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ABSTRACT

REGULAR ALGEBRAS RELATED TO REGULAR GRADED SKEW

CLIFFORD ALGEBRAS OF LOW GLOBAL DIMENSION

Manizheh Nafari, Ph.D.

The University of Texas at Arlington, 2011

Supervising Professor: Dr. Michaela Vancliff

M. Artin, W. Schelter, J. Tate, and M. Van den Bergh introduced the notion of

non-commutative regular algebras, and classified regular algebras of global dimension

3 on degree-one generators by using geometry (i.e., point schemes) in the late 1980s.

Recently, T. Cassidy and M. Vancliff generalized the notion of a graded Clifford al-

gebra and called it a graded skew Clifford algebra.

In this thesis, we prove that all classes of quadratic regular algebras of global

dimension 3 contain graded skew Clifford algebras or Ore extensions of graded skew

Clifford algebras of global dimension 2. We also prove that some regular algebras

of global dimension 4 can be obtained from Ore extensions of regular graded skew

Clifford algebras of global dimension 3. We also show that a certain subalgebra R of

a regular graded skew Clifford algebra A is a twist of the polynomial ring if A is a

twist of a regular graded Clifford algebra B. We have an example that demonstrates

that this can fail when A is not a twist of B.
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CHAPTER 1

INTRODUCTION

M. Artin, W. Schelter, J. Tate, and M. Van den Bergh introduced the notion of

non-commutative regular algebras and invented new methods in algebraic geometry

in the late 1980s to study them ([2], [3], [4]). Such algebras are viewed as non-

commutative analogues of polynomial rings; indeed, polynomial rings are examples

of regular algebras.

By the 1980s, a lot of algebras had arisen in quantum physics, specifically quan-

tum groups, and many traditional algebraic techniques failed on these new algebras.

In physics, quantum groups are viewed as algebras of non-commuting functions act-

ing on some “non-commutative space”([6]). In the early 1980s, E. K. Sklyanin, a

physicist, constructed a family of graded algebras on four generators ([16]). These

algebras were later proved to depend on an elliptic curve and an automorphism ([8]).

By the late 1980s, it was known that many of the algebras in quantum physics are

regular algebras; in particular, the family of algebras constructed by Sklyanin consists

of regular algebras.

The main results in [2], [3], and [4] concern the classification of regular algebras

of global dimension 3 on degree-one generators. M. Artin, J. Tate, and M. Van den

Bergh also defined the notion of twisting an algebra by an automorphism, and they

proved that regularity and GK-dimension are preserved under such twisting ([4, §8]).

1
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The quadratic regular algebras of global dimension 3 can be described using

geometry, i.e. the point scheme E ⊆ P2. These algebras, where E contains a line as

well as those that are “generic”, are given in [3], and [4], and entail: P2, elliptic curve,

conic union a line, triangle, (triple) line, a union of n lines where n ∈ {2, 3} with one

intersection point. It should be noted that the cases where E is a nodal cubic curve

or a cuspidal cubic curve are not discussed in [3] or [4] as such algebras are not generic.

Classifying the regular algebras of global dimension 4 is still an open problem.

In fact, even the quadratic regular algebras of global dimension 4 are still unclassified.

T. Cassidy and M. Vancliff introduced a class of algebras that provide an “easy”

way to write down some quadratic regular algebras of global dimension n where n ∈ N

([5]). In fact, they generalized the notion of a graded Clifford algebra and called it

a graded skew Clifford algebra (see Definition 2.2.1). It is hoped that graded skew

Clifford algebras might be useful in the attempted classification of the regular alge-

bras of global dimension 4.

This thesis has three main objectives as follows: to see how many point schemes

of regular graded algebras of global dimension 3 can be obtained from graded skew

Clifford algebras; to see how many known examples of regular algebras of global di-

mension 4 can be obtained from graded skew Clifford algebras; and to determine if

a certain subalgebra of a regular graded skew Clifford algebra A is a twist of the

polynomial ring whenever A is a twist of a graded Clifford algebra. The thesis is

outlined as follows.
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In Chapter 2, we define regular algebras (see Definition 2.1.13), graded skew

Clifford algebras (see Definition 2.2.1), and the quadric system associated to it (see

Definition 2.2.3).

In Chapter 3, we show that the point schemes of some quadratic regular alge-

bras of global dimension 3 can be obtained by using only regular graded skew Clifford

algebras. For the remaining point schemes, we use Ore extensions of regular graded

skew Clifford algebras of global dimension 2. Consequently, we show in Chapter 3

that all classes of quadratic regular algebras of global dimension 3 contain either a

regular graded skew Clifford algebra or an Ore extension of a regular graded skew

Clifford algebra of global dimension 2. The work in this chapter led to my paper [14]

with M. Vancliff and Jun Zhang, in which we prove that all quadratic regular algebras

of global dimension 3 are related in some way to a regular graded skew Clifford algebra.

In Chapter 4, we consider various known quadratic regular algebras of global

dimension 4 and try to relate them to graded skew Clifford algebras. In particular,

we prove that the regular algebras of global dimension 4 in the first half of [18] can

be obtained from Ore extensions of regular graded skew Clifford algebras of global

dimension 3. Some of these algebras arise in quantum physics such as the algebra

in Proposition 4.2. However, the Sklyanin algebras on 4 generators, which are reg-

ular algebras of global dimension 4, appear not to be directly related, in the sense

of Chapter 3, to any graded skew Clifford algebra, although they could perhaps be

weakly related in some way (c.f., [14, Remark 4.4]).

In Chapter 5, we take A to be a regular graded skew Clifford algebra of global

dimension n and study the subalgebra R of A generated by the yi (see Definition
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2.2.1). In Theorem 5.7, we prove that if A is a twist (in the sense of [4, §8]) of a

regular graded Clifford algebra by an automorphism, then R is a twist of a poly-

nomial ring by an automorphism, and is a skew polynomial ring. We thank S. P.

Smith (University of Washington) for the suggestion to study the algebra R. We give

an example that demonstrates that Theorem 5.7 can fail when A is not a twist of a

regular graded Clifford algebra.



CHAPTER 2

GRADED SKEW CLIFFORD ALGEBRAS OF GLOBAL DIMENSION n

Throughout the thesis, K denotes an algebraically closed field, char(K) 6= 2,

and K× denotes K \ {0}.

2.1 Definitions

2.1.1 Definition of Graded Algebras [3]

In this thesis, a K-algebra A is called a graded algebra if:

(1) A =
⊕

i≥0Ai where the Ai are vector spaces over K,

(2) dimA1 <∞,

(3) AiAj ⊆ Ai+j for all i, j,

(4) A0 = K,

(5) A generated by A1 only.

For each i, Ai is the span of the homogeneous elements of degree i.

2.1.2 Examples

(1) The polynomial ring A = K[x1, . . . , xd] where x1, . . . , xd have degree 1.

Here,

A1 = Kx1 ⊕Kx2 ⊕ · · · ⊕Kxd,

and

dimKAi =

(
i+ d− 1

d− 1

)
for all i (c.f., [13]).

(2) The free algebra A = K〈x1, . . . , xd〉 where xi, for all i, have degree ni ∈ Z.

Here, A is a non-commutative analogue of the algebra A in (1).

5
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2.1.3 Nonexamples

(1) The algebra

A =
K[x, y]

〈x2 − y〉
,

where x and y have degree 1, is not graded. The relation x2 = y in A is not homoge-

neous and so A1 ∩ A2 6= {0} which violates (1) in Definition 2.1.1.

(2) The algebra

A =
K[x, y]

〈x2 − y〉
,

where x has degree 1 and y has degree 2, is graded but not generated by A1 since

y ∈ A2.

2.1.4 Definition of Quadratic K-Algebra

A K-algebra A is called quadratic if:

(1) A is graded (as defined above),

(2) A is a quotient of the free algebra by homogeneous relations of degree 2.

2.1.5 Example

The algebra

K[x1, . . . , xd] =
K〈x1, . . . , xd〉

〈xixj − xjxi; 1 ≤ i, j ≤ d〉
, deg(xi) = 1 for all i

is quadratic.

2.1.6 Nonexample

The algebra

A =
K[x]

〈x3〉
, where x has degree 1,
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is graded but is not quadratic. The relation x3 = 0 has degree 3.

In order to define a regular algebra, we first need the concepts of polynomial

growth, global dimension, and Gorenstein, which we now define.

