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ABSTRACT

QUALITATIVE BEHAVIOR OF
DYNAMICAL VECTOR

FIELDS

Roger Dale Kirby, Ph. D.
The University of Texas at Arlington, 2007

Supervising Professor: G. S. Ladde

Differential Equations come in two classes, deterministic and stochastic.
The first part of this document analyzes some of the stable properties of the set
of all trajectories in the real plane converging on a critical point defined by two
distinct negative eigenvalues_ a so-called node.

Secondly, also in the deterministic class, we offer a new method for finding
closed-form primitives for a great variety of differential forms, through a reduction
process faciltated by a Lyapunov-type Energy function. Many of these forms lie in
classes which heretofore have not been shown to be solvable in closed form.

In the stochastic section, the third part of this work outlines the appropriate
procedures for calculating differentials and solutions for fields perturbed by random
processes.

For the final chapter, we present the development of a theory of Laplace
Transforms for stochastic calculations. The resulting Table of Transforms has
been initiated, and shall eventually be enlarged. Applications are offered to

demonstrate the utility of this approach.
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CHAPTER 1

QUALITATIVE PROPERTIES OF TWO-DIMENSIONAL DYNAMICAL
SYSTEMS UNDER NONLINEAR DETERMINISTIC PERTUBATIONS

A mathematical model of dynamical processes in biological, chemical and physical
sciences can be described by vector fields. In this chapter, we consider the class of two-
dimensional vector fields described by a system of nonlinear autonomous differential
equations. We shall concentrate on classifying the character of the phase plane around a
linear node when perturbed by various nonlinear autonomous fields with rotational and/or
radial components.

1.1 Two-dimensional Dynamical Fields : Problem Formulation

Each vector field we consider shall be specified by a pair of autonomous differential

equations of the following form :
= F(z,y)
’ 1.1.1
{y’ = G(z, y) (L1.1)
where F, G € ClE, R], E CRxR.

The mathematical analysis of the behavior of the trajectories of (1.1.1) in the
neighborhood of a critical point may in general be quite complex. By employing a
coordinate transformation of the critical point in question, one can move the analysis to
the origin; i.e. without loss in generality, one can assume that the origin is the critical
point of (1.1.1). Our approach to the analysis of the general system (1.1.1) is to
decompose and transform (1.1.1) into simpler sub-vector fields (perturbed) described by

{x/ — N+ f(z,y)
Yy = py+g(,y). (1.1.2)

where f, g € C1[E, R], and )\, i are the eigenvalues of the linear part of the vector
field < F(x,y) , G(x,y) >. The interactions (perturbations) among the 2-dimensional

sub-systems of (1.1.2) are described by f and g.



The isolated sub-vector field (unperturbed linear system) corresponding to (1.1.2) is:

{ =z
Yy = py. (1.1.3)

Let us first examine the qualitative behavior of a particular type (attractor node) of
critical point of (1.1.3), and then discuss the corresponding behavior of perturbed
system (1.1.2). We begin with a special case of perturbed system (1.1.2) of the

following form:

{ = Ar —yop(z,y)
Y = py + xé(r,y). (1.1.4)

where ¢ € CL[E, R] represents the rotational pertubation of the flow ,
and A\, 4 € R;

Here we see

f(z,y) = —yo(z,y)
{g(x,y): zp(z,y) (1.1.5)

(or notation < — yop(x,y), xp(x,y) >) isthe rotational component of the field.
Also we make note that the perturbing field < f(z,y), g(x,y) > shall of course

have no linear terms (else they would be included in the linear field < Az, uy > ); and

thus
¢(z,y) must vanish as r—0.

1.2 Definitions, Notations, Results

For reference, a few preliminary results, definitions, and notation to be used in

subsequent discussions are presented.
First, whenever we shall employ the polar coordinate system :

xr =rcosf; y = rsinf;
r? = 2?2 +y?; 9=arctan(y) (1.2.1)

T

systems (1.1.1), (1.1.2) and (1.1.4) shall be transformed into the following forms :



" = cos OF (rcos 6, r sin 0) 4 sin § G(r cos 0, r sin )
0' = 1 [cosG(rcosb,rsin6)—sin6 F(rcos6,rsinf)] (1.2.2)

r = r()\cos2 0 + psin? 9) + cos Of(rcosf,rsinf)
+ sin 6 g(r cos 6, r sin 6)

0 = (u— A)cosf sin @ + 1 [cos 6 g(rcos 6, 7 sin §)
— sin 6 f(rcos 6, r sin 6)] (1.2.3)

{ r = r()\cos2 6 + psin? 9)
0 = (u—A)cos@ sinf + ¢(rcosf,rsinf) (1.2.4)

Definition 1.2.5:  Thesetof all points (z,y) on a specific solution of (1.1.1)
without reference to a parametrization is called an orbit of (1.1.1). Furthermore,

parts of an orbit determined by the parameter ¢ > ¢y and ¢ < ¢y for some t; € R are
termed a positive half-orbit and a negative half-orbit, respectively.

Let us denote orbit by upper case Roman and positive half-orbit, and negative half-orbit
by the following superscripts: O, O% and O, respectively.

Definition 1.2.6 : The isolated critical point (0,0) of dynamical system (1.1.1) is said

tobe an attractor in positive time if :
all solutions (z(t), y(t)) = (x(¢,to, 0, v0), y(¢, o, o, yo)) exist
(for t > ty and sufficiently small |zl + lygl)

and if  lz(t)l+1y(t)l -0 ast - oco.

Definition 1.2.7 : The isolated attractor (0,0) of dynamical system (1.1.1) is said

tobea node if:
all orbits (x(t), y(t)) have tangents at (0, 0); thatis, ifa continuous
y(t)

determination of 6#(t) = arctan | <5 ) tends to areal limit 6y, .
x(t)

We now present a theorem without proof which summarizes well-known results
of linear system (1.1.3).



Theorem 1.2.8 : Assume that the coefficients A and j definedin (1.1.3) satisfy

A< pu<O. (1.2.9)
Then

L1. Each positive half orbit is attracted to the origin with a well-defined tangency angle

(characteristic direction) 6,

L2. There is precisely one orbit (denoted X* ) for which 6;,, = 0

and precisely one orbit (denoted X~ ) for which 6;,, = 7;
L3. There exists an (infinite) family of orbits with 6, = %
and a family of orbits with 6}, = — %;

LA4. The family of orbits with 6;,,, = g can be decomposed into two subfamilies and one

separator orbit Y* according to those orbits which satisfy :

to or

{0 < 0(t) <% forall t
s
2 to

>
T > 0(t) > forall t >

s

Similarly, the other family for which 6;,, = — 5 can be separated as orbits for

which — 7 is either an upper or lower bound for 6(t), separated by orbit Y~

Remark 1.2.8a: When pu < A < 0, the roles played by X*, X~, Y*,and Y~

become interchanged; and similarly when p, A > 0 the origin becomes a source.

Remark 1.2.8b : For the purely linear field above all four separator orbits
X*, X7,Y* and Y~ lie exactly on the coordinate axes; we intend to show that
under any higher order (than linear) perturbation, separators exist corresponding to
X*and X7; and under many higher order perturbations, separators

exist corresponding to Y*,and Y.



1.3 Rotational Perturbations on Linear Nodes

In this section, we investigate the limiting behavior of trajectories with respect to the node
at the origin perturbed by a purely rotational dynamic field (1.1.5) in system (1.1.4).
These results will provide auxiliary tools to investigate the more general nonlinear
perturbed system (1.1.2). In fact, sufficient conditions are given on the rotational
component of the fields in (1.1.5) that guarantees the preservation of the limiting

behavior of unperturbed system (1.1.3), in particular, Properties L1 and L2.

We now present a lemma which establishes the end behavior of all positive half-orbits
of dynamical system (2.4) for which 6(¢) is bounded.
Lemma 1.3.1 : Assume that A\ < p < 0 for the dynamical system (1.1.4).
Then
(i) the isolated critical point, (0,0) of (1.1.4) is an attractor;

(7i) for any bounded positive half-orbit, ltim 0(t) = 0y, exists; and
elm € {_ %; O, %, 7T}-

Proof: Recall polar representation
r' = 7 (\cos® 0 + pusin® 0)
0= (u—A)cos@ sinf + ¢(rcosf,rsinf) (1.2.4)
From (1.3.1) and A < p < 0, itis clear that :
v < ur <0, forall >0 and t € R. (1.3.2)
Hence the origin is an attractor; in fact, it is a global attractor. Thus (i) is proven.
In order to establish the validity of (i), we assume that 6(¢) is bounded for future ¢;
that is, assume the existence of a real number 77, and angles 6, and 6* such that,
forall ¢t > Tj, 0., < 0(t) < 6~ (1.3.3)
Such bounds will indeed produce the existence of the limit 6y, of 6(¢) as t—oo,

and will further restrict tangency angle 6y, to satisfy :

sin 6y,cos O, = 0. (1.3.4)



Proceeding contrapositively, assume lim6(¢) fails to exist.

t—00
Utilizing the Heine-Borel Theorem , there must then exist real sequences
{t,}>2, and {7,}°°, such that
t,—o0 and 7,00 as n—oo;
{0(tn) o0, € [0., 0], and  {0(1,)}2, € [0., 0],

lim 0(t,) = 6, ; limf(r,) = 6, fordistinct 6, 6, € [0, 0*].

Without loss in generality, assume 6; < 6,. This implies the existence of # such

that 6, <0 <6, and cosfsinf # 0. (1.3.5)
(The periodic sin 6 and cos # can have only finitely many zeros between 6¢; and 6.)
We now proceed to show that (1.3.5) is in fact impossible.

Consider case 1: Suppose cos fsin @ > 0. Here wenote 3 facts :

¢ € CE, R] , r(t)is monotonic, and l@moqﬁ(r cosf,rsinf) =0 (1.3.6)

which together imply the existence of 75 > T (recall (1.3.3)) such that for ¢ > T5
|¢(rcos @, rsin0)| < L(u— A)cos fsin 6. (1.3.7)

From (1.3.7) and 6'(t) from (1.2.4), we have forced  6'(t) > 0 for t > Tb.

Thus 6(t), andalso {6(¢,)}°°, and {6(7,)}>2, are monotonic eventually.

But lim 6(¢,) =60, < lim 6(7,) = 6, contradicts this monotonicity of 6(t),

n—oo n—oo

because 6(t) must contain both sequences. Explicitly, Ny can be found large enough to
make both 7y, > T» and 6 < 6(7y,) < fo; and subsequently N, can be found
such that ¢y, > 7n, and 6; < O(ty,) < 0 < 6(7n,) , adirect violation of the

monotonicity of 6(t).



Similarly case 2: cos fsin # < 0 can be invalidated. Thus one cannot choose a

0 such that 6; < 6 < 6, and cos 6 sin 0 # 0. 6, = 0, follows and therefore
O exists (i..e. 61 = Oy = Oi).
But also the same facts (1.3.6) allow one to establish that 6}, must satisfy (1.3.4).
Otherwise 0'(t) from (1.3.1) would be finitely bounded from vanishing, which would

violate (1.3.3) . This completes the proof of statement (i7) and the Lemma. []

We are now prepared to present the result analogous to property L.1 in Theorem 1.2.1.
Theorem 1.3.8 :  For any dynamic system of the form (1.1.4) such that A < p <0,

all positive half orbits are attracted to the origin, each with a well-defined tangency angle
Om e {—%5,0,5, T},
Proof Forsome €:0<e< 2, consider the unbounded ¢-wedge consisting of the

origin together withallrays § —e¢ <6 < 5+ ¢, 7 > 0.

Since %im)it ( )(;S(r cos 0, rsin ) = 0, we canseethatontheray 6=3 —e
z,y)—(0,0
there exists 7e— >0 suchthat for 0 < 7 < 7.
0 < |p(rcos B, rsinf)| < (u— N)|cos@sind|. (1.3.9)

Similarly there exists 7+ : 0 < r < 7+, for which (1.3.7) holds on ray 0 = % + €.
Defining 7, = min{re-, Te+},
andusing 0 = (u— A)cosf sin @ + ¢ (rcos @, rsin ) we obtain

o > 0 onradial segment (0 < r < 7 ,
<0 onsegment (0 < r <r, 0=

and
<0, onarc(r=r,, %-l—eg 0 < g—i—e).



