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ABSTRACT 

 
AN INVESTIGATION OF SUPPORT VECTOR MACHINE CLASSIFIER IN DETECTING 

NOCTURNAL AIRWAY OBSTRUCTION FROM SPONTANEOUS HEART RATE  

COMBINED WITH ECG MORPHOLOGY CHANGES 

 

 

Harshan Ravi, M.S 

 

The University of Texas at Arlington, 2011 

 

Supervising Professor:  Dr. Khosrow Behbehani 

Sleep apnea is a sleep disordered breathing resulting from limitation or cessation to breathing 

for 10 or more seconds. The prevalence of sleep apnea has increased exponentially in the past 

decade.  The increase in epidemic in sleep apnea is associated with increase in the cases of 

obesity. It is estimated that 12-18 million of American adults suffer from sleep apnea, which is a 

sizable sector of the adult population.  Sleep apnea is risk factor for hypertension, type II 

diabetes, and congestive heart failure. Sleep apnea may go undiagnosed for a long period of 

time after its onset due to complexity of diagnosing it. Nocturnal polysomnography is the 

standard method for diagnosing sleep apnea. It is often inaccessible and costly, hence making 

sleep apnea an under diagnosed disease. Further, widespread screen of the vulnerable sector 

of the population (ages 35 and above) is currently not feasible. To overcome these limitations 

many physiological markers are investigated as alternatives means of detecting sleep apnea. A 

number of studies during the past decade have investigated the possibility of detecting sleep 

apnea using features of the electrocardiogram (ECG). 
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In this study, a support vector machine (SVM) based classifier was developed to detect 

obstructive sleep apnea (OSA) and normal breathing using features extracted from nocturnal 

ECG.  NPSG was performed on 16 normal patients and 14 OSA patients. This approach 

combines both RPE and R-R interval to form a cluster. An optimum centroid is extracted from 

the cluster, and is used as an input to the SVM. The performance of the proposed algorithm in 

detecting respiratory event was tested by determining its ability to detect normal breathing, and 

OSA events in 15 minutes data epochs obtained from volunteer normal 16 subjects and 14 

apnea patients. The SVM algorithm was designed and optimized using two heuristic and three 

numerical optimization techniques. For Manual optimization, a highest learning performance of, 

accuracy of 91.16%, sensitivity of 95.20% and specificity of 86.20% is achieved for training set 

and a highest testing performance of, accuracy of 75.98%, sensitivity of 81.20 %, and specificity 

of 69.87% is achieved for testing set. The computerized optimization resulted in slightly higher 

performance than the Manual optimization. The highest learning performance achieved for 

training set is, accuracy of 92.78%, sensitivity of 96.33% and specificity of 88.43% and a 

highest testing performance of, accuracy of 76.66%, sensitivity of 81.84 %, and specificity of 

70.41% is achieved for testing set. The detection rates achieved using SVM is comparable to 

the results achieved with previous study using other form of classifiers [10]. 
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CHAPTER 1 

INTRODUCTION 

1.1 Sleep Apnea 

1.1.1 Definition 

Sleep apnea is a sleep disordered breathing (SDB) resulting from limitation of respiratory airflow 

or complete cessation of breathing during sleep. If the obstruction to breathing is complete and 

for ten or more seconds, then the episode is called apnea. During sleep period, apneic events 

may ensue once or multiple times per hour where the duration of the event may be ten or more 

seconds. During sleep apnea, patients do not get sufficient oxygen during sleep. The result is 

patient being completely out of sleep or a transition from deep sleep to light sleep. This results 

in poor sleep hygiene that leads to fatigue and daytime sleepiness. Sleep hypopnea is a sleep 

disordered breathing, in which the patient takes abnormally shallow breathing during sleep 

resulting in disruption of sleep. During sleep hypopnea Carbon dioxide (CO2) level increases 

and oxygen (O2) level decreases in the blood. This change in O2 and CO2 concentration is 

directly proportional to obstruction to airflow. This atypical breathing pattern leads to disruption 

of sleep [10].  

1.1.2 Types of sleep apnea 

Sleep apnea is categorized into three types: obstructive sleep apnea (OSA), central sleep 

apnea (CSA) and mixed sleep apnea. Obstructive sleep apnea is due to physical obstruction to 

airflow at upper airway. Figure 1.1 shows a pictorial representation of site of obstruction. This 

type of sleep apnea is most prevalent in overweight male between 35 and 50 years old, who 

has large tonsils, small jaw, and a small opening of the airway [19]. When this condition is 

present, the muscles of the soft palate and the muscles at the base tongue relax and sag, 

causing obstruction to breathing during sleep. Approximately, 84% of all sleep apnea patients 
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suffer from OSA [14]. The severity of OSA is graded with the Apnea-Hypopnea Index (AHI). A 

person who has an AHI of 30, experiences 30 abnormal respiratory events per hour of sleep 

which is a severe level of disease. An AHI of 5-15 is cogitated as mild OSA, an AHI of 15-30 as 

moderate OSA and an AHI greater than 30 as severe OSA. Central sleep apnea is due to lack 

respiratory effort. When this condition is extant, for a brief moment of time the chest and 

diaphragm muscles which control breathing do not receive signals from brain. This is a rare 

form of disorder where airway remains open but muscles controlling breathing fails. About 0.4% 

of all sleep apnea patients suffer from CSA [14]. Mixed sleep apnea is due to transition between 

long periods of OSA and brief intervals of CSA. It is estimated 15% of all sleep apnea patients 

suffer from mixed sleep apnea [14]. 

 

 
Figure 1.1 An illustration of the site of obstruction to airflow. Adopted form [18] 

 
1.1.3 Symptoms and Risk factors 

The most common symptoms of sleep apnea are loud snoring, choking or respiration pause 

during sleep, and feeling wooziness during day. Some less common symptoms are morning 

headaches, memory problems, feeling irritable, frequent urination at night, and dry throat [3]. 

Sleep apnea is also a risk factor for hypertension, angina pectoris, TYPE- || Diabetes and stroke 
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[15]. Previous studies have also confirmed that OSA causes hypertension and contributes to 

Essential hypertension [2]. 

1.1.4 Prevalence of Sleep Apnea 

Sleep apnea is considered a common disorder which goes undiagnosed for long period of time 

[17]. The Wisconsin Sleep Cohort Study estimated in 2008  that roughly one in five adults has 

mild sleep apnea and one in 25 adults has severe sleep apnea. According to one study about 

12-18 million of USA adults suffer from sleep apnea [11]. Sleep apnea cost 15.9 billion dollars 

as direct cost with an estimated 50 to 100 billion in indirect and related costs a year on 

American economy [12]. The above discussed studies suggest that quite a sizable population is 

suffering from sleep apnea and early diagnosis of sleep apnea prevents further advent.   

1.1.5 Diagnosis for Sleep Apnea and Treatment 

Doctors diagnose sleep apnea based on patient‟s medical and family history, report of 

symptoms and nocturnal sleep studies using polysomnograph. Nocturnal polysomnograph 

(NPSG) is a standard tool to diagnosis sleep apnea. This test is conducted during overnight 

stay in sleep laboratory where multiple physiological markers are recorded simultaneously. 

Electroencephalography (electrical activity of brain), Electromyography (skeletal muscles 

electrical activity), Electrooculography (eye movements), Electrocardiography (heart rate), 

oxygen saturation and Plethysmography (respiratory flow) are measured during the test. Using 

NPSG data, a certified sleep specialist blind to aim of the study scores apnea on the recorded 

results; if apneic episodes are more than five episodes per hour of a sleep and they are 

concomitant with blood oxygen desaturation. Further, sleep expert considers if apnea episodes 

are associated with the frequent arousal and irregular heartbeat. The NPSG is very costly 

procedure. This prevents a large clump of people from the availing the service. But who can 

afford the service find it tedious and laborious due to long duration of scan.  It is also a fact that 

scarcity of sleep labs and sleep lab experts is detrimental to timely diagnosis and treatment. 

The treatment of sleep apnea varies with the severity of sleep apnea. For mild OSA, treatment 
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may consists of refraining from sleeping on ones back, or using decongestant therapy for 

patients having a problem with nose congestion, or weight reduction for obese patients. For 

severe OSA, the treatment consists of using nasal continuous positive airway pressure (CPAP), 

which relives OSA. CPAP uses a small mask held onto the nose by straps, or has soft plastic 

pillows that are inserted into the nostrils. CPAP is a respiratory ventilator that applies titrated 

pressure to upper airway sufficient to prevent upper airway collapse. Compressed air generated 

by the CPAP machine is applied to the patient‟s nostrils via mask. Typically, CPAP the mask is 

held on to the face by straps that wrap over head, or has soft plastic pillows that are inserted 

into the nostrils. Machine can control the pressure of the air entering the nose. The column of 

pressurized airflow in the patient airway, exert the pressure to keep the upper airway open.               

1.1.6 Alternate Means of Diagnosing Sleep Apnea 

To overcome the shortfalls of the NPSG, a number of alternate means of detecting sleep apnea 

have been investigated.  Respiration was one of the physiological parameter which was 

investigated extensively for the detection of sleep apnea.  

1.1.6.1 Diagnosing sleep apnea measuring changes in respiration 

Sleep apnea is characterized by cyclic repetition of breathing cessation and restoration during 

sleep. Measuring the respiration during sleep could give qualitative information regarding sleep 

apnea. Respiration can be measured in a number of ways. One such method is use of 

thermistor/thermocouple sensor. A thermistor/thermocouple based flow sensor, worn at below 

the nose and above upper lip was used as means for diagnosing sleep apnea. Change in 

temperature of air due to breathing pattern changes the resistance of the sensor for thermistor 

and voltage in the case of thermocouple [20].   The sensor keeps track of decrease or complete 

cessation of respiration throughout the night. After few hours of recording, they are scored, 

tallying the number of respiratory events per hour of recording. The position of the sensor 

should be fixed to get qualitative information. Since, it plays important role in the detection of 

sleep apnea; it requires continuous monitoring of sensor positioning. Furthermore, a conflict in 
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results was provided with study of accuracy of the monitor. It was unclear whether performance 

depends on the signal acquisition system, including the sensor, or on the analytical algorithm 

[21].  

Respiration can also be assessed from the measurements of chest and abdominal movements. 

Changes in respiration may be measured effectively by using plethysmography. There are 

number of Plethysmography techniques available for use. However, for diagnostic purpose 

primarily Elastomeric Plethysmography, Impedance Plethysmography and respiratory 

inductance Plethysmography are used.   In Elastomeric Plethysmography, a belt embedded 

with piezo-electrical sensor is fastened around chest or abdomen, which experiences a change 

in tension due chest and abdominal movement. This change is directly converted into voltage. 

