ∂µθ/∂θ), we give the analytical expression for µθ(k, t)

(∂µθ(k, t)/∂θ) in terms of the Airy profile, which is required for the calculation of the PREM.

5.8.3.4 Analytical expression of µθ

For the Airy profile, we have

µθ(k, t) := µ1
θ(k, t) + µ2

θ(k, t), k = 1, . . . , Np, θ ∈ Θ, (5.13)
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where, for θ ∈ Θ and k = 1, . . . , Np,

µ1
θ(k, t) := Λ0(t − t0)

∫

Ck

J2
1 (a
√

(x − Mx0)2 + (y − My0)2)

π((x − Mx0)2 + (y − My0)2)
dxdy, (5.14)

µ2
θ(k, t) := Λ0(t − t0)

∫

Ck

J2
1 (a
√

(x − Mx0 − Md cos φ)2 + (y − My0 − Md sinφ)2)

π((x − Mx0 − Md cos φ)2 + (y − My0 − Md sinφ)2)
dxdy,

(5.15)

with a = 2πna/(λM), na denoting the numerical aperture of the objective lens and λ denoting

the wavelength of the photons.

5.8.3.5 Analytical expression of ∂µθ/∂θ

For θ = (x0, y0, d, φ) ∈ Θ, let µθ be given by Eq. 5.13, r01 := M(x0, y0), r02 := M(x0 +

d cos φ, y0+d sinφ) and a = 2πna/(λM). For M > 0, define ||r−r01|| :=
√

(x − Mx0)2 + (y − My0)2

and ||r − r02|| =
√

(x − Mx0 − Md cos φ)2 + (y − My0 − Md sinφ)2, where r = (x, y) ∈ R
2.

Then

∂µθ(k, t)

∂θ
:=

[
∂µθ(k, t)

∂x0

∂µθ(k, t)

∂y0

∂µθ(k, t)

∂d

∂µθ(k, t)

∂φ

]

, k = 1, . . . , Np, θ ∈ Θ,

where the entries of the row vector in the above equation are given below:

∂µθ(k, t)

∂x0
= 2aMΛ0(t − t0)

(∫

Ck

(x − Mx0)
J1(a||r − r01||)J2(a||r − r01||)

π||r − r01||3
dr

+

∫

Ck

(x − Mx0 − Md cos φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

∂µθ(k, t)

∂y0
= 2aMΛ0(t − t0)

(∫

Ck

(y − My0)
J1(a||r − r01||)J2(a||r − r01||)

π||r − r01||3
dr

+

∫

Ck

(y − My0 − Md sin φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

∂µθ(k, t)

∂d
= 2aMΛ0(t − t0)

(

cos φ

∫

Ck

(x − Mx0 − Md cos φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

+sin φ

∫

Ck

(y − My0 − Md sin φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

∂µθ(k, t)

∂φ
= 2aMΛ0(t − t0)

(

−d sin φ

∫

Ck

(x − Mx0 − Md cos φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

+d cos φ

∫

Ck

(y − My0 − Md sin φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

with r = (x, y) ∈ R
2, dr := dxdy, θ ∈ Θ and k = 1, . . . , Np.
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5.8.4 Calculation of the resolution measure when additional spatial information

is present

This section discusses the calculation of the Fisher information matrix for the global

estimation problem of determining the unknown parameter θ from data acquired before and

after the first photobleaching event for a single-molecule pair that exhibits a double-step photo-

bleaching behavior. Without loss of generality, the location coordinates of the single molecule

that photobleaches first are set to be (x0 + d cos φ, y0 + d sinφ) and the location coordinates

of the single molecule that photobleaches last are set to be (x0, y0). The data acquired before

and after the first photobleaching event are mutually independent and therefore the Fisher

information matrix for the global estimation problem can be written as

Itot(θ) := I(θ) + Ia(θ), θ ∈ Θ.

