
MULTIVARIATE ADAPTIVE REGRESSION SPLINE BASED

FRAMEWORK FOR STATISTICALLY PARSIMONIOUS

ADAPTIVE DYNAMIC PROGRAMMING

by

SUBRAT SAHU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2011

Copyright © by Subrat Sahu 2011

All Rights Reserved

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank God for all His blessings and my parents for bringing me

to life and teaching me to take baby steps towards success with patience and perseverance.

Now standing at the doorstep of reaching a career milestone and setting the next one, as I

reflect on my past in quest for the defining moment which transformed my career and my life, it

is my introduction to and my association with Dr Victoria Chen that stands out conspicuously. I

would like to quote Dan Rather who had once said "The dream begins with a teacher who

believes in you, who tugs and pushes and leads you to the next plateau". I had also read

somewhere “A good teacher is like a candle; it consumes itself to light the way for others.” I

have held these sayings dear to my heart; these sayings have been so true in my life and Dr.

Chen is the physical embodiment of the “teacher” these sayings refer to. I take this opportunity

to express my heart-felt gratitude to Dr. Chen who has been my mentor, my advisor, and my

source of inspiration.

I would also like to thank my professors Dr. Jay Rosenberger, Dr. Brian Huff, and Dr. Li

Zeng for their consent to be in my doctoral committee.

I would like to acknowledge and express my gratitude for Dr. Donald Liles, Dr. Victoria

Chen, the DFW International Airport Authority and the National Science Foundation for the

financial support I received from during my doctoral study.

I would also like to thank my friends and my colleagues at the COSMOS Lab for being

my support system. I would like to specially mention my gratitude for Mr. Ariyajunya Bancha,

Dr. Wei-che Hsu (Michael), Dr. Passakorn Phananiramai, Dr. Chingfeng Lin, Dr. Duang

Chatabush, Ms. Misa Faezipour, Ms. Diana Martinez, and Ms. Nadia Martinez who made my life

at COSMOS enjoyable. I would like to express my gratitude to my seniors at COSMOS for their

iv

support and guidance. I would like to specially mention my gratitude for Dr. Huiyuan Fan,

Dr. Durai Sundaramoorthi, and Dr. Prashant Tarun for their help and support.

Last but not the least, I would like to thank my wife, Shweta for her unflinching faith in

me and her ever-enthusiastic encouragement to go one more step farther in pursuit of

excellence in my professional as well as my personal life. I would like to thank my newborn

baby girl Eesha for bringing some smiles to our faces. I would like to take this opportunity to

express my gratitude to my in-laws, my younger brother, Sushant, my younger sister, Nirjharini,

and all my other friends and relatives. Without their love and support, I would not have gone so

far in life.

May 16, 2011

v

ABSTRACT

MULTIVARIATE ADAPTIVE REGRESSION SPLINE BASED FRAMEWORK

FOR STATISTICALLY PARSIMONIOUS

ADAPTIVE DYNAMIC PROGRAMMING

Subrat Sahu, PhD

The University of Texas at Arlington, 2011

Supervising Professor: Victoria C. P. Chen

Central to Dynamic Programming (DP) is the ‘cost-to-go’ or ‘future value’ function,

which is obtained via solving the Bellman’s equation, and central to many Approximate Dynamic

Programming (ADP) methods is the approximation of the future value function. The exact DP

algorithm seeks to compute and store a table consisting of one cost-to-go value for each point

in the state space, and its usefulness is limited by the curse of dimensionality, which renders the

methodology computationally intractable in the face of real life problems with high-dimensional

state spaces and in the face of continuous state variables. ADP methodology seeks to address

and redress the issue of the curse of dimensionality by not seeking to compute the future value

function exactly and at each point of the state space; rather opting for an approximation of the

future value function in the domain of the state space. Existing ADP methodologies have

successfully handled ‘continuous’ state variables through discretization of the state space and

estimation of the cost-to-go or future value function and have been challenged in scenarios

involving a mix of ‘continuous’ and ‘categorical’ or qualitative state variables.

vi

The first part of this dissertation research seeks to develop a flexible, nonparametric

statistical modeling method which can capture complex nonlinearity in data comprised of a mix

of continuous and categorical variables and can be used to approximate future value functions

in stochastic dynamic programming (SDP) problems with a mix of continuous and categorical

state variables. This dissertation proposes a statistical modeling method, called ‘TreeMARS’

which combines the versatility of tree-models with the flexibility of multivariate adaptive

regression splines (MARS). An extension of the proposed model, called ‘Boosted TreeMARS’,

is also presented. Comparisons are made to the tree-regression model that uses a similar

concept, but only permits the use of linear regression at the terminal nodes. Comparisons are

presented on a 10-dimensional simulated data set.

The second part of the dissertation research, seeking statistical parsimony, proposes a

sequential statistical modeling methodology utilizing the ‘sequential’ concept from Design and

Analysis of Computer Experiments (DACE) to make the grid ‘only fine enough’ for the ‘efficient’

discretization and then use MARS methods to approximate future value functions. This

methodology can be extended in the future to use tree-based MARS models to approximate

future value functions involving a mix of continuous and categorical state variables. This

sequential grid discretization is nothing but sequential exploration of the state space and this

concept of sequential exploration of the state space provides a statistically parsimonious ADP

methodology which ‘adaptively’ captures the important variables from the state space and builds

approximations around these quantities while seeking approximation of the future value

functions, by using adaptive and flexible modeling.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ……………..iii

ABSTRACT .. v

LIST OF ILLUSTRATIONS... x

Chapter Page

1. INTRODUCTION……………………………………..………..…..1

1.1 Brief Overview of Classical DP Methodology.. .1

1.1.1 Typical SDP Formulation .. .2

1.1.2 Stages of DP2

1.1.3 State .. .2

1.1.4 Decision... .3

1.1.5 State Transition3

1.1.6 Exogenous Information ..4

1.1.7 Policy... .4

1.1.8 Recursive Formulation of SDP for Solving Numerically.................. .4

1.2 Motivation ...5

1.3 Research Overview6

2. REVIEW OF LITERATURE..8

2.1 Bellman’s DP and Beyond ...8

2.2 Approximate Dynamic Programming .. .9

2.3 Statistical Approach to Approximate Dynamic Programming12

2.4 Sequential Approach in Approximate Dynamic Programming14

2.4.1 Design and Analysis of Computer Experiments.............................14

2.4.2 Sequential Sampling Method .. .15

viii

2.4.3 Quasi-random Sequences .. .15

2.4.4 Space-filling Property of Quasi-random Sequences17

2.5 Flexible Data Modeling.. .19

2.5.1 Moving Beyond Linear Regression ..20

2.5.2 Generalized Additive Models .. .20

2.5.3 Tree-based Methods ..21

2.6 Insight for Research .. .21

3. TreeMARS MODELS ...23

3.1 Motivation ...23

3.1.1 Regression Tree Model ..23

3.1.2 MARS Model24

3.1.3 Treed Regression Model25

3.2 Proposed Models .. .25

3.2.1 TreeMARS Model...25

3.2.2 CATreeMARS Model..27

3.2.3 Boosted TreeMARS Model28

3.2.4 Boosted CATreeMARS Model .. .30

3.3 Evaluation of Proposed Models ...31

3.3.1 TreeMARS and CATreeMARS Models ..32

3.3.2 Boosted TreeMARS and CATreeMARS Models........................... .33

3.4 Discussion of Results .. .34

4. MULTIVARIATE ADAPTIVE REGRESSION SPLINE BASED FRAMEWORK FOR
STATISTICALLY PARSIMONIOUS ADAPTIVE DYNAMIC PROGRAMMING35

4.1 Motivation ...35

4.1.1 Bias-Variance Tradeoff ..36

4.1.2 Generalization Error ...37

4.1.3 Consistency Trace..39

ix

4.2 Choice of MARS.. .40

4.3 Features of MARS... .41

4.4 Structure of MARS .. .42

4.5 General Framework for Solving Continuous SDP..43

4.6 Proposed Framework .. .45

4.6.1 Flowchart of the Proposed Framework ..46

4.6.2 Three Versions of MARS Algorithm .. .48

4.7 Application to Inventory Forecasting Problem... .49

4.7.1 Overview of Stochastic Inventory Forecasting Problem50

4.7.2 Computational Setup..51

4.8 Results and Discussions51

4.8.1 Comparison of Consistency Trace ...52

4.8.2 Comparison of SDP Solution Quality .. .58

5. SUMMARY AND FUTURE WORK...62

REFERENCES ...64

BIOGRAPHICAL INFORMATION ..71

x

LIST OF ILLUSTRATIONS

Figure Page

2.1 Graphical visualization of first 100 points in a low-discrepancy
sequence of the Sobol’ type ...17

2.2 Graphical visualization of (a) Adding another 900 points of the
same low-discrepancy (b) Adding the next 9000 points of the
Sobol’ sequence to the existing 1000 points.. ..18

2.3 Graphical visualization of the first 10000 points in a sequence
of uniformly distributed pseudorandom numbers.. ...19

3.1 Schematic Illustration of TreeMARS Methodology...26

3.2 Schematic Illustration of CATreeMARS Methodology. ..28

3.3 Schematic Illustration of Boosted TreeMARS Methodology. ...29

3.4 Box plots of RMSE after 100 iterations; T = Tree, TR = Tree Regression,
TM = TreeMARS, and CTM = CATreeMARS. ..32

3.5 Box plots of RMSE after 100 iterations; T = Tree, TR = Tree Regression,
TM = TreeMARS, CTM = CATreeMARS, BTM = Boosted TreeMARS, and
BCTM = Boosted CATreeMARS. ...33

4.1 Schematic Illustration of Bias-Variance Tradeoff. ..36

4.2 Illustration of interplay between training error and test error..38

4.3 Illustration of Consistency Trace. ...39

4.4 Flowchart of Proposed Sequential Algorithm. ..47

4.5 Comparison of (a) Model Complexity in Third Stage
(b) Model Performance in Third Stage.. ..54

4.6 Comparison of (a) Model Complexity in Second Stage
(b) Model Performance in Second Stage. ...55

4.7 Comparison of Generalization Ability of the Algorithm-II in
(a) Second Stage (b) Third Stage ...56

4.8 Comparison of Generalization Ability of the Algorithm-III in
(a) Second Stage (b) Third Stage. ..57

xi

4.9 Comparison of Quality of SDP solution.. ..59

4.10 Comparison of Training Time for the Algorithms..61

1

CHAPTER 1

INTRODUCTION

The concept of Dynamic Programming (DP) put forward by Bellman (1957) provides a

paradigm for mathematical modeling and a strategy for solving a multi-stage decision-making

problem. It has been popular amongst researchers and practitioners in different areas ranging

from engineering to economics, and finance to social science. However, the elegance of this

methodology is stymied by the curse of dimensionality (Bellman [5], Powell [42]). Wide ranging

applications and diversity of the objectives and constraints in different applications has caused

the emergence of modified paradigms based on Bellman’s original dynamic programming

methodology for modeling and solving multi-stage decision-making problems. One such

paradigm shift is the emergence of the concept of Approximate Dynamic Programming (ADP)

which seeks to address the issue of curse of dimensionality and redress the issue of

computational intractability in the exact dynamic programming solution approach, in the face of

high-dimensional state and decision spaces.

1.1 Brief Overview of Classical DP Methodology

In a typical DP problem, a system evolves through a series of consecutive stages. At

each stage the system can be defined by a set of state variables or state vector (state for short).

At each stage, one or more decisions must be made. These decisions (also called decision

variables or the decision vector) may depend on either the stage or the state or both. At any

stage, the past history of the system has no effect on the future evolution of the system, i.e.,

how it got to the current stage and state has no effect on where it will go in future stages . When

a decision is made, a return (either profit or cost) is obtained and the system undergoes a

transition to the next stage. The return is assumed to be a known single-valued function of the

state and decision. The objective of the DP formulation is to maximize the total profit or

2

minimize the total cost over all the stages, and the output is the policy (series of decisions made

in each of the consecutive stages) that achieves the objective. When the state transition is

stochastic (in contrast with a deterministic transition given a state and a decision), the DP

formulation is called Stochastic Dynamic Programming (SDP).

1.1.1 Typical SDP Formulation















T

t
tttt uxc

T 1
u,...,u

),,(Emin:Objective
1



1,...,1for),,,(s.t.:Transition 1  Ttuxfx ttttt 

Ttu tt ,...,1for,:sConstraint 

. variablesstateof vector theis:stageFor txt

ariables.decision vof vector theistu

. variablesrandomof vector theist

FunctionCost theis(.)tc

FunctionTransitiontemultivaria theis(.)tf

s.constraintofset theist

1.1.2 Stages of DP

Dynamic programming seeks to solve complex problems by breaking them down into

simpler sub-problems. However, DP is applicable to problems exhibiting the properties of

optimal substructure and overlapping sub-problems. These sub-problems correspond to the

‘stages’ in the DP formulation. Each one-stage problem is dealt with as an ordinary optimization

problem, and its solution helps solving the next one-stage problem in the sequence.