The method is cost effective and easy to use, but suffers from trapping artifact. This results in 

undermining and/or overrating the actual degree of chest movement. Impedance 

Plethysmography is based on the principle that the human body presents high impedance to 

electric current. Two electrodes which carry weak alternating current are connected to the skin 

to measure impedance. Movement of the cross-section changes the impedance. This result in a 

non-linear signal, which is useful for qualitative analysis. Since, the method use electric current 

to detect impedance, one should take into account the frequency range used, to prevent 

interference with other electric equipment such as defibrillators and pacemaker. The respiratory 

inductance Plethysmography uses the Faraday‟s Law and Lenz‟s Law of electromagnetic to 

detect respiratory effort. A coiled elastic belt is worn around the chest or abdomen. When an 

alternating current is passed through the coil, a magnetic field is generated (Faraday‟s law). The 

respiratory excursion changes the cross section area of the body, inducing an opposite current 

that can be measured [22].  This method is proven to be useful in measuring the chest or 

abdominal movement effectively but suffers from the calibration difficulties where extensive 

calibration paradigms or two position calibration is required.  
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To make diagnosis of sleep apnea more viable, cost effective, patient friendly and accurate 

researchers started looking extensively into other physiological parameters. Electrocardiogram 

(ECG) is one such physiological marker which is researched extensively as an alternative mean 

of diagnosing sleep apnea. 

1.1.6.2 Diagnosing sleep apnea using ECG 

Sleep apnea was found to have a significant impact on the electrical activity of heart [34].  

George Moody et al were the first to report the changes in ECG with the changes in respiration. 

They presented a signal-processing technique which derives respiratory waveforms from 

ordinary ECGs, permitting reliable detection of respiratory efforts. More than 13 groups came 

together for an international competition to explore the time and frequency domain analysis of 

HRV to detect sleep apnea [7]. Sugesseted few possible ways of detecting sleep apnea with 

reasonable accuracy, but could not reach conclusion at the end. An algorithm was developed 

for automatic detection of OSA using spectrogram of ECG [4]. For this purpose heart rate (HR), 

S-pulse amplitude and pulse energy were extracted from ECG. However, due to complexity of 

patterns and variation among subjects, manual classification of ECG was more accurate than 

the proposed algorithm. Specific features extracted from ECG which contains frequency 

information(R-R interval) and morphology(R-wave amplitude) was used to detect sleep disorder 

breathing (SDB) [8].  This technique uses the frequency domain analysis of the time varying 

features, where time domain analysis is completely neglected. A bivariate time varying 

autoregressive model (TVAM) was used to evaluate beat by- beat power spectral densities for 

both the RR intervals and the QRS complex areas was used to detect sleep apnea with 

considerable accuracy [24]. However, the algorithm overestimates apnea and is useful only for 

screening. In other study by Quiceno-Manrique et al, time frequency distribution and dynamic 

features extracted from ECG were used for the detection Sleep apnea [5]. Most recently a novel 

method of analyzing time frequency plots generated from heart rate variability was used to 

detect sleep apnea. This technique used textural features generated from normalized gray-level 
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co-occurrence matrix (NGLM) of images generated by short time discrete Fourier transform 

(STDFT) of the HRV [9]. In the above both cases, even though good detection accuracy was 

achieved, both methods did not considered the amplitude variation in ECG due to sleep apnea.  

A quadratic discriminant analysis classification system was used to detect sleep apnea in 

children [6]. The method presented the use of temporal features such as mean and Standard 

deviation of R-R interval within that segment and first 3 serial correlation coefficients and 

frequency features for instance power spectral density (PSD) and ECG derived respiration. In 

other study by AH Khandoker et. al, support vector machines (SVMs) were used for the 

screening of obstructive sleep apnea Syndrome from ECG recordings [43].  

After a thorough literature search it is observed that a limited research has been performed in 

investigating the combined effect of R-R interval and R peak envelope (envelope of R peaks) for 

the detection of sleep apnea. Also, it is observed that SVM an attractive machine learning 

theory is scarcely used in the field of sleep apnea detection. It was deemed to investigate both 

R-R interval and RPE together for the detection of sleep apnea with SVM as a classifier. 

1.2 Hypothesis 

In this study, we are investigating the performance of SVM for the detection of sleep apnea 

using limited features extracted from ECG. For this purpose, we used centroid extracted from 

the cluster of R-R interval and RPE derived from ECG, as an input to SVM classifier. In this 

thesis we will discuss a proposed approach to test the above hypothesis.  

1.3 Organization of Thesis 

The content of this thesis is presented as follows. Chapter 2 presents ECG the algorithm to 

detect the presence of apnea using ECG. The experimental method in evaluating the 

performance of the proposed algorithm is presented in Chapter 3. Chapter 4 describes the 

results obtained from the sleep data. Chapter 5 discusses performance results for the proposed 

algorithm. Chapter 6 contains the conclusions and future work.  
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CHAPTER 2 

METHODS AND MATERIALS 

 
This chapter discusses in detail about the methods and materials that are used in this project. 

First section 2.1 of the chapter deals with the physiological effects of sleep apnea and also 

discusses the brief Introduction to ECG. Section 2.2 describes the data preprocessing and the 

proposed method to extract ECG features. Section 2.3 details the concept of K-Means 

clustering. Section 2.4 discusses the mathematical foundations for support vector machines 

(SVM). Last section discuses the optimization techniques used for the optimization of 

hyperplane parameters. 

2.1 Physiological effects of Sleep Apnea  

Sleep is the time for cardiovascular relaxation due to decrease in metabolic rate and 

sympathetic nervous system activity (SNA) and increase in vagal parasympathetic outflow to 

the heart. The SNA such as Heart rate, cardiac output and blood pressure decreases. However, 

OSA counteracts this cardiovascular quiescence during sleep. This mediates blood pressure 

and heart changes to be intermediary between wakefulness and sleep. Physiological effect of 

sleep apnea can be summarized as follows. 

First, there is initial decrease in the drive to breathe caused by both baroreflex and chemoreflex. 

As a result of this, upper airway collapses. Also, this leads to reduced activity of the pulmonary 

stretch receptors which in turn increase the drive to breathe. Moreover, the subsequent hypoxic-

hypercapnic state in turn increases the drive to breathe. In addition, the decrease in O2 

concentration in blood due to hypoxic state influences the peripheral chemoreceptors, whereas 

increase in CO2 concentration affects central chemoreceptors. Additionally, Chemoreceptor 

activation also increases sympathetic activity which consecutively increases arterial blood 

pressure, which then activates the baroreceptors [25, 26].  Increase in blood pressure changes 
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the intrathoracic pressure there by applying pressure to baroreceptors. This in response 

induces reflex sympathoexcitation. Finally, these reflexes eventually terminate the apneic event 

and educe arousal, which is repeated many times during the night.  

The ECG is most economical and globally accepted the most accurate method of detecting 

cardiac arrhythmia.  A brief introduction to ECG and the effect of sleep apnea on ECG is 

provided below. 

2.2 Brief Introduction to ECG 

Electrocardiography abbreviated as ECG is a non invasive technique to measure electric 

activity of heart over time. This electrical activity is recorded with the help of ECG electrodes. 

The electrodes are twelve in number. The connection between two limb (arm or leg) electrodes 

is called a lead. Einthoven assigned the leads between three limb electrodes standard lead I, 

lead II and lead III referring to the two arm electrodes and the left leg electrode. The three 

electrodes when joined form an equilateral triangle where the heart electrically constitutes the 

null point. The resultant triangle is called Einthoven triangle. The Einthoven‟s triangle is helpful 

in determining the electrical axis of the heart. Figure 2.1 illustrates the Einthoven triangle.  

A typical ECG waveform recording is graphically represented in Figure 2.2. Each peak and 

depression in ECG waveform has a particular significance in the heart activity. Electrical signal 

needed for heart to pump blood to various parts of the body is generated at Sino Arterial (SA) 

node. The electric impulse generated at SA node travels to both right and left atrium where the 

impulse trigger both atrium to contract, the P wave of ECG represents the conduction 

throughout left and right atrium. After, the signal is relayed to Atrioventriclular (AV) node, where 

the signal is delayed for few moments. This allows both left and right atrium to empty all its 

content into both ventricles, PR segment in ECG wave represents this delay. The ventricles 

receive impulse from AV node through purkinje fibers where the fibers stimulate myocardial 

cells of both ventricles to contract. This is represented by huge QRS complex in ECG wave. 

The whole phenomenon so far is influenced by sympathetic nervous system. T and U of ECG 
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represent the ventricular repolarization where the above two events are controlled by 

parasympathetic nervous system.  

 
Figure 2.1 Illustration of Einthoven triangle. Adopted from [39] 

 

 
Figure 2.2 Graphical representations of important segments of ECG. Adopted from [27]. 

 
2.2.1 Effect of Sleep Apnea on QRS complex 

The ECG measured from the chest electrodes are influenced by respiration. The expansion and 

the contraction of the chest during respiration results in motion of the chest electrodes. Short 

term thoracic impedance changes are also associated with filling and emptying of the lungs 

during respiration. These physical influences of respiration result in QRS amplitude variations in 

the observed ECG [34].  Figure 2.3 depicts a typical change in QRS during sleep apnea. 
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Figure 2.3 Illustrate the change QRS amplitude with respiration. Upper waveform indicates ECG 

and lower wave form indicates the measure of respiration. Adopted from [34]. 
 

When the obstructive sleep apnea cause the respiration to cease, the movement of the ECG 

electrodes with respect to the heart also ceases. Hence, the modulation of the QRS amplitude 

due to respiration is altered 

2.2.2 ECG Lead System 

Twelve lead configuration is the general norm of measuring ECG. A total of 6 chest leads, 3 

bipolar limb leads and 3 augmented unipolar leads are used for measuring ECG. Each of these 

leads provides additional information in comparison with other leads.  

Single lead or combination of leads was investigated for detection of sleep apnea using ECG. 

The use of multi Lead ECG has been shown to detect sleep apnea with acceptable results [35, 

36]. But the selection of Lead combinations was not standardized in these studies. Recently, 

Single lead ECG is investigated extensively as a means of detecting sleep apnea by many 

researchers [37, 38, 39]. These studies have shown that single-lead ECG is adequate for 

detection of SDB with reasonable accuracy of detection. In this study, only one lead (lead 1) is 

used. 

R-peak envelope (RPE) extracted from lead I showed highest sensitivity for the detection of 

OSA [8, 10]. ECG Lead I had a sensitivity of 88.23% of detecting OSA compared to 70.0% of 
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Lead II and 72.97% of Lead V6 [8].  In the following subsection data processing used for the 

proposed study is described. The standard NPSG data collection is discussed in next chapter. 

2.2.3 Data Preprocessing  

Two time series were derived from ECG Lead I. The first time series was envelope of the R 

waves, referred to as the R-peaks. The second time series, called the R-R interval is derived 

from the detected R peaks. The entire night‟s lead I ECG data was divided into epochs of 900 

seconds. The baseline wander removal, detection of R- Peak and subsequent detection of R-R 

interval is summarized in the following subsections. 

2.2.3.1 Baseline Wander Removal 

 Patient movement, dirty electrodes, and loose electrodes may cause baseline wandering, 

which changes the position of isoelectric line. Respiration is also thought to be a cause of 

baseline wandering.  A high pas, linear-phase FIR filter with a cut-off frequency of 0.8 Hz and 

length 200 was used to remove baseline wander. Bidirectional filtering was employed to null 

group delay of the filter. Figure 2.4 shows a sample ECG of 30 seconds before and filtering [8]. 