Thus the radial wedge boundedby r = r.,0=5 —¢, and 0 =75 +¢
including the origin, is positively invariant with respect to the flow of field (1.1.4).
Let us denote this bounded wedge by
WA(5) = {@,0): 0<r<r, T—e<0< 7+ ¢}
From the application of Lemma 1.3.1, it is clear that any orbit intersecting
W.(5) 1is of course attracted to the origin.

Moreover, each orbitin W, (5) does indeed have
a well-defined tangency 6, € {— 5,0, 5,7}

Thus 6;,=2%

5 1is the only possibility for any orbit meeting wedge W.(3) .

But also we see that the existence of any such wedge, together with the negative
character of 7/(t) does indeed imply that each positive half orbit is in fact bounded;

therefore all conclusions of the Lemma hold. O

Corollary 1.3.10 : A similar argument can be used to prove that wedge

W,

(-3) = {0 0: 0<r<r, —F-€<0< —F+¢}
is also a non-empty positively invariant set within the flow of the field, so that each

positive half-orbit which intersects this wedge must eventually lead to 6, = — 7.

Next we shall present a result establishing the existence of two
unique separator orbits X* and X~ within the flow of any node possessing a

rotational component of the form (1.1.4).



This pair of trajectories separate the vector field and are unique with respect to satisfying :
givenany € (0<e< 7)), there exists a positive r(e) such that :
neither X* nor X~ ever intersects either wedge
W.(5) or W.(-5) defined above;

This property shall lead to tangency angles 6, = 0 for orbit X*

and 0, = = for orbit X .

Theorem 1.3.11 shall represent the analogue to property L.2 possesed by the purely

linear vector fields of Theorem 1.2.1.

Theorem 1.3.11 : Under the hypotheses of Theorem 1.3.8, within the field of

system (1.1.4), there exist :

a unique orbit X* corresponding to tangency angle 6;,, = 0,
and

a unique orbit X~ corresponding to tangency angle  6;,, = .
Proof: We establish the existence and uniqueness of the orbit X .

With reference to ., = min {r.-, r+} defined above, suppose that

for the specific value ¢ = w/4 we have determined a number p > 0
to serve as 7. for both wedges W _,(5) and W_,(-7).

.. _ T 3
Explicitly, on the four rays ¢ = +7, 4+,

|¢(rcos 0, 7sinB)] < (u—Acos(%)sin (£) = £ for 0 <7 <p (13.12)

Now consider theset S of points of the 3-circle: r=p ; — %’T << %’T .

We now define two (disjoint) subsets S*and S~ of S thus:



S* = {(p,0) € S |the orbit passing through (p,6) has 0, = T }
S™ = {(p,0) € 5 |the orbit passing through (p,6) has 0, = — § }.
We note that these sets are indeed nonempty, and in fact set S* contains the
arc boundary of wedge W,_,(%); while set S~ contains the arc boundary
of wedge W_,(-3) .
Next we note that the uniqueness of trajectories/orbits of (1.1.4) through any particular
polar point (p,6y), combined with the positive invariance of the wedges, indeed
induce the following order relations on the points of S* and on the points of S~ :
(p,60o) € ST implies (p,6) € S* forall 3T > 6> 6.
(p,0p) € S~ implies (p,0) € S~ forall — ?jf <6< 6. (1.3.13)
Define w, = inf {§ < 27| (p,0) € S*}
and (1.3.14)
w'=sup{0 > — 3| (p,§) €S} .

Now since S*and S~ are disjoint, we must have —% < w< w < jl—r. (1.3.15)

Lemma 1.3.16 : ) The point P (p, w,) ¢ S* and i) the point Q (p,w™) ¢ S~ .

Proof of Lemma : ¢) For contradiction, we suppose (p, w,) to beinset S*.

Consider the orbit K through (p, w,). This orbit K must eventually cross into the

wedge W,_, (%) in order to satisfy 6, = 7, and must therefore cross the lateral
boundary of wedge W, ,(5) at some distinct point A (7, %) suchthat 0 < n < p.
But now we consider a point B (for instance) midway between the pole (origin) and A.

Now the orbit through point B( g, 7 ) » touching the wedge , must also satisfy 6, = 7.

10



But then retracing this orbit back we must inevitably cross the circle » = p discretely
clockwise of orbit K, at some point (p, 0x). Further we musthave — 7 < 60« < w,
(the former bound coming from the lower wedge W,_,(-7)) . But such considerations
have produced the contradiction (p, 6«) € S* while 6« < w,, the infimum.

Thus i) (p, w.) ¢ S* has been established.

Now a companion argument involving 6, = — 5 and the boundaries of the wedges

will produce i) (p,w*) ¢ S™. lemmall

Returning to Theorem 1.3.11, consider again the orbit K passing throug;h the point

P (p, w.). Referingto (1.3.13), (1.3.14), (1.3.15), Lemma 1.3.16, and
Theorem 1.3.8, we have established :

a) any orbit counterclockwise of P must enter wedge W_,(7) and produce 6, = 7.

b) any orbit clockwise of Q must enter wedge W,_,(-5) and produce 6, = —

B

¢) every orbit through set S must satisty Theorem4.1 : 6, € {—5,0, 3,7}
These constraints imply :

d) orbit K through point P must have 6;,, = 0;

e) the orbit J through point Q must also have 6;,, = 0;

f) any orbit clockwise of P and counterclockwise of Q must have 6;,, = 0;

g) 6, = 0 canonly be achieved by d),e), orf).

The next and longest Lemma will establish  w* = w, , implying points P and Q
are one, and therefore orbit K is orbit J, and therefore is indeed the unique orbit

X* satisfying  6;,,, = O.

11



Lemma 1.3.17 : w" = w,

Proof of Lemma : First we note any orbit satisfying d), e), f) or g) above must remain

disjoint from both closed wedges W_,(5) and W_,(-5), and therefore such an orbit

is confined to the (laterally open) wedge W = {(r,0): 0 <r<p, -7 < 0 <7}

Now an orbit of system (1.1.4 {
ystem (1.1.4) Y = py + xo(z,y).

or
r = r()\cos2 0 + psin? )

polar companion (1.2.4) {9/ ( 3 9 sind + o
= (u—A)cosf sinf + ¢.

even though confined within wedge W, and even though % (t) is strictly negative,

may in fact oscillate within wedge W in such a manner that the trajectory fails to yield a
function y = y(x).
However ﬂ(t) < 0 does yield a function y = y(r).

dt

Therefore we shall convert (1.1.4) into yet another equivalent system to facillitate the

. | F'=Ar+ plr,y)
final steps of the proof.: { V= 1y + g(ry) (1.3.18)
2
where pry) = (- N
and q(r, y) = £/ —yPo(£V/r* — 2, y).

We note that p,q € C'[E, R] and Z,9250 as r—-0;
Also %(t) < 0 continues to ensure that 7(¢) is monotonic decreasing in .

Now suppose w* < ws,

Then the (supposedly) distinct orbits K through point (p, w,) and J
through point  (p, w*) must traverse distinct curves  y,(r) and  y*(r)

each having tangency angle 6, = 0 at the origin.

12



Since orbits must not intersect,

these functions of r must satisfy y*(r) < y.(r) forall 0 <r < p.

Now since @ < (u — ), theremustexist ¢, = t.(r) and t*=1t*(r)

such that trajectory  K: (z.(¢),y«(t)) through point P (p,w,.) and
trajectory J: (z*(t),y*(¢t)) through point  Q (p, w*) satisfy

|2 (E) P+ [y =12 = 2" ()] + [y (). (1.3.19)
Thus if indeed w* < w,, then y*(t*(r)) < wy.(t«(r)) ateach r.
We now define function

Z(r) = y(t() —y*(t"(1) = yu(r)—y*(r) >0 (1.3.20)
Paralleling a proof by Sansone and Conti [9] , we will show that Z(r) > 0 yields the

following contradiction :
A) 20 50 as -0, and

T (1.3.21)
B) 4Z(ry = 20514+ £0); 0< 8<1; E£(r)—>0as 0.

r

Thereby Z(r) > 0 shall have been proven impossible; hence w* = w, follows.

To establish the validity of A), we note lim [y*—(t)} = 0 since 6, = 0.

This, together with |y*r(r)| < ;Zi((?)n implies y*T(r) —-0as r—0.

Similarly %(T) —+0asr—0. Thus Zir) = y*(r))r_y*(r) —0asr—0.

A) is proven.

To establish B), let us simplify notation .
Let  p.(r) = p(r(t), y«(8)) and q.(r) = q(r(t), y.(1).

Similarly let  p*(r) = p(r(t), y*(®) ; g (r) = q(r(t), y*(1)).

13



Since p and ¢ are C!, foreach r the MeanValue Theorem yields two values

y®(r) and y,(r), such that vy (r) < y°(r), yo(r) < wy.(t) and
such that : p«(r) — p*(r) = 8%2?(7“, Yo(r)Z (1)
0.(r) = q"(r) = goa(r,y°(r) Z(r). (13.22)

We now compute the following expressions for % Z(r)

d d ,*
d d d 41 Y Y
2200 = )~y = B - &

[y(r) + q.(r)]  [wy"(n)+q*(1)]
A7+ pa(r) [Ar+p*(r)]

(12 (r) +] g (1) —q*(r)] — [pu(r)—p"(r)] YL 0L
Ar4pa (1)

02 )+ 0 () Z ()]~ [ (1) 2 () 2 0
Ar+p.(r)

nZ(r) |14 5 5,a(ry° () = g p(ryem U

{)\r—f— p*(r)}

(1.3.23)

Now as r—0, each of the following functions of 7 has limit zero :

@’ %Q(r,zﬁ(r))’ a%p(r,yo(r))’ y*ﬁr)’ q*ﬁr)’ p*y)

Hence, there exists £(r) suchthat £(r) -0 as r—0 and (1.3.23) reduces to :

d7(ry= 20 E(1 4 £0)  and B is established (1.3.24)

Finally, to see the contradiction produced, define 6 = % and define k£ = %6 + %

Then 0 < 6 < limplies 6 < k < 1. Sothenas &(r)—»0, from B) we get the

differential inequality —%2 = §(1+&)< k < lorsimply 92 < kL (13.25)
which implies @ > Cr*~! forsome C >0. But r*laoco as r—0,

which contradicts ~ A4) 2250 as r >0 and so Z(r)>0 is false.
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This completes the proof of the existence and uniqueness of orbit X with respect to
tangency angle 6;,, = 0. The proof of the existence and uniqueness of orbit X~ with

respect to tangency angle 6;,, = m can be formulated analogously. O

1.4 General Nonlinear Perturbations on Stable Linear Nodes

In this section, by employing the results of Section 1.3 concerning the rotational vector field
perturbations (1.1.5) in (1.1.4), the more general nonlinear vector field system (1.1.2)
is investigated. In fact, sufficient conditions are given on the nonlinear perturbations in
(1.1.2) that guarantee the preservation of the limiting behavior of linear system (1.1.3).
The following lemma illustrates the validity of Properties L1 and L2 described in
Theorem 1.2.8, with regard to dynamical system (1.1.2).
Lemma 1.4.1: Let < f, g > be any perturbation vector field in (1.1.2) which satisfies:

(1) A<pu<0;

(i) f, g€ C'[E, R];

(iii) L 50 and £-0 as r—0.

Then there exists rotational component ¢ corresponding to system (1.1.2) satisfying
a) ¢ € CE, R];

b limit z,y)= 0 ; and
) (w,y)—>(0,0)¢< 2

c) ¢ formsa rotational field of the form (1.1.5) but having the same

limiting behavior at the node as system (1.1.2) described by :

{w’ = Az —yd(z,y)
v = ny+ zé(x,y), for some real numbers A and [ (1.4.2)

dependenton A and p, also satisfying A< p<O.

