

BRIDGE MONITORING SYSTEM USING EMBEDDED COMPUTER VISION

by

KENAN MODI

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2011

ii

ACKNOWLEDGEMENTS

 I would like to express sincere gratitude to Prof. Roger Walker for his, supervision

constant guidance, motivation and encouragement. His patience and invaluable suggestion

helped me to successfully complete this research work.

I sincerely thank my committee members Dr. Michael Manry and Dr. Jonathan Bredow

for their timely guidance during the course work.

I would also like to thanks my lab mates Akshay Joshi and Digant Shah for their help in

the lab. I would like to thanks my friends for their moral support.

Very special thanks to my Mother, Father and Brother for having confidence in me, and

for their unconditional love and support.

I dedicate this thesis work to my family.

July 18, 2011

iii

ABSTRACT

BRIDGE MONITORING SYSTEM USING EMBEDDED COMPUTER VISION

Kenan Modi, M.S.

The University of Texas at Arlington, 2011

Supervising Professor: Roger Walker

 The bridges and overpass are integral part of road network. These structures

deteriorate the moment the construction is over. The factors of deterioration are impact loads of

vehicles, natural factors such as wind, rain, earthquake, floods, etc. These deterioration leads to

structural failures. In order to prevent failures these structure should be periodically monitored

and maintained. In this research project a novel method for early detection of bridge failure

using computer vision application and 3D road profiling system is proposed.

 The objective of this research work to check the feasibility of this bridge monitoring

system for any structural movement detection. Several computer vision techniques is studied

and implemented for the process of bridge movement detection.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii

ABSTRACT ..iii

LIST OF ILLUSTRATIONS.. vi

Chapter Page

1. INTRODUCTION……………………………………..………..….. 1

1.1 Objective .. 1

2. BACKGROUND .. 4

 2.1 Introduction... 4

 2.2 Camera Geometry .. 4

2.2.1 Pinhole Camera Model ... 4

2.2.2 Epipolar Geometry ... 7

 2.3 Image Features .. 9

2.3.1 Filters .. 10

2.3.1.1 Averaging Filter .. 10

2.3.1.2 Gaussian Kernel .. 10

2.3.1.3 Median Filters .. 12

2.3.2 Edges ... 13

2.3.2.1 Roberts Cross Edge Detector .. 13

2.3.2.2 Sobel Edge Detector.. 14

2.3.2.3 Canny Edge Detector .. 15

2.3.3 Corners... 16

2.3.3.1 Harris Corner Detector... 16

v

3. SYSTEM CONSIDERATION AND CONFIGURATION ………………………………….18

3.1 Sensors .. 18

3.1.1 RoLine Laser .. 18

3.1.2 Accelerometer .. 18

3.1.3 Gyroscope .. 19

3.1.4 Distance Encoder and Start Sensor ... 19

3.1.5 Video Capture Module ... 20

3.2 Data Synchronization And Integration ... 20

3.3 Processor Consideration .. 21

3.3.1 General Purpose Processor ... 21

3.3.2 Digital Signal Processor ... 22

3.4 Memory Management Consideration ... 22

4. IMPLEMENTATION AND RESULTS ... 24

4.1 Compensating Camera Jitter (Post Processing) .. 24

4.1.1 Jitter Removal Using Post Processing ... 25

4.2 Local Feature Extraction And Image Matching .. 25

4.3 Least Mean Square Difference .. 44

5. CONCLUSION AND FUTURE WORK ... 47

REFERENCES ... 49

BIOGRAPHICAL INFORMATION .. 51

vi

LIST OF ILLUSTRATIONS

Figure Page

2.1 Pinhole Camera Model ... 4

2.2 Pinhole Camera Geometry ... 5

2.3 Pinhole Camera Model 2D ... 5

2.4 Image Plane In Pixel Form ... 6

2.5 Epipolar Constraints ... 8

2.6 Two-view Coordinate System .. 9

2.7 Gaussian Distribution .. 11

2.8 Gaussian Distribution 2-D .. 12

2.9 Roberts Cross Convolution Kernels ... 13

2.10 Sobel Operators ... 14

4.1 Example of Scale Space and Octave of Image. .. 27

4.2 Difference of Gaussian ... 29

4.3 Example of Difference OF Gaussian .. 30

4.4 Locating Maxima Minima in Scale Space .. 31

4.5 Example of Maxima Minima ... 33

4.6 Selecting Stable Keypoints .. 35

4.7 Example of Keypoints... 36

4.8 Gradient Calculation ... 37

4.9 Example Histogram of Gradient ... 38

4.10 Calculating Gradient Magnitude ... 39

4.11 Calculating Gradient Orientation .. 40

vii

4.12 Original Image of an Overpass Under Consideration .. 41

4.13 Local Features of Original Image Under Consideration ... 42

4.14 Local Feature of Rotated Image Under Consideration .. 43

4.15 Image Matching Of Two Images .. 44

4.16 Detection of Structural Changes of the Overpass .. 45

1

CHAPTER 1

INTRODUCTION

1.1 Objective

 Bridges and overpasses are an integral part of the road network. But due to its

extensive use over time, the surface and sides of the bridge have produced a number of

different levels of deterioration in the form of deformation and cracks. The reason for these

deteriorations is various external loads such as traffic, earthquakes, gusts, and possible wave

loads during their lifetime. By periodically monitoring the characteristics of these structures,

changes or movements in the structures that could result in their failures could be noted. [1]

Monitoring structural changes can provide engineers with additional information in the

maintenance of these bridges. Bridge engineers need a reliable way to assess the structural

integrity of bridges to maintain the continuous operation of the road network while ensuring the

safety of the public.

Presently, the main elements of bridge health monitoring are: vibration, torsion movement,

strain gauges, accelerometer, etc. These sensors often provide a temporal signature of the

vehicles passing over them that could be used to extract the weight and the effect of the

vehicles on the structure with good accuracy. To interpret the structural movements over time a

diligent statistical method needs to be used. Because of the huge amounts of data that are

generated by static bridge monitoring systems, the manual inspection of such data by humans,

of all the bridges and overpass, is inefficient and often impossible. Computer vision based

automated data processing systems can provide a method for early detection and classification

of different types of bridge and pavement deterioration. [2]

In this research project, a system based on sensors such as lasers, accelerometers,

gyroscopes and cameras are integrated. There are three major components in this project.

2

1. Surface profiling system, for physical monitoring

Used for road profiling of highways and roads in Texas by Texas Department of

Transportation

2. Control System for Camera Platform

Used for removing jitter in camera, in real time

3. Video capture and processing module for structural movement measurement

Computer vision and image processing algorithms are implemented to detect any

changes in bridge structure.

