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ABSTRACT 

 

A ROBUST COOPERATIVE LOCALIZATION SYSTEM 

FOR A HETEROGENEOUS TEAM OF SMALL 

UNMANNED GROUND VEHICLES  

 

 

Publication No. ______ 

 

Veera Jawahar Vibeeshanan, Ph.D. 

 

The University of Texas at Arlington, 2007 

 

Supervising Professor:  Brian L. Huff  

This dissertation presents an organic approach to the cooperative localization 

problem by sequentially solving the problems of sensor calibration, multi-sensor fusion 

filtering, and cooperative localization. Successful navigation of unmanned ground 

vehicles requires accurate localization. Localization refers to the determination of the 

pose (position and orientation) of an unmanned ground vehicle with respect to a local or 

a global frame of reference. Cooperative localization is suited to multi-vehicle systems 

where vehicles with better accuracy in localization can assist those with poor accuracy 

through communication and relative pose sensing. 
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A parametric modeling approach is presented for sensor calibration. Designed 

experiments are conducted with the objective of building parametric models and mass 

assignment tables. An evidence theoretic adaptive fusion filter, the Eta-Filter, is 

proposed for multi-sensor fusion filtering. The Eta-Filter leverages the Dempster-Shafer 

theory of evidence to make a Kalman filter adaptive to operating scenarios and sensor 

goodness while accounting for the ignorance component of uncertainty. It is composed 

of an adaptive pre-processing unit, an evidence extraction and combination unit, and a 

Kalman filter. The evidence extraction and combination unit uses fuzzy-type techniques 

or rule-based mass assignment tables to compute the mass function. Then, the 

Dempster’s rule for combination is used to combine the disparate evidences for a 

proposition. Based on the combined evidence, decisions on switching between pre-

processing models and between corresponding input noise covariance matrices in the 

adaptive pre-processing unit are made. Also, the measurement noise covariance matrix 

of the Kalman filter is varied depending upon the evidence that the sensor is good. 

Experiments that demonstrate the validity of the Eta-Filter using empirical data are 

presented. A range-only cooperative localization system that resembles a “star” 

arrangement is presented. Combination is performed in the minimum variance sense 

under the assumption of independence of errors between the individual estimates. A 

statistically designed experiment that demonstrates the merits of the range-only 

cooperative localization system is presented. An ANOVA F-test, conducted at the one 

percent significance level, reveals that the range-only cooperative localization system 
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has a significantly lower mean final position error when compared to a non-cooperative 

localization system. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Statement of the Problem 

This dissertation answers the following question posed by Unmanned Ground 

Vehicles (UGVs): “where are we?” “A UGV is defined as any piece of mechanized 

equipment that moves across the surface of the ground and serves as a means of 

carrying or transporting something, but explicitly does not carry a human being 

[Gag95].” The realm of UGVs (Figure 1.1) has gained unprecedented attention from the 

robotic research community over the recent past [Mad04, Rou02, Ryd05, Spl03]. The 

application areas for UGVs include landmine detection [Rac05], automated highways 

[Att00], fire-fighting [Saa05], and security [Sai95]. 

 
Figure 1.1 A Concept Small UGV: A Computer Aided Design (CAD) 
rendering using Pro/ENGINEERTM. 
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Localization is defined as the determination of the “pose” (the position and the 

orientation with respect to a local or a global frame of reference) of a UGV and is 

regarded as a fundamental problem to providing autonomous capability for a UGV 

[Cox90]. In mathematical parlance, the pose is represented by a vector Tyx ],,[ ψ=x , 

where x represents the position along the x-axis, y represents the position along the y-

axis, and ψ represents the orientation about the z-axis. The ability of a UGV to navigate 

through the environment requires accurate localization [Cro95]. The area of localization 

has gained considerable attention from researchers over the past few decades [Bal03, 

Bor96, Cox90, Del99, Fox00, Goe99, Gut98, Reu00, Tsu78, Tsu82]. Within the ambit 

of localization, there is a specific area known as Cooperative Localization (CL) [Rek98] 

which is geared to multi-robot systems [Fer98, Rek02, Sch98, Spl01]. CL provides an 

answer to the question: “where are we?” Throughout this dissertation, the following 

systems are also considered as CL systems: mutual positioning [Sug93], cooperative 

positioning [Kur94], collaborative localization [Fox00], and distributed localization 

[Rou02]. 

Cooperation is an interaction that is generally dependent on communication and 

is classified as [Mat94]: (1) explicit cooperation, an interaction that involves exchange 

of information or actions taken to benefit another agent, and (2) implicit cooperation, an 

action that is taken for the benefit the agent itself but that which results in benefits to 

other agents as well. Cooperation is also defined as “doing something together” with a 

goal of creating an improvement [Pre90]. Communication can be viewed as the medium 
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through which cooperation occurs. It is classified as [Bal94]: no communication, state 

communication, and goal communication. 

Multi-robot systems have intrinsic advantages over their single-robot 

counterparts [Ara02]. The payoff is better for a “heterogeneous” (with different 

capabilities) team of robots [Cao97]. Especially for small UGVs that have a limited 

payload capability, each member of the team could have different sensing capabilities 

with different levels of accuracies and sophistication. A CL strategy for such a 

heterogeneous team of small UGVs would amortize the cost of expensive and accurate 

sensors across the entire team [Fox00]. The CL problem is a well explored area [Cag06, 

Fox00, Kur94, Mad04, Rou02, Spl03, Sug93]. Nevertheless, there are a number of 

challenges that still remain. The use of low-cost and faulty sensors requires a more 

efficient mechanism for the representation of uncertainty. Probabilistic techniques do 

not account for the ignorance component of uncertainty. Also, CL systems tend to 

require expensive relative sensing devices for cooperation to occur. 

1.2 Research Objective 

The objective of this research work is the development of a robust cooperative 

localization system for a heterogeneous group of small UGVs that would provide a 

better accuracy for each individual UGV than would a non-cooperative system. The 

problem is further decomposed into three sub-problems as follows: 

(1) localization sensor calibration, 

(2) multi-sensor fusion filtering, and 

(3) cooperative localization. 
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The aforementioned three sub-problems are solved sequentially. This provides 

an “organic” approach to achieving the objective starting from the roots of the problem, 

i.e., sensor calibration. The rationale behind this sequential approach is that the errors 

due to improper calibration are difficult to isolate at the cooperative localization stage. 

The objective must be achieved while meeting constraints such as limited sensor 

carrying capacity and reduced computational capability that are imposed by the small 

size of the UGVs. The goal is to build a cooperative localization system that is robust 

yet simple and low-cost. 

1.3 Dissertation Conformance 

Throughout this dissertation, unless explicitly stated, the symbolic notation 

conforms to the Aerospace Standard-4/Joint Architecture for Unmanned Systems (AS-

4/JAUS) specifications [Joi04], and the units are the International System of Units (SI 

units) [Tay01]. According to the AS-4/JAUS specification, the global frame of 

reference, defined as {northwards (x-axis), eastwards (y-axis), downwards (z-axis)}, 

follows the mathematical right-hand rule [Joi04]. The global frame of reference used is 

the World Geodetic System as defined in 1984 (WGS84) [Eva05]. The origin of the 

local frame of reference is the start position of the UGV. The local frame describes the 

distance and the angle in meters and radians respectively. 

In addition, the terminology used in connection with uncertainty is as defined by 

the International Organization for Standardization (ISO) vocabulary [Tay94]. For 

example, the terms such as accuracy and precision are qualitative by definition. 

Therefore, the phrase, “the precision is 10 meters,” is not acceptable, whereas the 
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phrase, “the precision, expressed as the standard deviation under repeatability 

conditions, is 10 meters,” is acceptable [Tay94]. Accuracy represents the “closeness of 

the agreement between a measurement and the true value [Tay94].” Precision is defined 

as “the closeness of the agreement between independent test results under stipulated 

conditions [Tay94].” The stipulated conditions may include repeatable and/or 

reproducible conditions. “Repeatability is the closeness of agreement between 

successive measurements of the same measurand under the same conditions of 

measurement [Tay94].” “Same conditions” refer to the same measurement procedure, 

the same observer, the same measurement instrument, the same location, and repetition 

within a short period of time. Reproducibility is similar to repeatability with the 

exception that the conditions of measurement are different (e.g. a different location) 

[Tay94]. As far as this dissertation is considered, the terms “UGV” and “robot” are used 

synonymously. Also, N represents north and E represents east. 

The following convention on notations is adhered to: 

(1) Scalar variables are represented by small letters in italics. 

(2)  Vector variables are represented by bolded small letters. 

(3)  Matrices are represented by bolded capital letters. 

(4)  Superscripts: transpose of a matrix – T; inverse of a matrix – -1; a 

priori – -; a posteriori – +. 

(5) Subscripts: discrete time-step number – k; global frame of reference – 

G; local frame of reference – L; vehicle frame of reference – V. 

(6)  Accents: measurement – ˜ (tilda); estimate – ˆ (hat); mean – ¯ (bar). 



 

 6

The list of units and symbols used is as follows: 

(1)  Base units: length – meter (m); time – second (s).  

(2)  Derived units: speed, velocity – m/s; acceleration – m/s2; angle – rad 

(radians); angular velocity – rad/s; frequency – Hz (Hertz). 

(3)  Allowed non-SI units: degree – o; minute – '; second – ". 

(4)  Time reference: Coordinated Universal Time (UTC). 

1.4 Dissertation Outline 

The remainder of this dissertation is organized as follows. Chapter 2 presents a 

review of literature that is related to this research work. The review describes the types 

of localization sensors that are employed in this research, localization error 

characteristics, sensor calibration methods, fusion filtering techniques, and existing CL 

systems. Chapter 3 presents an evidence theoretic fusion filtering approach for 

localization of single UGVs. It includes descriptions of the methodologies for creating 

parametric sensor calibration models and for building mass assignment tables that are 

geared to the requirements of the evidence theoretic fusion filter. In addition, an 

experimental validation of the fusion filtering approach is detailed. Chapter 4 presents a 

detailed description of a CL system. It includes a description of sensor modeling and 

self-localization of individual UGVs. A range-only CL system that resembles a “star” 

arrangement is presented. The merits of the CL system are discussed based on the 

results of a designed experiment. Chapter 5 provides a conclusion of this research work 

and includes a brief summary, contributions, and possible future extensions. 
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CHAPTER 2 

LITERATURE REVIEW 

 

This chapter presents a review of the types of localization sensors, error 

characteristics, sensor calibration methods, fusion filtering techniques, and existing 

approaches to CL. 

2.1 Types of Localization Sensors 

Localization sensors for UGVs are classified as [Bor96]: (1) internal sensors 

and (2) external sensors (also known as proprioceptive sensors and exteroceptive 

sensors respectively [Rou02]). Internal sensors are located within the vehicle and do not 

require any external sensory stimuli. Examples of this genre are wheel encoders, 

accelerometers, and gyroscopes. External sensors, on the other hand, depend on external 

sources of input in order to operate. For example, a digital compass requires an external 

magnetic field as sensory input. Other external sensors include the Global Positioning 

System (GPS), ultrasonic sensors, and vision sensors. Sensors are also classified as 

[Bra03]: (1) active sensors, sensors that stimulate the environment prior to making a 

measurement, and (2) passive sensors, sensors that do not stimulate the environment 

prior to making a measurement. The following sections describe the sensors that are of 

interest to this work such as wheel encoders, accelerometers, rate-gyros, digital 

compasses, and GPS units. 
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2.1.1 Wheel Encoder 

The wheel encoder measures the distance traveled by each wheel or track 

[Eve95]. The most commonly used type of wheel encoder is the optical encoder that is 

generally coupled to the wheel axle of a UGV [Bor96]. The wheel encoders are prone to 

accumulation of measurement errors due to wheel slippage [Bor96, Suk99]. 

2.1.2 Inertial Measurement Unit 

An Inertial Measurement Unit (IMU) comprises of gyroscopes and 

accelerometers [Bra03]. A gyroscope (a solid-state rate-gyro) measures the angular 

velocity about an axis of reference [Bor96]. The relative orientation is computed by 

integrating the rate-gyro measurement with respect to time [Wal03]. Solid-state rate-

gyros are used as an inexpensive means for UGV localization [Sol04]. An 

accelerometer measures the acceleration along an axis of reference. Acceleration is 

subsequently integrated twice with respect to time for computing the displacement 

[Eve95]. Low-cost solid-state accelerometers exhibit “drift” as a function of time and 

temperature [Liu01, Suk99, Wei98] and contain higher measurement errors at lower 

magnitudes of acceleration [Neb99]. Misalignment of the axis of the inertial sensors 

with respect to the vehicle frame contributes to “bias” [Suk99]. The process of 

integration, a requirement for the inertial sensors, leads to an unbounded growth of 

measurement errors with time [Bar95, Suk99]. A critical advantage of the IMU is the 

property that it is non-jammable by external signals [Dur01]. 

 

 



 

 9

2.1.3 Digital Compass 

A digital compass measures the absolute orientation of a robot with respect to 

the geomagnetic north [Eve95]. The use of magneto-resistive technology for solid-state 

digital compasses is prevalent [Sto00]. A major shortcoming of the digital compass is 

the fact that proximity to underground cables or ferrous material can lead to a 

significant distortion in the measurements [Bor97, Sto00]. 

2.1.4 Global Positioning System 

 

Figure 2.1 Dilution of Precision (DOP): Receiver B has a better DOP than 
receiver A as the satellites are spaced farther with respect to receiver B. 

 

A GPS system uses satellites in space to determine the location of an object with 

respect to the WGS84 frame of reference [Eve95]. A minimum of four satellites are 

required by the GPS system to locate an object in a three-dimensional space [Eve95]. 

However, an object that is on the surface of the earth can be located with three satellites 

[Eve95]. The standard error ranges for GPS units with respect to horizontal positioning 
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are given as follows [ElM00]: GPS – 10 m to 15 m, Differential GPS (DGPS) – 1 m, 

and Real Time Kinematic GPS (RTK-GPS) – 0.2 m. The NovatelTM RT2 is capable of 

achieving 0.02 m standard error in position [Suk99]. The RTK-GPS is a differential 

positioning technique that uses the known coordinates of a reference station (a 

stationary receiver) to determine the location of a mobile receiver through phase 

measurements and real-time processing [ElM00]. 