15



Proof:  Assumption (i) guarantees that 6 is bounded inthe future (Theorem 1.3.1).
Let us define the rotational component of the flow with respect to any given nonlinear

vector field < f,g> in (1.1.2) as follows:

o(x,y) = Zlwg(z,y) —yf(z,y)]. (1.4.3)

Now choose a suchthat A < < o< 0 and define 7 = p—a and A= X\ — .
Note that A < i < 0. Under these notations and definition of ¢ in (1.4.3), a system

corresponding to system (1.1.2) can be written as:

= Xz+ f(z,y)
{y’ = ny+ g(z,y), (144)
where B
g(z,y) = xé(z,y). (1.4.5)

Now we need to verify that ¢ in (1.4.3) satisfies all conclusions of the lemma. It is

f

obvious that ¢ € C'[E, R], moreover, from - and Fg—v 0 as r— 0, one can easily

conclude that ¢(z,y) =0 as (z,y) = (0,0). In view of these statements, the
conclusions of Theorems 1.3.8 and 1.3.11 are valid with regard to system (1.4.4). It
remains to prove that this terminal behavior at the node is also true for system (1.1.2).
For this purpose, we partially rewrite systems (1.4.4) and (1.1.2) in polar

coordinate form as :

rr’ = T+ (A= p) 2
1.4.6
{730’: — (A= ay + r’d(z,y), (140
and
re' =P+ (N—waz?+ art+ zf(z,y) + yglz,y) (1.4.7)
0 = — (X —p) zy+ oz, y), B

respectively.
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Now for each « < 0 assumption (iii) implies there exists a positive real
number 7, > 0 such that for any r < r,,

|z f(z,y) +y9(z,y)| < —ar’. (1.4.8)
This, together with (1.4.7) yields the following system of differential inequality:

< 7 2 _ 2
{rr_ wre+ (A—wpwx (1.4.9)

0 = — (A= ay+ ¢z, y),
It is obvious that system (1.4.6) is a comparison system for (1.4.7).  Hence, by the
application of comparison theorem the validity of conclusions of Theorems 1.3.8 and
1.3.11 with regard to system (1.1.2) follows immediately.

In the following, we present an example that illustrates the scope of Lemma 1.4.1.

Example 1.4.10 : We consider the following system of differential equations

= —2r—2>+ xy
y = —y—2xy+ o’ (1.4.10)

In this example, ¢ in (1.43), A\, & ,f, andg in (1.4.4) are as follows :

(]5(.17,3/) = ﬁ[xg(%y) - yf(x,y)] =2 >

A= —2+0a), 1= —(1+a),

f(xay) = - ygb(x,y) = _?‘jy2

_ 3
and ?: $¢($,y) = ;gy?

where « satisfies the relation: —2 < —1 < a < 0. Hence the system corresponding

to (1.4.4) with respectto (1.4.8) can be written as :

2,2

x = —(2+a)x+%

o (1.4.11)
y=—(1+a)y+ 2%,

17



The (mixed) coordinate representation of (1.4.11) and (1.4.10) are:

f=-r-T-oar (1.4.12)
0" = cos® sin @ — r(cos #)%sin 6, o
b e 2 1 _ .3 .2 9.2 .3
and r=-r-T+3(-a oty —2ny ) (1.4.13)
0’ = cos @ sin § — r(cos f)sin 6, respectively

We now choose radius R(«) small so that for » < R(a),

(=2 4+ 2%y — 229> + 3*)| < —ar andthus ' (1.4.13) < 1 (14.12) < 0,

while ¢’ (1.4.13) = ¢ (1.4.12), which implies that the boundedness of 6(t) for (1.4.12)

(which results from Theorems 1.3.8 and 1.3.11) must thereby control the boundedness of
6(t) for (1.4.13), which in turn implies the conclusions of Theoerems 1.3.8 and 1.3.11 .

This argument explains why the radial component of the perturbation field < f, g >

can be considered negligible (near the origin).

Lemma 1.4.1 and the example are sufficient to provide results analogous to Theorem 1.3.8

and Theorem 1.3.11 with respect to system (1.1.2).  The detailed proofs are omitted.

Theorem 1.4.11 : Under the hypotheses of Lemma 1.4.1, all positive half-orbits

of system (1.1.2) are attracted to the origin with well-defined tangency angles 6;,,,.

Theorem 1.4.12: Under the hypotheses of Theorem 1.4.11, system (1.1.2)

has unique orbits  corresponding to tangency angles 6;,, = 0 and 6, = .

We are now interested in investigating the existence of two other separator orbits

corresponding to tangency angles 6}, = % and 6, = -—

vl
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These orbits shall be denoted Y™ and Y. In order to study the existence

of these orbits, we shall need to impose an additional condition on the rotational

component ¢ in the flow of (1.1.4).

We now define a [limited oscillation property
(LOP) on the function ¢ (x,y) or ¢ (r,0) of the system

¥ =z —yd = pr+ (X — p)rcos?

vV =py+xd 0 = (u— X)) cos Osin 0+ ¢.
We shall require a positive radius, within which, on each axis, ¢ either
vanishes identically, or else never vanishes. For example, polynomials, analytic
functions, and even many non-analytic functions, suchas ¢ = (Ilnr)~! possess this
property LOP. However ¢ = r sin% or f= yHEcos% do not satisfy LOP,
instead oscillate wavelike near the origin, yet still terminate with well-defined

tangency at the node. Such flow is not separable into the subregions described below.

1.5 Limited Oscillation

Definition 1.5.1: Wesay ¢ (x,y) satisfiesa limited oscillation property

(denoted LOP) on any ray 6 = w if there exists a radius p > 0 such that either

¢ (rcosw, rsinw) =0 for 0<r<p

orelse ¢ (rcos w, rsinw) # 0 for 0<r< p
We now develop the nonlinear analog of the unique linear straight line orbits which
coincide with the y-axis in a simple linear field having distinct negative eigenvalues.
For nonlinear system (1.1.2) consider now the set, which we shall denote F't,

. . m
of all orbits having tangency  6i, = 5 .
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Theorem 1.5.2 For system (1.1.2) or (1.1.4), whenever f and g (or ¢) satisfies the

LOP defined above on rays 6 = =+ %, then there exists a separator orbit
Y™ € F*, which separates the set F'" into either : the pair of subsets A; and Ay;
or else into the pair of subsets Bj and Bs, characterized respectively by :

al) 0(t) < 3; a2) 6(t) > I somewhere.

NI

bl) o0(t) > 3; b2) 6(t) < 5 somewhere.

2ol

Ineachcaseeither YT € A, or Y™ € Bj.
Similarly the family F'~ composed of all orbits with
Oy, = — % can be decomposedinto F~ = C; UCy; or - = D; UDs
characterized by:
ch) 6(t) > — 3; c2) 0(t) < — 5 somewhere.

dl) 6(t) < —

vl

i
d2) 6(t) > — 5 somewhere.
Moreover there exists a separatororbit Y~ € C; or Y~ € Dj.

Proof of Theorem 1.5.2:

Suppose ¢ (z,y) satisfies LOP onray 6 = 7.

Thus there exists radius p such that ¢ (x,y) is either always positive or always
negative for 0 < y < p. Without loss of generality, suppose ¢ (0,y) > 0.
Wenote thatonray =73, 6= ¢ >0 (r< p)

Recall orbit X*. X* passes through point ( p, w,) and thereafter remains within

wedge — 7 <60 < 7,0<r <p. Consider the future of the set of orbits through arc

r=p, We <6< The orbit through (p, w,) wecall X' has 6Oy, = 0.

2ol

All other orbits through (p, 0)  for Wy <0 < 5 have Olim = -
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Now we define U: = {6 € (w,, I ]| orbit through ( p, 6) crosses y™ axis }.
Note U is not empty. Let u, = infU. We claim wu, ¢ U. Suppose u. € U.
Then the orbit through (p, u,) meets the yTaxisat (0, n) with 0 <n < p.
We argue as in Lemma 1.3.3 that the orbit through (0, i) must intersect the circle of
radius p at some (polar) point ( p, 6,) with w, < 6, < u,. This result
contradicts w, asinfimum of U. This orbit through ( p,u.) wecall Y.
Now we note any orbit counterclockwise of Y™ must touch the y+ axis.
Thus we may define

Ay = {orbits in F'" clockwise of Y} Ay = F — A; (set difference)
Similarly the case ¢ (0,y) < 0, 0 < y < p produces a separator orbit
Y " which is the orbit through point ( p, u*) where
u* = sup{f € [Z, )| the orbit through ( p, ) meets the y* axis }.
In this case we define

B; = {orbits in F'* clockwise of Y+ } and By = F'*— By, andnote Y € Bj.

Finally, and analogously, we argue the decomposition of
F~ = CUC or F~ = Dy UDy withseparatororbit Y~ € C} or Y~ € (s,
dependingon ¢ < 0 on y~ axis,or ¢ > (0 there, respectively.

This completes the proof of Theorem 1.5.1. (|

For completeness we should add that any of the four separator orbits
X*, X7, Y*, Y~ could indeed be coincidental with the axes themselves,

as in the case of the simple linear node (1.1.3).
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One final discussion will demonstrate that the X and X~ orbits are each contained

within a single quadrant.

For this, we assume the LOP on the ™ axis, and without loss of generality specify
that ¢ and therefore 6 take only negative values at all points (z,0) such that
0 <z < p (Recall X" is the unique orbit with O, = 0.)
We claim : X" is disjoint from set {(z,0)]| 0 < z < p}.
For indeed suppose (a, 0) were apointof X' forsome 0<a<p.
Then :
1) X' must passthrough (a, 0) with 7/ <0 and 6 <0 so that in future time
X" remains within quadrant IV. That is, either : ) tangency at any point (z,0), 0 < z < a,
or ii) returning to quadrant I, would indeed violate 6 < 0 there.
But then,
2) The orbit through (5, 0) must likewise pass into quadrant IV, and in the
future also never again meet the z ™ axis. But this latter orbit must be distinct from X,
never again enter quadrant I, yet have @, > 0, since only X has 6, = 0. These
are clearly contradictory. Thus X' must not pass into quadrant IV withindisk 7 < p.
The other option is for ¢ (x, 0) =0, in which case clearly X' istheray 6 = 0.
Similarly, within disk r < p, the special orbit X, with Oy = 7,
must behave in exactly one of three possible ways :
1) X is coincidental to the 2z~ axis when ¢ =0 on ray 6 = m;
2) X7 is contained within QuadrantII when ¢ <0 forall — p <z <0:or

3) X~ 1is contained in QuadIIl for ¢ >0 there.
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Thus, when the rotational component ¢ has the LOP onray 6= 7, there does

exist a subset of those orbits with  y;;, = Z having boundary orbit Y*; and Y

2

(within disk r < p ) either misses quadrant I or misses quandrant II.

Similarly Y~ must exist and be disjoint from either quadrant III or from quadrant IV.
But further, when ¢ has LOP onray 6 =0, then (forr < p) the special orbit X"
also must have no point in common with quadrant I or else no point in quadrant IV.

Likewise X~ either misses quadrant II or misses quadrant III.

In summary, when a two-dimensional autonomous non-linear vector field produces
distinct negative eigenvalues, and when its non-linear rotational component has limited
oscillation on the rays # = 0, + %, m, within some positive radius p ;

then the local phase plane must resemble one 16 possible flow arrangements, from

combinations of 1), 2), 3) above, and Theorem 1.5.2 al, a2, bl, b2, cl, c2,dl, d2.

Remark Whenever the vector field perturbation < f, g > can be expanded as
polynomial terms in = and y, there is a very efficient algorithm for determining

which of the 16 possible phase diagrams is applicable.

Forthe X* and X~ separators, we merely locate the lowest degree term in variable

(only) for g(x,0), and estimate the direction of ‘é—f at (z, 0).

To demonstrate this analysis, consider the following specific polynomial field.
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Example 1.53: Let < f,g> = <zy+y? —at-zy—yP>.

We compute 720" = zg—yf = —a* —2?y—ayd — 2%y — 5.
Thus r? ¢ (x,0) = —a°,

SO ¢ (z, 0) isnegative for = > 0,

and 0’ (x, 0) is positive for z < 0.

Similarly, r20'(0, y) = —y* isnegative for y > 0,

and 0'(0, y) 1is positive for y < 0.

These calculations identify the flow crossing each arm of each axis.
From this determination, we can then identify the cases with respect to

Theorem 1.5.2.
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CHAPTER 2

ENERGY METHOD FOR SOLVING TWO-DIMENSIONAL
NONLINEAR DYNAMICAL SYSTEMS

We present a general conceptual algorithm as an alternative approach to solving a
first order nonlinear differential equation. We make use of an Energy function associated
with a given dynamical system. This method, which is basically a search with conditions,
will include as special cases exact forms and integrating factors; but will extend beyond
these known method, producing solutions to equations which are neither exact nor
reducible to exact by integrating factors.

