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ABSTRACT

THE EQUIVALENCE AND GENERALIZATION

OF OPTIMIZATION CRITERIA

Surachai Charoensri, PhD

The University of Texas at Arlington, 2011

Supervising Professor: H.W. Corley

In this dissertation we first show that existing optimization criteria are
equivalent to the maximization of a real-valued function in a one-dimensional
Euclidean space. The criteria are said to be scalar equivalent. All solutions and only
solutions to an optimization problem involving the original criterion can be obtained by
scalarization without the typical convexity or concavity assumptions on the original
objective functions and feasible region. Examples include Pareto (including the scalar
case), satisficing, maximin, and cone-ordered optimization, as well as the more general
notion of set-valued optimization in abstract spaces. Moreover, equivalences between
various different optimization criteria are also established directly. As a consequence,

any problem stated as one criterion can be solved as another.



Second, we axiomatize and generalize the definition of an optimization criterion
definition to include the existing standard criteria as special cases. We discuss our
choices of axioms and explain why other possible axioms are excluded from our
formalization. We then propose an equivalent scalarization of a general optimization
criterion problem. In other words, we can obtain solutions of a problem involving any
criterion satisfied our definition by simply solving scalar maximization problems. We
present examples of new optimization criteria and apply them in practical decision-
making situations. In addition, to provide insight into the scope of our work, we give a

decision rule that is not a criterion within our framework.
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CHAPTER 1

INTRODUCTION

The research of this dissertation considers the concept of an optimization
criterion, which is effectively the way one makes a best decision according to some
interpretation of the term “best.” For example, a business may try to maximize its profit,
so the optimization criterion is to maximize the amount of money made. On the other
hand, a fire station might be built to serve a particular population area so as to minimize
the maximum distance a fire truck would have to travel. The decision on where to build
the fire station would thus be decided based a maximin criterion. Moreover, a person
might aspire to a certain salary in finding a job. In fact, any job meeting the salary goal
would be deemed acceptable, so the decision would be based on other factors than
salary. This criterion is called satisficing. As a final example, legislators want to meet
energy demands without depleting natural resources. Tradeoffs are required. Various
optimization criteria consider such multiple objectives, including the well-known Pareto
criterion.

We show here that all standard optimization criteria can be scalarizable; i.e., a
solution of the problem can be achieved as the maximization or minimization of a real-
valued objective function subject to certain constraints. No matter what the criterion of

the original problem is, we can obtain its solutions by finding the largest or smallest



scalar number via a real-valued maximization or scalar minimization problem.
Furthermore, we show that each existing optimization criterion can be solved as the
scalarization of any other criteria. In other words, all existing optimization criteria may
be called scalar equivalent, and any problem involving one criterion can be formulated
as a problem involving any other.

This realization motivates us to define a more general definition of optimization
criteria to include all existing optimization criteria as special cases. Thus we give an
axiomatic mathematical definition of an optimization criterion to state consistent rules
for calling something “the best.” Next we develop an equivalent scalarization of an
optimization problem involving a general criterion in the following sense. All solutions
to the original problem and only solutions to it can be obtained via the maximization of
a related real-valued function that is a scalarization of the original problem.

Finally we construct two new optimization criteria. One of these criteria
interprets “optimize” as “compromise.” Such a compromising criterion appears useful
for multi-objective optimization in general and for game theory in particular.

The organization of the dissertation is as follows. In chapter 2 we review the
notions of maximin, satisficing (goal programming), and cone-ordered optimization
(including the including Pareto and set-valued cases). We also summarize such concepts
as cones in finite-dimensional real vector spaces, as well as the orders induced by such
cones.

In chapter 3, we present an equivalent scalarization of the standard Pareto,

satisficing, maximin, and cone-ordered optimization criteria, as well as the more general



notion of set-valued optimization in abstract spaces. As an example, we establish the
scalar equivalence between the maximin and Pareto criteria. In addition, the
equivalence of various standard criteria is established directly without resorting to
scalarization. In other words, any problem involving one criterion can be restated as an
equivalent problem involving another criterion in the sense of obtaining all solutions
and only solutions to the original problem. Scalar equivalence thus follows. We
illustrate the direct equivalence between the standard optimization criteria with the
cases of maximin and Pareto maximization, Pareto maximization and lexicographic
maximization, goal programming and Pareto maximization, as well as set-valued
maximization and cone-ordered maximization.

In chapter 4, an axiomatization and generalization of optimization criteria are
presented. We discuss our choice of axioms and explain why other possibilities are
excluded. We then show that existing optimization criteria satisfy the axioms.

In chapter 5, we define the new optimization criteria of “compromising” and
give applications in multi-objective optimization and game theory. We next show that
the notion of “randomizing” is formally an optimization criterion in the situation where
any action can be taken but some decision is required. We then present two group
decision-making schemes for voting that do not conform to our definition of a general
optimization criterion.

Finally, in chapter 6, we discuss the contributions of this research and discuss

possible future work.



CHAPTER 2

PRELIMINARIES

In this chapter the notions of maximin, satisficing (goal programming), and
cone-ordered (including Pareto and set-valued) optimization are presented. We also
summarize such concepts as cones in n-dimensional Euclidean space, as well as the

orders induced by such cones.

2.1. Notation
The following notion will be used throughout the dissertation.
e Vectors are represented by boldface lowercase Roman letter such as X
and y.
o X' denotes the transpose of vector X. Thus if X is a column vector, then X'
is a row vector and vice versa.

e X, denotes the component i"" of vector .

e Scalar values are denoted by lower case Roman and Greek letter such as

Cc,a,and A.
e The n-dimensional Euclidean space is the set of all real vectors

containing n components. It is denoted by R".



2.2. Maximin Problem

Let f : R"xR™ — Rbe a real-valued function. For eachx € Ac R", define the
set B(X)cR™to be a nonempty feasible region. Assume that the function

g(xX)= min f(x,y)is well-defined for allxe A. Referring to [1], the general

yeB(x)cR™
maximin problem can be stated as

max min f(X,y).
xeAcR" yeB(x)cR™

Note that for different X,,x, € Ac R", the associated feasible regions B(X,)and B(X,)
are not necessarily identical. In another words, this formulation restricts the feasible
choices of y depending on the certain choices of X. If B(x)=B for allxe Ac R", the

above problem takes the more familiar form

max min_f(X,y).
xeAcR" yeBcR™

In particular, if B ={l,...,n} for some given positive integer N, the problem becomes the
discrete maximin problem

max min{ f (x,1),..., f(x,n)}.

xe AcR"

Example 2.2.1. Let A=[1,9]c Rand B(x)={y €[l,x]: X~y > y—1}for each x € A.

Define f(x,y) = X forxe A,y € B(X), and consider the maximin problem
y

. X
max min —.
xe[1,9] yeB(x) y



In this example, the feasible region of variable y in minimization depends on the value

of variable x given. For example, we have that B(5) =[1,3]while B(7) =[1,4]. The dotted

area in Figure 2.1 represents the feasible region of this general maximin problem.

0 } } } } } } t t 1 | X

Figure 2.1 The feasible region for Example 2.2.1.

2.3. Pareto Optimization

Let Ac R™be a set of feasible solutions and f : R™ — R"be the n-dimensional
objective function. The objective function value can also be represented as
f(X) = (f,(X),..., (X)) for all Xxe A where f,: R™ — Ris defined to be the i objective
function of the problem for eachi=1,..,n. Then Pareto maximization, or vector
maximization, can be stated as

Vmax(f,(X),..., f,(X)):

A feasible solution X € Ais called a Pareto maximum or efficient point if there

is no y € Asuch that f;(x)< f(y)for all i=1,..,mand f,(x) < f;(y)at least one index



j. The set{f(x) e R" :x arePareto maxima}is called the Pareto frontier or efficient

frontier.

2.4. Goal Programming

Goal programming is usually stated written as a scalar maximization or
minimization of a function involving only the deviational variables. However, we
present here the more general definition as given in [2] in which it formulated as a

Pareto optimization.

Let f,:R™ — Rfori=1,..,n be the goal functions and b,,....,b, represent the

associated aspiration levels for objective 1 to n, respectively. Then the goal

programming problem can be stated

min (S;ors;,...,S,0rS,)

x,8",8”

st.  f,(xX)+s, —s/ =bh,

f,(0+s; —s; =b, |
s, -8 =0
s ,s. >0,xe A

[

.St

i 2%

The objective is to minimize the deviations S to obtain a feasible X making the goal

functions as close to the aspiration levels b;j as possible. For more details, see [3] and

[4].



2.5. Cones, Orders. and Dual cones

The concepts of an order induced by a cone in a vector space, as well as its dual

cone, are next defined.
Definition 2.5.1. A nonempty setC — R"is called a cone if AceC for allceC and
A>0.A cone C is pointed if the setC (1 —C contains only the vector of zero. Moreover,

a convex cone C is a cone such that A,c, + 4,¢, € C for allc,,c, e Cand 4,4, 0.

Example 2.5.2. The left drawing below in figure 2.2 shows a nonconvex cone in two-
dimensional Euclidean space while the right picture represents an important convex
cone in the space. We usually call the convex cone in the right picture as the
nonnegative orthant in R? and denote it as R? = {(x, y): X,y > 0}. Notice that both cones

are pointed.

Figure 2.2 Examples of cones in R”.

Example 2.5.3. Another important cone is called the lexicographic cone [5] used to

define lexicographic optimization [6], where individual goals are ordered by priority so



that any higher level preempts a lower level one. For example, in R*, the lexicographic
cone is defined as
L= {(X,y)e R? :either x> 0orelsex=0and y > O}.

Notice that the lexicographic cone is a pointed and convex. Below, we graph

lexicographic cone in two-dimensional FEuclidean space. Note that the line

{(X,,X,) € R*: X, =0,X, <0} is missing from the cone of figure 2.3.

o

Figure 2.3 The lexicographic cone in Euclidean 2-space.

Definition 2.5.4. Let C be a pointed convex cone in R"and define a relation order <
on R" as follows. For any y,,y, € R",we say thaty, <.y,if y, -y, €C. Define
Y, <c Y,if Y, <. y,andy, #Y,.In particular, we say thaty,dominatesy,if y, <.V,
andy, #Y,. A vector Y, € BcR"is said to be non-dominated in B if there is no

Y, € Bsuch thaty, <. y,andy, #Y,. Denote the set max. B as the set containing all

non-dominated vectors in B with respect to the cone C.



Proposition 2.5.5. Let C be a cone in R".If a<. bthen a+d <. b+d foranydeR".
Proof. Let C be a cone in R"and assume thata <. b.By definition, we have b =a+c for

some ¢ € C. Then it follows that(b+d) =(a+d)+c;ie., a+d<.b+dforany deR".m

Example 2.5.6 For the lexicographic cone of Example 2.5.3., we construct the order
induced by it. Let B = {(0,0),(0,1),(1,0),(1,1)} = R*and L be the lexicographic cone in R*.
Then

(0,0) <, (0,1),(0,1) <, (1,0), and (L,0) <, (L1).

Definition 2.5.7. A relation order = on Ac R"is said to be a partial order if it

satisfies the following 3 properties.

1. Reflexive property: X=X for all x € A.
2. Antisymmetric property: If X2y andy =xforanyX,y € A, thenX =Y.
3. Transitive property: If X=Xy andy =z forany XY,z € A, thenx=z.
If =X is reflexive and transitive, then we say that= is a preorder. A partial order

implies a preorder, but the converse is not true.

Definition 2.5.8. A partial order = on Ac R"is a total order if x=yor y=x for any

X,y € A. A setBc Aof totally ordered elements is called a total ordered set or a

chain.
10



Definition 2.5.9. Let Ac R"with a partial order=. A vector X A is said to be a
maximal element of A if x =z implies X =z for any z € A..For a subset of B of A, a

vector Y € A is said to be an upper bound of B if X=Xy for all x € A.

Definition 2.5.10. If a partial order X on Ac R" has no a maximal element, we say

that A is unbounded from above.

Lemma 2.5.11 Zorn’s Lemma [7]. A partial order = has a maximal element on any

A c R" in which every chain has an upper bound.

Definition 2.5.12 [8]. Let (R",Z)be a preordered set. We say that the preorder = is

order separable in the sense of Cantor if there exists a countable subset Z < R"such

that whenever X <Y, there exists Z € Z such that y <z < X.

Theorem 2.5.13 [8]. Let (R",2)be a partially ordered set that is order separable in the

sense of Cantor. Then there is a real-valued function f on R" such that y, <y, implies
f(y,) < f(y,). Such a real-valued function f is called a strictly monotone functional

on (R",2).
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Remark 2.5.14 [9]. The order < induced by a cone C in R"is a partial order if and only

if C is a pointed and convex cone.

Definition 2.5.15. Let C be a pointed cone in R". A linear functional | is a function
mapping R" into R, which satisfies the following property:

(Y, +a,y,) = l(y,)+a,l(y,)foralle,,a, e Randy,,y, e R".
Moreover, a linear functional | is said to be strictly positive on C if 1(c) > 0 for all non-

zero vectors ¢ € C. The dual cone associated with C is defined as the collection of all

strictly positive linear functionals on C and denoted by

C'= {Any linear functional | : R — R such that I(c) > 0 for all non-zero c € C}.

Example 2.5.16. Consider R*equipped with the order induced by the nonnegative
orthant cone R = {(X, Y)iX,y > 0}. We construct a linear functionall : R* — R given by

I(X,y)=Xx+Yy for all X,y €R. Then, it follows that | is a linear functional such that
[(x,y) =X+Yy>O0for all non-zero(X,y) € R2. The existence of this linear functional

shows that the dual cone (RZ)" # ¢.

An important standard property of a strictly linear functional | on a pointed cone
C is given in the next lemma, which is proved. It is followed by a well-known existence
theorem for strictly linear functionals on C. In particular, the “pointed” property of a

cone is required for a strictly positive linear functional on C to exist.
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Lemma 2.5.17. Let C is a pointed cone in R" and assume that C* # ¢. If X, <. X,then
[(x,)<I(x,)forany 1 eC".
Proof. Assume thatx, <. X,. By definition it follows that 0#=X,-x,€C,and
consequently we have X, —X, e =C.Let | € c™.Thus we obtain (X, —X,) > 0, implying
—1(X, —X,) < 0. From the linear property of |, we get the following

[(X,)—1(X;) =1(X, —%,) =1(=(X, =%X,)) =—1(X, = %X,) <0,

which leads to the condition 1(x,)—1(X,) <0, i.e., I(X,) <I(X,).

Theorem 2.5.18 (cone separation theorem [10]). Assume S,,S,are closed convex
cones in R" such that S, S, = {0}, and denote the topological dual of R"by(R").
Suppose that the dual cone S, has nonempty interior in some topology 7 which provides
R" as the dual of (R"). Then there exists s* € (S,")"such that —s* € S," ands"(s,) >0

for all non-zero vector S, €5S,.

Remark 2.5.19. If C is not a pointed cone, the setC " is empty.

Proof. Assume that C is not a pointed cone in R". Then, we have C(1—C = {0}.To

obtain a contradiction, suppose thatC* # ¢. Letl € C" and a non-zero vectorc e C () —C.

Since ceC, we have I(C)>0. In addition, sinceCc € —C, we obtain that—ceC and

I(—¢)>0. But —I(c) =1(-c) > 0. It follows that 1(C) < 0, contradicting with | eC". m
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According to Remark 2.5.19, the pointed cone is a necessary condition for

existence of a strictly linear functional on C. (If C* # ¢, then C is a pointed cone.)