The two major sources of GPS error are [Neb97]: (1) the Position Dilution of 

Precision (PDOP), a positive integer that refers to the actual geometry of the relative 

positions of the satellites and the receiver (Figure 2.1), and (2) the precision in 

determination of the range due to atmospheric delays and receiver noise. Multiple 

reflections of a satellite signal, known as “multipathing,” can lead to erroneous range 

determination [Neb97]. The GPS sensor has an intermittent characteristic as the 

availability of satellite signals depends on the environment of the receiver (bridges and 

skyscrapers may block the satellite signals) [Bon01]. However, a 2001 US Federal 

Communications Commission (FCC) mandate that required wireless carriers to provide 

the caller’s latitude and longitude within 50 m for 67% of emergency calls has spurred 

the concept of the Assisted-GPS (AGPS) [Dju01], wherein a GPS receiver is “assisted” 

by a wireless network. The AGPS comprises of a wireless handset, an AGPS server 

with a reference GPS, and wireless base-stations that coordinate with each other. The 

accuracy of an AGPS system, expressed as a standard error, is 50 m (indoors) and 15 m 

(outdoors) [Dju01]. 
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2.2 Error Characteristics and Calibration Methods 

Errors represent the difference between measured values and true values. They 

are categorized as systematic errors and non-systematic (random) errors [Bor94, 

Tay94]. They are also known as “bias” and “noise” respectively [Fen04]. Under 

Gaussian assumption, bias refers to the difference between the true value and the mean 

value, and noise refers to the difference between a measured value and the mean value 

[Byc03]. 

 

Figure 2.2 Components of Measurement Error: Measurement at time = 3 s 
shows a bias component (represented by the dashed-dotted line) of 0.002 
m/s2 and a noise component (represented by the distance between the 
dashed-dotted line and the dashed line) of 0.001 m/s2 in acceleration, i.e., 
bias = error – noise. 

 

Calibration is defined as the process of identifying and eliminating systematic 

errors (biases) from sensor readings [Byc03]. Also, it refers to mapping raw sensor 
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outputs to standardized units [Fra04]. The uncertainties due to errors are quantified as 

standard errors (root mean squared errors) and are determined using “Type-A” 

(statistical) evaluations or “Type-B” (other than statistical) evaluations [Tay94]. In this 

dissertation, standard errors are determined using “Type-A” evaluations. Figure 2.2 

illustrates the bias and the noise components of measurement error. A series of 

accelerometer measurements are recorded from a UGV that is at rest, i.e., acceleration 

= 0.000 m/s2, and are plotted as a function of time. The figure shows that there is a bias 

component in the error. 

Calibration models are classified as [Vib07a]: (1) parametric models, wherein 

the models are known a priori, and (2) nonparametric models, wherein the models are 

determined from empirical data. Though nonparametric models such as the Multivariate 

Adaptive Regression Splines (MARS) [Fri91] offer the advantage of automatic model 

identification using empirical data, they are not the only option when calibration models 

are known a priori. As the sensors employed in this research work have known models, 

the focus of this work is on parametric modeling. Parametric calibration can be 

performed using multivariate regression analysis models [Tri99]. There are several 

procedures for the parametric calibration of differential drive UGVs: procedures 

wherein the calibration parameters are a function of wheel radii and track length 

[Ant05, Bor95], a scheme that involves representation of the variances associated with 

driver-wheel radius, steering angle, and attitude as a function of “maneuvers” (e.g. 

standing, curving, steering, and straight path) [deC03], and an online calibration method 

that uses redundant information from multiple onboard sensors [von98]. 
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2.3 Fusion Filtering Techniques 

The usage of multiple sensors to localize a UGV requires the combination of 

information from multiple sensors (sensor fusion [Sas00]) in order to produce the “best” 

state estimate (in the minimum error sense). Sensor fusion is a widely researched area 

[Bor96, Cox91, Dur90, Has88, Kam97, Lop00, Mut00, Wil76]. Multiple sensors are 

used in both redundant and complementary ways [Vib07b]. 

Sensor fusion is classified as [Bar01]: (1) centralized estimation fusion and (2) 

distributed estimation fusion. The centralized fusion architecture uses one filter that 

fuses measurements from all sensors to estimate the state and has a high computational 

overhead as well as a poor fault tolerance [Bar01]. On the other hand, the distributed 

architecture (also known as loosely coupled) uses multiple filters that run in parallel and 

offers a significant reduction in computational overhead [Bar01]. 

The generic fusion formula for a statistical combination of two estimates (under 

the assumption of independence of errors between the two estimates) is given by 

[Bar01, Car90, Car96]: 

)ˆˆ()(ˆ ,2
1
,2,1

1
,1

11
,2

1
,1, kkkkkkkc xPxPPPx −−−−− ++= ,                        (2.1) 

where k,1x̂  and k,2x̂  are the individual state estimates, k,1P  and k,2P  are the 

individual error covariance matrices, kc,x̂  is the fused state estimate, and 

11
,2

1
,1, )( −−− += kkkc PPP  is the fused error covariance matrix.  

The estimation of the current dynamical state of a robot is known as filtering 

[Bar01]. Of the statistical filtering techniques that are available, the recursive Bayesian 
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filtering is capable of producing optimal estimates but is computationally intractable 

[Thr05]. Particle filtering, on the other hand, is a version of the recursive Bayesian 

filtering that uses samples (“particles”) to represent the posterior distribution [Dou01]. 

It has a computational time complexity that is directly proportional to the number of 

samples and has been applied to the UGV localization problem [Del99, Fox00, Gus02, 

Thr01]. Nevertheless, it is computationally expensive when the number of samples is 

high. It must be noted, however, that the accuracy of the filter is poor when the number 

of samples is low. Kalman filtering [Kal60] is another derivative of the recursive 

Bayesian filtering with two underlying assumptions: (1) the prior distribution and the 

uncertainty in the process and measurement models are independent, white, and zero 

mean Gaussian processes and (2) the process and measurement models are linear. An 

exception to the linearity assumption is the Extended Kalman Filter (EKF), wherein a 

nonlinear model is linearized at the most recent state estimate [May79]. The property of 

the Kalman Filter (KF) that makes it attractive from the standpoint of implementation is 

its “constant-time” complexity. 

Early applications of Kalman filtering include the parallel Kalman filtering 

method [Wil76] and the decentralized Kalman filter [Has88]. The decentralized 

architecture was found to be more robust to sensor failures and more flexible to 

accommodating additional sensors [Dur90].  A version of the decentralized filter known 

as the federated Kalman filter uses multiple local filters (one for each sensor) that run in 

parallel and one master filter that generates a globally optimal estimate [Car90]. The 

decentralized or distributed methods for fusion filtering offer increased efficiencies 
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[Gao93]. Several applications of Kalman filtering for sensor fusion exist in literature 

[Car04, Rou97, Sas00]. 

The statistical and probabilistic techniques discussed in the preceding paragraph 

depend on the accuracy of the process model and the measurement model. As accurate 

mathematical modeling of dynamical systems is difficult, the Dempster-Shafer (DS) 

theory of evidence may be leveraged to bolster the state estimation process. Though 

techniques such as Multiple Model Adaptive Estimation (MMAE) [May85, Han98] 

offer ways to counter modeling inaccuracies, they do not account for ignorance. The DS 

theory of evidence, unlike the Bayesian theory, factors in the “ignorance” component 

of uncertainty leading to a better representation of inaccuracies [Sha76]. The DS 

theory of evidence permits the use of heuristic domain knowledge of experts into the 

fusion process [Mur98] and has been found to be better than the Bayesian process in a 

vision sensor fusion application [Wu02]. The DS theory has been applied to localization 

of vehicles using multi-target tracking [Cle02] and road-matching techniques [ElN05]. 

2.4 Cooperative Localization 

For a team of UGVs that have heterogeneous sensing capabilities and also 

operate under varying environmental conditions, vehicles with better accuracy in 

localization can assist those with poor accuracy. This is generally known as a CL 

system [Rek02]. Cooperation is achieved by using relative position and/or relative 

orientation between the vehicles and estimates of their own position and/or orientation. 

The CL problem is similar to that of localizing the nodes of a wireless sensor network 

with the difference being that the nodes of a CL system are mobile and capable of 
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independent localization [Das02]. By having just few expensive and highly accurate 

UGVs and many inexpensive but poorly accurate UGVs, CL holds the potential of 

decreasing the “per-UGV” cost [Fox00]. However, additional constraints are posed due 

to the increase in communication between the vehicles and due to the additional sensors 

that are required for determining their relative pose. The next section presents the 

current approaches to CL. 

2.4.1 Current Approaches to Cooperative Localization   

The earliest published work on CL is a “leapfrogging” approach (one UGV is 

stationary while the other moves and vice versa) that employs two cooperating vehicles 

[Sug93].  The “portable landmark” approach is a leapfrogging approach for more than 

two vehicles wherein the team is divided into two groups [Kur94, Kur98, Kur00]. 

Geometric CL systems include triangulation, a method based on the angles that 

the UGV makes with the vertices of a triangle, and trilateration, a method based on the 

distance measurements to the vertices of a triangle [Bor96]. But these methods do not 

take into account the errors associated with individual vehicle estimates. A 

computationally efficient method for solving the trilateration problem takes into account 

both measurement noise and system non-linearity [Man96]. Spherical coordinate 

transforms have also been used in the determination of the relative distance for a CL 

technique for two vehicles [Hya99]. Geometric techniques that use a triangular 

constraint method (based on the fact that the angles of a triangle add up to 180 degrees) 

have been investigated by equipping the UGVs with omni-directional cameras [Kat99]. 

The computational time was found to be excessive when the number of UGVs exceeded 
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seven. The use of active stereo vision for tracking a two-robot team has been 

investigated as a means of collaborative localization [Dav00]. 

A probabilistic algorithm for collaborative multi-robot localization showed an 

improvement in localization accuracy [Fox00]. Probabilistic methods such as the 

maximum likelihood approach have been used in combination with the geometric 

trilateration technique for teams of small robots [Gra01]. In a distributed multi-robot 

localization scheme that views the entire team of robots as a group “organism” with 

multiple “limbs,” each robot is considered as a joint that is capable of three degrees of 

motion [Rou02]. A reduction in computational overhead is achieved by decomposing a 

single Kalman filter into multiple filters. In another study, the CL problem is decoupled 

into two sequential optimization problems as follows [Das02]: (1) estimation of the 

orientations of the team and (2) estimation of the positions of the team. A completely 

distributed particle filter, wherein every UGV estimates the relative pose of every other 

UGV in the team, has been implemented in [How03]. 

A deterministic method for CL that uses an unknown-but-bounded approach to 

sensor modeling as well as linear programming optimization techniques was presented 

in [Spl03]. Recently, several EKF based approaches and particle filter based methods 

have been presented for CL: Rao-Blackwellized particle filter for the estimation of the 

relative distances and the relative bearings between multiple robots [Lin05], an EKF 

based cooperative distributed localization method that employs laser rangefinders to 

obtain the relative pose [Mad04], an EKF that uses relative distance and orientation 

information to localize seven robots simultaneously [Mar05], a bearing-only CL system 
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for pairs of robots that includes a comparison of convergence rates between an EKF and 

a particle filter [Mon05], a distributed particle filter algorithm for the localization of a 

three robot team wherein the positions of the robots are considered to be the vertices of 

a triangle with each robot using an identical particle filter to determine the centroid of 

the triangle [Pea05], an EKF based relative localization system wherein SICKTM laser 

scanners and wheel encoders are employed to measure the distance and the bearing 

between a stationary observer robot and moving robots [Sch04], and a distributed and a 

scalable localization system that uses an EKF in conjunction with a minimum entropy 

criterion for the selection of optimal measurements that minimize the global uncertainty 

[Cag06]. 

Other recent methods of CL are as follows: a stereo vision technique [Mil05], a 

geometric method that employs a laser scanner [Ryd05], a relative position 

measurement graph based method [Mou06], a stigmeric potential field method for 

simultaneous localization and mapping of a multi-vehicle team [Sti06], and a low-cost 

method wherein some robots that are equipped with localization sensors localize the 

other robots [Kou06]. Table 2.1 shows a classification of CL systems based on seven 

criteria. 

On the hardware front for CL, the Ultra Wide-Band (UWB) technology can be 

used for communication as well as ranging [Che04]. A prototype UWB precision asset 

location system obtained a Root Mean Squared (RMS) error of 0.9 m to 1.5 m and was 

found to operate even in the presence of heavy multipath [Fon02]. The first FCC 

certified commercial UWB Precision Asset Location system (PAL650) that comprised 



 

 19

of active tags with radomes, ceiling mounted UWB receivers, and a base processing hub 

achieved standard errors ranging between 0.1 m and 0.5 m depending on the axis and 

the algorithm used (steepest descent algorithm or Davidon-Fletcher-Powell quasi-

Newton algorithm) for computing the position of the tags [Fon03]. 

 

Table 2.1 Classification of CL Systems 

 

Basis Criteria Classification 

Restricted (e.g. leapfrogging) 
Mobility Restrictions 

Unrestricted 

Deterministic 
Process Model 

Stochastic 

Range and bearing 

Bearing only Relative Measurements 

Range only 

Centralized 
Estimator Type 

Decentralized (e.g. distributed) 

Homogeneous 
Team Type 

Heterogeneous 

Indoor 

Outdoor Operating Environment 

Indoor and outdoor 

Small (< 10) 
Maximum Team Size 

Large (>= 10) 
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The existing approaches to CL described in the preceding paragraphs require 

either relative orientation sensing devices or relative distance sensing devices or both 

relative orientation and relative sensing devices. Devices such as SICKTM laser scanners 

are expensive, and this characteristic may offset the cost advantage of a CL system. The 

UWB technology, described in the preceding paragraph, is a low-cost communications-

cum-ranging device that can achieve standard errors less than 0.15 m [Fon03]. The 

UWB technology uses the Angle-of-Arrival (AOA) of signals for relative orientation 

sensing and Time-of-Arrival (TOA) of signals for relative distance sensing. However, 

the AOA method has two major disadvantages [Pat05]: (1) requirement of an array of 

sensor elements (that in turn leads to an increase in cost) and (2) sensitivity to higher 

inter-UGV distances. Therefore, a range-only CL system has the potential for 

reaping the cost benefits of a CL system.  
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CHAPTER 3 

EVIDENCE THEORETIC ADAPTIVE FILTERING  

 

3.1 An Overview of the η-Filter 

 
Figure 3.1 The η-Filter Framework: A generic ‘n’ sensor fusion filter model 
showing how the APP and the EEC are “added on” to an existing Kalman 
filter. 

 

An evidence theoretic adaptive (“eta” or “η”) filter is essentially an application 

of the KF that leverages the DS theory of evidence (also known as belief theory) 

[Vib06, Vib07b]. As shown in Figure 3.1, existing KF based fusion filters can be 

retrofitted by “adding-on” an Adaptive Pre-Processing (APP) unit and an Evidence 

Extraction and Combination (EEC) unit. From the standpoint of functionality, the η-

Filter adapts to operating scenarios and sensor goodness by means of the DS theory of 
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evidence. However, parametric models and mass assignment tables are required based 

on the operating scenarios and the sensors under consideration [Vib07b]. 

The following sections describe the experimental procedures for creating 

parametric models of linear velocities, angular velocities, and the orientation (heading) 

and for building a mass assignment table for a GPS sensor. They also describe the three 

components of the η-Filter (APP, EEC, and EKF) and the experimental validation of the 

η-Filter. 