In the above equation, I(θ) and Ia(θ) denote the Fisher information matrices that are calculated

for the problem of estimating the unknown parameter θ from data acquired before and after

the first photobleaching event, respectively. The expressions of I(θ) for a pixelated detector in

the presence and absence of noise sources are given in Section Fisher information matrix for a

pixelated detector. The matrix Ia(θ) is of the form Ia(θ) :=






Il(θ) 0

0 0




, θ ∈ Θ, where Il(θ)

denotes the Fisher information matrix for the problem of determining the location (x0, y0) of a

single molecule. In the absence of Gaussian noise Il(θ) is given by

Il(θ) =

Np∑

k=1

1

µ1
θ(k, t) + β1(k, t)









∂µ1
θ(k,t)
∂x0

∂µ1
θ(k,t)
∂y0









(
∂µ1

θ(k, t)

∂x0

∂µ1
θ(k, t)

∂y0

)

, θ ∈ Θ,

where µ1
θ(k, t) is given in Eq. 5.14, β1(k, t) denotes the mean of the additive Poisson noise in

the kth pixel, and the partial derivatives ∂µ1
θ(k, t)/∂x0 and ∂µ1

θ(k, t)/∂y0 are given by

∂µ1
θ(k, t)

∂ζ0
= 2aMΛ0(t − t0)

∫

Ck

(ζ − Mζ0)
J1(a||r − r01||)J2(a||r − r01||)

π||r − r01||3
dr, (5.16)
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for ζ ∈ {x, y}, θ ∈ Θ, k = 1, . . . , Np and ||r − r01|| :=
√

(x − Mx0)2 + (y − My0)2. In the

presence of Gaussian noise, Il(θ) is given by

Il(θ) =

Np∑

k=1









∂µ1
θ(k,t)
∂x0

∂µ1
θ(k,t)
∂y0









(
∂µ1

θ(k, t)

∂x0

∂µ1
θ(k, t)

∂y0

)

×












∫

R




∑∞

l=1
[ν1

θ (k,t)]l−1e−ν1
θ
(k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

„

z−l−ηk
σw,k

«2




2

p1
θ,k(z)

dz − 1












, θ ∈ Θ,

where ν1
θ (k, t) := µ1

θ(k, t) + β1(k, t), k = 1, . . . , Np, θ ∈ Θ, µ1
θ is given in Eq. 5.14, β1 is given

above, ∂µ1
θ(k, t)/∂x0 and ∂µ1

θ(k, t)/∂y0 are given in Eq. 5.16, and the expression for p1
θ,k is

analogous to that given in Eq. 5.9, but with the term νθ(k, t) in Eq. 5.9 replaced by ν1
θ (k, t).

5.8.5 Maximum-likelihood estimation

The estimation of the unknown parameters is carried out on the data that is contained in

a pixel array. We first consider the scenario when the pixel array is extracted from an individual

image, which contains photons from both point sources. The log-likelihood function for the data

in the pixel array is given by

ln(L(θ | z1, . . . , zNp)) := ln





Np∏

k=1

pθ,k(zk)



 =

Np∑

k=1

ln(pθ,k(zk)), θ ∈ Θ, (5.17)

where Np denotes the total number of pixels in the pixel array, zk denotes the detected photon

count at the kth pixel in the pixel array, and pθ,k denotes the probability density function of

zk that is given by Eq. 5.9, k = 1, . . . , Np. For the distance estimation problem with the

data acquired by a pixelated detector in the presence of noise sources, the vector of unknown

parameters is set to be θ = (x0, y0, d, φ) (see Fig. 5) and the image function of the point

source is assumed to be the Airy profile. The maximum-likelihood estimate of θ is obtained



129

by substituting the expression for µθ given by Eq. 5.13 in pθ,k (Eq. 5.9) and determining the

value of θ that maximizes the log-likelihood function ln(L(θ)).

We next consider the scenario when the pixel array is obtained by adding N1 pixel arrays,

which are extracted from N1 individual images that contain photons from both point sources.