2.1.7 Global Dimension

The algebra A has global dimension d < ∞ if every A-module M has projective

dimension ≤ d and there exists at least one module M with projective dimension d.

2.1.8 Example

The polynomial ring, K[x1, . . . , xd], has global dimension d by Hilbert’s syzygy theo-

rem (c.f., [15]).

2.1.9 Definition of Polynomial Growth (c.f.,[13])

A graded algebra A, as above, is said to have polynomial growth if there exists positive

real numbers c, δ such that

dimKAn ≤ cnδ for all n� 0.

For all known quadratic regular algebras of global dimension d, the minimal such δ

is d− 1 ([3, §2]).

2.1.10 Example

Let A = K[x1, x2], then

dimKAn =

(
n+ 1

1

)
= n+ 1 ≤ n1+ε,

for all ε > 0 where n� 0. Thus A has polynomial growth.
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2.1.11 Definition of Gorenstein [2]

By [3, §2], for a graded algebra A as in Definition 2.1.1, the global dimension of

A equals the projective dimension of the graded left module AK (and projective

dimension of the right module KA).

The algebra A is Gorenstein if

(1) the projective modules P i appearing in a minimal resolution

0→ P d → ...→ P 1 → P 0 →A K→ 0

of AK are finitely generated, and if

(2) applying the functor

M  M∗ := HomA(M,A) = {graded homomorphisms : M → A}

to the resolution in (1) yields a projective resolution

0→ P 0∗ → P 1∗ → ...→ P d∗ → KA → 0

of the graded right A-module KA.

2.1.12 Example

The algebra

A =
K〈x, y〉
〈xy − qyx〉

, where q ∈ K×,

is Gorenstein ([2, §0]).

2.1.13 Definition of Regular Algebras [3]

A graded K-algebra A is called a regular algebra if

(1) A has polynomial growth,

(2) A has finite global dimension,

(3) A is Gorenstein.
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2.1.14 Definition of Normalizing Sequence

A sequence a1, . . . , an of elements of a ring R with identity is called a normalizing

sequence if a1 is normal element in R (i.e. a1R = Ra1) and for each j ∈ {1, . . . , n−1},

aj+1 is a normal element in R/
∑j

i=1 aiR and also
∑n

i=1 aiR 6= R.

2.2 Graded Skew Clifford Algebras

T. Cassidy and M. Vancliff defined a class of algebras in [5] that provide an

“easy” way to write down some quadratic regular algebras of global dimension d for

all d ∈ N.

2.2.1 Definition of Graded Skew Clifford Algebras [5]

For {i, j} ⊂ {1, . . . , n}, let µij ∈ K× satisfy µijµji = 1 for all i 6= j, and write

µ = (µij) ∈ M(n,K). A matrix M ∈ M(n,K) is called µ-symmetric if Mij = µijMji

for all i, j = 1, . . . , n.

Henceforth, suppose µii = 1 for all i, and fix µ-symmetric matrices M1, . . . ,Mn ∈

M(n,K). A graded skew Clifford algebra associated to µ and M1, . . . , Mn is a graded

K-algebra on degree-one generators x1, . . . , xn and on degree-two generators y1, . . . , yn

with defining relations given by:

(a) xixj + µijxjxi =
∑n

k=1(Mk)ijyk for all i, j = 1, . . . , n, and

(b) the existence of a normalizing sequence {r1, . . . , rn} of homogeneous elements

that span Ky1 + · · ·+ Kyn.



10

2.2.2 Example

Let µ21, λ ∈ K×. If

M1 =

 0 1

µ21 0

 , M2 =

 2 0

0 2λ

 ,
then any graded skew Clifford algebra A associated to M1,M2 satisfies

K〈x1, x2〉
〈x2

2 − λx1
2〉
� A

since

x1x2 + µ12x2x1 = y1, y2 = x1
2, λy2 = x2

2.

2.2.3 Definition of Quadric System [5]

Let S be the K-algebra on generators z1, . . . , zn with defining relations

zjzi = µijzizj, for all i, j

and let

qk :=

[
z1 . . . zn

]
Mk


z1

...

zn

 ∈ S.

We say {q1, . . . , qn} is a quadric system.

2.2.4 Example

For the algebra A in Example 2.2.2, we have

S =
K〈z1, z2〉

〈z2z1 − µ12z1z2〉
.

Moreover,

q1 = 2z1z2, q2 = 2z1
2 + 2λz2

2.
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However, since char(K) 6= 2, we consider:

q1 = z1z2, q2 = z1
2 + λz2

2.

2.2.5 Definition of Normalizing Quadric System

A quadric system {q1, . . . , qn} is normalizing if
∑n

k=1 Kqk ⊂ S is spanned by a nor-

malizing sequence of S.

2.2.6 Example

Referring to Example 2.2.4, in S, zi is normal for all i, and

q1z1 = µ12z1q1, q1z2 = µ21z2q1.

Therefore q1 is normal in S.

In S
〈q1〉 , we have

q2z1 = z1(z1
2 + λµ2

12z2
2), q2z2 = µ21

2z2(z1
2 + λµ12

2z2
2).

So q2 is normal in S
〈q1〉 if λ = 0 or if λ 6= 0 and µ12

2 = 1.

2.2.7 Definition of Zero Locus [5]

Suppose A = K〈x1, . . . , xn〉 and f ∈ A2. We define the zero locus V(f) of f to be

V(f) = {p ∈ Pn−1 × Pn−1 : f(p) = 0},

where Pn−1 is identified with P(A∗1).

Similarly if f1, . . . , fm ∈ A2, then

V(f1, . . . , fm) = {p ∈ Pn−1 × Pn−1 : fi(p) = 0 for all i}.
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2.2.8 Definition of Base-Point Free [5]

Let Z be the zero locus in Pn−1 × Pn−1 of the defining relations of S, i.e.

Z =
⋂
i,j

V(zjzi − µijzizj) ⊂ Pn−1 × Pn−1.

The quadric system {q1, . . . , qn} is said to be base-point free (BPF) if Z∩V(q1, . . . , qn)

is empty.

2.2.9 Example

Referring to Example 2.2.4, let

p = ((α1, α2), (β1, β2)) ∈ P1 × P1,

and let

(z2z1 − µ12z1z2)(p) = 0.

Therefore, we have

α2β1 − µ12α1β2 = 0.

If α2 = 0, then β2 = 0. So ((1, 0), (1, 0)) ∈ P1 × P1.

If α2 6= 0, i.e., α2 = 1, then β1 = µ12α1β2. So, ((α1, 1), (µ12α1, 1)) ∈ P1 × P1.

Therefore,

Z = {((α1, α2), (µ12α1, α2)) : (α1, α2) ∈ P1}.

Let p ∈ Z. We have

0 = q1(p) = α1α2, 0 = q2(p) = µ12α1
2 + λα2

2.

Thus α1 = α2 = 0 which is contradiction. Therefore {q1, q2} is BPF.



CHAPTER 3

REGULAR GRADED SKEW CLIFFORD ALGEBRAS OF GLOBAL

DIMENSION 3

The quadratic regular algebras of global dimension 3 can be described using

geometry, i.e., the point scheme E ⊆ P2 ([3]). These algebras, where E contains a

line as well as those that are “generic”, are given in [3], and [4], and entail: P2, elliptic

curve, conic union a line, triangle, (triple) line, a union of n lines where n ∈ {2, 3}

with one intersection point.

It should be noted that the cases where E is a nodal cubic curve or a cuspidal

cubic curve are not discussed in [3] or [4] as such algebras are not generic. In this

chapter, we prove that all classes of quadratic regular algebras of global dimension 3

contain either a regular graded skew Clifford algebra or an Ore extension of a regular

graded skew Clifford algebra of global dimension 2.

In order to compare quadratic regular algebras in [3] with regular graded skew

Clifford algebras, we first recall a result from [5] that identifies when a graded skew

Clifford algebra is a quadratic and regular.

3.1 Theorem [5]

Let µ be as in Definition 2.2.1, and let M1, . . . ,Mn be µ-symmetric n×n matrices. A

graded skew Clifford algebra A associated to µ and M1, . . . ,Mn is quadratic, regular

of global dimension n and satisfies the Cohen-Macaulay property with Hilbert series

1
(1−t)n if and only if the quadrics in Pn−1 × Pn−1 determined by the Mk are BPF and

13
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form a normalizing quadric system. In this case, A is unique up to isomorphism,

noetherian and has no zero divisors.

3.2 First Family of Examples

This subsection is devoted to one particular family of algebras that are defined

as follows.