1.1.3 State

Powell [42] succinctly defines a state variable as the ‘minimally’ dimensioned function of

history that is necessary and sufficient to compute the decision function, the transition function,

3

and the contribution function. Here, the word ‘minimally’ is of significance. It can address the

issue of the curse of dimensionality associated with the increase in the size of the state space

and increasing the fineness of the grid discretization. In our research, we have sought to

address this issue by adopting a sequential approach to approximate the future value function

using tree-based multivariate adaptive regression splines.

1.1.4 Decision

It is referred to as action, or control, or decision by different users of DP in different

fields. A decision is made in ‘each’ stage so as to achieve the minimum ‘total’ cost or maximum

‘total’ profit over all the stages.

1.1.5 State Transition

A state transition function defines the transition of the state variables from the current

stage to the next. It models how the system evolves over time or over stages. It can be static

over time, i.e., the same for all the stages or it can also be dynamic, i.e., different for different

stages. It goes by different names such as ‘transfer function’, ‘system dynamics’, ‘system

model’, ‘transition law’, and ‘transition function’, and is modeled differently in different fields

(Powell [42]). In the Operations Research (OR) community, the evolution of the system is

modeled by a system of equations, such as: + = . In the Markov Decision

Process (MDP) community, system evolution is modeled by a one-step transition

matrix: (| ,). In the control theory community, system evolution is expressed as a transition

function that maps the state and decision (and the unknown information which is represented by

the random variable) to a new state: = (, ,).

However, most of the time it is assumed specified or known; in rare cases it needs to be

computed (Powell [42]). In this research, it is assumed specified and in future research, the

proposed methodology can be extended to data-driven estimation of an unknown state

transition function.

4

1.1.6 Exogenous Information

In Stochastic DP, we seek to model problems that are driven by some sort of

exogenous information process (for example, observed prices, demand, or rainfall, etc). These

are modeled as random variables. However, there is an important distinction between whether

the underlying probability distribution is known or not.

The communities which deal with stochasticity in DP as Markov Decision Process

(MDP) have standard notation for states and actions; however they do not explicitly model

exogenous information; they do not have any standard notation for exogenous information;

typically preferring the more compact representation of the one-step transition function.

1.1.7 Policy

A policy is an ordered set of decisions by stage and state. For example, for the

inventory problem (Chen [17]), a policy can be the twelve ordering amounts of the commodity

dependent on the inventory levels for each of the twelve months. An optimal policy is one that

maximizes total profit or minimizes total cost over all the stages.

1.1.8 Recursive Formulation of SDP for Solving Numerically

For stages t through T:

Future value function, () = min(,…,) {∑ (, ,)}
s.t. = (, ,). for = , … , − 1 ; ∈ , for = , … , .
The DP formulation in recursive form for numerical solution is() = min { (+) + ()} ,

where the time horizon, = 1, … , ; is the state vector; is the decision vector; (.)
is the known cost function for stage , and (.) is the future value function.

Central to the DP paradigm is the ‘cost-to-go’ or ‘future value’ function, which is

obtained via solving Bellman’s equation. It represents the optimal return from a given stage and

state to the last stage or the end of the time horizon. The algorithm seeks to compute and store

5

a table consisting of one cost-to-go value for each point in the state space. Unfortunately, the

size of a state space typically grows exponentially in the number of state variables. The

usefulness of this algorithm is limited by the curse of dimensionality, which renders the dynamic

programming methodology computationally intractable in the face of real life problems with high-

dimensional state space. Moreover, this ‘exact’ (in contrast with ‘approximate’) DP methodology

is relevant when the state of the system is defined completely by a finite set of discrete

variables. It breaks down when the variables that define the state of the system include any

continuous variables.

These limitations have motivated the research community to look and move beyond the

classical Bellman’s approach to formulate and solve DP problems.

1.2. Motivation

The essence of the DP paradigm is the ‘cost-to-go’ or ‘future value’ function, which is

obtained via solving Bellman’s equation. The original algorithm computes and stores a table

consisting of one cost-to-go value for each point in the state space. Unfortunately, the size of a

state space typically grows exponentially in the number of state variables. This limitation, known

as the curse of dimensionality, renders the original dynamic programming methodology

computationally intractable in the face of real life problems with high-dimensional state space.

The exact DP methodology is relevant when the state of the system is defined

completely by the discrete variables only. It breaks down when the variables that define the

state of the system include any continuous variables. Continuous-state problems require an

approximate solution through discretization of the state space and estimation of the cost-to-go

or future value functions. The most basic technique for approximating the solution to a

continuous-state SDP problem is to form a finite grid of discretization points in the state space,

then to use different interpolation methods to approximate the future value function. Foufoula-

Georgiou and Kitanidis [23] used multi-linear interpolation and Johnson et al. [32] used tensor-

product cubic spline interpolation for the purpose.

6

Grid discretization also faces the same curse of dimensionality; the size of the state

space again grows exponentially with the finer grid and higher dimensionality of the state space.

Seeking ‘efficiency’ in the grid discretization, Chen, Ruppert, and Shoemaker [15] introduced a

statistical modeling approach using Orthogonal Array (OA) experimental designs to discretize

the state space and Multivariate Adaptive Regression Splines (MARS, Friedman [26]) to

estimate the future value functions. The existing literature on solving continuous-state DP (e.g.

Chen et al. [15] and Fan [22]) handles categorical variables by coding them as discrete

variables and then treating them as continuous variables. Thus the existing literature either

assumes the state space involves only continuous state variables or is found lacking in handling

categorical or qualitative state variables effectively when the state space is comprised of a mix

of continuous and categorical state variables. This motivates research to develop a flexible

statistical modeling method which can handle a mix of continuous and categorical or qualitative

variables for future value function approximation. The logical next step to ‘efficient’ state space

discretization using a statistical approach (Chen et al. [15]) is to seek ‘parsimony’ in the

statistical approach itself. In pursuit of statistical parsimony, this research proposes a sequential

framework for state space discretization using concepts from Design and Analysis of Computer

Experiments (DACE) to make the grid finer sequentially and use tree-based Multivariate

Adaptive Regression Splines (MARS) to estimate the cost-to-go or future value functions and to

approximate the state transition functions when the state and decision space is defined by a mix

of continuous and qualitative variables, extending the work of Chen et al. [15] and Fan [22].

1.3. Research Overview

The first part of this dissertation’s research seeks to develop a flexible, nonparametric

statistical modeling method which can capture complex nonlinearity in data comprised of a mix

of continuous and categorical variables and can be used to approximate future value functions

in SDP problems with a mix of continuous and categorical state variables. We propose a

statistical modeling method, called ‘TreeMARS’ which combines the versatility of tree-models

7

with the flexibility of multivariate adaptive regression splines (MARS). An extension of the

proposed model, called ‘Boosted TreeMARS’, is also presented. Comparisons are made to the

tree-regression model that uses a similar concept, but only permits the use of linear regression

at the terminal nodes. Comparisons are presented on a 10-dimensional simulated data set.

The second part of the dissertation research proposes a sequential statistical modeling

methodology utilizing the ‘sequential’ concept from Design and Analysis of Computer

Experiments (DACE) to make the grid ‘only fine enough’ for the ‘efficient’ discretization and the

tree-based MARS methods to approximate future value functions involving a mix of continuous

and categorical state and decision variables. This sequential state space discretization is

sequential exploration of state and decision spaces, and this concept of sequential exploration

of state and decision space provides a statistically parsimonious ADP methodology which

‘adaptively’ captures the important variables from the state space and builds approximations

around these quantities while seeking approximation of the future value functions, by using the

adaptive and flexible modeling methodology, TreeMARS.

8

CHAPTER 2

REVIEW OF LITERATURE

This section presents a review of existing literature that motivated and inspired this

dissertation research.

2.1 Bellman’s DP and Beyond

The foundation of dynamic programming is the Bellman’s equation and its standard

form (Puterman [44]) is written as

() = max((,) + (| ,)∈ (′))
where is the state of the system and is the decision taken at stage t and its

equivalent expectation form (Powell (2007)) is written as() = max((,) + E({()| = })
The classical texts of DP (e.g., Puterman [44]) assume that the state space is discrete

and can be represented as S = (1,2,…,|S|). Additionally, the “textbook” solution to DP assumes

that is known and computes () for each ∈ . (A word of explanation for the sake of

notational difference: Control theorists use for state and for decision variables which we had

followed in our earlier representation.)

If is a discrete, scalar (one-dimensional) variable, enumerating the states is not too

difficult. But if it is vector (multi-dimensional) valued (even if discrete), then the number of states

grows exponentially with the number of dimensions. If is continuous (even if scalar), the

classical DP strategy cannot be applied at all (Chen, et al. [15]), Powell [42]). The essence of

approximate dynamic programming (ADP) is to replace the true value function () with some

sort of statistical approximation, (). This idea was suggested in Bellman and Dreyfus [5] and

9

implemented in Chen, et al. [15]. Further complications arise when the decision space is

continuous and/or vector valued.

There are two major limitations of the classical exact DP approach. Firstly, it assumes a

fully observed system which implies that decisions are based on full knowledge of state space.

Secondly, it faces the curse of dimensionality as the size of the state and decision space

becomes large. In the real world, the complete knowledge of complex system is rarely known a

priori. Hence in real-world high-dimensional continuous-state (and continuous-decision)

stochastic DP problems, one or both of the limitations become significant and render the

classical solution method lacking and computationally intractable. This led to the emergence of

a new paradigm for multi-stage decision-making based on Bellman’s DP strategy. The new

paradigm is popularly known as Approximate Dynamic Programming (ADP) which seeks to

achieve the DP optimization by intelligent ‘exploration’ of the state space and ‘exploitation’ of

the already derived information.

2.2. Approximate Dynamic Programming

Approximate dynamic programming (ADP) is both a modeling methodology and an

algorithmic framework for solving multi-stage stochastic optimization problems. Most of the

literature has focused on the problem of approximating () to overcome the problem of

multidimensional state variables. In addition to the problem of multidimensional state variables,

there are many problems with multidimensional random variables (i.e., when the expectation

has to be taken over multiple random variables), and multidimensional decision variables.

These three challenges make up what has been called the three curses of dimensionality

(Powell [42]). The concept of ADP has evolved, been extended and enriched to address these

curses of dimensionality.

Although the idea of ‘approximate’ dynamic programming was suggested in the early

work by Bellman (see, for example, Bellman and Kalaba [4]) to overcome the curse of

dimensionality, the ideas evolved independently within different fields or communities of

10

researchers, such as the control theory community where problems are often modeled in

continuous time, with decision variables (controls) that are typically continuous (Werbos [59],

Werbos [60], White and Sofge [61]) and machine learning community where the focus is on

exploring the unknown state space. The work in machine learning community has evolved

under the name ‘Reinforcement Learning’ (RL) with seminal contributions from Minsky ([37],

[38]), Mendel and McLaren [36], and Sutton and Barto [53]. Work in control theory took place

under a variety of names, including reinforcement learning, adaptive dynamic programming and

(later) approximate dynamic programming, with important early contributions by Werbos ([59],

[60]), White and Sofge [61] and Si et al. [51]. Bertsekas and Tsitsiklis (1996) introduced the

name ‘neuro-dynamic programming’ and used the term interchangeably with ‘approximate

dynamic programming’ (Bertsekas [9]).

The need and emergence of the ADP modeling and algorithmic framework is attributed

to the computational difficulties in solving Bellman's equation. There are three computational

challenges that arise in solving Bellman's equation which have been called as the three curses

of dimensionality by Powell [42]. While solving Bellman’s equation

        ,),,(;|,max 111 ttttttttt
t

t uxFxxxxVuxCxV u   

there are three computational challenges (Powell (2007)):

1) Finding the value function ().

2) Computing the expectation.

3) Finding the best action (optimization over the decision variable,).

The nature of these challenges arises from the characteristics of three variables: the state

variable, , the exogenous information variable, , and the decision variable, .

State variables defining the state space can be broadly classified as:

1) Discrete and easy to enumerate (up to thousands of states, but not millions),

2) Scalar and continuous, or

3) Vector valued (which can be either discrete or continuous).

11

Case (1) is the simplest and Bellman's equation can be solved exactly using classical

techniques (see, e.g., Puterman [44]). Case (2) has traditionally been handled through state

space discretization (Foufoula-Georgiou and Kitanidis [23], Johnson et al. [32], Chen et al.[15]).

Case (3) spans from discrete vectors (e.g., how many cars of each model are in inventory), to

continuous vectors (e.g., how much money is invested in each investment choice), to vectors of

categorical attributes, and of course to a mixture of all of these.

For the random vector , we are primarily interested in whether we can compute the

expectation in Bellman's equation. Vectors of random variables may be easy for expectation

computation if they are independent, and of course the problem is easiest when there are no

autocorrelations linking observations over time. It is possible that the random information is

simple, but we do not know the probability distribution. For example, the random variable may

simply capture whether a person accepts a bid in an auction or not; the random variable is

Bernoulli, but we do not know the probability distribution describing the person's behavior. It is

also important to separate problems where is independent of all prior history; problems where

depends on the state, ; and problems where depends on both the state and the

decision .

Decision variables defining the decision space or action space can be broadly

classified as

1) Small number of discrete and easy to enumerate decision choices,

2) Scalar and continuous, or

3) Vector valued (which can be either discrete or continuous).

For vector-valued decision space, typically some sort of search algorithm, such as a

linear program or genetic algorithm are employed to find the optimal, .