The log-likelihood function for the data in the summed pixel array is given by

ln(L̃(θ | z̃1, . . . , z̃Np)) :=

Np∑

k=1

ln(p̃θ,k(z̃k)), θ ∈ Θ, (5.18)

where z̃k denotes the detected photon count at the kth pixel in the summed pixel array and

p̃θ,k denotes the density function of z̃k, k = 1, . . . , Np, which is given by

p̃θ,k(z) :=
1√

2πσ̃w,k

∞∑

l=0

[ν̃θ(k, t)]le−ν̃θ(k,t)

l!
e
− 1

2

„

z−l−η̃k
σ̃w,k

«2

, θ ∈ Θ, z ∈ R. (5.19)

In Eq. 5.19, ν̃θ(k, t) := N1(µθ(k, t) + β(k, t)), η̃k = N1ηk, and σ̃w,k =
√

N1σw,k, k = 1, . . . , Np,

θ ∈ Θ, where µθ(k, t) (β(k, t)) denotes the mean photon count at the kth pixel from the point

sources (scattering-noise sources) in the individual pixel array, ηk and σ2
w,k denote the mean and

the variance of the readout noise at the kth pixel, respectively, in the individual pixel array.

For the distance estimation problem, the maximum-likelihood estimate of θ = (x0, y0, d, φ)

is obtained by substituting the expression for µθ given by Eq. 5.13 in p̃θ,k (Eq. 5.19) and

determining the value of θ that maximizes the log-likelihood function ln(L̃(θ)).

If the point sources exhibit a double step photobleaching behavior, the images acquired

after the first photobleaching event can also be used to estimate θ. Here, the experimental

data that is used to estimate θ consists of two summed pixel arrays. One of the summed

pixel arrays is obtained by adding N1 pixel arrays that are extracted from N1 individual images

acquired before the first photobleaching event (i.e., images that contain photons from both point

sources). In this summed pixel array the detected photon count at the kth pixel is denoted as

z̃k, k = 1, . . . , Np, where Np denotes the total number of pixels. The other summed pixel array

is obtained by adding N2 pixel arrays that are extracted from N2 individual images acquired

after the first photobleaching event and z̃1
k denotes the detected photon count at the kth pixel
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in this summed pixel array. The log-likelihood function ln(LT (θ)) for the data contained in the

two summed pixel arrays is given by

ln(LT (θ) | z̃1, . . . , z̃Np ; z̃
1
1 , . . . , z̃

1
Np

)) := ln(L̃(θ | z̃1, . . . , z̃Np)) + ln(L̃1(θ | z̃1
1 , . . . , z̃

1
Np

)), (5.20)

where θ ∈ Θ and ln(L̃) (ln(L̃1)) denotes the log-likelihood function corresponding to {z̃1, . . . , z̃Np}

({z̃1
1 , . . . , z̃

1
Np

)}). The expression for ln(L̃) is given in Eq. 5.18, and the expression for ln(L̃1)

is given by ln(L̃1(θ | z̃1
1 , . . . , z̃

1
Np

)) :=
∑Np

k=1 ln(p̃1
θ,k(z̃

1
k)), θ ∈ Θ, where p̃1

θ,k denotes the density

function of z̃1
k that is given by

p̃1
θ,k(z) :=

1√
2πσ̃1

w,k

∞∑

l=0

[ν̃1
θ (k, t)]le−ν̃1

θ (k,t)

l!
e
− 1

2

 

z−l−η̃1
k

σ̃1
w,k

!2

, θ ∈ Θ, z ∈ R. (5.21)

