ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Sungyong Jung, for his support and encouragement throughout the years of my PhD researches. His guidance has been invaluable to my work. I would also like to thank Dr. Alavi, Dr. Lee, Dr. Davoudi, and Dr. Gao for being my dissertation defense committees. Moreover, I would like to thank Dr. Lu for the research advice and Dr. Bredow for the equipment lending. I also want to say special thanks to our department assistants, Gail, and Ann, for all the kind assistances.

During the years of my PhD study, I have been very lucky to be surrounded by good friends. I want to thank them for their support, especially to Woody, Ike, Rae, Sean, Jane, Eric, Winnie, Gary, Marcus, and Crystal. In addition, I would like to thank the former/current AMIC lab numbers: Tim, David, Shin-Chih, Ashish, Shahrzad, Niranjan, and Varun. You all add so many positive things and great memories into my research experiences.

Finally and most importantly, I would like to gratefully thank all my family, my parents, David and Circle, and my brother, Jet. I love you all so much. Especially to my parents, without your endless love and support, there is no way I can accomplish this. This dissertation is dedicated to you all.

July 13, 2011
ABSTRACT

THE DESIGN OF CMOS IMPULSE GENERATORS
FOR ULTRA-WIDEBAND COMMUNICATION
AND RADAR SYSTEMS

Ju-Ching Li, PhD

The University of Texas at Arlington, 2011

Supervising Professor: Sungyong Jung

Impulse generators play an important role in the ultra-wideband (UWB) systems. Particularly in the transmitter, impulse generator performs an interface between input data and the antenna determining the overall performance of the transmitter. After the federal communication commission (FCC) revised the rules for UWB systems usages, the design of impulse generators has been pursued and yet challenging especially using CMOS technology.

In this dissertation, three impulse generators are presented with analytical explanations, simulations, and measurements. First, the design and simulation of an impulse generator using TSMC 0.18 μm CMOS technology is presented. The operating frequency band of the impulse generator is from 3.1 to 10.6 GHz for the application of UWB communications. The structure of the impulse generator is based on the current-steering digital-to-analog converter (DAC). The impulse generator has the feature of high-tunability and easy adoption of modulations. The simulation results show that the output of the impulse generator complies with the FCC regulations and has a power consumption of 27 mW at a 50 MHz pulse repetition frequency.
Secondly, an impulse generator using IBM 90 nm CMOS technology for the application of 3.1 to 10.6 GHz UWB systems is proposed. The impulse generator has a simplex architecture using novel digital circuits and a compact passive band-pass filter (BPF). The measurement results show great consistency with the simulation results. The impulse generator has a center frequency of 5.8 GHz and consumes an average power of 0.9 mW at 200 MHz pulse repetition frequency. Finally, an impulse generator using TSMC 0.13 μm CMOS technology is presented. The operating frequency band of the transmitter is from 22 to 29 GHz for the application of UWB vehicular short-range radar (SRR). The proposed design has a pulse-modulated carrier-based architecture. The simulation results show that the power spectral density of the impulse generator output complies with the FCC regulation with a center frequency tuning range of 800 MHz. The maximum achievable output swing is 1.14 V. The measurement results also show the uniformity with simulation results verifying the work.
3.2 Carrier-Based UWB Impulse Generator .. 24
 3.2.1 Spread Spectrum UWB ... 24
 3.2.2 Pulse Modulated UWB ... 25

3.3 IR-UWB Modulation ... 25
 3.3.1 Modulation Methods .. 25
 3.3.2 Modulations and Output PSD .. 27

4. CURRENT-STEERING DAC-BASED CMOS IMPULSE GENERATOR 29
 4.1 Design of Proposed UWB Impulse Generator 30
 4.1.1 Choice of Impulse Shape .. 30
 4.1.2 DAC Impulse Generating Principle .. 32
 4.1.3 DAC-Based Impulse Generator Architecture 36
 4.1.4 Circuit Implementation ... 40
 4.1.5 Digital Switch Control Signals .. 43
 4.1.6 Modulation Capability ... 45
 4.1.6.1 OOK ... 45
 4.1.6.2 BPM ... 46

 4.2 Simulation of Proposed IR-UWB Impulse Generator 50
 4.2.1 Single-Ended DAC Impulse Generator 50
 4.2.2 Single-Ended DAC Impulse Generator with OOK 51
 4.2.3 Differential DAC Impulse Generator 53
 4.2.4 Single-Ended DAC Impulse Generator with Bi-Phase Modulator 53

5. A FULLY INTEGRATED CMOS UWB FILTERING-TYPE IMPULSE GENERATOR .. 56
 5.1 Design of Proposed IR-UWB Impulse Generator 56
5.1.1 Impulse Generation Principle .. 57
5.1.2 Design Parameters and Output PSD .. 59
5.1.3 Gaussian Pulse Generator .. 61
5.1.4 Band-Pass Filter .. 69
5.1.5 RLC Antenna Model .. 70
5.2 Simulation and Measurement Results of Proposed Impulse Generator 71
 5.2.1 Simulation ... 71
 5.2.2 Measurement .. 75
6. A CARRIER-BASED IMPULSE GENERATOR FOR UWB VEHICULAR
SHORT-RANGE RADAR APPLICATION .. 80
 6.1 Single-Ended Carrier-Based UWB Impulse Generator 81
 6.1.1 VCO ... 82
 6.1.2 RF Switch .. 88
 6.1.3 Pulse Generator .. 93
 6.1.4 Simulation and Measurement Results of Proposed Impulse Generator
 ... 95
 6.1.4.1 Simulation ... 95
 6.1.4.2 Measurement .. 99
 6.2 Differential Carrier-Based UWB Transmitter .. 102
 6.2.1 VCO ... 103
 6.2.2 RF SPST Switch ... 104
 6.2.3 Pulse Generator .. 104
 6.2.4 Bi-Phase Modulator ... 105
 6.2.5 Simulation Results .. 106
7. CONCLUSION ... 109
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 UWB definitions</td>
<td>7</td>
</tr>
<tr>
<td>2.2 FCC mask for UWB indoor/outdoor application</td>
<td>8</td>
</tr>
<tr>
<td>2.3 FCC mask for UWB automotive radar application</td>
<td>9</td>
</tr>
<tr>
<td>2.4 The coherent IR-UWB receiver</td>
<td>12</td>
</tr>
<tr>
<td>2.5 The non-coherent IR-UWB receiver</td>
<td>13</td>
</tr>
<tr>
<td>2.6 The typical carrier-based UWB receiver</td>
<td>14</td>
</tr>
<tr>
<td>2.7 Frequency band plan of the MBOA proposal for the IEEE 802.15.3a PHY</td>
<td>14</td>
</tr>
<tr>
<td>2.8 The typical UWB MB-OFDM receiver</td>
<td>15</td>
</tr>
<tr>
<td>3.1 (a) time domain and (b) frequency domain of the Gaussian pulse</td>
<td>17</td>
</tr>
<tr>
<td>3.2 PSD of first to fifth order of Gaussian pulse</td>
<td>19</td>
</tr>
<tr>
<td>3.3 Architecture of the typical filtering based impulse generator</td>
<td>20</td>
</tr>
<tr>
<td>3.4 Architecture of the passive filtering impulse generator [10]</td>
<td>20</td>
</tr>
<tr>
<td>3.5 Block diagram of the FIR filtering impulse generator [12]</td>
<td>21</td>
</tr>
<tr>
<td>3.6 Block diagram of the resistor ladder DAC impulse generator [9]</td>
<td>22</td>
</tr>
<tr>
<td>3.7 Block diagram of the current steering DAC impulse generator [29], [30]</td>
<td>23</td>
</tr>
<tr>
<td>3.9 Architecture of the general spread spectrum impulse generator</td>
<td>24</td>
</tr>
<tr>
<td>3.10 Architectures of pulse modulated impulse generator: (a) switch-based, (b) mixer-based</td>
<td>25</td>
</tr>
<tr>
<td>3.11 Applicable UWB modulation methods: (a) PPM, (b) BPM, (c) OOK, (d) PAM</td>
<td>26</td>
</tr>
</tbody>
</table>
4.1 (a) 5th-order derivative of Gaussian pulse, (b) PSD of the signal... 31

4.2 Comparison of transient response and PSD:
 (a) ideal 5th-order derivative of Gaussian pulse, (b) modified 5th-order derivative of Gaussian pulse... 32

4.3 Comparison of UWB signal generation using different sampling rate [42]:
 (a) Nyquist sampling, (b) peak sampling, (c) PSD of the two sampled signals...................... 33

4.4 Sampling of modified 5th-order derivative of Gaussian pulse:
 (a) peak sampling, (b) sampled signal, (c) PSD of the sampled signal.................................. 35

4.5 Effect of parasitic on sampled signal:
 (a) transient response, (b) PSD of the sampled signal... 36

4.6 Glitch in current-steering DAC: (a) transition from 1000 to 0001, (b) output glitch........37

4.7 Architecture of the proposed DAC impulse generator. .. 38

4.8 Timing diagram of pulse generation with sequence of switch inputs.................................. 39

4.9 Schematic of the proposed DAC impulse generator. ... 41

4.10 Equivalent small signal circuit of proposed DAC impulse generator. 42

4.11 Generation of digital switch control signals:
 (a) digital circuit implementation, (b) timing diagrams. .. 44

4.12 Synchronization of switch control signals. ... 45

4.13 OOK: (a) block diagram, (b) timing diagrams. ... 46

4.14 The differential DAC impulse generator. ... 47

4.15 Bi-phase operations with single-ended architecture. ... 48

4.16 Proposed digital BPM modulator. ... 49

4.17 Simulation of single-ended DAC impulse generator output with PRF of 50 MHz:
 (a) transient response, (b) PSD. .. 50

4.18 Simulation of single-ended DAC impulse generator output with PRF of 100 MHz:
 (a) transient response, (b) PSD. .. 51

4.19 Simulation of OOK output. ... 52

4.20 Comparison of PSD at PRF of 50 MHz: (a) with OOK, (b) without OOK......................... 52
4.21 Comparison of PSD at PRF of 100 MHz: (a) with OOK, (b) without OOK 52
4.22 Simulation of differential DAC impulse generator: (a) transient response, (b) PSD .. 53
4.23 Simulation of bi-phase modulation output at PRF of 1 GHz .. 54
4.24 Comparison of PSD at PRF of 50 MHz: (a) with BPM modulation, (b) without BPM modulation .. 55
4.25 Comparison of PSD at PRF of 100 MHz: (a) with BPM modulation, (b) without BPM modulation .. 55
5.1 Architecture of the proposed UWB impulse generator .. 57
5.2 (a) Gaussian pulse generator output spectrum, (b) BPF frequency response, (c) BPF and antenna output spectrum .. 58
5.3 BPF output PSD with different input Gaussian pulses .. 61
5.4 CML inverter .. 62
5.5 Pulse generations with XOR gate .. 63
5.6 Static logic XOR gate: (a) circuit implementation, (b) RC equivalent circuit 63
5.7 Compact XOR gate: (a) circuit implementation, (b) timing diagram 64
5.8 (a) Schematic of the proposed Gaussian pulse generator, (b) timing diagram of the pulse generator output .. 66
5.9 Transient and spectrum simulation results of the Gaussian pulse equation 67
5.10 Propagation delay in the delay cell ... 68
5.11 Schematic of the first-order Butterworth BPF ... 70
5.12 Schematic of RLC antenna model [48] .. 71
5.13 Gaussian pulse generator transient output .. 71
5.14 Impulse generator transient output .. 72
5.15 Output PSD with PRF of 50 MHz ... 72
5.16 Output PSD with PRF of 100 MHz ... 73
5.17 Output PSD with PRF of 200 MHz.

5.18 OOK modulated output signals.

5.19 Comparison of PSD at PRF of 200 MHz: (a) with OOK, (b) without OOK.

5.20 PSD of the impulse generator output with 50-Ω load and with RLC antenna model.

5.21 Chip photo of the proposed impulse generator.

5.22 Measurement setup.

5.23 Measured transient response of the impulse generator.

5.24 Measured PSD of the impulse generator output:
 (a) at 100 MHz PRF, (b) at 200 MHz PRF.

6.1 Block diagram of the proposed carrier-based impulse generator.

6.2 VCO and buffer.

6.3 VCO RLC model.

6.4 Negative resistance from the cross coupled NMOS pair.

6.5 Typical source follower with current source load.

6.6 RLC model of proposed VCO buffer.

6.7 Common switch types.

6.8 Shunt switch simplified equivalent circuits.

6.9 RF SPST switch.

6.10 Effect of gate biasing resistor.

6.11 Body floating technique [64]: (a) equivalent model of shunt transistors in off-state, (b) without body resistor, (c) with body resistor.

6.12 Proposed pulse generator: (a) schematic, (b) timing diagram.

6.13 Phase noise of VCO with buffer.

6.14 Insertion loss and isolation of RF shunt switch.
6.15 Simulation of impulse generator... 96
6.16 Impulse generator output: (a) transient response, (b) PSD. 97
6.17 Impulse generator output with varactor biased at -2.5 V:
 (a) transient response, (b) PSD. ... 98
6.18 Impulse generator output with varactor biased at 2.5 V:
 (a) transient response, (b) PSD. ... 99
6.19 Chip photo of the impulse generator .. 100
6.20 Measurement setup.. 100
6.21 Measurement of transient impulse generator output. 101
6.22 Measurement of impulse generator output PSD... 102
6.23 Block diagram of the proposed transmitter. .. 103
6.24 Schematic of the differential VCO with buffers. ... 103
6.25 Schematic of the cascaded RF SPST switches.. 104
6.26 Schematic of the bi-phase modulator... 106
6.27 Transient simulation of the transmitter.. 107
6.28 Comparison of the bi-phase transmitter outputs.. 108
6.29 PSD of the transmitter out... 108
LIST OF TABLES

Table Page
2.1 FCC emission limits ...8
4.1 Required switch input sequences ..40
4.2 Truth table of the modulator ..49
5.1 Comparison table of existing CMOS filtering-type impulse generators79
CHAPTER 1
INTRODUCTION

Ultra-wideband (UWB) technology has attracted a lot of academic and industrial interests, since the United States Federal Communications Commission (FCC) classified the using of UWB technologies in certain frequency bands in 2002 [1]. The UWB spectrum is generally classified by: 0-960 MHz (Sub-GHz) band for ground penetrating radar systems (GPRs), wall imaging systems, and through well imaging system, 3.1-10.6 GHz band for communication systems and medical systems, 1.99-10.6 GHz band for wall imaging systems, through-well imaging systems, and surveillance systems, and 22-29 GHz band for automotive radar systems. Regardless of system classification, all of the bands have a -10 dB system bandwidth within the band as well as an imposed average power spectral density restriction of -41.3 dBm/MHz.