The traditional way to handle continuous state or decision variables is to discretize the

state and decision space, and then assume that we can compute expectations. When the

number of states and actions is small enough to enumerate when discretized, and when we can

12

compute expectations, we typically can solve Bellman's equation exactly using classical

techniques (Puterman [44]). If the state variable is a vector, discretizing it can produce an

exponentially large number of states, a problem that is routinely referred to as the ‘curse of

dimensionality’, a term coined by Bellman [5]. The same problem arises with the information

variable and the decision variable . When the decision variable is a vector, it may be

impossible to enumerate all the decision choices. Sometimes, it is possible that the expectation

can be computed easily despite the random information being continuous and sometimes,

the expectation cannot be computed because the distribution for the is unknown. When all

three of these problems arise (vector-valued states, incomputable expectation and vector-

valued decisions), it is said to have all the three curses of dimensionality (Powell [42]). This

research focuses on vector-valued state space comprising of a mix of continuous and

categorical variables.

2.3. Statistical Approach to Approximate Dynamic Programming

Approximate dynamic programming (ADP) approach seeks to solve a continuous-state

DP problem numerically by discretizing the state space, so that the optimization procedure to

find the optimal decision state can be carried out only for a finite number of states. Bellman

(1957) introduced the idea of ‘uniform grid discretization’ and immediately realized the curse of

dimensionality. The researchers, thereafter, followed the same framework of finite grid of

discretization of the state space, but sought to exploit the underlying statistical structure

intelligently by adopting different interpolation methods to approximate the future value function

for approximating the solution to a continuous-state SDP problem. Thus, the statistical approach

to ADP seeks to replace the true future value function with some sort of statistical model that

approximates the future value function.

Foufoula-Georgiou and Kitanidis [23] used multi-linear interpolation in their proposed

multilinear, Hermite gradient DP. Johnson et al., [32] used tensor-product cubic spline

interpolation for the purpose on a four-reservoir problem and showed that cubic splines required

13

fewer grid levels in each dimension, hence, reducing computational time. Chen et al. [15] and

Chen [17] observed that the above methods were based on a full grid of points and were

statistically equivalent to a full factorial experimental design. They proposed an approach

based on an Orthogonal Array (OA) experimental design and a Multivariate Adaptive

Regression Splines (MARS) approximation. OAs are special subsets of full factorial

experimental designs. They observed that while the number of points in a full grid discretization

grows exponentially with the number of dimensions, OAs grow only polynomially with the

number of dimensions. This greatly reduced the computational effort for high-dimensional

problems. Chen et al. (1999) and Chen (1999) achieved good accuracy compared to using a full

factorial design with tensor-product cubic spline interpolation by Johnson et al. [32]. Cervellera

et al. [12] introduced the use of an alternate experimental design, Latin Hypercube (LH), and an

alternate statistical modeling method, neural networks approximation methods into Chen's [17]

approach, and obtained comparable results to using OAs and MARS on a nine-dimensional

inventory forecasting problem and an eight-dimensional water reservoir problem. Cervellera et

al. [12] studied experimental designs based on number-theoretic methods (NTMs) for the

purpose and successfully solved a thirty-dimensional water reservoir problem. Cervellera et.al

[13], [14] proposed a methodology called semilocal approximate minimization (SLAM) which

introduced a semi-local approach based on kernel functions to approximate the solution of T-

stage stochastic optimization (TSO) problems, which is a typical paradigm of Markovian

decision processes. The approach was characterized by less demanding computational

requirements and sought to exploit the properties of semilocal approximation through kernel

models and efficient sampling of the state space. Fan [22] used the NTM method combined with

Neural Network (NN) approximation for the nine-dimensional inventory forecasting problem

described in Chen [17].

14

2.4. Sequential Approach in Approximate Dynamic Programming

If the state and action spaces in a DP model are large, it is often convenient to use an

approximate model in order to apply a DP algorithm to obtain an approximate solution. Whitt

[62] observed that a natural way to construct an approximate model is to let the new state and

action spaces be the subsets of the original state and action spaces; then define the new

transition and reward structure using the transition and reward structure of the original model.

Having defined the smaller model, calculate the optimal return function and optimal policies for

the smaller model and use them to define approximately optimal return functions and

approximately optimal policies for the original model by a straightforward extension. In this

context, the coarser grid will be a subset of the finer grid. Bertsekas [9] showed that the solution

of the discretized algorithm converges to the solution of the continuous algorithm, as the

discretization grids become finer and finer. Hence, there is a potential equilibrium in the tradeoff

between computational cost of finer grid size and convergence of the solution of the discretized

algorithm to the optimal solution.

2.4.1. Design and Analysis of Computer Experiments:

This research seeks to find the optimum discretization in the face of tradeoff between

computational cost of finer grid size and convergence of the solution of the discretized algorithm

to the optimal solution using the sequential approach based on concepts from Design and

Analysis of Computer Experiments (DACE) due to Sacks et al [49]. DACE was developed to

replace time-consuming computer models or expensive physical experiments. DACE uses

design of experiments (DoE) to explore the sample space and statistical modeling as a meta-

modeling tool to model the output from a computer model (Sacks et al [49]). The computer

model is run at sample points determined by DoE, and the output responses are used to fit the

meta-model.

In DACE meta-modeling, sample points can be generated in batch, and a statistical

model is constructed based the whole batch. In a sequential DACE approach, sample points are

15

selected sequentially; the meta-model is updated sequentially with new sample points; the

performance of the meta-model is evaluated each time the meta-model is updated and the

sampling process is stopped as soon as the performance of the meta-model meets the set

stopping criteria. Sacks et al. [49] presented a simple example of two-stage optimal design of a

transistor circuit using a Krigging-based DACE approach to sequentially explore the design

choices to optimize the performance criteria of the transistor circuit. They demonstrated that the

sequential design was computationally cheaper than the corresponding factorial design. Since

then different researchers have contributed to the DACE methodology seeking to make the

sampling process more efficient. Lin et al. [35] proposed a sequential exploratory experimental

design method in which data points were identified sequentially in regions with large expected

prediction errors.

2.4.2. Sequential Sampling Methods

As mentioned before, the traditional full grid discretization is equivalent to the full

factorial design and can be too large in practice for high-dimensions, and the state space

discretization based on efficient design of experiments is equivalent to a fractional factorial

design. In the sequential sampling approach, the sample size is increased by adding newly

sampled data batches in each sampling iteration. Therefore, in a sequential sampling approach,

the 'space-filling' property which essentially means 'uniformly scattered over the state space', is

critical for the success of fractional factorial equivalent state space discretization. Several

space-filling methods have been proposed in the literature in recent years which include

orthogonal array (OA), Latin hypercube (LH), and number-theoretic method (NTM) (Chen et al

[16]).

2.4.3. Quasi-random Sequences

Among the various space-filling methods, NTMs are most suitable for sequential

sampling based algorithms. An NTM generates a quasi-random sequence or low-discrepancy

sequence which is defined as a sequence of -tuples that fills the n-dimensional space more

16

uniformly than uncorrelated random points. Such a quasi-random sequence is of immense utility

in computational problems where numbers are generated on a grid, but it is not known in

advance how fine the grid must be to achieve a desired accuracy in some parameter which is

dependent on the fineness of the grid. Using a quasi-random sequence provides a

computationally efficient way to stop when convergence is observed (Press et al. [43]). Although

the ordinary uniform random numbers and quasi-random sequences both produce uniformly

distributed sequences, there is a fundamental difference between the two. A uniform random

number generator on [0,1] produces outputs so that each trial has the same probability of

generating a point on equal subintervals, for example [0,1/2] and [1/2,1]. Therefore, it is

theoretically possible for all the -trials to coincidentally all lie in the first half of the interval,

while the (+ 1) ℎ point still falls within the other of the two halves with probability 0.5. This

eventuality is undesirable in a sequential sampling algorithm which specifically requires the

space-filling property in each subsequent sampling for its success. The quasi-random

sequences preclude this eventuality because the outputs are constrained by a low-discrepancy

requirement that has a net effect of points being generated in a highly correlated manner i.e.,

the next point "knows" where the previous points are (Trandafir et al. [55]).

There are a number of popular quasi-random or low discrepancy sequences, such as

the Faure sequence (Henri Faure [30]), Halton sequence (Halton [28]), Hammersley sequence

(Hammersley [29]), Niederreiter sequence (Niederreiter [40]) and Sobol’ sequences (Sobol’

[52]). These quasi-random or low discrepancy sequences are "less random" than a

pseudorandom number sequence, but more useful for such tasks as approximation of integrals

in higher dimensions, and in global optimization where the convergence of the algorithm

depends on the 'space-filling' property of the sampling. Algorithms that use such sequences

may have superior convergence because low discrepancy sequences tend to sample space

"more uniformly" than random numbers (Niederreiter [40]).

17

2.4.4. Space-filling Property of Quasi-random Sequences

In the following graphical illustrations in Figure 2.1 and 2.2, the number of sampled

points have been increased from 100 to 1000 to 10,000 sequentially using a Sobol’ sequence

and in the graphical illustration in Figure 2.3, 10,000 points have been sampled using a

pseudorandom number sequence. The regions of higher and lower density are evident in

illustration D and it is observable that the quasi-random sequences have better space filling

property than the ordinary pseudorandom number sequences. In this research, we have used

Sobol’ and Halton sequences for the sequential sampling of the state space.

Figure 2.1: Graphical visualization of first 100 points in a low-discrepancy sequence
of the Sobol’ type

Source: Trandafir and Weisstein (2009)

17

2.4.4. Space-filling Property of Quasi-random Sequences

In the following graphical illustrations in Figure 2.1 and 2.2, the number of sampled

points have been increased from 100 to 1000 to 10,000 sequentially using a Sobol’ sequence

and in the graphical illustration in Figure 2.3, 10,000 points have been sampled using a

pseudorandom number sequence. The regions of higher and lower density are evident in

illustration D and it is observable that the quasi-random sequences have better space filling

property than the ordinary pseudorandom number sequences. In this research, we have used

Sobol’ and Halton sequences for the sequential sampling of the state space.

Figure 2.1: Graphical visualization of first 100 points in a low-discrepancy sequence
of the Sobol’ type

Source: Trandafir and Weisstein (2009)

17

2.4.4. Space-filling Property of Quasi-random Sequences

In the following graphical illustrations in Figure 2.1 and 2.2, the number of sampled

points have been increased from 100 to 1000 to 10,000 sequentially using a Sobol’ sequence

and in the graphical illustration in Figure 2.3, 10,000 points have been sampled using a

pseudorandom number sequence. The regions of higher and lower density are evident in

illustration D and it is observable that the quasi-random sequences have better space filling

property than the ordinary pseudorandom number sequences. In this research, we have used

Sobol’ and Halton sequences for the sequential sampling of the state space.

Figure 2.1: Graphical visualization of first 100 points in a low-discrepancy sequence
of the Sobol’ type

Source: Trandafir and Weisstein (2009)

18

(a)

(b)

Figure 2.2: Graphical visualization of (a) Adding another 900 points of the same low-
discrepancy (b) Adding the next 9000 points of the Sobol’ sequence to the existing 1000 points

Source: Trandafir and Weisstein (2009)

18

(a)

(b)

Figure 2.2: Graphical visualization of (a) Adding another 900 points of the same low-
discrepancy (b) Adding the next 9000 points of the Sobol’ sequence to the existing 1000 points

Source: Trandafir and Weisstein (2009)

18

(a)

(b)

Figure 2.2: Graphical visualization of (a) Adding another 900 points of the same low-
discrepancy (b) Adding the next 9000 points of the Sobol’ sequence to the existing 1000 points

Source: Trandafir and Weisstein (2009)

19

Figure 2.3: Graphical visualization of the first 10000 points in a sequence of uniformly
distributed pseudorandom numbers.

Source: Trandafir and Weisstein (2009)

2.5. Flexible Data Modeling

The utility of parametric statistical modeling is limited by the structural assumptions that

it imposes on the data and this very fact provides a motivation for moving beyond parametric

modeling and exploring the realm of nonparametric statistical modeling when the underlying

structure of the data is unknown. The nonparametric models differ from the parametric models

in the sense that the model structure is not specified a priori, but it is determined from the data.

However, the term 'nonparametric' is not meant to imply that the nonparametric models

completely lack parameters, but that the number and nature of the parameters are flexible and

not fixed in advance (Corder and Foreman [19]). The nonparametric statistical modeling

methods are flexible in the sense that they do not require the structural assumption that data

been drawn from a given probability distribution; thus, they are regarded as distribution free

modeling methods. The nonparametric statistical modeling methods are also flexible in the

sense that they do not assume that the structure of a model is fixed and typically, the model

grows in size as the size of the data set grows, to accommodate the complexity of the data.

19

Figure 2.3: Graphical visualization of the first 10000 points in a sequence of uniformly
distributed pseudorandom numbers.

Source: Trandafir and Weisstein (2009)

2.5. Flexible Data Modeling

The utility of parametric statistical modeling is limited by the structural assumptions that

it imposes on the data and this very fact provides a motivation for moving beyond parametric

modeling and exploring the realm of nonparametric statistical modeling when the underlying

structure of the data is unknown. The nonparametric models differ from the parametric models

in the sense that the model structure is not specified a priori, but it is determined from the data.