Let µij ∈ K× satisfy µijµji = 1 for all i 6= j, µii = 1 for all i, and λi ∈ K for all i.

The matrices

M1 =


2 0 0

0 0 λ3

0 µ32λ3 0

 , M2 =


0 0 λ2

0 2 0

µ31λ2 0 0

 , M3 =


0 λ1 0

µ21λ1 0 0

0 0 2

 ,
are µ-symmetric.

The graded skew Clifford algebra A defined by these three matrices will have

three degree-2 relations and possibly more relations, e.g.,

x1x2 + µ12x2x1 = λ1y1, x2
1 = y1, etc.

So we have

K〈x1, x2, x3〉
〈g1, g2, g3〉

� A

where

g1 = x1x2 + µ12x2x1 − λ1x
2
3,

g2 = x1x3 + µ13x3x1 − λ2x
2
2,

g3 = x2x3 + µ23x3x2 − λ3x
2
1.

From Definition 2.2.3, we have

q1 = 2z2
1 + µ32λ3z3z2 + λ3z2z3 = 2(λ3z2z3 + z2

1),
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q2 = 2z2
2 + µ31λ2z3z1 + λ2z1z3 = 2(λ2z1z3 + z2

2),

q3 = 2z2
3 + µ21λ1z2z1 + λ1z1z2 = 2(λ1z1z2 + z2

3).

However, since char(K) 6= 2, we consider:

q1 = λ3z2z3 + z1
2, q2 = λ2z1z3 + z2

2, q3 = λ1z1z2 + z3
2

and

S =
K〈z1, z2, z3〉
〈s1, s2, s3〉

where

s1 = z2z1 − µ12z1z2, s2 = z3z1 − µ13z1z3, s3 = z3z2 − µ23z2z3.

3.2.1 Lemma

If Z= zero locus in P2×P2 of the defining relations of S, i.e., Z = ∩i,jV(zjzi−µijzizj),

then

(1) Z = {((a1, a2, a3), (a1, µ21a2, µ31a3)) : (a1, a2, a3) ∈ P2} if and only if µ13 =

µ12µ23, or

(2) Z = P1 ∪ P2 ∪ P3 if and only if µ13 6= µ12µ23, where

P1 = {((0, a2, a3), (0, a2, µ32a3)) : (a2, a3) ∈ P1},

P2 = {((a1, 0, a3), (a1, 0, µ31a3)) : (a1, a3) ∈ P1},

P3 = {((a1, a2, 0), (a1, µ21a2, 0)) : (a1, a2) ∈ P1}.

Proof:

We have

z2z1 = µ12z1z2, z3z1 = µ13z1z3, z3z2 = µ23z2z3.

Therefore, to find Z, we must solve the system of equations:

0 = (z2z1 − µ12z1z2)((a1, a2, a3), (b1, b2, b3)) = a2b1 − µ12a1b2,
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0 = (z3z1 − µ13z1z3)((a1, a2, a3), (b1, b2, b3)) = a3b1 − µ13a1b3,

0 = (z3z2 − µ23z2z3)((a1, a2, a3), (b1, b2, b3)) = a3b2 − µ23a2b3,

which yields


a2 −µ12a1 0

a3 0 −µ13a1

0 a3 −µ23a2



b1

b2

b3

 =


0

0

0

 .
In order to have a solution (b1, b2, b3) ∈ P2, the determinant of the first matrix must

be zero. So,

a1a2a3(µ13 − µ12µ23) = 0

which implies two cases:

(1) µ13 = µ12µ23, or

(2) µ13 6= µ12µ23 and a1a2a3 = 0.

Addressing (1) we find the solutions are all points in P2 as stated in part (1) of

the result. Addressing (2), if a3 = 0, then the zero locus is given by Example 2.2.9.

Similarly, if a1 = 0 or if a2 = 0. �

Associated to M1,M2,M3, we have the quadric system

{q1 = z1
2 + λ3z2z3, q2 = z2

2 + λ2z1z3, q3 = z3
2 + λ1z1z2},

which is a normalizing sequence in S if and only if q1 is normal in S, q2 is normal in

S
〈q1〉 , and q3 is normal in S

〈q1,q2〉 (c.f., Definition 2.1.14).

3.2.2 Proposition

The quadric system {q1, q2, q3} is BPF if and only if either

(1) µ13 = µ12µ23 and λ1λ2λ3 + µ13 6= 0, or
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(2) µ13 6= µ12µ23.

Proof:

We want to find V(q1, q2, q3) ∩ Z.

If µ13 = µ12µ23, then, by Lemma 3.2.1(1),

Z = {((a1, a2, a3), (a1, µ21a2, µ31a3)) : (a1, a2, a3) ∈ P2} ⊆ P2 × P2.

Let

p = ((a1, a2, a3), (a1, µ21a2, µ31a3)) ∈ Z.

We must solve the system of equations

0 = q1(p) = a1
2 + λ3a2µ31a3,

0 = q2(p) = µ21a2
2 + λ2µ31a1a3,

0 = q3(p) = µ31a3
2 + λ1µ21a1a2.

Thus, if a1 = 0, then a2 = a3 = 0, which is contradiction. Similarly, if a2 = 0 or if

a3 = 0. Hence, we may assume a1a2a3 6= 0, λ1λ2λ3 6= 0, and a1 = 1. So

1 + λ3µ31a2a3 = 0, (1)

µ21a2
2 + λ2µ31a3 = 0, (2)

µ31a3
2 + λ1µ21a2 = 0. (3)

Therefore, by (3), a2 = −µ32a3
2

λ1
, and by substituting a2 in (1), we have

1 + λ3µ31

(
−µ32a3

3

λ1

)
= 0.

Consequently, a3
3 = λ1

λ3µ31µ32
. By substituting for a2 and a3 in (2), we have

λ1λ2λ3 + µ13 = 0.

Thus {q1, q2, q3} is BPF if µ13 = µ12µ23 and λ1λ2λ3 + µ13 6= 0.
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If µ13 6= µ12µ23, then Z is given by Lemma 3.2.1(2). Let

p = ((0, a2, a3), (0, a2, µ32a3)) ∈ Z.

As before, we solve

0 = q1(p) = λ3a2µ32a3,

0 = q2(p) = a2
2,

0 = q3(p) = µ32a3
2.

Thus a2 = 0 = a3 which is contradiction. Similarly if

p = ((a1, 0, a3), (a1, 0, µ31a3)) ∈ Z or p = ((a1, a2, 0), (a1, µ21a2, 0)) ∈ Z.

Hence {q1, q2, q3} is BPF if µ13 6= µ12µ23. �

To find out if the algebra A in §3.2 is regular, we need to prove that the quadric

system associated to A is normalizing.

Henceforth, condition (∗) will denote the case µ13 = µ12µ23.

3.2.3 Proposition

The sequence {q1, q2, q3} is a normalizing sequence in S if and only if either

(1) λ1 = λ2 = λ3 = 0, or

(2) λ2 = λ3 = 0 6= λ1, µ32 = µ13, or

(3) λ1 = λ2 = 0 6= λ3, µ13 = µ21, µ12
2 = µ32 (which implies (∗)), or

(3′) λ1 = λ3 = 0 6= λ2, µ23 = µ12, µ13 = µ12
2 (which implies (∗)), or

(4) λ1 = 0, λ2 6= 0 6= λ3, and µ13 = µ21 = µ32 = µ12
2 (which implies (∗)), or

(4′) λ2 = 0, λ3 6= 0 6= λ1, and µ13 = µ21 = µ32 = µ12
2 (which implies (∗)), or

(5) λ3 = 0, λ1 6= 0 6= λ2, and µ13 = µ32 = µ21 = µ12
2 (which implies (∗)), or

(6) λi 6= 0 for all i and µ13 = µ21 = µ32, µ12
3 = 1 (which implies (∗)).
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Proof:

We have

S =
K〈z1, z2, z3〉
〈s1, s2, s3〉

where

s1 = z2z1 − µ12z1z2, s2 = z3z1 − µ13z1z3, s3 = z3z2 − µ23z2z3,

therefore zi is normal in S for all i. Moreover,

q1z1 = z1(z1
2 + λ3µ13µ12z2z3) (i)

q1z2 = µ21
2z2(z1

2 + λ3µ12
2µ23z2z3) (ii)

q3z3 = µ31
2z3(z1

2 + λ3µ13
2µ32z2z3) (iii)

If λ3 = 0, then q1 = z1
2 is normal in S. If λ3 6= 0, then, by (i), (ii), (iii), q1 is normal

in S if

µ13 = µ21, µ12
2µ23 = 1, µ13

2µ32 = 1.