Remark 2.5.20. L™ = ¢ where L is a lexicographic cone inR".
Proof. It suffices to prove for the case of n=2.To obtain a contradiction, suppose that

there exists a strictly linear functional on the lexicographic cone in R*.We call that

existing strictly linear functional as f. Since(0,1),(1,0)eL,we must have

f(0,1), f(1,0)>0. Leter = f(1,0)> 0,3 = f(0,])>0.Then, we have that (l,iﬂ) elL,
a —

thus by definition of a strictly linear functional, we obtain f(l,L) > 0. However, the

linearity of f provides that

()= 100 fen=1-1=0

1 1
a’ -
This contradicts the previous inequality. m

Note that even though the lexicographic cone is a pointed convex cone, the

associated dual cone is still an empty set. However, lexicographic optimization still has

a scalar equivalence to be presented in Example 3.2.4.3.
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2.6. Cone-Ordered Maximization

Definition 2.6.1. Let C be a pointed convex cone in R" and f : R™ — R". Suppose

Ac R"is a feasible region. Then cone-ordered maximization, or C-maximization,
can be written as

Cmax f(X)

XeA

The problem is to find allX € Afor which f(X) e max. f(A),for f(A)=U f(x)and
XeA

max. f(A)={Allnon -dominated f(X)in R" for x € A}. Thus the problem is to find

non-dominated f (X) for all feasible solutionx € A. General optimality conditions are
found in [11].

Note that if a cone C is specified to be the nonnegative orthant
R! = {(Cl,...,cn) :¢; >0fori= 1,...,n}f0r a given positive integer n, C-maximization
becomes Pareto maximization with n objective functions. Pareto maximization is thus a

special case of cone-ordered maximization with respect to the nonnegative orthant cone

inR".

Example 2.6.2. The lexicographic cone in Example 2.5.3 can be used to define a certain

cone-ordered maximization to be called lexicographic maximization. Recall that in

Example 2.5.6, the setB={(0,0),(0,1),(1,0),(1,1)} = R*. If we define the objective

function f to be the identity map on set B, the cone-ordered maximization with respect

to the cone L becomes the lexicographic maximization
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Leximax f (X)
xeB

The problem now is to find a feasible solution X € B for which there is no other vector
y € Bsuch thatx <, y. Notice that(l,]) is the only non-dominated vector in B and

therefore the solution to the lexicographic maximization.

2.7. Set-Valued Optimization

Definition 2.7.1. Let F : R™ — 2% be a point-to-set map. An order in R"is induced by a
pointed convex cone C in R". We define a set-valued maximization over a subset A of

R™ as max F(x)as the problem of finding all feasible vector X € Ac R"such that

XeA

F(x)Nmax; F(A) # ¢, where F(A) = U F(X). Stated differently, the problem is to find
XeA

all feasible x for which there exists Y € F(X)andy € max. F(A).If F is indicated to be

a point mapping to a singleton set, then set-valued maximization becomes cone-ordered
maximization. Set-valued optimization was defined in [12], where general optimality

conditions were given.

Example 2.7.2. LetA={(X,,X,)€R*: X, +X, <1,X,X, 20} c R*,andC = R’. Define
F(X,,%,)=[0,%1x[0,x,] < R*for all X, X, €[0,1]. Notice that the function F is a point-

to-set map, and the problem max F (X) is a set-valued maximization. The set of solutions
Xe

the set{(X,,X,) € R* : X, + X, =1, X, X, > 0}.
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CHAPTER 3
EQUIVALENCE OF STANDARD

OPTIMIZATION CRITERIA

The scalar equivalence of the standard optimization criteria of chapter 2 are now

established. Equivalence proofs are given, and some examples are presented.

3.1. Background and Motivation

A multiple-objective optimization problem is typically solved by transforming
the original problem into the scalar maximization of a real-valued function in which
certain parameters are varied to give alternate solutions to the original multiple-
objective problem. See [2], [3], [6], [13], and [14] for more details. However, the most
frequently used such scalarizations of Pareto optimization require assumptions about the
convexity or concavity of functions to guarantee that a scalarization exists and yields all
solutions to the original Pareto problem. Because of this limitation, we say that a non-
scalar optimization problem is scalarizable if and only if all solutions and only solutions
of the non-scalar problem can be obtained by a possibly parameterized scalar
maximization problem called its equivalent scalarization. In that case, the scalarization
is said to be scalar equivalent to the original non-scalar problem. More generally, any

two optimization problems are said to be criteria equivalent if all solutions and only
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solutions to one optimization problem are obtained as the solutions to the other, despite
different notions of optimality. In another words, the set of solutions of one problem is
the set of solutions to the other.

The notion of scalar equivalence stems then work of Corley [15] (see also [2]
and [6]) in cone-ordered optimization, which includes Pareto and scalar optimization.
This equivalent scalarization involves no more effort to solve than scalarizations
requiring various convexity or concavity assumptions on the original problem. It is now
known as a hybrid method [2] from its relation to the Corley hybrid fixed point
theorems of [16].

In this chapter we show that any optimization problem has an equivalent
scalarization (i.e., can be reduced to real-valued maximization) and that all standard
optimization problems are criteria equivalent. In other words, a maximin problem is
criteria equivalent to, say, a satisficing or lexicographic or Pareto problem. Any one

type of problem can be solved as any other type directly or by the other’s scalarization.

3.2. Equivalent Scalarizations of Standard Optimization Criteria

3.2.1. Maximin
In this section, a scalarization equivalence of a given maximin problem is
presented. We denote Al below as a given maximin problem, where

g(x)= min f(X,y)for allxe A The problem A2 is an obvious equivalence of Al
yeB(x)cR™

after introducing a real-value decision variable v to be the value of g(x). We prove that

A3 is a scalar equivalence of the given maximin Al. We note that in A3 the variable y in
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the set of constraints is not a decision variable but relates the constraints of A2 to the set

B(X) for each feasible point X.

max Y max Y
Al: max g(x) A2 st V=g(x) A3l st V< F(XY), VY e B(X)
xeAcR",veR xeAcR",veR

Lemma 3.2.1.1. If (v;,X;)is a solution to A3, thenV,* = f (X, *,y*) for some y* € B(X}).
Thatis, Vv *=g(X;*)and (v;,X;)is also a feasible solution to A2.

Proof. Assume that(v,,X;)is a solution to A3. With the feasibility, we observe that
v, < f(x,y)for ally e B(x;). To obtain a contradiction, supposeV, < f(x;,y)for all

y € B(x;). By the assumption that g(X; ) exists, we have thatg(x;) = min f(x;,y)is a
yeB(x3)

v+ min f(x;,y)
finite real number. Then, it follows that yEB(X; < f(x;,y) for ally € B(x}),

Vi + min f(x;,y)
yeBO) ,X;)is a feasible solution of A3. However, we

which implies that(

v, +min f(X},y)
yeB

5 , contradicting that v; is the optimal objective value

also have thatv; <

of A3. Thus, we can conclude that v; = f (x;,y*) for some y* e B(x;)andv; < f(X},y)

fory #y*,i.e.,V; = g(x;). m
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Theorem 3.2.1.2. The point(v',X") is a solution to A2 if and only if(v',X") is a solution

to A3.

Proof. Suppose (V',X") is an optimal solution to A2. By the definition of the function g,
we have that(v',X )is a feasible solution to A3 as well. To obtain a contradiction,
suppose that(v',X")is not an optimal solution to A3. Then there is another feasible
solution (v;,x;) of A3 such thatv™ <V; < f(X;,y),Vy € B(X).

Case 1: v; = f(x;,y") for some y" e B(X;). In this case v, = g(X;), and hence
(V;,X;)is a feasible solution to A2. However, we have thatV" <V, contradicting that

(V,,X) is an optimal solution to A2.

Case 2: Vv, < f(X;,y),Vy € B(X;). Sinceg(x)= min f(X,y) is well-defined

yeB(x)cR™
for all xeR", letV=g(x;). By the construction, we have that (V,X;)is a feasible

solution to A2. However, we also obtain the condition V' <V, <V, contradicting that

(v',x")is an optimal solution to A2. Thus we conclude that(v',Xx )is an optimal

solution to A3.

To establish the reverse implication, suppose (v',X ) is an optimal solution to A3,
By Lemma 3.2.1.1, we have that(v',x)is a feasible solution to A2. To obtain a
contradiction, suppose that(v',X )is not an optimal to A2. Then there is another

feasible solution(V;,X;)of A2 such that V' <Vv,. Since the feasible region of A2 is a
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subset of the feasible region of A3, it follows that(V;,X;)is a feasible solution to A3

such thatv” <v;. This inequality is a contradiction because (v',X ) is an optimal solution

to A3. Thus we obtain that(v',X") is an optimal solution to A2. m

The next two corollaries follow immediately.

Corollary 3.2.1.3. For f:AxB — R, an equivalent scalarization for the maximin

problem max min f(X,y)is
xeAcR" yeBcR™

max \"
X,V

st. v<f(xy),VyeB;.
xeAcR",veR

Corollary 3.2.1.4. For f.: A— Rfor all iel,..,nfor a fixed positive integer n, an

equivalent scalarization for the discrete maximin problem, max _I{Illin}{ f, (X),..., T, (X)}is
xeAcR" iell,..., n

max Vv
s.t. v<f(X)
v<f(x)
xeAcR"WweR

It should be noted that the scalar equivalence for the discrete maximin of
Corollary 3.2.1.4 has been used extensively and referred to in [6], [17], and [18], among

numerous places, with either no valid reference or else by referring to the proof of
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Dantzig [19] for the linear case using the duality theory of linear programming. Proofs

for the nonlinear and general maximin cases have not been found in the literature.

Example 3.2.1.5. Consider the following maximin problem.

max min{f, (x) = , f,(X) = —x}

xeR

min{ f;, f2}

Figure 3.1 The graph of maximin Example 3.2.1.5.
It is analytically difficult to solve such a maximin problem directly as a maximization
problem with a discontinuous objective function. Algorithms to do so have been
developed in [17], [20], and [21]). However, a graphical interpretation of Figure 3.1

shows that X* = 01is the unique solution, as does the scalar equivalence

max \Y
V,X
S.t. V<X
v<—x |
v,XxeR

3.2.2. Pareto Maximization
For Pareto optimization with m-dimensional objective functions, where m is a
positive integer, Corley [15] provided a scalar equivalence to the problem without
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assumptions such as convexity or concavity. The Corley method, as it is called in [2]
and [6], allows us to obtain all solutions and only solutions for a given Pareto via
solving a family of parameterized scalar problems. We restate the scalar equivalence as

follows.

{max A-(F,(X),..., T, (X))

XeAR! } for ally e R™, where C is a pointed convex cone in

st (f,(X),.... f.(xX)-yeC

R™,and1eC" = {ﬂ eR™":1-c>0,vceC \{0}} for given positive integers n, and m.

Example 3.2.2.1. Consider the following Pareto problem

Vmax  (X,X,)

Xp5%y
st X +X <I,.
X, %, =0

Figure 3.2 Pareto frontier of Example 3.2.2.1.
Figure 3.2 shows the set of all solutions for the Pareto problem as well as the Pareto
frontier. Again, our approach is to solve the Pareto maximization by solving its

equivalent scalarization
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max X, + X,
Xp 5%y
s.t. X, Y,
P(y.,Y,): X, >y, p forally,y,eR.
X, +X, <1
X, X, 20

To illustrate the parameterization, choose Yy, = %, andy, = % Then solving the problem

P(%,%) gives (X*,y*)= (%,%). In theory we can similarly obtain all solutions of the

Pareto problem, by solving P(y,,Y,) for all feasible choices of y,and y,. In practice, a

reasonable number of such solutions will approximate the Pareto frontier.

Remark 3.2.2.2. Refer to Example 3.2.2.1, where an optimal solution of the
scalarization problem P(y,, Y, ) for parameters Y, and Y, is only one solution of the given
Pareto maximization. Any other solution of the Pareto maximin problem can be also
achieved by solvingP(y,,Y,)for suitable parametersy andy,.In summary, we
theoretically obtain all solutions and only solutions for the Pareto maximization

problem by solving a collection of the problems P(y,,Y,) for all possible values ofy,

andy,.
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3.2.3. Set-Valued Maximization
We next establish a scalar equivalence for set-valued maximization. Denote the

general set-valued maximization as B1. A scalar equivalence is presented in B2 for a

convex, pointed cone C < R".

max I(t)
Bl: max Foo  B2W: {  teF( | forleC'andall weR".
xeAcR™ t—WEC
xeAteR"

To ensure the existence of a linear functional | in the dual cone C*, we usually assume

that C is pointed and satisfies the conditions of Theorem 2.5.18 because of Remark

2.5.19.

Lemma 3.2.3.1. If the problem B2(w) has a solution for somew € R", the problem B1
has a solution as well.

Proof. Suppose the problem B2(w), wherew € R",has a solution. Let(X,,t,)be a
solution of B2(w). By feasibility, we have t, e F(X,)andw<.t,. To obtain a
contradiction, suppose that the set max F(A)is an empty set. Then there existsX, € A
andt, € F(X,) for which t, <. t,, otherwise t, € max F(A).From the convexity of C, we
have thatw <. t,and t, <. t,impliesw <. t,so (X,,t,)is feasible to B2(w). However,
sincet, <. t,, by Lemma 2.5.17 we have I(t,) <I(t,)in contradiction to the optimality

of (X,,t,). m
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Theorem 3.2.3.2. If X;solves Bl, then (X,,t;) is a solution of B2(w) for
w=t, € F(X,) "nmaxF(A).

Proof. Assume that X, solves P1. Then, there exists t, € F(X,) " max. F(A). We observe
that(x,,t,)is a feasible solution of B2(t,).Now let(X,,t,)be any feasible solution to
B2(t,). Therefore it follows that t, e F(X,)c F(A)and t,—-t, €C. However, this
conclusion contradicts with t, € max. F(A)unless t, =t,.Thus, every feasible solution

of B2(t,)is also a solution. Since(X,,t,)is a feasible solution of B2(t,), then, it solves

B2(t,). m

Theorem 3.2.3.3. If(X,, t,) solves B2(w) forw € R", then X, is a solution of BI.

Proof. Assume that(X,,t,) solves B2(w) forw € R". To obtain a contradiction, suppose
that X, does not solve B1, i.e., F(X,) mmaxF(A)=¢. By Lemma 3.2.1.1, there exist a
solutionX, of Bl and a vector t, € F(X,)such that t —t, eC\{O}. Since (X,,t,) is
feasible to B2(w), we have t,-weC. It follows thatt, —w e Cbecause of the
convexity of C, so (X,t)is feasible to B2(w). However, by Lemma 2.5.17,

I(t,) <I(t,)in contradiction to the optimality of (X,,t,). m

Example 3.2.3.4. Recall the set-valued maximization problem in Example 2.7.2. with

the problem

max F (x), where F(x;,X,) =[0,%,]x[0,x,] R’ forx,,X, €[0,1],
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A={(X,%): X +X, <1,X,X, >0}c R*, andC = RZ.
The equivalent scalarization for this problem is

max I(t) =t +t,

XXt
stt.  (t,t,) e F(X,X,)

B(W,,W,): ttl iwl for allw, W, € R.
2 = W2

X, +X, <1

t,t,,X,X% €R

In order to obtain all solutions and only solutions of the set-valued maximization, we

can theoretically solve the problem B(w,,w,)for all feasible choices of w,,w,. For

W, =—,W, :g’ the problem P(%,%) gives that(x, = 2t zg) is a

1
3 b
solution for the set-valued problem. Again, in practice a large number of such solutions

will approximate the Pareto frontier.

Remark 3.2.3.5. An alternate scalarization for set-valued maximization has been
proposed in [22]. However, the approach there requires assumptions regarding
convexity and concavity. In addition, another scalarization to set-valued optimization is

proposed in [23], but only certain solutions can be obtained.

3.2.4. Cone-Ordered Maximization

Let C be a convex cone inR". The cone-ordered maximization is stated as C1.

We propose a scalar equivalence to C1 and denote it as C2.

27



max I(f (X))
Cl: Cmax f(x) C2(w): { st. f(X)—weC; whereleC” forallw e R"

xeAcR"
Xxe AcR"

Here again, in addition to the assumption that the cone C is pointed and convex,

we must usually assume that the cone C satisfies the conditions to Theorem 2.5.18 to

ensure the existence of a linear functional | in the dual cone C™.

Theorem 3.2.4.1. If X, is a solution of C1, then X, solves C2(w) for w = f(X,).