The research done here is focused on using a video capture and post processing module

for structural movement detection. For this, the following procedure is implemented

1. Compensation for any rotational and /or translation using 3-D road profile as reference

2. Image registration and matching

3. Using Least Mean Square Error (LMSE) to detect any structural changes

To get the best estimate of the bridge structures, any rotation is compensated, using

reference to the road surface. By knowing the 3D of the road profile we can make the camera

platform line up with the road surface in real time. Because the bridge‟s images are captured in

different times, locations, and angles, we must register them before comparing them to measure

the structures‟ parameters. In our project, corner point detection and shift invariant factors are

used for image matching and registration. Corner point detection is an approach used within

computer vision systems to extract certain kinds of features and infer the contents of an image.

After matching two results there is the need to find the rotation and translation between those

two images due to shift in camera position, for this homography is used to estimate camera

pose. Then finally, LMSE is used to detect any changes in bridge structure.

The next chapter describes the background work done. It includes literature review,

computer vision introduction and introduction to profiling algorithm and 3D road profile. Chapter

3 describes the embedded system consideration and implementation for this project. Chapter 4

3

describes the implementation and result of the project undertaken. Chapter 5 includes the

conclusion.

4

CHAPTER 2

BACKGROUND

2.1 Introduction

 In this chapter we will discuss some the most important computer vision and image

processing fundamentals. This chapter hold key to implementation of this project

2.2 Camera Geometry

2.2.1 Pinhole Camera Model

A camera maps the 3D world (object space) into 2D image. Here we start with the most

specialized and simplest camera model which is a basic pinhole camera (Figure 2.1). [3] As

seen in figure 2.1 the object in front of the camera is projected upside-down onto the screen.

Figure 2.1 Pinhole Camera Model

Assume a projection of points in space onto a plane. Let Oc be the center of projection

of the Euclidean co-ordinate system, and plane z=f, which is called focal plane. Let X = (x, y,

z)
T
 be a point in space mapped on the image plane where a line joining the points X to the

center of projection meets the image plane as shown in figure 2.2. Given the point in space we

can get the corresponding point in image plane. By using similarities of triangle in figure 2.3 we

can write

 (2.1)

5

Hence for 3D point we can write x = f

, and y = f

 (2.2)

Figure 2.2 Pinhole Camera Geometry

Figure 2.3 Pinhole Camera Model 2D

 By expressing the above expression in vector form we can write as

X

 =

 (2.3)

6

In expression (2.1), we assumed that the origin of coordinates in image plane is at

principal point. But in practice, it may not be true, so in general mapping we can write

(X, Y, Z)
T
 = (f X/Z + px, f Y/Z + py) (2.4)

We define pixel coordinates u = []
T
 , hence in matrix form it can be written as

u = [

] = [

] + [

] [

] (2.5)

where k, u0, v0 are the intrinsic camera parameters.

Figure 2.4 Image Plane in Pixel Form

So we can extend the equation 2.5 in Homogeneous form as given below

[

]= [

] [

] (2.6)

Equation 2.6 gives the homogeneous representation of the coordinate system. When

applying a pinhole camera model and homogeneous coordinate system we get

Sũ =Kπ0
c
X (2.7)

7

where K is the Intrinsic camera parameters matrix , π0 is the ideal projection matrix.

An extensive introduction to the Pinhole camera model is supplied in [3]

2.2.2 Epipolar Geometry

 The projective geometry between two views is called Epipolar Geometry. [3] It depends

on cameras‟ intrinsic parameters and relative pose and not on scene structure. The

fundamental matrix summarizes these parameters. Fundamental matrix is discussed in brief

later in the chapter.

 Epipolar geometry is used to extract 3D structure from a pair of images. There are two

methods for this. In the first and classical method, known as the calibrated route, we first need

to calibrate both cameras (and viewpoints) with respect to some world coordinate system,

calculate the so-called epipolar geometry by extracting the essential matrix of the system, and

from this compute the three-dimensional Euclidean structure of the imaged scene. This method

is widely used for stereo camera system.

The second or uncalibrated route corresponds to the way biological systems determine

three-dimensional structure from vision. In an uncalibrated system, the fundamental matrix is

calculated from image correspondences, and this is then used to determine the projective three-

dimensional structure of the imaged scene. This method is used in homography, as discussed

later. [4]

Figure 2.6 shows the geometric model of a two view system. C and C‟ are the two

optical centers of left and right cameras respectively; M is the object of interest. Here are some

definitions regarding Epipolar Geometry

Baseline: It is the line joining the optical center of two cameras‟

Epipole: The epipole is the point of intersection (in pixels) of the baseline with the image plane.

There are two epipoles, e and e‟, one for each image.

Epipolar plane: An epipolar plane is the plane passing through the camera centers and each

3-D point.

8

Epipolar line: An epipolar line is the line of intersection of the epipolar plane with the image

plane.

Figure 2.5 Epipolar constraints

These epipolar constraints play a fundamental role in stereo vision and motion analysis.

Epipolar Constraints can be written as a function of the rays in the image as

c‟
X

T
 [

c‟
T] x

c‟
R

c
X =O (2.8)

where T and R are translation and rotation between two cameras as shown in figure 2.7

This constraint implies that, for a given point (ray)
c
X in one image corresponding point

(ray)
c‟
X in the other camera lies on a epipolar line that has equation

L ~ [
c‟
T] x

c‟
R

c
X (2.9)

c‟
T x

c‟
R is called essential matrix E

Hence we can write equation (2.8) as

9

 c‟
X

T
E

c
X = O (2.10)

Figure 2.6 Two-view Coordinate System

In the uncalibrated case, we don't know R and T; all we have are image coordinates []
T
 in

the image plane.

We know that
c
X= K

-1
 ũ and

c‟
X= K

-1
ũ

T
, when rewriting the equation (2.10), we get,

Ũ‟
T

K
-T

 E K
-1

 ũ= O (2.11)

where F is the fundamental matrix, it allows us to define the epipolar in the image plane.

 For detailed derivations refer to [3]. Section 9.2.2

Two-camera geometry does not necessarily imply the use of a stereo camera system.

Two frames of a single camera at different points in time can also be addressed in this way,

which is used in this research to get the rotation and translation between two views.

2.3 Image Features

 When analyzing camera images immense amount of information can be gathered.

Several computer vision processes require the finding of features or matching points across

several frames or views. As seen in the previous section, in stereo imaging we can triangulate

10

the two features or views to get the information about depth of object, rotation or translation

between two view points, etc. In general image features consist of two parts key-point and a

descriptor. This section covers these features, how to extract them and how to describe the

descriptors of the feature extracted.

 An image I(x, y) can be written as a function of many variables such as, object intensity,

position of the camera, properties of the camera, and nature and distribution of the light source.

Image features are a part of the image and are associated with interesting scene elements via

the image formation process. The descriptor is a vector containing important properties of a

particular image feature. Before continuing on the features and how to find them we will discuss

how to deal with image noise.

2.3.1 Filters

 Noise is always present in an image. Principal sources of noise in digital images arise

during image acquisition and transmissions. This noise has to be eliminated as much as

possible without altering the image. The most common technique for noise smoothing is linear

filtering.

2.3.1.1 Averaging Filter

 This is the most common technique used in spatial domain for noise filtering. It consists

of convolving an image I(x,y) with a constant matrix K, called kernel.