Among all the regulation bands, 3.1-10.6 GHz and 22-29 GHz bands have drawn most of attentions because of the variety of the applications and direct benefits with UWB implementations. They also provide the opportunity of system-on-chip realization using more cost-effective CMOS technology. For current wireless communication applications, high data rate, low power, and low cost are desirable because of the surging demand for enhanced performance, battery-life, and cost efficiency of the electronic devices. The UWB technology has been proven to satisfy the above requirements from its unique characteristics. As for the automotive radar application, The 22-29 GHz radar is defined as the short range radar (SRR) which can be operated with high range resolution and finds the applications such as anti-collision sensing, adaptive cruise control (ACC) support, blind spot detection, and parking aid [2], [3], which dramatically brings the convenience and increases the safety for drivers on the hazardous roads.
Conventionally, for the UWB communication and radar systems, either carrier-based UWB signals or carrier-free UWB signals are employed. Both architectures have advantages and disadvantages over each other. The carrier-based UWB systems like pulse modulation, spread spectrum, and orthogonal frequency division multiplexing (OFDM) require oscillators to generate the wideband signal introducing the extra power consumption. Additionally, the pulse modulation technique uses either RF switch or mixer to modulate the signal causing either carrier-leaking from the finite isolation of the switch or larger power consumption from the mixer. The spread spectrum technique uses pseudo-noise (PN) code generator modulating the signal to achieve the wide bandwidth. However, the noise-like spread spectrum signal has a low signal-to-noise ratio (SNR) and thus processing and extracting information become a challenge for the receiver. In case of OFDM technology, the whole spectrum is divided into several sub-bands having minimum bandwidth of 500 MHz. As different carrier frequencies are required for different bands, system architecture becomes more complex. Despite the additional power consumptions and complex architectures, the carrier-based UWB system has the advantages of easy signal generations, more spectrum controllability, less passing antenna distortions, and easing the design of all components because of the narrower bandwidth [4]. Meanwhile, the carrier-free UWB directly generates very short-duration UWB impulses without using carrier signals. Thus, carrier-free UWB systems can has lower power consumption and simpler architectures comparing with carrier-based systems. However, the advantages of carrier-free UWB are sometimes neutralized by certain disadvantages such as impulse signal generations, critical synchronization requirements at the receiver end, and antenna distortions [5], [6]. Therefore, due to the trade-off between power consumptions and circuit realizations, designers can choose either architecture depending on the application requirements.

Among all the UWB systems, impulse-radio UWB (IR-UWB), as opposed to continuous wave UWB (CW-UWB), employs a pulsed-signal with very narrow pulse width producing a very wide bandwidth in frequency, which can lower worst-case multipath fading, have an excellent
immunity to interference from other radio systems, and provide an enhanced range resolution for the radar system. The IR-UWB is also the original concept of UWB from the definition by the FCC [1].

For the IR-UWB system, many components have been developed and implemented using CMOS or other Si-based processes, such as impulse generator [7]-[12], low-noise amplifier [13]-[15], mixer [16]-[18], and power amplifier [19], [20]. Among all the components, the impulse generator is a critical component generating the signal for the system to meet the FCC emitting power regulation and to fully utilize the allocated spectrum, as the same copy of the impulse generator will also be used in the receiver for signal acquisitions.

For the UWB communication systems, to date, several methods have been deployed for IR-UWB pulse generation using CMOS technology such as the pulse-combination method [7], [8], the digital-to-analog converter (DAC) method [9], and the filtering method [10]-[12]. The pulse-combination method in [7], [8] employs more complex architectures of digital circuits to realize the pulse generation requiring precise synchronization from the delay lines. For the DAC method, the resistor-ladder DAC-based impulse generator shows high complexity owing to the large number of the passive components [9]. The filtering method has been developed using passive filters and active filters. The passive filter in [10] uses on-chip passive components such as inductors and capacitors and occupies large chip area. Also, the off-chip passive filter is implemented using a microstrip line, which is not fully integrated [11]. As an alternative filtering method, the active FIR filter is employed for on-chip integration [12], but the design architecture is complex and the power consumption is relatively high.

For the UWB automotive radar systems, the SiGe technology is mostly used since there are still difficulties to overcome using CMOS technology. However, the more cost-effective CMOS process can provide the opportunities of low cost and also low power characteristics into the system. Up to date, only a few CMOS impulse generators have been proposed for UWB SRR applications [21]-[23]. A Carrier-free impulse generator was proposed in [21]. However, the
transmitter in [21] has a complex architecture and requires critical device matching for delay blocks to comply with the FCC regulation. For other UWB impulse generators in [22], [23], the carrier-based architectures were presented. Because the designs use mixers and power amplifiers, there will be additional power consumptions and less power efficiency.

In this dissertation, for UWB communication systems, the carrier-free IR-UWB impulse generators based on the DAC and passive-filtering method are presented. The proposed DAC-based impulse generator is designed using CMOS 0.18 μm technology employing a current-steering architecture, which has the feature of high speed, high tuning-ability and simplex architecture for the UWB communication systems. The passive-filtering impulse generator, fully integrated in CMOS 90 nm process, consists of a novel pulse generator employing least transistors among other existing designs with a compact on-chip band-pass filter providing low-cost, low-power, and low-complexity for the UWB communication systems. For UWB automotive radar systems, a carrier-based IR-UWB CMOS impulse generator using CMOS 130 nm process is proposed with a switch-based pulse modulation architecture generating a robust UWB signals while achieving high power efficiency and high range resolution.

This dissertation is organized with seven chapters. In Chapter 2, the background of UWB definition, FCC regulations, and UWB systems are discussed. Chapter 3 addresses the existing architectures of the UWB impulse generator. Various modulation schemes in UWB systems are also described. Chapter 4 presents the proposed UWB DAC-based impulse generator with simulation results. The proposed filtering-type UWB impulse generator is presented in Chapter 5 with simulation and measurement results. In Chapter 6, the carrier-based impulse generator for UWB vehicular radar applications is presented with simulation and measurement results. The final chapter summarizes and concludes the results of this research.
CHAPTER 2

BACKGROUND

In this chapter, the fundamentals of UWB technology are introduced. The history, concept, and advantages of the UWB technology are presented. The UWB applications as well as the emission regulations according to the FCC are examined showing the reasons that the UWB technology is attractive and benefits the UWB technology can bring. Different UWB systems and their architectures are also presented.

2.1 Brief History of Ultra-Wideband

The concept of UWB technologies is actually not new. UWB communications and radar systems have been in existence for some time already, although they have not always been referred to “Ultra-wideband”. Traditionally, UWB signals have been obtained by generating very narrow pulses, rather than continuous waveforms (sinusoidal waves), with no radio frequency (RF) modulation. This technique has been commonly used in radar applications as referred to impulse radio (IR).

For wireless communication systems, unlike today’s dominant method of using sinusoidal waves to transfer information, the technique was based on the emission of pulse-based signals. Back in 1894-1896, Marconi carried out a spark-gap transmission experiment which is considered as the first experiment of impulse radio. However, due to the technical limitation and flavor for reliable communications, using continuous waveforms became the major trend, and IR remained confined to the radar applications.

In 1973, the first patent was awarded to Ross for an UWB communication system, but different nomenclature was used, and then the UWB field moved to a new direction. Through the 1980’s, UWB technology was commonly referred to as carrier-free, base-band, or impulse communication. It was not until 1989 that the term “Ultra-wideband” was coined by the United
States Department of Defense. The Department of Defense had been using the technology since the early 1960’s, but much of the technological advances prior to 1994 were classified. However, since the commercial market can benefit dramatically from UWB capable systems, the Federal Communications Commission has passed legislation allowing the use of Ultra-wideband systems. In the late 1990’s, the development of UWB systems was commercialized by several companies such as Time Domain and Xtreme-Spectrum.

2.2 Definition of UWB Systems

According to the FCC report in 2002 [1], an UWB signal is defined to have a spectral occupancy over 500 MHz or a fractional bandwidth of more than 20 %. Fractional bandwidth, as defined by the FCC, is given by

\[
F_{bw} = \frac{\text{Bandwidth (BW)}}{\text{Center Frequency}} = \frac{f_U - f_L}{f_C} = \frac{f_U - f_L}{(f_U + f_L)/2} \tag{2.1}
\]

where \(f_U\) and \(f_L\) are the upper and lower -10 dB emission points, respectively and \(f_C\) is defined as the center between \(f_U\) and \(f_L\), as illustrated in Figure 2.1. The FCC specifies that a system with center frequency in excess of 2.5 GHz must have a bandwidth of at least 500 MHz, but a system whose center frequency is less than 2.5 GHz, must operate with a \(F_{bw}\) of at least 20 % in order to be characterized as an UWB system. Comparing with narrowband (NB) signals, UWB signals have a much wider bandwidth in frequency, which refers to a much narrower pulse width in time domain with a pulse-based signal.
In the April 2002, the Federal Communications Commission (FCC) established several unlicensed bands and restricted transmitted power levels within those bands to be below the noise floor, specifically below -41.3 dBm/MHz, thereby allowing for the possibility of commercial UWB systems. Since UWB systems cover a large spectrum, the low output power restriction on UWB systems ensures friendly coexistence with already available wireless systems with tolerable mutual interference.

Table 2.1 summarizes the emission limits regulated by the FCC for the applicable UWB applications. To the interests for this dissertation, the spectral mask transmission limits are graphically depicted in Figure 2.2 and Figure 2.3, for UWB indoor/outdoor communication systems operating in 3.1-10.6 GHz and UWB automotive radar applications operating in 22-29 GHz, respectively. EIRP stands for Equivalent Isotropically Radiated Power. The transmission limit for the outdoor application is 10 dB lower from 1.61-3.1 GHz and the frequency above 10.6 GHz than the limit for indoor application to ensure better protection from harmful interference to the U.S. Government operations within these bands as well as the operation of Digital Audio Radio Service (DARS) and other communications systems operating within these bands under outdoor environment. Regardless the different applications, all the regulated UWB bands have
to comply with Part 15.209 [24] emission limit for the frequency below 960 MHz. In addition, as shown in Figure 2.2 and Figure 2.3, the regulated limit in 0.96-1.61 GHz band is extremely low. This is to protect the existing services such as mobile telephony, global positioning system (GPS), and especially military usage.

Table 2.1 FCC emission limits

<table>
<thead>
<tr>
<th>Frequency Band (GHz)</th>
<th>Imaging, Below 960 MHz</th>
<th>Imaging, 1.99 to 10.6 GHz</th>
<th>Imaging, 3.1 to 10.6 GHz</th>
<th>Indoor Application, 3.1 to 10.6 GHz</th>
<th>Hand Held And Outdoor, 3.1 to 10.6 GHz</th>
<th>Automotive Radar, 22 to 29 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.96</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>0.96-1.61</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>1.61-1.99</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>1.99-3.1</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>3.1-10.6</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>10.6-22</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>22-29</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
<tr>
<td>>29</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
<td>-51.3</td>
</tr>
</tbody>
</table>

Figure 2.2 FCC mask for UWB indoor/outdoor application.
The distinct properties of UWB signals can provide various advantages to different applications. For wireless communication systems, UWB signals have the capability to convey the data with very high-speed. The qualities of UWB systems can be illustrated by Shannon's Information Capacity theorem. Shannon’s theorem states that maximum theoretical channel capacity \(C \) (in bits per second) is a function of channel bandwidth \(B \), signal power \(S \), and noise power \(N \) and is given by [25]

\[
C = B \cdot \log_2 \left(1 + \frac{S}{N}\right)
\]

(2.2)

In case of narrow band systems, bandwidth of channel is limited thus in order to increase data rate, only choice is to increase signal power. While in UWB communication systems, since available bandwidth is huge, the large data rates can be achieved with less signal power transmitted. UWB communication systems are also inherently secure. Since the maximum allowable emission spectrum of UWB signal is normally below environment noise, only the receiver that acknowledges the action of transmitter can decode the receiving random...
pulses. Other narrowband receivers may not even distinguish the difference between UWB signals and the environment noise. This property of UWB is desirable in highly secure communication systems, such as in military walkie-talkie systems.

For IR-UWB systems, the low-power and low-cost advantages stem from the essentially baseband nature of the signal transmission. Comparing to conventional transceiver, the IR-UWB transceiver has the simpler architecture with fewer components. At the receiver end, there is no need of local oscillators generating the carriers and as the matched filter is employed, the analog-to-digital converter (ADC) can operate at bit rate. On the other hand, the transmitter needs no DAC and additional RF mixing stage generating the short duration signals directly to the antenna without amplification.

As for the advantages of UWB signals mentioned above, there are also disadvantages as follows. Although IR-UWB can have a simpler architecture, due to the narrow transmitting pulses, the synchronization of matched filter in the receiver become critical. The antenna design for the UWB systems become challenging to achieve wideband, compact, and low-cost. The range of the UWB system is also limited especially for communication operating in higher data rate owing to the low emission limits constrained by the FCC.

Since the IR-UWB pulses have very short pulse width, UWB radio systems are potentially able to offer precision timing and fine range resolution much better than GPS and other radio systems. And since the IR-UWB pulses are shorter than the target dimensions, the UWB signals have remarkable sensitivity to scattering and good material penetrating comparing to narrowband signals.

2.5 UWB Applications

UWB applications to wireless communications and radars are most widely appreciated. For UWB wireless communications, the advantages of UWB systems are available in short range applications. Since it achieves very low power at relatively low cost, UWB communication systems are very advantageous in short-range wireless market. UWB technologies are primarily
targeting at indoor wireless communication applications around 10 meters at bit rates up to hundreds of megabits per second, such as high-quality real-time video and audio distribution, file exchange among storage systems, and cable replacement for home entertainment.

For the radar applications, the imaging systems and vehicular radar systems can be enhanced by adopting UWB signals. Imaging systems include GPRs, wall imaging systems, through-wall imaging systems, surveillance systems and medical systems, which can be benefited since UWB waveforms exhibit pronounced sensitivity to scattering relative to conventional radar signals. As for short-range vehicular radar system, using UWB signals provides vary benefits since in UWB systems, pulses with very short duration are sent greatly improving the radar range resolution as well as reducing the multipath fading.

2.6 UWB System Architectures

There are mainly two types of system architectures which can be employed to efficiently use the regulated UWB spectrum. They are namely impulse type UWB (IR-UWB) and carrier-based UWB (OFDM, spread spectrum). Both system architectures have certain advantages and disadvantages over each other. Especially, the OFDM system and IR-UWB system were the two major competing proposals for IEEE 802.15.3a standards. However, after several years of deadlock, the IEEE 802.15.3a task group was dissolved in 2006. WiMedia Alliance supports a type of OFDM architecture referred to as multiband OFDM (MB-OFDM) while the UWB forum was proposing a form of IR-UWB called Direct Sequence UWB (DS-UWB). However, UWB forum is now defunct after the majority members Motorola and Freescale left the group in 2006. Nonetheless, it is already decided that for 802.15.4 standard, IR-UWB is to be included because of its low-power, simplicity, and localization capabilities.

2.6.1 IR-UWB System

In IR-UWB systems, pulses with very short duration (typically few nanoseconds) are transmitted without using oscillator. The transmitted signals should comply with the FCC EIRP mask with certain pulse repetition frequency.
There are basically two different types of receivers employed in IR-UWB systems, namely coherent receiver and non-coherent receivers. Figure 2.4 shows the typical IR-UWB coherent receiver. The analog correlator consisting of mixer, integrator, and dump correlates the input RF signal to locally generated UWB impulses from template generator. The output of the receiver is maximized when template and input RF signals are synchronized in time. Thus, if template and input RF signal are not aligned then output cannot have all the energy from input RF signal. The correlator provides the functionality of an optimum matched filter which maximizes the signal-to-noise ratio (SNR). Since integrator and dump work as a low-pass filter, the baseband output signal can be easily sampled by the ADC, relaxing the requirement on sampling rate and reducing the possible excessive power consumption. However, as mentioned before, due to the very narrow pulse signals, generating the precise timing control and fine step template signals becomes critical, and synchronization takes longer time. Thus, it is sometimes necessary to use serial search correlators to reduce the acquisition time.

![Diagram of the coherent IR-UWB receiver](image)

Figure 2.4 The coherent IR-UWB receiver.

Figure 2.5 shows the non-coherent type receiver. In this type of receiver, input RF signal self-correlated by one period delayed signal. The correlation operation reveals the amplitude variations from one pulse to the other, carrying the transmitted information. Thus, before each data signals, the transmitter should also send the reference pulses. This increases the overhead as far as transmitter is concerned and increases the power requirements. Since the adaptive noise in the receiver, the delay cell used to delay the reference pulses becomes critical.
In practical wireless communications, the channel suffers from multipath effect, where reflections of the transmitted signals and other effects of the channel cause multiple copies of the original transmitted pulse appearing at the receiver end. Therefore, a rake receiver is usually used to improve reception at the cost of increased receiver complexity. The increased complexity comes from the multi fingers of correlators required to estimate and track multiple impulses while demodulating them.