 

 13 

Figure 2.4 ECG before filtering (Top) and after filtering (bottom). Adopted from [8] 
 

 2.2.3.2 R Peak Detection 

The entire night‟s ECG lead I data was divided into epochs of 900 seconds duration. A Hilbert 

transform based algorithm suggested by Benitez et al was used to detect R peaks [8, 10]. In the 

RPE time series, a single value was obtained for each beat in the epoch. Every value has a 

time reference of the corresponding beat at which it was extracted. This results in unevenly 

sampled data. The RPE was evenly re-sampled at 10 Hz using cubic spline interpolation.  The 

900-second outlier free RPE time series is then evenly resampled at 1 Hz to produce a 900-

points time series. A mean error detection of 1% was for a total of 1.78 million beats detected by 

the algorithm. Testing of the R peak detection algorithm carried out by manual verification of 
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peaks detected from MIT-BIH and also with the data collected for the study. False detection was 

corrected. In a clip, if more than 10% of the beats were premature or detection error percentage 

was more than 15% the clip was rejected.  

2.2.3.3 Computation of R-R Interval 

R-R interval was derived from R peaks as a discrete event time series. The outliers were 

removed using a heuristic method based on the mean and standard deviation of R-R interval of 

entire epoch. The R-R interval greater than three times the standard deviation above mean are 

considered as outliers.  These outliers were removed from the epoch, if they are at least 0.5 

seconds greater than prior or subsequent R-R interval [8]. The entire 15 minute outlier free R-R 

interval was evenly sampled at 10Hz using cubic spline interpolation, using MATLAB function 

spline. Figure 2.4 gives a graphical representation of R-R interval when plotted against time.  

For the proposed study we extracted 191 clips, 86 normal (NOR) and 105 apneic (OSA) clips, 

which will be discussed in detail in next chapter. Where two features RPE and R-R interval was 

extracted from each clip. Both the features are combined in a two dimensional space with R-R 

interval in abscissa and RPE in ordinate to form a cluster.  A single centroid was extracted from 

this cluster using K-means function in matlab. The theoretical approach for calculation of 

centroid is provided below with examples. 
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Figure 2.5 graphical illustration of R-R interval after resampling. Adopted from [9] 

 
2.3 K-Means Clustering 

K-means is a simple cluster analysis technique, where the data is clustered into K-clusters. The 

data in a cluster have the data points which are closest to mean or median of the cluster. The 

data is classified into K clusters and each cluster has its distinct centroid farthest away from 

other clusters and closest to the cluster it belongs.  

K-means algorithm partitions the data set with n observations into k-clusters, where each 

observation is assigned to a cluster with the nearest mean or median. The algorithm follows 

simple and easy way to classify the observations through K a priori fixed clusters. The idea is to 

find a centroid for each cluster in a sequential approach, where outcome of the result solely 

depends on the initial selection of centroids. After initial selection, each observation of the data 

set should be assigned to a centroid. Where each observation assigned is closest to the 

centroid. When the assignment is complete all the observations should be grouped into 
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respective clusters. At the end of the above step, new k-centroids are calculated as barycenters 

of the clusters generated. After calculating new centroids, the clustering is done on the same 

data set with nearest new centroid. The centroids change their locations at the end of each 

clustering step. The above steps are repeated several times, until the centroid stops moving 

further from its previous location or the change in the location of centroid are within acceptable 

range. As a result all the observations in the data set are clustered into K-clusters with each 

cluster having a distinct centroid [28].  

The algorithm defines an objective function J for the above mentioned steps and tries to solve it 

sequentially until the objective function is minimize. The objective function is squared error 

function. The objective function for K-means clustering is given by the following function.  

       
   
    

 
 
   

 
                                                                (2.3.1) 

Where    
   
    

 

 is the distance measure between an observation   
   

 and centroid   . J is 

an indicator of the distance of the n data points from their respective cluster centers. Optimizing 

function J results in optimized centroid values. The optimization reaches a final solution when 

the distance between data points in a cluster to its centroid is bare minimum. The optimization is 

said to be converged when it reaches final solution to the optimization problem. Figure 2.6 and 

2.7 illustrates the movement of centroids from their initial guess till the centroids stops moving 

further. 
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Figure 2.6 Trace of centroid calculation for two clusters 
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Figure 2.7 Trace of centroid calculation for three clusters 

 
The algorithm of K-Means clustering converges very fast in practice, though sometimes takes 

exponential time to converge. The K-means algorithm is simple, scalable and efficient. 

Sometimes the algorithm has a local minima problem. The local minima problem can be 

avoided with good initial guess for centroid. The centroid selection is carried out randomly, but 

there are better and efficient heuristic approaches to select initial centroids. The selection of 

number of clusters also plays an important role in achieving an optimal solution. 

2.3.1 Metrics to Calculate Distance 

Calculation of distance between centroid and each data point in data set plays an important role 

in the K-Means clustering technique. There are number of distance metrics available for use. 

The distance metrics used are Euclidean distance, Manhattan distance, maximum norm, 
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Mahalanobis distance, cosine angle between vectors, Hamming distance. Minkowski Metric is 

used for higher dimensional data. The metric is given by 

                         
 
   

 
 
 

                                                               (2.3.1.1) 

Where d is the dimensionality of the data. The Euclidean and Manhattan distance are special 

cases of Minkowski metric with p=2 and p=1 respectively. 

The distance metric gives the similarity of one group with respect to other group. The most 

popular distance metrics are Euclidean distance or 2-norm distance and Manhattan distance or 

1-norm distance. In this study we use Manhattan distance for the calculation of distance.   

2.3.1.1 Manhattan distance 

For the given two points in space with co-ordinates (x, y) and (a, b), the Manhattan distance d 

between two points is given by 

                                        (x, y) 

                                                                                    (a, b)  

Manhattan distance:                                                                           (2.3.1.2) 

When Euclidean distance is used to obtain centroids, the resulting cluster centroids are median 

of all the data points in a cluster [29]. Where the median of cluster minimizes the Manhattan 

distance (also known as city block) given by equation  

                                              
 
                                               (2.3.1.3) 

The centroids extracted using K-means algorithm is fed to a classifier to separate normal (NOR) 

clips from OSA clips. The selection of NOR and OSA will be discussed later in next chapter. In 

this study a support vector machine (SVM) based binary classifier is used for the classification 

purpose. The mathematical foundations for the SVM are described in next section. 
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Figure 2.8 K-Means Clustering with Manhattan distance. Black circles represent the centroids. 
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2.3.2 Flow chart for K- Mean’s Algorithm 

 

 

 

 

 

 

 

 

                                  

 

 

 

 

 

                            

 

 

 

 

 

 

 

 

 

Figure 2.9 Flow chart for the K-means algorithm. 
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2.4 Support Vector Machine 

The concept of support vector machine (SVM) was introduced by Vladimir Vapnik in mid 1990‟s 

while he was working at Bell laboratories. Generalization and optimization theory in SVM has 

firm theoretical and mathematical foundation.  SVM finds its applications in wide variety of fields 

and has successfully been applied in many real world problems such as pattern recognition, text 

classification, web page classification, weather prediction, and intrusion detection. 

Support Vector Machine is considered a very powerful tool due to its high generalization 

capability, having a rather simple geometrical interpretation, a sparse solution, and the ability to 

process high dimensional data. SVM generated results are highly stable and reproducible. 

However, they suffer from speed and size of training, especially with large non linear data [28].  

SVM belongs to the class of binary classifier and the idea is extended to multi-class through the 

use of several binary classifiers.  

In the following sections, the mathematical foundations for binary classification using SVM are 

expounded in detail. 

 2.4.1 Binary Classification  

Binary classification is the task of classifying data into two classes based on the weight 

associated with certain property of the data. Classical example of Binary classification is simple” 

Yes” or” No” answer to questions, face detection, and disease detection. 

 The detailed mathematical foundation of support vector machines and underlying Vapnik-

Chervonenkis dimension (VC Dimension) is covered in literature of statistical learning theory 

(Vapnik 1998) [29]. In the following section mathematical background of SVM for Linearly 

separable and non linearly separable classes are discussed in brief. The beauty of SVM lies in 

geometrical interpretation of its mathematical formulation where one can perceive mathematical 

formulations with geometrical analogies. 
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2.4.2 Linearly Separable Case 

In the linearly separable case, the data of two classes do not overlap and are easily separated 

by single decision surface. The Figure 2.10 gives an example of two-dimensional linearly 

separable data. The lines which separate the data are referred as hyperplanes. An infinite 

number of hyperplanes can be drawn between two classes which can separate the data 

precisely, but the aim of any classification algorithm is to find an optimal hyper plane which 

gives good generalization of results to all members of sampled population. Vapnik proposed in 

his theory that the hyper plane which has a large margin, the separation gap between two 

classes yields better results. In this case the hyperplane which evenly divides the margin 

between the two classes is the optimal hyperplane, as shown in Figure 2.11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 hyperplanes that can be drawn for the classification 
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Figure 2.11 Optimum hyperplane with maximum margin. 
 

 
Figure 2.12 linear separating hyperplane for separable case. 
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The training example in the above Figure 2.12 is of the form: {   ,    i= 1, 2, 3….p and      ; 

     {1, 1}, we call {   the input vector which contains two features    and    and {   is the 

targeted output or labels.  

As shown in Figure 2.12, the equation of separating hyperplane is given by  

                                                                                                       (2.4.2.1) 

where w, b is normal and bias to hyperplane respectively. 

We can define two hyperplanes parallel to the separating hyperplanes defined by (2.4.2.1). 

They represent that planes that cut through the closest data points on either side of the 

separating hyperplane. The equation of the two parallel hyperplanes is given by 

                                                                                                                       (2.4.2.2)   

                                                                                                                      (2.4.2.3) 

The hyperplanes given by (2.4.2.2) and (2.4.2.3) are parallel, at a maximum distance from each 

other and still separate data points. The distance between these two hyperplanes is margin of 

the hyperplane.  Our aim is to maximize this margin. 

The perpendicular distance from a point (m, n) to line represented by equation Ax+By+C=0 is 

given by 

  
       

      
  

The perpendicular distance from origin (0, 0) to line represented by (2.4.2.1) is given by 

  
 

   
                                                                                                        (2.4.2.4)    

where       is defined as      

The distance from origin to (2.4.2.2) and (2.4.2.3) is respectively given by  

   
     

   
                                                                                                                       (2.4.2.5) 

   
      

   
                                                                                                       (2.4.2.6)                      
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The distance d1 between the hyperplane and the parallel hyperplane passing through the data 

points is given by  

   
         

   
                                                                                             (2.4.2.7) 

   
 

   
                                                                                                                           (2.4.2.8) 

By symmetry       
 

   
                                            

Margin m of the hyperplane is given by  

                                                                                                       (2.4.2.9) 

  
 

   
                                                                                                       (2.4.10) 

From figure 2.12 we can write the following constraints for the optimization problems 

          if                                                                                    (2.4.2.11) 

           if                                                                                 (2.4.2.12) 

Where    is t he target output of the input    

Combining equation (2.4.2.11) and (2.4.2.12) we can get one equation for above constraints 

                                                                                                   (2.4.2.13) 

We want to maximize equation (2.4.2.10). The numerator in equation (2.4.2.10) is a constant. In 

order to maximize (2.4.2.10) we have to minimize the denominator. The final optimization 

problem is given by 

Minimize  
 

 
                                                                                                               (2.4.2.14) 

Subject to              , where i=1, 2, 3, 4……p                                      (2.4.2.15) 

Where p is the number of data points in the cluster. 