However, the term 'nonparametric' is not meant to imply that the nonparametric models

completely lack parameters, but that the number and nature of the parameters are flexible and

not fixed in advance (Corder and Foreman [19]). The nonparametric statistical modeling

methods are flexible in the sense that they do not require the structural assumption that data

been drawn from a given probability distribution; thus, they are regarded as distribution free

modeling methods. The nonparametric statistical modeling methods are also flexible in the

sense that they do not assume that the structure of a model is fixed and typically, the model

grows in size as the size of the data set grows, to accommodate the complexity of the data.

19

Figure 2.3: Graphical visualization of the first 10000 points in a sequence of uniformly
distributed pseudorandom numbers.

Source: Trandafir and Weisstein (2009)

2.5. Flexible Data Modeling

The utility of parametric statistical modeling is limited by the structural assumptions that

it imposes on the data and this very fact provides a motivation for moving beyond parametric

modeling and exploring the realm of nonparametric statistical modeling when the underlying

structure of the data is unknown. The nonparametric models differ from the parametric models

in the sense that the model structure is not specified a priori, but it is determined from the data.

However, the term 'nonparametric' is not meant to imply that the nonparametric models

completely lack parameters, but that the number and nature of the parameters are flexible and

not fixed in advance (Corder and Foreman [19]). The nonparametric statistical modeling

methods are flexible in the sense that they do not require the structural assumption that data

been drawn from a given probability distribution; thus, they are regarded as distribution free

modeling methods. The nonparametric statistical modeling methods are also flexible in the

sense that they do not assume that the structure of a model is fixed and typically, the model

grows in size as the size of the data set grows, to accommodate the complexity of the data.

20

2.5.1. Moving Beyond Linear Regression

A linear regression model assumes that the regression function () is linear in the

inputs . In real life, the regression function can be nonlinear. The idea of 'basis expansions' in

an attempt to deal with nonlinearity, augments or replaces the vector of inputs with new

variables which are transformations of and the model is represented as

() = ℎ ()
The model is linear in the basis functions ℎ (). The choice of ℎ () is used as an

instrument to achieve more flexible representation for (). The choice of 'polynomials' as a

basis expansion is limited by their being global in nature and their inability to capture the local

variations in nonlinearity. The choice of 'piecewise polynomials' and 'splines' is used to capture

the local variations in nonlinearity (de Boor [21]). However, these choices of 'piecewise

polynomials' or 'splines' used to capture the local variations in nonlinearity are 'predefined',

which limits their usefulness.

2.5.2. Generalized Additive Models

Tibshirani, and Friedman [29] proposed a more data driven flexible statistical modeling

method to capture complex nonlinearity in the data and called it generalized additive models

(GAM) which has the form

Y= , , … , = + () + () + ⋯ + +
where , , … , are the predictors; Y is the response and 's are the nonparametric

functions which are modeled by an expansion of basis functions. These additive models provide

more flexibility than the linear models in capturing underlying nonlinearity in the data while

retaining much of the interpretability of the linear models. The 'backfitting' algorithm proposed by

Tibshirani, and Friedman (2002) to model the ’s fits all the predictors and hence is not suitable

for large data-mining applications.

21

2.5.3. Tree-based Methods

Hastie et al. [29] proposed a tree-based method called classification and regression

trees (CART) which recursively partitions the input vector space into a set of hyper-rectangles

and fits a simple model in each one. Classification trees can model a categorical response and

categorical, as well as quantitative, predictors. Regression trees can model a quantitative

response and categorical, as well as quantitative, predictors. The utility of regression trees is

limited by its high variance and lack of smoothness. In addition, the regression trees may not

capture the additive structure in the data.

Friedman and Fisher [25] proposed the patient rule induction method (PRIM) which

slightly differs from tree-based partitioning. PRIM can handle categorical variables like CART,

but was designed for regression problems, i.e., quantitative response. Two-class classification

problems can be handled by coding the response as 0 and 1, but classification problems with

more than 2 classes cannot be handled with PRIM.

Friedman [26] proposed the multivariate adaptive regression splines (MARS) method

which is an adaptive procedure for regression. It is well suited for high-dimensional problems,

unlike generalized additive models. It can capture the additive structure in the data, which

CART could not. However, the MARS method is not effective in modeling categorical predictors.

Jordan and Jacobs [33] proposed the hierarchical mixture of experts (HME) procedure

which is a variant of tree-based methods in that the tree-split decisions are probabilistic in

nature and can be multi-way, not just binary. In the HME procedure, a linear model is fit in each

terminal node, instead of a constant as in CART. However, the research in HMEs has not yet

yielded a robust method for finding the tree-topology.

2.6. Insight for Research

The uniform grid discretization is in fact an effort to explore the state space; the finer

the grid, the more extensive is the exploration. More extensive exploration, however, comes at a

cost of computational effort (which sometimes can be prohibitive with the increase in the

22

dimension of the state space). This high computational cost made researchers to look for ways

to intelligently exploit this expensive exploration. A statistical approach seems promising in

generalizing the underlying structure of the information provided by the expensive explorations.

This generalization of the underlying structure of the information provided by the expensive

explorations can be termed as ‘exploitation’ of the accumulated information. A sequential

approach seems promising to control the extent of exploration that would accumulate

information just enough for effective exploitation.

This research seeks to develop an ADP algorithm using the sequential concepts of

DACE for computationally efficient exploration of vector-valued state spaces comprised of a mix

of continuous and categorical state variables, and to develop a flexible statistical modeling

methodology that would effectively ‘exploit’ the sequentially accumulated information by

capturing the underlying generalization in the face of a mix of continuous and categorical

variables.

23

CHAPTER 3

TreeMARS MODELS

This section elaborates on proposed algorithms for flexible statistical modeling to exploit

the state space exploration by effectively capturing the underlying complexity.

3.1. Motivation

Among the nonparametric statistical modeling methods, tree-based models proposed

by Hastie et al. (2002) in general and the classification and regression tree (CART) models in

particular provide for data-driven model fitting while retaining model interpretability. Moreover,

CART models can handle categorical as well as quantitative predictors. However, CART

models have limitations in that they may not capture the additive structure in the data.

Multivariate adaptive regression spline (MARS) models proposed by Friedman [26] can

effectively capture the additive structure in the data and also provide for data-driven model

fitting while retaining model interpretability. However, MARS models cannot handle categorical

predictors effectively. This research presents a flexible statistical modeling method combining

the CART and MARS. The proposed Tree-MARS models brings together the best of CART and

MARS and provides for a data-driven model fitting method which can handle the mix of

categorical and quantitative predictors and effectively capture the additive structure in the data.

This section briefly elaborates on the regression tree models, treed regression models

and the MARS models which have motivated Tree-MARS models and the next section presents

the proposed TreeMARS models and its variants.

3.1.1. Regression Tree Model

The regression tree model introduced by Breiman et al. [34] in 1984 partitions the

whole, and possibly highly heterogeneous, vector space of the data into a number of relatively

homogeneous regions through recursive partitioning of the vector space of the predictor

24

variables. These homogeneous regions are represented as terminal nodes of the regression

tree. The tree model fits piecewise constant basis functions by fitting a constant function at each

of the terminal nodes. Its strength is its versatility in handling both quantitative and qualitative

predictor variables; but the drawback is its poor predictive performance.

A regression tree partitions the predictor variable space into disjoint regions, , =
1,…,J represented as the terminal nodes of the tree; then fits a constant function at each of the

terminal nodes. The predictive rule for assigning an observation to a terminal node is∈ ⟹ () = . A Tree model can be formally expressed as

(,) = ∑ (∈), with parameter = , .

3.1.2. MARS Model

Multivariate Adaptive Regression Splines (MARS), introduced by Friedman (1991),

yield an adaptive continuous approximation that does not impose any structural assumption on

the data. It fits basis functions composed of single or products of truncated linear functions,

with optional smoothing, using least squares estimation. MARS models do capture complex

nonlinearity in the data and do provide a data driven and adaptive modeling method for

approximation of the future value functions, but they do well with only quantitative predictor

variables. Categorical variables can be modeled as 0-1 binary variables, as in linear regression,

but this form of modeling does not take advantage of spline structure or tree structure modeling.

MARS is essentially a flexible regression procedure that automatically models

interactions between variables. It fits a model that is linear in the basis functions, {ℎ ()} .

MARS model can be formally expressed as

() = + ℎ ()
The MARS fitting procedure determines both the basis functions ℎ () and the

parameters, { } . This is similar in style to regression trees, however while regression trees

create basis functions based on piecewise constant functions, MARS creates basis functions

25

using combinations of truncated linear or hinge functions: (−) and (−) with a knot or

hinge at t, defined as:



 

  otherwise
txfortx

tx
0

)(



 

  otherwise
txforxt

xt
0

)(
.

3.1.3. Treed Regression Model

The concept of treed regression (Alexander and Grimshaw [1]) was the first attempt to

combine regression trees with the traditional linear regression model to capture continuous

structure in the data which otherwise would not have been possible using only a regression tree

model. Treed regression simply replaces the constant functions at the terminal nodes with

linear regression models fit only to the quantitative predictors. This approach effectively fits

several localized regression models to capture complexity in the data which would otherwise

have remained hidden using a single global regression model.

3.2. Proposed Models

3.2.1. TreeMARS Model

Our proposed TreeMARS modeling method combines the concepts of regression trees

and MARS and is an extension of the concept of treed regression. The methodology grows

traditional regression trees based on all the predictors, comprised of a possible mix of

quantitative and qualitative predictor variables and then fits MARS at the terminal nodes using

only the quantitative predictors.

Given the disjoint regions , j = 1, 2, …, J, as represented by the terminal nodes of the

regression tree, let the vector of predictor variables be,= { , },
where the subscript ‘c’ represents categorical or qualitative predictors and ‘q’ represents

quantitative predictors.

26

The predictive rule for terminal node j is ∈ ⟹ () = (), where the MARS

model on the quantitative predictors is() = + ∑ ℎ (); ∈ .

Thus, a TreeMARS model can be formally expressed as(,θ) = ∑ () . (∈),

with parameter vector θ = { , η } , where η is the set of basis functions and their coefficients

that define the MARS model fit at the terminal node j. The J can be treated as the meta-

parameter which denotes the number of terminal nodes and defines the size of the tree that we

may choose to grow.

Schematically,

Figure 3.1: Schematic Illustration of TreeMARS Methodology

3.2.1.1. Algorithm

The parameter components { } pertain to growing the regression tree, and the

components {η } pertain to fitting a MARS model at each terminal node j. The recursive

partitioning algorithm by Breiman et al. [34] is used to grow the regression tree. After the tree is

27

grown to a desired size, a MARS models is fit at each of the terminal nodes using the MARS

algorithm due to Friedman (1992).

3.2.2. CATreeMARS Model

A variant on the above TreeMARS model, called ‘CATreeMARS’ seeks to grow the

regression tree using ONLY the categorical predictors and then fit MARS at the terminal nodes

using only the quantitative predictors. This methodology also provides local continuous

approximations for the continuous predictors.

Given the disjoint regions , j = 1, 2, … , J, as represented by the terminal nodes of

the regression tree grown using only the categorical predictors, let the vector of predictor

variables be = { , },
where the subscript ‘c’ represents categorical or qualitative predictors and ‘q’ represents

quantitative predictors.

The predictive rule for terminal node j is ∈ ⟹ ∈ ⟹ () = (), where the

MARS model on the quantitative predictors is() = + ∑ ℎ (); ∈ .

Thus, a CATreeMARS model can be formally expressed as(,θ) = ∑ () . (∈),

with parameter vector θ = { , η } , where η is the set of basis functions and their coefficients

that define the MARS model fit at the terminal node j. The J can be treated as the meta-

parameter which denotes the number of terminal nodes and defines the size of the tree that we

may choose to grow.

28

Schematically,

Figure 3.2: Schematic Illustration of CATreeMARS Methodology

3.2.2.1. Algorithm

The parameter components { } pertain to growing the usual regression tree, but

with only the categorical predictors at the root. The components {η } pertain to fitting a

MARS model at each terminal node j with only the quantitative predictors. The recursive

partitioning algorithm by Breiman et al. (1984) is used to grow the regression tree. After the tree

is grown to a desired size, a MARS models is fit at each of the terminal nodes using the MARS

algorithm due to Friedman [26].

3.2.3. Boosted TreeMARS Model

Gradient boosted regression trees (Friedman [25]) provide a highly flexible statistical

modeling method. We extend this idea and propose another modeling method that not only has

the flexibility and predictive performance of gradient boosted regression trees, but also results in

a smoother model. We continue to use gradient boosting, but now we boost TreeMARS that fits

MARS models at the terminal nodes of the regression trees. The boosted TreeMARS model is a

sum of multiple MARS regression trees (TreeMARS) and can be represented as() = ∑ (, θ).

29

The model is grown in a forward stage-wise manner solving, at each stage,θ = minθ ∑ (, () + (, θ)),

for the parameters θ = { , η } of the next tree, given the current model ().