2.6.2 Carrier-Based UWB System

In the carrier-based UWB system, oscillators are normally employed as the template for correlation with the receiver input signal. Figure 2.6 shows the typical architecture of carrier-based system. It contains two channels namely I and Q channels. Template signals are usually continuous wave signals from local oscillators. I channel uses sine wave as a template signal while Q channel uses 90° phase shifted sine wave (cosine wave) as a template. By using both I and Q channels with 90° phase shifted template signals, the system can recover and obtain the information of the received signal (magnitude and phase). Low pass filter is used to recover the baseband signal. This type of receiver is traditionally called as ‘Envelope Detector’. This approach gives less SNR value than the matched filter type receiver. And since the architecture is more complex than that of the IR-UWB, more power is consumed from the excessive components especially oscillators.
Wi-Fi (IEEE 802.11) products have employed a technique of wireless communication called OFDM. As OFDM is the latest architecture trend in Wi-Fi products with matured design experience and development, OFDM technique has been proposed for realizing UWB systems. The multiband OFDM (MB-OFDM) systems using multi-carrier achieve UWB communications and radars by adding together multiple orthogonal bands of interests, i.e. frequency division multiplexing as shown in Figure 2.7. Total regulated spectrum is divided in different bands and each band is divided into sub-bands (each 528 MHz wide to satisfy UWB definition). A time interleaving technique was proposed to specify which sub-band would be active for communication at any given time to reduce the undesired multi-path effects.

Figure 2.6 The typical carrier-based UWB receiver.

Figure 2.7 Frequency band plan of the MBOA proposal for the IEEE 802.15.3a PHY.
The PHY (physical) layer of proposed MB-OFDM is basically a descendant from 802.11 a/g systems. These systems have potential of achieving high data rates from the more utilized frequency bands. However, like other carrier-based system, MB-OFDM suffers high power consumption and high circuit complexity. Figure 2.8 shows the block diagram of the typical MB-OFDM receiver proposed for IEEE 802.15.3a PH layer by the Multiband Alliance (MBOA). From the figure it is evident that this architecture is much more complicated and consumes more power compared to IR-UWB systems. This is the reason that this system architecture is not chosen for IEEE 802.15.4 standard.

Figure 2.8 The typical UWB MB-OFDM receiver.
CHAPTER 3
OVERVIEW OF UWB IMPULSE GENERATOR

In UWB systems, impulse generator plays an important role to generate the transmitting signals complying with the FCC regulations. The transmitting signals should sufficiently utilize the designated UWB spectrum. Once the transmitting signal is generated, the design specifications and requirements (speed, bandwidth, etc.) for the receiver components can be also determined. Also, the impulse generator may be used as the template generator in the receiver. Generally, for the UWB signal generation, there are two approaches: temporal or frequential. Temporal approach, like IR-UWB, attempts to generate wideband signals with very short duration in time directly from the baseband signal (Gaussian pulses). On the other hand, frequential approach accomplishes the wide bandwidth directly from frequency domain using techniques like up-converting or spectrum spreading. In the following subsections, several existing architectures of the UWB impulse generator will be introduced and the applicable modulation schemes and their characteristics for the IR-UWB impulse generator are also discussed.

3.1 Carrier-Free IR-UWB Impulse Generator

3.1.1 IR-UWB Waveforms

As mentioned, since IR-UWB achieves wide bandwidth from time domain employing short duration pulses, one of the most important design considerations is the selection of the fundamental pulse shape. The Gaussian pulse, often referring to a monocycle, has been theoretically proven to be a good fundamental baseband pulse for IR-UWB system [26]-[28]. The general Gaussian pulse is given by

\[x(t) = \frac{A}{\sqrt{2\pi\sigma}} \exp\left(-\frac{t^2}{2\sigma^2}\right) \]

(3.1)
where \(A \) is the magnitude factor and \(\sigma \) is the pulse shape factor controlling the pulse width. As shown in Figure 3.1, the Gaussian pulse is a baseband signal and with the smaller \(\sigma \), pulse width is smaller and the bandwidth is larger. For UWB communication applications, the pulse width of the Gaussian pulse has to be smaller than 1 nano second to cover the upper frequency (10.6 GHz) of the designated frequency band. However, since the baseband Gaussian pulse does not comply with the FCC mask in the low frequency band, it is called the fundamental signal requiring pulse shaping processes to reshape the waveform as well as the bandwidth.

![Time domain](image1)

![Frequency domain](image2)

Figure 3.1 (a) time domain and (b) frequency domain of the Gaussian pulse.
To shape the Gaussian pulse, several techniques have been developed (filtering method, pulse combination method, etc.). As for the waveform of the reshaped UWB signals complying with FCC regulations, the higher-order derivatives of the Gaussian pulse have been analytically proven to sufficiently satisfy the spectrum and power requirements [27]. The n-th derivative of Gaussian pulse can be determined as

$$x^{(n)}(t) = -\frac{n-1}{\sigma^2} x^{(n-2)}(t) - \frac{t}{\sigma^2} x^{(n-1)}(t)$$ \hspace{1cm} (3.2)

While the power spectral density (PSD) of the signals is given [20] by

$$|P_n(f)| = A_{\text{max}} |P_n(f)| = A_{\text{max}} \left(\frac{2\pi f \sigma}{2n} \right)^n \exp\left\{ -\left(\frac{2\pi f \sigma}{2} \right)^2 \right\} n^n \exp(-n)$$ \hspace{1cm} (3.3)

where A_{max} is the peak PSD the FCC permits and $|P_n(f)|$ is the normalized PSD. Thus, the selection of parameters n and σ can determine the pulse shape as well as the PSD to comply with the FCC mask. The PSD peak frequency, f_{peak}, can be related to n and σ with the relationship given [27] by

$$f_{\text{peak}} = \sqrt{n} \frac{1}{2\pi \sigma}$$ \hspace{1cm} (3.4)

As can be seen, the higher order of Gaussian derivatives can result in a higher peak frequency. Thus, through the differentiation, the energy can be moved to higher frequency bands because of more zero crossings in the same duration of time. In [27], the 5-th order of Gaussian derivatives is demonstrated to best satisfy the FCC mask for indoor UWB systems. The PSD of different Gaussian derivatives (first to fifth order) with the FCC mask is shown in Figure 3.2. With the same pulse shape factor σ, the higher the order is, the smaller the bandwidth will be with the increasing of the peak frequency.
3.1.2 Filtering-Based Impulse Generator

Figure 3.3 shows the typical filtering based impulse generator. The Gaussian pulse generator usually consists of digital logic circuits generating the short-duration Gaussian pulses, which requires a clock signal as the input that determines the output pulse repetition frequency. As mentioned before, the generated Gaussian pulse width has to be narrow enough to cover the desired frequency band. Then, the filter, also called pulse shaper, can be applied to remove the unwanted spectrum especially in the low frequency band. For the type of filters, either passive filters or active filters can be employed. The passive high-pass or band-pass filter can be used as passive filter, while the finite impulse response (FIR) filter consisting of transistors can be used as active filter.
Figure 3.3 Architecture of the typical filtering based impulse generator.

Figure 3.4 shows the example of filter based impulse generator proposed in [10]. The baseband generator consists of digital delay cell and logic gate combining the edges of the input signal to produce the Gaussian-like waveform. The on chip filter is implemented as a third order passive Bessel band-pass filter constructed by three inductors and four capacitors. All the circuits are implemented using CMOS technology allowing low cost and low power. However, the large number of passive components occupies more chip area.

To reduce the using of passive components and the chip area, the active FIR filter can be used as the pulse shaper as presented in [12]. Instead of the baseband pulse, the rising and falling edges of the digital clock signal are directly employed as the input of the FIR filter to generate the derivatives of the Gaussian pulse. The block diagram of the FIR filter impulse generator is shown in Figure 3.5. The architecture consists of the digital delay line and taps of FIR filter. The output UWB signal is obtained by adding time-shifted and scaled versions of the clock edge. However, except FIR filter, extra circuitries are needed to generate the control
signals for the filter and a wideband balun is needed to convert the differential filter output to single-ended signal. As a result, the design has a complex architecture and power consumption is relatively high.

3.1.3 DAC-Based Impulse Generator

The digital-to-analog converter (DAC) has also been adopted as the method to convert digital input data to analog UWB signals. In [9], resistive ladder based DAC is used as shown in Figure 3.6. The resistor ladder divides the voltage source Vdd into different levels and the combination of switches are controlled by pairs of digital input signal. By turning on and off the switches in a particular sequence, the desired output impulse pattern can be formed. However, the passive resistors employed increase the chip area and require device matching to ensure evenly distributed output levels.
On the other hand, the current-steering DAC is employed to reduce the using of passive components [29], [30]. The architecture of the current-steering DAC impulse generator is shown in Figure 3.7, which consists of load resistors and several current cells. By controlling the timing of each switch in the current cell, the different output currents can be formed from combinations of current drawn in each cell and thus the desired output waveform is generated. However, these DAC-based impulse generators require on chip memory enlarging chip areas. Moreover, these designs are implemented using BiCMOS technology. In spite of the types of DAC employed, this method usually requires additional circuits to generate the switch control signals raising the complexity of the circuit as well as the power consumption. The method also requires high speed (high sampling rate) from the switching, which is a challenge for designing the circuit.
3.1.4 Pulse Combination Type Impulse Generator

As shown in Figure 3.8, an impulse generator proposed in [7] is composed of Gaussian pulse generators and combining output stage. The Gaussian pulse generators are digital circuits producing Gaussian-like pulses (A, B, C, and D) in different phase and polar from different delay and logics. The output stage containing two digital invertors then transforms the variations of input pulses to single voltage output with combined waveform. The combined output is an approximate 5-th order Gaussian derivative which can meet the FCC mask for UWB indoor application. Using this method can produce the high order Gaussian derivative directly from baseband pulses without employing any filtering process. However, it requires more complex digital circuitries and needs the accurate synchronization from each of the delay cells to correctly combine the pulses in phase.
3.2 Carrier-Based UWB Impulse Generator

3.2.1 Spread Spectrum UWB

In [31], [32], the spread spectrum technique is used for the UWB short range radar application. The architecture of the spread spectrum impulse generator, as shown in Figure 3.9, consists of an oscillator, bi-phase modulation, and a pseudo-noise (PN) code generator. Since the output of the oscillator is continuously phase-modulated by the PN code, the output is “noise-like” and has a very wide bandwidth. Nevertheless, the “noise-like” transmitted signal becomes more challenging for the receiver to demodulate and detect the signal.
3.2.2 Pulse Modulated UWB

Pulse modulated impulse generator, a carrier-based IR-UWB architecture, generates short duration signals by modulating the carrier signal. In the pulse modulated signal generation, there are mainly two methods employed; one is the mixer-based up-converting method [33], the other is the switch-based on-off keying method [34]. The architecture of two methods is shown in Figure 2.18. Both methods need a baseband pulse generator to modulate the output of oscillator. At millimeter-wave frequencies, switch-based technique is more power efficient [35] since the mixer, power amplifier, and other components in the mixer-based technique are always “on” with a very low duty-cycle transmitting signal. However, one drawback of the switch-based technique is the residual carrier leak owing to the limited isolation from the RF switch [36].

![Figure 3.10 Architectures of pulse modulated impulse generator: (a) switch-based, (b) mixer-based.](image)

3.3 IR-UWB Modulation

3.3.1 Modulation Methods

Since single UWB impulse does not contain information itself, the digital information can be added by means of modulation. There are several modulation methods for UWB system as shown in Figure 3.11. The methods can be categorized as time-based technique, like pulse position modulation (PPM) and shape-based technique including bi-phase modulation (BPM), on-off keying (OOK), and pulse amplitude modulation (PAM) [37].
The PPM has been the most common method. In the PPM, as depicted in Figure 3.11 (a), information is carried by whether delaying the un-modulated signal or not regarding to the binary bit. Also this delay function can be described in the way that sent UWB pulse in advance of a time. Therefore, the binary information can be delivered with a forward or backward shift in time. Moreover, by specifying the time delay for each impulse, an M-ary system can be set. However, for the UWB systems, since impulse is very narrow, the ultra fine time control of the delay is needed for accuracy.

BPM is another commonly used method. As shown in Figure 3.11 (b), the signal is modulated by inverting its phase when data is "0". The advantage of using BPM is that the mean of its pulse weight is 0, which can help diminishing the spectral spikes of the output PSD without the need of dithering signals as in PPM [38], [39].
In Figure 3.11 (c), OOK modulates data with the presence of an impulse representing “1” and absence representing “0”. The advantage of OOK is raised from its simplicity, but the main disadvantage comes from the multipath. That is, it may become difficult to determine the absence of the signal (“0”) from echoes of other signals. In Figure 3.11 (d), an example of pulse amplitude modulation is given where a pulse with larger amplitude represents “1” and smaller amplitude represents “0”. Generally, the PAM method representing logic ‘0’ with smaller amplitude is not preferable to most short-range communications because the smaller amplitude is more susceptible to noise interference than the larger amplitude as its counterpart.

3.3.2 Modulations and Output PSD

To understand the effect of modulations on the output spectrum, for example, as the output impulse \(g(t) \) is linearly modulated by OOK or BPM, the sequence of the modulated impulses can be expressed by the autocorrelation function as

\[
s(t) = \sum_{k=-\infty}^{\infty} a_k \cdot g(t - k \cdot T_p)
\]

where \(T_p \) is pulse repetition interval and the sequence \(\{a_k\} \) represents the information symbol. In the case of OOK, \(\{a_k\} \) is either 1 or 0. The PSD of the output sequence can be therefore found from the Fourier transform of the autocorrelation function and is given by

\[
PSD(f) = \frac{\sigma_a^2}{T_p} |G(f)|^2 + \frac{\mu_a^2}{T_p} \sum_{j=-\infty}^{\infty} \left|G\left(\frac{j}{T_p}\right)
ight|^2 \delta(f - \frac{j}{T_p})
\]

where \(G(f) \) is the Fourier transform of \(g(t) \); \(\mu_a \) and \(\sigma_a^2 \) are mean and variance of the sequence data \(\{a_k\} \), respectively. The first term on the right hand side of equation 3.6 is the continuous spectrum given in \(V^2/Hz \) depending only on the spectral characteristic of \(g(t) \). The second term presents a discrete spectrum given in \(V^2 \) spaced apart by \(1/T_p \) in frequency, which also refers as spectral lines or spectral spikes. The magnitude of the discrete spectrum is proportional to \(|G(f)|^2 \) evaluated at \(f=j/T_p \). Therefore, for a given bandwidth resolution (RBW) for measuring the
PSD, the ratio β of magnitudes between spectral lines and continuous spectrum at $f=j/T_p$ can be given as

$$\beta = \frac{\mu_a^2}{\sigma_a^2 \cdot T_p \cdot RBW} \quad (3.7)$$

As PRF increases, T_p decreases, and β increases, which means that the magnitude of spectral lines is higher than that of the continuous spectrum at high PRF operations. This result limits the capacity of the impulse generator to employ large-magnitude output signals since to meet the FCC emission regulation with higher PRF, $|G(f)|^2$ has to be smaller, which is to reduce the magnitude of output impulses. However, by applying modulations, as for OOK, $\mu_a=0.5$ and $\sigma_a^2=0.25$, and for BPM, $\mu_a=0$ and $\sigma_a^2=1$, the ratio β is smaller than that without applying modulations. This means the appearance of spectral lines can be reduced and thus the trade-off between PRF and output magnitude can be suppressed through modulations.
In UWB systems, to reliably achieve the best performance, it is desirable to have a reconfigurable impulse generator, which can be tuned after fabrication accommodating process, voltage, and temperature variation (PVT). High speed DAC with adequate resolutions can be programmed generating almost any arbitrary output waveforms, and thus is suitable to be employed as a reconfigurable impulse generator. As mentioned in Chapter 3, DAC-based impulse generators have been developed [9], [29], [30], however, in [9], the large use of the passive components is required, since it is a resistor-ladder type DAC. The massive passive components will increase the chip area and since the voltage division is based on the resistor ladder, the circuit is usually sensitive to the resistor mismatch affecting differential nonlinearity (DNL) and integral nonlinearity (INL) of the DAC. While in [29], [30], the current-steering type DACs are employed, but the circuits are designed using BiCMOS technology. Moreover, in [30], the operating frequency is from 0 to 980 MHz for the sub-GHz UWB application, and in [29], the circuit uses 6-bit DAC to generate the impulse for 3.1 to 10.6 GHz spectrum complicating the architecture and consuming more power. To reduce the area of the circuit implementation, simplify the architecture, and increase the speed, an impulse generator is proposed using current-steering type DAC for the 3.1 to 10.6 GHz UWB systems. The proposed impulse generator is fully designed and implemented using the TSMC 0.18 μm CMOS technology. The proposed impulse generator has the features of low-complexity and high-tunable outputs with variable output swings.
4.1 Design of Proposed UWB Impulse Generator