The above two equations represent the primal form of our convex optimization problem. Our 

goal is to find w, b of the hyperplane so that the following conditions are satisfied 



 

 27 

Minimize  
 

 
                                                                                                                (2.4.2.16) 

Subject to                , where i=1, 2, 3, 4…p                                    (2.4.2.17) 

This is a non linear quadratic optimization problem subject to linear inequality constraints. The 

above two equations should satisfy the Karush-Kuhn-Tucker (KKT) conditions for solution to be 

optimum. The KKT conditions are necessary and sufficient conditions for optimal solution for the 

above describe optimization problem. The KKT conditions are described in detail later in the 

chapter. The KKT conditions that the minimizer has to satisfy are 

 

   
                                                                                                                   (2.4.2.18) 

 

   
                                                                                                  (2.4.2.19) 

    ,                 i=1, 2… p                                                                                           (2.4.2.20) 

                                i=1, 2… p                                                (2.4.2.21) 

Where    is the vector of the Lagrange multipliers,    and           is a Lagrange function 

defined as  

         
 

 
                          

                                         (2.4.2.22)  

Combining (2.4.2.18) and (2.4.2.22) we get  

 

   
 
 

 
                          

                                                (2.4.2.23) 

Taking derivative with respect to w gives, 

      
 
                                                                                                           (2.4.2.24) 

      
 
                                                                                               (2.4.2.25)  

Taking derivative with respect to b we get, 

 

   
 
 

 
                          

                                                (2.4.2.26) 

     
 
                                                                                                  (2.4.2.27)    
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The above minimization problem belongs to convex programming optimization. Since the 

optimization problem is a convex optimization problem and the constraints associated with it are 

linear constraints. We can use the concept of Lagrange duality. The primal problem can be 

transformed into dual form using the Wolfe dual representation given by 

Maximize                                                                                               (2.4.2.28) 

Subject to        
 
                                                                                   (2.4.2.29) 

                                                                                                               (2.4.2.30) 

Substituting (2.4.2.25) and (2.4.2.27) in (2.4.2.22) we get 

                   
 
                  

                                             (2.4.2.31)       

  Subject to      
 
                                                                                                  (2.4.2.32) 

                                                                                                                                  (2.4.2.33)                                                        

When we solve (2.4.2.31) we get, 

   
 
     

 
    

 

 
           

   
 
                                                                              (2.4.2.34)       

Subject to      
 
                                                                                     (2.4.2.35)             

                                                                                                                                 (2.4.2.36)       

The above problem can also be written as  

   
 
  
 

 
           

   
 
       

 
                                                                               (2.4.2.37)       

Subject to      
 
                                                                                     (2.4.2.38)             

                                                                                                                                 (2.4.2.39)              

When we solve the above quadratic programming we get Lagrange multipliers  , the Lagrange 

multipliers which satisfies the KKT conditions are optimum Lagrange Multipliers. The data points 

associated with Lagrange multipliers greater than zero are known as support vectors. Later in 
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the chapter it is shown that these support vectors are enough to define a hyperplane. b is 

calculated indirectly, derivation of bias term b will be described in detail later in the chapter.  

Now we know w, b parameters of the hyperplane. The unseen data can know be classified 

using the following equation 

                                                                                                              (2.4.2.40) 

where               
            

           
  

Where    is the data to be classified, based on the output of the      the data is classified into 

two groups. 

The concept of soft margin was introduced to deal with the cases where classification is not 

possible without errors using single hyperplane. The concept of soft margin is explained in 

appendix B. kernel trick and mathematical foundation of non-linearly separable data is 

discussed in next section. 

2.4.3 Non Linearly Separable Case  

A typical non-linearly separable data is shown in figure 2.13. A non linearly separable data 

cannot be precisely classified into two classes using a single separating hyperplane.  As shown 

in Figure 2.13, the data cannot be classified correctly using a single hyperplane.  This does not 

mean that the data cannot be separated exactly into groups; polynomial curves and circles can 

be used to classify. However, to find the optimal curve to fit the data is difficult. For this purpose, 

the data is first transferred into a higher dimensional space. This transformation makes the data 

linearly separable in higher dimensional space. A single hyperplane can be drawn to this data in 

higher dimension space which precisely classify the data into two groups shown in figure 2.14.  
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Figure 2.13 Non linearly separable data 

 

 
Figure 2.14 Transformation of Non linearly separable data into inner product space. 

 
The transformation into feature space is carried out using a mapping function        where 

the input n dimensional data is mapped into feature space of n‟ dimensions where n‟>n. The 

mapping function maps the input data into a considerably high dimensional space, this makes 

data linearly separable eventually. The final solution of quadratic optimization problem depends 

on the calculation of dot product of the input data points as illustrated in equation 2.4.2.37.The 

complexity of keeping track of mapping function and calculating the dot product of the data 

points imposes an additional burden on computation. Storing the high dimensional data requires 

a lot of memory. To avoid the problems associated with mapping data into high dimensional 
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space and keeping track of the dot product of data points in high dimensional data, SVM makes 

use of well established Kernel trick. The use of Kernel trick does not have any impact on the 

algorithm; it simply replaces the dot product of two vectors with Kernels. 

           2.4.3.1 Kernel Trick 

The Kernel trick pertains to mapping data in input space into much higher dimensional inner 

product space, without actual knowledge of the mapping function. The data is transferred into 

higher dimensional space with the hope that the data in the higher dimensional space achieves 

linear structure. Finding a linear hyperplane in the higher dimensional space to the data is same 

as finding a polynomial curve which classifies the data in the input space. 

The Kernel function used in kernel trick is given by  

                       

Where    is any transformation function which maps the data in input space into higher 

dimensional space,                represents the inner product of the two vectors. The 

Kernel functions do not require the prior knowledge of the transformation function but should 

satisfy Mercer‟s condition. The Mercer‟s condition is given by  

               
   

 
     .                                                                                          (2.4.3.1.1) 

Where       and       

The equation (2.4.3.1.1) represents that, for finite sequence of               , and of all 

possible real number values for   ,   , should always result in a positive value. This kernel 

function which satisfies the above equation is called positive semi definite function. There are 

number of Kernels which are used in SVM. In this thesis we use polynomial Kernel. 

                      where i, j=1, 2, 3………..p. 

where n is the degree of the polynomial which is characteristic to a hyperplane.  
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Let us again consider the primal form of objective function defined for soft margin given 

appendix B. As shown in Figure B.1 the slack variable as assigned to data points which are 

misclassified or within the margin. 

Minimize  
 

 
          

 
                                                                                           (2.4.3.1)        

Subject to                    , where i=1, 2, 3, 4………N                        (2.4.3.2) 

                                 where i=1, 2, 3, 4………N                                                     (2.4.3.3) 

Where   is a mapping functioning transforming the input data into higher dimensional space, C 

is a hyperplane parameter known as regularization parameter and   is a slack variable which is 

discussed in detail in appendix B. 

The Lagrange representation is given by 

            
 

 
          

 
         

 
       

 
                       (2.4.3.4) 

Where   is the Lagrange multiplier for slack variable   .  

The corresponding KKT conditions are given by 

 

   
                                                                                                                   (2.4.3.5)                         

 

   
                                                                                                   (2.4.3.6) 

 

    
                                                                                                  (2.4.3.7) 

    ,                 i=1, 2… N                                                                                             (2.4.3.8)    

    ,                 i=1, 2… N                                                                                             (2.4.3.9) 

       ,                 i=1, 2… N                                                                                       (2.4.3.10)                                                                         

                                                                                        (2.4.3.11) 

Taking derivatives with respect to w, b and     

      
 
                                                                                                         (2.4.3.12)          
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                                                                                             (2.4.3.13)                                                            

    
 
                                                                                                    (2.4.3.14)    

                                                                                                    (2.4.3.15) 

The associate Wolfe dual representation is given by 

Maximize                                                                                              (2.4.3.16) 

Subject to        
 
                                                                              (2.4.3.17) 

                       
 
                                                                                   (2.4.3.18)    

                                    i=1, 2… N                                                  (2.4.3.19)                                                   

                        ,                 i=1, 2… N                                                                       (2.4.3.20)    

                    ,                 i=1, 2… N                                                                        (2.4.3.21) 

Substituting the above equality constraints into Lagrangian dual we get, 

        
 
    

 

 
         
 
        

                                                       (2.4.3.22)                                       

Subject to                      i=1, 2… N                                                                    (2.4.3.23)                                               

                     
 
                                                                                      (2.4.3.24)    

The dot product      
        is replaced by kernel function  

K (            
                                                                                    (2.4.3.25) 

Now the dual appears as  

        
 
             

 
                                                                     (2.4.3.26)                                       

Subject to                      i=1, 2… N                                                                    (2.4.3.27)                                               

                     
 
                                                                                (2.4.3.28)    
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This is a typical quadratic optimization problem which can be solved using many optimization 

routine available freely. The optimization routine used for our study is QPAS developed in 

matlab [48]. The dual representation in this case is same as that of linear separable case with 

small change in inequality constraints.  The parameters C penalize the slack variable which is 

discussed in appendix B, where C controls the size of the margin. The importance of C is 

discussed in next section.  

2.4.4 Regularization Parameter C 

The parameter C of the hyperplane is known as regularization parameter. Selection of C plays 

an important role in the generalization of results to all members of sampled population. The 

Lagrange multipliers of the points either within margin or on opposite side of the classifier are 

equal to maximum allowable value of C. These points have highest significance in the final 

solution of w. The slack variable     and their Lagrange multipliers    do not influence the 

solution, but indirectly reflect through C. The Parameter C has an important role to play in the 

size of margin. This can be easily expounded through equation (1) of soft margin discussed in 

appendix B. The second term in the equation (1) in appendix B has a momentous influence on 

the cost function. The value C controls the trade-off between width of the margin and the 

number of allowable misclassified data. Hence, one should be careful while selecting a value for 

C. For example, if a higher C value is selected, this imposes a high penalty on the misclassified 

data points and subsequently reduces the width of the margin and results in over fitting the 

data. If the value of C is small, this may lead to under fitting the data. The parameter is also 

known as the trade off parameter, as it controls the tradeoff between errors of SVM on training 

data and margin maximization. Figure 2.11 and 2.12 clearly shows the effect of C on width of 

the margin. The selection of the parameter C is not a mathematical but instead operator 

selected where the selection is based on the data. 
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Figure 2.15 Hyperplane is wider for this case of C=1. 

 

 
Figure 2.16 Hyperplane is broader for C=10000. 
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2.4.5 Karush-Kuhn-Tucker Conditions 

Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient conditions for a solution of 

non–linear programming to be optimal. If a function   where f is function of x need to be 

minimized over a set equality and inequality constraints, then      should satisfy KKT 

conditions for its solution to be optimal. The KKT conditions for an optimizing problem discussed 

below.  

Consider the following optimization problem 

Minimize                                                                                                     (2.4.5.1) 

Subject to        ,                   for i =1, 2, 3…m                                                          (2.4.5.2) 

                                      for j =1, 2, 3…q                                                 (2.4.5.3)                    

where         ,       , and m, q represents the number of inequality and equality 

constraints. 

Where      the function to be minimized, subjected to       and        which are inequality 

and equality constraints, respectively. Moreover, let us assume that they are continuously 

differentiable at all points    .  Where    is the minimizer for the above optimization problem. 