3.2 Parametric Calibration and Mass Assignment 

A set of four designed experiments were performed with the objective of 

building multiple parametric models for linear velocity and angular velocity for two 

operating scenarios and a mass assignment table for GPS sensor goodness. The results 

of this calibration procedure were subsequently used in the experimental validation of 

the η-Filter described in Section 3.4. For these experiments, a car-type UGV – the FHP-

4WD-SMP – was used. The FHP-4WD-SMP is essentially a Traxxas E-Maxx remote-

control car chassis (Figure 3.2) that is driven by a Motorola DSP56F805 based onboard 

controller, the IsoPodTM. Another controller, the IsoPodXTM, with a combined memory 

of 992Kb was used exclusively for data-logging (Figure 3.2). Both relative and absolute 

localization sensors [Fra04] were used in the experiments. The sensors are listed as 

follows: six custom-built magnetic encoders in the form of magnetically actuated reed 

sensors that were chosen due to mechanical constraints in the rear wheels of the UGV 

(Figure 3.3), an Analog Devices ADXL202-EB dual-axis accelerometer (Figure 3.4), a 

GWS PG-03 solid-state rate-gyro (Figure 3.4), a Devantech CMPS03 digital compass 
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(Figure 3.2), and a Navman/Jupiter TU10-D007-091 GPS Development Kit (Figure 3.2). 

In addition to the aforementioned sensing hardware, a MaxStream-XTend-PKGTM 

wireless unit (Figure 3.2) was employed for broadcasting the logged data to the base 

station after the completion of each run. Due to hardware memory limitations, the 

maximum duration of each run was limited to 60 s. 

3.2.1 Models for Linear Velocity 

Two models for linear velocity are required for the APP: (1) based on all 

sensors and (2) based on only inertial sensors. An experiment consisting of twenty-one 

straight-line runs was performed in a parking lot. The runs comprised of seven 

repetitions each for three throttle settings. The data from the sensors of interest, i.e., the 

six rear wheel encoder probes (R1, R2, R3, L1, L2, and L3), the accelerometer-x, and 

the rate-gyro, were logged at a frequency of 20 Hz. Figure 3.7 shows a description of 

the raw plots. The distance of each run was measured by manually marking the 

start/stop points and using a standard measuring tape. Then, the linear velocity of the 

UGV was computed by dividing the distance of each run by the preset duration of the 

run. The following linear regression models [Mas03] are created using the empirical 

data. 
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Figure 3.2 An Experimental UGV – The FHP-4WD-SMP: Notice that the 
axes of the vehicle frame ‘V’ conform to the AS-4/JAUS specifications. 
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Figure 3.3 The Rear Wheel Encoders: A set of magnets embedded inside the 
wheel rim actuate the reed sensors (L1, L2, and L3 are shown here) that 
serve as encoders. In-house rapid prototyping was used in the manufacture 
of the wheel encoder components. 
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Figure 3.4 The Inertial Measurement Unit: A dual-axis accelerometer is 
positioned above the center of the rear wheel axle (the origin of the vehicle 
frame, in two a dimensional sense). A solid-state rate-gyro with its rotation 
axis aligned to the zV-axis is strapped on to the accelerometer housing. 
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Model Rn (for velocity based on the right rear wheel encoders) is given by the 

following equation: 

vr,nr,n10r,n εTPSββv ++= )( ,                                         (3.1) 

where v is the velocity, the subscripts r and n represent right and the number of the 

encoder respectively, i.e., n = 1, 2, 3, β0 is the intercept, β1 is the slope,  TPS represents 

the Ticks Per Second, and vr,nε  is the residual with ),0(~ vr,nvr,n σNε . Figure 3.5 shows a 

plot of the velocity model based on rear wheel encoder R3. Table 3.1 shows a listing of 

parameter estimates, nβ̂ . MSE refers to the Mean Squared Error and R2 refers to the 

goodness-of-fit. Further,  

⎥
⎦

⎤
⎢
⎣

⎡
Δ

=
)(
,

, t
ticks

TPS nr
nr ,                                               (3.2) 

where ticksr,n represents  the number of ticks of the nth right encoder and ∆t is the time 

between sampling. 

Model Ln (for velocity based on the left rear wheel encoders) is given by the following 

equation: 

nvlnlnl TPSv ,,10, )( εββ ++= ,                                        (3.3) 

where the subscript l represents left, n = 1, 2, 3, and nvl ,ε  is the residual with 

),0(~ ,, nvlnvl N σε . Further, 

⎥
⎦

⎤
⎢
⎣

⎡
Δ

=
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,

, t
ticks

TPS nl
nl ,                                                (3.4) 

where ticksl,n represents the number of ticks of the nth left encoder. 



 

 28

 

 

 

 

 

 

Figure 3.5 Linear Velocity from Rear Wheel Encoder R3: Notice that the y-
intercept for this linear model is pegged at zero. 
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Figure 3.6 Linear Velocity from Accelerometer Measurements: The velocity 
as integrated from the acceleration along the xV-axis shows a bias (indicated 
by a non-zero y-intercept) as well as a scale factor (slope ≠ 1). 
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Table 3.1 Model Parameter Estimates and Goodness-of-Fits  

 

 

 

 

Model C1 (for velocity based on accelerometer-x) is given by the following equation: 

vax

k

i
xax tav εββ +Δ⋅+= ∑

=0
10 )( ,                                       (3.5) 

where vax is the velocity along vehicle x-axis (xV) based on the accelerometer-x, k is the 

time-step, ax is the measured acceleration along the xV-axis, and vaxε  is the residual with 

),0(~ vaxvax N σε . Figure 3.6 shows a plot of model C1. 

Model 0β̂  1β̂  2β̂  3β̂  4β̂  5β̂  MSE R2 

R1 0.000 0.011    0.16 0.9921

R2 0.000 0.113    0.54 0.9642

R3 0.000 0.013   0.01 0.9997

L1 0.000 0.014   0.03 0.9987

L2 0.000 0.013   0.03 0.9984

L3 0.000 0.019   0.03 0.9984

C1 0.736 0.546   0.04 0.9802

W1 0.996 -0.589   0.10 0.8296

W2 -0.338 -0.016   0.01 0.9987

D1 -0.070 1.151 -0.004 2.77E-5 -5.9E-8 4.3E-11 3.73 0.9998

D2 -0.002 1.136 -0.005 3.63E-5 -9.4E-8 8.3E-11 2.76 0.9998
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Model C2 (for velocity based on accelerometer-y) is given by the following equation: 

vay

k

i
yay tav εββ +Δ⋅+= ∑

=0
10 )( ,                                      (3.6) 

where vay is the velocity along vehicle y-axis (yV) based on accelerometer-y, ay is the 

measured acceleration along the yV-axis, and vayε  is the residual with ),0(~ vayvay N σε . 

The linear velocities of the right and the left wheels, as determined by the 

individual encoders using Equations (3.1) and (3.3), are fused by taking weighted 

averages. The weights are set as the inverse of the error variances using the generic 

fusion equation under the assumption of independence of errors between the encoders, 

i.e., Equation (2.1). The resulting velocity models are given as follows. 

Model R (for fused velocity of the right rear wheel) is given by the following equation: 
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n
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where vrε  is the residual with ),0(~ vrvr N σε . Further, 
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nvrvr σσ .                                            (3.8) 

Model L (for fused velocity of the left rear wheel) is given by the following equation: 
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where vlε  is the residual with ),0(~ vlvl N σε . Further, 
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∑
=
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nvlvl σσ .                                            (3.10) 

Based on the requirements of the η-Filter, velocity models are built for the two 

operating scenarios by taking weighted averages, as in the case of Equation (3.7). 

Model A1 (for fused velocity of the UGV for “normal” scenario) is given by the 

following equation: 

1121212

121212

1 )()()(
)()()(

vx
vaxvlvr

axvaxlvlrvr
x

vvvv ε
σσσ
σσσ +⎥

⎦

⎤
⎢
⎣

⎡
++
++= −−−

−−−

,                       (3.11) 

where vx1 is the fused velocity along the xV-axis and 1vxε  is the residual with 

),0(~ 11 vxvx N σε . Further, 

11212122
1 ))()()(( −−−− ++= vaxvlvrvx σσσσ .                                (3.12) 

Equation (3.11) is valid only for straight-line trajectories. For arbitrary trajectories, the 

average of vr and vl is computed and then combined with vax in the minimum variance 

sense, as in the case of Equation (3.7). 

Model A2 (for fused velocity of the UGV for “trapped” scenario) is given by the 

following equation: 

22 vxaxx vv ε+= ,                                               (3.13) 

where vx2 is the fused velocity along the xV-axis and 2vxε  is the residual with 

),0(~ 22 vxvx N σε . Further, 

22
2 vaxvx σσ = .                                                  (3.14) 
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Figure 3.7 The Raw Measurements for a Straight Line Run: Measurement 
from the rear wheel encoder R3 (a), accelerometer-x Pulse Width (PW) 
measurement (b), and the Rate-Gyro (RG) PW measurement (c). The high-
frequency noise visible in these plots is mainly due to vibrations. It is 
countered by using low-pass filters. 
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Figure 3.8 The Raw Measurements for a Curve Run: Measurements from 
the rear wheel encoder R3 (a), accelerometer-x PW measurement (b), and 
the RG PW measurement (c). The fluctuations (low-frequency noise) are 
caused due to the inclined surface on which the experiment was conducted. 
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3.2.2 Models for Angular Velocity 

An experiment consisting of thirty-three runs was conducted with the objective 

of creating two models for angular velocity, i.e., one for each scenario. The runs 

included three repetitions each for eleven steering-angle settings. Data from the six rear 

wheel encoders, the rate-gyro, and the compass were logged at a frequency of 20 Hz.  

Figure 3.8 shows the raw measurement plots. The compass data was logged in order to 

compute the angular velocity of the UGV. The angular velocity was computed by 

dividing the total angle turned, as determined by the compass, by the preset duration of 

the run. The following models are built using the empirical data. 

Model W1 (for angular velocity based on the rear wheel encoders) is given by the 

following equation: 

rlnlnrrl TPSTPS ωεββω +−+= )( ,,10 ,                               (3.15) 

where rlω  is the angular velocity measured by the right-left encoder difference, n = 3 

(for this work), and rlωε  is the residual with   ),0(~ rlrl N ωω σε . Table 3.1 shows a listing 

of the parameter estimates, nβ̂ . The relatively lower value of R2 for model W1 can be 

inferred from Table 3.1. Figure 3.9 shows a plot of Model W1. The poor goodness-of-fit 

is noticeable. This indicates that the wheel encoders are less reliable in estimating the 

angular velocity of the UGV under consideration.  

Model W2 (for angular velocity based on the rate-gyro) is given by the following 

equation: 

rgrgrg pulse ωεββω ++= )(10 ,                                     (3.16) 
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where rgω   is the angular velocity measured by the rate-gyro, rgpulse   is the pulse width 

difference integer measured from the rate-gyro, i.e., the difference between the pulse 

width integer while the UGV is stationary (at rest) and the measured pulse width 

integer, and rgωε   is the residual with ),0(~ rgrg N ωω σε . Figure 3.10 shows a plot of 

model W2. 

 

 

 

Figure 3.9 Angular Velocity from Rear Wheel Encoder R3/L3 TPS 
Difference: The difference between the right wheel encoder R3 TPS and the 
left wheel encoder L3 TPS shows a linear relationship with the angular 
velocity. 
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Figure 3.10 Angular Velocity from the Rate-Gyro: The difference between 
the “at rest” pulse width and the measured pulse width shows a linear 
relationship with the angular velocity. 

 

The angular velocity models for the trapped and the normal operating scenarios are 

created by taking weighted averages, as in the case of Equation (3.7). 

Model B1 (for fused angular velocity for the “normal” scenario) is given by the 

following equation: 
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where ωz1 is the fused angular velocity about the zV-axis (Figure 3.2) and 1zωε  is the 

residual with ),0(~ 11 zz N ωω σε . Further, 

11212
1 ))()(( −−− += rgrlz ωωω σσσ .                                      (3.18) 
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Model B2 (for fused angular velocity for the “trapped” scenario) is given by the 

following equation: 

22 zrgz ωεωω += ,                                                (3.19) 

where ωz2 is the fused angular velocity about the zV-axis and 2zωε  is the residual with 

),0(~ 22 zz N ωω σε . Further, 

22
2 rgz ωω σσ = .                                                    (3.20) 

3.2.3 Models for Orientation 

The inclination of the surface is considered as a factor that could impact the 

measurements from the digital compass. Two models are required for the two “test” 

surfaces, i.e., one parking lot with a level surface and another with an inclined surface. 

Figure 3.19 shows the inclined surface. The methodology for modeling the compass is 

similar to the procedure presented in [Oje00]. The compass was mounted on the UGV 

at a location that was free of magnetic interference (Figure 3.1). In order to prevent 

errors due to magnetic storms [McL04], a check was made with a local observatory to 

confirm the absence of magnetic storms. The UGV was first mounted on an aluminum 

fixture and aligned to the geomagnetic north. Then, the entire setup was indexed in 

clockwise and counter-clockwise directions at 45 degree increments from the 

geomagnetic north. A measurement was recorded at each index point. The procedure 

was performed twice for each of the two test surfaces. 

A fifth degree polynomial model appears to offer the best fit for the two test 

surfaces based on a qualitative assessment of the residual plots (Figure 3.11). The 
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standard error for a fifth degree model is 34% less than that for a third degree model 

and is 65% less than that for a linear model. The goodness-of-fit is greater than 0.99 for 

all the three models. The declination (or magnetic variation), which is defined as the 

difference between the true north and the geomagnetic north, depends on the location as 

well as the time of measurement [McL04]. This value (4.7333º for the current validation 

experiment location and time) is to be “added” to the fitted model while computing the 

absolute orientation [McL04]. 

 

Figure 3.11 The Compass Residual Plots for Three Types of Fits: Residuals 
of the linear fit and the third degree fit show nonlinear trends. Residuals of 
the fifth degree fit do not exhibit any trend. They also have the least 
Standard Error (SE) and the highest goodness-of-fit. A sixth degree fit tends 
to over-fit. It is therefore not considered.   

 

 



 

 40

Model Dn (for orientation based on the compass, n = location = 1, 2) is given by the 

following equation: 

ψεψβψβψβψβψββψ ++++++= 5
5

4
4

3
3

2
210 cococococok ,                     (3.21) 

where ψ  is the orientation (heading), subscript co refers to the compass, and ψε  is the 

residual with ),0(~ ψψ σε N . Figure 3.12 shows the fifth degree compass curve for a 

level surface. 