Proof. Assume thatX, solves C1. By the choicew = f (X,), we know that X, is a feasible
solution to C2( f (X,)). Let X, be any feasible solution to C2( f(X,)).We therefore have
f(x,)— f(X,) € C.Since X, solves C1, the only possibility is that f (x,) = f(X,),so every
feasible point of C2(f(X,))is a solution as well. Since X, is a feasible toC2( f(X,)),it

solvesC2(f(x,)). m

Theorem 3.2.4.2. If X, solves C2(w) forw € R", then X, is a solution of C1.

Proof. Assume thatX, solves C2 for some w. To obtain a contradiction, suppose thatX,
does not solve Cl. Then there existsX, € Asuch that f(Xx,)<. f(X)),ie.,
f(x)-f(x,)eC\ {O} It follows thatX, is a feasible solution of C2(w). Since | is a

strictly positive linear functional on C, we have I(f(X,)— f(X,))> 0. The linearity of |

now yields that 1(f(x,))—1(f(x,))=1(f(x,)— f(X,))>0. Thus I(f(x,))>I(f(X,))in

contradiction to the optimality of X,. m
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As mentioned in Remark 2.5.20, the dual cone L™ =¢ for the lexicographic

cone L inR". Thus we cannot we cannot use Theorems 3.2.4.1 and 3.2.4.2 to construct
an equivalent scalarization for lexicographic optimization. However, lexicographic
maximization can be scalarizable via another way as illustrated in the following

example.

Example 3.2.4.3 (Scalarization for lexicographic maximization).

Consider the lexicographic maximization

Leximax  (f,(x), £,(0), £,(%))
s.t. xe AcR"

} where f, :R" —> R fori=1,2,3.

This problem can be solved in stages corresponding to the objective functions.

Step 1: Solve max f,(x)and denote f,” the optimal objective value of this problem.

max f,(X)
Step 2: Solve 1 s.t.  f,(x)= f, - and denote f, the optimal objective value of this
xeA
problem.
max f,(x)
o f ) =f
Step 3: Solve > 1 b
f,(x)=f,
xeA

Solutions from the scalar problem in Step 3 are solutions for the given lexicographic
maximization and vice versa. Thus the maximization problem in Step 3 is an equivalent

multiple-stage scalarization for the given lexicographic maximization. The sequence of
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steps is critical. While the above three steps involve real-valued maximizations, we
have defined a scalar equivalence as a single-stage scalarization. In section 3.3.7, we
collapse the above three stages into a Pareto maximization, which then yields a single-
stage scalar equivalence for lexicographic maximization. Details about a more general
lexicographic problem can be found in [2].

We summarize our previous results by noting that maximin problems, Pareto
maximization, cone-ordered maximization, and set-valued maximization all have

equivalent scalarizations. These results are summarized in Figure 3.3.

Pareto Optimization
N
Cone-Ordered Optimization
N
Goal Programming Set-Valued Optimization
Scalar Equivalence of Scalar Equivalence of
Goal Programming Set-Valued Optimization
Scalar Equivalence of Scalar Equivalence
Maximin of Lexicographic
Maximin Lexicographic
Optimization

Figure 3.3 Scalar equivalence diagram.
The results of sections 3.2.1 - 3.2.4 demonstrate that all standard non-scalar
optimization criteria can be scalarizable. We next claim that the equivalent scalarization

of a standard criterion can be formulated in terms of the equivalent scalarization of any

30



other criterion. Rather than confirm all the cases of this claim, we illustrate the proofs in
section 3.2.5 by showing the equivalent scalarization of maximin is equivalent to the

equivalent scalarization of Pareto maximization.

3.2.5. An Example of the Scalar Equivalence of Criteria
We now indicate how the equivalence between two different criteria can be
established via their equivalent scalarizations. Again, however, we show this fact only

for the equivalent scalarizations of maximin problems and Pareto maximization.

3.2.5.1. Maximin Scalarization as Pareto Scalarization

Let the problem D1 below be the equivalent scalarization to a given maximin

problem.
max v
s.t. v<f(X)
D1: : where f,:R" > Rfori=1,...,n.
v (X)
xe AcR",veR

We write D1 as the equivalent scalarization D2 below of Pareto maximization. For

i=1..n, let gi(x,v):% forallxe Ac R"and v € R, where 4, >Oandz/1i =1.

i i=1
Define A, = {(X,V) € R™ :(x,V)is a feasible solution to D1}, so the set A is exactly the

feasible region of D1. Now an equivalent scalarization for Pareto maximization of the

n-objective function of(g,,...,g,)1s given below as D2.
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max A4,0,(X,V)+...+4.9,(X,V)

\'
s.t. 9,(X,V) :ZZ Yi

D2(y,,...,¥,): : forally,,....y, €R.

v
X,V)=—2>Yy,
g, (V) =——=y

n

(x,v)e A

*
Theorem 3.25.1.1. If (x*,v*)solves DI, then(x*,v¥)solves D2 fory, =V7for all
nA.

1
i=1..,n.

Proof. Assume that (x*,v*)solves D1. According to the feasibility of (x*,v*), we also

*
have (x*,v*)e A.Moreover, we haveg, (x*,v¥) = V—/1 =y, for alli=1,..,n.This
n

conclusion implies that (x*,v*) is a feasible solution to D2(y,,...,¥,). To obtain a
contradiction, suppose that(x*,v*)does not solve D2(y,,...,¥,). Then there exists
another feasible solution(X,,V,)to D2(y,,..., Y, ) such that

v v
A0,(X, V) + e+ 4,0, (XL, V) = 4 -J+...+/1n .ﬁ:vl A

n
Since (X,,V,) € A, then (X,,V,)is feasible to D1. But this contradicts that (x*,v*)is an

optimal solution of D1. m

Theorem 3.2.5.1.2. If (x*,v*) solves D2(y,,...,y,) for parameters Y,,....y, € R, then

(x*,v*) solves D1.

32



Proof. Assume that (x*,v¥*) solves D2(Y,,..., ¥,). As a member of A, the solution (X*,v¥)
of D2(y,,...,¥,)1s also a feasible solution to D1. To obtain a contradiction, suppose that
(x*,v¥)does not solve D1. Then there exists another feasible solution(X,,V,)to D1 such
thatv* < v'.Next we will show that(X,,V,)is a feasible solution to D2(y,,...,Yy,). With
the feasibility to D1, we have (X,,V,) € A.In addition, because v* < V' the conditions

*
Vv

ni - n4

hold. Thus (X,,V,)is a feasible solution to D2(y,,..., ¥, ). However, we also have

v v
A0,(X,V) 4.+ 4,0,(X,,V,) =4 -ﬁ+...+/1n -ﬁ:v1 >V *

n

in contradiction to the optimality of (x*,v*). m

3.2.5.2 Pareto Scalarization as Maximin Scalarization

Let f,: R™ — Rfor i=1,...,n,where n is a positive integer. We write E1 below

as the equivalent scalarization of [15] for Pareto maximization.

max A f(X)+...+4,f (X)
s.t. f,(x)=y,
Ely,,....Y,): : forally,,...y, €R.
f.(02y,
xe A cR"
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Define A, (Y,,...,Y,) = {X € A :Xis a feasible solution to E1(y,,..., yn)}for
Ys-s Y, € R. Obviously, the setA,(Y,,...,¥,)is the set of feasible solutions of

El(y,,...,y,) fory,,...,y, € R. Consider the following n functions

0,00 =D 4500 6,00= Y 400+2,...9,00 =3 41,0041,

for allx € A(y,,..., ¥,)-
Notice that ¢,(X) < g,(X)<...<0,,(X)<0g,(X)forallx € A(y,,..., y,). Write the

equivalent scalarization E2(y,,..., y,) below of the maximin of the g,(X),...,d,(X).

max \"
s.t. v<0,(X)
E2(y,,... ¥, : forally,,....y, €R
v<g,(X)
xe Ay, Y,),VeR

The following result is true by definition.

Theorem 3.25.21. If x*solvesEl(Y,,...,y,)for parametersy,,..,Y, €R, then
(X*,v*=g,(x*)) solvesE2(Y,,...,¥,). Moreover, if (x*v*)solvesE2(y,,..,Y,)for

parameters y,,..., Y, € R, then X *solves El(y,,..., ¥, ).

In the following Sections 3.3, we directly establish equivalences between the

standard optimization criteria.
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3.3. Direct Equivalence between Two Different Criteria

We establish the equivalence between discrete maximin problem and Pareto
maximization problem, continuous maximin problem and Pareto maximization, goal
programming and Pareto maximization, Lexicographic maximization and Pareto

maximization as well as set-valued maximization and cone-ordered maximization.

3.3.1. Maximin as Pareto Maximization

Let H1 denote a given maximin problem, where
g(x) = min{f,(x), f,(X),..., f,(X)} for allxeR™and f,: R™ — Rfor all i=1I,.,nfor a

given positive integer n.

Vmax (WV,Vv,...,V)
H1: max (X) rr\}'a;(x v Syt v< fl(X)
- max_ g H2:4 st.  v=g(X) H3: :
xe AveR v< £ (x)
Xxe AveR

The problem H2 is obviously equivalent to H1. Moreover, H3 is obviously equivalent to
H2 because the objective function of H3 is just a replication of the objective function of
H2. Obviously any single optimization of a real-valued function can be transformed an

equivalent Pareto optimization in this way.

Example 3.3.1.1. Recall the maximin problem in Example 3.2.15. It was

max min{ f,(X) =X, f,(X) =—x},with solution is Xx*=0.We can solve this same
xeR

problem as the Pareto problem
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Vmax (V,V)

s.t. V<X
V< =X
X,veR

to obtain x* =0 again.

3.3.2. Pareto Maximization as Maximin

Consider the following problems K1 and K2:

max f(X)+..+ f,(X)
s.t. f,(x)>y,
Kl: Vmax — (1,(X),-, (X)) K2 ;
f.00=y,
xeA

forally,,y,,...y, € R
K1 is a given Pareto maximization problem, and the problem K2 represents an

equivalent scalarization as in [15]. Consider now the maximin equivalence K3 of K2

max min {ij(x),zfj(x)+1,...,zfj(x)+(n—1)}
X j=I1 j=1 j=1
k3., St fl(x)_ =% forall y,,V,,....Y, €R.
f,(x)2y,
XeA

Since the value ofmin{z f,00,> F,00+2,...0 f,00+ n} =" f,(x), problem K3 is
j=1 j=1 j=1

j=1

obviously equivalent to K2. Therefore, we can solve K3 instead of K2. Thus Pareto
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maximization and maximin problem are equivalent. In Section 3.3.4. and 3.3.5., we

consider the more general maximin formulation.

Example 3.3.2.1. Recall the Pareto maximization in Example 3.2.2.1.

Vmax  (X;,X,)

Xp5Xy

st. X +X, <1p
X, %, =20

Figure 3.4 The set of Pareto maxima.

Figure 3.4 shows the set of all solutions of the Pareto maximization. By the above

construction, we are also able to solve the Pareto maximization with the maximin

problem

K, Y2):

max min {X1 + X, (X, + X2)+1}

Xy, Xy

s.t. X Y,
X2,
X +X, <1
X, X, 20

,forall y,y, eR.

For example, select y, = %, y, = %and solve the associated problem corresponding to

these parameters. Then (X,*=

W | =

X, %= %) solves the problem. This solution is only a

single solution of the Pareto maximization problem. To obtain all solutions and only
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solutions of the Pareto problem, we can theoretically solve the maximin problem
K(y,,Y,)for all choices of y,andY,.In practice, again, we need only solve a sufficient

number to illustrate the Pareto frontier.

3.3.3. General Maximin as Pareto Maximization

Consider the problems L1, L2, and L3, where

max v Vmax (V,V)
: « . X ~ . Vv, X
L1 Jmax 9 L2:d st v=g(x) L3: 4 st v f(XY),VyeB(X) .
xeAveR xe AveR

Here L1 is the general maximin problem, ¢(X)= Ig}i{lY f(x,y) for allxe R", and
yeB(X)c

f :R"xR™ — R. Problem L2 is obviously equivalent to L1. But L3 is also obviously

equivalent to L2 because the objective function of L3 is just duplicating the objective

function of L2 into a two-objective function Pareto maximization.

3.3.4. Pareto Maximization as General Maximin

For the Pareto problem M1, M2 represents its scalar equivalence from [15].

max f,(X)+...+ f.(X)
M1: s.L. i) =y,
Vmax  (f,(X),---, f.(X)) M2: : for y,,¥,,.... ¥, €R.
002y,
xe AcR"
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DefineR(x) =R for allx e Aand g(X,y) = Z f,(x)+ y’forx € Aandy € R(x) = R. Then

j=l1
the maximin problem M3 below is equivalent to M2.

max min ag(x,y)

xeA yeR(x)
s.t. f,(x)=y,
M3: . forally,,y,,....Y, €R.
f.()2y,
xeA

It is obvious that for eachx e A, l’ni’%’l(z f,00+ y’) = z f,(x),so the equivalence
yeR S j=1

follows. We thus conclude that Pareto maximization and general maximin optimization

are equivalent.

3.3.5. Goal Programming as Pareto Maximization
It suffices to show that we can solve any given Pareto maximization with a two-
objective function by solving a goal programming. For a Pareto maximization with
three or more objective functions, the same technique applies as we show by example.
The problem N1 below denotes a given Pareto maximization with two objective
functions and N2 the equivalence of N1 in term of goal programming.

N1: Vm/?x( f,(X), f,(x))
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Vmin  (S/,S/,5S,,S,)
XoST 58757 583
s.t. g,(xX)—-s =0
9,(X)+s, =0
N2: 9,(X)=s; =0 where
9,(X)+s, =0
s’,S,,S;,S, =0
xeA

f,(x) if f,(X)<0
0 otherwise

1 .
gl(x): m if fl(X)>0 gz(X) :{

0 otherwise

f,(x) iff,(x)<0

0 otherwise.

1001 tx) it 1,00 >0 g4(x)={

0 otherwise

Theorem 3.3.5.1. If x* solves N1, then (x*s/,s,,s;,S,) solve N2, where
S, =0,(X*), s, =—0,(X*),s; = g,(X*),and s, =—g,(X*).

Proof. Letx * solves N1. To obtain a contradiction, suppose (X*,s,’,S,,S;,S,)does not
solve N2. By construction, we have(x*,s,,S,,S, )is feasible to N2. There exists a
feasible solution(X,$,,$,,$;,5,)to N2 such that § <s/,§, <s,,§; <s;,§, <s,and

the strictly less than sign holds for at least one of them. Since X € A, it is a feasible

solution to N1. Hence the following four conditions are satisfied with at least one of

them holding with a strict inequality:

40



(1: fl()ﬂ():gl()ﬂ()zél+ <s =0,(x*)= f (<)
) ~f,(0)=-0,0 =§ <5, =—0,(x*) = ,(x*)
1 N | '
3): £.(%) =0;(X) =8, <8, =g;(x") = (<)
@: -f,)=-0,() =8, <5, =-9,(x*) =—1F,(x*)

They are equivalent to the following conditions with at least one of them holding for a

strict inequality:

D: f)=f(x%)
(2): £, f,(x%)

in contradiction to X * solving N1, so the proof is complete. m

Theorem 3.3.5.2. If (x*,s/,5,,5;,S, ) solves N2, then X * solves N1.

Proof. Assume that (x*,s,,s,,S,,S,)solve N2. To obtain a contradiction, suppose that
x *does not solve N1. Note that x *is a feasible solution to N1 because Xx* e A. Then
there exists Xe Asuch that f,(X)> f (x*)and f,(X)> f,(x¥)where f,(X) > f,(xX*)or

f,(%) > f,(x*).

— (%) if f,(X) <0

0 otherwise

if f,0>0 5 =—gz(f<)={

f (X
0 otherwise

1

) —£,(%) if f,(X) <0
0 s =0,0=11,(x) (0 11 R09
0

0 otherwise

if ,(0>0

nd s, =-0,(X) ={

otherwise
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1
" —— if (x>0
0 s =0,(X*)=4 f(x* () and
0 otherwise

i —f,(x*) if f (x*)<0
s, =—0,(x¥) = : !
? 9, (x%) { 0 otherwise

1
. — i (x>0
0 Sy =0,(X*)=1 f,(x*) :(69>0 nd
0 otherwise

. —f,(x*) if f,(x*)<0
s, =-g,(x*)=¢ ’
N 9, (%) { 0 otherwise.