Schematically,

Figure 3.3: Schematic Illustration of Boosted TreeMARS Methodology

3.2.3.1. Algorithm

The MARS regression trees (TreeMARS) are induced in a forward stage-wise manner,

and at each stage we solve

θ = minθ (, () + (, θ))
for the parameters θ = { , η } of the next tree, given the current model (). For

squared-error loss, the solution to the above equation simplifies, and it is simply the MARS

regression tree (TreeMARS) that best predicts the current residuals (− ()).

In the th-boosting iteration, the parameter components θ = { } , pertaining to

growing the regression tree and the components are found by the recursive partitioning

algorithm due to Breiman et al. [14]. After fitting the tree, we determine the parameter

30

components θ = {η } pertaining to fitting the MARS model at each terminal node ‘j’ using

the MARS algorithm due to Friedman [26].

3.2.4. Boosted CATreeMARS Model

A variant on the above TreeMARS model, called ‘CATreeMARS’, seeks to boost

CATreeMARS models. The boosted CATreeMARS model is a sum of multiple MARS

regression trees, where the regression trees are grown with only the categorical predictors at

the root and MARS models fitted at the terminal nodes (CATreeMARS),() = ∑ (, θ).

The model is grown in a forward stage-wise manner solving, at each stage,θ = minθ ∑ (, () + (, θ)),

for the parameters θ = { , η } of the next tree, given the current model ().

3.2.4.1. Algorithm

The CATreeMARS models are added in a forward stage-wise manner, and at each

stage we solve θ = minθ ∑ (, () + (, θ)),

for the parameters θ = { , η } of the next tree, given the current model (). For

squared-error loss, the solution to the above equation simplifies, and it is simply the

CATreeMARS model that best predicts the current residuals (− ()).

In the th-boosting iteration, the parameter components θ = { } , pertaining to

growing the regression tree with only the categorical predictors at the root and the components

are found by the recursive partitioning algorithm due to Breiman et al. [14]. After fitting the tree,

we determine the parameter components θ = {η } pertaining to fitting MARS model at each

of the terminal node ‘j’ using the MARS algorithm due to Friedman (1992) with only the

quantitative predictors.

31

3.3 Evaluation of Proposed Models

The simulated dataset is based on an example from Friedman [6] and is modified to

consist of 5 continuous predictors , … , and 5 categorical predictors , … , with

continuous response Y, where

.;

SinY

)1.0,0(~][*19][*17][*15
][*29][*27][*25

][*5][*5][*5
510)5.0(20)(10

999

888

666

54
2

321

NCxIBxIAxI
CxIBxIAxI

CxIBxIAxI
xxxxx











This example was chosen to exhibit complexity due to continuous as well as

categorical variables. The simulation run consisted of 100 iterations and the root mean square

error (RMSE) was used as the measure to evaluate and compare the performance of the

proposed models against the published models.

32

3.3.1. TreeMARS and CATreeMARS Models

Figure 3.4: Box plots of RMSE after 100 iterations; T = Tree, TR = Tree Regression,
TM = TreeMARS, and CTM = CATreeMARS

The results in Figure 3.4 clearly show that the proposed CATreeMARS model performs

the best. It also shows that the treed regression model put forward by Alexander and Grimshaw

[1] performs better than the traditional regression tree model developed by Breiman et al. [34].

The possible explanation can be that the tree model first captures the nonlinearity and then the

linear regression or MARS serve to refine the model at the terminal nodes. These plots also

reveal that fitting a regression tree only with the categorical predictors at the root and then fitting

the MARS models at the terminal nodes perform much better than fitting regression tree with all

the predictors. It can be explained by the fact that traditional tree models do not capture the

additive structure effectively, and modeling errors occurring at the top nodes of the tree

33

propagate to the bottom due to the hierarchical structure of the tree models. This inefficiency

results in ineffective capture of additive structure in the data in the presence of inadequate

number of observations and strong additive structure in the data. CATreeMARS builds a tree

model only on the categorical variables and avoids modeling the additive structure in the

quantitative variables while the MARS models effectively capture the additive structure in the

quantitative variables in the terminal nodes.

3.3.2. Boosted TreeMARS and Boosted CATreeMARS Models

Figure 3.5: Box plots of RMSE after 100 iterations; T = Tree, TR = Tree Regression,
TM = TreeMARS, CTM = CATreeMARS, BTM = Boosted TreeMARS, and

BCTM = Boosted CATreeMARS.

34

The results in Figure 3.5 reveal that boosting improves the performance of TreeMARS

and CATreeMARS models. The CATreeMARS model is the clear winner. However,

CATreeMARS model performs better than the boosted TreeMARS model.

3.4 Discussion of Results

The simulation results establish the superiority of TreeMARS models over treed

regression models and traditional regression trees. Boosting further improves the performance

of TreeMARS models, but it comes at the cost of much increased computational effort.

CATreeMARS models are computationally less expensive than the rest, yet perform better than

the rest except its own boosted cousin. Overall, the CATreeMARS models can be ideal for use

in a SDP framework to approximate future value functions and state transition functions when

the data involve a mix of continuous and categorical variables and exhibits complex

nonlinearity.

This research reports the results of boosting methods with only 5 boosting iterations.

The performance of boosting methods improves with the increase in boosting iterations, but

they become computationally more expensive as well. It will be interesting to study the trade-off

between the performance and cost of increase in boosting iterations and find the optimal

number of iterations. It will also be interesting to apply the proposed CATreeMARS modeling

method to an SDP problem with a large state space with a mix of continuous and categorical

variables.

35

CHAPTER 4

MULTIVARIATE ADAPTIVE REGRESSION SPLINE BASED FRAMEWORK
FOR

STATISTICALLY PARSIMONIOUS ADAPTIVE DYNAMIC PROGRAMMING

This section elaborates on a proposed algorithm for efficient state space exploration

and effective exploitation of the information obtained through exploration. The proposed

methodology adopts a sequential approach for state space exploration inspired by concepts

from design and analysis of computer experiments (DACE) by Sacks et al. [49]) and the

concept of adaptive value function approximation (AVFA) by Fan [22], which employs neural

networks (NN) to 'automate' the data driven approximation of future value functions. The

proposed framework presented in this section is based on multivariate adaptive regression

splines (MARS) modeling to achieve 'statistical parsimony' in data-driven (adaptive) future value

function approximation. The proposed framework can be extended to use the tree-MARS

models presented in chapter 3 in the presence of categorical variables in the state space.

4. 1 Motivation

Central to dynamic programming (DP) is the ‘cost-to-go’ or ‘future value’ function, which

is obtained via solving Bellman’s equation, and central to approximate dynamic programming

(ADP) is the use of an ‘approximation’ of the future value function. In this context, the 13th

century maxim of ‘Occam's razor’, which symbolized the ‘principle of parsimony’, has found a

renewed relevance in the ADP research community after the statisticians who had already

professed their allegiance to the maxim. In the statistics community, model selection boils down

to compromises between different aspects of a model. In the compromise, Occam's razor

becomes the guiding principle; the principle of parsimony prevails; and the model that fits

observations sufficiently well in the least complex way is preferred.

36

In the context of ADP, the principle of parsimony assumes added significance.

Usefulness of the ADP algorithm is limited by its computational cost. Complexity of the model

adds to the computational cost, as does the exploration of the state space. Thus, the usefulness

of the whole ADP algorithm hinges on finding the approximation model with optimal complexity

using minimum state space exploration.

4.1.1 Bias-Variance Tradeoff

Figure 4.1: Schematic Illustration of Bias-Variance Tradeoff

The real reason behind this resurrection of Occam’s razor is, however, more technical

than philosophical. It has been observed that the increase in complexity of the model may

reduce the bias, which measures how well the model approximates the true function, but it

increases the variance in the predictive performance of the model, which makes the quality of

prediction poor in terms of reliability or precision (Hastie et al. [29]). That is why the principle of

parsimony is ardently adhered to by the research community involved in statistical modeling. In

the real world, formalization of this principle is, however, nontrivial.

The two important aspects of the principle of parsimony, in the statistical context, are:

'fitting observations sufficiently well' and 'in the least complex way'. The aspect of 'fitting

36

In the context of ADP, the principle of parsimony assumes added significance.

Usefulness of the ADP algorithm is limited by its computational cost. Complexity of the model

adds to the computational cost, as does the exploration of the state space. Thus, the usefulness

of the whole ADP algorithm hinges on finding the approximation model with optimal complexity

using minimum state space exploration.

4.1.1 Bias-Variance Tradeoff

Figure 4.1: Schematic Illustration of Bias-Variance Tradeoff

The real reason behind this resurrection of Occam’s razor is, however, more technical

than philosophical. It has been observed that the increase in complexity of the model may

reduce the bias, which measures how well the model approximates the true function, but it

increases the variance in the predictive performance of the model, which makes the quality of

prediction poor in terms of reliability or precision (Hastie et al. [29]). That is why the principle of

parsimony is ardently adhered to by the research community involved in statistical modeling. In

the real world, formalization of this principle is, however, nontrivial.

The two important aspects of the principle of parsimony, in the statistical context, are:

'fitting observations sufficiently well' and 'in the least complex way'. The aspect of 'fitting

36

In the context of ADP, the principle of parsimony assumes added significance.

Usefulness of the ADP algorithm is limited by its computational cost. Complexity of the model

adds to the computational cost, as does the exploration of the state space. Thus, the usefulness

of the whole ADP algorithm hinges on finding the approximation model with optimal complexity

using minimum state space exploration.

4.1.1 Bias-Variance Tradeoff

Figure 4.1: Schematic Illustration of Bias-Variance Tradeoff

The real reason behind this resurrection of Occam’s razor is, however, more technical

than philosophical. It has been observed that the increase in complexity of the model may

reduce the bias, which measures how well the model approximates the true function, but it

increases the variance in the predictive performance of the model, which makes the quality of

prediction poor in terms of reliability or precision (Hastie et al. [29]). That is why the principle of

parsimony is ardently adhered to by the research community involved in statistical modeling. In

the real world, formalization of this principle is, however, nontrivial.

The two important aspects of the principle of parsimony, in the statistical context, are:

'fitting observations sufficiently well' and 'in the least complex way'. The aspect of 'fitting

37

observations sufficiently well' has traditionally been quantified by 'goodness-of-fit (GOF)'

measures and the aspect of 'model complexity' has traditionally been quantified by 'degrees of

freedom (df)' measure which is essentially the number of parameters in the model. In the

context of Multivariate Adaptive Regression Splines (MARS), the degrees of freedom (df) is the

number of basic functions (BF) in the model, and it indicates the complexity of the model. The

GOF statistic can be made to look good by increasing the complexity of the model which at the

same time increases the degrees of freedom (df) of the model, i.e., if we increase the

complexity of the model, the GOF statistic may indicate that the model fits the data better,

hence the model appears superior without any reference to the degree of freedom. Thus, the

GOF statistic does not capture the conflicting objectives of increasing model fit and decreasing

model complexity and does not tell much about the predictive performance of the model.

4.1.2 Generalization Error

Let be a regression function, Y= (X) + , where is the random error independent of

X and with mean zero and be an estimate of the function . Let's define the loss function for

measuring the error between and as(,) = (X)- (X)

The 'generalization error' is defined as the expected loss or expected prediction error

over an independent test sample. This is also referred to as 'test error'. This expectation

averages anything that is random including the randomness in the training sample that

produced .

Test Error = (,) = (X)- (X) = Y- (X) over an independent test sample.

The training error is defined as the average loss or average training error over the

training sample.

Training Error =
N ∑ (,)N =

N ∑ ((), ())N =
N ∑ - ()N over the training

sample.

38

The beauty of the generalization error is that it can be decomposed into bias and

variance, such that Test Error = Bias2 + Variance, and it is not true in the case of training error

(Hastie et al. [29]). If we go on increasing the model complexity, the training error decreases

monotonously, but not the test error.

Figure 4.2: Illustration of interplay between training error and test error.
Source: T. Hastie, R. Tibshirani , J. H. Friedman (2001)

When we increase the model complexity too much, the model adapts too closely to the

training data and loses the 'generalization ability', and the test error increases in the

independent test data. This due to the fact that, as the model becomes complex, it can capture

more complex underlying structure in the data which results in the decrease in the bias of the

estimating function, but it also leads to increase in the variance of the estimating function. As

long as the decrease in the bias component more than compensates for the increase in the

variance component, the estimation error in the test data set decreases. Beyond certain model

complexity, the rate of decrease in bias is more than offset by the rate of increase in variance,

and the estimation error increases in the training dataset. In the continuum of model complexity,

there is an optimal model complexity that gives the minimum test error.

39

This research will seek to incorporate the test error in the model selection criterion in

developing a data driven algorithm to build flexible statistical models of optimal complexity.

4.1.3 Consistency Trace

'Consistency' is defined as the asymptotic convergence of an estimator to the object of

estimation. Analytical studies reveal that most nonparametric regression algorithms, which

include multivariate adaptive regression splines (MARS), are consistent for approximating any

regression function and the rate of convergence, depending on the particular algorithm and the

underlying function it seeks to approximate (Geman et al [27]). This is a reassuring property of

the MARS approximation that we will seek to exploit. The observation of Fan [22] that the

nonparametric regression function approximations follow a 'consistency trace' is of practical

significance.