Similarly, q2 is normal in S
〈q1〉 if λ2 = 0 or if

λ2 6= 0 and µ23µ21 = 1 = µ21
2µ13 = µ23

2µ31 = 1,

and q3 is normal in S
〈q1,q2〉 if λ1 = 0 or if

λ1 6= 0 and µ32 = µ13.

Analysis of the possibilities yields the result. �

By Theorem 3.1, when the λk and the µij satisfy Propositions 3.2.2 and 3.2.3,

the graded skew Clifford algebra A associated to µ and M1,M2,M3 (defined at the

start of §3.2) is unique up to isomorphism and quadratic and regular.

Our next result yields the point scheme of A in these cases.
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3.2.4 Proposition

If

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉

where

g1 = x1x2 + µ12x2x1 − λ1x3
2,

g2 = x1x3 + µ13x3x1 − λ2x2
2,

g3 = x2x3 + µ23x3x2 − λ3x1
2,

then the point scheme P of A is given by one of the following:

(1a) P = P2 if and only if λ1 = λ2 = λ3 = 0 and µ13 + µ12µ23 = 0, or

(1b) P = V(x1) ∪ V(x2) ∪ V(x3) (i.e., triangle, see Figure 3.1) if and only if λ1 =

λ2 = λ3 = 0, and µ13 + µ12µ23 6= 0, or

(2a) P = V(x3)∪V((µ13+µ12µ23)x1x2+λ1x3
2) (i.e., conic union line, two intersection

points, see Figure 3.2) if and only if λ2 = λ3 = 0 6= λ1 and µ32 = µ13, and

µ13 + µ12µ23 6= 0, or

(2b) P = V(x3
3) (i.e., triple line, see Figure 3.3) if and only if λ2 = λ3 = 0 6= λ1,

µ32 = µ13, and µ13 + µ12µ23 = 0, or

(3) P = V(x1)∪V(2µ13x2x3 +λ3x1
2) (i.e., conic union line, two intersection points,

see Figure 3.2) if and only if λ1 = λ2 = 0 6= λ3 and µ21 = µ13, µ12
2 = µ32, or

(4) P = V(µ12λ2x2
3 + 2µ13x1x2x3 + λ3x1

2) (i.e., nodal cubic curve in P2 with one

singular point (node) at (0, 0, 1), see Figure 3.4) if and only if λ1 = 0, λ2 6=

0 6= λ3, and µ13 = µ21 = µ32 = µ12
2, or

(5) P = V(µ12λ2x2
3 + 2µ13x1x2x3 + λ1x3

3) (i.e., nodal cubic curve in P2 with one

singular point (node) at (1, 0, 0), see Figure 3.4) if and only if λ3 = 0, λ2 6= 0 6=

λ1 and µ13 = µ32 = µ21 = µ12
2, or
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(6) P = V(µ12λ2x2
3 + (2µ13 − λ1λ2λ3)x1x2x3 + λ3x1

3 + λ1x3
3) if and only if λi 6= 0

for all i and µ13 = µ21 = µ32, and µ12
3 = 1 (i.e., an elliptic curve in P2 if and

only if λ1λ2λ3 6= 8µ13, see Figure 3.5).

 

Figure 3.1. Depiction of the Point Scheme
in Proposition 3.2.4(1b).

 

Figure 3.2. Depiction of the Point Scheme
in Proposition 3.2.4(2a)&(3).

 

Figure 3.3. Depiction
of the Point Scheme in
Proposition 3.2.4(2b).

 

Figure 3.4. Depiction
of the Point Scheme in
Proposition 3.2.4(4)&(5).

 

Figure 3.5. Depiction
of the Point Scheme in
Proposition 3.2.4(6).

Proof:

Suppose

p = ((α1, α2, α3), (β1, β2, β3)) ∈ P2 × P2.

To find the point scheme P of A, we solve

0 = g1(p) = α1β2 + µ12α2β1 − λ1α3β3,

0 = g2(p) = α1β3 + µ13α3β1 − λ2α2β2,

0 = g3(p) = α2β3 + µ23α3β2 − λ3α1β1,
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which yields 
µ12α2 α1 −λ1α3

µ13α3 −λ2α2 α1

−λ3α1 µ23α3 α2



β1

β2

β3

 =


0

0

0

 .
In particular, as in the proof of Lemma 3.2.1, we require the determinant of the first

matrix to equal zero.

(1a) and (1b): We have λ1 = λ2 = λ3 = 0, so

(µ12µ23 + µ13)α1α2α3 = 0.

If µ12µ23 + µ13 = 0, then P = P2.

If µ12µ23 + µ13 6= 0, then α1α2α3 = 0, so P is a triangle.

(2a): Since λ2 = λ3 = 0 6= λ1 and µ32 = µ13, we have

α3((µ13 + µ12µ23)α1α2 + λ1α3
2) = 0.

So

P = V(x3((µ13 + µ12µ23)x1x2 + λ1x3
2)).

In fact,

V(g1, g2, g3) = {((α, β, 0), (α,−µ12β, 0)) : (α, β) ∈ P1}∪

{(((µ13 + µ12µ23)α
2,−λ1β

2, (µ13 + µ12µ23)αβ),

(−(1 + µ12µ
2
23)α

2, µ13λ1β
2, (µ13 + µ12µ23)αβ)) : (α, β) ∈ P1}.

Similarly for (2b), (3), and (4).
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(5): Since λ1 6= λ3 = 0 6= λ2 and

µ12 = µ23 = µ31 = µ32µ21 and µ12
3 = 1,

we have µij
3 = 1, for all i, j, so

µ12λ2α2
3 + 2µ13α1α2α3 + λ1α3

3 = 0.

In fact,

V(g1, g2, g3) = {((−λ1β
3 − λ2µ12α

3, 2µ13βα
2, 2µ13β

2α),

(−µ13λ1β
3 + λ2α

3, 2µ13βα
2,−2β2α)) : (α, β) ∈ P1}.

(6): Since for all i, λi 6= 0, and

µ13 = µ21 = µ32 = µ12µ23, µ12
3 = 1,

which implies µij
3 = 1, for all i, j, so

µ12λ2α2
3 + (2µ13 − λ1λ2λ3)α1α2α3 + λ3α1

3 + λ1α3
3 = 0 (†).

If λ1λ2λ3 = 8µ13, then (†) can be written as a product of two factors. In this case,

the zero locus is not an elliptic curve. �

3.3 Ore Extension of Graded Skew Clifford Algebras of Global Dimension 2

It remains to figure out which of the other types of quadratic regular algebras of

global dimension 3 (i.e., those with point schemes not occurring in Proposition 3.2.4)

are related to graded skew Clifford algebras. Such algebras have point schemes: a

union of n lines where n ∈ {2, 3}; conic union line with one intersection point; and

cuspidal cubic curve. To find such a relationship, we use the notion of Ore extension

which uses certain types of derivations.
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3.3.1 Definition of a σ-Derivation [9]

Let R be any ring with 1 6= 0 (possibly non-commutative), and let σ ∈ End(R). A

left (respectively, right) σ-derivation of R is an additive map δ : R→ R such that

δ(rs) = σ(r)δ(s) + δ(r)s

(respectively, right σ-derivation

δ(rs) = δ(r)σ(s) + rδ(s)),

for all r, s ∈ R.

The definition of Ore extension is due to the following result.

3.3.2 Theorem (c.f., [9])

Let R be any ring with 1 6= 0 (possibly noncommutative). If σ ∈ End(R) and if δ

is a left σ-derivation, then there exists a ring A such that R ⊂ A and there exists

y ∈ A \R such that the elements of A can be expressed uniquely in the form

n∑
i=0

riy
i where ri ∈ R for all i,

and

yr = σ(r)y + δ(r) for all r ∈ R.

3.3.3 Definition of Ore Extension [9]

Let R be a ring with 1 6= 0 (possibly noncommutative). Let σ ∈ End(R). By

Theorem 3.3.2, the Ore extension R[y;σ, δ] is the ring obtained by giving the ring of

polynomials

R[y] =

{
n∑
i=1

yiri : ri ∈ R

}
a new multiplication, subject to the identity

yr = σ(r)y + δ(r)
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(respectively, ry = yσ(r) + δ(r)) for all r ∈ R.