The procedure utilizes an Energy /Lyaponov type formulation, in order to
create a new and simpler (reduced) differential equation, whose solution will in turn

produce an implicit primitive for the original differential equation.

2.1 General Problem: Basics

Consider the first order equation : dx = f(t, x) dt, (2.1.1)

where f is continuous on J x R into R for some interval J = [a, b] C R.

Definition 2.1.2 A function z(¢):J — R isa solution of (2.1.1)

if x(t) and its differential dx(t) satisfy (2.2.1) on J.

The following well-known result provides sufficient conditions on the rate function f

which ensure the existence and uniqueness of solution x(t).
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Theorem 2.1.3  If f(%, x) is continuous on J x R into R for interval
J = [a, b] C R, and if there exist positive K, L such that:
|f(t, )| < K (1+ |2]*) (growth) and
£t @) = f(t, y)| < Llz—y|l forall (¢, @), (t,y) €J xR,
then the initial value problem dx = f(¢, x)dt, x(ty) = x (2.1.4)

has unique solution x(t) = x(t, to, ©9) for t > t,.

2.2 Procedure
Summarized description :  We impose conditions on an (unknown) Energy function
V(t, x); we then conduct a search for a suitable V (t, ) with the goal of eventually
producing a reduced (solvable) differential equation, which in turn shall provide a closed
form implicit/explicit solution or primitive for the non-linear equation (2.1.1).
Step 1: We assume the existence of V(t , :U) satisfying :
a) V(t, x) is continuous on J x R.

b) V(t, x) is monotonic in x, foreach t € J

c¢) V is continuously differentiable with respect to ¢ and twice continuously
differentiable with respect to x.
d) Foreach t € J, V has an "inverse" E(t, :U) such that
V(t, B(t, 2)) =z = B(t, V(t, z)).
Step 2: Define differential operator L associated with (2.1.1) :
L= % + f(t, x) a% and apply L to V thus :
dV(t, z(t)) = LV (t, x(t)) dt (2.2.1)
orsimply dV = V,dt + fV,dt.
Step 3: Define composite m(t) = V(t, x(t)). Study the structure of (2.2.1) and
select a useful form or class of rate function F'(f,m) for which the

reduced differential equation ~dm = F(t, m)dt (2.2.2)

can be readily solved.
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Step 4: Combine (2.2.1) and (2.2.2) to produce
F(t, V(t,z)) = 2V(t,z) + f(t,z) ZV(t, z) . (2.2.3)
Next analyze and search for sucha V' (f, x) whose associated composite
m(t) solves the reduced (2.2.2).
Step 5: Recover the solution x(t) of (2.1.1) from the (usually implicit) equation :
V(t, x) = m(t) + C (2.2.4)

Let us approach the analysis of this Method by considering various classes of the
resulting reduced form F'(t,m). A starting place is the simple class of explicit

integrable functions. We begin by considering the class :

2.3 Integrable Reduced Forms

In this section we demonstrate the Method for the class of differential equations

(2.1.1) which can be reduced to an explicitly integrable rate function F(t, m) = p(t)
in (2.2.2). The simpler p(¢) which results from the Method will be continuous and
therefore integrable.

This resulting p(t) , or F', shall have been required to satisfy (2.2.3) .

The original ODE (2.1.1) shall be reduced to (2.2.2) in the form

dm = p(t)dt (2.3.1)

which will in turn produce the implicit primitive (2.2.4) for (2.1.1).
Procedure :
Perform the general steps 1 and 2 above.

Now, using the chosen class F(t, m) = p(t), (2.2.3) becomes

p(t) = 2V(t, z) + f(t, 2) L V(¢ z) . (2.3.2)
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Step4: If x(t) istobe asolution of (2.1.1) , then (2.3.1) imposes condition
(2.2.1) on energy V(¢t,z) : dV = Vidt+ fV.dt = p(t)dt (2.3.3)

which in turn produces :

Step5: V(t, z(t)) = [dV(¢t,x(t)) = [p(t)dt + C (2.3.4)

where C is a constant of integration.

Observation 2.3.5 : Differential equation (2.1.1) is the most general type of explicit

nonlinear ODE. Let us consider the application of the Method to the subclass of the form

flit,z) = - % ; dx = f(t, x)dt (2.3.5)

and choice of reduced ODE rate F'(t, m) = p(t) in (2.3.3).

Note (2.3.5) alsohas form Ndx + M dt = 0. M, N ,and p are continuous.

M(t,z) o
N(t,x) Ox

Here (2.3.2) becomes p(t) = %V(t,x) —

V(t, ) . (2.3.6)

We proceed to search for a useful combination pair p(t) and V(t, :B) .
For form (2.3.5) we approach the search by considering a choice of energy function
of the form

V(t,z) = [u(t,z) N(t,z) dzx (2.3.7)
where now the nonzero factor (¢, ) becomes our search goal .
For the sake of clarity, and using suppressed notation where feasible, we note

V., = uN ; condition (2.3.6) now becomes

pltonly) = Vi + fV, =V, = XV, = V,+ fV, =V, —uM.(238)

This implies - (%( [ult,z) N(t,z) dm) —u(t, x) M(t, 2)) =0 (239)
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Thus the given functions M (¢, x) , N (¢, z) , and the unknown target (%, x) must

together satisfy (2.3.9) in order to reduce the ODE (2.3.5) to the integrable class (2.3.1).

Observation 2.3.10 : Manipulating (2.3.8) with (2.3.7) and (2.3.5) as follows, we find

%fuNd:c—uM

= f %(uN)da: — f %(U,M)daf + q(t) , where ¢ results from

partial antiderivative. Thus the condition (2.4.9) can be guaranteed by the vanishing of
[Z(uN)dz— [L(uM)dz = [[Z(uN)— Z(uM)] dz

or the vanishing of the integrand % (uN) — % (ub).

Thus, in this case, the factor u(t, x) plays the role of an integrating factor,

and our Method reduces to the Generalized Method of Integrating Factor.

Further if u(t,x) = u(t) orif u(t,z) = w(x), then the Energy procedure is

equivalent to the usual Method of Integrating Factor.

Observation 2.3.11 : In the further case where u(t,x) = 1, we see

the Energy Method reduces to the usual Method of Exact Differential Equation.
Continuing our attempts to reduce to integrable equations of the form

dm = p(t) dt , we consider :

Example 2.3.12 dx = — (2sec(tx) + %) dt.
2t + x cos (tx) . M(t,
Note f(t,z)= -— F eos (t:v() ) in the — N((t,:;c)) form.

Assuming there exists a V(t , :U), we formally write

dV = Vydt 4+ V, dxr and make a
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choice for dm = F'(t, m) dt. Suppose we choose reduced form dm = p(t) dt.

We are now seekinga V' = V (¢, m) such that
Vi+ fVy =Vi— 5Vy = p(tonly) (2.3.13)

One approach is to transfer the search for V (¢, x) to a search for some (%, x)

suchthat V = [uNdz or formally V(t, z) = fawu(t, y) N(t, y) dy.
Alsonote Vi = ulN = u(t, x) tcos (tx). (2.3.14)

Denoting fN dx by N; here N = sin(tx) and % = N. We compute by parts
V = [uNdz =uN— [uNdz and
Vi=uN+uN, — 2 [uNdz (2.3.15)

Thus (2.4.2) becomes  V} — %Vx = p(t) or
wsin (tx) + uwcos(te) — & [uNdzr —uM = p(t)
[Recall M = 2t + x cos (tz)]

Thus we seek u(t, ) to satisfy :

wsin (tz) + uacos(tz) — & [uNdz — uz costr — 2ut = p(t)

or simply ugsin (tr) — 2ut — % fu Ndz = p(t).
Setting u = 1 will reduce the solutionto  p(t) = — 2t. We have reached :
Step5: Reduced ODE m(t) = — 2tdt implies m(t) = —t* +C.

The key step now is to recall m(t) is defined as the composite V (¢, x(t)).

Andenergy V = [uNdz = [Ndrx= N = sin(tx)

Thus we have the implicit primitive — ¢*> + C' = sin (tx) solving (2.3.12).

Note: This example is actually an exact form; but we shall see further cases.
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r 2t tang + 2z 24 x—2t
Example 2.3.16 r = — t + secx

Here f(t,a:) = — ]\]\{(t j) 1S not exact.

Again set V:fuNdx = uN—fudex
where N:deaZ:taZ—l—tanaZ.

Thus, V3 = uy N + uz — % f uy Ndz. Alsonoteagain Vy = ulN

We are attempting to reach the reduced form
dm = p(t)dt where m(t) = V (¢, x(t)).
Thus we seek V = fu N dx to satisfy
m' = Vi + fV = p(tonly); e,

w(tr + tanz) + ux — % [uz Ndz
— u[2t tanx + 22t* +x — 2t] = p(t)  (2.3.17)

Here u = constant does not work. Try u(t, x) = u(t); Uy = 0.

Condition (2.3.17) becomes
(u' — 2tu) (txr + tanx) 4+ 2tu = p(tonly)

Setting u' — 2tu = 0 produces
2
2tu = p(t). Note u = el” suffices.

Wehave m' = p(t) = ate!” which gives m(t) = e!’ +C.
But m(t) =V(t, x(t)) and V= [uNdzr = el'N= e [tz + tanz]

2 2
Thus implicity we have e +o=¢ [tz 4 tanx] or primitive

tr+tanr—1=Cet (2.3.18)

31



We remark that this example, while not exact, can be made exact by introduction

of integrating factor 6t2. Now other methods would indeed have developed the same
integrating factor. However it is interesting to note how our accommodating factor ()
produced the energy function V t, :U f u(t tx dx , which produced

u' — 2tu = 0, which generated the integrating factor. Thus this general Energy
Method does incorporate exactness and integrating factors, and as we shall see, other

classes of equations.

2.4 Linear Nonhomogenous Forms :

We now consider the Energy Method approach to the problem of reducing nonlinear

equations (2.1.1) into the class of linear equations of the form

dm = F(t,m)dt = [u(t)m + p(t)]dt (2.4.1)
here 14(t) and p(t) are continuous real-valued variable coefficients.
Preliminary Steps 1 and 2 are parallel.
Having chosen the class of forms F'(t, V (¢, z)) = u(t) V(t,z) + p(t),
Step 3 is to compute the differential of m(t) = V (¢, x(t)) along ().
Step4 becomes () V(t,z) + p(t) = 2V (t, z) + f(t, ) L V(¢ 2).
which Energy V(¢,x) must satisfy in order to reduce (2.2.1) to (2.4.1).

Since the solution of (2.4.1) is

m(t) = Cexpl ['pu(r)dr + [‘exp| [l u(r)dr]p(s)ds

we have

Step5: V(t, #(t)) = Cexpl ["p(r)dr + [Texp] [T u(r)dr]p(s)ds

forms the implicit solution of (2.1.1).
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Observation 2.4.2 :

Let us consider the application of the Method to the subclass of the form

f(t, @) = - ML

dr = f(t, x)dt (2.4.2)
and choice of reduced ODE rate
F(t,m) = p(t)m + p(t) in (2.4.1).
Note (2.4.2) also has form Ndx + (M + R)dt = 0.

M, N ,R and p are continuous. (2.4.2) becomes

wt)V + pt) = 2V(ta) - Y (tﬁ():f)(t’z) Dy(t,a) . 43

We search for a useful combination triple 1(t), p(t) and V(t,z) to satisfy
(2.4.3). As before, we approach the search by considering a choice of energy function

of the form

V(t,z) = [u(t,z) N(t,z) de  (2.4.4)
where again the nonzero function u« becomes our goal.

Since V,, = w N , condition (2.4.3) becomes

ptonly) = Vi+ fV, =V, = {Vo = Vi —uM.

which implies
2 (%( [u(t,z) N(t, z) dx) —u(t,x) M(t,z))= 0 (245
and also we seek to have — R(t,x)u(t,z) = u(t) V(t, x) (2.4.6)
Thus, given functions M(t, ), N(t,x), R(t,x) and the unknown u(t,x)
together must satisfy (2.4.5) and (2.4.6) in order to reduce the ODE (2.4.2)

to linear form (2.4.1).
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_ 2t+xcostxr+2sintx
tcostx ‘

Example 2.4.7  Consider 2’ =
We shall attempt to use the Energy Method to reduce (2.4.7) to the simpler
linear form (2.4.1) m'(t) = u(t) m(t) + p(t)
where again 1m() is to be the composite of our Energy function V (¢, z(t)).