The Lagrange of the function is given by 

                     
 
       

      
 
       

                                 (2.4.5.4) 

where    ,    are Lagrange multipliers of inequality and equality constraints respectively. Then 

KKT conditions are given by 

optimality 

 

   
                                                                                                     (2.4.5.5) 

 

   
                                                                                                     (2.4.5.6) 

 

  
                                                                                                     (2.4.5.7) 
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Primal feasibility 

       ,                                    for I =1, 2, 3…m                                                 (2.4.5.8)    

                                            for j=1, 2, 3…q                                                     (2.4.5.9) 

Non-negativity condition 

                                              for i=1, 2, 3…m                                          (2.4.5.10) 

Complimentary slackness, 

                                           for i=1, 2, 3…m                                         (2.4.5.11) 

The equations from (2.4.5.5)-(2.4.5.11) are sufficient and necessary conditions for the solution 

of optimization problem to optimal. 

2.4.6 Calculation of Support Vectors and Bias Term b 

The calculation of support vectors and bias is carried explicitly using KKT conditions as 

discussed above. 

2.4.6.1 Calculation of Support Vectors 

The calculation of support vector machines is based on the dual feasibility of KKT conditions. 

The condition states that the Lagrange multipliers of data points should always be equal and 

greater than zero for the solution of the optimization to be optimum. As illustrated in equation 

2.4.3.27, the final quadratic optimization depends only on Lagrange multipliers greater than zero 

and less than C. Where the data points associated with the above Lagrange multiplier are 

support vectors. The data points which satisfy the above conditions are collectively known as 

Support Vectors (SVs). It is widely proved in literature that these SVs are more than enough to 

represent a separating hyperplane [16]. Hence, SV guide and control the boundary of a 

separating hyperplane. The number of SV‟s is always less than the number of data points itself. 

This makes computations involved with classifying huge data sets less complex, instead of 
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using all the data points we can use few support vectors for future classification purpose. For 

example 

S= [1, 2, 3, 4, 5, 6]; be data set where 1-3 belongs to class 1 and 4-6 belong class 2 in a data 

set. Suppose the Lagrange multipliers be    [0. 1.5, 1, 0, 0, 1.25]. Then the support vectors 

are SV= [2, 3, 6]. The data set is reduced to half for the above case. In Figure 2.15 the circled 

ones are the support vector. 

2.4.6.2 Calculation of Bias Term b 

The bias term b is calculated explicitly using complementary slackness condition of KKT 

conditions which is discussed in section 2.4.5. The calculation of bias is same for both the linear 

and non linear separable case. Let us consider the bias calculation for non separable case. The 

complementary slackness condition is given by 

                                                                                      (2.4.6.2.1) 

As discussed above, the data points on the margin have optimal solution for optimization 

problem and Lagrange multipliers associated with support vectors are always greater than zero. 

Where the value of slack variable     is always zero for support vectors as discussed in 

appendix B. The details about the slack variables are discussed in soft margin section in 

appendix B. 

Consider a point on the supporting hyperplanes. Then  

                                                                                                (2.4.6.2.2) 

Taking 1 to other side and multiplying both sides by    

  
                                                                                                          (2.4.6.2.3) 

Where     , so (2.4.6.2.3) becomes  

                                                                                                   (2.4.6.2.4) 

                                            for j=1, 2, 3….N                                                   (2.4.6.2.5) 

where N is number of support vectors. 
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                                                                                                            (2.4.6.2.6) 

        (                                                                                          (2.4.6.2.7) 

              (                                                                                                (2.4.6.2.8) 

If we consider the linearly separable case the          =      .  

The equation for b changes to 

              (                                                                                      (2.4.6.2.9) 

Using any support vector the bias can be determined, but for numerical stability it is better to 

average over all the support vectors. 

     (   
 
   -           (      )           for I, j=1, 2, 3………N                         (2.4.6.2.10) 

Where is number of support vectors. 
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2.4.7 Flow Chart for Support Vector Machines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17 Flow chart for the support vector machines. 
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2.5. Optimization of Hyperplane Parameters 

The regularizing parameter (C) and n the order of the hyperplane are optimized to get an 

optimum separating hyperplane. There are number of heuristic approaches available for the 

optimization purpose. However, in this thesis we use two optimization techniques for the 

selection of C and n. we refer them as manual optimization and computerized optimization. The 

first optimization method is manual optimization where we define a selection criterion. The 

second method is computerized optimization where we use the derivative free optimization 

functions available in matlab to generate an optimized value for C and n. 

2.5.1 Manual Optimization 

The manual optimization method of selection of C and n is based idea that, the combination C 

and n which provides maximum accuracy value for the training set will also give a good 

generalization of results for testing set. Since, during the testing step SVM was blind to the data 

set; the testing accuracy is the accuracy for SVMs. In this method two techniques were used. 

The maximum of accuracy for training set and maximum of accuracy of validation set. The 

range over which C and n operate is found using iterative search. The range for C is [1, 16] and 

for n is [1, 30]. All the optimization techniques use the above discussed range. 

             2.5.1.1 Maximum of Accuracy for Training Set  

In this method, C and n are incremented sequentially within the selected range. Each C and n 

value is run against the training data to get an accuracy value. The combination of C and n 

which gives highest accuracy value for the training set is selected as the optimum value. This 

referred to as manual1. The resulting values of C and n are used for learning the training 

parameters; the bias term    , and Lagrange multipliers    .  These training parameters are 

fixed, in order to run the test set and calculate the accuracy of the SVM. 

             2.5.1.2 Maximum of accuracy for validation set 

This method of selection of C and n is also same as above described method, but with a small 

difference. The training data in this method is divided into new training and validation data. In 
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this study 10-fold cross validation is used. Again, the C and n are incremented sequentially 

within the selected range. This referred to as manual2. The new training data is trained with a C 

and n value to obtain the training parameters which are tested against the validation set. The 

combination of C and n which gives a highest accuracy for validation set is selected. The new 

training data and the validation data are combined to form the old training data. The optimized 

combination of C and n are trained using the training set in order to get the     and   values, 

which are tested against the test set. The detail description of cross validation is given in next 

chapter. 

2.5.2 Computerized Optimization 

Computerized optimization is used to check how well the SVM routine performs with matlab 

optimization function. In this method, we used optimization toolbox available in matlab for the 

optimization of C and n. The range for C and n described is also used in this optimization. The 

derivative free optimization functions Fminbnd and Fminsearch available in the matlab are used 

for this purpose.  

2.5.2.1 Optimization using Fminbnd 

Fminbnd finds the minimum of a single variable function on fixed interval. SVM routine is the 

single variable function and the variables are C in this case. Since the Fminbnd minimizes only 

single variable function, n is assumed to be constant while optimizing C. This optimization is 

referred to as fminbnd1. Another optimization is also carried out in this optimization. Where, first 

C is optimized with n as constant. Followed by optimization of C, n is optimized. This is referred 

to as fminbnd2. Once the optimization is completed, the training and testing accuracy are 

calculated for the optimized C and n Value as explained in section 2.5.1.1. The resulting testing 

accuracy is the accuracy of the classifier.  

2.5.2.2 Optimization using Fminsearch 

Fminsearch finds the minimum of an unconstrained multivariable function.  The optimization of 

C and n are carried out together. Once the optimization is complete, the training and testing 
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accuracy is computed for optimized C and n as described in section 2.5.1.1. The training and 

testing accuracies are stored for the current data. The whole procedure is repeated for new 

training and testing data set.  
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CHAPTER 3 

EXPERIMENTAL METHOD 

In this chapter experimental method used for the purpose of the study is discussed in detail. 

Section 3.1 discusses the standard Nocturnal polysomnograph (NPSG) data acquisition. 

Section 3.2 describes the subject demographics. Section 3.3 explains the processing of the 

experimental data. The final section discusses the Performance evaluation of the proposed 

method. 

The data used in this study was previously collected and prepared by our laboratory 

researchers in collaboration with Sleep Consultants Inc., Fort Worth, TX. A brief explanation of 

the acquisition method is provided below. 

3.1 Standard NPSG Data Acquisition 

Data was acquired overnight from the subjects during sleep. A total of 8 physiological 

parameters were measured using 18 channels. 18 Channels used to record the parameters are, 

nine for ECG, three for EEG, one channel each for EOG, chin EMG, chest and abdominal 

movements, nasal airflow, and percent oxygen saturation. For sleep stage scoring, EEG 

acquired from position C1-A2 of 10-20 system was used [8]. A frequency of 25-100 Hz was 

used to sample and acquire EOG, chin EMG, chest and abdominal movements, percent oxygen 

saturation and EEG. A frequency of 1024 Hz was used to sample and acquire remaining nine 

ECG channels (Lead I, II, III and V1-V6) and nasal airflow [10]. A sleep expert, blind to the goal 

of the study, manually scored the entire original data. Table 3.1 gives the Lead configuration, 

electrode position, their placements and their abbreviations. Figure 3.1 shows the electrode 

placements. For more detailed information on data collection, refer to [8, 10]. 
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Table 3.1 Leads and Combination of their Electrode Placements 

Lead 
configuration 

Electrode 
Placements 

Electrode 
Abbreviations(with reference to figure 

2.3) 

Lead I Right arm-Left arm RA-LA 

lead II Right arm -left Leg RA-LL 

lead III Left arm-Left Leg LA-LL 

V1 V1(precordial)-Left leg V1-LL 

V2 V2(precordial)-Left leg V2-LL 

V3 V3(precordial)-Left leg V3-LL 

V4 V4(precordial)-Left leg V4-LL 

V5 V5(precordial)-Left leg V5-LL 

V6 V6(precordial)-Left leg V6-LL 

 

Figure 3.1 ECG electrode placements. Adopted from [8] 
 

3.2 Subject Demographics 

Thirty (30) adult volunteers were recruited for the purpose this study as detailed in [9]. Sixteen 

normal subjects were recruited as a control group, where none of them had prior sleep related 

problems and had not previously participated in NPSG studies. They were selected from broad 

public and the selection criterion was based on a questionnaire on health history and sleep 
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hygiene. Subjects from the group with prior no respiratory problems are referred as „NOR‟ 

group. Fourteen subjects were recruited from volunteer patients who were previously diagnosed 

as having SDB. These groups of subjects are referred as „OSA‟ group [8]. Tables 3.2 shows the 

summary of NOR subject demographics and the sleep expert score of their NPSG studies. 

Table 3.3 contains demographics and NPSG test results for OSA subjects. 

Table 3.2 Subject Demographics for NOR Group 

subject id 
 

Gender 
 

Age 
(Years) 

Weight 
(kg) 

Heigh 
t(m) 

BMI 

(KG/  ) 
AHI 

 

N01 M 43 87 1.85 25.4 3 

N02 M 36 66 1.73 22.1 6 

N03 F 58 64 1.6 25 0 

N04 M 62 65 1.68 23 2 

N05 M 49 95 1.75 31 4 

N06 F 42 82 1.7 28.4 6 

N07 F 40 61 1.6 23.8 2 

N08 F 35 46 1.58 18.4 0 

N09 M 38 68 1.65 25 6 

N10 M 56 86 1.75 28.12 2 

N11 F 54 54 1.6 22.3 3 

N12 M 39 100 1.78 31.6 11 

N13 F 36 81 1.68 28.7 2 

N14 F 43 NA NA NA 20 

N15 M 59 93 1.88 26.3 1 

N16 F 42 78 1.65 28.7 14 

Mean ± 
standard 
Deviation 

 

46 
±9.38 

73.08 
±16.5 

1.69 
±0.09 

25.34 
±3.86 

3.75 
±3.11 
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Where AHI is the apnea hypopnea index and BMI is body mass index. Subject N12 and N14 

were removed from the study set for having high AHI. Subjects N13 and N15 were removed 

from the study for abnormal ECG Lead I recordings. 