K =

 [

] , all the entries of K have to be non-negative for it to be average smoothing.

One drawback of averaging filter is that it intuitively takes out small variations. A bigger kernel

causes more blurring. [5] A nonlinear filter such as a median filter has better performance as

compared to an averaging filter as discussed later in this section.

2.3.1.2 Gaussian Kernel

 This is a frequency domain filtering technique. The kernel is given as

 G(x) =

√
 e

-

 (2.12)

11

Where σ is the standard deviation and is measure of spread of the Gaussian curve.

To remove the noise, we use Gaussian smoothing operator. It is a 2-D convolution operator

which blurs n image by removing details. The Gaussian PDF curve is bell shaped centered at its

mean.

Figure 2.7 Gaussian Distribution (mean =0)

The 2-D distribution of the Gaussian smoothing filter is used as a point spread function.

In other words, it is symmetrical about its mean value and it has only one maximum at mean

value. The width of density function is directly proportional to the standard deviation, in effect

decides the amount of blurring. The maximum value of density function is inversely proportional

to the standard deviation σ. In theory, the Gaussian distribution doesn‟t become zero at any

point. For it to go to zero, an infinitely large convolution kernel is required. As we increase the

width of the kernel its computational complexity increases. Hence for practical purpose we

assume three standard deviations from mean to settle to zero, and so we truncate the kernel at

that point. [6]

12

Figure 2.8 Gaussian Distribution in 2-D (mean =0, σ=1)

After selecting a suitable kernel, the Gaussian smoothing can be performed. The

Gaussian kernel is circularly symmetric. Hence 2-D convolution can be break up into two parts,

first performing 1-D convolution in x- direction, and then 1-D convolution in y- direction. These

steps can be performed in parallel using software or using FPGA, to speed up the complex

process.

The main advantage of a Gaussian filter over other filters is that there is no ringing

effect no matter what the filter order is. In other words most of other filters distort the image but

the Gaussian filter does not distort the original image. It has been used in several places in this

project which will be discussed later.

2.3.1.3 Median Filters

 As stated earlier, an averaging filter removes noise by blurring the image, during the

process it also blurs the edges. Median filters have better performance because they don‟t

distort the original image. Their response is based on the ordering or ranking of pixels contained

within the kernel. The kernel of a median filter is similar to that of an averaging filter except that

the kernel has no values. Below are the steps to perform median filtering:[6]

1) Assume a 3x3 empty mask

2) Place the empty mask at the left hand corner

13

3) Arrange the 9 pixels in ascending or descending order

4) Choose the median from these nine values

5) Place this median at the center

6) Move the mask over the image

2.3.2 Edges

Edges characterize object boundaries. They are for segmentation registration, and

identification. An edge is the set of connected pixels that form a boundary between two

disjointed regions. An edge is an important feature. Several methods along with different

operators to find an edge will be discussed in this section. [7]

The process of edge detection is to take the derivation of the image. The basic idea of

the derivative approach is to compute the local derivative operator. The first derivative at any

point in an image is obtained by using the magnitude of the gradient at that point.

2.3.2.1 Roberts Cross Edge Detector

The Roberts Cross operator computes a 2-D spatial gradient measurement on an

image. Thus it highlights the discontinuities of scene intensity which often corresponds to the

edges in the image.

Figure 2.9 Roberts Cross Convolution Kernels

Roberts gradient is obtained by using cross difference. The output image is estimate of

gradient of the input image. The operator consists of a pair of 2X2 convolution kernels as show

in figure 2.9. These two kernels are 90
0
 rotated with respect to each other. Hence edges at 45

0

to pixel grid give maximum output. For quicker implementation these kernels can be applied

separately on original image for each of perpendicular orientation.

14

 Although the Roberts Edge Detection technique is very quick and simple to evaluate,

there are some drawbacks of this detector. First, it is extremely sensitive to noise, since it uses

difference method to calculate kernel. Second, its performance depends on width and

orientation of edges in an image. Its performance also depends on the intensities in foreground

and background. Hence only very sharp images can be detected. [8] [9]

 2.3.2.2 Sobel Edge Detector

 The Sobel operator, as Roberts‟s operator, computes a 2-D spatial gradient

measurement on an image. The output image is an approximate absolute gradient magnitude of

input image for a particular pixel. In this operator, higher weights are assigned to the pixes close

to the candidate pixel.

Figure 2.10 Sobel Operators

 The operator consists of pair of 3X3 convolution kernels as shown in figure 2.10. As

seen in Roberts operator, these two kernels are also 90
0
 apart. These kernels can be applied

separately on an image. First, we convolute the original image with the Gx mask to get the

gradient in x- direction, and then we convolve the original image with the Gy mask to get the

gradient in y- direction. After getting these to gradients, we combine them to get absolute

gradient magnitude.

The advantage of using Sobel mask for edge detection is that it provides a smoothing

effect along with providing differentiation. Hence it performs better the Roberts when the image

is noisy. Having said that, noise is also a high frequency component, hence derivative filters are

very sensitive to noise. [8] [9]

15

An important property of above discussed mask is that their sums of coefficient are

zero. Edges are abrupt discontinuity in grey levels, and hence are high frequency regions. Since

sum of the coefficient of all these masks is zero, they eliminate all the low frequency

components of the image i.e., when these mask are placed in low frequency region, output is

close to zero. Hence these masks give edges without any low frequency regions in the final

output image. But there disadvantage is that they are not isotopic, their performance depends

on direction of discontinuity. [6]

2.3.2.3 Canny Edge Detector

Canny edge detector is one of the optimal and robust edge detector methods. Canny

operator is a first derivative edge detector coupled with noise cleaning. [10]

The Canny edge detector is a multistage algorithm. The steps are as follows:

1) Pre-processing; As discussed earlier edge detectors are prone to noise. A

Gaussian smoothing is used for blurring. Usually, a 5x5 Gaussian filter with σ=1.4 is

used.

2) Calculating Gradient: In this step gradient magnitude and directions are calculated

at every single point in the image. The magnitude of the gradient at a point

determines the possibility of it lying on the edge. If gradient is high, it is on the

edge. The direction of the gradient shows how that edge is oriented. A simple 2-D

derivative gradient such as the Sobel edge detector is used for this purpose.

3) Non Maximum Suppression: After gradient magnitude image is obtained, a pixel

which is not maxima is suppressed, i.e., set to zero. A „thin edge‟ is obtained by

implementing this step.

4) Hysteresis threshold: By implementing the previous step, a pixel that had a gradient

magnitude greater than the upper threshold is marked. The tracking process

exhibits hysteresis controlled by two thresholds: T1 and T2, with T1 > T2. Tracking

can only begin at a point on a ridge higher than T1. Tracking then continues in both

16

directions out from that point until the height of the ridge falls below T2. This

hysteresis helps to ensure that noisy edges are not broken up into multiple edge

fragments.