 

 

Figure 3.12 The Compass Curve for Level Surface: A fifth degree 
polynomial model is selected based on an assessment of the residual plots 
and goodness-of-fit. 
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3.2.4 Mass Assignment Table for GPS 

A mass assignment table that contains the required mass functions is created 

based on the factors that influence the GPS reading. Two hundred readings were logged 

in five locations and in two staggered time windows. The geographic coordinates 

(latitude, longitude) for the five locations are as follows: (32.7263639°, −97.1128827°), 

(32.7298098°, −97.1200778°), (32.7321189°, −97.1126556°), (32.7320419°, 

−97.1119642°), and (32.7301885°, −97.1106639°). The staggering of the data-logging 

time windows was done keeping in mind the approximately 12-hour period of the 

satellites and the equal spacing of the 4 satellites in each of the 6 orbits of the GPS 

constellation [Dju01]. The receiver was manually reset prior to each measurement in 

order to ensure a fresh position fix. Based on the results of the Analysis of Variance 

(ANOVA) F-test, it “cannot” be concluded, at the 5% significance level (α), that the 

position errors depend on the time or the location of measurement [Vib07a]. However, 

the GPS position error shows a dependence on the number of satellites (#Sat) and the 

Horizontal Dilution of Precision (HDOP). Three discrete levels for the #Sat and the 

HDOP criteria are created. Figure 3.13 shows a scatter-plot of the errors for the three 

levels of the #Sat and the HDOP criteria. 
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Figure 3.13 Error Plots of the GPS as a Function of #Sat (a) and HDOP (b): 
The measurements have a higher precision when #Sat >= 8 and when 
HDOP < 10. 

 



 

 43

 

Table 3.2 Mass Assignment Table for GPS Sensor Goodness 
 

 

 

Therefore, a mass assignment table (Table 3.2) is created based on the following 

two criteria: #Sat and HDOP. Within each criteria instance, the mass functions ams(U) 

are computed using the empirical data based on the fraction of occurrence and the 

following rule: 

IF |error| < 10 m THEN U = {yes} 

ELSE IF |error| >= 20 m THEN U = {no} 

ELSE U = {yes, no}. 

Criteria Value Axis 
(a) 

ams(yes) ams(no) ams(yes, no) 

N 0.95 0.00 0.05 
>= 8 

E 0.91 0.00 0.09 

N 0.75 0.10 0.15 
< 8 & >= 6 

E 0.69 0.03 0.28 

N 0.33 0.57 0.10 

#Sat 
(s=1) 

< 6 & >= 3 
E 0.53 0.30 0.17 

N 0.94 0.00 0.06 
< 10 

E 0.96 0.00 0.04 

N 0.88 0.02 0.10 >= 10 & < 
18 E 0.77 0.01 0.22 

N 0.36 0.56 0.08 

HDOP 
(s=2) 

>= 18 
E 0.44 0.24 0.32 
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The error variances along the north and the east axes are computed using the same rule 

as above [Vib07a]. Table 3.2 is subsequently used in the computation of the values of 

the R matrix in Equations (3.44) and (3.45). 

3.3 Components of the η-Filter 

3.3.1 Adaptive Pre-Processing 

The APP unit uses multiple models for processing raw sensor measurements, 

and adapts to operating scenarios by “switching” between models. Figure 3.14 shows 

the components of the APP for the UGV localization problem. With the exception of 

the GPS measurements, all measurements ( 1
~

sy ,…, sny~ ) are first processed by Low Pass 

Filters (LPFs) that take the form of moving average filters. The LPFs are effective in 

reducing vibration-induced noise. Two models for linear velocity (A1 and A2) and two 

models for angular velocity (B1 and B2) are created as described in Section 3.2. The 

EEC unit performs the switching between the two sets of models and is described in 

next section. The source-of-evidence vector for UGV localization is defined as 

T
rlxp vvaSatHDOP ], ,,#,[=s ,                                   (3.22) 

where the subscript p refers to APP. 

The input noise covariance matrix (S) depends on the position of the switch, i.e., 

it depends on whether the models used are (A1 and B1) or (A2 and B2). The 

corresponding error variances of the models are used as the diagonal elements of the 

matrix S.  
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Figure 3.14 The Adaptive Pre-Processing Framework: The raw sensor 
measurements are adaptively pre-processed by switching between models. 

 

3.3.2 Evidence Extraction and Combination 

The EEC forms the “crux” of the η-Filter framework and relies on the DS 

theory of evidence. The first step in the application of the DS theory [Sha76] is the 

definition of the frame of discernment, W, which represents the set of all possible 

worlds the UGV or the sensor can be in. Thereafter, the subsets of importance are 

identified. Evidence is quantified as a continuous or as a discrete value depending on 

the source of the evidence. In the evidence extraction stage, mass functions are assigned 
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based on the components of the source-of-evidence vector. Either a fuzzy-type method 

or a rule-based mass assignment table is used depending on whether the evidence is 

continuous or discrete. Mass function (or basic probability assignment) indicates the 

degree of support that a body of evidence provides for “exactly” one proposition, i.e., 

the degree of belief one should accord exactly that proposition on the basis of the 

evidence [Sha76]. It is a number between zero and one and is defined by the following 

equation [Hal03]: 

]1..0[2:)( →WUm  and WU ∈ ,                                  (3.23) 

where the subset U represents a proposition.  

The two properties of a mass function are follows [Hal03]: 

0)( =∅m .                                                    (3.24) 

∑ ⊆
=

WU
Um 1)( .                                               (3.25) 

Once evidence extraction is completed, the Dempster’s rule for combination is 

applied in order to fuse the disparate pieces of evidences that contribute to a proposition 

(Figure 3.16). The combined degree of support for a proposition is described by the 

following equation [Hal03]: 

cUmUmUmm
UUU
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221121 ∑
=∩

=⊕ ,                          (3.26) 

where 

∑
≠∅∩

=
21

)()( 2211
UU

UmUmc .                                        (3.27) 



 

 47

Equation (3.26) represents the “pooling” of evidence and is also known as the 

orthogonal sum. It deals “symmetrically” with the evidences, i.e., the result of the 

combination does not depend on the order in which the evidence arrives. This is in 

contrast to the Bayesian theory, where the order in which the evidence arrives impacts 

the outcome of the combination [Sha76]. 

Finally, the belief function (also known as support function) is computed. The 

belief function represents the “total” degree of support provided by a body evidence for 

a proposition [Sha76] and is defined by the following equation [Hal03]: 

]1..0[2: →WBel(U)  and },...,,{ 21 nwwwW = .                      (3.28) 

It is computed using the following relationship [Hal03]: 

∑
⊆′

′=
UU

m UmUBel )()( .                                           (3.29) 

The three properties of a belief function are as follows [Hal03]: 

0)( =∅Bel .                                                   (3.30) 

1)( =WBel .                                                   (3.31) 
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Definition: A car-type UGV with differentials is said to be “trapped” if at least 

one wheel is spinning but there is no displacement of the UGV. 

The following sections describe a two-pronged approach: (1) for the “trapped 

robot” scenario and (2) for GPS sensor goodness. 
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3.3.2.1 The “Trapped Robot” Scenario 

The frame of discernment, W, for operating scenarios is given by: 

},{ trapnormW = ,                                              (3.33) 

where norm = normal and trap = trapped. The subsets of localization importance are 

},{},{},{ trapnormtrapnorm .                                   (3.34) 

The subset },{ trapnorm  corresponds to the “ignorance” component of uncertainty. A 

set of two criteria contribute evidence to a proposition (scenario in this case) and are 

given as follows: (1) the magnitude of velocity difference between the right and the left 

rear wheels, i.e., |vr - vl|, and (2) the magnitude of acceleration of the UGV, i.e., |ax|. As 

the system is dependent on the information from only the rear wheel encoders, a trapped 

robot scenario that involves a front wheel spin is not detected. As the evidences are 

continuous variables, a “fuzzy-type” method for mass assignment is used (Figure 3.15) 

[Car04]. The combined mass function for }{trapU =  is computed using Equation 

(3.26). The belief function, )(trapBel , is computed using Equation (3.29). Based on the 

value of )(trapBel , switching between models is performed, i.e., if the belief exceeds a 

preset threshold value (a value of 0.5 is considered here). Hence, the APP adapts to the 

changing operating scenarios of the UGV by switching between models for linear and 

angular velocities. 

3.3.2.2 GPS Sensor Goodness 

The frame of discernment for GPS sensor goodness is defined by the following 

equation: 
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},{ noyesW = ,                                                 (3.35) 

where yes and no are answers to the following question: is the sensor reading good? 

The subsets of importance for sensor goodness are 

},{},{},{ noyesnoyes .                                         (3.36) 

In this case, the subset },{ noyes  corresponds to the “ignorance” component of 

uncertainty. As the evidences are discrete variables (#Sat and HDOP), a rule-based 

“mass assignment table” (Table 3.2) is used. Like in the previous case, the combined 

mass functions are computed using Equation (3.26). The combined mass functions are 

subsequently used in the computation of the components of the measurement error 

covariance matrix in Equations (3.44) and (3.45). In this way, the fusion filtering 

system adapts to the quality of the GPS measurements, i.e., the measurement noise 

covariance matrix (R) adapts to sensor goodness depending on #Sat and HDOP. 
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(a) 

 

 
(b) 

Figure 3.15 Fuzzy-Type Mass Assignment for the Trapped Robot Scenario: 
The velocity difference magnitude criterion (a) and the acceleration 
magnitude criterion (b). The shaded regions represent the “ignorance” 
component.  
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Figure 3.16 A Geometric Interpretation of Dempster’s Rule for 
Combination: {A, B} represents {norm, trap} and {yes, no} for the trapped 
robot scenario and GPS sensor goodness respectively. 
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3.3.3 Extended Kalman Filtering 

As the UGV localization process model is nonlinear, an EKF is developed 

[Cra04, May79]. Despite the existence of dynamical models for UGVs [Eco00], a 

kinematic (constant velocity) model is used with the intention of keeping it simple. As 

the symbolic notation conforms to the AS-4/JAUS convention [Joi04], the x-axis points 

towards the north, the y-axis points towards the east, and the z-axis points towards the 

earth, i.e., “downwards” (Figures 3.2 and 3.17). Platforms with the following steering 

mechanisms are considered [Bra03]: differential steering (wheeled or tracked) and 

Ackermann steering. 

 
Figure 3.17 The Kinematic Process Description: A geometric description of 
the pose transition of the UGV from time-step k to time-step k+1. 
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3.3.3.1 Process and Measurement Models 

The nonlinear process model is a difference equation that propagates the state of 

the system from the current discrete time-step (k) to the next discrete time-step (k+1) 

and is defined as follows: 

kkkk wuxφx +=+ ),(1 ,                                          (3.37) 

where Tyx ],,[ ψ=x  is the state vector, x is the position along the xL-axis in meters, y is 

the position along the yL-axis in meters, and ψ is the orientation about the zL-axis in 

radians, T
zyx vv ],,[ ω=u  is the input vector, xv  is the velocity along the xV-axis, yv is 

the velocity along the yV-axis, zω  is angular velocity about the zV-axis, ),( kk uxφ  is a 

nonlinear function of x and u, and T
yx www ],,[ ψ=w  is the error with 

),0(~ kk N Qw . Q  is the process noise covariance matrix. “Tuning” of the Kalman 

filter refers to the adjustment of the elements of the matrix Q  in order to achieve the 

required performance. An increase in the values of the elements of matrix Q  results in 

a corresponding increase in the weighting of the measurements. Therefore, the values of 

Q  should be on the lower side when the sensors are noisy or faulty. 

After the application of homogeneous transformation [Cra89], the nonlinear 

process model is represented by the following three equations: 

xkykxkk wtvtvxx +Δ−Δ+=+ )(sin)(cos1 ψψ ,                (3.38) 

ykykxkk wtvtvyy +Δ+Δ+=+ )(cos)(sin1 ψψ , and            (3.39) 

ψωψψ wtzkk +Δ+=+1 .                                     (3.40) 
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The input covariance matrix depends on the switch position of the APP and is 

given by 

),,( 222
zvyvxk diag ωσσσ=S ,                                       (3.41) 

where 2
vxσ  is the variance of velocity along axis xv, 2

vyσ  is the variance of velocity 

along axis yv, and 2
zωσ  is the variance of angular velocity attributed to the rate-gyro. 

Here, we assume that there is no cross-correlation between the errors in angular and 

linear velocities. 

The linear measurement model that relates the state of the system to the 

measurement vector is given by equation 

kkkk vxHy +=~ ,                                                (3.42) 

where y~  is the measurement vector, H is the measurement matrix (an identity matrix in 

this case), and v is the measurement error with vk ~N(0, Rk). 

The measurement noise covariance matrix depends on the available evidence 

(#Sat and HDOP) and is given by 

),,( 222
ψψσσσ yyxxk diag=R ,                                       (3.43) 

where 
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and 

22
ψψψ σσ = .                                                   (3.46) 
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The prefixed superscripts N and E refer to north and east respectively. The values for 

the variances on the right hand side of Equations (3.44) and (3.45) are selected from 

Table III in [Vib07a]. The value for the variance on the right hand side of Equation 

(3.46) is selected from Table 3.1. The mass functions am(U) are drawn from the mass 

assignment table (Table 3.2). The weighting of the variances are performed on the basis 

of the second property of mass functions as stated in Equation (3.25), i.e., 

∑ ⊆
=

WU
Um 1)( . In other words, further normalization is not required. 

3.3.3.2 Measurement Update and Propagation Cycle 

If viewed as a finite state machine, a Kalman filter would have three states as 

shown in Figure 3.18, i.e., initialization, measurement update, and propagation. 

  

 

Figure 3.18 The Discrete Kalman Filter Cycle: The cycle starts at the 
initialization state and then transitions to the measurement update state after 
the initialization of the state estimate and its error covariance. If there is a 
valid measurement based on the squared Mahalanobis distance criterion, 
then measurement update is performed. If there is no valid measurement or 
no measurement at all, there is a transition to the propagation state. 
Propagation is performed as per the process model, and the cycle transitions 
back to the measurement update state. 
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The initialization step assigns the initial state estimate and its error covariance 

as the a priori state estimate and the a priori error covariance respectively. It is 

formulated as follows.  

The a priori state estimate at time-step k = 0 is given by 

)(t00 ˆˆ xx =− ,                                                   (3.47) 

and the a priori estimation error covariance matrix −
0P  is given by 

}))(ˆ)(()(ˆ)({( 00000
Ttt)ttE xxxxP −−=− ,                           (3.48) 

where {.}E  represents the expected value. 

The measurement update step is performed in three steps as follows: (1) 

computation of gain, (2) measurement validation, and (3) update. 

The first step involves the computation of the Kalman gain, a weighting factor 

that determines the proportion of the measurement that should be added to the a priori 

state estimate. It is given by the following equation: 

1][ −−− += k
T
kkk

T
kkk RHPHHPK ,                                (3.49) 

where K is the Kalman gain. 

Then the measurement is “validated” using the squared Mahalanobis distance 

(Mdk) criterion and is given by the following condition [Bou00]: 

2
05.0,3

12 ][ χ<+= −−
kk

T
kkk

T
kk

M d eRHPHe ,                           (3.50) 

where ]ˆ~[ −−= kkkk xHye  is the innovation vector and =2
05.0,3χ 7.815 is obtained from a 

Chi-squared distribution table for degrees of freedom (dimension of the state vector) = 3  
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and p-value = 0.05. The validation step ensures that the 2
k

M d  value for measurement 

updates is bounded within its 95% confidence limits. 