Table 3.3 Subject Demographics for OSA Group 

subject id 
 

Gender 
 

Age 
(Years) 

Weight 
(kg) 

Height 
(m) 

BMI 

(KG/  ) 
AHI 

 

N17 M 50 99 1.83 29.6 9 

N18 M 38 91 1.88 25.7 4 

N19 F 49 67 1.75 21.9 19 

N20 M 39 157 1.9 43.5 70 

N21 F 47 91 1.65 33.4 57 

N22 M 37 64 1.63 24.1 8 

N23 M 56 128 1.85 37.4 37 

N24 F 44 89 1.7 30.8 20 

N25 F 49 59 1.6 23 62 

N26 M 49 100 1.8 30.9 14 

N27 M 57 105 1.8 32.4 4 

N28 F 54 92 1.52 39.8 30 

N29 F 69 76 1.52 32.9 38 

N30 M 66 95 1.75 33.2 65 

Mean ± 
standard 
deviation 

 

50.28 
±9.60 

93.79 
±25.2 

1.73 
±0.13 

31.33 
±6.29 

31.21 
±23.89 

 

3.3 Processing of Experimental Data 

As was described earlier, a sleep specialist, blind to the aim of the study, manually scored the 

entire original data. Using the scored data two types of 15 minute long data epochs or clips 

were extracted from the full night recorded data. Two types clips extracted were extracted from 
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the ECG. ECGs with amplifier saturation, excessive movement artifact, noise bursts, or large 

baseline wander, and epochs with high-frequency noise were discarded. The epoch are labeled 

„NOR‟ if the breathing over entire 15 minutes clip showed normal breathing and the clip was 

extracted from normal subject. The epochs are labeled „OSA‟ if 4 or more apneic events were 

scored during the entire 15 minutes clip and the clip was acquired from OSA subjects.  

For the purpose of this study, a clip, which is extracted from a normal (NOR) subject was given 

a diagnostic value of negative one (-1). Any clip, which is extracted from apneic (OSA) subject, 

was given a diagnostic value of one (1). Table 3.4 summarizes the number of clips extracted, 

per subject for the purpose of this study.  

Table 3.4 List of the Clips Selected from Subjects 

NOR 
 

OSA 
 

Subject ID No. of clips Subject ID No. of clips 

N01 7 N17 4 

N02 6 N18 4 

N03 7 N19 5 

N04 8 N20 12 

N05 7 N21 13 

N06 4 N22 6 

N07 7 N23 11 

N08 11 N24 13 

N09 8 N25 5 

N10 5 N26 8 

N11 6 N27 2 

N12 6 N28 5 

  
N29 8 

  
N30 9 

Total Nor 86 total OSA 105 
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3.4 Performance Evaluation for the Proposed Method 

3.4.1 Cross Validation  

Cross validation is a technique used to assess the reliability of a learner for unknown data. This 

technique is very useful in predicting the output of a learner for a new unseen data. The 

fundamental design of the cross validation is to divide the data into two groups, one for training 

and other for testing. Where the learner is trained with training data group and determine the 

parameters of the learner. These parameters are used for testing the performance of the model 

on unseen data, the testing data.  In this study we use K-fold cross validation. 

3.4.1.1 K-Fold Cross Validation 

The data set is divided into K-subsets and the hold out method discussed in appendix C is used 

K-times. Each time, out of the K subsets one subset is set aside for testing and remaining K-1 is 

used for training. The training parameters obtained are used to test the testing subset. The 

errors are averaged over all of the K trails. 

3.4.2 Monte Carlo Simulation 

Monte Carlo simulation is a technique used to test the robustness of a complex system using 

random samples of parameters or inputs. Monte Carlo simulation is a computational analysis 

technique, where repeatedly and randomly resampling the data could give a desired result. 

Monte Carlo simulation uses a set of random numbers as input and iteratively evaluates the 

deterministic models. This is repeated numerous times. The average of the results given by 

these simulations gives the reliability of a particular system. Monte Carlo simulations find most 

of their applications in simulating physical and mathematical systems. Monte Carlo simulation is 

a variant of K-fold cross validation. The data in Monte Carlo simulation is divided randomly into 

learning set and validation set.  

In order to test the performance of the SVM routine used in this study, the selected feature set, 

used as input vectors to SVM, are randomly assigned into two groups: training and testing, with 

a 2:1 ratio. With total of 191 clips, this is translated to 127 clips for training, and the remaining 
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64 for testing.  K-fold validation is used for the purpose of optimizing the parameters for the 

SVM algorithm. A 500 run Monte Carlo simulations are performed to evaluate the performance 

of the SVM for randomly generated unseen data. 

    3.4.2.1 Quantification of Accuracy, Sensitivity, and Specificity 

The number of distinct possible arrangements that the example vectors can assume can be 

calculated using the un-ordered arrangement equation: 

Number of arrangements =
    

               
=1.3031×     

500 is a large sampling of these arrangements which would provide a reasonable estimate of 

the algorithm performance. The performance of the SVM is evaluated in terms average of the 

sensitivity, specificity and accuracy of 500 runs. They are defined as follows [9] 

Sensitivity=
    

                                      
 x100% 

Specificity= 
    

                                      
 x100% 

Accuracy= 
         

                             
 x100% 

Where    ,      are correctly classified    ,     clips respectively.  

The probability that a diagnostic test is positive, given that subject is apneic is referred to as 

sensitivity. The probability that a diagnostic test is positive, given that the subject is normal is 

referred to as specificity. The probability that the diagnostic test is correctly performed is 

referred as accuracy. 

 

 



 

 51 

CHAPTER 4 

RESULTS 

This chapter reports the training and testing performance of the detection algorithm used for the 

purpose of the study. As explained in Chapter 2, the RPE and R-R interval are the features 

extracted from ECG waveform. The entroid extracted from the cluster of these two features is 

fed to the SVM. Also, as was discussed earlier in chapter 2 polynomial kernel is used for the 

SVM algorithm. Two optimization techniques are used for the optimization of hyperplane 

parameters as discussed in Chapter 2 section 2.5. The performance of these 2 optimizations is 

reported in this section.  

4.1 Manual Optimization 

As was discussed in Chapter 2, the manual optimization refers to optimization where the user 

provides the selection criterion. In this optimization process two types of selection criterion for 

regularization parameter (C) and degree of the polynomial kernel (n) are used.  In this study, the 

range of C and n is selected using iterative search. The range for C is selected as [1, 16] and n 

is selected as [1, 30] using the iterative search. This range for C and n is used for all the 

optimization techniques employed for the purpose of the thesis. The results for performance are 

reported below.  

4.1.1 Optimizing hyperplane parameters using Manual1 

The selection criterion for the optimization technique is based on the maximum accuracy value 

for training set. For ease of reference, this method is referred to as Manual1. The detail analysis 

of selection criterion is given section 2.5. Figure 4.1 Illustrates the graphical representation of 

average of training and testing results obtained for the Manual1 optimization technique for 500 

Monte Carlo runs.  Where error bars represent one standard deviation of computed accuracy 

values. Figure 4.2 and Figure 4.3 illustrates the histogram of the training accuracy and testing 
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accuracy for 500 Monte Carlo runs, respectively. Table 4.1 summarizes the performance results 

of training and testing for 500 Monte Carlo runs. 

Table 4.1 Sensitivity, specificity and accuracy mean and standard deviation (std) for training 
              and testing sets after 500-run Monte-Carlo simulation for the optimization 

  

Training 

  

Testing 

 

 

Accuracy sensitivity specificity Accuracy sensitivity Specificity 

Mean±Std 

90.28 

±3.01 

94.43 

±3.15 

85.18 

±4.47 

75.98 

±4.58 

81.20 

±7.16 

69.67 

±8.02 

Max 96.85 100 96.49 87.5 97.14 89.65 

Min 81.88 82.85714 73.68 60.93 57.14 41.37 

 

Figure 4.1 Graphical representation accuracy, sensitivity and specificity mean results for training 
and testing sets after 500 Monte Carlo runs. Error bars represents the standard deviation. 
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Figure 4.2 Illustration of histogram of training accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 

 

Figure 4.3 Illustration of histogram of testing accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 

82 84 86 88 90 92 94 96 98
0

2

4

6

8

10

12

14

16

18

Accuracy %

P
er

ce
nt

ag
e 

of
 p

op
ul

at
io

n 
in

 e
ac

h 
bi

n 
%

60 65 70 75 80 85 90
0

5

10

15

20

25

30

Accuracy %

P
e

rc
e

n
ta

g
e

 o
f 
p

o
p

u
la

ti
o

n
 i
n

 e
a

c
h

 b
in

 %



 

 54 

4.1.2 Optimizing hyperplane parameters using maximum of accuracy Validation set 

The selection criterion for hyperplane parameters for the optimization is based on the Maximum 

accuracy values for validation set. This routine is referred to as Manual2 in this study. The 

selection criterion is discussed in detail in section 2.5. Figure 4.4 Illustrates the graphical 

representation of average of training and testing results obtained for the above optimization 

technique for 500 Monte Carlo runs.  Where error bars represent one standard deviation the 

computed values. Figure 4.5 and Figure 4.6 illustrates the histogram of the training accuracy 

and testing accuracy for 500 Monte Carlo runs, respectively. Table 4.2 summarizes the 

performance results of training and testing for 500 Monte Carlo runs. 

Table 4.2 Sensitivity, specificity and accuracy mean and standard deviation (std) for training     
and testing sets after 500-run Monte-Carlo simulation for the optimization 

  

Training 

  

Testing 

 

 

Accuracy sensitivity specificity Accuracy sensitivity Specificity 

Mean±Std 

91.16 

±2.81 

95.2 

±2.93 

86.21 

±4.09 

75.82 

±5.15 

80.02 

±7.45 

70.79 

±8.32 

Max 97.63 100 96.49 92.18 97.14 96.55 

Min 83.46 85.71 71.92 57.81 48.57 44.82 

 

 
Figure 4.4 Graphical representation accuracy, sensitivity and specificity mean results for training 

           and testing sets after 500 Monte Carlo runs. Error bars represents the standard 
deviation. 
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Figure 4.5 Illustration of histogram of training accuracy for 500 Monte Carlo runs. The graph                                                             
represents percentage of accuracy values in each of the 10 equally divided accuracy bins 

 

Figure 4.6 Illustration of histogram of testing accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 
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4.2 Computerized Optimization 

As explained in Chapter 2 section 2.5, computer optimization was applied to explore the 

possibility of improving the performance of the proposed algorithm. In this optimization, the 

optimization toolbox in         is used for the selection of C and n. For the purpose of this 

thesis, two optimization functions Fminbnd and Fminssearch is used.  The Fminbnd optimizes a 

single parameter at a time within a fixed bound and Fminsearch optimizes multi parameter. The 

bound for parameter is not fixed in Fminsearch. The performance results are reported below. 

The range for C and n is same as the range used for Manual optimization. 

4.2.1 Optimization of hyperplane parameters using Fminbnd 

Two types of optimization are performed using Fminbnd function in matlab. The first 

optimization technique optimizes C alone. The selection of C as parameter for optimization is 

explained below. This technique is referred to as fminbnd1 for the purpose of the thesis.  The 

second optimization technique optimizes C followed by n. This is referred as Fminbnd2.  