Form (2.4.1) issuggested by writing (2.42) as Nz’ = — M—R
where N (¢, z) = tcostx, M(t, x) = 2t + x cos tz,
and R(t, ) = 2sintx andnoting R, = 2N.

Thus (2.4.1) arranged m' = p + pum  has a pattern such that a derivative
of the last expression on the RHS resembles the first term on the LHS.
Proceeding, we seek energy V = f ulN dx for some useful u.

[ Also note the association u/N = V,; thus N isa "derivative" of V; while in
original (2.4.2), N isaderivative of R; whilein (2.4.1) m/ is derivative of the last
term pum = pV (¢, z(t)); which is a sort of transitive identification.]

Continuing, as before, we formulate V' by parts:
V:fuNd:c:uN—fuxN dx

and differentiate V; = ut]NV +u ﬁt — %fux]NV dx.

Here: N = [Ndz = [tcostedx = sintx = 3R.

N —

Andagain V, = uN givesus
'V, = uNz' = u(— M — R)

which in turn produces
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Vi+2'V, = ut%R—l—u:ccostx—%fuxN drx —uM — uR

(ue — 2u) sintz — 2ut — & fu, N dx
At this point, interestingly, we can proceed in 2 ways :

a) Suppose we let

m =V, +2'V, = 2sintx — 2t,

I
making m =V = N =sintx; in other terms

| m = —2m — 2t | has the chosen linear form.

But also we can approach (2.4.8) by trying :

b) Let wu(t, ) =u(t) while setting u —2u= 0.

Thus u = e2t, and

m= V= €N = e*sintr, and (2.4.8) becomes

m = — 2te? , simple integrable class.

Now reduction a) has solution
o2 — C’—te%—l—%e%

Together with m(t) = V(t, x(t)) = sintz,

we have the implicit primitive

e? [2sintx +2t—1]=C.S

Similarly, reduction b) has solution

m=e* (3 —t)+0C.

which leads to (2.4.10) also (of course).
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2.5 Reduction to Separable Forms

The following examples illustrate the scope of this approach
beyond the linear reducible differential equations.

(t2x+ sinz)?-2ty

/
. . —
Example 2.5.1 Suppose T 21 cosa
Let N = t*>+ cosz. Let J= t>x+sinx.
2
Then ' has the form — J+J_2t:c so that we might try for
X
separable reduced form m = pt)m?

Next we compute the defining conditions on the Energy function.

V= [uNde= uJ — [u,Jdz. V must satisfy :
V; = utJ—l—th—%fudex
:utJ—I—Uth—%fudex
while V, = uN = wuJ,.  Theseimply
m' =V, + &'V,
= wJ+2uter —uJ?—2utr — %fude:U
= w[t?z+ sinz]-uJ?— 2 [u,Jdz

Wesee % = 1 works here, producing m' = — .J?

and making energy function V = .J.
Our reduced ODE is m' = — m?, not only separable but also autonomous, (2.5.2)
whose solutionis ~ 7(¢) [t + C] = 1. Thus the general solution for (2.5.1) is

(t*z + sinz)(t+C) = 1. (2.5.3)
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(tz-+tan )42z

Example 2.5.4: de = — 3 e Zordt.
Weset M(t,z) = — 1(tz +tanz)® —
and N(t,z) = sec ’z + t. We note that
2 M(t,z) = — 3(tz + tan x)*(sec 2z + ) — 1

and %N(t, x) = 1.

Thus (2.5.4) is neither exact nor reducible to exact by an integrating factor.

However, we initiate the Energy method procedure . Following the argument used

in Example (2.3.12), we arrive at:
V(t,z) = [u(sec? s + t)dx

= u( tx + tan ac) — ff( tx + tan 37) %udm (integration by parts )

% (V<ta r) - V(t, CL)) = u%(tw + tan x) = u(sec 2z + t),
9

LW(t,z)—V(ta) = Zu(tr +tanz)] — Z[["(tz + tan ) Zudz).

AV (t,x(t) + f (t,z(t) ZV(t,z(t))
— 2 ( [uN(, x)da:) — uM(t, )

— uz(tz + tan z)® — uz.

Again we choose u(t) =1. Thus V(t,x) = tx + tanzx. (2.5.5)

I — DV (t,x(t) + f(t2(t) 2V (¢, x(t))

:%[(tx—l—tanaz)]—%( tr +tan z)° — x
— 3 (tz+tanz)® = — [V (¢, z®)]>.
1

The reduced autonomous separable formis dm = — §m3dt (2.5.6)

Combining (2.5.5), (2.5.6) , and of course definition m(t) = V(t, a:(t))

the general implicit solution to (2.5.4) is | 1 = (¢t + C)(tx + tan x)?
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2.6 Separable Differential Equations.

This class of differential equations are easily reducible to integrable differential
equations. Each separable differential equation is characterized by a rate function
f (t,z) which is in fact decomposible into a product of two functions, one of which
is a function of the independent variable ¢, and the other is a function of the dependent
variable (t). Thus we assume that f (¢, x) is a separable function in ¢ and x

variables :
f(t,x) =a(t)b(x); aand b are continuous,
and G(x) = f v % is invertible.

2.6.1 Problem Formulation The original problem structure now becomes

de = f(t,z)dt = a(t)b(x)dt. (2.6.1)

2.6.2 Calculations The basic calculations of our so-called Energy method become:

F(t,m)= pt) = V, + f(t, 2) Vs
Vi + abV, = p(t).
Since the RHS is independent of &, we consider a choice of energy function
V(t,x) tomakethe LHS independent of x. Here we see that we can satisfy
this condition by choosing V' (¢, ) = V' (z) . In other words, one such choice
is V; =0 together with a(t)b(x)V, (z) = p(t) .
But this would mean b(z) V, (x) is a constant. We choose 1 for simplicity.

Altogether we now have reduced the situation to p(t) = a(t). Also we have

Vit,e) =V(x) = fcx ﬁ du. Tn other words, as we have seen several

times, the energy function V' is in the form of an integral over x.

And we finish by solving both m/(t) = p(t) = a(t) which is the reduced ODE.
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Also we solve the energy integral V' (z) = f ca: ﬁ du ; and this produces the

solution m(t) = V(t, x(t)). i.e. fqta(T)dT = f:ﬁdu + C.

Remark : Of course we already knew this was to be the solution to a separable ODE,
but it is still interesting to see this approach .

2.7 Homogeneous Differential Equations

The class of equations referred to as homogeneous are reducible to the separable class
by known methods; here we shall analyze them with respect to the Energy procedure.

Definition 2.7.1: A differential equation (2.1.1) is said tobe homogeneous

if the rate function f(¢,z) in(2.1.1)is a homogeneous function of degree zero,
thatis, f(kt,kxr) = f(¢,z) forany nonzero k..

Procedure :

We assume that rate function f(¢,z) in (2.1.1) is homogeneous of degree zero.

Further we shall need to assume that (f(1,u) — u) does not vanish;

and that the indefinite integral G(u) : = [ uﬁ is invertible.
Let v = % Note f(t,x) = f(1,v) by homogeneity.
Also note % = ;—Qx and % = % and dv = x(ig_t) dt

Consider the type of energy function V'(t,x) also homogeneous :
V(t,z) = P(v)= P(}) (2.7.2)
where P has yet to be determined.

The problem of seeking unknown energy function V' (¢, x)

is equivalent to the problem of seeking unknown function P.
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Compute dV as follows:
VtT)=5P(E) = P')(-p)
and
wV(ta) = ZP(F) = P(0)(4)
Now  dxr = f(t,z) and dt = f(1,v) dt.
Hence, dV(t,x)= P'(v)[ — zdt + %da:]
= P'(v)] - Ldt + Lda]

= P'(v)[ - § + ¢.f(L,v)]dt

We try the indefinite integral function G(v) = f Uﬁ for P(v).
Here we have Energy V (t,x) = G( ) = f% ds
& e t/ f(1,5)—s
dG  dG ,
We compute 7~ = %[Ut + V]

= o [F L0

_1
— 1

Thus the reduced formis m' = tl .

d

T
Altogether we have log t= f t i@ SS)_S + C | for the general solution.

2
Example 2.7.4 dx = % dt. We note the homogeneity.

Further we see G(u) : = fuf(ldss)—s = f“

ds .. .
25 Isinvertible

by partial fractions. i.e. 2 = G(u) = log(l — %) has inverse
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dG , 1 m(x=t) ;. 1
dU dU — U2—U t3 dt — _dt.

Altogether we have dm(t) = dV (t,z) =

Solve for m(t) = log(t) + C. Equateto V = G(%) = log(1— %)

8 |+

or | ktr=x—1t ,k>0

The general solutionis | ¢’t = 1 —

Remark. Of course being separable, this result is also obtainable through classic methods.

2.8. Bernoulli Equations

In this section, we present another subclass of differential equations
reducible to (2.4.1). This class of equations are referred to as Bernoulli differential

equations. First, we introduce a definition of Bernoulli differential equation.

Definition 2.8.1: A differential equation is said to be a Bernoulli differential

equation, if the rate function f (t,z)in dx = f(,x)dt is of the following form:
ft,z) = K(t)x + Q(t)x" for some real number n # 0,1
Reduction : Start with dx = [K(t)x + Q(t)x"|dt (2.8.1)

It is assumed that K and () are continuous nonzero functions.

We initiate the procedure to reduce the Bernoulli type equation using the energy method.
we associate a suitable natural energy/Lyapunov function in a unified and coherent way.

We propose a differential of the form :

aV(t,z) = p)V (L, ) + p(t)

|

LV (t,z) + [K(t)z + Q(H)z"| 2V (¢, x), (2.8.2)

)

In minimal notation

AV =uV +p=V,+ KaV, + Qx"V, (2.8.2)

We attempt pV = KzV, with i) = 6K (t), which gives
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/- —]
= (2.8.3)

From this, it is clear that the quotient of % V(t,z) with V(t,x)
is independent of t.

Therefore, we can assume that V' (t,z) = V(z),

that is, V(t,x) is independent of t.

This means that V; =0 and p(t) = Qx"V, from (2.8.2).

Solving (2.8.3)

V(z)= Cx°, C > 0. (2.8.4)
We compute %V(a:) =V, = 6Cz> ' and
p(t) = 6CQ(t)z" L. (2.8.7)
Separating, we have
_ t
ol 6&;0' (2.8.8)

We note that the right-hand side of (2.8.8) is a function of ¢ only.
Therefore, we let 6§ =1 —mn. Thus (2.8.7) becomes
p(t) = (1 -n)CQ(t)
dV(t,z) = p(t)V (¢, z) + p(t)
= 1-n)K@#)Czx'™ + (1-n)CQ(t)
Letting C=1 the reduced form is linear :
m'(t) = (1 —n)K(t)m(t) + (1 —n)Q(t) (2.8.9)

which is a linear solvable formin m(%). Thus the general solution becomes

where of course m(t) solves (2.8.9) through classic procedures.
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CHAPTER 3

CRITICAL POINT THEORY UNDER RANDOM PERTURBATIONS

In this chapter we present a few preliminary results and definitions. We also discuss a
method of stochastic integration..  Finally a few elementary examples illustrating the
random perturbation effects in the theory of critical points of autonomous two-
dimensional dynamical vector fields. These examples illustrate the role and scope of
mathematics in real world problems. These examples also exhibit the significance of two-
dimensional dynamical vector fields under environmental random perturbations.
Moreover, the chapter provides a motivation to undertake further study in the critical
point theory for two-dimensional dynamical vector fields under random perturbations. In
addition, we generate several issues in the modeling of dynamic processes, namely, the
effects of random perturbations [5]. We propose to undertake this study in the future.

3.1 The Wiener Process

We shall analyze perturbations involving the Wiener process type of Stochastic
variables.

Properties 3.1.1. A Wiener process w(t) : [0, T] — R shall satisfy :

a) w(t) is continuous and w(0) = 0,

b) Elw(t+ At)—w(t)] =0, where At >0,

c) El(wt+ At)—w®)? = At>0.
where F/ is expected value.

Definition 3.1.2 The Stochastic Integral of f(t) is defined by

n—1

Jo F® dw(t) = fim S F(t)[ w(tin) - w(ty) ]

n(P)—0 k=g
where P partitions [0, 7] thus: 0= ty <1 < ....... <t,=T

and p is the mesh/norm of P, pu(P) = max A ;t.
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Definition 3.1.3 Let x:[0, T] — R bea stochastic function.