4.1.1 Choice of Impulse Shape

For the UWB communication systems, various kinds of the transmitted signals can potentially be used, such as Gaussian pulse, Gaussian monocycle, and Scholtz monocycle [41]. The main reason for choosing the pulse shape is to make the PSD of the generated pulse meeting the FCC mask more efficiently, which allows the transmitted signal to carry more power within the regulated bandwidth. The derivatives of the Gaussian pulse have been examined to have the above feature. Specifically, in [27], the 5th-order derivative of Gaussian pulse is analyzed and is proven to have the highest bandwidth occupation for UWB indoor communication system from 3.1 GHz to 10.6 GHz. The 5th-order derivative of Gaussian pulse can be expressed as

$$G_{5^{th}}(t) = A \cdot \left(\frac{t^5}{\sqrt{2\pi\sigma^3}} - \frac{10t^3}{\sqrt{2\pi\sigma^5}} + \frac{15t}{\sqrt{2\pi\sigma^7}} \right) \cdot \exp\left(-\frac{t^2}{2\sigma^2} \right)$$ \hspace{1cm} (4.1)$$

where A is the magnitude index of the pulse and σ is the shape index that determines the pulse width. By plotting equation 4.1 and simulating its PSD in Matlab, as shown in Figure 4.1, it can be seen that the 5th-order derivative of Gaussian pulse has five finite roots and two roots at infinity and the PSD of the pulse meets the FCC mask very efficiently. For the proposed impulse generator, the revised 5th-order derivative of Gaussian pulse is used by removing both of the small end lobes of the pulse. The reason to modify the pulse is to simplify the pulse generation and thus the architecture of the circuits while still meeting the FCC mask sufficiently. The modified pulse can be expressed as

$$G_{5^{th _ revised}}(t) = G_{5^{th}}(t) \cdot Rect(t)$$ \hspace{1cm} (4.2)$$

where $Rect(t)$ represents a rectangular pulse function as

$$Rect(t) = \begin{cases} 1 & \text{for } |t| \leq \tau / 2 \\ 0 & \text{otherwise} \end{cases}$$ \hspace{1cm} (4.3)$$
to exam the usage of modified Gaussian pulse, as shown in Figure 4.2, the transient response and the frequency response of the ideal 5th-order derivative of Gaussian pulse and the its modified pulse are compared. As can be seen, the modified Gaussian pulse is truncated from the ideal one by removing the two ending lobes. Comparing with the PSD of the ideal Gaussian pulse, the PSD of the modified pulse has a slightly smaller bandwidth and has a side-lobe in the low frequency region. The side-lobe in the low frequency is formed from the $sinc$ function. From equation 4.2, since modified Gaussian pulse contains a rectangular function in time domain, it transforms to the $sinc$ function and convolutes with the frequency response of the ideal 5th-order derivative of Gaussian pulse. Thus, it is proven that the truncated 5th-order derivative of Gaussian pulse can be approximately employed as an ideal 5th-order derivative of Gaussian pulse for the transmitting signal for the 3.1 to 10.6 GHz UWB systems.

![Figure 4.1 (a) 5th-order derivative of Gaussian pulse, (b) PSD of the signal.](image)
Figure 4.2 Comparison of transient response and PSD: (a) ideal 5th-order derivative of Gaussian pulse, (b) modified 5th-order derivative of Gaussian pulse.

4.1.2 DAC Impulse Generating Principle

The DAC-based impulse generator usually requires Nyquist rate sampling to reconstruct the signal for the designated spectrum. However, since the designated spectrum is from 3.1 to 10.6 GHz for the UWB application, it requires a sampling rate over 20 Gs/s. This high sampling rate gives a challenging task for DAC design itself, as well as for generating the high speed input data streams. This is why several existing DAC-based impulse generators are designed using more costly high speed SiGe BiCMOS technology [29], [30], and using high speed digital logic circuits such as current-mode logic, consuming higher power.

To alleviate the required sampling rate, a technique called peak sampling [42] can be adopted. As seen from Figure 4.2, the proposed modified 5th-order derivative of Gaussian pulse has the band-pass spectrum from its alternating peak and zero-crossing points in the transient
waveform. Thus, the sampling rate can possibly be reduced by sampling only peak points. That is, as demonstrated in [42], the Nyquist rate sampling of 20 Gs/s is employed to generate UWB signal covering 3 to 10 GHz band as in Figure 4.3 (a), while the sampling rate is reduced to half at 10 Gs/s when sampling only at the peak points without the need of sampling at zero point as in Figure 4.3 (b). By comparing the PSD of these two sampled signals, as shown in Figure 4.3 (c), there is only slight difference especially for the -10 dB bandwidth within the preferable UWB spectrum. Thus, the peak sampling is an effective way to reduce required sampling rate and is adopted in the proposed UWB DAC-based impulse generator simplifying the circuit architecture and reducing the power consumption.

Figure 4.3 Comparison of UWB signal generation using different sampling rate [42]: (a) Nyquist sampling, (b) peak sampling, (c) PSD of the two sampled signals.

Therefore, the modified 5th-order derivative of Gaussian pulse adopted in our proposed impulse generator can be peak sampled as shown in Figure 4.4 (a). The peak sampling rate in
this case is about 14 Gs/s. The normalized sampled signal waveform is generated using Matlab codes as shown in Figure 4.4 (b) and is expressed as

\[
G_{5^{th _ sampled}}(t) = \begin{cases}
0.5 & \text{for } t_1 \leq t \leq t_1 + \tau_S \\
-1 & \text{for } t_1 + \tau_S \leq t \leq t_1 + 2\tau_S \\
1 & \text{for } t_1 + 2\tau_S \leq t \leq t_1 + 3\tau_S \\
-0.5 & \text{for } t_1 + 3\tau_S \leq t \leq t_1 + 4\tau_S
\end{cases}
\] (4.4)

where \(\tau_S \) is the sampling period. The PSD of the sampled signal, as shown in Figure 4.4 (c), sufficiently meets the regulated UWB spectrum. Again, the side-lobe at the low frequency region is from the sinc function and the harmonic peak spectrum at high frequency band is the imaging component of the sampling product. Practically, the parasitic in the actual circuit will introduce the low-pass filtering effect from the RC time constant increasing the rising and falling time of the sampled signal. Thus, it is important to know the parasitic effect on the output waveform and its PSD in advance, which confines the DAC circuit performance. To exam the parasitic effect, the RC time constant is first obtained by assuming a first-order system and the impulse response of the system can be therefore expressed as

\[
h_{RC}(t) = \frac{1}{RC} \cdot \exp\left(-\frac{t}{RC}\right)
\] (4.4)

Then, the sampled signal with parasitic effect can be obtained by convoluting \(G_{5^{th _ sampled}}(t) \) with \(h_{RC}(t) \), that is

\[
G_{5^{th _ para}}(t) = G_{5^{th _ sampled}}(t) \ast h_{RC}(t)
\] (4.5)

by simulating equation 4.5 with different RC time constants, the effect of the parasitic can be found both in time domain and frequency domain, as shown in Figure 4.5. The rising and falling time increase with larger RC time constant, which means that the high frequency component is suppressed as shown in Figure 4.5 (a). As for the frequency response, as expected, higher RC time constant reduces the magnitude of PSD in high frequency region and decreases the center frequency.
From the above analysis, it is observed that the modified 5th-order derivative of Gaussian pulse can be employed as the transmitted signal for the UWB 3.1 to 10.6 GHz system and the required speed of the DAC impulse generator is also defined to generate the preferred signal.

Figure 4.4 Sampling of modified 5th-order derivative of Gaussian pulse: (a) peak sampling, (b) sampled signal, (c) PSD of the sampled signal.
4.1.3 DAC-Based Impulse Generator Architecture

Resistor-based and current-steering are two major types for the DAC design. To achieve high speed operation, the current-steering DAC architecture is chosen for this design. In the current-steering DAC, the glitches are a major limitation for high speed operations from the timing skews of the digital switching signals [43], [44]. As illustrated in Figure 4.6 [43], a simple binary weighted 4-bit DAC is considered. Suppose the binary digital switching inputs are
switching from 1000 to 0111 and thus the output is connected from only the most significant bit (MSB) current source to only the three remaining current source with one IR_L level change. However, once the digital input signals driving the switches suffer from finite rising and falling time as well as timing skews, all four current sources maybe partially off or on for a short time during the transition from 1000 to 0111 and causing glitches at the output. Thus, to reduce the glitch, it is desired to have less number of current switching during transitions.

Figure 4.6 Glitch in current-steering DAC: (a) transition from 1000 to 0001, (b) output glitch.

For this design, since the designated modified 5th-order derivative of Gaussian pulse has only five magnitudes levels in the waveform, it can be generated using a 3-bit DAC. The architecture of the impulse generator is shown in Figure 4.7, which consists of one load resistor
and five current cells. In each of the current cell, it consists of an analog switch and a current source.

![Architecture of the proposed DAC impulse generator.](image)

Figure 4.7 Architecture of the proposed DAC impulse generator.

Each of the current sources carries different amount of currents (I₁ to I₅), and each of the switches is controlled by the input signals (C₁ to C₅), which are rail-to-rail digital signals. Initially, the relations between the currents are set as

\[
I_1 = \frac{1}{2} I_2 = \frac{1}{3} I_3 = \frac{1}{4} I_4 = \frac{1}{5} I_5
\]

(4.6)

And output voltage level is defined as

\[
V_O = V_{DD} - I_j \cdot R_L
\]

(4.7)

where Iⱼ is the output current flows through the load resistor from different current cells. As in equation 4.6, the current sources are 1-of-n weighted, which allows only one current source to be switched on during every transition for generating the corresponding output level, and thus reduces output glitches. Although thermometer code architecture is normally employed for segmented array to reduce the glitch, in this design, it may introduce more glitches than that in
1-of-n architecture. Since the target output waveform is known as the modified 5th-order derivative of Gaussian pulse which consists of a lowest level to highest level magnitude transition (Figure 4.5 (a)) due to its differential Gaussian nature, if the thermometer code architecture is employed, all the current sources will be turned on then off during this transition, which increases the chance of glitch.

As in equation 4.7, the output voltage is inverse proportional to the output current. Once again, the reason that five current cells with five different current levels are chosen is because the required 5th-order Gaussian derivative like output has five voltage levels (Lv.1 to Lv.5), as shown in Figure 4.8.

![Figure 4.8 Timing diagram of pulse generation with sequence of switch inputs.](image)

Comparing with the original 5th-order Gaussian derivatives, since two levels are ignored by removing two ending side lobes, the required composing current cells are reduced and thus simplify the architecture. Since the output current is determined by the current sources
through the switches, by adjusting the switching sequences of the current cells in time, the preferred output can be formed. In the proposed design, the digital switching input signals (D1 to D5) are set to enable each of the current cell once a time in a particular sequence, as shown in Figure 4.8. And since only one current cell is turned on in each switching time frame, i.e., peak sampling period, the switching glitch can be reduced and the output current is totally drawn by that particular current cell. Thus, as shown in equation 4.7, the linear relations between current cells will make the output has five linearly distributed levels. Table 4.1 shows how the switch input clock signals are determined from the levels of the desired output waveform. Examining the desired output signal in Figure 4.8, the sequence of transition levels are Lv.3, Lv.2, Lv.5, Lv.1, Lv.4, and Lv.3 in time. Therefore, by enabling the corresponding current levels in time, the required input switch signals can be determined.

Table 4.1 Required switch input sequences

Current switching sequence (from left to right in time)	Output levels & corresponding currents					
Switch inputs	Lv.3 (I₃)	Lv.2 (I₂)	Lv.5 (I₅)	Lv.1 (I₁)	Lv.4 (I₄)	Lv.3 (I₃)
D₁	0	0	0	1	0	0
D₂	0	1	0	0	0	0
D₃	1	0	0	0	0	1
D₄	0	0	0	0	1	0
D₅	0	0	1	0	0	0

4.1.4 Circuit Implementation

The proposed impulse generator is designed and implemented using TSMC CMOS 0.18 μm process in ADS. The supply voltage is 1.8 V. The schematic of the circuit is shown in Figure 4.9. The switch and the current source are all composed of NMOS transistors. The input bias voltages (Vb1 to Vb5) are applied to each of the current source to form the required current levels.
In each of the current cell, transistors in the current source (Ncj) and the switch (Nsj) form a cascode stage, and thus the output impedance of each current cell can be expressed as
\[
R_{\text{out}_j} = g_{m_{Sj}} \cdot r_{o_{Sj}} \cdot r_{o_{Cj}}, \quad j = 1, 2, 3, 4, 5
\]
(4.8)

where \(g_{m_{Sj}}\) is the transconductance of the switch transistor and \(r_{o_{Sj}}\) and \(r_{o_{Cj}}\) are the intrinsic output resistances of the switching transistor and current source transistor, respectively. Equation 4.8 is obtained by assuming both the transistors are in saturation region, which is the preferable condition to maintain larger output impedance. If the switching transistor is in deep triode region, the output impedance will be reduced to
\[
R_{\text{out}_j} = r_{o_{Cj}} + r_{o_{Sj}}, \quad j = 1, 2, 3, 4, 5
\]
(4.9)
where R_{on} is the on-resistance. The high output impedance of the current cell can improve the linearity of the circuit. The nonlinearity of the circuit mainly comes from two contributions: first, the output current variation caused by the finite output resistance in each current cell from the output voltage variation; second, the output voltage variation due to different output impedances in each current cell when loading to the output. To clarify these nonlinearity contributions, consider the equivalent small signal model of the DAC impulse generator as illustrated in Figure 4.10, where r_{OCj} represents the output resistance of each current source in saturation and R_1 is the equivalent resistance from parallel combination of R_L and 50-Ω load. Thus, the output voltage can be found as

$$V_{out} = -j \cdot I \cdot \left(r_{OCj} // R_1 \right); \quad j = 1, 2, 3, 4, 5$$

(4.10)

where r_{OCj} in each current source are different because different currents are supplied.

Figure 4.10 Equivalent small signal circuit of proposed DAC impulse generator.

During the impulse generating operation, as different currents drawn from different current sources, different r_{OCj} are loaded from output to ground causing integral nonlinearity to the output, which comes from the dependence of the term in parentheses in equation 4.10. Moreover, r_{OCj} and supplied currents in each current source vary with different level of output voltage because of the short-channel effect causing nonlinearity also. Thus, these imply that the
high output impedance can improve the linearity by suppressing variations at the output and making the current source more ideal.