3.3.4 Theorem [5, Corollary 4.3]

If B is a quadratic regular algebra and if gldim(B) ≤ 2, then B is a graded skew

Clifford algebra.

We will look at Ore extensions of quadratic regular algebras of global dimension

≤ 3. Such algebras are Auslander-regular ([7], [11], [12]). Auslander-regular algebras

that have polynomial growth are regular ([11]). Hence, the next result implies that

Ore extensions of quadratic regular algebras of global dimension ≤ 3 are regular

algebras.

3.3.5 Examples [5]

(i) Quadratic regular algebras of global dimension 1 are isomorphic to B = K[x]. We

take µ = 1 and M1 = 1, then B is a regular graded skew Clifford algebra.

(ii) Up to isomorphism, there are exactly two types of quadratic regular algebras of

global dimension 2:

(1) Let λ ∈ K×, and let

B =
K〈x1, x2〉

〈x1x2 + λx2x1〉
.

If

M1 =

 2 0

0 0

 , M2 =

 0 0

0 2

 ,
where µ12 = λ, then B is a regular graded skew Clifford algebra.

(2) Let

B =
K〈x1, x2〉

〈x1x2 − x2x1 − x1
2〉
.
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If

M1 =

 2 0

0 0

 , M2 =

 0 1

−1 2

 ,
where µ12 = −1, then B is a regular graded skew Clifford algebra.

3.3.6 Theorem [7], [12]

Let R be a noetherian algebra and S = R[y;σ, δ] be an Ore extension of R where

σ ∈ Aut(R) and δ is a left σ-derivation. If R is an Auslander-regular algebra, then S

is an Auslander-regular algebra.

3.3.7 Proposition

Let

B =
K〈x1, x2〉
〈x1x2 − x2x1〉

,

which is a regular graded skew Clifford algebra. Let

σ = idB ∈ Aut(B),

and let δ : B → B be the linear map such that

δ(x1) = x1x2 = δ(x2).

The map δ is a σ-derivation of B, and A = B[x3;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉

where

g1 = x1x2 − x2x1,

g2 = x3x1 − x1x3 − x1x2,

g3 = x3x2 − x2x3 − x1x2,
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has point scheme V(x1x2(x2 − x1)) given by the union of three lines L1, L2, L3 such

that L1 ∩ L2 ∩ L3 = one point (see Figure 3.6).

 

Figure 3.6. Depiction of the Point Scheme in Proposition 3.3.7.

Proof:

The algebra B is a regular graded skew Clifford algebra by Theorem 3.3.4. To prove

δ is a left σ-derivation of B, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= x1x1x2 + x1x2x2 − x2x1x2 − x1x2x1

= x1(x1x2 − x2x1) + (x1x2 − x2x1)x2

= 0

in B. Therefore, by Theorem 3.3.6, A = B[x3;σ, δ] is a regular algebra. By definition

of Ore extension, we have

x3x1 = σ(x1)x3 + δ(x1), x3x2 = σ(x2)x3 + δ(x2),

which yields the relations g2 and g3 in the statement. �

3.3.8 Proposition

Let

B =
K〈x1, x2〉
〈x1x2 − x2x1〉

,
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which is a regular graded skew Clifford algebra. Let

σ = idB ∈ Aut(B),

and let δ : B → B be the linear map such that

δ(x1) = x1x2 and δ(x2) = 0.

The map δ is a σ-derivation of B, and A = B[x3;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉

where

g1 = x3x1 − x1x3 − x1x2,

g2 = x1x2 − x2x1,

g3 = x3x2 − x2x3,

has point scheme V(x1x2
2) given by the union of a line L1 and a double line L2 such

that L1 ∩ L2 = one point (see Figure 3.7).

 

Figure 3.7. Depiction of the Point Scheme in Proposition 3.3.8.

Proof:

The algebra B is a regular graded skew Clifford algebra by Theorem 3.3.4. To prove
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δ is a left σ-derivation of B, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= 0 + x1x2x2 − x2x1x2 − 0

= (x1x2 − x2x1)x2

= 0

in B. Therefore, by Theorem 3.3.6, A = B[x3;σ, δ] is a regular algebra. By definition

of Ore extension, we have

x3x1 = σ(x1)x3 + δ(x1), x3x2 = σ(x2)x3 + δ(x2),

which yields the relations g2 and g3 in the statement. �

3.3.9 Proposition

Let

B =
K〈x1, x2〉
〈x1x2 − x2x1〉

,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(x1) = x1 and σ(x2) = x2 + αx1 where α ∈ K×,

and let δ : B → B be the linear map such that

δ(x1) = 0 and δ(x2) = qx2
2 where q ∈ K×.

The map δ is a σ-derivation of B, and A = B[x3;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉
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where

g1 = x1x2 − x2x1,

g2 = x3x2 − x2x3 − αx1x3 − qx2
2,

g3 = x3x1 − x1x3,

has point scheme

V(x1(qx2
2 + αx1x3))

which is the union of the conic C = V(qx2
2 + αx1x3) and the line L = V(x1) such

that C ∩ L = one point (see Figure 3.8).

 

Figure 3.8. Depiction of the Point Scheme in Proposition 3.3.9.

Proof:

The algebra B is a regular graded skew Clifford algebra by Theorem 3.3.4. To prove

δ is a left σ-derivation of B, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= x1qx2
2 + 0− 0− qx2

2x1

= q(x1x2
2 − x2

2x1)

= qx2(x1x2 − x2x1)

= 0

in B. Therefore, by Theorem 3.3.6, A = B[x3;σ, δ] is a regular algebra. By definition

of Ore extension, we have

x3x1 = σ(x1)x3 + δ(x1), x3x2 = σ(x2)x3 + δ(x2),
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which yields the relations g2 and g3 in the statement. �

3.3.10 Proposition

Let

B =
K〈x1, x2〉

〈x2x1 − x1x2 + x1
2〉
,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(x1) = x1 and σ(x2) = x2 − 2x1,

and let δ : B → B be the linear map such that

δ(x1) = 3x2
2 + x1

2 and δ(x2) = −3x2
2 − 2x1x2.

The map δ is a σ-derivation of B, and A = B[x3;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉

where

g1 = x2x1 − x1x2 + x1
2,

g2 = x3x1 − 3x2
2 − x1x3 − x1

2,

g3 = x3x2 − x2x3 + 3x2
2 + 2x1x3 + 2x1x2,

has point scheme V(3(x2
3 + x1

2x3)) which is a cuspidal cubic curve if and only if

char(K) 6= 3 (see Figure 3.9).

 

Figure 3.9. Depiction of the Point Scheme in Proposition 3.3.10.
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Proof:

The algebra B is a regular graded skew Clifford algebra by Theorem 3.3.4. To prove

δ is a left σ-derivation of B, we show that δ(0) = 0 in B; that is,

δ(x2x1 − x1x2 + x1
2) = δ(x2x1)− δ(x1x2) + δ(x1

2)

= σ(x2)δ(x1) + δ(x2)x1 − σ(x1)δ(x2)

−δ(x1)x2 + σ(x1)δ(x1) + δ(x1)x1

= x1
2x2 + x2x1

2 − 2x1x2x1

= x1(x2x1 + x1
2) + x2x1

2 − 2x1x2x1

= x1
3 + x2x1

2 − x1x2x1

= (x1
2) + x2x1 − x1x2)x1

= 0

in B. Therefore, by Theorem 3.3.6, A = B[x3;σ, δ] is a regular algebra. By definition

of Ore extension, we have

x3x1 = σ(x1)x3 + δ(x1), x3x2 = σ(x2)x3 + δ(x2),

which yields the relations g2 and g3 in the statement. �

3.3.11 Theorem

All the point schemes of quadratic regular algebras of global dimension 3 can be

obtained from either a regular graded skew Clifford algebra of global dimension 3 or

from an Ore extension of a regular graded skew Clifford algebra of global dimension 2.

Proof:

The results follow by considering the first family of examples (§3.2), Proposition 3.3.7,

Proposition 3.3.8, Proposition 3.3.9, and Proposition 3.3.10. �
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These results are extended in my paper “Classifying Quadratic Quantum P2s

By Using Graded Skew Clifford Algebras” with M. Vancliff, and Jun Zhang ([14]), in

which we classify all quadratic regular algebras of global dimension 3 using regular

graded skew Clifford algebras.



CHAPTER 4

REGULAR GRADED SKEW CLIFFORD ALGEBRAS OF GLOBAL

DIMENSION 4

In this chapter, we prove that the regular algebras of global dimension 4 in

[18] can be obtained from Ore extensions of graded skew Clifford algebras of global

dimension 3.