4.2.1.1 Optimization using Fminbnd1 

In this optimization we can optimize either C or n. But optimizing C alone gives better results 

than optimizing n alone. Firstly, the optimization results in decimal number. The parameter C 

can be a decimal number whereas n must be an integer. Secondly, C controls the margin of the 

hyperplane. C is a suitable parameter for optimization using this optimization. The optimization 

of C is performed using Fminbnd1.  

The optimization is carried out for each run in 500 Monte Carlo simulations. Figure 4.7 

Illustrates the graphical representation of average of training and testing results obtained for the 

above optimization technique for 500 Monte Carlo runs.  Where error bars represent one 

standard deviation of computed accuracy values. Figure 4.8 and Figure 4.9 illustrates the 

histogram of the training accuracy and testing accuracy for 500 Monte Carlo runs respectively. 

Table 4.3 summarizes the performance results of training and testing for 500 Monte Carlo runs. 
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Table 4.3 Sensitivity, specificity and accuracy mean and standard deviation (std) for training and 
testing sets after 500-run Monte-Carlo simulation for the optimization 

  

Training 

  

Testing 

 

 

Accuracy sensitivity specificity Accuracy sensitivity specificity 

Mean±Std 

92.34 

±2.53 

96.36 

±2.54 

87.4 

±4.12 

75.51 

±5.16 

80.36 

±7.13 

69.66 

±9.15 

Max 98.42 100 98.24 89.06 100 93.1 

Min 83.46 87.14 77.19 57.81 54.28 37.93 

 

Figure 4.7 Graphical representation accuracy, sensitivity and specificity mean results for training 
and testing sets after 500 Monte Carlo runs. Error bars represents the standard deviation. 
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Figure 4.8 Illustration of histogram of training accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 

 

Figure 4.9 Illustration of histogram of testing accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 
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4.2.1.2 Optimization using Fminbnd2 
 

The optimization of two parameter of hyperplane, namely C and n, is performed sequentially 

using the same optimization routine as in section 4.2.1.1. Figure 4.10 Illustrates the graphical 

representation of average of training and testing results obtained for the above optimization 

technique for 500 Monte Carlo runs.  Where error bars represent one standard deviation of 

computed accuracy values. Figure 4.11 and Figure 4.12 illustrates the histogram of the training 

accuracy and testing accuracy for 500 Monte Carlo runs respectively. Table 4.4 summarizes the 

performance results of training and testing for 500 Monte Carlo runs. 

Table 4.4 Sensitivity, specificity and accuracy mean and standard deviation (std) for training and 
testing sets after 500-run Monte-Carlo simulation for the optimization 

  

Training 

  

Testing 

 

 

Accuracy sensitivity specificity Accuracy sensitivity specificity 

Mean±Std 

87.35 

±3.82 

91.41 

±4.23 

82.36 

±5.37 

76.66 

±4.81 

81.84 

±6.75 

70.41 

±8.98 

Max 97.63 100 98.24 85.9375 97.142 93.1 

Min 59.84 77.14 28.07 54.6875 60 31.03 

 

 
Figure 4.10 Graphical representation accuracy, sensitivity and specificity mean results for 
training and testing sets after 500 Monte Carlo runs. Error bars represents the standard 

deviation. 
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Figure 4.11 Illustration of histogram of training accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 

 

Figure 4.12 Illustration of histogram of testing accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 
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4.2.2 Optimization of hyperplane parameters using Fminsearch 

Both C and n are optimized together in this optimization. Figure 4.13 Illustrates the graphical 

representation of average of training and testing results obtained for the above optimization 

technique for 500 Monte Carlo runs.  Where error bars represent one standard deviation of 

computed accuracy values. Figure 4.14 and Figure 4.15 illustrates the histogram of the training 

accuracy and testing accuracy for 500 Monte Carlo runs respectively. Table 4.5 summarizes the 

performance results of training and testing for 500 Monte Carlo runs. 

Table 4.5 Sensitivity, specificity and accuracy mean and standard deviation (std) for training and 
testing sets after 500-run Monte-Carlo simulation for the optimization 

  
Training 

  
Testing 

 

 

Accuracy sensitivity specificity Accuracy sensitivity specificity 

Mean±Std 92.78±2.53 96.33±2.54 88.43±4.40 74.74±5.6 78.57±8.24 70.12±8.74 

Max 99.21 100 98.24 87.5 97.142 93.1 

Min 83.46 87.14 77.19 56.25 42.85 44.82 

 

 
Figure 4.13 Graphical representation accuracy, sensitivity and specificity mean results for 
training and testing sets after 500 Monte Carlo runs. Error bars represents the standard 

deviation. 
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Figure 4.14 Illustration of histogram of training accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 

 

Figure 4.15 Illustration of histogram of testing accuracy for 500 Monte Carlo runs. The graph 
represents percentage of accuracy values in each of the 10 equally divided accuracy bins. 
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4.3. Comparison between different optimization algorithms 

 A summary of the testing performance results of the Monte Carlo simulation for the five 

optimization techniques is accounted in Table 4.6. 

4.6 Summary of the sensitivity, specificity and accuracy mean and standard deviation (std) for 
testing sets after 500-run Monte-Carlo simulation for a the five discussed optimization 

techniques. 

Optimization routine 

 

Testing (Mean ±std) 

 

Accuracy Sensitivity specificity 

Manual1 75.98±4.59 81.20±7.16 69.67±8.03 

Manual2 75.83±5.15 80.02±7.45 70.79±8.32 

fminbnd1 75.51±5.16 80.36±7.13 69.66±9.15 

fminbnd2 76.66±4.81 81.84±6.75 70.41±8.98 

fminsearch 74.74±5.61 78.57±8.25 70.12±8.74 
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CHAPTER 5 
 

DISCUSSION  
 

This chapter contains the discussion of the different results obtained in this investigation. 

Section 5.1 discusses the performance of SVM detection algorithm. Section 5.2 discusses the 

comparison of the results acquired for optimization. Section 5.3 discusses the comparison of the 

results with previous studies. 

5.1 Performance of SVM Detection Algorithm 

The performance of a SVM is analyzed in terms of training and testing performance. The 

training performance measures the ability of a SVM to learn through training, whereas the 

testing performance measures the capability of SVM to classify the unseen data using the 

parameters obtained during training phase. Hence, the optimization approaches presented in 

this study were employed to optimize the learning section so that the testing would improve. In 

the ultimate application of algorithm, its testing performance is of interest.  

The performance of the detection algorithm is measured in terms of accuracy, sensitivity and 

specificity. As discussed in chapter 3, the sensitivity is referred to as the probability of a 

diagnostic test is positive, given that subject is apneic and specificity is referred to as the 

probability of a diagnostic test is negative, given that subject is normal. In this study, we are 

investigating the ability of SVM for the detection of OSA events. The results reported for 

different optimization techniques in chapter 4 reveals that the sensitivity of SVM is higher than 

its specificity.  This implies that the algorithm is able to detect more of OSA clips correctly than 

NOR clips.  This is result as we are investigating the detection of OSA clips using features 

extracted from ECG.  
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5.2 Comparison of Optimization results 

This section compares the results acquired for different optimization routines. The comparison 

of results within Manual and computerized optimization is referred as intra optimization 

comparison and the comparison of results between Manual and computerized optimization is 

referred as inter optimization comparison. 

5.2.1 Intra optimization results comparison 

For manual optimization, the results reported in chapter 4 indicate that the training and testing 

performance obtained for both the Manual1 and Manual2 are somewhat similar. But Manual2 is 

able to achieve highest accuracy value of 97.63 % for training and 92.18 % for testing. Even 

though the overall performance of Manual1 to some extent better than Manual2 in the testing 

part, but Manual2 is able to achieve highest detection accuracy for both testing and training. 

The histograms for Manual1 and Manual2 reveal the distribution of accuracies across 500 

Monte Carlo simulation runs. A histogram shows basic information about the data set, such as 

central location, width of spread, and shape.  The testing accuracy  histograms for both the 

optimization reveal that, the accuracy value for 65% of the 500 runs are populated near or 

above 76%, but the rest of runs have accuracy lower than 75% which drag the mean of the 500 

runs to a value lower than 76%. This indicates that the Manual2 optimization is better compared 

to Manual1.  

For computerized optimization, the results obtained  suggested that, even though both 

Fminbnd1 and Fminsearch both performed well with the training data, Fminbnd2 performed 

exceptionally well with testing data. Histogram for training accuracies also revealed that the 

width of the distribution for Fminbnd1 and Fminsearch is compact, whereas it is widespread for 

Fminbnd2 often resulting in accuracy values less than 70%.  The histogram of testing 

accuracies show that the accuracy of Fminbnd2 has about 65% of its population near or above 

75% accuracy value,  even though it has a single valve at 57% that had less impact on the final 

overall performance of the SVM.  The 57% accuracy value was due abrupt termination of 
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optimization toolbox.  The final performance of SVM is estimated by testing performance, which 

implies that Fminbnd2 has a higher capability of detecting OSA than the other computerized 

optimizations. 

5.2.2 Inter Optimization Results Comparison 

This section discusses the optimization results for Manual and Computerized optimization.  In 

Manual optimization a mean accuracy of 75.98% is achieved for the 500 Monte Carlo runs. The 

histograms indicate that the maximum accuracy value achieved using Manual optimization is 

around 90%. Even though the accuracy values of computerized optimization never reached 90 

%, the mean accuracy value achieved in Fminbnd2 is higher than that of Manual optimization. 

The highest average sensitivity, the ability to detect OSA was higher for Fminbnd2. 

It is evident from the section 4.3 that optimization of C and n using Fminbnd2 gives an 

advantage over other optimization techniques used in this study. The average accuracy value of 

76.66 % is achieved over the 500 Monte Carlo runs. Where the sensitivity achieved using the 

optimization is 81.84%. The OSA detection capability is higher to Fminbnd2 compared to other 

optimization routines.  

The results obtained from all the optimization techniques indicate that the detection algorithm is 

able to learn well with training set, but is not able to replicate the same results with the testing 

set as expected. There may be several reasons for deterioration of testing accuracies.  

In the study [10], Sanjee reported that the changes in ECG are evident few seconds before and 

after the onset of the apneic events. If the event occurs at the end of the 15-minute epoch, there 

may not be any change in the trend or if the event onset is just after the 15 minute epoch, there 

may be some changes reflected in the cluster trend. Therefore, a centroid extracted from 

normal clip of fifteen minutes duration can be classified as an OSA clip, if there are some events 

just after the clips end. Also, a centroid extracted from a cluster of OSA clip is classified as 

normal it has events at the end of the fifteen minute epochs. This may be the reason for false 

detection. Any missed R-peak detection may also induce false detection [47]. Furthermore, it is 



 

 67 

reported in previous study [8], that changes that occur during Hypopnea are not completely 

reflected in RPE. This may be one of the reasons Hypopnea clip to be classified as NOR clip. 

SVM is sensitive to data imbalances. In a data set of two classes, if there is unequal distribution 

of data points in two classes then the data set is called unbalanced data set. The dominant 

class tries to push the hyperplane away from it. This leads to the misclassification of the of the 

minority class. The data used in this is unbalanced, where OSA clips being the dominant class.  

Therefore, sensitivity of the training and testing is always greater than specificity. 