4
1

S
S,

sy
Sy

+
1

S

S
S
S

IA

*

IA

We now have , wWhere strict inequality holds at least once, so a contradiction

IN

*

PN AN
IA

is obtained to the fact that (x*,s,’,s,,s;,S,)solves N2. m

Example 3.3.5.3. Consider the following Pareto maximization with three objective

functions
Vmax (XX, X, =X, X, X;)
X 5%,
s.t. X +X, +X <1

Xis Xy, X3 20
By our approach, we can solve the Pareto maximization with the following goal

programming equivalence.
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: + o~ of o~ ot o
len (51752’33754’35’56)

ST52.57 28348086 X1 X X
s.t. 0,(X, %, %) —s =0
9,(X, X, %) +s, =0
93()(1a)(2a)(3)_53+ =0
9,(X, %, %) +s, =0
gs(x1’X2’X3)_Ss+ =0
96 (X5 X5, %) +85 =0
X +X +X <1

where

+ o= ot o= ot o
S ,S,,5,5,,55,S =0

X, Xy, Xy 20

XX, 1f XX, <0

— if XX, <0 9,(X,X,,X;) = .
9, (X5 X55X3) =19 X, X, 2 P 0  otherwise

0 otherwise

1 ) X, =X ifx, —x, <0
if X, =X >0 g4(X1,X2,X3)= 2 : 2 l.
05 (X5 Xy, %3) =9 X, — X, 0 otherwise
0 otherwise
) XX, 1fxX <0
if X, X, <0 gs(x1>X2aX3)= s " .
95 (X5 Xy, %3) =9 X, X, 0  otherwise.

0 otherwise

3.3.6. Goal Programming as Pareto Maximization

Since we have defined a goal programming problem as a Pareto minimization
problem, it can be solved by the Pareto maximization of the negative of the objective
function in Pareto minimization. It thus follows that Pareto maximization and goal

programming are equivalent.
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3.3.7. Lexicographic Maximization as Pareto Maximization

Let Q1 denote a given Lexicographic maximization.

Leximax (f,(X),..., f, (X )
Ql:{ x (he9 ( ))}, where f,: R" — R fori=1,2,3.

s.t. xe AcR"
max f, (X) Vmax (f,(x), f (X))
s.t. f(x)=f s.t. f(x)=f’
Q2: : , Q3: : ,
fn—l (X) = fn*—l fn—l (X) = fn*—l
xeA xeA

where f" =max{f,(X):xe Aland f, =max{f (x): f,(x)=f .., f_ (x)=f_,}for
k=2,.,n-1.
The problem Q2 is obviously equivalent to Q1 by definition. Moreover, Q3 is

obviously equivalent to Q2 because the objective function of Q3 is just replication of

the objective function of Q2.

3.3.8. Pareto Maximization as Lexicographic Maximization
Let R1 denote a given Pareto maximization problem, and the problem R2

represent an equivalent scalarization as in [15].

max f(X)+..+ f (X)
s.Xt. f,(X) =y,
R2: : for all
RI: Vimax (1,00, £,() 002,
xeA

Yis Y5 ¥y € R
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Consider now the maximin equivalence R3 of R2

Leximax (c, f,(X)+...+ f (X))
s.t. f,(xX)=>y,
R3: : forall y,V,,....Y, €R.
f,() =y,
xeA

Problem R3 is obviously equivalent to R2 by definition. It follows that we can solve R3
instead of R2. Thus Pareto maximization and lexicographic maximization problems are

equivalent.

3.3.9. Set-Valued Maximization as Cone-Ordered Maximization

Let problem PI1 denote a set-valued maximization. We show that P1 is

equivalent to the cone-ordered maximization P2, where C is a convex cone in R".

C max f(x,y)=y
p2:: xeA for allw e R",

Pl:makx F(x) s.t. f(x,y)=y2.w

where f(x,y)=y forallx € A,y € F(X).

Theorem 3.3.9.1. If X,solves P1 then we have that (X,,y,)solves P2 forw =y, and
y, € F(X,) nmax F(A).
Proof. Suppose X, solves P1. Then there exists Y, € F(X,) nmaxF(A). Let(X,,y,) be

any feasible solution of P2wherew =Yy,. Then we have f(X,,y,) =Y, 2. Y,, which
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contradicts the fact thaty, is non-dominated unlessy, =Y,. Thus any feasible solution of

P2(y,) is also a solution of P2(y, ). Since (X,,Y, ) is feasible to P2(y,), it solves P2(y,). m

Theorem 3.3.9.2. If (X,,Yy,)solves P2 forw eR", then X, is a solution to P1 and
Y, € F(x,)Nmax F(A).

Proof. Assume that(X,,Yy,)solves P2 for somew e R". To obtain a contradiction,
suppose thatXx, does not solve P1, i.e., F(X,)1max F(A)=¢. Hence there must exist

y, e max F(A) =max U F(X)such thaty, <. y,. In particular, there is an elementX, in
XeA

A such thaty, e F(X,). Sincew <.y, <. y,andX, € A, with convexity of C, we have
(X,,Y,)is feasible to P2(w). However, sincey, <. Y,,then (X,,y,)does not solve

P2(w), contradicting the optimality of(X,,Yy,). m

3.3.10. Cone-Ordered Maximization as Set-Valued Maximization

To solve the given cone-ordered maximization as a set-valued maximization, we
simply define the objective value of the set-valued maximization to be a singleton set
containing only the objective value of the given cone-order maximization. Thus we

conclude that cone-ordered maximization and set-valued maximization are equivalent.

Example 3.3.10.1. Given any cone optimization Cmax f(X),where R",R"are real

xeAcR™

vector spaces and f : Ac R™ — R", define F : A— 2% by F(x)={f(x)} for all xe A
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Then the set-valued optimization max. F(X)is equivalent to the cone maximization,

C max f (X).

xeAcR™

XeA

3.4. Summary of all equivalent results

Having shown that different optimization criteria are directly equivalent, we

summarize our previous results.

Scalar equivalence of
Maximin Problem

Scalar equivalence of
»| Pareto Maximization

I

Maximin Problem

I

Pareto Maximization

A

\ 4

\ 4

Scalar equivalence of
Goal Programming

I

A

\ 4

Goal Programming

Figure 3.5 Equivalent scalarization summary.
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Goal Programming

N

Pareto Optimization

N

Cone-Ordered Optimization

N

Set-Valued Optimization

Scalar Equivalence of
Goal Programming

Scalar Equivalence of
Set-Valued Optimization

!

Scalar Equivalence of

v

Scalar Equivalence

Maximin of Lexicographic
Maximin Lexicographic

Optimization

Figure 3.6 Criterion equivalence summary.

Figure 3.6 depicts our result that all standard non-scalar optimization criteria can
be scalarized. Moreover, the equivalent scalarization of any such criterion can be
formulated as the equivalent scalarization of any other. All solutions and only solutions

of any optimization problem involving a standard criterion can be obtained by solving

an optimization problem involving any other criterion.
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CHAPTER 4
GENERALIZATION AND AXIOMATIZATION

OF OPTIMIZATION CRITERIA

In this chapter an abstract definition of optimization problem is given under a
more general concept of preferences. Moreover, a set of axioms for general
optimization criteria is proposed, and an equivalent scalarization of a general
optimization criterion is presented. Examples of optimization criteria are then provided.
These include both the standard optimization criteria, as well as two new optimization
criteria with applications. Finally, a counterexample is presented, an example of

decision rule that does not satisfy our axioms.

4.1. Preference Orders

To justify one’s preference in quantitative intuition, typically one uses the notion
of an order. In the previous chapters, we defined orders involving existing standard
optimization problems by using cones in vector spaces, for example. Now, without
using cones, we invoke more general orders that subsume all previous ones as special

Ccasces.
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4.1.1. Preferences for Vectors

Define a binary relation strictly order < on R" with the requirement:
Noty <y,VyeR".
Next define an order relation = such that
y, 23y, wherey,,y, € R" if eithery, <y, ory, =y,.
The order = is called a preference order. In this definition, the strict relation y, <Y,
may not exist. However y, 2y, can be defined whenever y, =y,. We say that y,is
more preferred than or equal to y,whenever y, 2y,. Moreover, if Y, is more preferred

thany,, this fact is represented by y, <Y,.

4.1.2. Preferences for Sets

We now extend the concept of preference from a comparison of vectors to one
of sets. Let A,B = R". We consider three different types of comparison between sets A
and B.

1. A="Bifandonlyifvae A 3be B,a=b.
2. A=X'Bifand only if Vb e B,Jae A,a=b.

3. AZBifandonlyif Vae A Vb e B,a=zh.
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Notice that the order involving the preference relations here refers to the preference

order =, which is more general than an order induced by a cone. For further information

on ordering sets by cones, see [24 - 27].

4.2. General Optimization Criteria (GOC)

In this section, we define a general optimization problem on a preference order
as the problem of seeking all feasible variables for which there are no more preferable

choices of objective function values among the feasible variables

4.2.1. Optimality Notion

Given a preference order = on R"andy,,y, € R", we say that y, dominates vy,
if y, 2y, and y, #Y,.A vector y, € Ac R"is said to be non-dominated in A if there
is no y, € Asuch that y, 2y,and Yy, #Y,. Denote the set opt A as the set containing
all non-dominated vectors in A with respect to the preference order =.

A subset A of R"is said to be partially bounded if it contains at least one non-
dominated vector. A subset A of R" is said to be totally bounded if all chains in A
containing any vector y € Ac R" have non-dominated vectors. Notice that totally
bounded implies partially bounded, but the converse is not necessarily true. In

addition, if AcBc R"and B is totally bounded then AX" Band Ajl B are true by

definition.
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4.2.2. Problem Statement

Consider the following general optimization problem.
opt f(X)
st.xeAcR"|
where f :R™ — R". Let R" have a preference order =. The function f is called the

objective function of the problem. We seek a vector x* € A< R"™ for which there is no

vectorX € Asuch that f(x*)=< f(X), or equivalently that f (x*)= f(x)and f (x*) = f ().

Such anx* € Ac R"is called an optimal solution to the problem. Denote opt f (A)as

the set of all optimal objective values, which could be empty.

Example 4.2.2.1. The cone-ordered maximization, C max f (x), where f:R™ — R"and

AcR", is a special case of the general optimization problem where the preference

order is <. .

4.2.3. Axioms for General Optimization Criteria

2

Given any optimization problem inR", “opt” is considered to be a ()

optimization criterion on R" if the problem satisfies the following two axioms.

Axiom 1: Axiom of Partial Order (APO).

The preference order = is a partial order.
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Axiom 2: Axiom of Scalarizability Property (ASP).

Any such optimization problem has an equivalent scalarization.

4.2.4. Discussion of Axioms

Reasons for choosing Axioms 1 and 2 are now given. It should be noted that the
goal of these axioms is to provide a consistent framework for making best decisions. In
practice, people may make preference decisions using methods not satisfying our
axioms. However, such methods will not regarded as optimization criteria according to
our general definition. The goal here is to provide a consistent but flexible decision
making framework that yields identical optimal decisions in identical situations for a

large class of applications.

4.2.4.1. Axiom of Partial Order (APO)

No decision choice should be preferred more or less than itself; i.e., X <X. In
other words, the preference order for a decision should have the reflexive property of a
partial order. As for the antisymmetric and transitive properties, the following examples

illustrate the difficulty of making a reasonable choice without them.

Example 4.2.4.1.1. Consider the relation order = on the set {3, 5} with 3=3, 5=5,

3<5 and 5<3- This order lacks the antisymmetric property because 3 does not

identically equal 5. Also, it is not logical to have 3 <5and 5 <3 in the same time for a

decision maker. Moreover, there is no “best” value or values to choose, though each
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value is compared to each value. Hence, the antisymmetric property seems to be a

reasonable requirement.

Example 4.2.4.1.2. Consider the relation order = on the set of {5, 8, 10} with 5=5,

8=8, 10=10, 5<8, 8<10, and 10<5- This order lacks transitivity because 5 is

“better” than 10. Again, there is no best value or values to choose. In this case, the
reason is that 8 is “better” than 5, 10 is “better” than 8, but 5 is “better” than 10. A
decision maker using such a preference order would be inconsistent. Actually such
intransitivity can occur in elections. A voter may prefer candidate A to B, B to C, and C
to A. The difficulty is that if a selection were conducted by successive pairwise
comparison, then a different “best” candidate would be chosen for different pairwise
comparisons. In other words, the simultaneous comparisons of candidates should give
the same result as sequential pairwise comparisons in a decision framework that
purports to select a “best” solution. So transitivity is needed for a preference order in an
optimization criterion. Of course, decisions can be made without this property, but the

term “optimal” cannot be applied according to our framework.

4.2.4.2. Axiom of Scalarizability Property (ASP)

ASP is reasonable since one can always define a utility function on a set of
choices. Furthermore, all standard criteria are scalarizable, so ASP seems a natural
extension. The determining reason, though, was that we were unable to construct a

problem of finding all maximal elements and only maximal elements of a constrained
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function with respect to a partial order in R" for which it could be proved that no scalar
equivalence exists. On the other hand, we did construct such a problem for which no
single equivalent scalarization was found.

Recall that lexicographic maximization has both a multiple-stage scalarization
and a single-stage one. Analogously, we constructed a problem in example 4.2.4.2.1
below where multiple scalarizations could obtain all maximal elements and only
maximal elements of a constrained function. However, no single real-valued
maximization problem was discovered. To maintain the appealing requirement of an

equivalent scalarization for a general criterion, ASP requires one. It remains an open

question, though, whether there exists a constrained function in R" without an

equivalent scalarization with respect to some partial order.

Example 4.2.4.2.1. (A family of maximizations with different objective functions).
Let < be a partial order relation on R’. For each X € R?, we define a subset of R to
have X as the first element, |(X)=[X,—)={y € R’ :x=2y}. For eachx € R*, we create
a collection C(X) containing all chains in |(X) to have X as the first element as follows.
Let C(X)= { PX)cl(X):ie /\X}, where A, is an index set, and P,(X) has the
following properties:
1. Vy,y, eR(X).,y,2y,ory, 3y,

2. xeP(x).
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According to Lemma 4.2.4.2.2 below, we have(R*,X)=( U P.(x),%). In other
xeR?

P (x)eC(x)

words, (R?, =) can be decomposed into an uncountable union of chains.

Lemma4.2.4.2.2. (R*,2)=( U P(®Xx),3).
xeR?
R ()eC(x)

feny

Proof. By the above construction, P(x)c I(x)c R*for allxeR?, iena,, and

X

( ng P.(x),=2)  (R?,2). For the converse, let y € R*. Since y € P(y)forall i e Ays

R (x)eC(x)

leny

we have that ye P(y)c U P(x). Wehave R°c U P/(x). Let(x,y) € (R*,<);
xeR? xeR?

R (x)eC(x)

feny

R (x)eC(x)
i.e., Xx3y. We have (X,Y) € (P.(x),<) for some i € A, by definition. The conclusion now

follows that (R*,2)c( U P(x),2).m
xeR?

P (x)eC(x)

|€/\X
Consider the following general optimization Al, for which “opt” may not
represent an axiomatically formal optimization criterion.

opt f(X)
Al:{ x , where f :R™ — R’,and R”has a partial order <.
st.xe AcR"

We construct a family of uncountable number of scalar maximizations as follows.
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max 1} (f(x))
A2:{st. f(x)eP(w)ifor allweR?*ien,,and || is a real-valued function
xeA

mapping from R*with the property that if f(x) < f(y) for f(x), f(y) € P.(w)for each

weR%ien,,then Il (f(x) <L (f(y).

Theorem 4.2.4.2.3. If X, solves Al then X,solves A2 forw = f(X,)and for all i € A,,.