In Eq. 5.21, ν̃1
θ (k, t) := N2(µ

1
θ(k, t) + β1(k, t)), η̃1

k = N2η
1
k, and σ̃1

w,k =
√

N2σ
1
w,k, k = 1, . . . , Np,

θ ∈ Θ, where µ1
θ(k, t) (β1(k, t)) denotes the mean photon count at the kth pixel from one of

the point sources (scattering noise sources) in the pixel array that is extracted from the image

acquired after the first photobleaching event, and η1
k and (σ1

w,k)
2 denote the mean and the

variance of the readout noise at the kth pixel, respectively in the pixel array that is extracted

from the image acquired after the first photobleaching event. Thus, for the distance estimation

problem, the maximum-likelihood estimate of θ = (x0, y0, d, φ) from the two summed pixel

arrays is obtained by substituting the expression for µθ given by Eq. 5.13 in p̃θ,k (Eq. 5.19) and

substituting the expression for µ1
θ given by Eq. 5.14 in p̃1

θ,k (Eq. 5.21), and then determining

the value of θ that maximizes the log-likelihood function ln(LT (θ)).

We note that Eqs. 5.17, 5.18 and 5.20 can be used to obtain the maximum-likelihood

estimate of θ in a wide variety of imaging conditions. For instance, consider the scenario when

the image function of the point source is described by a profile that is different from the Airy

profile. In this case, we use Eq. 5.10 (Eq. 5.11) to obtain an expression for µθ (µ1
θ) in terms of the

desired image profile, and then maximize the corresponding log-likelihood function to obtain the

maximum-likelihood estimate. In all of the above cases, the maximum-likelihood estimation

is carried with the optimization toolbox of MATLAB in the MIATool software environment

(software available on request).
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Figure 5.2. Behavior of the PREM as a function of distance and photon count.
Panel A shows the PREM as a function of the distance of separation between two Cy5 molecules
in the presence (∗) and absence (◦) of noise sources for a pixelated detector. The PREM given
in eq. 5.1 is also shown for reference (—). The inset shows the same for distances in the
range of 1 − 60 nm. Panel B shows the PREM for a pixelated detector as a function of the
expected number of detected photons per molecule in the presence of noise sources for different
distances of separation; d = 30 nm (�), d = 40 nm (.) and d = 50 nm (/). Panel C shows
the effect of using additional spatial information on the resolution measure for a pair of Cy5
molecules (d = 10 nm) that exhibits a double-step photobleaching behavior. The panel shows
the resolution measure as a function of the expected photon count collected from the single
molecule after the first photobleaching event for a pixelated detector in the presence of noise
sources. The plots shown consider three scenarios, i.e., when the expected number of photons
collected from each single molecule before the first photobleaching event are 2500 (◦), 5000 (∗)
and 12500 (�). In all panels, the photon detection rate Λ0 of each Cy5 molecule is set to be
Λ0 = 2500 photons/s, the acquisition time is set to be 1 s, the pixel dimension is set to be
12.9 µm × 12.9 µm, the pixel array size is set to be 13 × 13, the mean of the additive Poisson
noise is set to be 80 photons/pixel/s, the mean and standard deviation of the additive Gaussian
noise is set to be 0 e−/pixel and 8 e−/pixel, respectively, the noise statistics is assumed to be
the same for all pixels, and one of the single molecules is assumed to be at the center of the
pixel array. All other numerical parameters are analogous to those used in Fig. 5.1.
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Figure 5.3. Results of distance estimation for closely spaced Cy5 molecules.
The figure shows the estimates of the X-Y coordinates and the distance of separation for two
pairs of closely spaced Cy5 single molecules. Top row shows results for a single molecule pair
with a mean distance of separation of 293 nm (Data Analysis 1 in Table 5.1). Bottom row
shows results for a single molecule pair with a mean distance of separation of 207 nm (Data
Analysis 2 in Table 5.1).
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Figure 5.4. Results of distance estimation for fluorescently labeled DNA nanorulers.
The figure shows the estimates of the X-Y coordinates and the distance of separation for two
DNA nanorulers. Top row shows results for the DNA nanoruler with a mean distance of
separation of 12.5 nm (Data Analysis 5 in Table 5.1). Bottom row shows results for the DNA
nanoruler with a mean distance of separation of 14.8 nm (Data Analysis 6 in Table 5.1).
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Figure 5.5. Coordinate system used for the derivation of the generalized PREM.
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