We say x(t) has a stochastic differential if

2t +h) —zt) = [T a@s)ds+ [T o (s) dw(s) (3.1.3)

where a(t), o(t) arecontinuousand 0 < ¢t < t+h < T.
We denote dx (t) = a(t)dt+ o(t) dw (t). (3.1.4)

We note the first integral in  (3.1.3) is deterministic while the second is

the Ito- Doob stochastic integral .

Theorem 3.1.5 Let V(¢, x):[0, T] x R — R beclass C! with respectto ¢,

If © = w(t), the Wiener process, then the differential

and class C? w.rt. .
(3.1.5)

av(t, w(t)) = [Vi (t, w(t)) + 3Vea (t, w(t))] dt + Va(t, w) dw

Proof. = We shall apply the Taylor series expansionto V', and because of

Properties 3.1.1, we shall retain only the terms A ¢, A w, and (A w)Q.

AV = V(it+ At,w+ Aw)=V(t, w(t))

Vilt,w) At + Vo(t,w) Aw + 3 Vi (£, w) (A w)  (3.1.6)

All higher terms, suchas At, Aw, (At)?, (Aw)d, etc. are o( At); thatis,

3 2
%40, (AAu;) — 0 as At — 0; except that (AAZZ) —las At—0

because of Property 3.1.1c. Thus, when At — 0, wehave: At — dt, the

deterministic differential, A w — dw, the stochastic differential ; and

(Aw)? —dt. (3.1.5) follows.

We shall refer to (3.1.5) as the

natural Ito-Doob Stochastic Differential (or just Ito differential)
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Example 3.1.7. Consider V (¢, z) = exp[(a — 30%)t + ox].

Denote z = (a — 3 0?)t+ oz andset z = w(t).

Then dV =(a—j0?)e*dt+oe*dw+ j0%e*dt

= (exp[(a — 3 0?)t+ cw(t)])[adt + o dw(t)].

Consider now the more general case V' (¢, ), where « hasbotha linear and a

stochastic term:

z(t, w(t)) = at+ ow(t).

Theorem 3.1.8 Let V(t, z®):[0,T] x R — R beclass C' wrt. t,
and class C? wurt. x. Let & = at + ow(t), where w(t) is the Wiener process.
Then the total stochastic differential ~ dV (¢, x(t)) is given by :

[Vi(t, z) +aVy(t, ) + 507 Vi (t, o)) dt + o Vi (t, ) dw (t) (3.1.8)
Proof: Wenote (dz)? = (adt+ odw)? = a*(dt)? + 2ao0dtdw+ o?(dw)?,
but only the last term is not o(At). Thus
AV = Vidt + Vypdz + 1 Vop(do)? = Vidt + V, (adt + o dw) + 3 Vi 02 (dw)? |
and (3.1.8) follows from the limit ( A w)? — dt. O

Note: When computing the Ito-Doob differential of V' (¢, 2(t)) with
T = at+ ow(t) we shall sometimes combine the dt terms as

DV (t, z@®) = Vi(t, z) +aVy (t, 2) + 5 02 Vi (¢, 2) (3.1.9)

i.e. dV =DVdt+oV.dw (3.1.10)

Example 3.1.11 Consider dV(t, z) for V(t,z) = z% Then
DV = 0+ 2ax + 0? sothat dV = (2az + 0?) dt + 20zdw.

Let x and ¥y be stochastic processes with differentials

dr = adt+odw and dy = bdt+ Adw.
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Consider functions U (¢, ) and Us(t, x).
Linear combinations, products, and quotients will follow the usual deterministic rules
of Calculus (interpreting dU;, dU, accordingto (3.1.8) above).

We now formulate the various differential rules of Ito-Doob stochastic functions
of the form U = U(t, x(t,w)) and V = V(t, y(t,w))

where dr = adt + odw and dy = bdt+ Adw.

Theorem 3.1.12 Let U(t, z) and V(t, z) be continuously differentiable with respect

to t and twice continuously differentiable with respect to z.
Define Q(t, z,y) = U(t, x) + kV(t, y) forsome k € R.
Then the Ito differential of @ is d@Q = dU + kdV'; in other words, linearity holds.

The Proof is straightforward.

Example 3.1.13 Let U(t, z) = sin’z, V(i z) = €.

Let Q(t,x,y) = U, x) + 3V (t, y). Compute:
dQ = Qudt+ Qudr+ Qydy+ 5[ Qua (dz)’ + 2Qqy dz dy + Qyy (dy)?]
= (Uy+3Vy)dt+U,d, + 3V, dy+ 3 Uy o dt + 0+ 3V, A2 dt
= 0+ sin2x(adt + odw) + 3€Y (bdt + Mdw) + o*cos 2x dt + 3\2eY dt
= [asin2x + 3be? + o® cos 2z + 3X? €Y ] dt + [o sin 2z + 3\eY | dw.
In other words, differentials of linear combinations are normal.

3.1.14 Independent Products Consider now computing the Ito differential

dQ for Q(t,z,y) = U(t,z) V(t, y)

with dr = adt+ odw and dy = bdt+ \dw.
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Theorem 3.1.14

The stochastic product total differential is given by :

dUV) = VAU + UdV + oAU,V dt

Proof. We compute d(UV) =
(UV)pdt + (UV)gdz+ (UV)ydy + 3 (UV) gy da? + (UV)yy dzdy + 3 (UV)yy dy?
= (VU +UV)dt + VUydz + UV dy + 3 VU da? + Uy Vy dz dy + 5 UVy, dy?
= (VU + UV;) dt + VU, (adt + odw) + UV, (bdt + Adw)
+ (3 0V Uz + oAUV, + 3 A2 U V] dt.
However Vdu =V (Uy + aU, + % 0?Uyz) dt + o VU, dw

and  UdV =U(V; + bV, + 3 A2 V) dt + AU Vydw.

This verifies the formula.

Example 3.1.15 Compute d(z?y?) : Ut,z) =12% V(t,y) =vy*%

dU = 2xdx + dx® = 2azdt + 2 cxdw + o dt. dV = 2bydt + 2 \ydw + \? dt.

Thus d(z%y?) = [2azy® + o2 y* + 20 2% y + N2 2% + 4 o dwy] dt + 2[o 2y® + Aa? y] dw.

The next result gives the Stochastic Dfferential Quotient Formula. We have omitted the
calculations, which can be computed from the Product Formula (3.1.14) applied to

U(t,z(t,w)) V(t,y(t,w)) L.

Theorem 3.1.16 For the Wiener process  w(t)

and stochastic variables
r=at+ow(t), and y=>bt+ Aw(t).

the Ito-Doob Stochastic differential for 58’ ‘;; can be computed from :

V2 (%) = VAU - UdV — o AUV, dit + X2 Y (V)2 dt
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Example 3.1.17 Compute d(%) for de = adt+ odw and dy = bdt + A dw.
d(z®) = 32dz + L 6z(dz)? = 3z[axdt+ordw+o’dt] . And

’ 2,3
(L) = Buylazdt + oz dw + 0% dt] - 2 (bdt + A dw) — 0 X (322) dt + 2 dL.

y
= [3a2?y+30%xy — bz’ —3oAx? + A2 L ]dt-l— [30 2%y — Aa? ] dw.

3.2 Integration of Stochastics

We shall use a combination of the total stochastic differential (3.1.5) and integration

procedures. Consider computing an Ito-Doob integral of the form
[ f (w®) dw(t) (3.2.1)
for some continuously differentiable f : R — R with w(¢) being the Wiener process.

We often simply write w for w(t). Let F'(u) be ausual antiderivative for f(u).

Step 1: Compute the Ito-Doob Stochastic differential  (3.1.5)
dF(w) = 3 F,,(w)dt+F,(w)dw = 1 f,(w)dt+ f(w)dw (3.2.2)
Step 2: Compute the formal Ito-Doob integral.
=1 [ fu(w)dt+ [ f(w) (3.2.3)
Thus | [f(w@®))dw(t) = F(w®)) -1 [ fu(w®)dt+C (3.2.4)

Note the result appears interms of a Riemann integral.

Example 3.2.5 [ w?(t) dw (t). Set F(u) = 1ub.
Noting %%u?’ =’ wecompute dF (w)=12wdt+ w? dw.
Thus F(w) = 3w* = [w(t)dt+ [w?(t)dw(t) or

[w?(t) dw (t) = — Jw(t)dt + C.
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Example 3.2.6 few(t) dw(t) . Set F(u) = e“.

dF(w) = se"dt + e“dw.  Thus,

[e®® a1y = e® — 1 1e®® gy (1) + C. (3.2.6)
7w)

Example 3.2.7 Compute [ e”(H W) gy where again = at + o w(t).

Now d(e")= edx+ ;e dz’ = € (adt + odw) + %2 e’ dt.
Thus €* = afe”dt+ afe$dw(t)+%2f€xdt.
Therefore,  [exp|at+ ow (t)]dw (¢)

= %exp[at%—aw] — (% + %)fea:p[at+aw(t)]dt—l—0. (3.2.7)

3.2.8 Integration By Parts

In order to compute a stochastic integral of the form f ft, w)dw(t),

we outline the following procedure :
Step 1: Differentiate. Set V (¢, w(t)) = w(t) f (¢, w(t)) and use tools from

section 3.1 to compute

dV = Vidt+ V,dw+ 5 Vyy,dt  from (3.1.5)
= wfidt+ (f +wfy) dw+ L[ 2f, + w fyw] dt  from (3.1.14)
Step 2: Integrate:  V (¢, w)
= [wfidt+ [fdw+ [wfydw+ [fodt+ 1 [w fuwdt+C
Thus [ fdw=wf — [[wfi+ fu + L wfw] dt — [wf,dw+ C (3.2.9)
Step 3: Approach the last integral ~ [w f,, dw analogously.

Set U = w?f,, and perform steps 1 and 2.
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1. dU = w? fur dt + 2w fy, dw + w* fip, dw
+ fu dt + 2 w? frpe dt

2. wify, = 2 [wfydw+ [w? fuudw (3.2.10)
+ [ fur + fu + § W fuwn] dt

Step 4: Use (3.2.10) within (3.2.9) to yield
[fdw = wf + 3w f,—1 [w? fuw dw—

f[wft + %fw + %wfww + %w2fwt + %w2fwww] dt.

Continue until the stochastic integral term repeats or terminates.

Example 3.2.11 f w(t) dw (t). Compute the differential
d(w?(t)) = 2wdw + (dw)? = 2wdw + dt.

Thus w(t) = 2fwdw+ t+ C

The result : Jw(t)dw = 3§ (W) —t)+ C (3.2.11)

Example 3.2.12 [t*w(t) dw (t)  We differentiate
d(t*w’) = 43uwS dt + 6t w’ dw + L 30t* wdt
Integrate: ~ t*w’ = 4 [tPu0dt + 6 [trw® dw + 15 [ttwt di

Thus ft4w5 dw

= sttw® = 2 [Puidt - 5 [ttwtdt+ C

Example 3.2.13  C'ompute the definite integral f; g(t) dw(t)

Differentiate d(wg) = ¢ wdt + gdw

Integrate  w(t) g(t) |5 = [, ¢ (&) w(t)dt+ [ g(t) duw(?)

[P gwydwey = wd) gb) — wia) gta) — [* g () w(t) dt
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3.3 Points Versus Focal Points

In the following, we consider a degenerate two-dimensional deterministic dynamical

vector field.

dy = Aydt, (3.3.1)
0 0
A:[O 0}.

In this case, the fundamental matrix solution of (3.3.1) is

where

D4(t) = [(1) (1)] (3.3.2)

In this case, all points are critical points and all trajectories reduce to points.
Next we consider the Ito-Doob type stochastic perturbed system relative to  (3.3.1).

dy = Aydt + Bydw(t), (3.3.3)
where dy stands for the Ito-Doob type differential of 1 ;the matrix A is as defined in

(3.3.1), and the matrix B is defined by

0 1
B = [ 1 O} (3.3.4)
In this case, by following the solution procedure [], the fundamental matrix solution

process of (3.3.3) is

O(t) = y(t) = exp|31] [ cosw(t)  sinw(t)

. 3.3.5
—sinw(t) cos w(t) (3-3:3)
From this, itis easy to conclude that the critical point is still the origin,
but it is now a focus.