Figure 4.3: Illustration of Consistency Trace.
Source: Fan, Huiyuan (2008)

The above consistency trace reveals that the simultaneous increase in model

complexity and the size of training data can force the nonparametric regression function

approximation models to follow the consistency trace, if the nonparametric regression function

approximation algorithm is consistent. The rate of convergence may depend on the optimality of

the model complexity. This research will seek to exploit this observation regarding the

40

consistency trace to develop data driven stopping rules for optimal model complexity to achieve

statistical parsimony.

4.2 Choice of MARS

This research seeks to develop a data driven algorithm to build flexible statistical

models of optimal complexity for use in ADP to adaptively and adequately approximate future

value functions.

In the nonparametric statistical modeling community, multivariate adaptive regression

splines (MARS) and neural network (NN) have emerged as modeling methods of choice

(Francis [24]). NNs have been touted to have the ability to approximate any arbitrary function by

learning from the observed data (Francis [24]). However, MARS has emerged as a viable

alternative to NN in that it can capture complex nonlinearity and the interactions in the data like

NN, but it does not work in a black box fashion (Berry and Linoff [6]). The structural components

of MARS are explicit whereas NN works in a black box fashion where the input enters the black

box and gets transformed into the output.

The users of NN claim that the greatest advantage of NNs is their ability to approximate

any arbitrary function by learning from the observed data. Francis [24] claims that a NN

architecture with a sufficient number of hidden nodes in the NN’s hidden layer can approximate

any deterministic nonlinear continuous function accurately. However, the ‘trial and error’

process of identifying the appropriate NN architecture may be computationally too expensive.

Other than that, there are numerous algorithms available for training neural network models and

using them is not so straightforward. Selecting and tuning an algorithm for training on unseen

data requires a significant amount of experimentation and is data specific. This experimentation

is not trivial enough to be generalized for use in a framework that can be used to make the

model follow a consistency trace and the extensive study using NN models by Fan [22]

establishes this very fact. The study by Fan [22] also does not conclusively establish that NN

models can be controlled for complexity solely through the number of hidden nodes without

41

doing the data specific experimentation to tune the algorithm used. If a nonparametric model

cannot be directly controlled for complexity, then it cannot be made to follow the consistency

trace efficiently; so the convergence rate in the consistency trace will be poor.

The very structure of MARS is such that it lends itself naturally to control for complexity

from the model building stage and hence lends itself to control for consistency. Apart from that,

MARS can capture complex nonlinearity and the underlying interactions in the data efficiently

and can be used to approximate any arbitrary regression function (Friedman [26]). Therefore,

this research has decided on MARS as the nonparametric statistical modeling of choice for use

in the adaptive dynamic programming framework.

Shen et al. [50] propose an adaptive model selection procedure aimed at reducing

selection bias and improving performance by introducing a complexity penalty determined by

the data itself. However, this complexity penalty is not used at the model building stage and is

used during the model selection stage, which might be too late from the perspective of

computational cost savings. In MARS, the model complexity parameter is built-in into the model

building process.

4.3 Features of MARS

The MARS procedure for estimating any arbitrary regression function consists of a

forward stepwise algorithm to select certain spline basis functions followed by a backward

stepwise algorithm to delete basis functions until the best set of basis functions is found that has

the lowest generalized cross validation (GCV) error among all the possible sets of basis

functions. Algorithms 2 and 3 of Friedman (1992) describe the forward stepwise selection and

backward stepwise deletion procedures, respectively. The purpose of the backward stepwise

algorithm is to prevent over-fitting by decreasing the complexity of the model without degrading

the fit to the data. Algorithm 3 loops through the set of basis functions chosen by Algorithm 2 to

find ones to delete, so the advantages of Algorithm 3 must be weighed against the

computational effort required in this search.

42

The MARS forward stepwise algorithm is used to create the basis functions of the

MARS model. The forward stepwise algorithm loops through the possible choices for basis

functions, covariates and knot locations in selecting the next two basis functions to add to the

model. MARS is an adaptive procedure because the selection of basis functions is data-based

and specific to the problem at hand. The forward stepwise algorithm stops when Mmax basis

functions have been selected, where Mmax is a user-specified constant. The MARS

approximation approaches interpolation as the number of basis functions increases, but there is

a tradeoff between Mmax and computational time.

As mentioned, the MARS forward stepwise algorithm is used to create the basis

functions of the MARS model, and the process stops when a user-specified value, Mmax is

reached. However, there does not exist a rule to select an appropriate value of Mmax. An

improper Mmax may cause problems of over-fitting or under-fitting. Meanwhile, using an Mmax

larger than necessary may be a waste of time, which is a critical issue for SDP. Tsai and Chen

[56] have presented automatic stopping rules to provide an efficient way of choosing Mmax.

4.4 Structure of MARS

Let be a regression function, Y= (X) + , where is the random error independent of

X and with mean zero, and be a MARS approximation of the function . The MARS

approximation has the form () = + ∑ ℎ (),

where is a -variate vector of predictors and ℎ () is a basis function, is the number of

linearly independent basis functions, and is the unknown coefficient for the -th basis

function ℎ (). The basis function ℎ () has the formℎ () = ∏ , ((,) − ,) .

where [] is the hinge function defined as max{0, }, is the maximum order of predictor-

predictor interaction allowed, (,) is the input variable corresponding to the -th hinge function

in the -th basis function, , is the knot value corresponding to the (,), and , takes the

43

values -1 and +1 corresponding to the pair of basis functions for the each combination of (,)
and , . The forward stepwise algorithm in MARS adds basis functions in pairs in each iteration

and loops through the possible choices for basis functions (), covariate () and the knot

location () to select the next two basis functions to add to the model. The process stops when

a user-specified value, Mmax is reached.

4.5 General Framework for Solving Continuous SDP

Typical SDP formulation is















T

t
tttt uxc

T 1
u,...,u

),,(Emin:Objective
1



1,...,1for),,,(s.t.:Transition 1  Ttuxfx ttttt 

Ttu tt ,...,1for,:sConstraint 

. variablesstateof vector theis:stageFor txt

ariables.decision vof vector theistu

. variablesrandomof vector theist

FunctionCost theis(.)tc

FunctionTransitiontemultivaria theis(.)tf

s.constraintofset theist

For numerical solution, the SDP is formulated in a recursive form, and for stages t through T, we

define future value function as() = min(,…,) {∑ (, ,)}
s.t. = (, ,). for = , … , − 1 ; ∈ , for = , … , .

The DP formulation in recursive form for numerical solution is() = min { (+) + ()} ,

44

where the time horizon, = 1, … , ; is the state vector; is the decision vector; (.) is the

known cost function for stage , and (.) is the future value function.

The future value function (.) represents the minimal cost of operation from stage

through . given the system is in state and entering stage . The goal is to compute the future

value function (.) and find the optimal decision ∗ . The DP is solved backwards recursively,

first finding (.) for the last stage and subsequently using it recursively to find (.) through(.). At the end of this exercise, for each point in the state space for stages 1 through , we

have (, ()) and (, ∗), and this exercise involves as many minimization problems as

the number of state points in each stage. This is essential the solution to the SDP problem;

given the initial state of the system , we have the () which gives the optimal cost of

operation of the system from stage 1 through .
This traditional recursive solution framework for SDP becomes computationally

expensive as the number of state points for stages 1 through increases. In the presence of

continuous state variables, this traditional recursive framework completely breaks down.

Discretization of the state space coupled with some interpolation technique is adopted to

approximate the future value function for any state point in stage . The typical algorithm for

solving an continuous SDP problem numerically is as follows:

Step-1: Choose discretization points in the state space for the -th stage;= 1, … , ; and ∈
Step-2. In the last period ,

(a) for each discretization point , = 1, … , , solve for() = min (, ,) , then

(b) approximate () with () for all ∈ .

Step-3. In each period = − 1, … ,1,
(a) for each discretization point , = 1, … , , solve for

45

= min , , + ((, ,)) , then

(b) approximate () with () for all ∈ as in step 2(b).

This discretization of the state space makes the recursive solution framework work for

continuous-state SDP. Then some kind of approximation or interpolation is required to de-

discretize any inference over the state space. The quality of approximation is enhanced with the

increase in fineness of the discretization grid. However, the computational cost of the recursive

solution process increases with the increase in the number of discretization points. This tradeoff

between the quality of approximation and the cost associated with it has motivated this research

to seek ways to find the optimal discretization that would give the optimal quality of

approximation.

To achieve the goal of optimal discretization and optimal quality of approximation, this

research seeks to develop an algorithm that would make the statistical modeling method used

for approximating the future value function to follow the consistency trace.

4.6 Proposed Framework

The objective of this research is to develop an algorithm that would make the statistical

modeling method used for approximating the future value function to follow the consistency

trace. This research selected the MARS method as the nonparametric statistical modeling

method of choice because the MARS modeling algorithm is consistent, i.e., it can be made to

follow the consistency trace, and the very structure of MARS lends itself to easy control for

complexity from the model building stage and hence promises to lends itself to efficient control

for consistency. However, the quality of convergence in the consistency trace depends on the

algorithm used. This research explores three algorithms for building MARS models including the

original MARS algorithm proposed by Friedman [26] to study their amenability to follow the

consistency trace.

The structure and very way of model building gives the opportunity to control for

complexity from the model building stage. There are different ways we can implement the

46

MARS algorithm. We can manually control the Mmax value in the forward training state to

control for complexity and then allow for backward pruning as in the original MARS algorithm

proposed by Friedman [26]. We can also use the modified MARS algorithm with automatic

stopping rule proposed by Tsai and Chen [56] to let the training data control the Mmax value.

In the following proposed sequential framework for finding out the model with optimal

complexity using minimal state space exploration, this research studies three versions of the

MARS algorithm for their amenability to follow the consistency trace.

4.6.1. Flowchart of the Proposed Framework

In the proposed framework, the algorithm starts with the input of the initial size of the

training data taken from a low-discrepancy quasi-random sequence and fits a model of optimal

complexity for the size of the training dataset. At the end of the sequential step, the model with

optimal complexity is evaluated in a fixed test dataset, and stopping criteria is checked for

compliance. The percentage of variance in the test response NOT explained by the model is

used as the stopping criterion. If the stopping criteron has not been met, then the algorithm

proceeds to the next sequential step with a pre-specified increase in the size of the training

dataset. The sequential iterations continue until the stopping criterion is met which implies that

the percentage of variability in the test data not explained by the model is less than the specified

limit.

47

Figure 4.4: Flowchart of Proposed Sequential Algorithm

Does model
performance meet
Stopping Criteria ?

YES

NO

START

Input
Training Data

Build MARS Model
on

Training Data

Evaluate MARS Model
on

Test Data

Output
MARS Model

In
cr

ea
se

 th
e

Si
ze

 o
f

Tr
ai

ni
ng

 D
at

a
an

d
G

o
to

 th
e

ne
xt

Se
qu

en
tia

l s
te

p

END

48

4.6.2. Three Versions of MARS Algorithm

As mentioned, there are different ways the MARS algorithm can be implemented. The

first version is the original MARS algorithm proposed by Friedman [26] with a default value for

Mmax as twice the number of covariates. The forward pass stops once the Mmax number of

basis functions has been selected and is followed by a backward pruning pass. In this version,

the Mmax parameter is fixed for each sequential run of the algorithm, and the backward pruning

controls the optimal complexity of the final model in each sequential run. The rationale behind

this version of algorithm is that it provides one of the possibilities to follow consistency trace

without having to manually control the model complexity. The study will reveal if this forced cap

is adequate to attain optimal model complexity and eventually follow consistency trace as the

size of the training dataset increases. The study will also reveal how this limit on the model

complexity influences the generalization ability of the model in the sequential methodology.

The second version is a modified implementation of the original MARS algorithm with

the value of Mmax = , where is the number of data points in the training data set, and

is the penalty parameter set to the default value of 3. The rationale behind this cap on the

maximum number of basis functions is that this is the maximum number of basis functions a

model can have after the backward pruning algorithm. The backward pruning algorithm chooses

a model with minimum generalized cross validation (GCV) error. The GCV is defined as

= (1 −)
The is the effective number of parameters which is defined as= + ∗ (− 1)/2
For model with = , GCV is infinite and any model with ≥ is considered infinitely

bad (Jekabsons [31]). Hence, a model can have a maximum of basis functions in order

for the effective number of parameters to be less than . This study will reveal how this floating

49

limit on the model complexity influences the generalization ability of the model in the sequential

methodology.

The third version is the modified MARS algorithm with automatic stopping rule

proposed by Tsai and Chen [56] that lets the training data control the Mmax value.

4.7 Application to Inventory Forecasting Problem

The proposed sequential framework to approximate future value function using three

algorithms for MARS modeling can be applied to traditional backward solved ADP problems.

This research seeks to study the performance of the resulting sequential ADP methodology

based on MARS modeling on a nine-dimensional stochastic inventory forecasting problem

(Chen [17]). The choice of this particular SDP problem is for easy comparison and

benchmarking, as this nine-dimensional stochastic inventory forecasting problem has been

extensively studied and frequently used for performance comparison by researchers in the past

(Chen et al. [15]; Chen [17]; Cervellera et al. [12]; Fan [22]).

4.7.1. Overview of Stochastic Inventory Forecasting Problem

The nine-dimensional stochastic inventory forecasting problem (Chen [17]) is

concerned with optimal order quantities for three items over two forecast periods given the

inventory level and demand forecast for each item.