Therefore, for sizing the transistors, the length of current source transistors \((N_{cj})\) and width of switch transistors \((N_{sj})\) are chosen to increase the output impedance while the length of current source transistors is also adjusted inverse proportionally to their supply currents compensating the effect on \(r_{ocj}\) variations. To achieve high speed, the length of switch transistors is kept as minimum. The current source itself may be employed as a cascode stage to further increase the output impedance, but the output voltage headroom will be limited. Thus, the simple two transistors stack in each of the current cell allows the large voltage swing of the output and also reduces the capacitance from the transistors, then increases the speed. Since the output pulse repetition frequency \((PRF)\) can be tuned by the switch input signals while the output swing can be tuned by the current source bias voltages, the proposed impulse generator has a high-tunability to generate various outputs with different data rate while sufficiently complying with the FCC regulations.

4.1.5 Digital Switch Control Signals

As illustrated in Figure 4.8 in the previous section, to properly generate the preferred impulse signal, particular sequences of digital switch control signals have to be generated \((D_i)\). These low duty cycle digital pulses can be generated using digital logic circuits without the need of high-speed digital processing and programming unit, as shown in Figure 4.11 \((a)\). The digital pulses generator contains two AND gates, two NOR gates, four buffering inverter, and one XNOR gate. The input-output timing diagrams are shown in Figure 4.11 \((b)\). The sequence of digital switch control pulses is generated at every rising edge of the input master clock signal. The master clock signal is sequentially delayed and inverted through buffering inverters and sent to each logic gate to produce the corresponding output signal. Thus, the output pulse width is controlled by the buffering inverters, which is also the DAC sampling period.
Nonetheless, to maximally reduce the output glitches, the need of precisely timed edges of digital switch control signals is critical especially for the high-speed application. As depicted in Figure 4.12, the rising and falling time of each switch control signal are synchronized at the 50 % voltage points to ensure that the switches are turned on and off simultaneously.

For this design, to prove the concept of DAC impulse generation, the logic circuits and digital control signals are implemented and simulated using simulink in Matlab.
4.1.6 Modulation Capability

4.1.6.1 OOK

Since the digital control signals are generated only on every rising edge of the input clock signal, which means that the DAC impulse generator also generates output on every rising edge of the input clock, the proposed DAC impulse generator can simply employ OOK at the input digital domain. For example, as shown in Figure 4.13 (a), the input clock signal is sent to the OOK modulator with the digital data stream, which generates the modulated digital trigger signal as the input of the switch control signals generator. Thus, the DAC impulse generator generates the output on the rising edges of the trigger signal realizing the OOK as shown in Figure 4.13 (b). Because the modulation is done in digital domain before the impulse signal generation, it much alleviates the design requirements on the modulator. If the modulation is done in RF domain after the impulse generation, a RF modulator is required with the need of large bandwidth and higher power. Furthermore, as in Figure 4.13 (b), the modulated signal is actually a return-to-zero data, which means that the proposed DAC impulse generator can be triggered directly by the return-to-zero clocked data without the need of additional master clock signal and modulator.
4.1.6.2 BPM

To achieve bi-phase modulations, the differential output impulses have to be generated. The proposed DAC impulse generator can be implemented as a differential architecture. As shown in Figure 4.14, the switch in each of the current cells is replaced by a differential pair of transistors comparing with that in the single-ended DAC impulse generator. The differential switches are driven by the differential control signals \((D_i, \overline{D_i})\). The differential swing between the control signals has to be large enough to ensure that one branch turns off completely for the maximum output swing. The differential control signals also need precisely synchronized edges to drive the differential switches on and off simultaneously.
The sizing of transistors for the differential DAC impulse generator follows the same principle as that for the single-ended topology while the size of transistors in each differential switch is kept the same for the fully symmetrical implementation. However, recall that for D_j, the signals are generated to ensure that only the corresponding one of five current sources connects to the output at a time (Table 4.1), and thus the differential D_j signals make four current sources connect to the output at a time instead. Therefore, the common mode voltage at V_{out} before C_b is lower than that at V_{out} before C_b causing smaller allowable output swing to prevent transistors in triode region, which means the current supplied in each of the current sources is smaller than that in the single-ended architecture.

Since the differential signals are generated in RF domain, a RF modulator (e.g., a RF switch) is needed to process these differential impulse signals and pass either one of them to the output according to the state of the data stream. The differential architecture also consumes more power than that of the single-ended architecture because each current source is always steering to either one of the differential branches. Thus, when one of the differential outputs is
selected and passes to the modulator output, the power consumed by another branch is wasted reducing the power efficiency.

From the disadvantages of using differential architecture for bi-phase modulation, it is desired to employ the modulator in digital domain and possibly to use single-ended architecture. Therefore, to accommodate these requirements, new bi-phase modulation architecture has to be developed. First, recall that the generated modified 5th-order derivative of Gaussian pulse has four peaks that are symmetric to the center of pulse. Thus, to generate its differential waveform, we can simply reverse the connection of switch control signals to each switch from the single-ended architecture. As shown in Figure 4.15, the output magnitude is inversely proportional to the conducted current and originally, switch control signal D_j connect to the corresponding switch Ns_j. For the differential operation, D_j connects reversely to Ns_j and makes differential current conducting to the output (e.g., from the largest current to the smallest current).

![Bi-phase operations with single-ended architecture.](image)

To realize this bi-phase modulation, a digital modulator is proposed. As depicted in Figure 4.16. The digital modulator consists of four multiplexers switching the corresponding
control signal to the switch according to the input data, where D₃ connects to the buffer having the same propagation delay as that of the multiplexer for synchronization. From the truth table of the modulator (Table 4.2), as D₁ and D₅ for example, when data equals 1, D₁ connects to Ns1 and D₅ connects to Ns5, and when data equals 0, D₁ connects to Ns5 and D₅ connects to Ns1.

Figure 4.16 Proposed digital BPM modulator.

Table 4.2 Truth table of the modulator

<table>
<thead>
<tr>
<th>Input Data</th>
<th>D₁</th>
<th>D₅</th>
<th>C₁</th>
<th>C₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The proposed digital modulator accomplishes the bi-phase modulation in digital domain with single-ended DAC impulse generator having lower power consumption, higher power efficiency, and larger output swing than that of the differential architecture. Like the switch control signal generator, the digital modulator is also implemented and simulated with simulink in Matlab.

4.2 Simulation of Proposed IR-UWB Impulse Generator

4.2.1 Single-Ended DAC Impulse Generator

The simulations of proposed DAC impulse generator have been done in ADS. There are two sets of outputs with different PRFs. In Figure 4.17, the generated modified 5th-order derivative of Gaussian pulse and its PSD are shown.

![Figure 4.17 Simulation of single-ended DAC impulse generator output with PRF of 50 MHz: (a) transient response, (b) PSD.](image)

Figure 4.17 Simulation of single-ended DAC impulse generator output with PRF of 50 MHz: (a) transient response, (b) PSD.

The output has a 320 ps pulse width, 335 mV peak-to-peak voltage with a 50 MHz PRF. The PSD of the output complies with the FCC mask and has a center frequency of 6.7 GHz and a -10dB bandwidth from 3.4 GHz to 10.3 GHz. In Figure 4.18, the generated output has a 310 ps pulse width, 86 mV peak-to-peak voltage with a 100 MHz PRF. And the PSD of the output also complies with the FCC regulation and has a center frequency of 6.7 GHz and a -10 dB bandwidth from 3.6 GHz to 10.2 GHz. The power consumptions are 27 mW at a PRF of 50 MHz and 28 mW at a PRF of 100 MHz. The simulation results show that the proposed design has the
ability to adjust the outputs with respect to different PRF while the outputs sufficiently utilize the spectrum and meet the FCC mask.

Figure 4.18 Simulation of single-ended DAC impulse generator output with PRF of 100 MHz: (a) transient response, (b) PSD.

4.2.2 Single-Ended DAC Impulse Generator with OOK

To verify the OOK capability of the circuit, the return-to-zero coded data is employed as the input of the switch control signals generator. As shown in Figure 4.19, the output impulses are triggered/generated on every rising edge of the input data and thus it is proven that the proposed DAC impulse generator can achieve OOK without the need of OOK modulator.

The PSD of the OOK modulated output is also simulated to examine the effect of OOK. Figure 4.20 shows the comparison of the PSD with and without OOK at the PRF of 50 MHz while Figure 4.21 shows the comparison at the PRF of 100 MHz. As can be seen, with OOK, the magnitude and the spectral spikes are reduced, which is the benefit of modulation allowing either larger output swing (longer transmission range) or higher PRF (faster communication rate) while meeting the FCC regulation.
Figure 4.19 Simulation of OOK output.

Figure 4.20 Comparison of PSD at PRF of 50 MHz: (a) with OOK, (b) without OOK.

Figure 4.21 Comparison of PSD at PRF of 100 MHz: (a) with OOK, (b) without OOK.
4.2.3 Differential DAC Impulse Generator

As shown in Figure 4.22, the differential architecture generates the differential outputs with a maximum swing of 135 mV which is smaller than that of the single-ended output. The PSD is simulated at a PRF of 50 MHz and the total power consumption is 48 mW.

![Figure 4.22 Simulation of differential DAC impulse generator: (a) transient response, (b) PSD.](image)

4.2.4 Single-Ended DAC Impulse Generator with Bi-Phase Modulator

The BPM modulator is simulated in simulink with the co-simulation of the single-ended DAC impulse generator in ADS. As shown in Figure 4.23, with synchronization of the input data and the master clock, the bi-phase output impulses are generated on every rising edge of the input data. To facilitate the observation on bi-phase signals, PRF of 1 GHz is employed, which also means the proposed impulse generator can work properly at high data rates.
Figure 4.23 Simulation of bi-phase modulation output at PRF of 1 GHz.

The PSD of the BPM modulated output is also simulated. Figure 4.24 shows the comparison of the PSD with and without BPKK modulation at the PRF of 50 MHz while Figure 4.25 shows the comparison at the PRF of 100 MHz. Again, it is observed that with the modulation, the magnitude and the spectral spikes are reduced.
Figure 4.24 Comparison of PSD at PRF of 50 MHz: (a) with BPM modulation, (b) without BPM modulation.

Figure 4.25 Comparison of PSD at PRF of 100 MHz: (a) with BPM modulation, (b) without BPM modulation.
CHAPTER 5
A FULLY INTEGRATED CMOS UWB FILTERING-TYPE IMPULSE GENERATOR

As mentioned in Chapter 3, for the UWB impulse generator, the passive filtering method is attractive for its low power and low complexity potentialities. A passive filtering type IR-UWB impulse generator with a simpler architecture is presented in this chapter to resolve the high complexity and high power consumption of the existing filtering methods employing least number of transistors and passives compared with other filtering methods. It is fully implemented using 90 nm CMOS technology for high performance and low power. As a result, the proposed impulse generator can achieve low cost, low power, and low complexity for the 3.1-10.6 GHz UWB systems.

5.1 Design of Proposed IR-UWB Impulse Generator

The architecture of the proposed design is shown in Figure 5.1, which consists of three parts: a Gaussian pulse generator, a pulse shaper, and an antenna load. The Gaussian pulse generator is designed employing a modified-XOR gate which has the simpler architecture than the traditional one using delay cells and XOR gate [45]. The pulse shaper built by the band-pass filter (BPF) reshapes the baseband output pulse train from the pulse generator and make its center frequency reside in the designated frequency band. For the antenna load, the realistic passive antenna model is used in the simulation instead of the typical 50 Ω to determine the minimum order of BPF that can satisfy the FCC power emission regulation since the antenna alters the bandwidth and the center frequency of output power spectrum. Unlike the proposed DAC impulse generator in Chapter 4, the filtering-type impulse generator realizes the impulse generation with frequency-domain approach instead of time-domain approach. The proposed simplex architecture of the filtering-type impulse generator increases the speed of the circuit,
and also decreases the power consumption. All the circuits are designed using IBM 90 nm CMOS technology with the supply voltage of 1.2 V.

5.1.1 Impulse Generation Principle

To understand the design principle of the frequency-domain approach of the proposed impulse generator, the frequency response of each node in the impulse generator has to be understood. Figure 5.2 illustrates the frequential characteristics of each block output in the impulse generator. As mentioned in chapter 3.1.1, the output of the Gaussian pulse generator should have a pulse width narrow enough to have a wide power spectrum covering the designated frequency band (e.g., 3.1-10.6 GHz) as shown in Figure 5.2 (a). Then, as in Figure 5.2 (b), with considering the antenna effect, BPF should have a center frequency in the middle of the regulated frequency band, a -3 dB bandwidth within the regulated frequency band, and a minimum order that provides the enough attenuation response at the stop band to shape the output spectrum. Finally, the antenna removes the excessive bandwidth and makes the output spectrum meeting the FCC mask as shown in Figure 5.2 (c). Therefore, the main goal of the design is to have a BPF output spectrum that sufficiently utilizes the UWB band within the designated band. Even though the -10 dB bandwidth may be too wide and out of the regulated band, the antenna will eliminate this excessive bandwidth.
Figure 5.2 (a) Gaussian pulse generator output spectrum, (b) BPF frequency response, (c) BPF and antenna output spectrum.
5.1.2 Design Parameters and Output PSD

As the design principle is in frequency domain, it is important to investigate the relationship between the design parameters (e.g., pulse width, magnitude, and PRF) and the output PSD. As shown in Figure 5.1 above, the Gaussian pulse is generated to excite the BPF. Thus, the output of the BPF $g(t)$ can be expressed as the convolution of the Gaussian pulse $x(t)$ and the impulse response of the BPF $h_b(t)$; which is given by

$$g(t) = x(t) * h(t) = \frac{A}{\sqrt{2\pi \sigma}} \exp\left(-\frac{t^2}{2\sigma^2}\right) * h(t)$$

where A and σ are the magnitude parameter and the pulse width parameter, respectively. Thus, the Fourier transform of $g(t)$ can be found as

$$G(f) = \frac{A}{\sqrt{2\pi}} \exp\left(-\frac{f^2 \sigma^2}{2}\right) \cdot \frac{H(f)}{\sqrt{L}}$$

where the first term on the right hand side is the Fourier transform of the Gaussian pulse [27], and second term is the normalized transfer function with the loss L. It can be seen that the frequency response of the Gaussian pulse also contains a Gaussian function which is one of the distinct characteristics of Gaussian pulse.

By assuming BPF output signals is uniformly spaced in time or linearly modulated (e.g., OOK, BPM), the output signals can be thus expressed by the autocorrelation function as

$$s(t) = \sum_{k=-\infty}^{\infty} a_k \cdot g(t - k \cdot T_p)$$

where T_p is pulse repetition interval and the sequence $\{a_k\}$ represents the information symbol. The PSD of the BPF output can be therefore found from the Fourier transform of the above autocorrelation function and can be expressed using the equation 3.6 in Chapter 3. By evaluating the spectrum at $f=j/T_p$ and applying equation 5.2 into equation 3.6, we can find the expression of BPF output PSD with design parameters as
\[
PSD(f)_{f=j/T_p} = \frac{\sigma_a^2}{T_p} |G(f)|^2 + \frac{\mu_a^2}{T_p^2} \sum_{j=-\infty}^{\infty} \left| G\left(\frac{j}{T_p}\right) \right|^2 \delta(f - \frac{j}{T_p})
\]
\[
= \frac{|G(f)|^2}{T_p} \left(\sigma_a^2 + \frac{\mu_a^2}{T_p} \sum_{j=-\infty}^{\infty} \delta(f - \frac{j}{T_p}) \right)
\]
\[
= \left(\frac{A}{\sqrt{2\pi}} \exp\left(-\frac{f^2 \sigma^2}{2} \right) \right) \cdot H(f),
\]
\[
\cdot \frac{1}{L \cdot T_p} \left(\sigma_a^2 + \frac{\mu_a^2}{T_p} \sum_{j=-\infty}^{\infty} \delta(f - \frac{j}{T_p}) \right)
\]

(5.4)

from equation 5.4, it appears that the magnitude of the PSD linearly depends on \(A \), \(T_p \), and \(L \) when Gaussian pulse width and BPF response are fixed. As Gaussian pulse width is small; \(\sigma \) is small, the exponential function has a flat decay in frequency producing power spectrum at the higher frequency. Once this frequency is larger than the upper cutoff frequency of the BPF, the bandwidth and the center frequency of the output PSD is determined by \(H(f) \). Otherwise, if the Gaussian pulse width is large, exponential function will introduce a fast decay in frequency and output bandwidth and center frequency will be reduced and determined by the degree of this spectrum decay.