Proof. Assume that X solves Al. By the choicew = f (X,) we know that X, is a feasible
solution to A2 forw = f(X,)and anyi € A,. Let X, be any feasible solution to A2 for
w = f(X,)and i € A,. Since X,solves Al, the only possibility is that f(x,) = f(X,),so
every feasible point of A2(f(X,),1) is a solution as well. Since X,is a feasible to

S2(f(X,),1),1t solves S2( f(x,),i). W

Theorem 4.2.4.2.4. If x,solves A2 forw e R"and anyi € A, then X, solves Al.

Proof. Assume thatX,solves A2 forw € R" andi € A,.To obtain a contradiction, suppose
that f (X,) ¢ opt f(A). Then there exists X, € Asuch that f(X,)=< f(X,),otherwise
f(x,)eopt f(A). Since f(X,)eP(w)and by the definition of P,(w), we also have
that f(X,) € P(w).In another word, X, is feasible to A2. Since f(X,) < f(X,), we have

that I (f(x,)) <I. (f(x,))in contradiction to the optimality of X .
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Under the existence of I for all ieA,and weR’, problems A2 and Alare
equivalent according to Theorems 4.2.4.2.3 and 4.2.4.2.4. All solutions and only
solutions of Al can be theoretically obtained by A2 and vice versa. The separability in

the sense of Cantor of all chains P (W)inR’guarantees the existence of a strictly
monotone function |. However, the objective function I! (f(x))may obviously be

different from 1) (f(x))where i, j e, , or different from I; (f (X)) where ien, for

w ?
W,Y,z € R*. Therefore A2 is not considered as an equivalent scalarization of Al since

there is no common objective function for the family.

4.2.5. Elimination of Axioms

To find appropriate axioms for General Optimization Criteria (GOC), we
investigated many potential properties of the standard optimization of chapter 2. Two
ultimately eliminated but potential axioms are discussed in this section. One reasonable
property is the domination property, in which a rational decision maker cannot gain less
benefit with more choices. Another is the triangular inequality for optimization, stated

below. We explain why such properties are not general enough to be axioms.

4.2.5.1. Domination property

We show that Axiom 1 (APO) implies the domination property.
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Lemma 4.2.5.1.1. Let 2 be a partial order in R" and f :R™ — R"be an objective

function for the general optimization problem opt f(X). Then for any y e f(A)

xeAcR™

either

1. y<. f(x*)for some optimal solution X *, or

2. 'y is in some unbounded chain in f (A).
Proof. It suffices to show that if (2) is not true, then (1) is true. Assume that y is in a
bounded chain. Since the chain is bounded from above, the maximal element exists

according to Lemma 2.5.11 (Zorn’s Lemma). Then by the definition of optimality, that

maximal element equals f (x*) for some optimal solution X*.m

Property 4.2.5.1.2 (domination property). Let A and B be subsets of R"™such that

AcBand f:R™ — R". Assume that opt f(X) # ¢andopt f(B) # ¢. Then the following

XeA xeB

two statements are true.

1. If f(B) is totally bounded with respect to < in R"thenopt f(x)=" opt f(B).

xeA xeB

2. If f(B) is not totally bounded with respect to = in R"thenopt f(x)=X" f(B).

xeA

Proof. Let A and B are subsets of R™such that Ac B. Assume that opt f(X)# ¢and

xeA

opt f(B) =g where f : R™ — R". Consider the following 2 cases.

xeB
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Case 1: f(B) is totally bounded. Let f(X) € opt f(A). Since A is a subset of B,
we have opt f(A)c f(A)c f(B). Therefore f(x) e f(B).By Lemma 4.2.5.1.1, there

exists some optimal solution X*e Bsuch that f(X)=f(x*). Thus by definition

opt f(A)=" opt f(B).
Case 2: f(B) is not totally bounded. Since opt f(A)c f(A)c f(B), then

again by definition opt f (A)=<" f (B).m

4.2.5.2. Triangle inequality
It is next shown that domination property for cone-ordered optimizations implies

the triangle inequality. These properties are first stated in the cone-ordered setting.

Property 4.2.5.2.1. (domination property for cone-ordered maximization).

Cmax f(x) < Cmax f(x), where f : R™ — R" and Ac B.
xeBcR"

xeAcR"

Property 4.2.5.2.2. (triangle inequality for cone-ordered maximization).

Cmax (f +g)(X) <z Cmax f (x) + Cmax g(X), where f,g:R™ - R".
xeAcR™ xeAcR™ xeAcR™
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Lemma4.25.2.3. Let f,g:R™ - R"and S = R"then

Cmax[ f (X)+g(y)] < Cmsax f(x)+ Cmsax g(y).
Xe ye

(X,y)eSxS

Proof. Let f,g:R™ — R"and S = R™. Assume that (X*,y*) solves(Cr?gl)é[f(x)+ ay)l,
X,y )esx
ie., that f(x*)+g(y*) e (Cr§1§>§[ f(X)+9(y)]. We claim that the following two
X,y )eSx

statements are true.
(1). f(x¥e Cirelsax f(X)
(2). g(y*) € Cmax g(x).
To obtain (1) by a contradiction, suppose 3IXeS, f(x*)<. f(X). Then
f (x*)+c, = f(X) for some ¢, € C\{0}. It now follows that
FOX)+a(y*)+c, = F(X)+9(y™).
In other words, f(x*)+g(y*)<. f(X)+g(y*),an inequality that contradicts the
optimality of (x*,y*). Thus f(x*)e Cirelsax f(X).
To obtain (2) by a contradiction, suppose 3y eS,g(y*)<. g(¥).Then
g(y*)+c, = g(y) for some ¢, € C\{0}.1It follows that
fOX)+g(y*)+c, = F(x*)+g().
Therefore f(x*)+g(y*)<. f(X*)+g(y), an inequality that contradicts the optimality

of (x*,y*). Thus g(x*) eCmsax g(x).

From (1) and (2), we conclude that f(x*)+ g(y*) e Cmsax f(x)+ Cmsax g(y). =
xe ye
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Theorem 4.2.5.2.4. For a cone-ordered maximization, the domination property implies
the triangle inequality.
Proof. Assume the domination property holds. Let f,g:R™ — R" and S < R" be the

feasible region of Cmsax f (x) and Cmsax g(x). Define h:SxS — Rby

h(x,y)= f(X)+ g(y)forall X,y € S.

Let L= {(X, y) € S xS such thatx = y}. Equivalently, L=U{(X,x)eSxS}. It follows
XeS

that L — S xS. Then by the domination property,

Cmaxh(x,y) < Cmax h(x,y). 1)

(x.y)el

Since x =y for any (X,Y) € L, C()m)azi[ fX)+g9(y)]= Cmélx[ f (X)+ g(X)]. Therefore
X,y)e Xe

Cmax[ f (x) +9(x)] = Cmax f)+9(y)]= Cmax h(X,y). (2)
But by definition
gﬁl?ﬁé h(x,y) = CmaX[ f)+9(W)] 3)

Lemma 4.2.5.2.3 now gives

Cmax [ f(X)+9(y)]<c Cmax f(x)+ Cmax g(y). 4

(X,y)eS
Combining from (1-4) yields

Cmax[ fX)+g(x)]= Cmax h(x,y) <z Cmax h(X,y) <¢ Cmax f(x)+ Cmax a(y).

(xy) SxS

Hence Cm;"tx[ f(X)+9(X)] < Cmsax f(X)+ Cmsax g(y).m
Xe Xe ye
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4.3. An Equivalent Scalarization for General Optimization Criteria

In this section we present an equivalent scalarization for the general
optimization problem. To summarize the previous development, an equivalent
scalarization for an optimization problem is described again as follows. All solutions
and only solutions to an optimization problem involving the original criterion can be
obtained by certain scalar maximization problems and vice versa. These scalar
maximization problems must be either (a) a single real-valued maximization subject to
constraints or (b) a collection of such scalar maximization problems with a common
real-valued objective function but with parameters in the constraints. In (b) a different
set of parameters yields a different set of constraints for the common objective function.

In chapter 3, we developed equivalent scalarizations for standard optimization
problem such as Pareto maximization and lexicographic maximization. To extend
scalarizability in a general optimization framework, we present here two methods of
scalarization. The first scalarization is Corley’s Method (CM) [2, p.63] with
transformations for solving a general cone-ordered optimization problem. The
transformation process is explained in section 4.3.1.1. with various examples. Since we
consider only a partial order, according to the result of Remark 2.5.14 it suffices to
consider only a cone-ordered optimization for which a cone is pointed and convex. The
second scalarization is the Lexicographic Hybrid Method (LHM), which incorporates
features of both Corley’s Method (CM) and the equivalent scalarization for
lexicographic maximization presented in Example 3.2.4.3. The Lexicographic Hybrid

Method (LHM) can be considered as an equivalent scalarization for a general
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optimization problem. LHM is applicable for both cone-ordered optimization and non

cone-ordered optimization under appropriate assumptions.

4.3.1. CM with Transformations

CM has been introduced in section 3.2.4. It plays a central role as an equivalent
scalarization for Pareto maximization without requiring any assumption on both the
objective function and the set of constraints. CM is an equivalent scalarization to cone-
ordered optimization for which the cone is pointed and convex and for which a strictly
positive linear functional exists.

As described in section 3.2.4, the crucial requirement for CM is the existence of
a strictly positive linear functional for converting the objective function of the original
problem into a scalar function. For a general cone it is not always easy to construct such
a strictly positive linear functional except in the case of Pareto maximization. For
example, one may need to apply Theorem 2.5.18 (cone separation theorem). This
inconvenience prompts us to create a concept of transformation of a cone-ordered
maximization into another equivalent cone-ordered maximization for which the strictly
linear functional is readily available. Moreover, this technique can be applied to
transform certain cone-order optimizations where a strictly linear functional does not
exist (lexicographic optimization, for example) into a known scalarizable problem.

We focus only an optimization problem with a pointed and convex cone because
of Axiom 1 (APO). Two distinguished types of pointed and convex cones in cone-

ordered optimization are considered as follows.
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I.  C ispointed.
II. C is not pointed.

C denotes the closure of C, i.e., the smallest closed superset of C.
Useful transformation techniques to obtain an equivalent cone-ordered

optimization for cones of Type I and II are presented in 4.3.1.1 and 4.3.1.2.

4.3.1.1. Type I Transformation

Assume that the cone C is pointed. In addition, the cone C must satisfy the

following properties:

e There exists a basis {b,,...b } c C of R".
¢ The cone C can be represented in the following manner:
C={ab, +..+a,b, ¢ >20,a; >0,iel,jed}, where |c{l..,n} is an
index set indicating nonnegative coefficient and J c {l,...,n}is an index set
indicating positive coefficient. Notice that C = {a,b, +...+ a b, :a, > 0}.
The set {b,,...,b,} is a basis of R"means the following two statements:
l. {a,b,+..+a,b, ¢, €eR}=R", and

2. If )b, +...4+a,b,=0then ¢, =...=, =0.

n
In other words, any ceC must be uniquely written as the non-negative linear

combination of the basis vectors b,, where i =1,...,n.

We apply transformation to B1 and obtain B2 as an equivalent problem to B1.
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B1: C, max(f,(X),..., f,(X)) where f,:R™ — R, and C, has the properties

xeAcR™

o There exists a basis {b,,...,b,} = C,of R".
e The cone C, ={agb +.+ab, :a 20,a;>0,icl,jel}, where
I,J < {L..,n} are index sets indicating nonnegative and positive coefficient

respectively. Notice that C, = {a,b, +...+ a,b, 1, > 0}.

C,max (a,(X),..., (X))
B2: s.t. xeA , where
(f,(x),..., f, (X)) =, (X)b, +...+ o, (X)b,

th

C,=lag +..+ae+.+ae, :¢20,a,>0,iel,jel} and e =(0,..,0,1,0..,0).
Here 1,J — {l,...,n}are index sets indicating nonnegative and positive coefficients of
C,. Thus C, is a transformation of C, by simply replacing b, with e, for all i=1,...,n. If

J = ¢ then C, is the Pareto cone in R". Note that C, is the Pareto cone in R". The next

two theorems establish the equivalence between B1 and B2.

Theorem 4.3.1.1.1. If X, solves B1, then X, solves B2.

Proof. Assume that X,solves B1. It is then a feasible to B2. We claim that X, solves B2.
To obtain a contradiction, suppose X,does not solve B2. Then there exists X, € A such
that (f,(X,),..., f,(X,)) =, (X)b, +...+ a,(X,)b, where ¢;(X,) = ¢;(X,) forall i =1,...,n
and a;(X,) > a;(X,) for some j. Therefore
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(fl(Xl)a"'a(fn(xl))_(fl(xo)""a(fn (XO))
=[a, (X)) =, (X)Ib, +...+ [, (X)) =, (X,)]b, € C, \ {0}.

Thus we get f(x,)>¢ f(X,), which contradicts the optimality of X, .H

Theorem 4.3.1.1.2. If x,solves B2, then X, solves B1.
Proof. Assume that X,solves B2, so it is feasible to B1. We claim that X,solves B1. To
obtain a contradiction, suppose that X,does not solve B1l. Then there exists X, € A
such that (f,(X,),..., (X)) <¢, (f,(X)),..., f,(X,)). Therefore by definition, we obtain
(F, (%) = £,(Xg)seeer T,(X) = T.(X,)) =[x, (X)) — o, (X )]0, +[er,(X,) — e, (X,)]b, € C, \ {0}.
Thus «;(X,) 2 a;(X,) forall i=1,...,n and &;(X,) > a;(X,) for some J, a contradiction to
the optimality of X,. B

Since we already have a strictly linear functional on C, for the problem B2, i.e.,
[(X5es X, ) = X, +...+ X, fOr X,,...,X, € R, we have the following B3 as an equivalent

scalarization of B2.

max a,(X)+...+a,(X)

xeA

B3 s.t. (& (X); ey 2, (X)) 2 (Y5005 Vi)
(f1 (X), s fz(x)) = al(x)bl + az(x)bz
XxeA

forall y,,...,y, €R.

Notice that the equivalent scalarization B3 is CM with a transformation. This

transformation is actually a change of basis of R". See [28, p.384] for details about

changing the basis of finite dimensional vector spaces.
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Example 4.3.1.1.3. Consider the following cone in R’.

Figure 4.1 The cone C,; for problem D1.

The cone-ordered maximization is denoted by D1.

Cl max f (X) = (Xla Xz)
Dl:< s.t x> +x," =1
X, %, =0

We represent the cone C, as follows.
C, ={ab, +a,b, :a, >0,a, >0} where B={b,,b,}={(]),(-L1)}cC, =C,.
Now we will express ( f,(X), f,(X)) in term of the nonnegative linear combination of b,

and b,.

R T
ool L1 1] e |

a0, R

e Solve ¢,(X),,(X)in the following system of equations.

a0 [1 -17THe] [05 05][fx
a,)| |1 1| [f,00] |-05 05| ]

e Wehave () =0.5f,(x)+0.5f,(X)and a,(x)=-0.5f,(x)+0.5f,(X).
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e Therefore, (f,(x), f,(X))=(0.5f,(xX)+0.5f,(X))-b, +(-0.5f,(X)+0.5f,(x))-b,.

An equivalent problem of D1 can now be formulated as D2 as follows.

C,max (0.5x, +0.5%,,-0.5%, + 0.5X%,)
s.t. X+ %" =1
D2: (f,(x), £,(X)) = (x;,X,) =(0.5%, + 0.5%,)-b, + (=0.5%, + 0.5x,) - b, ¢,
X, €R
X, €R

where C, ={ae, + .8, :a, 20,a, 2 0},e, =(1,0),e, =(0,1). Note that the cone C, is

the Pareto Cone in R*.Therefore, an equivalent scalarization of P2 can be stated below

as D3.
max (0.5%, +0.5%,) + (=0.5x, + 0.5x,)
s.t. X~ +x%," =1
D3 - 0.5%, +0.5%, 2y,

-0.5%x, +0.5%, =2 y,
(f,(x), £,(X)) = (X, X,) =(0.5%, + 0.5%,) -b, + (-0.5%, + 0.5x,) - b,
X, X, €R

forall y,,y, €R.