From this, we conclude that the Ito-Doob type stochastic perturbation has caused the

creation of the focal point.
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3.4 Node Versus Focus

In the following, we consider a two-dimensional deterministic dynamical vector field
whose unperturbed flow is that of a source, an unstable node.

Consider an unperturbed simple linear system given by :

dx = Axdt, (3.4.1)

]

In this case, the fundamental matrix solution of (3.4.1) is

where

Dy(t) = explt]| ,

0] . (34.2)

Here the critical point is the origin, which is a node (unstable).
Now, we consider the Ito-Doob type stochastic perturbed system relative to (3.4.1) .

dy = Aydt + Bydw(t), (3.4.3)
where dy stands for the Ito-Doob type differential of ¥ ; the matrix A is as defined in
(3.4.1), and the matrix B is defined in (3.3.4).
In this case, by following the solution procedure [], the fundamental matrix solution

process of (3.4.3) is

cosw(t)  sinw(t)

®(t) =explat]| ~ w(t) cosw(t)

N[OV

¢] (3.4.4)

From this, it is easy to conclude that the critical point is still the origin,
but it is now a focus.
From this, we conclude that the Ito-Doob type stochastic perturbation has caused the

change of the critical point "node" to the critical point focus.
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3.5 Node Versus Center

In the following, we consider a two-dimensional deterministic dynamical vector field
whose flow is in the form of a simple linear stable node. Consider the unperturbed
system given by :

dxr = Axdt, (3.5.1)

_ 0 ]
-
0 =3

In this case, the fundamental matrix solution of (3.5.1) is

where

N|—

A—

By(t) = exp| — L] [(1) (1)] (3.5.2)

Therefore, in this case, the critical point is the origin, and the origin is a node (stable).
Now, we consider the Ito-Doob type stochastic perturbed system relative to (3.5.1)

dy = Aydt + Bydw(t), (3.5.3)
where dy stands for Ito-Doob type differential of ¥; the matrix A is as defined in
(3.5.1), and the matrix B is defined in (3.3.4).
In this case, by following the solution procedure [], the fundamental matrix solution

process of (3.5.3) is
cosw(t)  sinw(t)

o) = | _ sinw(t) cosw(t)

(3.5.4)

From this, it is easy to conclude that the critical point is the origin, and it is a center .
From this, we conclude that the Ito-Doob type stochastic perturbation has caused the

creation of the critical point center out of the stable "node".
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3.6 Center Versus Focus

In the following, we consider a two-dimensional deterministic dynamical vector field

whose trajectories are orbits about the origin.

dxr = Axdt, (3.6.1)

o

In this case, the fundamental matrix solution of (3.6.1) is

where

O,(t) = (3.6.2)

cost sin ¢
—sint cost|’

Therefore, in this case, the critical point is the origin, and the origin is a center.
Now, we consider the Ito-Doob type stochastic perturbation affecting this system

(3.6.1) .
dy = Aydt + Bydw(t), (3.6.3)

where dy stands for the Ito-Doob type differential of ¥/; the matrix A is as defined in

(3.6.1), and the matrix B is defined by

1 0
B:[O 1] (3.6.4)

In this case, by following the solution procedure [], the fundamental matrix solution
process of (3.6.3) is

d(t) = exp| — %t + w(t)] [

cost) sint ] | (365)

—sint cost
From this, it is easy to conclude that the critical point is the origin, but it is now a focal
point (focus).

From this, we conclude that the Ito-Doob type stochastic pertiurbation has caused the

qualitative change from the critical point "node" to the critical point focus
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CHAPTER 4

STOCHASTIC LAPLACE TRANSFORMS

This chapter deals with the Laplace transforms of stochastic processes with
respect to both the Cauchy-Reimann and the It6-Doob improper integrals .
Laplace transforms are applied for finding the closed-form solutions of initial value
problems . Many results will be provided to illustrate the methods and the necessary
adaptations for stochastics. The definitions and methods will parallel the classic

deterministic results as much as possible.

4.1 The Laplace Transform

In this section, we present the concept of Laplace transform and its applications to

higher order linear nonhomogeneous differential equations with constant coefficients.
Let f be a real-valued function of two variables (¢, w(t)) defined for all real

numbers t >0, andlet w(f) be the Wiener process.

Definition 4.1.1 : The Laplace transform of f, in the sense of the Cauchy-Riemann

integral is defined by
£)(s) = [y e f(t, wd)dt = Jim [fo S, wt))dt], (4.1.1)

for all values of s for which this improper integral exists.

Definition 4.1.2 : The Laplace transform of f in the sense of the It6-Doob integral with
respect to the Wiener process w(t) (or simply the [Ito-transform) denoted by
L£Y(f)(s), is defined by :

£)(s) = fO et f(t, wt))dw(t)
- }1—{20 [fo 6-Stf(t> w(t))dw(t)]

for all values of s for which this improper integral exists.
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Example 4.1.3 : For any real ¢ # 0, recall £(c)(s) = ¢ for s >0.
We now find the Laplace transform of  f (¢, w(t)) = ¢
in the sense of the It6-Doob integral.

Calculation. The It6-Doob improper integral

w . 00 _g o . T _g
£Yc)(s) = [, etedw(t) = ¢ ITIEloo[fo eStdw(t)]
=c lTim [ ew@)|l + s foTe'Stw(t) dt  (integration by parts)

= clim [e'Stw(t)\oT] + cslim fOTe'Stw(t) dt

= s clTlin fo eStw(t)dt = csL(wt))(s) .
Thus £Y(1)(s) = sL&(w(t))(s) (4.1.4)

Example 4.1.5: Recall the Laplace transform (deterministic) of f (t) =1t.
)= [ettdt =% (s>0)
ie. L(t)(s) = 4. (4.1.5)

Let us find the transform £ for w(t), the Wiener process,

in the sense of It6-Doob.

Calculation. In order to calculate the [t6-Doob improper integral

L (wd)(s) = [ e w(t) dw(t)
we shall use the procedure of Integration by Parts for stochastics outlined in Section 3.2.

We recall the formula

[fdw= wf— [[wfi+ fo+ 3 wfw]dt — [wf,dw+C (329
Here f(t,w) = e™w(t). Wecompute (minimal notation):
fi=—=sf; fu=¢€" fuw=0
Thus [fdw = wf+sfwfdt— [esdt— [fdw

is repeating type.
Thus 2f fdw = wf+sfwfdt— [e ™ dt

= west + sfw2e'5t dt — fe'St dt.
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Therefore 2 fOTe'Stwdw = we I+ s fOTwQe'St dt — fOTe'St dt.
But w(O) =0, andas T — oo, we get

2 £%(w) (s) = s L(w?)(s) — L(1)(s). (4.1.6)
It can be shown that the Stochastic Laplace transform inherits the linearity properties of

deterministic Laplace transforms.

Theorem 4.1.7: For anyreal a, and functions f (¢, w(®)), g(t,w®)) ,
Llaf + g)(s) = a £(f)(s) + £(g)(s), and
Laf + g)(s) = a £Y(f)(s) + £(g)(s),
whenever they exist.

Proof: Omitted.

We now proceed to build a table of the Laplace transforms in the sense of the Ito-Doob
stochastic integrals for many basic stochastic forms; introduce the inverse forms; and
demonstrate applications.

So far we have £%(1), £"(w), and linear combinations of £(f) and £“(g).

Recall the simple linear stochastic form  x(¢,w) = at + ocw

Example 4.1.8:  Find the Ito-Laplace transform £% of
Flt,w(t)) = e+ ow® = ¢
Now £Y(ce® v (s) =0 [Fe et vl duy(t).
Let E = exp[x — st] = exp[(a — s)t + ow].
So dE = Eydt + E,dw + § Ey,dt
= (a — s)Edt + 0E dw + 30°E dt.

Integrating, E = (a — 8)fE dt + JfE dw + %UQIE dt (4.1.9)
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Now for s > a, as T — oo, E(T)vanishes , fE dt becomes £(e”)(s), and
fE dw becomes £Y(e”)(s) and (4.1.9) becomes

—1=(a—s)L(e")(s) + oL (e")(s) + 502L(e")(s) (s> a)

Thus,

w( pat+ow(t)
S(eat—l—aw(t))(s) _ 1+0£(35_(Z_%02) )(s) (8 > CL)
(s —a— to?) g(e vty (s) — 1 (4.1.10)
— ng(eat—kaw(t))(s)
Note : In the case a = 0, (4.1.10) reduces to
(s —1o) £(e7W)(s) — 1 = a£% (") (s) (s >0)

Examples 4.1.11: Recall the classic deterministic Laplace transforms :

Q(eat)(s) = s—l a (s > a)
L(sinat)(s) = ng — (s>0)
£(cosat)(s) = ﬁ (s > 0)

The note (4.1.10) above serves to compute Ew(eaw(t) )(S)

Let us compute the analogous Ito-Laplace transforms £
for sinow(t) and cosow(t).
It is useful here to define U (t,w) = e'sinocw(t); V(t,w) = ecosow(t).
Differentiating U dU = Updt + Updw + § Uyydt
— sUdt + oe*'cos ow dw — Lo? Udt .
Integrating, U= —s[Udt+ o[e®cosow dw — lo? [Udt

U= —sf[edlsinow dt+o[e'cosow dw— Lo?[e*'sinowdt.As
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As T — o0
— s&(sinow)(s) + o L£¥(cosow)(s) — L o% £(sin ow)(s)

0 =
or oL¥(cosow)(s) — (s+ L o?)L(sinow)(s) = 0 (4.1.15)
Similarly,

dV = Vidt + Vypdw + 1 Vpdt
= —sVdt — oe*lsinow dw — Lo Vidt.
Integrating, V=—s[Vdt—ofe *sinocwdw — lo? [Vt
V= —sfecosowdt — o [e'sinowdw — } o? [e*cos cwdt.

Let T — oo.

— 1= — sg€(cosow)(s) — aL£¥(sinow)(s) — 102 £(cos cw)(s)

or oL¥(sinow)(s) + (s+ 10?)L(cosow)(s) = 1 (4.1.16)
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4.2 Derivatives, Integrals, and Convolutions

Analogous to the Riemann integrals, we present:

Theorem 4.2.1 (Transform of Derivative)

If f(t,w(t)) has a derivative f'(¢, w(t)) which is piecewise-continuous for >0 ,
then

L1t wd)] (9 = sE[f(t,wd)] — £(0,0). 4.2.1)
Proof : (Integration by parts)

[lest f (¢ wt))dt = e f(t,w®)|Ts [ e f(t,wt))dt
= e f(T,w(T)) — f(0,0) + s fOTe'Stf(t, w(t))dt Let T — oo

Assuming f (¢, w) does not grow as quickly as e %, (4.2.1) follows .0

Naturally, higher order derivatives will require repeated applications of (4.2.1).

Theorem 4.2.2 (Transform of Indefinite Integral) :

Assume S(f(t w(t))(s) exists.

Denote C'(t fo u, w(u))du, the Cauchy-Riemann integral of f
and

fo u, w(u))dw(w), the Tt6-Doob integral of f.
Then
sL(C)(s) = L£(f®)(s) and

sEUI®)(s) = L£Y(fD)(s) (4.2.2)

Proof: Now dI = d[ [} f(u, w(u))dw(u)] = f(t, w(t))dw(?).
Therefore LUIWD)s) = s [TetI(t)dt = slim [ [ et I(t)dt]

: T : T
— —l%gloo[ [, -se It dt] = —1T1£noo[ [, -se "t I(t) dt]
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= —lim [I()e™|} — [lestdIt)]
: B : T
- —1T13100[I(t)e el + lTlinoo[ J,etdIt)]
= 0+ lim [lef(t,w(®)dw(®) = £(fD)().
The proof for fo u, w(u))du is straightforward. O

Example 4.2.3: We compute £%(e®)

We apply the It6-Doob differential formula to w(t)e® :
d(w(t)e™) = aw(t)e®dt + e dw(t)
Integrate : fotd(w(u)e““) = fotaw(u)e‘“‘du + fote““dw(u)
w(t)e™ = fotaw(u)e““du + fote‘mdw(u)
Apply £ :  Llw(t)e?] = £ fotaw(u)e‘“‘du + £ fote““dw(u)
Multiply by s : s&[w(t)e™] = sL fotaw(u)e‘”‘du + s£ fote““dw(u)

Apply theorem : sL[w(t)e”] = aLlw(t)e™] + L£¥(e™)

Thus LU (e™) = (s —a) Lw(t)e™] (4.2.3)

Note : For a =0 (4.2.3) reducesto (4.1.4)  £¥(1)(s) = L(w(t))(s)

Example 4.2.4: Compute )Zw(te"w(t))

We apply the It6-Doob differential formula to te”"
d(te”™) = e"dt + ote”dw(t) + 1 o*te’"dt
Integrate :  te’" = fot eldu+ o fot ue’dw(u) + 1 o? fot uwe’™du
L(te™) = £( fo e”"du) + 0)3(f ue’dw(u)) + 1 2£(f ue’du)
sL(te’™) = s&( fo e’ du) + asﬂ(f ue’dw(u)) + 1023£(f ue’du)
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Apply theorem:  s£(te’") = £(e%) + oL¥(te’v) + Lo?L(te™™)

Thus oL (te”) = (s — Lo?)L(te”") — L£(e) (4.2.4)

Note : For 0 =0 (4.2.4) reduces to classic result
1
L) =1
Continuing to parallel the classic tools, we now adopt and adapt characteristic step functions and
convolutions for stochastics.
Let K denote the characteristic step function for the interval [0, c0).