To illustrate the above statement, normalize Gaussian pulses with different pulse widths are sent to an ideal first order Butterworth BPF with 3 GHz bandwidth. The resulting normalized PSDs are shown in Figure 5.3. It is observed that when \(\sigma \) is larger than 1e-11, the decaying response dominates and center frequency as well as bandwidth shift to lower frequency. Note that the magnitude at lower frequency band of each PSD is higher with larger pulse width. It is because with the same normalized magnitude, Gaussian pulse with larger pulse width contains more signal power resulting higher peak PSD magnitude at baseband.
5.1.3 Gaussian Pulse Generator

The purposes of designing the Gaussian pulse generator are to generate the baseband Gaussian-like pulse with very narrow pulse-width while having the capability to drive the next stage and to reduce the power consumption from its simple structure. For high-speed operation, it is normal to use current-mode logic (CML) circuits for pulse generation. For example, a CML inverter is shown in Figure 5.4. Although the logic transition time can be decreased with this source-coupled current-mode architecture, the power consumption is high because of the static power from the constant current flowing through Vdd and the digital output swing is limited by the minimum overdrive voltages across switching transistors (N1, N2) and the current source. By employing the CML circuits as a Gaussian pulse generator, the constrained output magnitude results a limited output power spectrum magnitude, as mentioned in the previous subsection. Therefore, the driving capacity, as well as the peak power, can be improved by using rail-to-rail logic.
Among existing pulse generations, different techniques employing various logic gates can be used. In this design, the XOR gate is employed as presented in [45]. As shown in Figure 5.5, the XOR takes the input clock signal and the delayed clock signal as its two logic inputs generating two pulses within every clock cycle. Thus, the output pulse width is controlled by adjusting the delay in the buffer. To implement this function with rail-to-rail logic while having high driving capacity is challenging. For example, in the XOR gate using static logic implementation as shown in Figure 5.6 (a), each pull-up or pull-down branch consists of two transistors in series. Although rail-to-rail outputs can be generated, the series transistors introduce worst-case logic transition time owing to the largest RC time constant. For instance, when both A and B are logic 1, only N2 and N4 turn on pulling the output voltage down to ground. From the equivalent RC circuit in Figure 5.6 (b), the series transistors contribute two on resistors and an interconnect capacitance \((C_N) \) causing more time for output capacitor to discharge. Therefore, a more compact design has to be employed.
In [46], a compact XOR circuit is presented as shown in Figure 5.7 (a). Although the circuit contains only one pull-up/pull-down transistor, the output magnitude is irregular from different input logic combinations. As illustrated in Figure 5.7 (b), by assuming output is at logic 1 initially, when A and B are 0, P2 turns on pulling output to logic 0. However, since P2 requires
minimum $|V_{gs}|$ as its threshold voltage $|V_{tp}|$ to keep it conducting, the minimum output level is $|V_{tp}|$. The similar problem happens when A is 0 and B is 1, where N2 is conducting and pulling logic 1 to the output. The maximum output is $V_{dd}-V_{tn}$ as output node becomes the source of N2 requiring minimum V_{gs} as V_{tn}. Therefore, while this compact XOR gate may work with other logic function gates with proper phase margin design, it can be hardly used as the Gaussian pulse generator.

![Compact XOR gate diagram](image)

Figure 5.7 Compact XOR gate: (a) circuit implementation, (b) timing diagram.

To eliminate the problems from the above compact XOR gate while achieving proper Gaussian pulse generation, a novel pulse generator is therefore proposed. The pulse generator is implemented by embedding delay cells into a XOR gate resulting in the modified compact XOR gate as shown in Figure 5.8 (a). The delay cell contains two CMOS inverters (P1, N1 and P2, N2) in series followed by the third inverter (P3, N3) as the modified compact XOR gate. The input to the third inverter is the delayed pulse while the original input clock signal is supplied as the Vdd (another input) to the third inverter. Output of the third inverter is “1” only when its Vdd is “1” and its input is “0”, and thus the modified XOR function can be formed to generate the desired pulse on every rising-edge of the input clock, as shown in Figure 5.8 (b) for the output timing diagram. Comparing to the compact XOR gate in Figure 5.7, since source of the NMOS here in the last inverter is connected to ground instead of \bar{A}, the output pulse with constrained
magnitude $V_{dd-V_{tn}}$ can be eliminated. The modified XOR function can be therefore expressed as

$$A \oplus B_m = A \cdot \overline{B} + \overline{A} \cdot B; \overline{A} = 0$$

$$= A \cdot \overline{B} + 0 \cdot B$$

$$= A \cdot \overline{B} \quad (5.5)$$

However, as mentioned above, when the input to the third inverter and its V_{dd} are both 0 and the output has an initial voltage larger than $|V_{tp}|$, the output voltage is constrained to $|V_{tp}|$ instead of zero. Moreover, when the output has an initial voltage smaller than $|V_{tp}|$ instead, both PMOS and NMOS in the third inverter are not conducting and the output node is floating. At this moment, the output voltage is very susceptible to noise and clock feedthrough during high-speed switching. Thus, a discharge path has to be provided to the output node to solve above problems. In this design, this is accomplished by connecting a NMOS (N4) after the third inverter and uses the output of the first inverter as its gate input.

The proposed simplex architecture can has the faster speed and smaller input capacitance than the conventional XOR circuit, since the later has a stack of two transistors on both NMOS and PMOS sides, which increases the rise and fall time of the pulse. Therefore, the generated output Gaussian-like pulses can have a very narrow pulse width and have a very wide spectrum bandwidth. Moreover, since the pulse generation is designed to generate the pulse only on every rising-edge of the input clock signal, the power dissipation can be eliminated comparing to the normal XOR gate. Hence, the total power consumption can be reduced within one clock period.
Figure 5.8 (a) Schematic of the proposed Gaussian pulse generator, (b) timing diagram of the pulse generator out.

For designing the pulse generator and choosing the proper transistor sizes, the required output pulse shape is first determined. The output magnitude should be rail-to-rail and the pulse width should make the power spectrum covering the regulated UWB band. As shown in Figure 5.9, by simulating the Gaussian pulse equation, the required pulse has the magnitude of 1.2 V (Vdd) and pulse width of 0.16 ns to have a -10 dB bandwidth at about 10.6 GHz which is the upper limit of the UWB band.
Since complementary logic is employed in the circuit, by nature, the output magnitude is rail-to-rail. For the output pulse width, it is mainly controlled by the delay cell in the pulse generator. The pulse width should be at most 0.16 ns but not necessarily be much smaller than that. Although smaller pulse width can have wider bandwidth, the lesser energy containing in the pulse causes the drop in the output spectrum magnitude. The delay can be approximately determined by the propagation delays between the inverters. Since the circuit only generates pulses on the rising edge of the input clock signal, the delay is approximately equal to high-to-low propagation delay of the first inverter (t_{PHL1}) plus the low-to-high propagation delay of the second inverter (t_{PLH2}), as shown in Figure 5.10.
The propagation delays, t_{PHL1} and t_{PLH2}, are defined as the time interval between 50% voltage points of input and output of each inverter. The formulations of the propagation delays can be found [46] by

$$t_{PHL1} = \tau_{n1} \ln \left(\frac{V_{DD}}{0.5V_{DD}} \right) = \tau_{n1} \ln(2) \quad (5.6)$$

where

$$\tau_{n1} = \frac{C_{out1}}{K_n \frac{W_{n1}}{L_{n1}} (V_{DD} - V_{tn1})} \quad (5.7)$$

$$t_{PLH2} = \tau_{p2} \ln \left(\frac{V_{DD}}{0.5V_{DD}} \right) = \tau_{p2} \ln(2) \quad (5.8)$$

where

$$\tau_{p1} = \frac{C_{out2}}{K_p \frac{W_{p2}}{L_{p2}} (V_{DD} - |V_{tp2}|)} \quad (5.9)$$

In equation 5.7, C_{out1}, the total capacitance seen at output of first inverter, contains the gate-drain and drain-bulk capacitances contributed from the transistors in the first inverter plus the gate capacitances from the second inverter. While in equation 5.9, C_{out2} contains the gate-drain and drain-bulk capacitances from the transistors in the second inverter plus the gate
capacitances from the third inverter. Thus, by proper sizing the transistors \(W_{n1}, W_{p2} \), the desired delay can be achieved. However, since third inverter, working as the modified XOR, also contributes the propagation delay to the final output pulse width, the transistor size of the third inverter should be determined first with the output load capacitance to minimize the propagation delay. Then, with considering the propagation delay of the third inverter, the delay from the first two inverters can be determined.

5.1.4 Band-Pass Filter

The BPF is designed to have less number of orders limiting the loss in the filter, occupying less chip area, and to shape the output bandwidth that allocates the center frequency within 3.1-10.6 GHz band. As shown in the schematic of the filter in Figure 5.11, the first-order Butterworth BPF consisting of a resistor, an inductor, and a capacitor is chosen in this design. The Butterworth filter can have smooth response in both pass-band and stop-band while providing sufficient attenuation (roll-off) beyond pass-band. The first-order BPF is chosen considering the effect of the antenna load to satisfy the FCC power regulation. The s-domain transfer function of the filter is defined as in

\[
T(s) = \frac{s(1/CR)}{s^2 + s(1/CR) + (1/LC)}
\]

(5.10)

Conventionally, higher ordered Butterworth BPF is designed and transformed from the nominal low-pass filter model using frequency and impedance scaling techniques [47]. However, since first-order Butterworth BPF is used, the passives values can be determined directly from the equations of center frequency \(F_C \) and bandwidth \(BW \) given by

\[
F_C = \frac{1}{2\pi\sqrt{LC}}
\]

(5.11)

\[
BW = \frac{1}{2\pi(R||R_L)C}
\]

(5.12)

The L and C values are chosen to have center frequency at 6 GHz and to be capable of driving the antenna load. R is the filter input impedance which determines the filter characteristic
impedance matching to the load impedance \((R_L) \) once output is terminated. Not only
determining the bandwidth of the filter, the value of \(R \) can also give the degree-of-freedom on
choosing \(L \) and \(C \) values, since for RF application, sometimes the small value of capacitor or
inductor is hard to be fabricated while achieving enough intrinsic quality factor. For this design,
the symmetrical spiral inductor and MIM capacitor are implemented. Although the low order
BPF may have insufficient steep-response at the edges of stop-band, the excessive bandwidth
can be easily filtered out by the following transmitting antenna.

![Figure 5.11 Schematic of the first-order Butterworth BPF.](image)

5.1.5 RLC Antenna Model

To incorporate the frequency characteristic in the antenna load, the passive model of a
planner UWB antenna in [48] is applied, since it fits with the real antenna impedance by a large
bandwidth. The passive antenna model allows circuit designers understand the effect of
antenna easily from the simulation and then adjust the other circuit parameters to achieve the
preferred overall output performance. The schematic of the antenna model is shown in Figure
5.12. The LC series resonators \((C_1L_1 \text{ and } C_3L_3)\) and parallel resonators \((C_2L_2 \text{ and } C_4L_4)\) model
the flat printed dipole. The transmission line, transformer, and \(C_s \) model the short circuit located
at one end of the dipole, the coupling between the microstrip line and the short circuited dipole,
and the series stub, respectively. And \(R_{\text{rad}} \) presents the radiation resistor that the voltage across
can be scaled to the transmitted far field waveform.
5.2 Simulation and Measurement Results of Proposed Impulse Generator

5.2.1 Simulation

The proposed UWB impulse generator is fully designed and simulated using IBM 90 nm CMOS process in Cadence design tool. In Figure 5.13, from the top to bottom, the input clock signal, delayed clock signal, and the Gaussian pulse generator output are shown. It can be seen that the proposed modified XOR gate generates signal on every rising edge of the input clock. The Gaussian pulse output has a pulse width about 0.16 ns and has a rail-to-rail amplitude of 1.2 V. Figure 5.14 shows the transient output of the impulse generator with the 50-Ω load termination. The output pulse width is 0.45 ns and peak-to-peak amplitude is 70 mV.
The PSD of the impulse generator output 50-Ω load is shown in Figure 5.15 to Figure 5.17 with PRF of 50 MHz, 100 MHz, and 200 MHz, respectively. With higher PRF, the bandwidth and center frequency are kept the same, which means the proposed impulse generator can work with higher data rates. The center frequency is about 6 GHz with the maximum magnitude of -59 dBm/MHz at 50 MHz PRF, -53 dBm/MHz at 100 MHz PRF, and -47 dBm/MHz at 200 MHz PRF. The -10 dB bandwidth is 9.5 GHz.
Since the proposed filter-type impulse generator generates output only at the rising edge of the input clock signal, as the DAC impulse generator in Chapter 4, this impulse generator can easily adapt OOK in the digital domain or can be directly triggered by return-to-zero coded data. As shown in Figure 5.18, the OOK modulated output impulses are generated with the return-to-zero data as the input trigger signal. The PSD of the modulated signals is also simulated and compared with that of un-modulated signals as shown in Figure 5.19, where the
PRF is 200 MHz. As expected, the modulated output PSD has lesser spectral spikes and smaller peak power spectrum.

![Diagram of OOK modulated output signals](image)

Figure 5.18 OOK modulated output signals.

![Diagram of PSD comparison](image)

Figure 5.19 Comparison of PSD at PRF of 200 MHz: (a) with OOK, (b) without OOK.

So far, the results are shown with 50-Ω load termination. By replacing the load with a passive UWB antenna model, the bandwidth shaping effect of the antenna can therefore be examined. As shown in Figure 5.20, the simulations of output PSD with a 50-Ω load and with an antenna model are shown respectively at the PRF of 200 MHz. It can be seen that the output bandwidth from the antenna is narrower and complies with the FCC mask because of the band-
pass nature of the antenna. Thus, the first-order BPF employed can meet the FCC power regulation including the antenna characteristics.

Figure 5.20 PSD of the impulse generator output with 50-Ω load and with RLC antenna model.

5.2.2 Measurement

The proposed UWB impulse generator is fabricated using IBM 90 nm CMOS process. Figure 5.21 shows the chip photo of the impulse generator and the die area is 0.27 mm\(^2\) with pads. The measurement setup for the impulse generator is shown in Figure 5.22. Tektronix DG2040 is used as the input clock signal source. For transient response acquisition, the oscilloscope Agilent DCA 86100B is employed, while the spectrum analyzer Agilent 8563EC is used for measuring the PSD. Since the UWB antenna is not fabricated for this design, all the measurements present the results with 50-Ω load terminations as from the instruments.
Figure 5.21 Chip photo of the proposed impulse generator.

Figure 5.22 Measurement setup.

Figure 5.23 shows the measured transient output result of the impulse generator with 50-Ω load termination at 200 MHz PRF, which is consistent with the simulation result. The output pulse width is 0.45 ns and peak-to-peak amplitude is 68 mV. In Figure 5.24, the measured output PSDs with 100 MHz and 200 MHz PRF are shown. The center frequency is about 6 GHz with the magnitude of -56 dBm/MHz at 100 MHz PRF. The center frequency is
about 5.8 GHz with the magnitude of -49 dBm/MHz at 200 MHz PRF. Both results well match with the simulated PSD results shown in Figure 5.16 and Figure 5.17. Notice that the spectrum analyzer has an initial noise floor around -70 dB through all the frequency bands, which is higher than the FCC mask at 1-1.66 GHz band.