The final step is the computation of the update where the a priori state estimate 

is combined with the weighted innovation vector in order to obtain the a posteriori state 

estimate. The corresponding a posteriori error covariance is also computed. The 

equations are given by 

]ˆ~[ˆˆ −−+ −+= kkkkkk xHyKxx                                        (3.51) 

and 

−+ −= kkkk PHKIP ][ .                                           (3.52) 

The propagation step propagates the state of the system and its error covariance 

from the current time-step to the next time-step. As the process model is nonlinear, 

linearization is performed at the most recent state estimate, i.e., the a posteriori state 

estimate. The corresponding equations are given as follows: 

)ˆ,ˆ(ˆ 1 kkk uxφx +−
+ =                                               (3.53) 

and 

kk
T
kkkkk

T
kkkkk QxΓSxΓxΦPxΦP ++= +++++−

+ )ˆ()ˆ()ˆ()ˆ(1 ,                   (3.54) 

where the Jacobian matrices )ˆ( +
kk xΦ  and )ˆ( +

kk xΓ  are the partial derivatives of φ with 

respect to x and u respectively at the point +
kx̂ . Thus, 
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and 
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3.4 Results of Experimental Validation 

3.4.1 “Trapped Robot” Scenario 

An experiment was performed to check the validity of the η-Filter. In particular, 

the η-Filter is compared with the EKF and the Dead Reckoning (DR) techniques for 

state estimation when the UGV operating scenario is trapped and GPS sensor goodness 

is poor, i.e., when #Sat is “low” and HDOP is “high.” As the factors such as operating 

scenario and GPS sensor goodness depend on the environment and cannot be controlled 

during the experiment, a statistically designed experiment is not feasible. So, the 

validation experiment was performed by artificially creating the “trapped” robot 

scenario and varying GPS sensor goodness using the following procedure. The UGV 

was remote-controlled to follow an approximately circular path in an open parking lot. 

Figure 3.19 shows the location of the experiment, with the UGV at its start/stop 

position. In the midst of the run, one wheel was forcibly raised causing the UGV to 

become “trapped,” i.e., all the power from the motors was transmitted through the 

differentials to the raised wheel. This caused the UGV to stop. Simultaneously, the GPS 

antenna was covered. This led to a drop in #Sat and an increase in HDOP. After 5 to 10 

seconds, the UGV was released. Thereafter, the “normal” scenario resumed. The UGV 

was then driven back to the start/stop position (a 1 m by 1 m box). The data logged 
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during the run was transmitted to the ground station (a laptop computer) through the 

wireless unit. Then, MATLABTM (version 7.0 R14) was used to implement the filter 

using the empirical data. 

The actual start/stop position was measured from known landmarks such as the 

edges of the parking lot using a standard measuring tape. These distances were then 

added to the geographic coordinates of the landmarks that were extracted from a 0.3048 

m resolution United States Geological Survey (USGS) geographic information systems 

database by using the ArcMapTM software. The geographic coordinates of the start/stop 

position L2 (32.7257531°, −97.1122750°) in the global frame of reference refers to the 

(0, 0) point in the local frame of reference. Figure 3.20 shows plots of the position and 

the orientation estimates of the UGV. The DR method shows a steady drift from the 

estimates of both the η-Filter and the EKF. The following position errors were found at 

the end of the approximately 60 meter run: 1.58 m for η-Filter, 3.70 m for GPS, 4.67 m 

for EKF, and 7.41 m for DR. Thus, the η-Filter performs better than the EKF or DR 

with respect to the final position estimates. 

The validity of the η-Filter may not be judged on the basis of the final position 

error alone. As shown in Figure 3.22, a high Velocity Difference (VD) and a near-zero 

acceleration cause a high Bel(trap) value (between the 20th and the 25th second). The 

“switching” takes place when the Bel(trap) value exceeds the preset threshold value of 

0.5. Thereafter, the APP unit switches to an inertial model for the computation of linear 

and angular velocities. 
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At the same time, a low #Sat value and a high HDOP lead to a low Bel(yes) 

value (Figure 3.23). Consequently, the EEC increases the values of the xx (north) and yy 

(east) components of the measurement noise covariance matrix thereby causing the η-

Filter to adapt to GPS sensor goodness, i.e., the GPS measurements are weighted less 

during the measurement update. In this experimental run, there is no noticeable increase 

in the residuals along the north and the east directions (Figures 3.21 (a) and (b)). 

Therefore, the η-Filter performs only as good as the EKF with respect to GPS sensor 

goodness. However, the η-Filter would perform better than the EKF with respect to 

GPS sensor goodness in the event of larger residuals due to low #Sat and high HDOP. 

Figure 3.13 shows the variation of GPS error versus #Sat and HDOP. 

The path-plot (Figure 3.20 (a)) clearly indicates that the η-Filter performs better 

than the EKF “after” a point where the UGV was trapped. As the true path is unknown, 

it is difficult to make an assessment of this improvement. However, a reasonable 

assessment can be made that there is an improvement in the case of the η-Filter in the 

trapped robot scenario with respect to the true start/stop position. 

Thus, the performance of the η-Filter leads to an improvement in the accuracy. 

Figure 3.21 describes the consistency of the η-Filter, i.e., the residuals are within their 

±2σ bounds. 
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Figure 3.19 The Validation Experiment: The UGV at its start/stop position 
(marked by a 1 m by 1 m square box) prior to the validation trials. An 
approximately circular trajectory was used. 
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Figure 3.20 The Path Plot (a) and the Orientation Plot (b): The path plots 
indicate that the η-Filter has a better final estimate than the EKF and DR 
Only. There is a steady accumulation of error with DR Only. 
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Figure 3.21 The Residual Plots of North (a), East (b), and Orientation (c): 
The residuals, marked as solid lines, are within their ±2σ bounds (95% 
confidence bounds), marked as dashed lines. 
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Figure 3.22 The Operating Scenario Belief Plots: The arrows point to the 
low magnitude of acceleration (a), high Velocity Difference (VD) (b), and 
the consequent high belief values (c) for the trap scenario. This indicates 
that the robot is “trapped.” 
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Figure 3.23 GPS Sensor Goodness Plots: The arrows point to the increase in 
HDOP and decrease in #Sat (a), a decrease in the belief value for yes (GPS 
is good) (b), and an increase in the xx and yy components of the 
measurement error covariance matrix R (c). Also, Bel(yes) = m(yes) for GPS 
sensor goodness. 
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3.4.2 “Normal” Scenario 

After the validation experiment of the η-Filter, a designed experiment was 

conducted to analyze the variation in final position error under the “normal” operating 

scenario, i.e., when the UGV is not trapped. In such a scenario, assuming that the UGV 

is “not” trapped, the only source of improvement would be the variation in GPS sensor 

goodness. It must be mentioned that the η-Filter was “tuned” to rely more on the wheel 

encoders and the digital compass than the GPS and the inertial sensors. Hence, the η-

Filter would show only a marginal improvement over the EKF under the normal 

operating scenario. 

The experiment consisted of sixteen “figure-8” runs (8 repetitions each for two 

locations). Figure 3.24 shows the start/stop position L1 with geographical coordinates 

(32.7253688°, −97.1115144°). The second location is L2 (defined in Section 3.4.1). The 

first four and the last four runs were conducted at location L1, while the remaining eight 

runs were conducted at location L2. This ordering was planned ahead of the experiment 

in order to prevent the effect of time on measurements. The data logged during the run 

was transmitted to the ground station through the wireless unit. Figures A.1 through 

A.48 (in Appendix A) show the graphical descriptions of the results for the sixteen runs. 

Appendix B presents the results of the designed experiment. 

Based on the results of the ANOVA F-test, it “cannot” be concluded, at the 5% 

significance level, that the mean final position errors are different for the η-Filter and 

the EKF. So, the 11.17% improvement in the average position error is not statistically 

significant. However, violations of the normality-of-errors and the absence-of-outliers 



 

 67

assumptions of the ANOVA F-test render the aforementioned conclusion less powerful. 

Data transformation techniques [Pel98] to alleviate the violation of assumptions 

problem is not obvious due to the absence of a clear relationship between the variance 

and the treatment means (Figure B.4). Trial and error methods for the identification of 

appropriate transforms are time-consuming, and are hence not performed. Also, a high 

type II error of 0.9 implies a high probability of failing to reject the null hypothesis 

when in fact it is false, i.e., there is a good chance that an improvement in the final 

position estimates is “not” detected when in fact there is an improvement. A remedial 

measure to decrease the high type II error is to increase the number of repetitions. 

 

Figure 3.24 The Experiment for “normal” Scenario: The UGV at its 
start/stop position at location L1. A figure-8 trajectory was used. 
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CHAPTER 4 

MULTI-UGV COOPERATIVE LOCALIZATION 

 

4.1 Overview of the Cooperative Schema 

 

Figure 4.1 Five UGVs in a “Star” Arrangement: The center UGV (marked 
as UGV-5) acts as a mobile beacon and broadcasts its estimated pose and 
estimation error covariance matrix to the peripheral UGVs. The peripheral 
UGVs cooperatively fuse their own pose estimates with the pose estimates 
of the mobile beacon. The symbol dij represents the relative distance 
between the ith and the jth UGV. 
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A range-only CL architecture that resembles a “star” arrangement (Figure 4.1) 

is developed for a team of UGVs. One UGV that has a better accuracy and precision 

than the remainder of the team serves as a mobile beacon that broadcasts its position 

estimate and the estimation error covariance to the remainder of the team. The other 

members of the team estimate their own positions by fusing the information received 

from the mobile beacon, the relative distances between them, and their own position 

estimates, in a minimum variance sense. 

4.2 Self-Localization of UGVs 

Self-localization refers to the localization of the individual UGVs using only 

onboard sensors and without any cooperation with other UGVs. The individual UGVs 

employ the η-Filter for self-localization. As five differential-steer UGVs were to be 

employed for validation trials, designed experiments were conducted with the objective 

of building models for linear and angular velocities and creating mass assignment tables 

for the GPS units of the five UGVs. Each differential-steer UGV is built on a low-cost 

Commercially-Off-the-Shelf (COTS) platform and is driven by a Motorola DSP56F803 

based onboard controller, the PlugaPodSTM. An XBee-PROTM (v1.xAx - 802.15.4 

wireless protocol) wireless module and a SiRF Star III chipset based EM-406 GPS 

receiver are “stacked” on to the PlugaPodSTM microcontroller. Two optical encoders are 

employed by each UGV for determining the linear and the angular velocities. A 

Devantech CMPS03 digital compass was mounted on one of the UGVs that served as a 

mobile beacon. 
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4.2.1 Experiments for Parametric Modeling and Mass Assignment 

A series of three experiments were conducted for building parametric models 

and mass assignment tables for each of the five UGVs. In the first experiment, ten 

straight-line runs were performed for each of the five UGVs in laboratory environment 

(vinyl flooring). Data from the right and the left optical encoders were logged at the end 

of each run. The distance of each run was measured using a standard measuring tape. 

The velocity was computed from the distance of each run and the preset duration of the 

run. The following linear models are created based on the empirical data. 

Model Au (for linear velocity based on the encoders) is given by the following 

equation: 

,uvxu10,ux εATPSββv 11 )( ++= ,                                        (4.1) 

where the subscript u represents the number of the UGV, i.e., u = 1, 2, 3, 4, 5, ATPS is 

the Average Ticks Per Second (of the left and the right encoders), and ,uvxε 1  is the 

residual with ),0(~ 11 ,uvx,uvx σNε . Table 4.1 shows the parameter estimates, nβ̂ . Further, 
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u .                                        (4.2) 

The same compass used for the single-UGV localization was used for multi-

UGV localization. Therefore, the model presented in Section 3.2.3 (represented by 

Equation (3.21)) is used.  
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Table 4.1 Linear and Angular Velocity Model Parameter Estimates 

 
 

 

 

 

 

 

 

 

 

 

Model 0β̂  1̂β  MSE R2 

A1 0.000000 0.001150 3.67E-06 0.99996 

A2 0.000000 0.001068 1.13E-06 0.99998 

A3 0.000000 0.001053 5.85E-07 0.99999 

A4 0.000000 0.001071 1.14E-06 0.99997 

A5 0.000000 0.001049 4.39E-07 0.99999 

B1 0.012242 0.002778 0.000693 0.99960 

B2 -0.000490 0.002455 0.000523 0.99958 

B3 0.017243 0.002582 0.000407 0.99952 

B4 -0.008660 0.002550 0.000774 0.99941 

B5 -0.013540 0.002573 0.000120 0.99987 
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In another experiment, fifty runs, consisting of five repetitions each for two 

steering angle settings, were performed for each of the five UGVs. The angle turned by 

the UGV was measured using a standard protractor. The angular velocity of the UGV 

was computed by dividing the total angle turned by the preset duration of the run. The 

following models are created for angular velocities based on the empirical data. 

Model Bu (for angular velocity based on the encoders) is given by the following 

equation: 

uzuuz DTPS ,110,1 )( ωεββω ++= ,                                       (4.3) 

where uz ,1ω  is the angular velocity measured by the right-left encoder difference, u = 1, 

2, 3, 4, 5, DTPS is the Difference in Ticks Per Second (between the left and the right 

encoders), and uz ,1ωε  is the residual with ),0(~ ,1,1 uzuz N ωω σε . Table 4.1 shows a 

listing of parameter estimates, nβ̂ . Further, 
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The third experiment comprised of logging GPS data for creating mass 

assignment tables for the five UGVs. A total of two thousand readings were logged in 

two locations and in two staggered time windows. The geographic coordinates for the 

two locations are as follows: (32.7301862°, −97.1106639°) and (32.7263060°, 

−97.1129139°). Base on an ANOVA F-test, conducted at the 5% significance level 

using SASTM (version 9.1), it was found that the GPS error varied significantly between 

the receivers of the five UGVs. A Tukey’s pairwise comparison test was performed, at a 
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significance level of 0.05, to identify the GPS receiver means that were significantly 

different from others. As can be inferred from Table 4.2, “zero” does not belong to the 

95% confidence intervals of all pairs except pairs (1, 4) and (2, 5). So it cannot be 

statistically concluded that the means of pairs (1, 4) and (2, 5) are different (Figure 4.2). 

Based on this conclusion, receivers with similar error means are grouped together with 

common mass functions, i.e., the data logged by receivers with similar means are 

“pooled” together while creating the mass assignment table. Figures 4.3 through 4.5 

show scatter-plots of the errors for the three levels of the #Sat and the HDOP criteria. 

 

 

 
Figure 4.2 Ordered Means for Tukey’s Pairwise Comparison Test: The solid 
line connects the receivers whose means are not statistically different. 

 

 

 

 

 

 

 



 

 74

 

Table 4.2 Least Squares Means (LSMs) for Receiver Effect. 