4.1 Proposition

Suppose q ∈ K, where q4 = 1 but q 6= 1. Let

B =
K〈x1, x2, x3〉

〈x1x2 − qx2x1, x1x3 − q−1x3x1, x2x3 − qx3x2〉
,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(xi) = qxi, for all i = 1, 2, 3,

and let δ : B → B be the linear map such that

δ(x1) = x3
2, δ(x2) = x1

2 and δ(x3) = x2
2.

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉

where

g1 = x1x2 − qx2x1, g2 = x2x3 − qx3x2,

g3 = x1x3 − q−1x3x1, g4 = x4x1 − qx1x4 − x3
2,

g5 = x4x2 − qx2x4 − x1
2, g6 = x4x3 − qx3x4 − x2

2,

34
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has point scheme given by one point and appears in [19].

Proof:

The algebra B is a regular skew polynomial ring, and so is a regular graded skew

Clifford algebra. The result now follows from [19, Lemma 3.2]. �

4.2 Proposition

Suppose q ∈ K×, and q2 6= 1. Let

B =
K〈x1, x2, x3〉

〈x1x2 − q−1x2x1, x1x3 − q−1x3x1, x2x3 − x3x2〉
,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(x1) = x1, σ(xi) = qxi for i = 2, 3,

and let δ : B → B be the linear map such that

δ(x1) = (q − q−1)x2x3 and δ(x2) = 0 = δ(x3).

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉

where

g1 = x2x1 − qx1x2, g2 = x2x3 − x3x2,

g3 = x3x1 − qx1x3, g4 = x4x1 − x1x4 − (q − q−1)x2x3,

g5 = x4x2 − qx2x4, g6 = x4x3 − qx3x4,

has point scheme given by V(x2, x3) ∪ V(x2x3 − x1x4) (see Figure 4.1).
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Figure 4.1. Depiction of the Point Scheme in Proposition 4.2.

Proof:

The algebra B is a regular graded skew Clifford algebra by §3.2. To prove δ is a left

σ-derivation, we show that δ(0) = 0 in B; that is,

δ(x1x2 − q−1x2x1) = δ(x1x2)− q−1δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − q−1σ(x2)δ(x1)− q−1δ(x2)x1

= 0 + (q − q−1)x2x3x2 − q−1qx2(q − q−1)x2x3

= (q − q−1)x2(x3x2 − x2x3)

= 0

in B. Similarly,

δ(x1x3 − q−1x3x1) = 0 and δ(x2x3 − x3x2) = 0.

Therefore, by Theorem 3.3.6, A = B[x4;σ, δ] is a regular algebra. By definition of

Ore extension, we have

x4x1 = σ(x1)x4 + δ(x1),

x4x2 = σ(x2)x4 + δ(x2),

x4x3 = σ(x3)x4 + δ(x3),

which yields the relations g4, g5, g6 in the statement. �

4.3 Proposition

Suppose α ∈ K×. Let

B =
K〈x1, x2, x3〉

〈x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2〉
,
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which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(x1) = x1 − αx3, σ(xi) = xi for i = 2, 3,

and let δ : B → B be the linear map such that

δ(x1) = αx1x2 and δ(x2) = 0 = δ(x3).

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉

where

g1 = x1x2 − x2x1, g2 = x3x2 − x2x3,

g3 = x1x3 − x3x1, g4 = x4x1 − x1x4 + α(x4x3 − x1x2),

g5 = x4x2 − x2x4, g6 = x4x3 − x3x4,

has point scheme given by V(x2(x1x2 − x3x4), x3(x1x2 − x3x4)) which contains the

double line V(x2, x3) (see Figure 4.2).

 

Figure 4.2. Depiction of the Point Scheme in Proposition 4.3.

Proof:

The algebra B is a regular graded skew Clifford algebra by §3.2. To prove δ is a left

σ-derivation, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)
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= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= 0 + αx1x2x2 − x2αx1x2 − 0

= α(x1x2 − x2x1)x2

= 0

in B. Similarly,

δ(x1x3 − x3x1) = 0 and δ(x2x3 − x3x2) = 0.

Therefore, by Theorem 3.3.6, A = B[x4;σ, δ] is a regular algebra. By definition of

Ore extension, we have

x4x1 = σ(x1)x4 + δ(x1),

x4x2 = σ(x2)x4 + δ(x2),

x4x3 = σ(x3)x4 + δ(x3),

which yields the relations g4, g5, g6 in the statement. �

4.4 Proposition

Suppose α ∈ K× \ {−1}. Let

B =
K〈x1, x2, x3〉

〈x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2〉
,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(xi) = xi for i = 1, 3, σ(x2) = (1 + α)x2,

and let δ : B → B be the linear map such that

δ(x1) = 0 = δ(x3) and δ(x2) = −αx1
2.

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉
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where

g1 = x1x2 − x2x1, g2 = x2x3 − x3x2,

g3 = x1x3 − x3x1, g4 = x1x4 − x4x1,

g5 = x2x4 − x4x2 − α(x1
2 − x2x4), g6 = x4x3 − x3x4,

has point scheme given by Q ∪ L where Q = V(x1
2 − x2x4) and L = V(x1, x3) (see

Figure 4.3).

 

Figure 4.3. Depiction of the Point Scheme in Proposition 4.4.

Proof:

The algebra B is a regular graded skew Clifford algebra by §3.2. To prove δ is a left

σ-derivation, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= x1(−αx1
2) + 0− 0− (−αx1

2)x1

= −α(x1
3 − x1

3)

= 0

in B. Similarly,

δ(x1x3 − x3x1) = 0 and δ(x2x3 − x3x2) = 0.

Therefore, by Theorem 3.3.6, A = B[x4;σ, δ] is a regular algebra. By definition of

Ore extension, we have

x4x1 = σ(x1)x4 + δ(x1),
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x4x2 = σ(x2)x4 + δ(x2),

x4x3 = σ(x3)x4 + δ(x3),

which yields the relations g4, g5, g6 in the statement. �

4.5 Proposition

Let

B =
K〈x1, x2, x3〉

〈x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2〉
,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ(x1) = x1 + x3, σ(xi) = xi, for i = 2, 3,

and let δ : B → B be the linear map such that

δ(x1) = −x1
2 and δ(x2) = 0 = δ(x3).

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉

where

g1 = x1x2 − x2x1, g2 = x3x2 − x2x3,

g3 = x1x3 − x3x1, g4 = x1x4 − x4x1 − x1
2 + x4x3,

g5 = x2x4 − x4x2, g6 = x3x4 − x4x3,

has point scheme given by Q∪L where Q = V(x2
2− x4x3) and L = V(x3, x4) (so the

line L is tangential to the quadric Q at a nonsingular point of Q)(see Figure 4.4).
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Figure 4.4. Depiction of the Point Scheme in Proposition 4.5.

Proof:

The algebra B is a regular graded skew Clifford algebra by §3.2. To prove δ is a left

σ-derivation, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= 0− x1
2x2 − x2(−x1

2)− 0

= −x1
2x2 + x1

2x2

= 0

in B. Similarly,

δ(x1x3 − x3x1) = 0 and δ(x2x3 − x3x2) = 0.

Therefore, by Theorem 3.3.6, A = B[x4;σ, δ] is a regular algebra. By definition of

Ore extension, we have

x4x1 = σ(x1)x4 + δ(x1),

x4x2 = σ(x2)x4 + δ(x2),

x4x3 = σ(x3)x4 + δ(x3),

which yields the relations g4, g5, g6 in the statement. �

4.6 Proposition

Let

B =
K〈x1, x2, x3〉

〈x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2〉
,
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which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ = idB ∈ Aut(B),

and let δ : B → B be the linear map such that

δ(x1) = −x1
2 + x2x3 and δ(x2) = 0 = δ(x3).

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉

where

g1 = x1x2 − x2x1, g2 = x2x3 − x3x2,

g3 = x1x3 − x3x1, g4 = x1x4 − x4x1 − x1
2 + x2x3,

g5 = x2x4 − x4x2, g6 = x3x4 − x4x3,

has point scheme given by Q∪L where Q = V(x1
2− x2x3) and L = V(x2, x3) (so the

line L is tangential to the quadric Q at a singular point of Q)(see Figure 4.5).

 

Figure 4.5. Depiction of the Point Scheme in Proposition 4.6.