Figure 5.23 Measured transient response of the impulse generator.
Figure 5.24 Measured PSD of the impulse generator output: (a) at 100 MHz PRF, (b) at 200 MHz PRF.
Table 5.1 summarizes the performance of the proposed impulse generator compared with other existing filtering-type impulse generators.

<table>
<thead>
<tr>
<th></th>
<th>This Work</th>
<th>[49]</th>
<th>[50]</th>
<th>[10]</th>
<th>[11]</th>
<th>[12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>90 nm</td>
<td>0.18 um</td>
<td>0.18 um</td>
<td>0.13 um</td>
<td>0.35 um</td>
<td>90 nm</td>
</tr>
<tr>
<td>Filter type</td>
<td>Passive BPF</td>
<td>Passive HPF</td>
<td>Passive BPF</td>
<td>Passive BPF</td>
<td>Passive BPF</td>
<td>Active FIR</td>
</tr>
<tr>
<td>Output Vpp</td>
<td>70 mV</td>
<td>160 mV</td>
<td>48 mV</td>
<td>1.42 V</td>
<td>*18 mV</td>
<td>220 mV</td>
</tr>
<tr>
<td>Power consumption</td>
<td>0.9 mW</td>
<td>0.4 mW</td>
<td>1.2 mW</td>
<td>3.84 mW</td>
<td>-</td>
<td>227 mW</td>
</tr>
<tr>
<td>PRF</td>
<td>200MHz</td>
<td>100MHz</td>
<td>- 100 MHz</td>
<td>100 MHz</td>
<td>1.8 GHz</td>
<td></td>
</tr>
<tr>
<td>Die area</td>
<td>0.27 mm²</td>
<td>- 0.35 mm²</td>
<td>0.54 mm²</td>
<td>**0.5 mm²</td>
<td>2.83 mm²</td>
<td></td>
</tr>
<tr>
<td>Bandwidth</td>
<td>9.2 GHz</td>
<td>6.3 GHz</td>
<td>- 6.8 GHz</td>
<td>*1.5 GHz</td>
<td>3 GHz</td>
<td></td>
</tr>
</tbody>
</table>

* Measured from 1 m distance with antennas.
** Excluding the off-chip BPF.
CHAPTER 6
A CARRIER-BASED IMPULSE GENERATOR FOR UWB VEHICULAR SHORT-RANGE RADAR APPLICATION

For UWB vehicular short-range range (SRR) applications, since power consumption is not the primary concern, the carrier-based systems can provide many benefits over carrier-free systems as mentioned in Chapter 1. The research and development of the automotive radar have been undergoing for years after FCC classified the usage of the system. Nonetheless, one of the main barriers to broadly benefitize the general public for utilizing this technology has been the ability to achieve the crucial technical requirements at a low cost level.

Among existing automotive radars, mainly three generic architectures can be categorized as [36]: 1) frequency chirp radars; 2) continuous wave (CW) pseudorandom noise (PN) coded radars; and 3) pulsed radar [51]. Frequency chirp radars require a well-defined chirp to achieve a good resolution and a low phase noise oscillator under the short-range UWB condition, which is challenging for the cost-effective concern. PN coded radars need high-speed code generators to be run at a well-defined frequency with a constant offset between one another requiring extra phased-locked loops. Moreover, PN coded radars have a strict constraint between dynamic range and the isolation between Tx and Rx antennas from its full-duplex operation. On the other hand, pulsed radars can realize the cost-effective potentiality from its simple architecture. The isolation between the Tx and Rx as well as the dynamic range can also be increased from its pulse-modulated nature. Other benefits of pulsed radars include good range accuracy, clutter reduction, and multipath resolution [51].

Therefore, a carrier-based impulse generator is proposed for the UWB pulsed radar systems with simple architecture implementing with cost-effective CMOS technology. The proposed impulse generator employs the switch-based architecture without using mixer and power amplifier improving the power consumption and power efficiency. The proposed impulse
generator is fully integrated with single-ended and differential architectures as presented in chapter 6.1 and 6.2, respectively.

6.1 Single-Ended Carrier-Based UWB Impulse Generator

As shown in Figure 6.1, the proposed impulse generator consists of three parts: voltage-controlled oscillator (VCO), RF SPST switch, and pulse generator. The frequency of the VCO output determines the center frequency of the transmitter output. The output of the VCO is then pulse modulated by the RF switch generating the time-gated UWB impulse signal. The output of the pulse generator controls the switch. Thus, the pulse width of the pulse generator output determines the pulse width and the bandwidth of the impulse generator output.

![Block diagram of the proposed carrier-based impulse generator.](image)

The relationship between the pulse width τ and the bandwidth BW can be found as

$$\tau = \frac{1}{BW}$$

(6.1)

The required pulse width is related to the preferable radar range resolution as [51]

$$Range \; resolution = \frac{c \cdot \tau}{2}$$

(6.2)

where c is the speed of light. As the required range resolution is 10 cm for the UWB radar system [36], the output pulse width cannot be larger than 0.66 ns. The PRF of the output impulse is determined by the maximum un-ambiguous range R_{un} as [51]
\[R_{\text{min}} = \frac{c}{2 \cdot PRF} \] (6.3)

In the case of 25 m as the maximum un-ambiguous range, PRF has to be equal or lesser than 6 MHz. The output of the impulse generator should have a center frequency larger than 24 GHz and the -10 dB bandwidth within 22-29 GHz as regulated by the FCC.

The VCO, RF switch and the pulse generator are fully designed and implemented using CMOS 130 nm technology with the supply voltage of 1.2 V. The design and circuit description of each component are presented in the following subsections.

6.1.1 VCO

VCO is one of the most important components in the radar and communication applications such as the recovery clock and frequency translation, the output frequency of the ideal VCO is a linear function of the control voltage. VCO is divided on the two major groups, resonator less oscillators and resonator oscillators. Ring oscillator and the relaxation oscillator are common examples for the resonator less oscillator [52]. Although ring oscillator and the relaxation oscillator have excellent capability in the integration and tunability, these oscillators suffer from the poor phase noise, stability and quality factor so they are not used in the RF circuit [52], [53]. In contrast, the resonator oscillators have better phase noise and stability making them preferable in the RF circuit. A good example of the resonator oscillator is LC tank circuit, where the periodic signal is excited by switching back and forth from a magnetic field made from an inductor to an electric field enabled by a capacitor.

In this design, a NMOS cross-coupled LC VCO is employed with the output buffer as shown in Figure 6.2. The VCO has a differential topology, which greatly rejects the undesired common-mode disturbances from other building blocks on the same substrate providing better noise immunity. The minimal number of active components employed helps in reduction of transistor parasitic which constitute nonlinear capacitors making the VCO frequency shifted as supply varies introducing extra noise translations. The minimal number of passive components
employed helps reducing the chip area and maximizing the Q of the tank, and thus the phase noise. The output swing can be also maximized at voltage-limit region.

The topology of the VCO is also called negative-Gm oscillator. The term negative-Gm comes from the required negative resistance produced from the active components to initiate the oscillation. As depict in Figure 6.3 [54], the RLC equivalent circuit of the VCO is shown, where $2R_p$ represents the parasitic resistive component of the LC tank. With this resistive component, the energy reciprocating within the LC tank is lost in the resistor producing a damping oscillation signal.
Thus, a negative resistance \(-2R_p\) have to be provided by the active circuitry that is in parallel with \(2R_p\) producing an equivalent infinite resistance. The cross coupled NMOS pair in the VCO can achieve this negative resistance as its small signal equivalent circuit is shown in Figure 6.4, where the 2nd order effects are neglected.

![Negative resistance from the cross coupled NMOS pair.](image)

By applying KVL around the small signal circuit, the input impedance of the circuit can be found as

\[
R_m = \frac{V_x}{I_x} = -\left(\frac{1}{g_{m1}} + \frac{1}{g_{m2}} \right)
\]

(6.4)

If two transistors are identical, which is normally the case, the input impedance becomes

\[
R_m = -\frac{2}{g_m}
\]

(6.5)
Therefore, the negative resistance can be therefore be generated. To ensure the oscillation start-up, the magnitude of R_m should be equal to or greater than that of $2R_p$, that is

$$|R_m| \geq 2R_p \Rightarrow \frac{2}{g_m} \geq 2R_p \Rightarrow g_m \geq \frac{1}{R_p} \quad (6.6)$$

The result in equation 6.6 can be also obtained from the Barkhausen criteria [55], as the loop gain A_l of the oscillator has to be equal to or greater than 1. The expression can be found as

$$A_l = \left(g_m \cdot R_p \right)^2 \geq 1 \Rightarrow g_m \geq \frac{1}{R_p} \quad (6.7)$$

practically, to guarantee oscillation start-up at all operating temperatures and under worst-case process variations, A_l should be 3 to 5 under nominal conditions [56].

In the LC tank, the capacitor varactor is implemented with accumulation-mode MOS varactors. The MOS varactor has the advantage of higher C_{max}/C_{min} ratio than that of the p-n junction varactor [57] and the accumulation-mode varactor has less parasitic resistance than the inversion-mode device and hence has higher Q [57].

For designing the VCO, the value of L and $C_{varactor}$ are chosen to satisfy the required output frequency as

$$f_o = \frac{1}{2\pi \sqrt{2 \cdot L \cdot C_{varactor}}} \geq 24 \text{ GHz} \quad (6.8)$$

while L is chosen to have a Q larger than 6. After extracting the parasitic resistance of the LC tank, the size of the cross-coupled NMOS pair can be determined for proper oscillation start-up. The size of the tail current source transistor (M3) is chosen large enough to reduce flicker noise, which is translated to phase noise by the cross-coupled NMOS pair. The tail current produced also determines the VCO differential output swing V_{od} in voltage-limited region as [58]

$$V_{od} \propto I_{tail} \cdot R_p \quad (6.9)$$

where the maximum output swing is constrained by the maximum saturated tail current when M3 reaches triode region.
Since VCO will directly drive the antenna through the RF switch, a buffer is needed to isolate the LC core from load impedance variations. As shown in Figure 6.2 above, the VCO output buffer employed is a source follower type buffer with inductive load. The main reasons to use an inductive load are to remove the dc component and to increase the output swing comparing with that of the commonly used buffer with a current source load. As depicted in Figure 6.5, in the source follower with a current source load, the output swing as well as the input swing is constrained by maintaining the load transistor (M2) in saturation, where \(V_{\text{sat}} \) is minimum overdrive voltage of M2.

![Figure 6.5 Typical source follower with current source load.](image)

The minimum input and output voltage can be defined as

\[
V_{\text{in, min}} = V_{\text{gs1}} + V_{\text{sat}}
\]

(6.10)

\[
V_{\text{out, min}} = V_{\text{sat}}
\]

(6.11)

Thus, by replacing M2 with an inductor, the minimum input and output voltage constraints can be withdrawn. Additionally, not only the minimum input constraint, but the maximum input voltage can be increased. Since the VCO output has a swing around Vdd, with the typical source follower, the maximum VCO output voltage cannot exceed Vdd plus the threshold voltage of M1 to prevent M1 from triode region and saturating the output voltage. On the other hand, with M1 tied to the inductor, its dc at source is directly coupled to ground, and
the drain current of M1 only depends on the buffer input voltage. Thus, the drain current of M1 can have a large range of linear response to the input large signal variation even when M1 is in triode region especially for the short-channel device, and therefore the larger voltage swing across the inductor can be obtained from the larger current variations. Note that since the transistor (M1) employs deep-nwell process, the negative voltage appearing at the source will not turn on the junction diode between body and source since two can be tied together. Moreover, without using the extra transistor, the extra noise from the transistor can be avoided.

Figure 6.6 shows the small signal equivalent RLC model of the proposed buffer, where C_{gs} and C_{gd} are ignored and C_L represents the load capacitance including all the parasitic capacitances at output node to ground.

![RLC model of proposed VCO buffer.](image)

The output impedance of this RLC model can be written as
the transfer function contains one zero at the origin (since the dc gain is zero) and two poles. Since the voltage gain of the buffer is the product of the magnitude of output impedance and g_m, we can derive the magnitude of output impedance as a function of frequency as

$$|Z(j \omega)| = \left(\frac{(\omega L)^2}{\omega L \left(1 + \frac{g_m}{r_o} \right) + \left(g_m (1 - \omega^2 LC) \right)^2} \right)$$

where the term in the numerator increases with increasing frequency and the $(1 - \omega^2 LC)$ term in the denominator contributes to an increase in $|Z(j \omega)|$ for frequencies below the LC resonance. These are similar to the shunt-peaking technique employed in the high-speed amplifier [59]. Therefore, the value of inductor load is chosen to have a enough $|Z(j \omega)|$ at the working frequency while having the adequate Q. Since dc is removed from the buffer output, the buffer output can directly send to RF switch then antenna without using extra blocking capacitors.

6.1.2 RF Switch

Switches are one of the key components in RF and millimeter-wave systems. Single-pole single-throw (SPST) and single-pole double-throw (SPDT) switches are used for various applications such as transmit/receive switches [60], [61], variable attenuators [62], and wideband impulse generators as for this design. As CMOS technology is scaled down and accepted in many RF systems, transistor-based switches using CMOS provide opportunities for low-loss designs. Nonetheless, CMOS switch design above 20 GHz is still challenging owing to high insertion loss and low isolation.

For SPST switch architectures employing NMOS transistors, shunt and series-shunt are commonly used as shown in Figure 6.7.
Shunt switches can have large isolation from its shorting nature when shunt-connected transistor is off. On the other hand, series-shunt switches provide the compromise between insertion loss (from the series-connected transistor) and isolation (from the shunt-connected transistor). However, since the differential switch control signals are required, it consumes more power and chip area from the additional control signal generator. Also, the differential control signals require high phase synchronization when operating with high-speed switching, which increases the design complexity. Therefore, in this design, the shunt switch is employed with its high resolution and simpler accompanying circuits.

The main limitation of using CMOS transistors as the shunt switch is the parasitic capacitances associating with the transistor. As illustrated in Figure 6.8, the shunt switch can be modeled as a simplified RC equivalent circuit. When a shunt-connected transistor is on, it can be modeled as an on-resistance R_{on} in parallel with the on-capacitance C_{on}, where C_{on} can be ignored since R_{on} usually is small. Meanwhile, when transistor is off, since there is no conducted channel, the circuit is simply modeled as off capacitances.
The on resistance R_{on} can be described as

$$R_{on} = \frac{1}{g_{ds} \cdot W}$$

(6.14)

where g_{ds} is the transistor conductance per unit gate width. The off-capacitance C_{off} can be expressed as

$$C_{off} = C_{ds} + C_{db} + \frac{C_{gd} \cdot C_{gs}}{C_{gd} + C_{gs}}$$

(6.15)

Therefore, there comes with a trade-off between insertion loss and isolation. As the width of transistor is larger producing more conductance in the channel when transistor is on, on-resistance is decreased and isolation is increased. However, larger width also results in larger parasitic capacitances producing low-impedance paths to ground at high frequencies when transistor is off and thus increases in the insertion loss.

In this design, as shown in Figure 6.9, the employed RF shunt SPST consists of one inductor and two shunt-connected transistors with gate resistors and body resistors. The purpose of each component will be explained later.

Figure 6.9 RF SPST switch.
As large substrate resistances is usually preferred to float the junction capacitances to substrate reducing the signal loss [63], in this design, the transistors in the switch employ deep nwell process for better substrate isolation from its additional PN junction as in [63], [64].

The gate biasing resistors are typically used in RF switch to float the gate at RF so that the switch power handling performance and linearity can be improved [65]. As illustrated in Figure 6.10, during the negative cycle of the source signal, when switch is in on-state (transistor is off), without using the biasing resistor, the transistor will be turned on once the negative voltage larger than $|V_{tn}|$. On the other hand, when gate resistor is applied, the voltage of the floating gate is mainly determined by the voltage divider from C_{gd} and C_{gs}, and thus only portion of the negative voltage appears at gate allowing larger voltage swing to pass the switch without distortions. Although large gate resistors are usually preferred to improve isolation at RF, the resulting large RC time constant at the gate will slow down the transition time of the input switch control signal. Since for this design the RF switch is used to define the output impulse pulse width, the value of the gate resistor has to be carefully determined to prevent larger pulse width than expected.