 
 

 

 

 

 

 

 

 

 

 

Receiver A Receiver B Difference Between 
Means 

Simultaneous 95% Confidence 
Limits for LSM(A) – LSM(B) 

1 2 -8.460518 (-10.891688,  -6.029349) 

1 3 -3.574777 ( -6.005946,  -1.143607) 

1 4 0.484023 ( -1.947146,   2.915193) 

1 5 -6.118244 ( -8.549413,  -3.687075) 

2 3 4.885741 (  2.454572,   7.316911) 

2 4 8.944542 (  6.513372,  11.375711) 

2 5 2.342274 ( -0.088895,   4.773443) 

3 4 4.058800 (  1.627631,   6.489970) 

3 5 -2.543467 ( -4.974637,  -0.112298) 

4 5 -6.602268 ( -4.974637,  -0.112298) 
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Table 4.3 Mass Assignment Table for the Five EM-406 GPS Receivers 
 

 

 

 

 

 

 

Receivers 1, 4 Receivers 2, 5 Receiver 3 

Criteria Value 

A
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o)
 

a m
s(y

es
,n

o)
 

N 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
>= 9 

E 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00

N 0.45 0.36 0.19 0.56 0.25 0.19 0.27 0.62 0.11
< 9 & >= 6 

E 0.78 0.02 0.20 0.54 0.03 0.43 0.80 0.00 0.20

N 0.43 0.11 0.46 0.13 0.53 0.34 0.25 0.13 0.62

#Sat 
(s=1) 

< 6 & >= 3 
E 0.78 0.00 0.22 0.22 0.54 0.24 0.25 0.13 0.62

N 1.00 0.00 0.00 0.99 0.00 0.01 1.00 0.00 0.00
< 10 

E 1.00 0.00 0.00 0.95 0.00 0.05 1.00 0.00 0.00

N 0.47 0.34 0.19 0.44 0.25 0.31 0.20 0.71 0.09
>= 10 & < 18 

E 0.80 0.02 0.18 0.58 0.02 0.40 0.91 0.01 0.08

N 0.40 0.20 0.40 0.11 0.59 0.31 0.65 0.00 0.35

HDOP 
(s=2) 

>= 18 
E 0.72 0.00 0.28 0.15 0.60 0.25 0.00 1.00 0.00
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Table 4.4 Error Variances for the Five EM-406 GPS Receivers 
 

 

 

 

A mass assignment table (Table 4.3) is built using the same method adopted in 

Section 3.2.4. However, the rule to compute the mass functions m(U) for each criteria 

instance based on the fraction of occurrence is modified in order to account for the 

better precision of the five EM-406 GPS receivers when compared to the TU10-D007-

091 GPS receiver. The rule is given as 

IF |error| < 5 m THEN U = {yes} 

ELSE IF |error| >= 15 m THEN U = {no} 

ELSE U = {yes,no}. 

The aforementioned rule is also applied to compute the error variances along the north 

and the east axes (Table 4.4). 

 

Receivers 1, 4 Receivers 2, 5 Receiver 3 

U 
σx,U 
(m2) 

σy,U 
(m2) 

σx,U 
(m2) 

σy,U 
(m2) 

σx,U 
(m2) 

σy,U 
(m2) 

{yes} 3.78 4.03 2.37 6.72 2.03 4.82 

{no} 529.79 4377.36 947.58 695.66 449.09 398.62 

{yes, no} 65.45 51.76 125.56 87.21 92.83 104.34 
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Figure 4.3 Error Plots of the GPS Receivers 1 and 4 as a Function of #Sat 
(a) and HDOP (b): The errors appear to be auto-correlated due to the 
possible presence of filters within the receivers. 

 



 

 78

 

Figure 4.4 Error Plots of the GPS Receivers 2 and 5 as a Function of #Sat 
(a) and HDOP (b): The errors appear to be auto-correlated due to the 
possible presence of filters within the receivers. 
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Figure 4.5 Error Plots of the GPS Receiver 3 as a Function of #Sat (a) and 
HDOP (b): The errors appear to be auto-correlated due to the possible 
presence of filters within the receivers. 
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4.3 Range-Only Cooperative Fusion 

The state estimates determined by the self-localization system are fused with 

those that are determined by the information from the mobile beacon and corresponding 

relative distances using Equation (4.11). The combined estimate thus obtained is then 

fed back into the η-Filter for a measurement update. Figure 4.6 shows the CL schema. 

 
Figure 4.6 The Cooperative Localization Schema: The state estimate of the 
ith UGV is fused with that of the jth UGV which serves as a mobile beacon. 

 

Cooperation occurs intermittently after each leg of the entire duration of the run.  

The process for mobile beacon positioning using relative distance is as follows: 
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where T
k
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i
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−
+ =x  is the state estimate of the ith UGV based on the estimate of 

the jth UGV, dij is the range of the jth UGV (the mobile beacon) from the ith UGV, and 

ijψ̂  is the estimated relative angle between the ith UGV and the jth UGV. Further, 
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The position of the ith UGV based on the information from the jth UGV and dij is given 

as 
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Using the generic fusion formula (Equation (2.1)), the fused cooperative localization 

estimate is given as follows: 
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where the prefixed superscripts represent “of the UGV” and the prefixed subscripts 

represent “by the UGV.” Further, under the assumption of independence of errors 

between the mobile beacon position and the relative position, 
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From Equation (4.12), 
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where C is the covariance matrix associated with relative position information between 

the ith and the jth UGV, i.e., ),( 22
ijijdk diag ψσσ=C . 

From Equation (4.15), 
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The estimation error covariance of the fused cooperative localization estimate is given 

as follows: 
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4.4 Experimental Results 

A designed experiment [Che05] was conducted to validate the range-only CL 

algorithm. Of the five differential-steering UGVs used, one UGV that had a better 

sensing capability than the remainder of the team served as a mobile beacon, i.e., it was 

equipped with a digital compass in addition to the wheel encoders and the GPS. All 

UGVs were equipped with wheel encoders. The experiment was conducted on cement 

surface on campus. The following trajectory sequence was used (Figure 4.7): (1) Leg-1: 

go ahead 5 m, turn left 90°; (2) Leg-2: go ahead 2 m, turn right 90°; and (3) Leg-3: go 

ahead 3 m. Data was logged at 10 Hz from all the five UGVs through an XBee-PROTM 

wireless module. The data included left encoder ticks, right encoder ticks, latitude, 

longitude, UTC time, #Sat, HDOP, and orientation from the digital compass of the 

mobile beacon (UGV-5). 

 

Figure 4.7 The Five UGVs at their Start Positions: The trajectories include 
one left turn and one right turn. The solid lines represent the approximate 
trajectories. 
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The start position of UGV-1 is the origin (0, 0) of the local frame of reference 

(Figure 4.8). The geographic coordinates of the origin of the local frame (32.7313167°, 

–97.1121583°) are extracted from a 0.3048 m resolution USGS geographic information 

systems database using the ArcMapTM software. The starting formation of the five 

UGVs resembles a star arrangement with UGV-5 in the center position of the formation 

(Figure 4.7). The distances between the center UGV and the peripheral UGVs were 

measured at the end of each leg of the run by using a standard measuring tape. 

Consequently, three sets of range measurements were recorded for each run. Hence, 

cooperation between the UGVs takes place intermittently at the end of each leg. 

 

 

Figure 4.8 The Estimated Path Plots of the Five UGVs for Repetition One: 
The numbers following the slash symbol represent the UGV numbers. The 
final position estimates of a CL system are closer to the actual final 
positions than that of a non-CL system for the four peripheral UGVs. 

 



 

 85

Then, MATLABTM (version 7.0 R14) was used to implement the range-only CL 

system using the empirical data, offline. Figures 4.8 through 4.12 show a comparison of 

the state estimates based on the range-only CL system with that based on a non-CL 

system for all the five repetitions. Figure 4.8 shows that the estimates of the CL system 

are better than those of the non-CL system for all four UGVs. Also, UGV-4 shows a 

systematic error in position for all the five repetitions. This is consistent with the 

“improper” calibration of UGV-4. During a pilot experiment, a faulty gear-box/encoder 

assembly of UGV-4 was replaced. After the replacement of the gear-box/encoder 

assembly of UGV-4, a re-calibration was not performed. Thus, improper calibration 

impacts the localization accuracy for both CL as well as non-CL systems.  

 

Figure 4.9 The Estimated Path Plots of the Five UGVs for Repetition Two: 
The numbers following the slash symbol represent the UGV numbers. The 
final position estimates of a CL system are closer to the actual final 
positions than that of a non-CL system for the peripheral UGVs 1, 3, and 4. 
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There are two factors of interest. Factor A is “CL” with levels 1 = CL system 

(there is cooperative localization) and 2 = non-CL system (there is no cooperative 

localization). Factor B is “UGV” with levels 1 = UGV-1, 2 = UGV-2, 3 = UGV-3, and 4 

= UGV-4. UGV-5 is not considered for statistical testing. It only serves as a mobile 

beacon. Five repetitions were performed for each of the eight treatment combinations.  

 

Figure 4.10 The Estimated Path Plots of the Five UGVs for Repetition 
Three: The numbers following the slash symbol represent the UGV 
numbers. The final position estimates of a CL system are closer to the actual 
final positions than that of a non-CL system for the four peripheral UGVs. 

 

Based on the results of the ANOVA F-test, it can be concluded, at the 1% 

significance level, that the mean final position error of a CL system is significantly less 

than that of a non-CL system and that the mean final position errors of the five UGVs 

are not the same. No significant violations of the ANOVA assumptions were found. 

Appendix C presents a detailed description of the designed experiment. The mean final 
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position errors are computed as follows: 1.7317 m (for a CL system) and 2.8941 m (for 

a non-CL system). Thus, the range-only CL system shows a 40% improvement in the 

mean final position error over a non-CL system. 

 

 

 

Figure 4.11 The Estimated Path Plots of the Five UGVs for Repetition Four: 
The numbers following the slash symbol represent the UGV numbers. The 
final position estimates of a CL system are closer to the actual final 
positions than that of a non-CL system for the four peripheral UGVs. 
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Figure 4.12 The Estimated Path Plots of the Five UGVs for Repetition Five: 
The numbers following the slash symbol represent the UGV numbers. The 
final position estimates of a CL system are closer to the actual final 
positions than that of a non-CL system for the four peripheral UGVs. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary of the Research Work 

In this dissertation, novel approaches for single-UGV localization and multi-

UGV CL were presented. They included methodologies for creating parametric 

calibration models and mass assignment tables. The “theoretical” aspects of the 

techniques and their validation using “empirical” data were described. 

In Chapter 1, an introduction to the CL problem, a tripartite research objective, 

conformance of this dissertation, and a brief outline of the chapters were described. In 

Chapter 2, a detailed review of literature that is related to this research work was 

presented. The review described the different types of localization sensors that were 

employed in this research, the fundamentals of error characteristics with respect to 

localization, existing methods for localization sensor calibration, current fusion filtering 

techniques, and an extensive report of the current approaches to CL. 

In Chapter 3, the η-Filter as a technique for single-UGV localization was 

explained in detail. It included methodologies for creating parametric sensor calibration 

models and for building a mass assignment table that is suited to the requirements of the 

η-Filter. An experimental validation of the η-Filter including a designed experiment 

was described. A definite improvement in the accuracy of localization in the trapped 
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scenario was noticed (Figure 5.1). However, no definite improvement was noticed in 

the mean final position error in the normal scenario, at the 5% significance level. On the 

average, the η-Filter performed better than the EKF by 11.17% (Figure 5.1). 

 
Figure 5.1 The Performance Charts: A comparison of the methodologies for 
single-UGV and multi-UGV localization. The η-Filter and the range-only 
CL system have a relatively low mean final position error. 

 

In Chapter 4, the range-only CL system that resembles a “star” arrangement 

was presented. It included descriptions of sensor modeling and self-localization of 

single UGVs. The chapter also described the theory behind the cooperative fusion 

process and a statistically designed experiment for testing the performance of the range-
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only CL system. The experiment indicated that the range-only CL system consistently 

performed better than the non-CL system with a 40% improvement in the mean final 

position error, at the 1% significance level (Figure 5.1). 

5.2 Contributions 

A parametric calibration procedure that relates the sensor outputs directly to the 

requirements of the η-Filter such as linear velocity, angular velocity, and orientation 

was presented. Linear regression models were used for linear and angular velocities, 

and a fifth degree polynomial model was used for the orientation. Also, a procedure for 

the creation of mass assignment tables for the GPS was described. 

The methodology presented for single-UGV localization has enhanced existing 

KF based approaches to localization. The pitfalls of modeling inaccuracies that stem 

from environmental changes and ignorance were accounted for by the η-Filter. This led 

to an improvement in accuracy and an increase in “robustness.” In particular, a two-

pronged approach was advocated for dealing with “changes” in operating scenarios and 

sensor goodness. For operating scenarios, adaptive switching was performed between 

multiple parametric models for KF inputs and between corresponding input noise 

covariance matrices. For sensor goodness, a variable measurement noise covariance 

matrix was used. 

The technique for multi-UGV CL that uses a range-only system provided for a 

low-cost and a “heterogeneous” multi-UGV system. By having one UGV with a full 

suite of localization sensors and four UGVs with only wheel encoders, the per-UGV 
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cost was decreased. This decrease in the per-UGV cost for a CL system was obtained 

while maintaining a better accuracy in comparison to a non-CL system. 

Designed experiments were employed for testing the accuracy of localization 

systems. This provided a more precise comparison of localization systems by taking 

into account the possible factors that cause variability, i.e., the location factor in the 

case of the η-Filter and the UGV factor in the case of the CL system. 

On the whole, an organic approach has been presented as an answer to the 

question posed by multi-UGV systems: “where are we?”   

5.3 Future Extensions 

In future, models for more operating scenarios such as the “kidnapped robot” 

scenario and mass assignment tables for more sensors (for goodness) such as the digital 

compass or vision sensors may be formulated. The η-Filter may be applied to multi-

sensor fusion filtering problems that fall outside the domain of UGV localization 

starting with the basic framework shown in Figure 3.1. 

The range-only CL system can be extended to more than five UGVs and also 

have multiple mobile beacons. The presence of multiple mobile beacons would improve 

the accuracy in position. The CL system may be extended to three dimensions and 

include Unmanned Aerial Vehicles (UAVs) in the team. 

The η-Filter and the range-only CL system serve as base-level capabilities for 

future activities such as speed and heading control, environmental mapping, waypoint 

navigation, and a host of other higher level tasks. 
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APPENDIX A 
 
 

GRAPHS FOR η-FILTER EXPERIMENTS 
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Figure A.1 The Path (a) and Orientation (b) Plots for Run One in the 
“normal” Scenario: Erratic GPS measurements are present. There is no 
significant difference between the η-Filter and the EKF. 
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Figure A.2 The Residual Plots of North (a), East (b), and Orientation (c) for 
Run One: The residuals, marked as solid lines, are within their ±2σ bounds 
(95% confidence bounds), marked as dashed lines, for most of the time. 
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Figure A.3 GPS Sensor Goodness Plots for Run One: An increase in HDOP 
and a decrease in #Sat (though not clearly visible in this graph) (a) lead to a 
decrease in the belief value for yes (the GPS is good) (b) and an increase in 
the north (xx) and the east (yy) components of the measurement error 
covariance matrix R (c). 
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Figure A.4 The Path (a) and Orientation (b) Plots for Run Two in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.5 The Residual Plots of North (a), East (b), and Orientation (c) for 
Run Two: The residuals, marked as solid lines, are within their ±2σ bounds 
(95% confidence bounds), marked as dashed lines. 