The effect of the Canny operator is determined by three parameters --- the width of the

Gaussian kernel used in the smoothing phase, and the upper and lower thresholds used by the

tracker. Increasing the width of the Gaussian kernel reduces the detector's sensitivity to noise,

at the expense of losing some of the finer detail in the image, also the localization error in the

detected edges increases slightly.

To conclude, several methods to find the edge have been discussed. The canny edge

detector is implemented in this project to get rid of extra data from the image and for detection

of the bridge structure. Although edge is a powerful feature, it can be misleading. For example

the motion of an object using edge detection can only be viewed in one direction, i.e., normal to

the edge. [7]

2.3.3 Corners

 A corner is the point of intersection of two or more edges. An abrupt variation in the

image gradient direction characterizes a corner. A corner is more reliable and stable feature

compare to edge. Unlike in edge, derivative of gradient in corners changes in more than one

direction. This helps to write efficient algorithms. Corner features are the most important feature

for motion detection, image matching and object recognition. In this project to find the features

the Harris corner detector is used.

 2.3.3.1 Harris Corner Detector

 Harris corner detector:

Harris corner detector can be mathematically represented by the following equation.

E (u, v) = ∑ [I(x+u, y+v)-I(x, y)]
2
 (2.13)

where E is the difference between the original window and moved window

 u is the windows displacement in x direction

17

 v is the windows displacement in y direction

 w (x, y) is the window at position (x,y), this is the mask

 I (x, y) is the intensity of the original image

 I (x+u, y+v) is the intensity of the moved window

All possible small shifts can be covered by performing an analytic expansion about the shift

origin. [11]

On applying the Taylor series expansion on equation 2.13 and simplifying it we get,

E(u, v) ∑

 + 2uvIx+ v
2

 (2.14)

The above equation can be written in matrix form as

E(u, v) [] M [

] (2.15)

where M= ∑ [

]

 To conclude, the Harris Corner detector is just a mathematical way of determining

which window produces large variations when moved in any given direction. The Harris corner

detector is fairly simple to compute, and is a fast and robust corner detector operator. The key

features of the Harris detector is that it is rotation invariant, though its performance depends on

scale, i.e., it is not scale invariant. For image registration and matching it is very important that

the corner detector be both scale and rotation invariant. The technique to find corners and edge

irrespective of rotation and scale and matching them is discussed in the chapter 4.

18

CHAPTER 3

SYSTEM CONSIDERATION AND CONFIGURATION

 This chapter includes the discussion on the sensors needed, their synchronization and

integration, processor consideration for the project and configuration of the system.

3.1 Sensors

 All the different sensors used in the system are discussed here.

3.1.1 RoLine Laser

 The laser used in the system is the RoLine 11xx family of laser. It is a high speed, high

density 3D profile scanning system for road profiling. The laser has the projection of 2.6” – 5.4”.

Its specifications are:

 Input Voltage 48V DC Scanning Rate 3KHz Measurement range 200mm

 Output is a 16 bit number in 1/100
th

mm, sent in form of Ethernet packets. A single scan

of laser output gives 198 points. The laser outputs a 3K Hz sync pulse which is used to

synchronize it with accelerometer. This is extremely critical for profiling algorithm.

 RoLine 11xx family has two modes of operation, free mode, contains the distance value

of each of the 198 points and Bridge mode, a filtered average of all the point values to single

point value. Both these modes are evaluated to compute longitudinal profile of the road.

3.1.2 Accelerometer

 The accelerometer used in the system is a Columbia Research Labs SA-107BHP. It is

a single axis servo accelerometer. Specifications are:

 Range +/- 4g Resolution 1.876 V /g, Accuracy +/- 0.2%

 Input voltage +/- 15V Output voltage range +/- 7.5

19

A low pass filter is applied to the output of the accelerometer before connecting it to an analog

to digital (A/D) converter. The accelerometer is an integral part of the system because it is used

to filter out the vehicle movement from the laser reading so as to get an accurate profile of the

road.

3.1.3 Gyroscope

 The gyroscope taken into consideration is a Watson Industries 3 axis gyroscope. It is

designed for instrumenting the drive and handling characteristics of the vehicle. The sensor

provides both angular rate and acceleration outputs in analog as well as digital format. This

dynamic measurement system features six accelerometer output. This allows measurement of

forward and lateral acceleration which are essential for free of gravity influence. It has an RS-

232 serial interface, through which the configuration and other operation can be performed.

Specifications of the sensor are;

Input voltage: 10VDC to 30VDC, Rate Range: +/- 100
0
 /s, Acceleration range:

+/-10 g,

Pitch Range: +/- 75
0
 Relative heading: 0-360

0
 Accuracy: +/- 0.05 deg/ sec

Output: RS-232 serial interface (adjustable baud rate)

Using this sensor the drive characteristic of the test vehicle can be measured. When

this measurement is integrated with the road profile, evaluated using a wide line laser, the 3D

profile the road along with long wavelengths can be obtained. Also the data obtained from

gyroscope is used to stabilize the video capture device platform. This in turn reduces the jitter in

the video data caused by vehicle movement.

3.1.4 Distance Encoder and Start Sensor

 A distance encoder, attached to the tire of the test vehicle, outputs the pulses per

kilometer of distance traveled. The output is calibrated according to the tire size to get the

translation distance traveled by the test vehicle. Along with this an infrared sensor is used to

20

mark the start and end of the test run. The signal from the start sensor is used to activate all the

above sensors along with network camera simultaneously.

3.1.5 Video capture module

 A high resolution network camera, Canon VB C10, is considered for capturing the video

of the structure. The camera output is through the Ethernet.

Resolution range: 640x480 to 320x240 to 160x120 Capture rate: 30 frames/ sec

 Input voltage: Adapter (110-240V 50/60 Hz) or 12- 14 VDC Field View: 65
0

 16x optical zoom CCD technology External Triggering Available

 The Network camera can be triggered externally, which helps to synchronize the video

data with other sensor data. It has a Built-in Web Server and FTP Server, compatible with

different protocols to integrate easily into any network. It also includes an Ethernet Terminal

(10M/100M, auto negotiation), compatible with all the following protocols: TCP/IP, HTTP,

BOOTP, FTP, NTP. This solves the portability issue for integrating the camera to the embedded

system. Also the frame rate of this camera is programmable. Since the frame rate has a direct

relation to the amount of photons captured, it is highly desirable to have a variable frame rate.

For example, if the frame rate is 100 Hz, exposure time reduces to 10ms, which in turn limits the

amount of photons acquired by the camera. Dark scene requires higher gain at high frame

rates, which introduces the noise level. In order to minimize the noise, the frame rate of the

camera is adjusted according to ambient light. Also, this camera has auto gain adjust calibration

built in.

3.2 Data Synchronization and Integration

 Each sensor has a different sampling rate and outputs data in different formats. Hence

synchronization of this data is very important. Laser and camera has an Ethernet output, the

accelerometer gives an analog output, while the gyroscope gives serial output. The distance

encoder and start signal, and sync signal from the laser gives digital pulses. Data translator

21

board (part no. 9816A) is used to capture data from the accelerometer, distance encoder, start

signal and sync signal. Synchronization of these sensors is done in software.