![Figure 6.10 Effect of gate biasing resistor.](image)

As the floating gate affects the power handling performance of the switch, another reason influencing this performance is from the junction diodes between drain/source and the substrate. The large negative voltage passing to the switch turns on the junction diode (especially C_{db} for shunt switch) of the transistor limiting the power performance of the switch.
To improve this, one way is to use deep-nwell devices to isolate the substrate from drain of the transistor. However, even with deep-nwell process, the junction diode between drain and body of the transistor still exists with the same effect on power performance. Therefore, the body-floating technique is adopted to solve the issue [64]. As shown in Figure 6.9, the body of the transistors is connected with a resistor to ground. The value of this resistor is usually big to prevent abrupt current flowing from body when transistor is off and a large negative voltage passes to the switch. That is, as depicted in Figure 6.11 (a), when transistor is off, it can be modeled as the \(C_{\text{off}} \) with two junction diodes. In Figure 6.11 (b), with body directly connects to ground, large negative voltage turns on the diode between drain and body resulting large current since the on-resistance of diode \(r_d \) is small. When body connects to a large resistor \(R_b \) as in Figure 6.11 (c), the current flowing is reduced by the large resistance in the path. Thus, the signal loss through the body can be reduced increasing the power handling capability of the shunt switch.

![Figure 6.11 Body floating technique [64]: (a) equivalent model of shunt transistors in off-state, (b) without body resistor, (c) with body resistor.](image)

The inductor (\(L_m \)) in the RF shunt switch is used to match the transistors’ off-capacitances (\(C_{\text{off}} \)) when switch is in on-state providing a flat frequency response of the insertion loss. The inductor together with off-capacitance forms a C-L-C \(\pi \) matching network. Thus, the size of the inductor and transistors are chosen to provide the impedance matching between the VCO buffer output and load (50 \(\Omega \)). The minimum length of the transistors is
employed to minimize parasitic capacitances while the width is adjusted to have isolation larger than 30 dB for the switch.

6.1.3 Pulse Generator

The purpose of the pulse generator is to generate the switch control signals determining the on-off time of the switch and thus defining output impulse pulse width. Therefore, the generated pulses should have a rail-to-rail output with narrow pulse width (less than 0.6 ns) producing UWB impulses after the switch. Furthermore, the pulse generator has to have high driving capability achieving fast rising and falling time for the switch control signals.

Due to the above requirements, the proposed pulse generator is redesigned and modified from the previously proposed Gaussian pulse generator presented in chapter 5.1.3. Since the RF shunt switch is in on-state when control signal is “low”, and vice versa, an inverting output should be generated comparing with the Gaussian pulse generator. Therefore, instead of using modified XOR gate, the proposed pulse generator has the combination of delay cell and modified compact XNOR gate as shown Figure 6.12 (a). The delay cell contains several CMOS inverters (even numbers) in series in order to achieve the required delay (pulse width) and followed by the last inverter as modified compact XNOR gate.

The gate input of the last inverter (Pn and Nn) is the delayed clock signal while the original input clock signal is supplied as the Vss (another input) to the last inverter. Output of the last inverter is “0” only when its Vss is “0” and its input is “1”. Thus, the modified XNOR function can be formed and generates the required pulse on every falling edge of the input clock signal as shown in Figure 6.12 (b). The frequency of the input clock signal will determine the PRF of the output. However, as the same reasons when using modified XOR gate, when the input to the last inverter and its Vss are both “1” (1.2V), depending on the initial output node voltage, the output may be either charged only to Vdd-Vtn or floating and susceptible to noise and clock feedthrough. To avoid the problem, a PMOS (P0) is connected after the last inverter and uses the output of the first inverter as its gate input to charge the output to “1” when floating. The
pulse generator can generate a rail-to-rail output with a fast rising and falling time because of its simplicity.

Figure 6.12 Proposed pulse generator: (a) schematic, (b) timing diagram.
6.1.4 Simulation and Measurement Results of Proposed Impulse Generator

6.1.4.1 Simulation

The proposed UWB impulse generator is fully designed and simulated using TSMC 130 nm CMOS process in Cadence design tool. Figure 6.13 shows the phase noise of VCO with buffer. The VCO can achieve the phase noise of -105 dBc/Hz at 1 MHz offset, where VCO is biased at current-limit region with gate of the varactor biased at 1.2 V.

![Figure 6.13 Phase noise of VCO with buffer.](image)

As in Figure 6.14, the RF shunt switch has an insertion loss around 2 dB and isolation higher than 30 dB within the 22-29 GHz band.

![Figure 6.14 Insertion loss and isolation of RF shunt switch.](image)
In Figure 6.15, from the top to bottom; the input clock signal of the pulse generator, pulse generator output, and the impulse generator output are shown. Pulse generator generates the rail-to-rail pulse on every falling edge of the input clock with a PRF of 4 MHz.

The close view of the impulse generator output and its PSD are shown in Figure 6.16. The output has a pulse width of 0.45 ns and a 950 mV peak to peak magnitude. The PSD of the output has a center frequency of 26 GHz and a -10 dB bandwidth of 4 GHz. Note that the impulse is generated when VCO is biased at current-limit region with varactor biasing at 1.2 V. The total power consumption of the impulse generator is 40 mW.

Figure 6.15 Simulation of impulse generator.

The close view of the impulse generator output and its PSD are shown in Figure 6.16. The output has a pulse width of 0.45 ns and a 950 mV peak to peak magnitude. The PSD of the output has a center frequency of 26 GHz and a -10 dB bandwidth of 4 GHz. Note that the impulse is generated when VCO is biased at current-limit region with varactor biasing at 1.2 V. The total power consumption of the impulse generator is 40 mW.
When the tail current source is biased at 1.2 V, VCO goes to voltage-limit region. While varying the biasing the varactor at -2.5 V and 2.5 V, the corresponding impulse generator outputs and PSDs are shown in Figure 6.17 and Figure 6.18, respectively. The maximum achievable output swing is 1.14 V. The output spectrum has a center frequency tuning range of 800 MHz from 25.5 GHz to 24.8 GHz. The power consumption is 51 mW.
Figure 6.17 Impulse generator output with varactor biased at -2.5 V: (a) transient response, (b) PSD.
6.1.4.2 Measurement

The proposed UWB impulse generator is fabricated using TSMC 130 nm CMOS process. Figure 6.19 shows the chip photo of the impulse generator with die area of 0.71 mm² with pads. The measurement setup for the impulse generator is shown in Figure 6.20. Tektronix DG2040 is used as the input clock signal source. For transient response acquisition, the
The oscilloscope Agilent DCA 86100B is employed, while the spectrum analyzer Agilent 8563EC is used for measuring the PSD.

Figure 6.19 Chip photo of the impulse generator.

Figure 6.20 Measurement setup.
The transient response of the impulse generator output and its PSD are shown in Figure 6.21 and Figure 6.22, respectively. The measured output pulse width is 0.55 ns with a swing of 720 mV. Because of the noise level of spectrum analyzer, the output PSD obtained is with a PRF of 200 MHz to observe the shape of output spectrum. The center frequency is 23.5 GHz. The circuit consumes a DC power of 36 mW. The outputs are obtained from the same biasing condition as that in the simulation shown in Figure 6.16. Comparing with the simulation results, the pulse width is slightly increased while the swing is decreased. The center frequency also shifted down by 2.5 GHz. This is due to the model inaccuracy in the design kit used by the time of fabrication. The unexpected parasitics degrade the preferable performance of the impulse generator. Although measurement results are not matched to the simulation results, it still validates the proposed impulse generator architecture for the UWB automotive radar application.

![Figure 6.21 Measurement of transient impulse generator output.](image)
6.2 Differential Carrier-Based UWB Transmitter

In chapter 6.1, since the VCO employed generates differential signals by nature, it is advantageous to utilize the bi-phase signals with modulation schemes. Therefore, based on the structures and circuits in the single-ended impulse generator, a differential architecture with bi-phase modulation is proposed. Bi-phase modulation provides the tolerance of the multi-path interference [66] and reduces the spectral spikes in the PSD of the transmitting signal [31].

The architecture of the proposed transmitter is shown in Figure 6.23. The design consists of one VCO, two RF single-pole-single-throw (SPST) switches, one pulse generator, and one bi-phase modulator. The VCO generates differential outputs with required carrier frequency. The continuous VCO outputs are then modulated through the RF SPST switches. The pulse generator generates a train of pulses that controls the RF switches and thus determines the output pulse-width and the output bandwidth of the switches. The bi-phase modulator decides either one of the differential switch outputs will pass to antenna by the input data control signal. All the above components are designed and implemented using TSMC 130 nm CMOS technology with the supply voltage of 1.2 V.
6.2.1 VCO

Based on the VCO and buffer presented in chapter 6.1.1, the cross-coupled LC VCO connects both the differential outputs to output buffers as shown in Figure 6.24. The circuit and design principles are the same as that for the single-ended VCO in chapter 6.1.1.
6.2.2 RF SPST Switch

The SPST switch used in this design is a shunt switch as for its benefits of high isolation and simpler associating circuits as mentioned previously. However, from the results of single-ended impulse generator, it is observed that the finite isolation from the switch introducing a spectrum spike owing to the carrier leakage. Therefore, to further suppress the spectrum spike, two cascaded shunt switches are employed in this design to increase the overall isolation as shown in Figure 6.25. The two cascaded switches form two \(\pi \) matching networks and thus provide flexibility on choosing inductor and transistors sizes for impedance matching between VCO and the load at the cost of higher insertion loss and extra chip area.

![Figure 6.25 Schematic of the cascaded RF SPST switches.](image)

6.2.3 Pulse Generator

Since the cascaded shunt switches are controlled by the same pulse signals. The same pulse generator presented in chapter 6.1.3 is employed to achieve the high driving capability to the switch. Nonetheless, the generated output pulse width is slightly smaller than that of the previous design to compensate larger RC time constants introduced by cascaded switches at the gate of the transistors.
6.2.4 Bi-Phase Modulator

The schematic of the bi-phase modulator is shown in Figure 6.26. The architecture of the bi-phase modulator is actually a SPDT switch. The modulator consists of two shunt SPST switches and output $\lambda/4$ matching networks terminating together to the load. The shunt SPDT switch is chosen in this design since it has the better performance than other switches from its π-network and $\lambda/4$-based architecture especially at higher frequency up to millimeter wave frequency [63], [67], [68].

The input control signals of the switches are differential and turn on either one of the switches allowing signal from either port 1 or port 2 to pass to the output. Hence, these control signals are the input signals for the modulator that provide the modulation data code. The shunt switches at the first stage of the SPDT switch is designed to have high isolation while providing the impedance matching between the front SPST switches and the load. However, during the SPDT operation, when the switch on one side is off, the shunt-connected transistors short the signals to ground and thus the passing signals on the other side will be directed to this shorting path instead of the load. Therefore, a $\lambda/4$ network can be employed after the switch on both sides to isolate the shorting path from one another. This concept comes from the $\lambda/4$ transmission line. When one end of the $\lambda/4$ transmission line is "short", the “open” is seen at the other end, and vice versa.
As seen in Figure 6.26, the $\lambda/4$ section is modeled by the lumped components forming a C-L-C π-network acting like a $\lambda/4$ transmission line. The size of L_{m1} and C_{m1} in the network can be found by

\begin{align*}
L_{m1} &= \frac{Z_0}{2\pi f_0} \\
C_{m1} &= \frac{1}{2\pi f_0 Z_0}
\end{align*}

(6.16) (6.17)

where Z_0 is the characteristic impedance which is 50Ω and f_0 is center frequency of the output signal. Due to the finite small impedance form the off-state SPST switch, the impedance transformed to the common node of the SPDT switch is about 300Ω. When switch passes the signal to the common node, since the characteristic impedance of $\lambda/4$ section is 50 Ω, maximum power can be transferred through it.

6.2.5 Simulation Results

The simulation of the proposed UWB transmitter is done using Cadence with TSMC 130 nm CMOS technology. In Figure 6.27, from the top to bottom; the input clock signal of the pulse generator, pulse generator output, modulator input, and the transmitter output are shown.
As desired, the frequency of the input clock determines the PRF of the final output and pulse generator generates the rail-to-rail pulse on every falling edge of the input clock. The transmitter output has a pulse width about 0.5 ns and has the amplitude of 640 mV when VCO is in the voltage-limit region. The PRF of 6 MHz is achieved to avoid the ambiguous detection.

![Figure 6.27 Transient simulation of the transmitter.](image)

In Figure 6.28, by synchronizing and comparing the two transmitter outputs when modulator input signal is “1” and “0”, it can be seen that the bi-phase signals are properly generated. The PSD of the transmitter output is shown in Figure 6.29, which has a center frequency of 25.2 GHz, a -10 dB bandwidth from 22.9 GHz to 27.6 GHz with the maximum power spectral density of –54 dBm/MHz, and complies with the FCC requirements. Since the isolation of the switches is enhanced, carrier leak is diminished and there is no appreciable single-tone spectral spike in the PSD. The transmitter has a power consumption of 75 mW.
Figure 6.28 Comparison of the bi-phase transmitter outputs.

Figure 6.29 PSD of the transmitter out.
CHAPTER 7
CONCLUSION

In this dissertation, two impulse generators were proposed for UWB communication systems and one impulse generator was proposed for UWB automotive radar systems. All the impulse generators presented were implemented with CMOS technologies overcoming the design challenges while providing low-cost features. In the first proposed DAC-based impulse generator for the UWB communication systems, the design can provide high tunabilities varying output pulse shapes and magnitudes regarding to different PRFs while meeting the FCC mask. The design can easily adopt OOK and BPM with a novel modulator, which was implemented and verified from the simulation. The 50 MHz tuning range of PRF was achieved with an output voltage swing of 335 mV at a 50 MHz PRF and 86 mV at a 100 MHz PRF.

Next, for the UWB communication systems, another filtering-type impulse generator was proposed. The design composes of a novel and the most compact Gaussian pulse generator with a compact passive first order BPF. Due to its simplicity, the design has the ultra low average power consumption of only 0.9 mW at the PRF of 200 MHz. The output of the impulse generator can be easily modulated with OOK from the feature of modified XOR pulse generator. The output has a center frequency of 6 GHz, a bandwidth of 9.2 GHz with 50-Ω load and 6.7 GHz with antenna load. The measured results show great consistencies with the simulation results.

At last, a new CMOS UWB impulse generator consisting of the VCO, RF switches, and pulse generator was proposed. The design is fully integrated and designed for 22-29 GHz UWB automotive radar applications. The design is implemented with single-ended type and differential architecture with bi-phase modulator. The simulation results show that the proposed designs complies with the FCC regulations. The PSD of the impulse generator output has a
center frequency tuning range of 800 MHz from 25.5 GHz to 24.8 GHz and a -10 dB bandwidth of 4 GHz providing great range resolution for the UWB radar. Although the measurement results have a little mismatch with the simulations owing to the model inaccuracy, it still validates the promises of the proposed design. The proposed impulse generator is power efficient, simplex, and provides system-on-chip realization.
REFERENCES

[64] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power

BIOGRAPHICAL INFORMATION

Ju-Ching Li was born in Taipei, Taiwan. He graduated from TamKang University, Taiwan with his Bachelor’s degree in Mechanical Engineering in 2001. He received his Master’s degree in Electrical Engineering from the University of Texas at Arlington in 2005. He joined the Analog and Mixed signal IC design lab and worked toward his PhD degree under Dr. Sungyong Jung at the University of Texas at Arlington from 2006. His research interests include analog, mixed-signal, and RF integrated circuit design especially for the Ultra-Wideband (UWB) communication and radar systems.