The state variables consist of current inventory level for each item and the demand

forecast for each item over two time periods.

Define, at the beginning of the time period (stage) :

() : Inventory level for item at the beginning of current period

,() : Forecast of demand for item over the current period

,() : Forecast of demand for item over the next period (+ 1)
() : Amount of item ordered at the beginning of current period

The state vector at the beginning of stage is represented by= ((), (), (), ,(), ,(), ,(), ,() , ,() , ,()) .

50

The decision vector at the beginning of stage is represented by= (() , () , ()) .

The transition function from period to period (+ 1) is given by= + − .

The associated stochasticity in transitions is modeled using the multiplicative

Martingale model of forecast evolution (See Chen [17] for details). The constraints on the

decision variable (amount ordered) and the state variables (inventory levels) are placed in the

form of capacity constraints.

The objective function is a cost function involving inventory holding costs and

backorder costs. The cost function is typically V-shaped and is represented as

(,) = ∑ ℎ () + − () ,

where ⌊ ⌋ = max{0, }; ℎ is the inventory holding cost for item ; is the backorder cost for

item . For optimization purposes, a smoothed version of the cost function has been used (See

Chen [17] for details).

4.7.2. Computational Setup

MATLAB software (www.mathworks.com) was used to code the sequential algorithms

to approximate the future value functions for the above mentioned inventory forecasting

problem. "ARESLab: Adaptive Regression Splines toolbox for MATLAB" developed by

Jekabsons [31] was used to implement the three versions of MARS outlined in section 4.6.2.

The nine-dimensional inventory problem involved three time periods or stages. So

according to the general framework for solving continuous-state SDP in section 4.5, only two

future value functions, i.e., one for the second stage and one for the third (last) stage, needed to

be approximated. The future value function for the third stage was approximated first using the

MARS modeling method. The future value function approximation for the second stage required

the use of the already built future value function approximation model for the third stage. For

both the stages, the training data used to build the future value function approximation models

51

came from a nine-dimensional Sobol’ sequence. The test data consisted of 2000 design points

from a nine-dimensional Halton sequence.

Experimentation was undertaken to study the amenability of the three versions of the

MARS algorithm to follow the consistency trace and then the performances of the proposed

sequential algorithms were compared with the performance of one of the algorithms (Algorithm

A) presented by Fan [22] and the fixed structure algorithm presented by Cervellera et al. [12].

The algorithm by Fan [22] was sequential in nature, but used NN modeling for the future value

function, whereas the algorithm by Cervellera et al. [12] used NN modeling for the future value

function, but was not sequential in nature; involving one-step modeling and a fixed training

dataset.

4.8 Results and Discussion

In the results presented in this section, the Algorithm-I corresponds to implementation

of the first version of the MARS algorithm, as explained in section 4.6.2, which uses the original

MARS algorithm presented by Friedman [26] with a default fixed value of Mmax set at twice the

number of covariates. Algorithm-II corresponds to implementation of the second version of the

MARS algorithm, as explained in section 4.6.2, which uses the original MARS algorithm

presented by Friedman [26] with Mmax = , where is the number of data points in the

training data set, and is the penalty parameter set to the default value of 3. Finally, Algorithm-

III corresponds to implementation of the third version of the MARS algorithm, as explained in

section 4.6.2, with Mmax adaptively set by the modified MARS algorithm with automatic

stopping rule presented by Tsai and Chen [56].

In the results presented in this section, 'stage two' corresponds to the model being

trained or built on the data for the future value function in stage 2 of the stochastic inventory

forecasting problem outlined in section 4.7.1, and 'stage three' corresponds to the model being

trained or built on the data for the future value function in stage 3 (last stage) of the stochastic

inventory forecasting problem outlined in section 4.7.1. It may be noted that the future value

52

function data in stage two is more noisy than the future value function data in stage three

because it also includes the modeling error in the stage three.

Keeping the above mentioned information in mind, the following sections present and

discuss the results of this research.

4.8.1. Comparison of Consistency Trace

This research seeks to study the amenability of the MARS modeling method to follow

the consistency trace when used in the proposed sequential framework (see section 4.6.1).

The results in Figure 4.5(b) and Figure 4.6(b) reveal that Algorithm-II and Algorithm-III

follow the consistency trace nicely with their model generalization performance improving with

the simultaneous increase in the size of the training data and the model complexity. Figure

4.5(a) and Figure 4.6(a) reveal that, for Algorithm-II and Algorithm-III, the optimal model

complexity increases with the increase in the number of training data and then levels off,

indicating that new training data points do not add to the generalization ability of the model. For

Algorithm-I, the model complexity does not improve the generalization ability of the model in the

test data because of the forced cap on the maximum number of basis functions in the model.

The consequence of inadequacy of the forced cap in Algorithm-I is revealed in Figure 4.5(b) and

Figure 4.6(b) in terms of inferior performance than Algorithm-II and Algorithm-III.

The results in Figure 4.5(b) and Figure 4.6(b) reveal that the model performance of

Algorithm-II and Algorithm-III in terms of generalization ability in the test dataset is close and

comparable; however, the results in Figure 4.5(a) and Figure 4.6(a) reveal that the optimal

models selected, in each sequential step or for a size of the training dataset, by Algorithm-III are

more complex than those selected by the Algorithm-II. This reduction in optimal model

complexity comes from the back-pruning allowed in Algorithm-II. Even though this reduction in

complexity does not come at the cost of the model performance, it does come at the cost of the

computational expense associated with the back-pruning algorithm (backward stepwise deletion

algorithm in Friedman [26]).

53

The results in Figures 4.7(a) and (b) reveal that the proposed sequential Algorithm-II

follows the consistency trace in stage two as well stage three with respect to generalized error

in terms of test MSE, test RMSE and test relative RMSE, following a decreasing trend with

simultaneous increase in the model complexity and size of the training dataset and eventually

leveling off when the increase in the size training dataset does not improve the generalization

ability of the model. The higher generalized error curve in stage two compared to stage three

can be attributed to the increased noise in the stage two training data due to the modeling error

in stage three (last stage).

The results in Figures 4.8(a) and (b) reveal that the proposed sequential Algorithm-III

also follows the consistency trace in stage two, as well stage three, as does Algorithm-II, with

respect to generalized error in terms of test MSE, test RMSE and test relative RMSE, following

a decreasing trend with simultaneous increase in the model complexity and size of the training

dataset and eventually leveling off when the increase in the size training dataset does not

improve the generalization ability of the model. The higher generalized error curve in stage two

compared to stage three can be explained similarly to Algorithm-II.

54

(a)

(b)

Figure 4.5: Comparison of (a) Model Complexity in Third Stage (b) Model Performance in Third
Stage.

100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

100

Number of Training Data Points

of

 B
as

is
 F

un
ct

io
ns

Model Complexity Comparison in THIRD STAGE

ALGORITHM I
ALGORITHM II
ALGORITHM III

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Iterations

P
er

ce
nt

ag
e

V
ar

ia
nc

e
N

O
T

ex
pl

ai
ne

d
in

 T
E

S
T

D
A

TA

Model Performance Comparison in THIRD STAGE

ALGORITHM I
ALGORITHM II
ALGORITHM III

55

(a)

(b)

Figure 4.6: Comparison of (a) Model Complexity in Second Stage (b) Model Performance in
Second Stage.

100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

120

Number of Training Data Points

of

 B
as

is
 F

un
ct

io
ns

Model Complexity Comparison in SECOND STAGE

ALGORITHM I
ALGORITHM II
ALGORITHM III

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iterations

P
er

ce
nt

ag
e

V
ar

ia
nc

e
N

O
T

ex
pl

ai
ne

d
in

 T
E

S
T

D
A

TA

Model Performance Comparison in SECOND STAGE

ALGORITHM I
ALGORITHM II
ALGORITHM III

56

(a)

(b)

Figure 4.7: Comparison of Generalization Ability of the Algorithm-II in
(a) Second Stage (b) Third Stage.

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Training Data Points

Te
st

 P
er

fo
rm

an
ce

ALGORITHM II in SECOND STAGE

Test MSE
Test RMSE
Test RRMSE

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Training Data Points

Te
st

 P
er

fo
rm

an
ce

ALGORITHM II in THIRD STAGE

Test MSE
Test RMSE
Test RRMSE

57

(a)

(b)

Figure 4.8: Comparison of Generalization Ability of the Algorithm-III in
(a) Second Stage (b) Third Stage.

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Training Data Points

Te
st

 P
er

fo
rm

an
ce

ALGORITHM III in SECOND STAGE

Test MSE
Test RMSE
Test RRMSE

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Training Data Points

Te
st

 P
er

fo
rm

an
ce

ALGORITHM III in THIRD STAGE

Test MSE
Test RMSE
Test RRMSE

58

4.8.2. Comparison of SDP Solution Quality

The results in Figure 4.9 reveal that the quality of the SDP solution in terms of deviation

in mean cost from the minimum is similar for Algorithm-II and Algorithm-III. This was expected

because both algorithms result in models which have comparable generalization ability after

saturation despite different model complexity.

The similar performance of Algorithm-I is not expected, but can be explained as a

problem specific exception, where the models built by the Algorithm-I, and Algorithms-II and III,

were different, but of similar shape; so that the minimization process in the SDP optimization

chose the identical decision as the optimal decision that minimized cost, and the identical

decision translated into identical cost for a given realization of the random error because the

cost function is deterministic given an initial state point, decision, and realization of the random

error.

The results in Figure 4.9 reveal that the proposed sequential algorithms using MARS

modeling are superior than the sequential algorithm using NN models (comparison was made

with the Algorithm A by Fan [22] with ∆ = 1 and = 5) in terms of time to train the

algorithm.

The results in the Figure 4.9 also reveal that the quality of the SDP solution in terms of

deviation in mean cost from the minimum was the best for the 'one-step' (in contrast with

'sequential') algorithm with fixed training dataset (which is the entire state space) using NN

presented by Tsai and Chen [56]. However, this gain in performance comes at the expense of

consequence of excessively exploring the state space.

59

1 - MARS Algorithm I

2 - MARS Algorithm II

3 - MARS Algorithm III

4 - NN Algorithm I by Huiyuan

5 - NN Fixed Structure Algorithm

Figure 4.9: Comparison of Quality of SDP solution:

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5
Algorithms

D
ev

ia
tio

n
in

 M
ea

n
C

os
t f

ro
m

 th
e

M
in

im
um

Comparison in Quality of SDP Solution

60

In the Figure 4.10, the CPU times for training the optimal model have been presented

for comparison. Algorithm - I takes 1.2 seconds, whereas Algorithm - II and III take 46.5

seconds and 87.5 seconds respectively. Algorithm - IV, which corresponds to the Algorithm A

by Fan [22] with ∆ = 1 and = 5, takes 4176.9 seconds. Algorithm - V, which corresponds

to the ‘one-step’ algorithm with a fixed training dataset (with 1331 observations) and using NN

with 40 hidden nodes, presented by Tsai and Chen [56], takes 450.6 seconds for training the

optimal model. The results in the Figure 4.10 reveal that this 'one-step' algorithm with fixed

training dataset using NN performs better than the 'sequential' algorithm using NN, but worse

than the 'sequential' algorithm using MARS in terms of the time to train the model. However, this

performance assessment in terms of time to train may not be fair for this 'one-step' algorithm

with fixed training dataset using NN. This is because the ‘trial and error’ process to identify the

appropriate NN architecture and sample size is not included in the computational time. This ‘trial

and error’ process can require days of investigation. By contrast, the sequential algorithms

automatically identify structure and sample; hence, the entire computational effort is accurately

recorded.

Hence, above discussion suggests that the prospect of the sequential algorithm using

MARS modeling is promising for use in the framework of adaptive dynamic programming in

terms of statistical parsimony it will bring in and the ensuing computational cost savings.

61

1 - MARS Algorithm I

2 - MARS Algorithm II

3 - MARS Algorithm III

4 - NN Algorithm I Huiyuan

5 - NN Algorithm Fixed Structure

Figure 4.10: Comparison of Training Time for the Algorithms.

1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Ti

m
e

in
 S

ec
on

ds

Algorithms

Comparison of Training Time for Optimal Model

62

CHAPTER 5

SUMMARY AND FUTURE WORK

The prospect of the proposed sequential algorithms in making a nonparametric

statistical modeling method following the consistency trace for use in adaptive dynamic

programming framework looks promising. The proposed sequential algorithm exploits the

propensity of MARS modeling to follow the consistency trace whereas the MARS modeling

algorithm provides an explicit complexity measure (the number of basis functions) that can be

controlled directly during the model building stage.

This promising prospect of the proposed sequential algorithm to follow a consistency

trace using MARS modeling has tremendous value in the context of adaptive dynamic

programming. The first and foremost implication is that it provides a way for minimal exploration

of the state space without affecting the quality of the SDP solution. In the context of ADP,

approximating future value functions for any stage involves as many optimization sub-problems

to solve as the number of state points explored. In the proposed sequential algorithms, we stop

exploring the state space when the generalization ability of the approximation model levels off,

and this results in possible reduction in the state space exploration requirement without

affecting the quality of the approximation model, and this reduction in state space exploration

directly translates into 'statistical parsimony' and 'computational cost saving'.