The detection accuracy could be boosted, if the algorithm is trained for more subjects as 

achieved in [43].  

5.3 Comparison with previous studies 

A pilot study by Al-Abed M et al [44] used parameters extracted from cluster of RPE and R_R 

interval to classify OSA and NOR subjects. An accuracy of 97.5%, a sensitivity of 100% and a 

specificity of 95% was reported for classifying the OSA and NOR subjects in this study. A total 

of 9 parameters were extracted each cluster of RPE and R-R interval.  

Our proposed method is superior in three ways. Firstly, only a single parameter extracted from 

each cluster of RPE and R-R interval is used for classification of OSA and NOR subjects as 

opposed to 9 parameters. Secondly, it does not require the use of neural networks, which are 

computationally complex. Thirdly, the total subjects used for classification purpose are 26 as 

compared to 14 in their study. 

In the study conducted by Sanjee [10], an algorithm was proposed for the detection of normal, 

Chyene-Stokes Respiration (CSR) and OSA events in fifteen minute epochs. This resulted in 

detection rate rates of   87.8 %, 88.6% and 85.4% in the training set and 70.7%, 72.7%, and 

87.5 % in the test set for normal, CSR and OSA events. It is evident from the results in the 

previous that our proposed algorithm has shown performance results comparable to the 

previous study. 
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In other study by de chazel et al [38], 64 features extracted from ECG were used to detect sleep 

apnea.  They used a complex neural network as a classifier. The study reports sensitivity and 

specificity of 100% for classifying normal subjects from OSA subjects.  

The algorithm used in thesis is superior in two ways. Only one feature is used for the detection 

purpose opposed to 64 features. The algorithm takes advantage of computationally simple SVM 

opposed to computational complex neural network used in their study. 

This approach showed detection results comparable to the previous study [10]. The limitation of 

this study is that the detection results are low compared to the previous study [9, 38].  The lower 

detection results can be associated to, fewer features used for the detection, and the tolerance 

of the SVM to data imbalances. 

 

 

 

 

 

 

 

 

 

 



 

 69 

CHAPTER 6 

CONCLUSION AND FUTURE DIRECTIONS 

6.1 Conclusion 

The performance of the support vector machines in detecting the presence of OSA in overnight 

ECG recording is tested in this study.  This approach combines both RPE and R-R interval to 

form a cluster. An optimum centroid is extracted from the cluster, and is used as an input to the 

SVM. The performance results showed small or no change across the different optimization 

techniques. For Manual optimization, a highest learning performance of, accuracy of 91.16%, 

sensitivity of 95.20% and specificity of 86.20% is achieved for training set and a highest testing 

performance of, accuracy of 75.98%, sensitivity of 81.20 %, and specificity of 69.87% is 

achieved for testing set. The Computerized optimization resulted in slightly higher performance 

than the Manual optimization. The highest learning performance achieved for training set is, 

accuracy of 92.78%, sensitivity of 96.33% and specificity of 88.43% and a highest testing 

performance of, accuracy of 76.66%, sensitivity of 81.84 %, and specificity of 70.41% is 

achieved for testing set. The detection rates achieved using SVM is comparable to the results 

achieved with previous study [10]. However, the detection rates are lower than the results 

acquired using some other study [9, 38]. The testing sensitivity achieved for both Manual and 

computerized optimization is more than 80%. This is indicative that the SVM is useful tool for 

initial screening purpose but may not be as useful for probable diagnostic purpose. 

6.2 Future Directions 

In this research, we concentrated on feasibility of conventional SVM for the detection of OSA in 

overnight ECG recoding.  Future studies could concentrate on increasing the performance of 

the classifier using advancement in SVM such as recently developed v-SVM. The support 

vectors play an important role in the final solution of SVM. The generalization error for a support 
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vector is directly proportion to the number of support vectors as discussed in Appendix B. The 

lower the support vectors the higher the generalization ability of the SVM. v-SVM has the 

advantage of controlling the number of support vectors in advance, thus controlling the 

performance of the SVM. In general they are two different problems with the same optimal 

solution set. However, compared to conventional SVM, the dual formulation of ν-SVM is more 

complicated, due to which the probable use of v-SVM for large scale SVM training is not 

possible [49, 50].  

The major limitation of SVM is its sensitivity to the data imbalances. The future study should 

concentrate on correction techniques for data imbalances. Especially, the future study should 

be directed toward using an offset based method for the correction of the imbalances. This 

method is based on calculating offset for unbalanced support vectors resulting from unbalanced 

data [45]. 

Additional future directions could include: 

 Use of additional features from ECG, such as changes in P wave which shows 

significant difference between normal breathing segments and OSA contaminated 

segments in each OSA patient [46]. 

 Use of information from multiple leads. Even though ECG from lead I showed highest 

sensitivity for the detection of OSA events, incorporation of ECG from additional leads 

could boost the detection rates. This information can be easily recorded and stored 

using Holter monitors at any point of time. 

 Inclusion of some easy-to-measure parameters such as SaO2 would increase the 

performance of the classifier. Even though they show lower detection rates compare to 

other features, inclusion of them could further increase the detection rate. 

 Use of Shorter data clips. Data clips used in this thesis are all 15 minutes long.  In the 

OSA clip the apneic event could be recorded anywhere within the 15 minute clip. The 

detection rate could be further increased by using shorter interval clips which are 
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accurate indicative of the apneic events. Given the fact that the shortest apnea is 10 

sec, the clip length should be around one minute long.  



 

 72 

APPENDIX A 

 
 

EUCLIDEAN DISTANCE 
 
 



 

 73 

Euclidean Distance: 

For the given two points in space with co-ordinates (x, y) and (a, b), the Euclidean distance d, 

between the two points is given by. 

                                       (x, y) 

                                                                                     (a, b)        

Euclidean distance:                                                                      (1) 

When Euclidean distance is used to obtain centroids, the resulting cluster centroids are mean of 

all the data points in a cluster. Where the mean of cluster minimizes the square distance given 

by equation 

                        
 
   

 
 

 

 
                                               (2) 

 
Figure A.1 K-Means Clustering with Euclidean distance. Black circles represent the centroids. 
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APPENDIX B 
 
 

GENERALIZATION ABILITY OF SVM AND CONCEPT OF SOFT MARGIN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 75 

Generalization ability of SVM. 

Lately SVM‟s attracted lot of interest due to their good generalization of performance. The 

studies conducted on generalization ability of SVM reported their good generalization 

performance [32]. Suppose the optimum hyperplane is found for a data, assume that    be the 

number of support vectors and N be the total number data points. It is widely proved in the 

literature that the expected out-of-sample error (the portion of unseen data that will be 

misclassified),  is bound by 

  
  

   
                                                                                            (1) 

The following implies that simpler systems are better and for SVM‟s, fewer support vectors are 

compact, simpler and enough representation of the hyperplane. Hence, generalization 

performance should be better for SVM [33].  

Soft Margin 

To classify the data with minimum number of errors, otherwise cannot be completely separated 

by linear separating hyperplane the constraints of the primal form should be relaxed to some 

extent. The concept was first developed by Corinna Cortes and Vladimir Vapnik. For the 

purpose of relaxing the constraints a slack variable    was introduced to relax the constraints. 

As shown in the Figure 1 the training data points fall into three categories. 

Case 1: The data points which fall outside the hyperplane and are classified correctly. These 

are completely in compliance with constraints in the primal problem defined above. 

Case 2: The data points which fall inside the margin but on the same side as the respective 

class. They satisfy the following inequality. 

                                                                                                        (1) 
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Figure B.1 Illustrates slack variables assigned to unclassified data. 

Case 3: The data points which fall on the opposite side of the margin. These data points obey 

the following inequality 

                                                                                                              (2) 

All the three cases can be represented by using one equation. Now the constraints of the primal 

problem become 

                                                                                                         (3) 

Where                                                                                                             (4) 

The value of the slack Variable    is different for each of the three cases discussed above. For 

the first case the value of slack variable is zero as the data points are in harmony with the 

constraints. The value of slack variable for the second case is in between zero and one i.e. 

0<    . The value of slack variable is greater than one for the third case. 

The new optimizing problem with additional slack variables to the constraints is more involved, 

yet it falls under the same rationale as described for the linear separable case. In addition, the 

underlying principle does not change much with respect to linear separable case with the 

addition of slack variables. The induction of slack variables into SVM revolutionized the way it 
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was used and made it possible to see it as a potential tool for pattern classification for almost all 

practical cases. 

The primal problem is given by 

Minimize  
 

 
          

 
                                                                                                    (1)        

Subject to                 , where i=1, 2, 3, 4………N                                    (2) 

                                             where i=1, 2, 3, 4………N                                              (3) 

Where C is a penalty imposed on the slack variables. C is an arbitrary constant. The above 

problem is again a convex programming, and the corresponding Lagrangian is given by 

            
 

 
          

 
         

 
       

 
                       (4) 

The corresponding KKT conditions are given by 

 

   
                                                                                                                            (5)                         

 

   
                                                                                                          (6) 

 

    
                                                                                                         (7) 

    ,                 i=1, 2… N                                                                                                      (8)    

    ,                 i=1, 2… N                                                                                                      (9) 

       ,                 i=1, 2… N                                                                                                (10)                                                                         

                                                                                                  (11) 

Taking derivatives with respect to w, b and     

      
 
                                                                                                                     (12)          

       
 
                                                                                                       (13)                                                            

    
 
                                                                                                           (14)    
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                                                                                                           (15) 

The associate Wolfe dual representation is given by 

Maximize                                                                                                     (16) 

Subject to        
 
                                                                                        (17) 

                       
 
                                                                                           (18)    

                                    i=1, 2… N                                                          (19)                                                   

                        ,                 i=1, 2… N                                                                                (20)    

                    ,                 i=1, 2… N                                                                                 (21) 

Substituting the above equality constraints into Lagrangian dual we get, 

        
 
    

 

 
           

   
 
                                                                        (22)                                       

Subject to                      i=1, 2… N                                                                             (23)                                               
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APPENDIX C 
 
 

HOLD OUT AND LEAVE ONE OUT CROSS VALIDATION
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Holdout Method  

In this method the data is completely divided into two sets one for training and other for testing. 

A function approximator is used to fit a function to the training data set. Then the function 

approximator is used to predict the output of the unseen testing data. This is repeated many 

times and results obtained are averaged to give the reliability of the system.  

Leave-one-out cross validation 

The data set is divided into n-subsets, where n is the number of data points in the data set. 

Each time, one subset is set aside for testing and remaining n-1 is used for training. The training 

parameters obtained are used to test the testing subset. The errors are averaged over all of the 

n trails. 
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APPENDIX D 
 
 

SAMPLE PLOTS 
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Figure D.1 A scatter plot of RR vs. RPE signals for 899 points representing 15 min of overnight 
ECG LI recordings for a normal clip. 
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Figure D.2 A scatter plot of RR vs. RPE signals for 899 points representing 15 min of overnight 
ECG LI recordings for an OSA clip. 
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Figure D.3 A sample distribution of centroids extracted from a scatter plot of RR interval vs RPE                                                        
from both OSA and normal clips. 
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Figure D.4 A support vector classification of centroids extracted from scatter plot of 
RR interval vs RPE for the purpose of training. 
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Figure D.5 An optimized SVM classifier hyperplane for the purpose of testing unseen data. 
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