4.3.1.1.1. Examples in R>.

To illustrate the transformation process, five examples of cone-ordered
maximization in R’are now presented. For R", n>3, the transformation process is

similar.
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Example 4.3.1.1.1.1. Consider the following cone-ordered maximization E1.

El: C, max(f,(x), f,(X)), where f,:R™ —» R,i=12,and

xeAcR™

C ={gb +ab,:a>0,a, >0}

Figure 4.2 The cone C1 for problem E1.
We formulate an equivalent cone-ordered optimization by using the transformation

technique type I and denote it as E2.

C,max (a,(X), 2, (X))
xeAcR™
E2:< s.t. XxeA , Where

(f,(%), £,(x)) = &, ()b, + a, (X)b,

C,={oe, +a,e,:e, =(10),e, =01, 20,a, 20}.

Figure 4.3 The cone C2 for problem E2.
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Notice that E2 is Pareto maximization and E3 below is Corley’s Method (CM) of E2.

max a,(X)+a,(X)
Xsei a,(X) >y,
E3: a,(X)>y, ,forall y,,y, eR.
xeA
(£,(x), f,(X)) = &, ()b, + &, (X)b,

Example 4.3.1.1.1.2. Consider the following cone-order maximization F1.

F1:C, max(f,(x), f,(x)),where f :R*> - R,i=12,and

xeAcR™

C, ={ab +a,b,:a >0,a, >0U{0,0)}.

Xy

Figure 4.4 The cone C1 for problem F1.
We formulate an equivalent cone-ordered maximization by using the transformation

technique and denote it as F2.

C,max (a,(X), 2, (X))
xeAcR™
F2:9 st XeA , where

( f1 (X), fz (X)) = a, (X)b1 ta, (X)bz

C,={ae +a,e,:a >0,a,>0:U{(0,0)}. Notice that C,is Pareto cone in R’.
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Figure 4.5 The cone C2 for problem F2.

Since we know that 1(¢,(X),a, (X)) = ¢,(X) + ,(X) € C, ,i.e., | is the required strictly

positive functional for CM, we will have the equivalent scalarization F3 below.

max a,(X)+a,(X)
S.t. a,(X)=y,
F3: a,(X) > Y, forall y,,y, €R.
Xe A
(f,), £,(X)) = &, ()b + &, (X)b,

Example 4.3.1.1.1.3. Consider the following cone-order optimization Gl.

Gl1:C, max( f,(x), f,(x)), where f,:R> - R,i=1,2,and

xeAcR?

C, ={gb, +a,b,:a >0,a, >0U{(0,0)}.

X

Figure 4.6 The cone C1 for problem G1.
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We formulate an equivalent cone-ordered optimization by using the transformation

technique and denote it as G2.

C,max (e, (X),, (X))

G2:4 s.t. XxeA , where
( f1 (X)a fz (X)) = (X)bl ta, (X)bz

C, ={ae, +a,e, :e, =(1,0),e, =(0,1),a, >0,a, > 0}U{(0,0)}. Notice that C, is a

Pareto cone in R?.

Figure 4.7 The cone C2 for problem G2.
Since we know that 1(¢, (X), @, (X)) = @,(X) + @, (X) € C, , according to Corley’s Method

(CM), we will have an equivalent scalarization G3 below.

max a,(X)+a,(X)
s.t. a,(X)>Y,
G3: a,(X)>Y, forall y,,y, €R.
xeA
(f,(x), £,(X)) = &, ()b, + &, (X)b,
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4.3.1.2 Type II Transformation

We present the second transformation for a cone-ordered maximization where
the closure C is not pointed. In addition, the cone C must satisfy the followings:

e Cis the closed half space of R" such that C = {x: p'x > 0} where p is a nonzero

vector in R".
We illustrate the Type II transformation with the following two cone-ordered examples
in R

4.3.1.2.1 Examples in R*
We here present 2 examples of type II transformation in R*. For a case inR",

where n > 3, the similar transformation process can be applied.

Example 4.3.1.2.1.1.

H1:C, max(f,(x), f,(x))where f,:R* —>R,i=12,and

xeAcR?

C, ={ab, +a,b, :ecithera, >0,a, e Rorea, =0,a, >0} U {(0,0)}.

Figure 4.8 The cone C1 for problem H1.
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C,max (2,(X), 2, (X))

H2:{ st xeA where
( f1 (X), fz (X)) = a, (X)bl +a, (X)bz
C, ={ae, +a,e, :eithera, >0,a, e Rora, =0,a, >0, wheree, =(1,0),e, = (0,1)}.
The cone C2 can be obtained from C1 by replacing b;,b, with e, and e,, respectively.
Notice that C2 is the lexicographic cone in R?. Therefore, problem H2 can be

scalarizable by the previous multiple-stage lexicographic scalarization.

Figure 4.9 The cone C2 for problem H2.
Since lexicographic maximization and Pareto maximization are equivalent, H2
is also scalarizable by CM as follows. Recall that
C, ={ae, +a,e, :eithera, >0,a, eRor e, =0,, >0,€, =(1,0),e, =(0,1)}.
Let C, ={a€, +a,8,:a, 20,0, 20}and C, ={ae, +a,e,:a, =20,a, <0}. We have
now C, =C,UC,, where C,is the Pareto cone in R’,so there is an equivalent Pareto

maximization of H2 denoted as H3 below.
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C, max (a, (%), 2, (X))

s.t. X € argC, max(«,(2),a,(2))
H3: zeA

xeA
( f1 (x), fz (X)) = a, (X)bl ta, (X)bz

It is significant that H3 is a Pareto maximization. The problem C, max is effectively

embedded in the constraints of H3, which can be solved by the Type I transformation of
the previous section. The general proof of equivalence between problems such H2 and

H3 is given in Theorems 4.3.1.2.1.2. and 4.3.1.2.1.3 below.

Let f:R™ — R"and a cone C in R"which can be written as union of cones C,

and C,,i.e., C=C, UC,. Consider the following problems K1 and K2.

C, max f(X)
K1: Cnxlax 1) K2:< st XxeargC, max f(z);.
st. XxeAcR" zeA
xeA

We show that K1 and K2 are equivalent.

Theorem 4.3.1.2.1.2. If X,solves K1, then X, solves K2.
Proof. Assume that X, solves K1. Then, by definition, there isno x € A, f(X,) <c f(X).

Since C, = C, there must be no x e A, f(X,) <c, f(X). Then X, eargC, max f(z),i.e.,
zeA

X,is feasible to K2. Since C, = C, there is also no xe A, f(X,)<; f(x).Thus, X,

solves K2.1
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Theorem 4.3.1.2.1.3. If X, solves K2, then X, solves K1.
Proof. Assume that X, solves P2. By its feasibility we have X, € Abut no other x € A,
with f(X,) <., f(X).By its optimality, there is no xe f(A), f(X,)< f(x).Since

C=C,UC,, thereisno xe A, f(X,) <. f(X). Thus, X,solves K1.H

Example 4.3.1.2.1.4.

L1:C, max(f,(x), f,(x)), where f,:R> - R,i=1,2,and

xeAcR?

C ={ab +a,b,:a >0,a, eR}U{(0,0)}.

Figure 4.10 The cone C1 for problem L1.

C,max (a,(X), a, (X))
L2:9 s.t. XeA , where
( fl (X): fz (X)) =a (X)bl ta, (X)bz

CZ = {alel +a2e2 :al > Oaaz € R5el :(1,0)962 = (051)}U{(070)}
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Figure 4.11 The cone C2 for problem L2.

We have [(X,X,)=Xfor X,X, €Ris a strictly monotone functional because

l(c=ae, +a,e,)=a, >0for anyceC,. Therefore CM applies to L2 and yields L3

below.
max a,(X)
134 St (@ (X), (X)) 2¢, Y forall y eR’.
xeA
( f1 (X)a fz (X)) = (X)b1 ta, (X)bz

4.3.2. Lexicographic Hybrid Method

We now incorporate features from the equivalent scalarization H3 above of
lexicographic optimization as well as CM to formulate an equivalent scalarization for a
general optimization problem. The beneficial feature in CM is its parameterization
technique for obtaining all solutions and only solutions of the original problem. The
advantage of the equivalent scalarization for lexicographic optimization is the common
objective function for the family of parameterized maximizations when the existence of

a common strictly monotone function is not guaranteed.
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Motivated by the lexicographic scalarization H3, we now develop the idea of

having a strictly monotone real-valued function corresponding to each of n components

when the others are fixed. Since we are dealing with a general partial order in R" rather

than one induced by a cone, we initially construct n induced orders corresponding to
each component of R"and utilize the separability in the sense of Cantor to provide a

strictly monotone function [Theorem 2.5.13] corresponding to each component in R"

with the other components held fixed.

4.3.2.1. Component Orders

Consider a partial order = in R". For each 1<m < n,define an induced order

<" on R corresponding to the m™ component of vectors in R"as follows. Define
a, <" b, ifand only if ....,a,,....0)2(0,...,b,,,...,0) for a,,b,, €R.

m m

We first show that the induced order <" is partially ordered.

Theorem 4.3.2.1.1. The induced order <" is a partial order in R for any 1<m<n.

Proof. Let m e {l....,n}. We show that ;m is reflexive, antisymmetric, and transitive.

(Reflexive). Let @, € R.Since = is a reflexive in R", we must have

(0,...,a_,...,0)2(0,...,a,,...,0). Then, by definition, we obtain a, <" a_.
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(Antisymmetric). Let a_,b, € Rsuch that a,<"b, andb, <"a, . By definition,

we have that (0,...,a,,...,0)2(0,...,b,,...,0)and (0,....,b,,...,0)2(0....,a,,,...,0).Since = is
antisymmetric, we obtain (0,...,a,.,...,0) = (0,...,b_,...,0). It then follows that a_, =b_.

(Transitive). Let a_,b_,c. e Rsuch that a =<"b andb_ =<"c_.We also have

o,...,a,,...,0)2(0,...,b,,....0)and (0,...,b,,,...,0)2(0,...,C,,...,0) by definition. Since = is

transitive, we have (0,...,a,,,...,0)=2(0,...,C,,,...,0). Thus a <" Cpn

It follows that <" is a partial order in R for any m such thatl<m<n.®

Now we can utilize Theorem 2.5.13. There exists a strictly monotone function

I™ : R — R with respect to the order <" for any 1< m < n,because (R,=")is separable

in the sense of Cantor, whereas R" is not.

4.3.2.2. Assumption and Formulation
We present the Lexicographic Hybrid Method (LHM) to be an equivalent

scalarization of a general optimization for which the partial order = satisfies

Assumption 4.3.2.2.1 below.

Assumption 4.3.2.2.1. Let <be a partial order in R"and <" be an induced component

order as defined in section 4.3.2.1 for all 1 <m < n. Then the following statements are

true.
80



If (a,3,,..,8,)=(b,b,,...b,), then & ='b,.
If (c,,a,....,a,)=(C,,b,....,b,) for some ¢, € R, then a, <’b,.

If (C,,C,,a;,...,8,) 2(C,,C,,b,....,b, ) for some ¢,,¢, € R, then a, <’ b,.

If (¢,,¢,,Cs,...,Coy» 2, ) 2(C,, Cy 5 Csens C, 4y, D, ) fOr sSOME C,,C,,...,C,, €R, then @, <"b,.

Proposition 4.3.2.2.2. The orders induced by the Pareto and lexicographic cones satisfy
Assumption 4.3.2.2.1.

As a consequence of Proposition 4.3.2.2.2, LHM will be an equivalent
scalarization of a cone-ordered optimization that is equivalent to Pareto maximization
or lexicographic maximization.

M1 below denotes a general optimization problem where the partial order =<

satisfies Assumption 4.3.2.2.1. The problem M2 is an equivalent LHM scalarization for

M1.

M1: opt(f,(X),..., f, (X)) where f,:R™ > R,i=1,..,n,AcR".

xeA
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max 17(f, () = (0,0, 0.7 (' (£,00).1" (£, ()
s.t. f(X)zy

I'(f,()) =a,(y)
M2(y): I(f, (X):) =3,(Y) forall y e f(A),

I n—2( fn—z (X)) = a, (y)

Inil( fn—l (X)) = a,, (y)
xeA

where a(y),m=1,...,n—1,1s the optimal objective values of the following problems.

max |'(f,(x))
M(y,l):q st.  f(X)zy form=1 and
xeA

max ™ (£, (X))
s.t. I'(f,(x) =a,(y)

M(y,m): for 2<m<n-1-
Im_l(fm—l (X)) = A y)
fx)zy
xeA

Lemma 4.3.2.2.3. If X,solves M1, thenX, is feasible to M2(y) for y = f(X,).
Proof. Let x,solve M1. By the optimality of X,, if f(X)= f(X,)for xe A, we must
have f(x)= f(X,). Thus X,solves M (y.,l),....M (y,n—1), where y = f(X,).
We conclude that 1"(f (x,))=a,(y = f(x,))for any 1<k<n-1. It is obvious that

f(X,)= f(X,), so X,is feasible to M2(y) for y = f(X,).m
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Theorem 4.3.2.2.4. If x,solves M1, then X, solves M2(y) for y = f(X,).

Proof. Assume X,solves M1. By Lemma 4.3.2.2.3, X, is feasible to M2( f(X,)); i.e.,
I'(f, (X)) =a,,....,1" " (f,,(X,) =4, ,and f(X,)= f(X,). To obtain a contradiction,
suppose X,does not solve M2 f(X,).Then there exists a feasible solution X, € Asuch

that 1"(f_(x,))>1"(f,(X,)). Since X, is feasible to M2f(x,), we have f(x,)= f(X,).

Since 1"(f,(x,))>1"(f,(X,)), it follows that f (x,)does not equal to f (X,); i.e.,

f(x,)# f(X,). Then f(x,)> f(X,), an inequality contradicting the optimality of Xx,.H

Theorem 4.3.2.2.5. If x,solves M2(y) for y € f(A), thenX,solves M1.
Proof. Assume thatX,solves M2(y) for y e f(A). Then X,is feasible to M1 and

Y2(f,(Xy)s-.» ,(X,)). Let X, be any feasible solution to M1 such that
Y= (X)), T,(X DS (F,(X),.., (X))

By Assumption 4.3.2.2.1, we have that fl(Xo)g1 f,(X,). Since
1'(f,(x)) = max{l' (£,00): f(0)zy, X € A},

we obtain f,(X,) = f,(X,). Again by Assumption 4.3.2.2.1, f,(X,) <’ f,(X,).Since

17 (,(%,)) = max{l”(£,(x)): f () zy, I'(F () =1"(f (x,)),x € A},
it follows that f,(X,)= f,(X,). Applying a similar argument sequentially, we finally get

f,(X,) = f,(X)),..., T,(X,) = T, (X,),respectively. Thus X, solves M1.m
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Example 4.3.2.2.6

Consider the following Pareto maximization problem.

Vmax(x,”,X,")s.t. A={(X,%,): % +X%,° <L,0<X,x, <1} R?.
xeA

»
»

X

Figure 4.12 Pareto frontier of example 4.3.2.2.6.

We solve the Pareto maximization with LHM as follows. Define the induced orders on

each component by X, <p_.. Yy, <> (X,0) <p.., (¥,,0) for X,,y, € R, and

2
X, <2

— Pareto

Formulate LHM scalar equivalence as

NI(Y;, Y,):

max (Oal)T '(Xlo Xz) = (Xz)

X %o
XY
X2 Y,

X =2a,(y,Y,)

X’ +X%7<1

0<x,Xx <1

areto yZ g (09 XZ) SlPareto (0’ yz) for XZ’ y2 € R

for all (y,,y,) e f(A),

where f(A)={(X,%): X +X, <1L0<x,X, <1}.

In addition, a,(Y,,Y,)is the optimal objective value of the following problem.
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max X,
s.t. X, 2V,
N2(y;,Y,): X2,
X +x," <1
0<x,X, <1

We select (Y,,Y,)=1(0.5,0.5). By solvingN2(0.5,0.5), we obtain a,(0.5,0.5)=0.866.
Then we solve N1(0.5,0.5)and obtain the optimal solution (X,*,X,*)=(0.866,0.5).
Notice that (0.866,0.5) is on the Pareto frontier in figure 4.12 above. To obtain all
solutions, we would need to solve S(Y,, Y, ) for all values of y,and VY,.