The next logical step of this research would be to extend the proposed MARS-based

sequential algorithm to use TreeMARS modeling methodology presented in the Chapter 3. The

use of TreeMARS will allow handling of a mix of categorical and continuous state variables. It

will be interesting to see how the sequential algorithm will need to be modified to make the

TreeMARS models to follow the consistency trace.

63

In MARS based Algorithm-II, there is a model complexity parameter. In this research,

we have used the default and recommended value of 3 (Friedman [26]). A large penalty is likely

to perform well when the size of the true model is small or the true model has a parsimonious

representation, and is likely to perform poorly otherwise. In future, research can be done to

study the role of the model complexity parameter in the sequential framework to fine tune the

model.

In the MARS based Algorithm-III, a very small threshold on the automatic stopping rule

was employed. It will be interesting to study further how to select this threshold. Regardless,

both Algorithm-II and Algorithm-III have good potential for adaptive dynamic programming.

64

REFERENCES

1. William P. Alexander and Scott D. Grimshaw (1996), “Treed Regression”.Journal of

Computational and Graphical Statistics Vol. 5, No. 2 (Jun., 1996), pp. 156-175

2. Bai, Z.D., Rao, C.R. and Wu, Y. (1999). Model selection with data-oriented penalty. Journal

of Statistical Planning and Inference, 77: 103-117.

3. Barto, A., Sutton, R. and Brouwer, P. (1981), `Associative search network: A reinforcement

learning associative memory', Biological cybernetics 40, 201-211.

4. Bellman, R. E and Kalaba, R. (1959), `On adaptive control processes', IRE Transactions on

Automatic Control 4, 19.

5. Bellman, R. E. (1957). Dynamic Programming. Princeton: Princeton University

6. Berry, Michael J. A., and Linoff, Gordon,(1997), Data Mining Techniques, John Wiley and

Sons

7. Bertsekas, D. (2005), `Dynamic programming and suboptimal control: A survey from ADP to

MPC', European Journal of Control 11, 310{334.

8. Bertsekas, D. and Tsitsiklis, J. (1996), Neuro-dynamic programming, Athena Scientific,

Belmont, MA.

9. Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, Vol. II, Athena

Scientific, Belmont, MA.

10. Birge, J. and Louveaux, F. (1997), Introduction to Stochastic Programming, Springer-

Verlag, New York.

11. Boutilier, C., Dean, T. and Hanks, S. (1999), `Decision-theoretic planning: Structural

assumptions and computational leverage', Journal of Artificial Intelligence Research 11, 1-

94.

65

12. Cervellera, C., A. Wen, and V. C. P. Chen (2007). Neural network and regression spline

value function approximations for stochastic dynamic programming." Computers and

Operations Research, 34, pp. 70-90.

13. Cervellera, C., D. Macciò, and M. Muselli (2010). “Functional Optimization Through

Semilocal Approximization Minimization.” Operations Research, 58(5), pp. 1491-1504

14. Cervellera, C. and D. Macciò (2011). “A Comparison of Global and Semi-local

Approximization in T-stage stochastic optimization.” European Journal of Operational

Research, 208(2), pp. 109-118

15. Chen, V. C. P., D. Ruppert, and C. A. Shoemaker (1999). Applying Experimental Design

and Regression Splines to High-Dimensional Continuous-State Stochastic Dynamic

Programming." Operations Research, 47, pp. 38-53.

16. Chen, V. C. P., K. L. Tsui, R. R. Barton, and J. K. Allen (2003). A review of design and

modeling in computer experiments." In Handbook of Statistics: Statistics in Industry, (R.

Khattree and C. R. Rao, eds.), 22, Elsevier Science, Amsterdam, pp. 231-261.

17. Chen, V.C.P. (1999). Application of MARS and Orthogonal Arrays to Inventory Forecasting

Stochastic Dynamic Programs. Computational Statistics and Data Analysis 30, 317–341.

18. Chi, H.., and O. K. Ersoy (2002). "Determining the optimum number of hidden nodes in

constructive functional-link networks using validation and VC dimension." ECE Technical

Reports, TR-ECE 02-06, Purdue University (Available in:

http://docs.lib.purdue.edu/ecetr/166).

19. Corder, G.W. & Foreman, D.I (2009), "Nonparametric Statistics for Non-Statisticians: A

Step-by-Step Approach", Wiley (2009)

20. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001).

Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill

21. de Boor, C (1978), "A practical guide to splines", Springer-Verlag, New York

66

22. Fan, Huiyuan. (2008). Sequential Frameworks For Statistics-based Value Function

Representation In Approximate Dynamic Programming, PhD Dissertation, University of

Texas at Arlington

23. Foufoula-Georgiou, E. and P. K. Kitanidis (1988). Gradient Dynamic Programming for

Stochastic Optimal Control of Multidimensional Water Resources Systems. Water

Resources Research, 24, pp. 1345{1359.

24. Francis, Louise (2001), “Neural Networks Demystified”, Casualty Actuarial Society Forum,

Winter 2001, pp 253 - 320.

25. Friedman, J. and Fisher, N. (1999), "Bump hunting in high dimensional data" Statistics and

Computing: 123-143

26. Friedman, J. H (1991): “Multivariate Adaptive Regression Splines” (with discussion), Annals

of Statistics, 19, pp. 1–67.

27. Geman,S., Bienenstock,E., and Doursat,R. (1992). Neural networks and the bias/variance

dilemma. Neural Computation 4, 1–58.

28. Halton, J. (1964), "Algorithm 247: Radical-inverse quasi-random point sequence.", ACM, p.

701

29. Hastie, T., Tibshirani, R. and Friedman, J. (2002). The Elements of Statistical Learning,

Springer, New York.

30. Henri Faure,(1992), "Good permutations for extreme discrepancy", Journal of Number

Theory, Volume 42, 1992, pages 47-56.

31. Jekabsons G., ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave, 2010,

available at http://www.cs.rtu.lv/jekabsons/

32. Johnson, S. A., J. R. Stedinger, C. A. Shoemaker, Y. Li, and J. A. Tejada-Guibert (1993).

Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline

Interpolation." Operations Research, 41, pp. 484{500.

67

33. Jordan, M. and Jacobs, R. (1994), "Hierarchical mixtures of experts and the EM algorithm".

Neural Computation: 181-214.

34. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone (1984): Classification and

Regression Trees, Chapman & Hall/CRC publication.

35. Lin, Y., V. C. P. Chen, K. L. Tsui, F. Mistree, and J. K. Allen (2004). A sequential

exploratory experimental design method: development of appropriate empirical models in

design." ASME Design Engineering Technical Conference, Salt Lake City, Utah, Paper No.

DETC2004-57527.

36. Mendel, J. M. and McLaren, R. W. (1970), Reinforcement learning control and pattern

recognition systems, Vol. 66, Academic Press, New York, pp. 287-318.

37. Minsky, M. L. (1954), Theory of neural-analog reinforcement systems and its application to

the brain-model problem, PhD thesis.

38. Minsky, M. L. (1961), `Steps Toward Artificial Intelligence', Proceedings of the Institute of

Radio Engineers 49, 8-30.

39. Nemhauser, G. L. Introduction to Dynamic Programming. Wiley, New York, 1966.

40. Niederreiter, H. (1992). "Random Number Generation and Quasi-Monte CarloMethods.",

SIAM, PA.

41. Paul Bratley; Bennett Fox; and Harald Niederreiter (1992). "Implementation and Tests of

Low Discrepancy Sequences", ACM Transactions on Modeling and Computer Simulation,

Volume 2, Number 3, July 1992, pages 195-213.

42. Powell, W.B. (2007). Approximate dynamic programming: Solving the curses of

dimensionality, Wiley, New York.

43. Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.(1992) "Quasi- (that is,

Sub-) Random Sequences." §7.7 in Numerical Recipes in FORTRAN: The Art of Scientific

Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 299-306.

44. Puterman, M.L. (1994) Markov decision processes,Wiley, NewYork, 1994.

68

45. Rao, C.R. and Wu, Y. (1989). A strongly consistent procedure for model selection in

a regreesion problem. Biometrika, 76: 369-374.

46. Rao, J.S. (1999). Bootstrap choice of cost complexity for better subset selection. Statistica

Sinica, 9: 273-287

47. Rao, J.S. and Tibshirani, R. (1997). Discussion to ''an asympototic theory for model

selection'' by Jun Shao. Statistica Sinica, 7: 249-252.

48. Shabbir Ahmed, Alan J. King, and Gyana Parija. (2001) A multi-stage stochastic integer

programming approach for capacity expansion under uncertainty. Stochastic Programming

E-Print Series, http://www.speps.org, 2001.

49. Sharon A. Johnson, Jery R. Stedinger, Christine A. Shoemaker, Ying Li, José Alberto

Tejada-Guibert (1993): Numerical Solution of Continuous-State Dynamic Programs Using

Linear and Spline Interpolation; Operations Research Vol. 41, No. 3, May-June 1993, pp.

484-500 DOI: 10.1287/opre.41.3.484

50. Shen, X. and Ye, J. (2002). Adaptive model selection. Journal of the American Statistical

Association, 97: 210-221.

51. Si, J., Barto, A. G., Powell, W. B. and Wunsch, D. (2004), `Handbook of learning and

approximate dynamic programming', Wiley-IEEE Press.

52. Sobol, I. M. (1967). "The distribution of points in a cube and the approximate evaluation of

integrals." USSR Computational Mathematics and Mathematical Physics, 7, pp. 784-802.

53. Sutton, R. and Barto, A. (1998), Reinforcement Learning, Vol. 35, MIT Press, Cambridge,

MA.

54. T. Hastie, R. Tibshirani , J. H. Friedman (2001): The Elements of Statistical Learning;

Springer Publication.

55. Trandafir, Aurel and Weisstein, Eric W.(2009). "Quasirandom Sequence." From MathWorld-

-A Wolfram Web Resource.

69

56. Tsai, J. C. C., and V. C. P. Chen (2005). Flexible and robust implementations of multivariate

adaptive regression splines within a wastewater treatment stochastic dynamic program.

Quality and Reliability Engineering International, 21, pp. 689-699.

57. Victoria C. P. Chen, David Ruppert and Christine A. Shoemaker (1999): Applying

Experimental Design and Regression Splines to High-Dimensional Continuous-State

Stochastic Dynamic Programming; Operations Research, Vol. 47, No. 1 (Jan. - Feb., 1999),

pp. 38-53.

58. W. P. Alexander, S. D. Grimshaw (1996): “Treed Regression,” Journal of Computational

and Graphical Statistics, 5, pp. 156–175.

59. Werbos, P. J. (1974), Beyond regression: new tools for prediction and analysis in the

behavioral sciences, PhD thesis.

60. Werbos, P. J. (1989), `Back propagation and neurocontrol: A review and prospectus',

Neural Networks pp. 209-216.

61. White, D. A. and Sofge, D. A. (1992), Handbook of intelligent control: Neural, fuzzy, and

adaptive approaches, Van Nostrand Reinhold Company.

62. Whitt, Ward. (1978) Approximations of Dynamic Programs, Mathematics of Operations

Research, Vol. 3, No. 3, August 1978

63. Yang, Z., V. C. P. Chen, M. E. Chang, M. L. Sattler, and A. Wen (2009): “A Decision-

Making Framework for Ozone Pollution Control,” Operations Research, to appear.

64. Yang, Z., V. C. P. Chen, M. E. Chang, T. E. Murphy, and J. C. C. Tsai (2007): “Mining and

Modeling for a Metropolitan Atlanta Ozone Pollution Decision-Making Framework,” IIE

Transactions, Special Issue on Data Mining, 39, pp. 607–615.

65. Ye, J. (1998). On measuring and correcting the effects of data mining and model

selection. Journal of the American Statistical Association, 93: 120-131.

70

66. Zhang, B. T. (1994). An incremental learning algorithm that optimizes network size and

sample size in one trial. Procedings of Conference on Neural networks (ICNN-94), pp. 215-

220.

67. Zhang, J., and A. J. Morris (1998). A sequential learning approach for single hidden layer

neural networks. Neural Networks, 11(1), pp. 65{80.

71

BIOGRAPHICAL INFORMATION

Subrat Sahu was born in a small town of Cuttack in the state of Orissa in the eastern

part of India. He received his B.Tech degree in Mechanical Engineering from the Orissa

University of Agriculture and Technology, Bhubaneswar, India in 2002. He received his M.S

degree in Industrial Engineering from the University of Texas at Arlington, USA. At the

University of Texas at Arlington, he has been the recipient of the prestigious ‘University Scholar’

award for two consecutive years at the Annual President’s Convocation for Academic

Excellence for the year 2009 and year 2010. He is an active member of INFORMS, ASA, and

IEE. He has served as the Vice-President of the National Engineering Honor Society, Tau Beta

Pi-Texas Eta chapter. During his doctoral studies at UTA, he has worked as a Graduate

Research Associate with Dr. Victoria Chen in the National Science Foundation (NSF) funded

project on statistically parsimonious adaptive dynamic programming which culminated in his

doctoral dissertation. His wide ranging research interest covers the broad areas of operations

research, optimization, statistical modeling, and data mining. In future, he intends to engage

himself in research activity in the areas of application of statistical modeling and data mining in

marketing research and finance.