 While measuring the road profile it is of utmost importance that the accelerometer and

the laser reading are synchronized. The accelerometer data is used to filter out the test vehicle

movement from the laser reading to measure the accurate road profile. To measure the 3D road

profile gyroscope data is integrated with the surface data. Through the gyroscope we are able to

get the long wavelength as well as short wavelength transverse profile. Camera data is

synchronized with the data from distance encoder. By doing this, the position of the camera for

a particular frame can be noted. This helps in image registration and matching process. Chapter

4 discusses this integration in detail.

3.3 Processor Consideration

 The selection of the microprocessor for a given application is probably the most difficult

task, at the same time the most critical task in designing any Embedded System. The key to

selection of a microprocessor is the knowledge of different processors, suitable for a specific

application. For example, if the application is to develop a stand-alone system performing a

specific and discrete task then generally a microcontroller or Digital Signal processor is

selected, and for general or wide variety of applications a General Purpose Processor is used.

So, before discussing the various processor hardware available, we need to make sure that it is

suitable for application of this project, which is to generate a 3D road profile system as well as

implementing various computer vision algorithms. In this section we describe in brief various

processors.

3.3.1 General Purpose Processor

 The General Purpose Processor (GPP) is the generic processor, designed for a wide

variety of applications. Most of the GPP uses the von Neumann architecture; it uses one bus for

both data and program memory access. This can become a bottleneck in case of cache

coherency. Some of the important features of GPP are; its flexibility and generality, wide

22

address bus allowing the management of large memory spaces, integrated hardware memory

management unit, wide data formats, and integrated co-processor supporting complex

numerical operations, such as floating point multiplications.

3.3.2 Digital Signal Processor

 The programmable Digital Signal Processor (DSP) is general purpose processor,

designed specifically for digital signal processing purposes. They contain a special architecture

and instruction set so as to execute computation intensive DSP algorithms more efficiently. In

other words, a DSP‟s instruction set is optimized for matrix operations, particularly multiplication

and accumulation (MAC). Most DSP‟s uses modified Harvard architecture; it uses the DSP‟s

multiport memory that has separate bus system for program memory and data memory.

Important features of DSP are: Fixed-point processor or floating point processor, architecture

optimized for intensive computation, narrow address bus supporting a only limited amounts of

memory, specialized addressing modes to efficiently support signal processing operations.

3.4 Memory Management Consideration

 For vision based algorithms, fairly large amount of memory with high bandwidth and

small access time is desired. Hence selection of memory in an Embedded Computer Vision

application is driven by the space, capacity and access time. For example, multiport SDRAM

would be ideal for creating an easy to use shared memory located between DSP and FPGA or

GPP and FPGA.[12] Though SDRAM is widely used in an embedded system, SDRAM

controller has to be integrated in DSP or system on chip (SoC). Since DSP generally does not

have a memory management unit, it can become a bottleneck in memory read/ write operation

with large memory size. The solution to this problem can be to avoid the use of DSP in low level

read/ write operations.

As stated earlier, the system configuration depends on the application and not just the

speed or performance of the processor. Though performance of DSP processor is much

superior to GPP for computer vision application, this project is more than just computer vision. It

23

includes data processing of various sensors from laser to gyroscope. Also generating the road

profile is sequential process, DSP might not necessarily increase the performance. Hence for

the evaluation purpose GPP processor is used to implement the computer vision algorithms.

The possible use of the FPGA along with the GPP, for this particular project is discussed in

Chapter 5.

The processor used for this project is an INTEL‟s CORE 2 Quad. It has two core

processors in a single package. Each of cores has 4GB of cache memory integrated with it.

INTEL‟s OpenCV and MATHWORK‟s Matlab‟s (image processing toolbox) were used to

implement the algorithms. For the further information on these software tools refer [13] and [14]

24

CHAPTER 4

IMPLEMENTATION AND RESULTS

 The previous chapters have provided details on the essential components of this project

and also reviewed several computer vision algorithms. In this chapter we will investigate how

those components are integrated and the implementation of the computer vision algorithms. We

will also analyze the results of the experiments performed.

 The complete process is divided in three parts; 1) Compensation of rotation and /or

translation due to camera jitter, 2) Feature extraction, detection and image matching, and 3)

Detecting any structural movement.

4.1 Compensating Camera Jitter (Post Processing)

 To detect any structural movement in the bridge structure, we compare the two frames

of the video taken at different time. The factors that should be considered before comparing two

frames are; jitter in camera, separating object motion from camera motion, camera position,

scale of image, and illumination. Also there has to be a reference structure from which the

movement can be compared. In our case the road profile is the reference. But, the bridge

structure deterioration might also change the profile of the road. This problem is solved by

comparing the 3D road profile generated in the current run with that of previous runs. If any

changes are detected; the bridge engineers are notified for further careful and diligent

inspection using static methods which give more accurate measurement.

 After comparing the 3D road profile, there is the need for stabilization of the camera

platform. One of the modules of this research project is the implementation of real time camera

jitter removal. The fundamental aim of this module is to make the camera platform follow the

road profile. For this a control system was simulated. The parameters of this control system are

gyroscope data, from the road profiling system and other from the camera platform, which has

25

to be stabilized. The accelerometer data is used to remove the test vehicle movement. The

accelerometer data is double integrated to get the displacement using the Trapezoidal rule to

find the area under the curve. A Proportional integral- derivative (PID) controller is simulated for

real time jitter reduction. Though the time response of in simulation is around 10ms, the fact that

PID controller takes few extra milliseconds‟ to settle down, there is the need for post-processing

to remove error due to jitter.

4.1.1 Jitter Removal Using Post Processing.

 Since all the sensors are synchronized in software using a start sensor and sync signal,

we can easily integrate the data from camera, two gyroscopes (one mounted on the camera

platform and the other with road profiling system). We first calculate the difference in the

reading of two gyroscopes, which will give the amount of jitter present in camera. If there is

difference in roll of camera position, then that error with 3D world is projected as rotation error in

the 2D camera world. This error is compensated using „rotate‟ in image processing. Similarly

there can be error due to pitch error. Pitch error in the 3D world projects as vertical translation

error in 2D camera world. We can detect this angle using homographic technique but to correct

the angle it is very difficult, even using post processing. But since we will be using scale

invariance transform for image registration and matching, this error if not more than 10
0
, can be

incorporated.

 In this section we propose a novel methodology of integrating different sensors to

accurately detect any bridge surface movement and also how the camera platform is tied with

this bridge surface and correcting any error due to camera jitter. The above mentioned step is

critical since now we can take the bridge surface as reference and detect any structural

movement.