Proof:

The algebra B is a regular graded skew Clifford algebra by §3.2. To prove δ is a left

σ-derivation, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)
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= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= 0 + (−x1
2 + x2x3)x2 − x2(−x1

2 + x2x3)− 0

= −x1
2x2 + x2

2x3 + x1
2x2 − x2

2x3

= 0

in B. Similarly,

δ(x1x3 − x3x1) = 0 and δ(x2x3 − x3x2) = 0.

Therefore, by Theorem 3.3.6, A = B[x4;σ, δ] is a regular algebra. By definition of

Ore extension, we have

x4x1 = σ(x1)x4 + δ(x1),

x4x2 = σ(x2)x4 + δ(x2),

x4x3 = σ(x3)x4 + δ(x3),

which yields the relations g4, g5, g6 in the statement. �

4.7 Proposition

Let

B =
K〈x1, x2, x3〉

〈x1x2 − x2x1, x1x3 − x3x1, x2x3 − x3x2〉
,

which is a regular graded skew Clifford algebra. Let σ ∈ Aut(B) such that

σ = idB ∈ Aut(B),

and let δ : B → B be the linear map such that

δ(x1) = 0 = δ(x2) and δ(x3) = −x1
2 + x2x3.

The map δ is a σ-derivation of B, and A = B[x4;σ, δ] is a regular algebra. In fact,

the algebra

A =
K〈x1, x2, x3, x4〉
〈g1, . . . , g6〉
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where

g1 = x1x2 − x2x1, g2 = x2x3 − x3x2,

g3 = x1x3 − x3x1, g4 = x1x4 − x4x1,

g5 = x2x4 − x4x2, g6 = x3x4 − x4x3 − x1
2 + x2x3,

has point scheme given by V(x1(x1
2−x2x3), x2(x1

2−x2x3)), which contains the double

line V (x1, x2) (see Figure 4.6).

 

Figure 4.6. Depiction of the Point Scheme in Proposition 4.7.

Proof:

The algebra B is a regular graded skew Clifford algebra by §3.2. To prove δ is a left

σ-derivation, we show that δ(0) = 0 in B; that is,

δ(x1x2 − x2x1) = δ(x1x2)− δ(x2x1)

= σ(x1)δ(x2) + δ(x1)x2 − σ(x2)δ(x1)− δ(x2)x1

= 0

in B. Similarly,

δ(x1x3 − x3x1) = 0 and δ(x2x3 − x3x2) = 0.

Therefore, by Theorem 3.3.6, A = B[x4;σ, δ] is a regular algebra. By definition of

Ore extension, we have

x4x1 = σ(x1)x4 + δ(x1),

x4x2 = σ(x2)x4 + δ(x2),

x4x3 = σ(x3)x4 + δ(x3),

which yields the relations g4, g5, g6 in the statement. �
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4.8 Remark

S. P. Smith and T. Stafford proved that the Sklyanin algebras on 4 generators (the

family of algebras constructed by the physicist, E. K. Sklyanin [16]) are regular al-

gebras of global dimension 4 [17]. However, they appear not to be directly related,

in the sense of Chapter 3, to any graded skew Clifford algebra, although they could

perhaps be weakly related in some way (c.f., [14, Remark 4.4]).



CHAPTER 5

TWISTING A REGULAR GRADED SKEW CLIFFORD ALGEBRA BY AN

AUTOMORPHISM

In this chapter, we suppose A is a regular graded skew Clifford algebra that

is a twist (in the sense of [4, §8]) of a regular graded Clifford algebra B by an au-

tomorphism. We prove in Theorem 5.7 that, under this hypothesis, the subalgebra

R of A generated by the yi (see Definition 2.2.1) is a twist of a polynomial ring by

an automorphism, and is a skew polynomial ring. We also present an example that

demonstrates that this can fail when A is not a twist of B (see Nonexample 5.3).

We thank S. P. Smith (University of Washington) for the suggestion to study

the algebra R.

5.1 Definition of a Twist by an Automorphism [4, §8]

Let D denote a quadratic algebra, let D1 denote the span of the homogeneous degree-

one elements of D. Suppose τ is a graded degree-zero automorphism of D, that is,

τ |Di
: Di → Di for all i. The twist Dτ of D by τ is a quadratic algebra that has the

same underlying vector space as D, but has a new multiplication ∗ defined as follows:

if a, b ∈ D1 = (Dτ )1, then a ∗ b = aτ(b),

where the right-hand side is computed using the original multiplication in D.

46
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In this chapter, aτ means τ(a) for a ∈ D1 = (Dτ )1. Also, we consider only automor-

phisms τ such that

τ |Di
: Di → Di for all i.

5.2 Example

Let λ1, λ2 ∈ K×, and let

C =
K〈X, Y 〉
〈XY − Y X〉

.

The map

τ =

 λ1 0

0 λ2

 ∈ Aut(C),

so the algebra

A =
K〈x, y〉

〈λ1λ2
−1xy − yx〉

is the twist of C by τ , since

λ1λ2
−1x ∗ y − y ∗ x = XY − Y X.

5.3 Nonexample

Let λ ∈ K and let

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉

where

g1 = x1x2 + µ12x2x1 − λx3
2,

g2 = x1x3 + µ13x3x1,

g3 = x2x3 + µ23x3x2,

where 0 6= µij ∈ K for i, j = 1, 2, 3 such that

µ32 = µ13 6= µ12µ23.
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By §3.2, A is a regular graded skew Clifford algebra. Let R be the K-algebra gener-

ated by y1, y2, y3 (see Definition 2.2.1). By Definition 2.2.1, deg(yi) = 2 for all i, and,

in this algebra A, the yi’s satisfy only two relations of degree 4, so R is not a skew

polynomial ring, nor a twist of a polynomial ring by an automorphism.

The main result of this chapter, Theorem 5.7, proves that R is a twist of a

polynomial ring if A is a twist of a graded Clifford algebra. Thus section 5.4 defines

this concept and results useful in the proof of Theorem 5.7.

5.4 Definition of Graded Clifford Algebras [10]

Let M1, . . . ,Mn ∈M(n,K) denote symmetric matrices. A graded Clifford algebra B

associated to M1, . . . , Mn is a graded K-algebra on degree-one generators X1, . . . , Xn

and on degree-two generators Y1, . . . , Yn with defining relations given by:

(a) XiXj +XjXi =
∑n

k=1(Mk)ijYk for all i, j = 1, . . . , n, and

(b) Yk central for all k = 1, . . . , n.

In Definition 2.2.1, if µij = 1 for all i, j = 1, . . . , n, and if ri is central for all i ∈

{1, . . . , n}, then the graded skew Clifford algebra in that definition is a graded Clifford

algebra.

5.4.1 Example

Let λ ∈ K×. If

M1 =

 0 1

1 0

 , M2 =

 2 0

0 2λ

 ,
then the graded Clifford algebra B associated to M1,M2 is

K〈X1, X2〉
〈X2

2 − λX1
2〉
,
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since

X1X2 +X2X1 = Y1, Y2 = X1
2, λY2 = X2

2,

and Yi is central for all i.

5.4.2 Definition of Quadric System

Let C be the K-algebra on generators Z1, . . . , Zn with defining relations

ZjZi = ZiZj for all i, j,

and let

Qk :=

[
Z1 · · · Zn

]
Mk


Z1

...

Zn

 ∈ C.
The collection {Q1, . . . , Qn} is called a quadric system. In Definition 2.2.1, if µij = 1

for all i, j = 1, . . . , n, then the quadric system of a graded skew Clifford algebra is

the quadric system of a graded Clifford algebra.

5.4.3 Example

For the algebra B in Example 5.4.1, we have

C =
K〈Z1, Z2〉

〈Z2Z1 − Z1Z2〉
.

Moreover,

Q1 = 2Z1Z2, Q2 = 2Z1
2 + 2λZ2

2.

However, since char(K) 6= 2, we consider:

Q1 = Z1Z2, Q2 = Z1
2 + λZ2

2.
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5.4.4 Definition of Zero Locus

Suppose C = K[X1, . . . , Xn] and F ∈ C2. We define the zero locus Γ(F ) of F to be

Γ(F ) = {P ∈ Pn−1 : F (P ) = 0},

where Pn−1 is identified with P(C∗1).

Similarly if F1, . . . , Fm ∈ C2, then

Γ(F1, . . . , Fm) = {P ∈ Pn−1 : Fi(P ) = 0 for all i}.