To show a case where LHM cannot be used to solve an optimization problem,

we present a non-cone optimization in the next example.

Example 4.3.2.2.8.
Consider the following Hasse diagram (a diagram representing a partial order relation)

on the next page.
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(5.3)

(0,0)

Figure 4.13 Hasse diagram.

In the diagram, if (X;,Y,) is below and connected to (X,,Y,), we write (X, Y,)=(X,,Y,)
so (0,0)=(7,0)and (3,3)=(3,5), for example. This construction is a partial order but not

induced by a cone. From the diagram, we have the following relations.

1. (0,0)2(0,7)2(0,5)2(0,3).
2. (0,0)2(7,0)2(5,0)2(3,0).
3. (0,002(3,3)2(5,5)2(7,7).

4. (0,0)2(3.3)2(3,5) 2(5,5 2(7.7D).
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5. (0,002(3,3)2(3,5) 2(5,3).

Now, let A= {(0,0),(0,7),(0,5),(0,3),(7,0),(5,0),(3,0),(3,3),(3,5),(5,3),(5,5),(7,7)} = R*.
Define f:A—> A by f(X,X,)=(X,X,)for all (X,,X,)e A Therefore we have

f(0,7) =(0,7), for example. Now consider P1 below.
PL: opt{f(X,,X,):(X;,X,) € A}.
We now attempt to find the optimal solutions (non-dominated solutions) by
LHM. Define a, < b, < (a,,0)2(b,,0) and a, < b, <> (0,a,)=(0,b,). Therefore

0072050 34nd 0= 72?523,

LHM next yields P2 with identity functions for the strictly monotone functions I',1?

max |2(f2(X1,X2))= fz(xlaxz) =X

X :a](y)
P2(y): F(%,%,)2y forall y € f(A),
(X,X%)eA

where a,(y) =max{l'(f,(x,,%,)) = f,(x,%,) =X :xe Axzy}.

Notice that max . is maximization with respect to =<’ and max . is maximization with
) p =

)
respect to <®  Recall that 05" 727529 3and 02?7?53, Let y=(3.3). We

then obtain  a,((3,3)) =3, by solving max,{f, (X,X,) =X, : X e A, (X,X,)=(3,3)} = 3.

Then P2(3,3) becomes a,((3,3)) =3,
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max X2
X,Xa

s.t. X, =3
f(X,%)=(33)|
(X, %) eA

P2(3,3):

We obtain the optimal solution (X,*,X,*)=(3,3). However, (3,3)is not an optimal

solution to the original problem because (3,3)=2(3,5) 2(5,5) 2(7,7). Thus LHM provides a

non-optimal solution to the original optimization problem. H

4.3.3 Summary and Diagrams of Equivalent Scalarizations
We summarize the equivalent scalarizations of a general optimization below.

1. Corley’s Method (CM) is an equivalent scalarization for cone-ordered
optimization where the cone is pointed and convex and transformation
techniques are applicable.

2. The Lexicographic Hybrid Method (LHM) is an equivalent scalarization for
cone-ordered optimization where the cone is pointed and convex, Assumption
4.3.2.2.1 1s satisfied and separability in the sense of Cantor is available for each
component order. Any cone-ordered optimization that is scalarizable by CM can
be solved by LHM.

3. LHM is also an equivalent scalarization for non-cone optimization where
Assumption 4.3.2.2.1 is satisfied.

4. A general optimization under a non-cone partial order does not use LHM
according to example 4.3.2.2.8. However, the problem in example 4.3.2.2.8 is

scalarizable by other approaches.
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Cone-ordered Optimization
(pointed & convex)

The dual cone Type I Type 11
is nonempty. Transformation Transformation
CM Assumption
43221
Other unknown LHM
scalarizations

Figure 4.14 Scalarization diagram for cone optimization.
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Non-cone Optimization

Assumption
432.2.1

LHM

Scalarizations
using separability
in the sense of

Cantor

Other unknown
scalarizations

Figure 4.15 Scalarization diagram for non-cone optimization.

4.4. Examples of Optimization Criteria

We now verify that standard optimization criteria satisfy the requirements for a

general optimization criterion.

4.4.1. Standard Optimization Problems

Standard optimizations
optimization, goal programming, and maximin problem. Lexicographic optimization,

Pareto optimization, and scalar optimization are special cases of cone-ordered

optimization.

include a cone-ordered optimization,
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4.4.1.1. Cone-Ordered maximization

If a cone is pointed and convex then the order induced the cone is a partial order
according to Remark 2.5.14. Therefore Axiom 1 (APO) satisfies for the pointed and
convex cone. In addition, if any cone-ordered optimization is scalarizable, then Axiom
2 (ASP) is satisfied. From the results in Chapter 3 and the scalarization diagram in
figure 4.14, an optimization problem with cones such as lexicographic optimization,
Pareto optimization including scalar case are general optimization criteria. Any

scalarizable coned-order optimization will be an optimization criterion.

4.4.1.2. Set-Valued Maximization

Consider the following set-valued maximization.

max F(x),where F :R" —>2%is a point-to-set map, where the order in R"is
XeA

induced by a pointed convex cone C in R". According to Remark 2.5.10, the order
induced by pointed convex cone is a partial order. Therefore Axiom APO satisfies.
Moreover, the problem is scalarizable according to section 3.2.3. Thus set-valued

maximization is an optimization criterion.

4.4.1.3. Maximin Problem
A maximin optimization is a scalar maximization where the objective function is

a minimization. Thus it is an optimization criterion.
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4.4.1.4. Goal Programming
Goal programming can be considered as a Pareto maximization which is an

optimization criterion.
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CHAPTER 5
NEW OPTIMIZATION CRITERIA

WITH APPLICATIONS

In this chapter we develop new optimization criteria including compromise
problem and randomization.

5.1. Compromise Criterion

Let f:R™ —>R"be a nonnegative objective function for the Pareto

maximization Vmax ( f,(X),..., f,(X)). Assume that —oo < mi/{l f,(X) and max f.(X) <o
xeAcR" Xe xe

for all i. Denote M, = max f.(X)and m, = migl f,(X). Now define T : f (A) > Rby

ompr

f,(X)—m, +1)me(f (X)—m, +1

)], for all X e A
M,-m, +1 M,-m, +1

Toompr (F1(X),..., T,(X)) =[(
Define a strictly compromise order on f(A) as follows.
Forany f(x,), f(x,)e f(A), f(X))<cumy f(X,)ifand only if either (1) or (2), where
1. If f(x,) and f(X,) are comparable according to the Pareto order, then
f (X)) <parets T (X2)-
2. If f(x,) and f(X,) are not comparable according to the Pareto order, then

TCompr ( f (Xl )) < TCompr ( f (Xz))-
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Iff(x,) and f(X,) are not comparable according to Pareto order and
Teompr (F (X)) = Tegmpr (F(X,)), we say that f(x;) and f(Xx,) are not comparable with

respect to the compromise order. Next, define the compromise order <. by

f (X)) <compr T (X;)ifand only if f(x,) < f(x,)or f(x,)= f(x,).

Compr

A compromising problem can be written as Compromise f (X) or Opt f (X) with respect
XeA XeA

t0 <compr - The problem is to find a vector x*e Ac X for which there is no vector

X e Asuch that  f(X*)<cyp, f(X), or equivalently that f(x*)< f (x)and

Compr

f(x*) = f(x).

Lemma 5.1.1. For any f(X), f(y) e f(A), if f(X)<p,e f(Y)then
Toompr (F(X)) < Tegmpr (F(Y))
Proof. Let f(X), f(y) e f(A),such that f(X)<p,e f(Y)-Then, 0< f,(x) < f.(y)for all

i=1..,nand 0< f;(x)< f;(y)for some index j. Since all elements in f(A) are

nonnegative and definition of m, and M, , we have

fi(x)—mi+1< f.(y)—-m, +1

0< <
M, -m, +1 M; -m, +1

,forall i=1,...,n, and

0< fj(x)—mj+1< b, —m; +1
M;-m;+1 M;-m,;+1

for some index j.

It follows that
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TCompr(f (X)) = H fi (X) — mi +l < H fi (y) — mi *l =TC0mpr( f (y)) |

i M,—-m+1 5 M,—-m +1
Lemma5.1.2. If f(X) € Compromise f(A) ,then f(X)e Vmax f(A).
Proof. Assume that f (X) € Compromise f(A). To obtain a contradiction, suppose that
f (X) € Vmax f (A). Then there exist f(y) e f(A)such that f(X)<p,. f(Y).It follows

that f(X) <coppr f(y)which contradicts with optimality of f(X). We conclude that

f(X)e Vmax f (A).m

Lemma 5.1.3. Compromise f(A) < Vmax f(A).

Proof. It follows directly from Lemma 5.1.2. m

Theorem 5.1.4. The preference order < is a partial order on f(A).

Compr

Proof. We show that <

< compr 18 reflexive, transitive, and antisymmetric.

(Reflexive). Since f(X) = f(X), we have f(x) <., f(x)forany f(x)e f(A).

(Transitive).Let f(Xx) < f(y)and f(y) <copor f(2)for X,y,z€ A

Compr
Case 11 f(X) Sppee F(Y)and f(y) <ppeo F(2).
Since Pareto order is transitive, we have that f(X) comparable to f(z) and in

particular f(Xx) < f(z). Therefore, f(X) <y, f(2).

Pareto

Case 2: f(X)<pyeo f(Y)and f(y) are not Pareto comparable with f(z) with

TCompr ( f (y)) < TCompr ( f (Z))
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Case 2.1: f(X) is Pareto comparable with f(z).

We claim that f(X) < f(z). Suppose that f(z) <p, f(X). By Lemma

Pareto

5.1.1., we have Tg, (T(2)) < Tegp, (F(X)).Since f(X) < f(y)and by Lemma 5.1.1,

Pareto

we have Te, . (f(X)) <Tegpy (f(Y)). Therefore we obtain Te,, (f(2)) < Tegp, (f(Y)) in
contradiction to the assumption that Tc,.. (f(y)) <Te,,, (f(2)).We conclude that

f(x) < f(2). Thus f(X) <¢opr f(2).

Pareto

Case 2.2: f(X) is not Pareto comparable with f (z).

Since f(X) < f(y)by Lemma 5.1.1, we have Te (f (X)) < Teop, (F(Y)).

Pareto

Combining with Te, o (f(Y)) <Teop, (f(2)), we obtain T, (f(X) < T, (f(2)), ie.,
f(X) <com T(2).

Case 2.3: f(Y)<pueo f(2)and f(X) are not comparable with f(y) with
Teompr (X)) < Tegmpr (£(¥)). The proof is similar to Case 2.1.

From Case 1 and 2, we obtain f (X) <c,,,, f(2).

(Anti-Symmetric). Let f(X) <c,,,, f(y)and f(y) <cppp f(X). We must have
f(X)= f(y). To obtain a contradiction, suppose that f(X)= f(y).Immediately we
have f(X) <comr f(Y)and f(Y) <coppr T (X).
Case 1: f(X) is Pareto comparable to f(y).

Since f(X) <Compr f(y), we obtain f(X) <p,. f(Y). Since f(y) <Gompr f(x),

we obtain f(y) < f (X), which contradicts the previous conclusion.

Pareto
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Case 2: f(X) is not comparable to f(y).

Since f(X) <compr F(Y),we  have  Te o (F(X)) <Teopny (F(Y)). Also, since

f(Y) <compr F(X), we haveT, o (f(Y)) < Teopr (f(X)), contradicting the above fact that

TCompr ( f (X)) < TCompr ( f (y))
From Case 1 and 2, we conclude that f(X)= f(y).

Thus we conclude that < is a partial order on f(A).m

— Compr

An equivalent scalarization of the compromise optimization problem is

{IIXIZ:IAX TCompr ( f (X))}

S.t. XeA

5.1.1. An Application in Multi-objective Optimization

In a Pareto maximization problem, a decision maker often selects as a solution
to the problem a non-dominated point satisfying some secondary criteria. More
generally, after a multi-objective optimization, a secondary criteria is invoked - such as
choosing the largest summation of the objective function values. The secondary
criterion here will be to select a solution that attempts to equitably distribute the benefit
among all objectives. Indeed, the compromise solution applied to the objective function

can accomplish both the primary and secondary criteria because of Lemma 5.1.2.

Consider the following Pareto maximization
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Vmax (f,(X,X,), f,(X,X,)) =(X;,X,)
5.t X +x,° <1
X, X, =0

The Pareto frontier is shown in Figure 5.1 below.

v

Figure 5.1 Pareto frontier.

Let A={(X,%,):%’+X,’ <1,X,X, >0}.We find M, = max f,(X)and m, =mi/£1 f,(X)

for 1=1,2.

e M =[mix( f,0)=x)]=1, M, =[m%\X( f,(X)=x,)]=1.
e m= [mi/{l( f,(x)=x%)]=0,m, = [mi/?( f,(X)=x,)]=0.

e The compromise transformation function is as follows.

o fe)-m+1 £ (x)-m, +1
Teompr (F,00, 1,(X) = [( M _m i1 )-( M-, 11 )]
X +1. X, +1 orxeh
= [(T)-( > ]
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The compromise problem, with the order < can be formulated as follows

Compr >

Compromise  (f,(X;,X,), f,(X,X,)) = (X, X,)
s.t. X+ %, <1
X, X, 20

An equivalent scalarization is as follows.

X +1. X, +1
max TCompr(f(X)):( 12 )( 22 )
.. X +%° <1

X, X, 20

The solution is (X,*,X,*)=(0.707,0.707) with objective value of 0.729.

A
X2
1

(0.707,0.707)

X

Figure 5.2 The compromise solution.

5.1.2. An Application in Game Theory

We next apply the compromise criterion to game theory. Our compromise
solutions offer a new meaning of “best” in the sense that every player obtains a “fair”
payoff. As a result, compromise solutions are more sustainable in certain situations than

some commonly used game-theoretic equilibria. Such a set of strategies for the players
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will be call a Compromise Equilibrium (CE), which maximixes the scalar compromise
transformation among all payoff combinations.

We now determine CEs for players in some games and compare the results to
any Regret Equilibria (RE) — the well-known Nash equilibrium - and to the new
Disappointment Equilibrium (DE) in the following six games. For more details of
games like Chicken and Prisoner’s Dilemma, as well as REs and DEs, refer to [29].

GAME 1: THREE-PERSON PAYOFF MATRIX

Y1 Y2
B B2 B B2
a | (£110,100,10) | (=60, 40, 10) (—110, 100, 10) | (~60, 40, 10)
w | (=110,0,100) | (110, 10, 100) (30,0, 10) | (30,10, 10)

Figure 5.3 Payoff matrix of game 1.
To be able to apply compromising transformation, we first shift all values to be positive
numbers by adding (111,111,111) to all payoft values without affecting the RE, DE, or

CE strategy combinations. The new payoff matrix becomes figure 5.4.

Y1 Y2
B B2 Bi B2
o (1,211, 121) (51, 151, 121) (1,211, 121) (51,151, 121)
o (1,111, 211) (1,121, 211) (81, 111, 121) | (81,101, 121)

Figure 5.4 Shifted payoff matrix of game 1.
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Calculate the M; = max f(a,f,7) and m = min f (a,B,y)where f(a,p,y)is

asl{oy,a,} ac{a;,a,}
ﬂe{ﬂhﬂz} ﬁe{ﬂl 7/32}
relnral reln.rt

the payoff value for player i, i =1, 2, 3 to give
e M, =max{,5181} =81, m, =min{l,51,81} =1.
o M,=max{21L11L15L121,101} =211, m, =min{211,111L151,121,101} =101.
e M, =max{121,211} =211, m;, = min{l121,211} =121.
Then we compute the compromise values using the following transformation

fl(ai,ﬁja7k)_m1+1 fz(aiaﬁjaJ/k)_mz"'l f3(ai5ﬂj’7/k)_m3+1
IxI IxI

T a': i =
Compr( i IBJ yk) [ Ml_m1+] Mz—m2+1 M3_m3+1

for all 1, j,k =1,2. The compromise values are shown in the Compromise Matrix (CM).