4.2 Local Feature Extraction and Image Matching

 In this section we will cover the implementation of local feature detection and image

matching algorithm. Image Matching features across different images in a common problem in

26

computer vision. The important characteristics that feature detection and matching algorithm

must possess are scale invariance, rotation invariance, robust to illumination, blur invariance,

and computational complexity. [15]

Here we have considered the Scale Invariant Feature Transform (SIFT) algorithm, because

it isn‟t just scale invariant but also invariant to rotation, illumination and viewpoint, though not

the fastest. [16] [17]

The algorithm

SIFT is complex algorithm involving number of steps.

1. Constructing a scale space.

For the algorithm we create internal representations of the original image to ensure

scale invariance. This is done by generating a “scale space”.

Scale space:

Since we want to detect edges and corners as features, we first need to filter out the noise

present in the image, i.e., we need to get rid of some details. While getting rid of these details,

we must ensure that we do not introduce new false details. The only way to do that is with the

Gaussian Blur (it was proved mathematically, under several reasonable assumptions). So to

create a scale space, we take the original image and generate progressively blurred out

images. Then, we resize the original image to half size. We then generate blurred out images

again. Images of the same size (vertical) form an octave. The figure 4.1 below is four octaves of

an image. Each octave has 5 images. The individual images are formed because of the

increasing “scale” (the amount of blur).

Octaves and Scales

The number of octaves and scale depends on the size of the original image. While

programming the SIFT algorithm, one can have a variable number of octaves and scales,

depending on the application. However, the creator of SIFT suggests that 4 octaves and 5 blur

levels are ideal for the algorithm, which is what we have used in our experiment.

27

The first octave: For the first octave we have doubled the original size of the image and anti-

aliased it (by blurring) since the algorithm produces more four times more key-points. The more

the key-points, better the performance of the algorithm.

Figure 4.1 Example of Scale Spaced and Octave of Image.

28

Amount of blurring: The amount of blurring in each image is important. For example, assume

the amount of blur in a particular image is σ. Then, the amount of blur in the next image will be

k*σ. Here k is constant.

In the first step of SIFT, we generate several octaves of the original image. Each octave‟s

image size is half the previous one. Within an octave, images are progressively blurred using

the Gaussian Blur operator.

2. LoG Approximation

The Laplacian of Gaussian is useful for finding interesting key points in an image. But

it‟s computationally expensive. So we approximate it using the representation created

earlier.

In the previous step, we created the scale space of the image. The idea was to blur an

image progressively, shrink it, and blur the small image progressively and so on. Now we use

those blurred images to generate another set of images, the Difference of Gaussians (DoG).

These DoG images are a useful for finding out key points in the image.

Laplacian of Gaussian: For the Laplacian of Gaussian (LoG) operation, we fist blur an

image. Then, we calculate second order derivatives to get (or, the “Laplacian”). This locates

edges and corners on the image. These edges and corners are good for finding keypoints.

However the second order derivative is extremely sensitive to noise. The blur smooth‟s out the

noise and stabilizes the second order derivative. The problem is, calculating all second order

derivatives is computationally intensive. So we calculate the difference between two

consecutive scales, or, the Difference of Gaussian (DoG). Figure 4.3 below shows the DoG

graphically.

These Difference of Gaussian images are approximately equivalent to the Laplacian of

Gaussian. Thus we have replaced a computationally intensive process with a simple subtraction

29

(fast and efficient). These DoG approximations are also “scale invariant”, and produced a much

better track able points.[3]

We know the DoG result is multiplied with σ
2
, but it‟s also multiplied by another number. That

number is (k-1). This is the k we discussed in the previous step. We will be only looking for the

location of the maximums and minimums in the images. We‟ll never check the actual values at

those locations. So, this additional factor won‟t be a problem. (Even if we multiply throughout by

some constant, the maxima and minima stay at the same location)

 Figure 4.2 Difference of Gaussian

The figure 4.4 shows the subtraction for just one octave. The same thing is done for all

octaves. This generates DoG images of multiple sizes.

To summarize this step, two consecutive images in an octave are picked and one is

subtracted from the other. Then the next consecutive pair is taken, and the process repeats.

This is done for all octaves. The resulting images are an approximation of scale invariant LoG

30

(which is good for detecting eypoints). There are a few “drawbacks” due to the approximation,

but they won‟t affect the algorithm.

Figure 4.3 Example of Difference of Gaussian

3) Finding keypoints.
We now try to find key points. These are maxima and minima in the Difference of

Gaussian image we calculate in step 2

Up till now, we have generated a scale space and used the scale space to calculate the

Difference of Gaussians, which is scale invariant. Finding key points is a two part process:

31

1. Locate maxima/minima in DoG images

2. Find sub pixel maxima/minima

Locate maxima/minima in DoG images

The first step is to coarsely locate the maxima and minima. We iterate through each

pixel and check all its neighbors. Then check is done within the current image, and also the one

above and below it.

Figure 4.4 Locating Maxima Minima in Scale Space

X marks the current pixel. The green circles mark the neighbors. This way, a total of 26 checks

are made. X is marked as a “key point” if it is the greatest or least of all 26 neighbors. Usually, a

non-maxima or non-minima position won‟t have to go through all 26 checks. A few initial checks

is usually sufficient to discard it. Note that keypoints are not detected in the lowermost and

topmost scales. There are simply enough neighbors to do the comparison. So we skip them.

Once this is done, the marked points are the approximate maxima and minima. They

are “approximate” because the maxima/minima never lie exactly on a pixel. It lies somewhere

between the pixel. But we simply cannot access data “between” pixels. So, we must

mathematically locate the sub pixel location.

Find sub pixel maxima/minima:

32

Using the available pixel data, sub pixel values are generated. This is done by the

Taylor expansion of the image around the approximate key point.

Mathematically, it‟s like this:

We can easily find the extreme points of this equation (differentiate and equate to zero). On

solving, we‟ll get sub pixel key point locations. These sub pixel values increase chances of

matching and stability of the algorithm.

The figure 4.6 shows just one octave. This is done for all octaves. Also, this figure

shows only the first part of keypoint detection. The Taylor series part has been skipped.

To summarize this step, we detected the maxima and minima in the DoG images generated in

the previous step. This is done by comparing neighboring pixels in the current scale, the scale

“above” and the scale “below”.

4) Get rid of bad key points.

Edges and low contrast regions are bad keypoints. Eliminating these makes the

algorithm efficient and robust. A technique similar to the Harris Corner Detector is used

here.

Key points generated in the previous step produce a lot of key points. Some of them lie

along an edge, or they don‟t have enough contrast. In both cases, they are not as features. So

we get rid of them. The approach is similar to the one used in the Harris Corner Detector for

removing edge features. For low contrast features, we simply check their intensities. [11]

(4.1)

33

Figure 4.5 Example of Maxima Minima

34

Removing low contrast features

If the magnitude of the intensity (i.e., without sign) at the current pixel in the DoG image (that is

being checked for minima/maxima) is less than a certain value, it is rejected. Because we have

subpixel keypoints (we used the Taylor expansion to refine keypoints), we again need to use

the Taylor expansion to get the intensity value at subpixel locations. If its magnitude is less than

a certain value, we reject the keypoint.