Specifically,

k(t) = 0,if t <0
| 1,if t > 0 , forany real c

(or translated)

0,if t<c
k(t—c) = { Lif £ > e (4.2.5)

Theorem 4.2.6: Given : any ¢ > 0 and real-valued g(t,w(t)). Let v =1 — c.

Then Llg(v,w(v))k(v)](s) = e *L(g(t, w))(s). (4.2.6)
Proof: (analogous to the classic case)

[ ettg(t — c,w(t — o)k(t —c)dt = [Teg(t — e, w(t — c¢))dt

0

= [TetTg(v, w(v))dv = e**L(g(t, w))(s). O

0
Corollary : L£(k(t —¢))(s) = e L£(1)(s) = %e'sc.
Example 4.2.7: Consider f(¢,w(t)) = { i}’(t) liff 2 i i< L

Let u=1t—1. Rewrite f(t,w(t)) intermsof K and v as follows:

fit,w(t)) = 3—3k(v) + [w(v+ k ())]k(v)
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Apply tranform operator £ and theorem to each term of expansion.

SEtwt) = £(3) — 3 (Lx(v) + Llw(v + K (v)) KW))

C(f(t,w®)(s) =3 — 57 + e L(w(®)(s)

s Sw(l)

—S
e+ e 3

3
s

» W

Definition 4.2.8 Let f (t, w) , g(t, w) be real-valued piecewise continuous functions
defined for ¢ >0 , and let w(t) be the Wiener process.

The It6-Doob convolution integral of f and g
fxg(t, w(®)) fo — w,w(t — ) f(u, w(u))du

Remark. Commutativity f*g = ¢ f holds for these functions as well.

The Laplace operator £ applied to Ito-Doob convolutions of stochastic functions

behaves normally.

Theorem 4.2.9. Laplace Transform of Convolution Integral.

Let f (t, w) , g(t, w) be real-valued piecewise continuous functions

definedon ¢ >0, and let w(t) be the Wiener process. ~ Then

L(fxg)(s) = = L(f)()E(g)(s) (4.2.9)

Proof: Let v =1— u.

L(fxg)(s) = [€ fo w(t —w)) f(uw, w(uw))duldt
= [ foo Sta(t — u, w(t —w) f(u, w(w))dt du
= fo fo w(v)) dit] f (u, w(u)) du
= [, £ 9(v, w(v)) J(s).f (u, w(w)) du
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= [Fem e (g(t, w))(s)f (u, w(u)) du
= L(gt,w))(s) [ e " f(u,w(w)) du

= £(gt, w))(s) L(f(t, w))(s) [
Example 4.2.10

Solve the integral equation: g(t) = w(t) + [ sin (t — w)g(w)du.
Note ¢(t) = w(t)+ (sint)* g(t).
Recall £(t)(s) = % (4.1.5)
and  L(sint)(s) = % (4.1.11)
Compute  £(g)(s) = L(w®)(s) + L(sin(D)xg(?))(s)
= L(w®)(s) + L(sin(@®)(s) L£(g)(s)
= Llw®)(s) + 7 £(9)(s)
Thus  £(g)(s) = Lw®)(s) + $L(wd)(s)
= L(w®)(s) + L(t)(s) L(w(®))(s)
= L(w®)(s) + L(txw(?) )(s)

Therefore  g(t) = w(t) + tkw(t) is the solution.

Example 4.2.11: Compute £" transform of cos (at + ocw(t)) o #0

Compute the It6-Doob differential of e~ *'sin (at + ow(t)).

dle *'sin (at + ow(t))]

= — se *'sin (at + ow(t))dt + e *'d[sin (at + ow(t))]
= — se *'sin (at + cw(t))dt + e *'acos (at + ow(t))dt

+ e~ cos (at + ow(H))dw — e *'sin (at + ow(t)) o?dt

(by Theorem 3.1.5)
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= —(st+icHe 'sin (at + ow(t))dt
+ ae* cos (at + ow(t))dt

+ oe* cos (at + ow(t))dw.
Integrate
[e%tsin (at + ocw(t))] ’T

= —(st+io?) fo stsin (at + ow(t))dt
+a fo e " cos (at + ow(t))dt

+ o fOTe_St cos (at + ow(t))dw
This implies

ljim le™*Tsin (aT + ow(T))] — e *%sin (a0 + ow(0))
= —(s+10?) lim fOTe_Stsin (at + ow(t))dt
+a ljlriloo fo tcos (at + ow(t))dt

+ olim fo tcos (at + ow(t))dw

T—o00

0 = —(s+icHL[sin(at + cw(t))](s)

1.€.

+ affcos (at + ocw(t))](s)
+oL%[cos (at + ow(t))](s) .

Thus
g% cos (at + ow(t))](s)

= (s + 10?)L[sin (at + ow(t))](s)

—afcos (at + cw(t))](s)

which is equivalent to
L[sin (at + cw(t))](s) =

af[cos (at+ ow(t))](s)+oL[cos (at+ ow(t))](s)
(s—l—%aQ) :
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Example 4.2.12: Find the Laplace transform £ of sin(at + cw(t))

dle *cos (at + ow(t))]

— se~*cos (at + ow(t))dt + e *'d[cos (at + ow(D)]

— se *cos (at + ow(t))dt — ae " sin (at + ocw(t))d
— e sin (at + ow(t)) ocdw
— e cos(at + ow(t)) o?dt
cos (at + ow(t))dt

= — (s+ioHe

— ae*" sin (at + ow(t))dt
— e * sin (at + ow(t))dw.
From the It6-Doob integral, we have

e~*tcos (at + ow(t))] |}

— (s+i0?) fo stcos (at + ow(t))dt

—a fo bsin (at + ow(t))dt

—0 fo Psin(at + ocw(t))dw

This implies
lTlr_r}oo[e Teos (aT + ow(T))] — e *Ocos [a0 + ow(0)]
= —(s+ 30%) lim fOTe_Stcos (at + ow(t))dt
—a ljgriloo fo st sin (at + ow(t))dt
— JITH_I}OO fo st sin (at + ow(t))dw
1=

— (s + 10?) £[ cos (at + ow(t)) 1(s)

— aL[ sin(at + ow(t)) 1(s)

— o L%[sin (at + ow(t))]1(s)
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From the above expession and simplifications, we have
o £0(sin (at + ow(t)))(s)
=  1-—(s+ 30%)L[cos (at + cw(®)](s)

— aL[sin (at + ow(t))](s)
which is equivalent to
Llcos (at + cw(t))]1(s)

1—afL[sin (at+ ow(t))](s)—o LY[sin (at+ ow(t))](s)
(s+302)

Formulas 4.2.13 Combining results (4.2.12) and (4.2.14) we get :

Let © = at+ ow(t). Then

, _ (s+30H)—acL¥(cos ) —o(s+i0?)L¥(sin z)
i) ’S(COS 33) - (s+%02)2 T a2

a—acL¥(sin z) + o(s+10?) L% (cos z)
(s+502)? +a?

i) L(sinz) =

4.3 Applications of Laplace Transforms

The Laplace transform will be used to solve initial value problems. The Laplace
transform transforms a linear differential equation with constant coefficients into an
algebraic equation. The techniques for solving the algebraic equation may be easzer than

the methods of solving the initial value problems.

Example 4.3.1: Use the Laplace transform to solve the following initial value problem :
dy'+ ydt = odw, y(0)=0, y(0)=1, o #0.
We note that the 1td-Doob differential equation is equivalent to the following integral
equation
t t
y'(t) =y'(0) — [yy(u)du + o [ dw(u).

We apply the Laplace transform to both sides,
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S(y())—}.}[l—fo du+0f0dw

= fO u)du) + o £( fodw

L(y(t £v(1
-1 (z/s())+08()
Thus sL(y@) = 1_ L) | o)

L(y) = Heet)

1+ s2

By applying the inverse Laplace transform both sides, we get

y(t) = sin(t) + cos(t)*w(t)

Thus the solution of the initial value problem is given by

y(t) = sint + [cos(t — u)w(u)du).

Example 4.3.2 (Langevin-Equation): Use the Laplace transform to solve the IVP:

dy' + py'dt = odw, y(0) =1y, y'(0) =2,
[forc #0 and 3> 0.]

Convert to the integral equation

y'(t) = — B[y (u)du + o [ dw(w)

Now, we apply the Laplace transform both sides, and obtain
L/ t)=2Ly Bf y'( du—i—af dw(u

—Belf'y" (w)du] + o£[ [ dw(u)]

v _ PL ()] _|_02w(1)

Aiso  L[Y'(t)] = sLly(t)] — y(0).
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sE(y(t) —y, = 2 — Sﬂﬂ[y(t;] — Byo 4 o£"(1)

S S

Now, we solve for S[y(t)], and have

v S of¥(1
S(y(t)) - 6&852 + (g:—!—lgo + Bs+(s2)

B v Yo a£"(1)
- s(ﬁ—o!—s) + so + s(B+s)

il gl 4 e

S

By applying the inverse Laplace transform both sides, we get

y(t) = g0+ B(1— e )+ wltyre

Example 4.3.3 (Chandrasekhar Equation):

Use the Laplace transform to solve the IVP:
dy' + (By + Ny)dt = odw,
y(()) = Yo, y’(O) = Uy, o # 0 , ﬁ > 0.

We note that the It6-Doob differential equation is equivalent to the following integral
equation

t t
oy (t) = v, — ﬁfoty’(u)du — N[ y(u)du+ o [ dw(u).
Now, we apply the Laplace transform both sides, and obtain

L(y'(1))
= Llu =B [y (Wdu— N [jy(u)du+ o [jdw(u)]

= 2 - BL[fyy (w)du] — ML [y(w)du] + o£ [{dw(u)

_w _ SLE®) _ X)) 4 o L(w(t))

S S
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s*Lly(t)] — sy

= v — BsLlyt)] + By — NL[y(t)] + osL(w(t))

e

Depending on the magnitudes of A2 and 52 , computing inverses,
the representation of the solution of Chandrasekhar's equation varies.

The details are left to the reader.
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TABLE 1. LAPLACE TRANSFORMS

£(f)(s)

C p s>0 cs £(w)
t 2
|
t" Sffﬁ
|
t" et (S_Zjn+l
£ (1) 1
w() e 28w’ — 5
w? 8—12 + % £Y(w) %Q(uﬁ) _ 2
wn(t) s S(wn):ngw(wn—l)_i_n(n;l) 2(11)7)’_2)
e L s5>a (s —a) Llw(t)e]
ow 1—|—O‘£w(€0w)(8)
€ _ 1.2
(s 50 )
6at—|—0w(t) 1+O,£w(6attaw(t))($)
(s—a—s502)

sin at #‘(LQ
cos at WSGQ
sin ow(t) o£"(cosow)(s)-(s + & 02)L(sinocw)(s)=0
cos ocw(t) o £" (sinow)(s)+(s + 30?)L(cosow)(s)=1
t sin at (si—%

22
t cos at (5324—;2)2
sinh at SQ%ZQ
cosh at 825_a2
ebt sin at m s>b
e cos at s—b

Gobpra 520
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