We also calculate the Regret Matrix (RM) and the Disappointment Matrix (DM) as in

[29].
COMPROMISE MATRIX
Y1 Y2
P P2 B B2
o 0.00013 0.00317 0.000135 0.00317
o 0.0012 0.00233 0.00108 0.000009

Figure 5.5 Compromise matrix of game 1.
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REGRET MATRIX

Y1 Y2
B B2 B B2
o (0,0, 0) (0, 60, 0) (80, 0, 0) (30, 60, 0)
% (0, 10, 0) (50, 0, 0) (0, 0, 90) (0, 10, 90)

Figure 5.6 Regret matrix of game 1.

DISAPPOINTMENT MATRIX
Y1 Y2
B B2 B B2
o (50, 0, 90) (0, 0, 90) (50, 0, 0) 0,0, 0)
w | (80,100, 0) (80, 30, 0) (0, 100, 0) (0, 50, 0)

Figure 5.7 Disappointment matrix of game 1.
Note: the strategy selection combination below does not equal the original payoff.

In summary,

e REandDEat (¢, f,,7,)=(1,211,121).
e DEat (a,f,7,) =(1,151,121).
e CEsat (a,p,,7,)and (¢,,f,,y,) with a payoff of (51,151,121).

e The DE is a CE, but both CEs are not DEs.

e No RE (Nash Equilibrium) is a CE.
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e CEs are fairer than the RE. All players achieve a fair amount of payoff in the
CE. In the RE, player I gain benefits only 1 unit while players II and III receive
211 and 121 units, respectively. In the CEs and DE, player I obtains 51 units in
compromise solution while player II and III receive 151 and 121 units,

respectively.

GAME 2: PAYOFF MATRIX

Player Il
t, t, t,
s | (34 2.2) 2.1)
Player| | s, | (2.3) (7.1) (7.4)
ss | @) (5.6) (6.5)

Figure 5.8 Payoff matrix of game 2.

Calculate the M, = max f,(s,t) and m, = {rnin } f,(s,t) where f,(s,t)is the pay off
SE{S,,5,,8; Se{s),S,,53
teft b} teft bt}

value for player i, i =1, 2, as following.

o M, =max{3,275,6} =7, m =max{32756}=2.
o M, =max{4,2,13,6,5 =6, m, =min{4,2,1,3,6,5} =1.

We calculate Compromise values using the transformation,
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f,(s.t)—m, +1

f(s,t)-m +1
TCompr(Si,tj)=[ l(l J) 1 %

]for all i, j=1,2,3.

M,—-m, +1 M,-m, +1
COMPROMISE MATRIX
Player Il
t, t, t
s, 0.2222 0.0555 0.0277
Player | | s, 0.0833 0.1666 0.6666
S3 0.0277 0.6666 0.6944

Figure 5.9 Compromise matrix of game 2.

REGRET MATRIX
Player Il
t, t, t
S| (0,0) (5,2) (5,3)
Player | | s, | (1,D) (0,3) (0,0)
S3 (1’5) (2’0) (151)

Figure 5.10 Regret matrix of game 2.
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DISAPPOINTMENT MATRIX

Player Il
t, t, t,

s | (0,0) (1,4) (1.4)

Playerl | s, | (5.1 (0.5) (0,1)

ss | (43) (1,0) (0,0)

Figure 5.11 Disappointment matrix of game 2.

The results are includes as follows.

e REsat (s,t,)=(3,4)and (s,,t,)=(7,4).

e DEsat (s,,t)=(3,4)and (s;,t;)=(6,5).

e CEat(s;,t;)=(6,5).

e NoREisaCE.

e The CE is a DE, but one DE is not a CE. Thus only some DEs are fair.

GAMES3: PRISONER’S DILEMMA PAYOFF MATRIX

Player |

Player Il
Defect | Cooperate
Defect (-3,-3) (0,-5)

Cooperate | (-5,0)

(=1,-1)

Figure 5.12 Payoff matrix of game 3.
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We first shift all values to be positive numbers by adding all components by (6,6). The
payoff matrix becomes as follows.

Player Il

Defect | Cooperate

Player I Defect (3,3) (6,1)

Cooperate (1,6) (5,5)

Figure 5.13 Shifted payoff matrix of game 3.

e M, =max{31,6,5} =6, m =max{316,5} =1.

e M,=max{3,61,5}=6, m, =max{3,61,5 =1.

COMPROMISE MATRIX
Player Il
Defect | Cooperate
Player | Defect 0.25 0.1666

Cooperate | 0.1666 0.6944

Figure 5.14 Compromise matrix of game 3.

REGRET MATRIX:
Player Il
Defect | Cooperate
Player | Defect (0,0) (0,2)
Cooperate | (2,0) (1,1)

Figure 5.15 Regret matrix of game 3.
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DISAPPOINTMENT MATRIX:

Player |

Player Il
Defect | Cooperate
Defect (3,3) (0,4)
Cooperate (4,0) (0,0)

Figure 5.16 Disappointment matrix of game 3.

Note: the strategy selection combination below does not equal the original payoff.

We have the following results.

e RE at (Defect, Defect) with payoff (3,3).

e DE at (Cooperate, Cooperate) with payoff (5,5).

e CE at (Cooperate, Cooperate) with payoff value (5,5).

¢ No RE (Nash Equilibrium) is a CE.

e In Prisoner’s Dilemma, the CE and DE are the same and thus fairer than the RE

(Nash Equilibrium).

GAME 4: PAYOFF MATRIX WITH NO PURE EQUILBRIUM

Player |1
t, t, t,

s [ (10,3) (4,7) (4.6)

Player| [ s, | (2.6) 9.5) (5.7)

ss | (4.8 (5.6) (7.5)

Figure 5.17 Payoff matrix of game 4.
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Calculate the M, = max f,(s,t) and m, = min f (s,t)where f.(s,t)is the
Se{S1,5,8:} S€{S,8,,53}
teft bt} teft; bt}

pay off value for player i, i =1, 2, as following.

M, = max{10,2,4,9,5,4,5,7} =10, m, =min{10,2,4,9,5,4,5,7} = 2.

M, =max{3,6,8,7,5,6} =8, m, = min{3,6,8,7,5,6} = 3.

f(s,tp)-m+1 f,(s,t)-m,+1
X

]for i, j=1,2,3.
M, —m, +1 M,-m, +1

Calculate Te,,, (S;.t;) =1

COMPROMISE MATRIX

Player Il

tl t2 t3

S, 0.1666 0.2777 0.2222

Player | | s, 0.0741 0.4444 0.3703

S3 0.3333 0.2963 0.3333

Figure 5.18 Compromise matrix of game 4.

REGRET MATRIX:
Player |1
tl t2 t3
Sl (0’4) (5’0) (3> 1)
Player I 32 (8’1) (0’2) (250)
S3 (690) (472) (0:3)

Figure 5.19 Regret matrix of game 4.
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DISAPPOINTMENT MATRIX:

Player Il
tl t2 t'i
S, (0,5) (6,0) (6,1)
payert | = | D | ©2 | @0
S3 (3,0) (2,1) (0,2)

Figure 5.20 Disappointment matrix of game 4.

Results are listed below.
e No REs or DEs.
e CE at (s,,t,) with payoff of (9,5).
e There are many non-dominated strategy pairs yielding payoffs such as (10,3),

(9,5), and (4,8), but the compromise solution (9,5) is the fairest non-dominated

payoff.

GAME 5: CHICKEN’S GAME PAYOFF MATRIX

Player Il
Dare Chicken out
Player | Dare (1,1) (7,2)
Chicken out (2,7) (6,6)

Figure 5.21 Payoff matrix of game 5.
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COMPROMISE MATRIX :

Player Il
Dare Chicken out
Player | Dare 0.0204 0.2858
Chicken out 0.2858 0.7347

Figure 5.22 Compromise matrix of game 5.

REGRET MATRIX:
Player Il
Dare Chicken out
Player | Dare (1,1) (0,0)
Chicken out (0,0) (1,1)
Figure 5.23 Regret matrix of game 5.
DISAPPOINTMENT MATRIX
Player 11
Dare Chicken out
Player | Dare (6,6) (0,4)
Chicken out 4,0) (0,0)

Figure 5.24 Disappointment matrix of game 5.
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Results are explained as follows.
e RE at (Chicken out, Dare) and (Dare, Chicken Out) with payoffs of (2,7) and
(7,2), respectively.
e DE at (Chicken out, Chicken out) with payoff of (6,6).
e CE at (Chicken out, Chicken out) with payoff of (6,6).
e The CE and DE are the same in this game and fairer solution than the RE (Nash

Equilibrium).

GAME 6: PAYOFF MATRIX

Player Il

t t

Player | S, (1,1) (2,7)

S, (7,2) (6,6)

Figure 5.25 Payoff matrix of game 6.

COMPROMISE MATRIX :
Player Il

tl t2

Player | S 0.0204 0.2857

S, 0.2857 0.7347

Figure 5.26 Compromise matrix of game 6.
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REGRET MATRIX:

Player II
t, t,
Player | S, (6,6) (4,0)
s, (0,4) (0,0)
Figure 5.27 Regret matrix of game 6.
DISAPPOINTMENT MATRIX:
Player Il
t, t,
Player | S, (1,1) (0,0)
s, (0,0) (1,1)

Figure 5.28 Disappointment matrix of game 6.

Results are listed below.
e RE at (s,,t,)with payoft value of (6, 6).
e DEat (s,,t)and (s,,t,) with payoffs of (7,2) and (2,7), respectively.
e CE at (s,,t,) with payoff of (6, 6).
e REisaCE.

e DEisnotaCE.
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5.2. Randomize Criterion

When simply making any decision choice is perceived as the best action, a
randomization decision is optimal. Therefore randomization might be interpreted as an

optimization criterion. We establish this fact below.

Consider a relation order on R"defined by X < y if and only if X =Yy for

Random

all X,y € R". This means that any vector X is comparable only to itself.

Theorem 5.2.1. The preference order < is a partial order on R".

Random

Proof. We show that <

<random 18 TeflEX1VE, transitivity, and antisymmetric.

(Reflexive). Since X =Xfor any X € R",then X <, o X-

(Transitive). Let X,Yy,z € R"such that X <., Yandy <g...n Z. But x=y and
y = z.Thus it is clear that x = z.

(Antisymmetric). Let X,y € R"such that x <, .. vyand y <. .. X Then by

definition, X =y.

Therefore, the order <., 1s @ partial order.m

Since no X is dominated by any other vector, the randomization criterion can be

scalarized as the following maximization problem.

max c ,
{ xeA }, for all y € f(A), where C is a constant number.

s.t. X ZRandom

5.3. Counterexample

Not every decision problem can be formalized with an optimization criterion.
Group decision making with various voting schemes is often one that violates our

framework of consistency. Two difficulties are explained below.

113



1. Intransitivity
Consider the well-known Condorcet Paradox [30] and [31] in voting.

Table 5.1 Condorcet paradox.

Individual Preference order
Voter 1 A>B>C
Voter 2 B>C>A
Voter 3 C>A>B

In this voting three voters, 1, 2, and 3 are asked to consider three alternatives A, B, and
C. As shown in Table 5.1, Voter 1 prefers A to B to C; Voter 2 prefers B to C to A; and
Voter 3 prefer C to A to B. It is obvious that two people prefer A to B, two people
prefer B to C, and two people prefer C to A. For any majority voting scheme, it
immediately follows that A <B and B < C, but C < A. Such a group preference order is

intransitive, so it cannot be a partial order.

2. The preference order cannot be fixed in advance.

As another voting scheme that also violates our optimization criteria framework,
consider three candidate, A, B and C, and five voters. Each voter has 10 points to
distribute to the candidates in integer values among the candidates according to how
well a candidate is rated by the voter. For example, a voter could award 5 points to A, 3

to B, and 2 to C.
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o Let (a},al,a)eR’, where a},al,a represent the distributed points of the n™
voter to candidate A, B, and C, respectively, for all n=1,...,5.

e Define the voting order in R’ by

(a,a’,a’,a’, )—<(a )1ffZa <Za for any 1, j € {A,B,C}.

i=l

J’ J’ J’
3 44 55y : .
e We then define (a,, 0, ,, I,a,) (a aj,aj,aj)lf and only if either
(a.a’,a’.a,a) < (aj,aj,aj,a,aj)or (a,4,8,a',a) = (aj,a],aj,a;,a)).
e Define f:{A,B,C} > R’where f(A)= the total score of candidate A from 5

voters, f(B)= the total score of candidate B from 5 voters, and f(C)= the total

score of candidate C from 5 voters.
e The voting decision could be interpreted as opt f(X) subject to X € {A, B,C}.

One difficulty is that voting depends on a preference order as defined by the
decision process itself. There is no order until the decision is made, as opposed to the
decision being made based on an existing order.

In addition, the domination property, a necessary condition of an optimization
criterion, is not satisfied. The domination property says that more choices yield a better
decision, or at least not worse. In voting, the choices are the candidates. But more
candidates do not guarantee a winner as “good or better” even in the sense of overall
voter appeal. For example, more candidates could split the vote. So obviously politics

does not follow our framework for consistency in decision making.
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CHAPTER 6

CONCLUSIONS

6.1. Summary

Scalar equivalences for all standard non-scalar optimization criteria have been
presented without convexity or concavity requirements. In particular, equivalent
scalarizations for maximin, Pareto optimization, goal programming, cone-ordered
optimization, and set-valued optimization have been proposed. In addition, we have
shown that the equivalences among standard non-scalar optimization criteria can be
established directly. This result means that all standard optimization criteria are
essentially equivalent since all solutions and only solutions of one can be directly
obtained by solving an optimization problem involving any other standard criterion.
Moreover, we have shown that the equivalent scalarizations of the standard criteria are
equivalent in that all solutions and only solutions of one scalarization can be determined
by solving a scalarization of any other standard criterion. Hence any criterion is
equivalent to a scalar maximization problem in the following sense. All solutions and
only solutions of a problem involving a criterion can be obtained, at least theoretically,
as the solutions to a certain real-valued maximization problem of a type common to all

criteria.
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We have unified the notion of an optimization criterion within a general
axiomatic framework to include all standard optimization criteria as special cases. Our
choices of axioms have been explained, as well as the disqualification of other
possibilities. One requirement for an optimization criterion is the scalarizability
property. Hence all optimization criteria are equivalent to solving similar scalar
maximization problems, and all are equivalent in a significant sense.

Two methods of scalarization have been proposed for optimization criteria. The
first is Corley’s Method for transforming a general cone-ordered optimization for which
the cone is pointed and convex with appropriate assumptions. The second is the
Lexicographic Hybrid Method for scalarizing a general optimization problem with any
partial order.

Finally, we defined a “compromise” criterion for fairness as well as
“randomize” for simply taking action. In particular, the compromise criterion was
applied to game theory to obtain new results. Finally, the group decision making of two
voting schemes was shown not to represent an optimization criterion in our formal

framework.

6.2. Contributions of the Research

We have established a general framework of optimization criteria to cover all
existing standard criteria into the same set of axioms. Thus all existing criteria are the
same in the sense that any problem involving one criterion satisfying our definition can

be formulated as a problem involving any other general criterion. In particular, all
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solutions and only solutions to one problem can be obtained by solving the other
problem.

Since scalarizability is one requirement of optimization criteria and since all
standard criteria are scalar equivalent, this work has effectively suggested the following
hypothesis. People make most individual decisions based on numerical scales,
regardless of the specific problem, to simplify the complexity of the real world. In other

words, people devise heuristic metrics to rank choices.

6.3. Future Work

Future work should concentrate on two areas. First, the scalarizations presented
here must be numerically solved to make actual decisions. Hence computational
methods should be studied. Second, new optimization criteria should be developed to

provide further models for decision making.
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