Removing edges

The idea is to calculate two gradients at the keypoint, both perpendiculars to each other. Based

on the image around the keypoint, three possibilities exist. The image around the keypoint can

be:

A flat region: If this is the case, both gradients will be small.

An edge: Here, one gradient will be big (perpendicular to the edge) and the other will be small

(along the edge)

A “corner”: Here, both gradients will be big. Corners are great keypoints. So we want just

corners. If both gradients are big enough, we let it pass as a key point. Otherwise, it is rejected.

Mathematically, this is achieved by the Hessian Matrix. Using this matrix, we can easily check if

a point is a corner or not.

Here‟s a visual example of what happens in this step:

35

Figure 4.6 Selecting Stable Keypoints

Both extreme images go through the two tests: the contrast test and the edge test. They reject a

few keypoints (sometimes a lot) and thus, we‟re left with a lower number of keypoints to deal

with.

In this step, the number of keypoints was reduced. This helps increase the efficiency and

also the robustness of the algorithm. Keypoints are rejected if they had a low contrast or if they

were located on an edge.

5) Assigning an orientation to the keypoints.

An orientation is calculated for each key point. Any further calculations are done relative

to this orientation. This effectively cancels out the effect of orientation, making it rotation

invariant.

36

After step 4, we have genuine key points. They‟ve been tested to be stable. We already

know the scale at which the keypoint was detected (it‟s the same as the scale of the blurred

image). So we have scale invariance. The next thing is to assign an orientation to each

keypoint. This orientation provides rotation invariance. The more invariance we have the better

it is.

The idea is to collect gradient directions and magnitudes around each keypoint. Then

we figure out the most prominent orientation(s) in that region. And we assign this orientation(s)

to the keypoint. Any later calculations are done relative to this orientation. This ensures rotation

invariance.

Figure 4.7 Example of keypoint

The size of the “orientation collection region” around the keypoint depends on its scale, bigger

the scale, the bigger the collection region.

Gradient magnitudes and orientations are calculated using these formulae:

(4.2)

37

Figure 4.8 Gradient calculation

The magnitude and orientation is calculated for all pixels around the keypoint. Then, a

histogram is created for this. In this histogram, the 360 degrees of orientation are broken into 36

bins (each 10 degrees). Let‟s say the gradient direction at a certain point (in the “orientation

collection region”) is 18.759 degrees, and then it will go into the 10-19 degree bin. And the

“amount” that is added to the bin is proportional to the magnitude of gradient at that point.

Once we‟ve done this for all pixels around the keypoint, the histogram will have a peak

at some point. Below, we see the histogram peaks at 20-29 degrees. So, the keypoint is

assigned orientation 3 (the third bin) Also, any peaks above 80% of the highest peak are

converted into a new keypoint. This new keypoint has the same location and scale as the

original. But its orientation is equal to the other peak. So, orientation can split up one keypoint

into multiple keypoints.

38

Figure 4.9 Example Histogram of gradient

The window size, or the “orientation collection region”, is equal to the size of the kernel for

Gaussian Blur of amount 1.5*sigma.

To assign an orientation we use a histogram and a small region around it. Using the

histogram, the most prominent gradient orientation(s) are identified. If there is only one peak, it

is assigned to the keypoint. If there are multiple peaks above the 80% mark, they are all

converted into a new keypoint (with their respective orientations).

Next, we generated a highly distinctive “fingerprint” for each keypoint. This fingerprint, or

“feature vector”, has 128 different numbers.

6) Generate SIFT features.

Finally, with scale and rotation invariance in place, one more representation is

generated. This helps uniquely identify features. Let‟s say we have 5,000 features. With

this representation, we can easily identify the feature we‟re looking for (say, a beam or

column of bridge structure).

39

 Till now, we had scale and rotation invariance. Now we create a fingerprint for each

keypoint. This is to identify a keypoint. If an eye is a keypoint, then using this fingerprint, we‟ll be

able to distinguish it from other keypoints, like ears, noses, fingers, etc.

We want to generate a very unique fingerprint for the keypoint. We also want it to be

relatively lenient when it is being compared against other keypoints. Things are never

EXACTLY same when comparing two different images. To do this, a 16×16 window around the

keypoint is taken. This 16×16 window is broken into sixteen 4×4 windows.

Figure 4.10 Calculating Gradient Magnitude

Within each 4×4 window, gradient magnitudes and orientations are calculated. These

orientations are put into an 8 bin histogram.

Any gradient orientated in the range of 0-44 degrees is added to the first bin, 45-89

added to the next bin. And so on. And (as always) the amount added to the bin depends on the

magnitude of the gradient. Unlike the past, the amount added also depends on the distance

from the keypoint. So gradients that are far away from the keypoint will add smaller values to

the histogram. This is done using a “Gaussian weighting function”. This function simply

generates a gradient (it‟s like a 2D bell curve). We multiple it with the magnitude of orientations,

and we get a weighted gradient.

40

Figure 4.11 Calculating Gradient Orientation

Doing this for all 16 pixels, we would‟ve “compiled” 16 totally random orientations into 8

predetermined bins. We do this for all sixteen 4×4 regions. So we end up with 4x4x8 = 128

numbers. Once we have all 128 numbers, we normalize them (divide by root of sum of

squares). These 128 numbers form the “feature vector”. This keypoint is uniquely identified by

this feature vector.

We might have seen that in the pictures above, the keypoint lies “in between”. It does

not lie exactly on a pixel. That‟s because it does not. The 16×16 window takes orientations and

magnitudes of the image “in-between” pixels. So we need to interpolate the image to generate

orientation and magnitude data “in between” pixels.

This feature vector introduces a few complications. We need to get rid of them before

finalizing the fingerprint.

1. Rotation dependence: The feature vector uses gradient orientations. Clearly, if we

rotate the image, everything changes. All gradient orientations also change. To achieve

rotation independence, the keypoint‟s rotation is subtracted from each orientation. Thus

each gradient orientation is relative to the keypoint‟s orientation.

2. Illumination dependence: If we use threshold to consider numbers that are big, we

can achieve illumination independence. So, any number (of the 128) greater than 0.2 is

changed to 0.2. This resultant feature vector is normalized again. And now we have an

illumination independent feature vector.

41

Figures 4.13, 4.14 and 4.15 shows the results of implementing SIFT on an image of the

overpass. The image in figure 4.13 is the original image without any rotation. The image in

figure 4.14 is rotated to an arbitrary value for experimental purpose. These two figures shows

the local features of the image and its orientation. Figure 4.15 shows the matching of above

mentioned image and also the visualization of that matching. The overpass shown in figure 4.12

is perfectly functional, but for the experimental purpose, the image is rotated to a small arbitrary

value and that amount of rotation is detected using Least Mean Square Difference Image filter.

Figure 4.12 Original image of an overpass under consideration.