5.4.5 Definition of Base-Point Free

The quadric system {Q1, . . . , Qn} ⊂ C is said to be base-point free (BPF) if Γ(Q1, . . . , Qn)

is empty.

If µij = 1 for all i, j = 1, . . . , n, then Definition 5.4.5 is equivalent to Definition 2.2.8,

since, in this case, Z is the graph of the identity map on Pn−1.

5.4.6 Example

Let P = (α1, α2) ∈ P1. Referring to Example 5.4.3, we have

0 = Q1(P ) = α1α2, 0 = Q2(P ) = α1
2 + λα2

2.

Thus α1 = α2 = 0 which is contradiction. Therefore {Q1, Q2} is BPF.

5.4.7 Theorem [1], [10]

Let M1, . . . ,Mn be symmetric n × n matrices. The graded Clifford algebra A as-

sociated to M1, . . . ,Mn is quadratic, regular of global dimension n and satisfies the

Cohen-Macaulay property with Hilbert series 1
(1−t)n if and only if the quadric system
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in Pn−1 determined by the Mk is BPF. In this case, A is noetherian and has no zero

divisors.

Before returning to our main theorem, we first require some preliminary tech-

nical results.

5.5 Lemma

Let X1, . . . , Xn and the Yk be as in Definition 5.4. Let D ⊂ B2 denote the homoge-

neous central elements in B of degree two. If a, b ∈ B1, then ab+ ba ∈ D.

Proof:

We may write

a =
n∑

m=1

αmXm and b =
n∑
l=1

βlXl

with αm, βl ∈ K for all m, l. It follows that

ab+ ba =
n∑

m,l=1

αmβl(XmXl +XlXm) =
n∑

m,l=1

αmβl

(
n∑
k=1

(Mk)mlYk

)
.

Therefore

ab+ ba ∈ D for all a, b ∈ B1,

since Yk ∈ D for all k. �

5.6 Lemma

Let µij be as defined in Definition 2.2.1 for all i, j, and let S be the skew polynomial

ring on n generators defined in Definition 2.2.3. The algebra S is a twist of the

polynomial ring

C = K[Z1, . . . , Zn]
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by an automorphism σ ∈ Aut(C) if and only if

µik = µijµjk for all i, j, k;

in this case, σ|C1 is semisimple, and for all i, j, we have

µij =
ρi
ρj
, where ρi ∈ K×

and

σ(Zi) = ρiZi for all i.

Proof:

The first part follows from [3], since µik = µijµjk for all i, j, k if and only if the point

scheme of S is Pn−1, and the latter holds if and only if S is a twist of the polynomial

ring on n variables by an automorphism.

Let S be a twist of the polynomial ring

C = K[Z1, . . . , Zn]

by an automorphism σ ∈ Aut(C). The relations in S are

zjzi = µijzizj for all i, j,

therefore, in C1 we have

ZjZi
σ = µijZiZj

σ (∗∗).

However, C is commutative and a unique factorization domain, and

deg(Zi) = 1 for all i,

so Zi is irreducible, and, for all i 6= j, Zi - Zj. It therefore follows from (∗∗) that

Zi | Ziσ for all i. Since deg(Zi
σ) = 1, Zi

σ ∈ K×Zi for all i. Hence, σ|C1 is semisimple.

Writing

Zi
σ = ρiZi for all i,
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where

ρi ∈ K× for all i,

and substituting into (∗∗) completes the proof. �

Recall B is a regular graded Clifford algebra and A is a regular graded skew

Clifford algebra that is a twist of B by an automorphism τ ∈ Aut(B). From Definition

2.2.3, there is a skew polynomial ring S associated to A. By [5, Proposition 4.5],

since A is a twist of B by τ , there exists a choice for S so that S is a twist of the

polynomial ring C by τ−1 and conversely. By Lemma 5.6, τ |S1 is semisimple; i.e. for

each i = 1, . . . , n, we have

τ(zi) = λizi for some λi ∈ K×

and

µij =
λj
λi

for all i, j.

(In the notation of Lemma 5.6,

λi = ρi
−1 for all i

since τ = σ−1.)

In the next result, R′ is the subalgebra of B generated by the Yi, so R′ is the

commutative polynomial ring K[Y1, . . . , Yn]. The algebra R denotes the subalgebra

of A generated by the yi, and by Nonexample 5.3, this algebra is not, in general, a

skew polynomial ring nor a twist of a polynomial ring.
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5.7 Theorem

Suppose that A is a regular graded skew Clifford algebra on n degree-1 generators

x1, . . . , xn (in the sense of Theorem 3.1), and R is the subalgebra of A generated

by y1, . . . , yn. If A is a twist of a regular graded Clifford algebra B (in the sense of

Theorem 5.4.7) by

τ ∈ Aut(B),

then R is a twist of the polynomial ring R′ on n variables and is a skew polynomial

ring.

Proof:

By the preceding discussion

µij =
λj
λi

for all i, j (†)

where λi ∈ K× and

τ(zi) = λizi for all i.

Since S1 = C1, τ(Zi) = λiZi for all i, so we may rechoose the Xk in B1 so that the

degree-two relations of B have the form given by Definition 5.3(a) (the Mk will also

change) and so that {X1, . . . , Xn} is dual to the basis {Z1, . . . , Zn} for C. With this

choice, we have

Xi
τ = λiXi for all i,

and the twist of Xi is xi. For all i, j, we have

xixj + µijxjxi = xixj +
λj

λi
xjxi

= 1
λi

(λixixj + λjxjxi)

= 1
λi

(xi
τxj + xj

τxi) ∈ K×(xi
τxj + xj

τxi).
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For all i, j, let

nij = xi
τxj + xj

τxi.

By Definition 2.2.1, nij ∈ R for all i, j, so

K[nij : 1 ≤ i, j ≤ n] ⊆ R.

Since A is quadratic, each yk is a function of the nij, and so

R = K[nij : 1 ≤ i, j ≤ n].

Moreover, each nij is a normal element of A since, for all i, j, k, we have:

xknij = xk(xi
τxj + xj

τxi)

= Xk(Xi
τ2

Xj
τ2

+Xj
τ2

Xi
τ2

)

= λi
2λj

2Xk(XiXj +XjXi)

= λi
2λj

2(XiXj +XjXi)Xk

= λk
−2λiλj(xi

τxj + xj
τxi)xk

= µkiµkjnijxk,

where the fourth equality follows from Lemma 5.5. It follows that

nijnkr = µikµjkµirµjrnkrnij for all i, j, k, r.

Hence, by (†), we have

nijnkr = µik
2µjr

2nkrnij for all i, j, k, r (††).

Therefore R is a skew polynomial ring. For all i, j, k, r, let

νijkr = µik
2µjr

2.

It follows that

νijkrνkrab = νijab for all i, j, k, r, a, b,
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so R is a twist of the polynomial ring R′′. For all i, j, let Nij ∈ B denote the element

that twists to nij ∈ A. So

Nij = Xi
τXj

τ +Xj
τXi

τ = τ(XiXj +XjXi)

and, by (††), we have

NijNkr
τ2

= νijkrNkrNij
τ2

for all i, j, k, r.

In particular, R′′ is the subalgebra of B generated by the Yk, so R′′ = R′. Defining

τ ′ ∈ Aut(R′)

by

τ ′(Nij) = λi
2λj

2Nij for all i, j,

we find that R is the twist of R′ by τ ′. �

5.8 Example

Let

B =
K〈X1, X2, X3〉
〈f1, f2, f3〉

where

f1 = X1X2 +X2X1 −X3
2,

f2 = X1X3 +X3X1 −X2
2,

f3 = X2X3 +X3X2 −X1
2

and let

τ =


1 0 0

0 µ12 0

0 0 µ13

 ∈ Aut(B).
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Twisting B by τ yields the algebra

A =
K〈x1, x2, x3〉
〈g1, g2, g3〉

where

g1 = x1x2 + µ12x2x1 − µ32x3
2,

g2 = x1x3 + µ13x3x1 − µ23x2
2,

g3 = x2x3 + µ23x3x2 − µ13x1
2.

By Definition 5.3, B is a graded Clifford algebra, and by §3.2, A is a graded skew

Clifford algebra. The subalgebra R of A generated by the yi is the algebra

K〈y1, y2, y3〉
〈y1y2 − µ12y2y1, y2y3 − µ23y3y2, y1y3 − µ13y3y1〉

,

which is a skew polynomial ring and a twist of the polynomial ring K[Y1, Y2, Y3] ⊂ B.
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