 

 
 
 



 

 99

 
 
 
 
 
 
 

 

Figure A.6 GPS Sensor Goodness Plots for Run Two: A very high HDOP 
and a low #Sat (though not clearly visible in this graph) (a) lead to a “zero” 
belief value for yes (the GPS is good) (b) and constantly high north (xx) and 
east (yy) components of the measurement error covariance matrix R (c). 
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Figure A.7 The Path (a) and Orientation (b) Plots for Run Three in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 

 

 

 



 

 101

 

 

 

 

 

Figure A.8 The Residual Plots of North (a), East (b), and Orientation (c) for 
Run Three: The residuals, marked as solid lines, are within their ±2σ bounds 
(95% confidence bounds), marked as dashed lines. 
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Figure A.9 GPS Sensor Goodness Plots for Run Three: A very high HDOP 
and a low #Sat (though not clearly visible in this graph) (a) lead to a “zero” 
belief value for yes (the GPS is good) (b) and constantly high north (xx) and 
east (yy) components of the measurement error covariance matrix R (c). 
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Figure A.10 The Path (a) and Orientation (b) Plots for Run Four in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.11 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Four: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.12 GPS Sensor Goodness Plots for Run Four: A very high HDOP 
and a low #Sat (though not clearly visible in this graph) (a) lead to a “zero” 
belief value for yes (the GPS is good) (b) and constantly high north (xx) and 
east (yy) components of the measurement error covariance matrix R (c). 
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Figure A.13 The Path (a) and Orientation (b) Plots for Run Five in the 
“normal” Scenario: “Invalid” GPS measurements are present. There is no 
significant difference between the η-Filter and the EKF. 

 

 

 



 

 107

 

 

 

 

 

Figure A.14 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Five: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines, for most of the 
time. 
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Figure A.15 GPS Sensor Goodness Plots for Run Five: An increase in 
HDOP and a decrease in #Sat (though not clearly visible in this graph) (a) 
lead to a decrease in the belief value for yes (the GPS is good) (b) and an 
increase in the north (xx) and the east (yy) components of the measurement 
error covariance matrix R (c). 
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Figure A.16 The Path (a) and Orientation (b) Plots for Run Six in the 
“normal” Scenario: Erratic GPS measurements are present. There is no 
significant difference between the η-Filter and the EKF. 
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Figure A.17 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Six: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.18 GPS Sensor Goodness Plots for Run Six: A decrease in HDOP 
and an increase in #Sat (though not clearly visible in this graph) (a) lead to 
an increase in the belief value for yes (the GPS is good) (b) and an increase 
in the north (xx) and the east (yy) components of the measurement error 
covariance matrix R (c). 
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Figure A.19 The Path (a) and Orientation (b) Plots for Run Seven in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.20 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Seven: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.21 GPS Sensor Goodness Plots for Run Seven: A very high HDOP 
and a low #Sat (though not clearly visible in this graph) (a) lead to a “zero” 
belief value for yes (the GPS is good) (b) and constantly high north (xx) and 
east (yy) components of the measurement error covariance matrix R (c). 
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Figure A.22 The Path (a) and Orientation (b) Plots for Run Eight in the 
“normal” Scenario: Erratic GPS measurements are present. There is no 
significant difference between the η-Filter and the EKF. 

 

 



 

 116

 

 

 

 

 

Figure A.23 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Eight: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.24 GPS Sensor Goodness Plots for Run Eight: An increase in 
HDOP and a decrease in #Sat (though not clearly visible in this graph) (a) 
lead to a decrease in the belief value for yes (the GPS is good) (b) and an 
increase in the north (xx) and the east (yy) components of the measurement 
error covariance matrix R (c). 
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Figure A.25 The Path (a) and Orientation (b) Plots for Run Nine in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.26 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Nine: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.27 GPS Sensor Goodness Plots for Run Nine: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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Figure A.28 The Path (a) and Orientation (b) Plots for Run Ten in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.29 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Ten: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.30 GPS Sensor Goodness Plots for Run Ten: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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Figure A.31 The Path (a) and Orientation (b) Plots for Run Eleven in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.32 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Eleven: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 

 

 
 
 



 

 126

 
 
 
 
 
 
 

 

Figure A.33 GPS Sensor Goodness Plots for Run Eleven: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 

 

 
 
 



 

 127

 
 
 

 

 

Figure A.34 The Path (a) and Orientation (b) Plots for Run Twelve in the 
“normal” Scenario: An erratic GPS measurement is present. There is no 
significant difference between the η-Filter and the EKF. 
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Figure A.35 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Twelve: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.36 GPS Sensor Goodness Plots for Run Twelve: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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Figure A.37 The Path (a) and Orientation (b) Plots for Run Thirteen in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.38 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Thirteen: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.39 GPS Sensor Goodness Plots for Run Thirteen: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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Figure A.40 The Path (a) and Orientation (b) Plots for Run Fourteen in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.41 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Fourteen: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.42 GPS Sensor Goodness Plots for Run Fourteen: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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Figure A.43 The Path (a) and Orientation (b) Plots for Run Fifteen in the 
“normal” Scenario: There is no significant difference between the η-Filter 
and the EKF. 
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Figure A.44 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Fifteen: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.45 GPS Sensor Goodness Plots for Run Fifteen: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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Figure A.46 The Path (a) and Orientation (b) Plots for Run Sixteen in the 
“normal” Scenario: There are no GPS measurements during the second half 
of the run. Figure A.48 shows belief values. There is no significant 
difference between the η-Filter and the EKF. 
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Figure A.47 The Residual Plots of North (a), East (b), and Orientation (c) 
for Run Sixteen: The residuals, marked as solid lines, are within their ±2σ 
bounds (95% confidence bounds), marked as dashed lines. 
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Figure A.48 GPS Sensor Goodness Plots for Run Sixteen: An increase in 
HDOP and a decrease in #Sat (a) lead to a decrease in the belief value for 
yes (the GPS is good) (b) and an increase in the north (xx) and the east (yy) 
components of the measurement error covariance matrix R (c). 
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B.1 OVERVIEW 

A designed experiment was conducted to determine the effects of filter and 

location on the final position errors. A 2x2 balanced complete factorial experiment was 

conducted with the following hypotheses: 

H0: The mean final position errors are same.                          (B.1) 

H1: the mean final position errors are different.                        (B.2) 

Here, H0 and H1 are the null hypothesis and alternate hypothesis respectively. The 

response variable is the final position error in meters. There are two factors of interest. 

Factor A is “filter” with levels 1 = η-Filter and 2 = EKF. Factor B is “location” with 

levels 1 = L1 and 2 = L2. Locations L1 and L2 are defined in Section 3.4.1. Eight 

repetitions were performed. The goal was to determine whether the final position error 

depended on the filter used for estimation and also to see if there was a variation due to 

change in location. The data collection procedure and the method for computing the 

final position errors in meters are described in Section 3.4.2. Table B.1 shows the 

Treatment Combinations (TCs) for each level of the two factors. 

Based on the box-plots shown in Figure B.1, location L2 appears to have a 

lower mean final error when compared to location L1. There does not seem to be any 

major difference in mean final error between the η-Filter and the EKF. The significance 

of the differences in mean final error in position was tested by using ANOVA. 

SS is the Sum of Squares, DF is the Degrees of Freedom, Pr is the Probability, 

Coeff. Var. is the Coefficient of Variation, r is the number of repetitions, n is sample 

size, a is the number of Factor-A levels, b is the number of Factor B levels, and v = ab. 
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Table B.1 Filter-Location Treatment Combinations 
 

 

 

 

 

 

 

 

 

 
Figure B.1 Box-Plot of Final Position Errors: Location L2 (2, 4) appears to 
have a lower mean final position error than location L1 (1, 3). There is only 
a minor difference between the η-Filter (1, 2) and the EKF (3, 4). Also, the 
presence of an outlier is indicated by the plus sign. 

TC Filter Location 

1 η-Filter L1 

2 η-Filter L2 

3 EKF L1 

4 EKF L2 
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Table B.2 Mean Position Errors for Treatments 
 

 

 

 

 

 

 

 

 

 
Figure B.2 The Filter-Location Interaction Plot: The lines are parallel. This 
indicates that there is no interaction between filter and location, i.e., the 
difference in means between the two locations is the same for the two filters.  

 

Location (j) 
Filter (i) 

j = 1 j = 2 

Mean (i) 

i = 1 3.783033 2.423602 3.493182 

i = 2 4.126047 2.860318 3.103318 

Mean (j) 3.95454 2.64196 3.29825 



 

 146

 
Figure B.3 The Location-Filter Interaction Plot: The lines are parallel. This 
indicates that there is no interaction between filter and location, i.e., the 
difference in means between the two filters is the same for the two locations.  

 

As the lines in Figures B.2 and B.3 are distinct, there appear to be main filter 

effects and main location effects. However, the lines are parallel. This indicates that 

there is no interaction between filter and location. 

 The appropriate two-way complete model for this experiment is as follows: 

ijtjiijtY ∈+++= βαμ... ,                                           (B.3) 

where ijt∈  is the random error with ),0(~ 2σNijt∈  and sijt '∈  mutually independent, i = 1, 

2, j = 1, 2, t = 1, 2, 3, 4, 5, 6, 7, 8, ...μ  is the overall mean, iα  is the effect of filter = i, 

jβ  is the effect of location = j, and ijtY  is the random variable representing the position 

error for repetition = t, filter = i, and location = j. 
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The main effects are estimated using information from Table B.2 as follows. 

Main filter effects: 

••••• −= YY 11α  = 3.493182 − 3.29825 = 0.194932.                       (B.4) 

••••• −= YY 22α  = 3.103318 − 3.29825 = −0.194932.                    (B.5) 

Main location effects: 

••••• −= YY 11β  = 3.95454 − 3.29825 = 0.65629.                           (B.6) 

••••• −= YY 22β  = 2.64196 − 3.29825 = −0.65629.                        (B.7) 

B.2 RESULTS OF ANOVA 

Table B.3 presents the ANOVA results. F-Tests for main effects are performed 

as follows. 

For the main effect filter, the following hypotheses are considered: 

:0
filterH  Main effect filter is negligible iH i

filter   0:  0 ∀=↔ α .               (B.8) 

:1
filterH  Main effect filter is not negligible  0 allNot :  1 =↔ i

filterH α .        (B.9) 

For a significance level of α = 0.05, the decision rule is to reject filterH 0  if p < 0.05. 

Since p = 0.5949 from Table B.3, filterH0  is not rejected. This implies that the main 

effect for filter is negligible, at the 5% significance level.  
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Table B.3 The ANOVA Results for the No-Interaction Model. 
 

 

 

For the main effect location the following hypotheses are considered: 

:0
locationH  Main effect location is negligible jH j

location   0:  0 ∀=↔ β .         (B.10) 

:1
locationH  Main effect location is not negligible  0 allNot :  1 =↔ j

locationH β .  (B.11) 

For a significance level of α = 0.05, the decision rule is to reject locationH0  if p < 0.05. 

Since p = 0.0807 from Table B.3, locationH0  is not rejected. This implies that the main 

effect for location is negligible, at the 5% significance level. 

Source DF Sum of 
Squares 

Mean 
Square F-Value Pr > F 

(p-value) 

Model 2 14.99 7.49 1.78 0.1861 

Error 29 121.99 4.21   

Corrected Total 31 136.99    

R-Square Coeff. Var. Root MSE Position 
Error Mean 

0.11 62.19 2.05 3.29 

Source DF Type III SS Mean 
Square F-Value Pr > F 

(p-value) 

Filter 1 1.22 1.22 0.29 0.5949 

Location 1 13.78 13.78 3.28 0.0807 
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However, the mean final position errors are as follows: 3.10 m (η-Filter) and 

3.49 m (EKF). The η-Filter shows a 11.17% improvement over the EKF with respect to 

the mean final position error. 

B.3 CHECKING MODEL ASSUMPTIONS 

A modified Levene’s test is performed for checking the equality of error 

variances. The following hypotheses are considered: 

:0H  2
4

2
2

2
1 ... σσσ === .                                        (B.12) 

:1H  Not all si ' 2σ  are same, i = 1,…, 4.                          (B.13) 

For a significance level of α = 0.05, the decision rule is to reject 0H  if p < 0.05. Since p 

= 0.8443 from Table B.4, 0H  is not rejected. This implies that the constant error 

variance assumption is valid in this case, at the 5% significance level. Also, Figures B.4 

and B.5 indicate that there is no major difference in error variances for the eight 

treatment combinations. 
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Table B.4 The ANOVA Results for the Modified Levene’s Test. 
 

 

 

 

 

 

 

 

 

 

 

 

Source DF Sum of 
Squares 

Mean 
Square F-Value Pr > F 

(p-value) 

Model 3 2.13 0.7095 0.27 0.8443 

Error 28 72.76 2.5987   

Corrected Total 31 74.89    

R-Square Coeff. Var. Root MSE 

Deviation 
from 

Medians 
Mean 

0.03 115.63 1.61 1.39 

Source DF ANOVA SS Mean 
Square F-Value Pr > F 

(p-value) 

TC 3 2.13 0.7095 0.27 0.8443 
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Figure B.4 The Residual as a Function of the Mean Position Error: There is 
no major difference in the variation of the residual. 

 
Figure B.5 The Residual as a Function of the Treatment Combination: There 
is no major difference in the variation of the residual. 
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The normality assumption is tested by checking for linearity of the normal 

probability plot (Figure B.6). The following hypotheses are considered: 

:0H  Normality assumption is valid.                                   (B.14) 

:1H  Normality assumption is violated.                                (B.15) 

For a significance level of α = 0.10, the Pearson’s correlation coefficient, ρ̂  = 0.93288. 

Critical value, C (0.10, 32) = 0.972 (From Table 1 in [Fil75]). Since <ρ̂  critical value 

(α = 0.10, n = 32), 0H  is rejected at the 10% significance level. So, it is concluded, at 

the 10% significance level, that there is a deviation from normality. 

 

 
Figure B.6 Normal Probability Plot: There is lack of linearity. This indicates 
that the normality assumption is violated. 
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Outliers are detected using the Bonferroni outlier test. The following hypotheses 

are considered: 

:0H  Observation is not an outlier.                                 (B.16) 

:1H  Observation is an outlier.                                     (B.17) 

For a significance level of α = 0.05, the decision rule is to reject 0H , when 

67626.2|| 0.00625,272/,12/,1 ===> −−−− tttt abrababrnvnij αα . ijt  is the studentized deleted 

residual. Since 67626.2|| >ijt  for observations 21 and 28, we reject 0H for those 

observations, at the 5% significance level. So, observations 21 and 28 are outliers 

(Figure B.7). 