42

Figure 4.13 Local Features of the original image and its orientation

43

Figure 4.14 Local features of the rotated image and its orientation

44

Figure 4.15 Image Matching of the two images.

By implementing the mentioned algorithm we make sure that image that we want to

compare for structural movement is viewed from same position and there is minimum error.

4,3 Least Mean Square Image Difference

 After matching the two images from a view position, we can now detect any structural

movement simply by using Least Mean Square Error Estimator (LMSE). Basically LMSE uses

steepest decent to find the weigh filter to minimize the error term. It is similar to difference filter,

but LMS image difference is more robust in terms of size and scale factor.[18] [4]

 In least square filtering, q(u,v) is commonly chosen as a finite difference approximation

of Laplacian operator. Here, for example we have taken a square with spacing ∆x =∆y =1, and α

=

 , we get

q(u,v) - δ (u,v) +α[δ(u-1,v) + δ(u+1,v) + δ(u,v-1) + δ(u,v+1)] (4.5)

For detailed explanation and derivation of LMSE estimator please refer [18].

45

Using the above equation we can get the difference in two frames and thus we can

detect any structural movement. As discuss earlier, we have rotated the original image to an

arbitrary value, now using LMSE Difference we can detect and measure the rotation. Also the

error coefficient when multiplied with a scale can lead us to measuring the displacement. Since

this experimental image does have more information about the overpass i.e. its structural size,

here we are not able to measure any displacement in bridge structure, none the less we are

able to detect any movement. Figure 4.16 shows the result of implementation of LMS

Difference to the two images.

Figure 4.16 Detection of structural changes of the overpass

46

 To conclude, this chapter covered the methodology to remove any error due to camera

jitter by integrating several sensors and using post processing techniques, it also includes the

concept of taking bridge surface or road profile as reference. We covered the implementation of

different computer vision algorithms on our experimental image of an overpass.

47

CHAPTER 5

CONCLUSION AND FUTURE WORK

 In this research project a novel method for periodic Bridge Health Monitoring using

application of computer vision and 3D road profile is proposed.

 There is need for an embedded framework for the bridge monitoring and maintenance.

In this proposed method, we integrated 3D road profile with the video data of the bridge to

detect the structural movement. The sensors such as lasers, accelerometers, gyroscopes, and

cameras were integrated to obtain the data of the structure. This structure data was then

processed using computer vision algorithms to detect the structural changes.

 Structural movement is detected by comparing the structure position in two images,

with respect to a stable reference. The bridge deck movement is detected by comparing the 3D

road profile of the deck. The bridge deck is taken as a reference.

 For the feature detection, performance of three different algorithms, Speeded Up

Robust Feature (SURF), Scale Invariant Feature Transform (SIFT), and Principal Component

Analysis (PCA) – SIFT for this particular application were studied. Although SURF is the fastest

to compute features, it is not stable to rotation and illumination changes. Performance of PCA-

SIFT is affected by the blurring in the image. Though SIFT is slow by embedded application

standards it gives near real time performance on General Purpose Processors. SIFT is also

invariant to scale, rotation, and blurring and it produces a large number of keypoints. [15]

 The SIFT algorithm was improved as per the requirement of the application for feature

detection. An Image matching algorithm was developed using features produced by SIFT.

Finally, ∑∆ filter was used to detect the changes in bridge structures.

48

The research work covered the complexity involved in detecting the bridge movement

using video analysis. It covered the solution to challenges associated with motion camera

system. This includes removing the vehicle movement, jitter reduction, illumination, change in

view point, etc.

Experimental results are conclusive enough to state that this project is feasible for

bridge monitoring systems. It is important to note that only the transverse bridge movement can

be detected.

Since this is a the research application there is a lot of room for improvement.

- Improve the accuracy of movement measurement

- Reduce the computational complexity of the SIFT algorithm

- Develop the embedded board with FPGA and DSP integrated on board for

implementing the SIFT. [19]

49

REFERENCES

[1] K. Wardhana and F. Haclipriono (2000), Analysis of Recent Bridge Failures in the United
States. J. Perform. Contr. Facil., 17 (3) pp.144-150

[2] J. Lee, I Fukuda, M. Shinozuka, S. Cho, and C. Yun (2006). Development and Application of
a Vision Based Displacement Measurement System for Structural Health Monitoring of Civil
Structures. Smart Structures and System 3 (3). pp. 373-384

[3] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
university press, second edition, 2003.

[4] L. Shapiro and G. Stockman. Computer Vision. Prentice Hall, 2001

[5] R. Gonzalez and R. Woods. Digital Image Processing. Prentice Hall, third edition, 2008

[6] A. Jain. Fundamental od Digital Image Processing. Prentice Hall, 1989

[7] I. Abdel-Qader, O. Abudyayjen, and M. Kelly (2003). Analysis of Edge Detection Techniques
for Crack Identification in Bridges. Journal of Computing in Civil Engineering 4(3) pp.255-263.

[8] L. S. Davis. A Survey of Edge Detection Techniques (1975). Computer and Image
Processing 4(3) pp. 248-270

[9] http://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm

[10] J. Canny (1986). A Computational Approach to Edge Detection. IEEE Trans.

Pattern Analysisand and Machine Intelligence 8 (6) pp. 679-698.

[11] C. Harris and M. S. Plessey A COMBINED CORNER AND EDGE DETECTOR Research
Roke Manor, United Kingdom © The Plessey Company pic. 1988

[12] B. Kisačanin, S. S. Bhattacharyya, and S. Chai. Embedded Computer Vision. Springer,
2009

[13] http://opencv.willowgarage.com/wiki/Welcome

[14] http://www.mathworks.com/products/matlab/

[15] L. Juan and O. Gwun (2009). A Comparison of SIFT, PCA-SIFT, and SURF. International
Journal of Image Processing 3 (4) pp. 143-152.

http://homepages.inf.ed.ac.uk/rbf/HIPR2/roberts.htm
http://opencv.willowgarage.com/wiki/Welcome
http://www.mathworks.com/products/matlab/

50

[16] D. G. Lowe. (2004, Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision 60(2), pp. 91-110. Available:
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94.

[17] D. G. Lowe (1999). Object Recognition from Local Scale-Invariant Features. Proc. of
International Conference on Computer Vision.

[18] B. R. Hunt. (1973, The application of constrained least squares estimation to image
restoration by digital computer. Computers, IEEE Transactions on C-22(9), pp. 805-812.

[19] C. Arth and H. Bischof (2008). Real-time object recognition using local features on a DSP-
based embedded system. Journal of Real-Time Image Processing 3(4), pp. 233-253.

http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

51

BIOGRAPHICAL INFORMATION

Kenan Modi received his Bachelor of Engineering in Electronics Engineering from

Mumbai University in 2009. He enrolled in Master of Science in Electrical Engineering program

at University of Texas at Arlington in 2009. He worked as Graduate Research Assistant in

Transportation and Instrumentation Lab from August 2010. He will be receiving his Master of

Science in Electrical Engineering degree in August 2011.