 
Figure B.7 Studentized Deleted Residuals as a Function of the Mean 
Position Error: There are two outliers, i.e., observations corresponding to |tij| 
> 2.67626. 
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Figure B.8 Serial Correlation Plot: There is no strong pattern or trend, i.e., 
there is no serial correlation of errors. 

 

The power of detecting a difference is computed as follows [Che05]. Let Δ be 

the difference in position error that is to be detected, i.e., the power of the test is the 

power to detect Δ due to factor effects. Let Δ = 1 m. Here, r = 8, n = 32, v = ab = 4, and 

MSE = 4.21 (from Table B.2). 

Treatment degrees of freedom = υ1 = v – 1 = 4 – 1 = 3.                (B.18) 

Error degrees of freedom = υ2 = n – v = 32 – 8 = 24.                  (B.19) 

2

2
2

2 σ
ϕ

v
rΔ= 2

2

2 σ
ϕ

v
rΔ=⇒ = 0.4873702.                            (B.20) 

Using SASTM, the power of the test = P [Rejecting H0 | H0 is false] = 1 – β = 0.10232. 
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C.1 OVERVIEW 

A designed experiment was conducted to determine the effects of CL and UGV 

on the final position errors. A 2x4 balanced complete factorial experiment was 

conducted with the following hypotheses: 

H0: The mean final position errors for CL and non-CL are same.            (C.1) 

H1: The mean final position errors for CL and non-CL are different.         (C.2) 

The response variable is the final position error in meters. There are two factors of 

interest. Factor A is “CL” with levels 1 = CL system and 2 = non-CL system. Factor B 

is “UGV” with levels 1 = UGV-1, 2 = UGV-2, 3 = UGV-3, and 4 = UGV-4. Five 

repetitions were performed. Figure 4.7 in Chapter 4 shows the formation of UGV-1, 

UGV-2, UGV-3, and UGV-4. The goal was to determine whether the final position 

error depended on the localization system used (CL or non-CL) and also to see if there 

was a variation between the four UGVs. The data collection procedure and the method 

for computing the final position errors in meters are described in Section 4.4. Table C.1 

shows the Treatment Combinations (TCs) for each level of the two factors. 

Based on the box-plots shown in Figure C.1, the CL system appears to have a 

lower mean final position error than the non-CL system. Also, there is a variation in the 

mean final position error between UGV levels. The significance of the difference in the 

mean final position error was tested using ANOVA. 
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Table C.1 CL-UGV Treatment Combinations 
 

 

 

 

 

 

 

 

 

 

 

 

Table C.2 Mean Position Errors for Treatments 
 

 

 

 

 

 

 

 

 

TC CL UGV 

1 CL system UGV-1 

2 CL system UGV-2 

3 CL system UGV-3 

4 CL system UGV-4 

5 Non-CL system UGV-1 

6 Non-CL system UGV-2 

7 Non-CL system UGV-3 

8 Non-CL system UGV-4 

UGV (j) 
CL (i) 

j = 1 j = 2 j = 3 j = 4 

Mean (i) 

i = 1 1.735380 0.601754 1.191490 3.39818 1.731701 

i = 2 2.219516 1.115388 2.244080 5.99730 2.894071 

Mean (j) 1.977448 0.858571 1.717785 4.69774 2.312886 
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Figure C.1 Box-Plot of Final Position Errors: CL = 1 (1, 2, 3, 4) appears to 
have a lower mean final position error than CL = 2 (5, 6, 7, 8). Also, there 
are differences between UGV levels. 

 

 
Figure C.2 The CL-UGV Interaction Plot: The lines are not parallel. This 
indicates that there may be an interaction between CL and UGV, i.e., the 
difference in means between {UGV-1, UGV-2} and {UGV-3, UGV-4} is 
different for CL and non-CL. 
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Figure C.3 The UGV-CL Interaction Plot: The lines are not parallel. This 
indicates that there may be an interaction between UGV and CL, i.e., the 
difference in means between CL and non-CL is not the same for {UGV-1, 
UGV-2} and {UGV-3, UGV-4}.  

 

As the lines in Figures C.2 and C.3 are distinct, there are main CL effects and 

main UGV effects. The lines are not parallel. This indicates that there may be 

interactions. So, a full-interaction model is used to test the interaction effect. 

 The appropriate two-way complete model for this experiment is as follows: 

ijtijjiijtY ∈++++= )(... αββαμ ,                                    (C.3) 

where ijt∈  is the random error with ),0(~ 2σNijt∈  and sijt '∈  mutually independent, i = 1, 

2, j = 1, 2, 3, 4, t = 1, 2, 3, 4, 5, ...μ  is the overall mean, iα  is the effect of the CL = i, 

jβ  is the effect of UGV = j, ij)(αβ  is the interaction effect of CL = i and UGV = j, and 
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ijtY  is the random variable representing the position error for repetition = t, CL = i, and 

UGV = j. 

The main and interaction effects are estimated using information from Table C.2 

as follows. 

Main CL effects: 

••••• −= YY 11α  = 1.731701 − 2.312886 = −0.581185.                      (C.4) 

••••• −= YY 22α  = 2.894071 − 2.312886 = 0.581185.                       (C.5) 

Main UGV effects: 

••••• −= YY 11β  = 1.977448 − 2.312886 = −0.335438.                      (C.6) 

••••• −= YY 22β  = 0.858571 − 2.312886 = −1.454315.                     (C.7) 

••••• −= YY 33β  = 1.717785 − 2.312886 = −0.595101.                     (C.8) 

••••• −= YY 44β  = 4.69774 − 2.312886 = 2.384854.                         (C.9) 

Interaction CL-UGV effects: 

•••••••• +−−= YYYY 111111)(αβ  = 

1.735380 − 1.731701 − 1.977448 + 2.312886 = 0.339117.         (C.10) 

•••••••• +−−= YYYY 211212)(αβ  = 

0.601754 − 1.731701 − 0.858571 + 2.312886 = 0.324368.         (C.11) 

•••••••• +−−= YYYY 311313)(αβ  = 

1.191490 − 1.731701 − 1.717785 + 2.312886 = 0.05489.         (C.12) 

•••••••• +−−= YYYY 411414)(αβ  = 
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3.39818 − 1.731701 − 4.69774 + 2.312886 = −0.718375.         (C.13) 

•••••••• +−−= YYYY 122121)(αβ  = 

2.219516 − 2.894071 − 1.977448 + 2.312886 = −0.339117.         (C.14) 

•••••••• +−−= YYYY 222222)(αβ  = 

1.115388 − 2.894071 − 0.858571 + 2.312886 = −0.324368.         (C.15) 

•••••••• +−−= YYYY 322323)(αβ  = 

2.244080 − 2.894071 − 1.717785 + 2.312886 = −0.05489.         (C.16) 

•••••••• +−−= YYYY 422424)(αβ  = 

5.99730 − 2.894071 − 4.69774 + 2.312886 = 0.718375.         (C.17) 

C.2 RESULTS OF ANOVA 

Table C.3 shows the ANOVA results. F-Tests for interaction and main effects 

are performed as follows. 

For the interaction effect the following hypotheses are considered: 

:0
UGVCLH −  CL-UGV interaction is negligible i, jH ij

UGVCL   0)(:  0 ∀=↔ − αβ .   (C.18) 

:1
UGVCLH −  CL-UGV interaction is not negligible .0)( allNot :  1 =↔ −

ij
UGVCLH αβ  

(C.19) 

For a significance level of α = 0.01, the decision rule is to reject UGVCLH −
0  if p < 0.01. 

Since p = 0.0214 from Table C.3, UGVCLH −
0  cannot be rejected. This implies that the 

interaction is negligible, at the 1% significance level. 
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Table C.3 The ANOVA Results for the Full-Interaction Model. 
 

 

 

 

 

 

 

 

 

 

Source DF Sum of 
Squares 

Mean 
Square F-Value Pr > F 

(p-value) 

Model 7 103.59 14.79 22.25 <.0001 

Error 32 21.28 0.67   

Corrected Total 39 124.88    

R-Square Coeff. Var. Root MSE Position 
Error Mean 

0.83 35.26 0.82 2.31 

Source DF Type III SS Mean 
Square F-Value Pr > F 

(p-value) 

CL 1 13.51 13.51 20.32 <.0001 

UGV 3 82.69 27.56 41.45 <.0001 

CL*UGV 3 7.39 2.46 3.71 0.0214 
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For the main effect CL the following hypotheses are considered: 

:0
CLH  Main effect CL is negligible iH i

CL   0:  0 ∀=↔ α .                (C.20) 

:1
CLH  Main effect CL is not negligible .0 allNot :  1 =↔ i

CLH α           (C.21) 

For a significance level of α = 0.01, the decision rule is to reject CLH 0  if p < 0.01. Since 

p < 0.0001 from Table C.3, CLH 0  is rejected. This implies that the main effect for CL is 

not negligible, at the 1% significance level. Therefore, a pair-wise comparison of the CL 

effects is performed (Table C.4). 

For the main effect UGV the following hypotheses are considered: 

:0
UGVH  Main effect UGV is negligible jH j

UGV   0:  0 ∀=↔ β .            (C.22) 

:1
UGVH  Main effect UGV is not negligible .0 allNot :  1 =↔ j

UGVH β       (C.23) 

For a significance level of α = 0.01, the decision rule is to reject UGVH 0  if p < 0.01. 

Since p < 0.0001 from Table C.3, UGVH 0  is rejected. This implies that the main effect for 

UGV is not negligible, at the 1% significance level. Therefore, a pair-wise comparison 

of the UGV effects is performed (Table C.5). 

The 99% confidence limits are determined using the Tukey’s pair-wise 

comparison test for factor level means on the full-interaction model (Tables C.4 and 

C.5). 
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Table C.4 LSMs for CL Effect. 
 

 

 

 

 

Table C.5 LSMs for UGV Effect. 
 

 

 

 

 

CL = i CL = j Difference Between 
Means 

Simultaneous 99% Confidence 
Limits for LSM(i) – LSM(j) 

1 2 -1.162370 (-1.868560,  -0.456180) 

UGV = i UGV = j Difference Between 
Means 

Simultaneous 99% Confidence 
Limits for LSM(i) – LSM(j) 

1 2 1.118877 (-0.111933,  2.349687) 

1 3 0.259663 (-0.971147,  1.490473) 

1 4 -2.720292 (-3.951102,  -1.489482) 

2 3 -0.859214 (-2.090024,  0.371596) 

2 4 -3.839169 (-5.069979,  -2.608359) 

3 4 -2.979955 (-4.210765,  -1.749145) 
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Table C.4 shows the Tukey 99% confidence interval for the difference between 

the means. As can be inferred, )456180.0,868560.1(0 −−∉ . Hence, the difference 

between CL = 1 and CL = 2 is statistically significant, at the 1% significance level. In 

other words, the final position error for the cooperative localization system is different 

from the final position error for the non-cooperative localization system. The mean final 

position errors are as follows: 1.7317 m (CL system) and 2.8941 m (non-CL system). 

The range-only CL system shows a 40% improvement in the mean final position error 

over a non-CL system. 

C.3 CHECKING MODEL ASSUMPTIONS 

A modified Levene’s test is performed for checking the equality of error 

variances. The following hypotheses are considered: 

:0H  2
8

2
2

2
1 ... σσσ === .                                         (C.24) 

:1H  Not all si ' 2σ  are same, i = 1,…, 8.                            (C.25) 

For a significance level of α = 0.01, the decision rule is to reject 0H  if p < 0.01. Since p 

= 0.1898 from Table C.6, 0H  is not rejected. This implies that the constant error 

variance assumption is valid in this case, at the 1% significance level. 
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Figure C.4 The Residual as a Function of the Mean Position Error: There 
appears to be some difference in the variation of the residual. 

 

 
Figure C.5 The Residual as a Function of the Treatment Combination: There 
is more variation for higher treatment combinations. 
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The normality assumption is checked by a test for linearity of the normal 

probability plot (Figure C.6). The following hypotheses are considered: 

:0H  Normality assumption is valid.                                (C.26) 

:1H  Normality assumption is violated.                             (C.27) 

For a significance level of α = 0.10, the Pearson’s correlation coefficient, ρ̂  = 0.99457. 

Critical value, C (0.01, 40) = 0.977 (From Table 1 in [Fil75]). Since >ρ̂  critical value 

(α = 0.10, n = 40), 0H  cannot be rejected, at the 10% significance level. So, it cannot 

be concluded, at the 10% significance level, that there is a deviation from normality. 

 

 
Figure C.6 Normal Probability Plot: A linear fit appears to be valid. This 
indicates that there is no violation of the normality assumption. 
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Table C.6 The ANOVA Results for the Modified Levene’s Test. 
 

 

 

The Bonferroni outlier test is used to detect outliers. The following hypotheses 

are considered: 

:0H  Observation is not an outlier.                                (C.28) 

:1H  Observation is an outlier.                                    (C.29) 

For a significance level of α = 0.05, the decision rule is to reject 0H  when 

55087.3|| 0.000625,312/,12/,1 ===> −−−− tttt abrababrnvnij αα . Since jitij ,55087.3|| ∀< , 

0H  is not rejected, at the 5% significance level. So, there are no outliers (Figure C.7). 

Source DF Sum of 
Squares 

Mean 
Square F-Value Pr > F 

(p-value) 

Model 7 2.78 0.3964 1.54 0.1898 

Error 32 8.24 0.2575   

Corrected Total 39 11.02    

R-Square Coeff. Var. Root MSE 

Deviation 
from 

Medians 
Mean 

0.25 92.96 0.51 0.55 

Source DF ANOVA SS Mean 
Square F-Value Pr > F 

(p-value) 

TC 7 2.78 0.3964 1.54 0.1898 
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Figure C.7 Studentized Deleted Residuals as a Function of the Mean 
Position Error: There are no outliers, i.e., |tij| < 3.55087 for all i, j. 

 

 
Figure C.8 Serial Correlation Plot for CL: There is no strong pattern or 
trend, i.e., there is no serial correlation of errors. 
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Figure C.9 Serial Correlation Plot for Non-CL: There is no strong pattern or 
trend, i.e., there is no serial correlation of errors. 

 

The power of detecting a difference is computed as follows [Che05]. Let Δ be 

the difference in position error that is to be detected, i.e., the power of the test is the 

power to detect Δ due to factor effects. Let Δ = 1 m. Here, r = 5, n = 40, v = ab = 8, and 

MSE = 0.67 (from Table C.2). 

υ1 = v – 1 = 8 – 1 = 7.                                           (C.30) 

υ2 = n – v = 40 – 8 = 32.                                        (C.31) 

2

2
2

2 σ
ϕ

v
rΔ= 2

2

2 σ
ϕ

v
rΔ=⇒ = 0.682948.                             (C.32) 

Using SASTM, the power of the test = P [Rejecting H0 | H0 is false] = 1 – β = 0.19512. 
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