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ABSTRACT

A DATA-INTEGRATED SIMULATION-BASED OPTIMIZATION APPROACH

FOR NURSE-PATIENT ASSIGNMENT

Publication No.

DURAIKANNAN SUNDARAMOORTHI, Ph.D.

The University of Texas at Arlington, 2007

Co-Supervising Professors: Dr. Victoria C. P. Chen, Dr. Jay M. Rosenberger

This research develops a novel data-integrated simulation to evaluate nurse-patient

assignments (SIMNA) based on a real data set provided by BaylorRegional Medical Center

(Baylor) in Grapevine, Texas. Tree-based models and kernel density estimation were utilized

to extract important knowledge from the data for the simulation. Classification and Regres-

sion Tree models, data mining tools for prediction and classification, were used to develop

five tree structures: (a) four classification trees, from which transition probabilities for nurse

movements are determined; and (b) a regression tree, from which the amount of time a nurse

spends in a location is predicted based on factors such as theprimary diagnosis of a patient

and the type of nurse. Kernel density estimation is used to estimate the continuous distribution

for the amount of time a nurse spends in a location. Results obtained from SIMNA to evaluate

nurse-patient assignments in medical/surgical unit I of Baylor are discussed. With the aid of

SIMNA, in addition to evaluating assignments at the beginning of a shift, two policies named

OPT and HEU are introduced to make nurse-patient assignments for patient admits during a

vi



shift. Results from fifty problems created with different initial assignments to evaluate the

policies are presented.
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CHAPTER 1

INTRODUCTION

1.1 Nurse Shortage

The health care system in the United States has a shortage of nurses. In 2000, accord-

ing to the U.S. Department of Health and Human Services (DHHS), the national shortage for

registered nurses was 110,000 or 6%. DHHS anticipates that the shortage will grow relatively

slowly until it reaches 12% around 2010. From then, it is expected to worsen at a faster rate

and reach a 20% shortage by 2015. A shortage of 3% or more was observed in 30 states during

2000, and similar shortages are predicted to occur in 44 states by 2020 [42]. These statistics

show that the severity of this shortage is widespread. On theother hand, the need for health

care keeps increasing due to aging baby boomers [1] and elderly patients [2]. As a consequence

of the nurse shortage, it is natural to expect issues such as job burnout and poor patient care

[5]. Considering this severe shortage, a careful planning ofnurse resources is needed. Nurse

planning typically has four stages;nurse budgeting, nurse scheduling, nurse reschedulingand

nurse assignment. Among these stages, nurse assignment is a crucial stage in which a charge

nurse assigns each nurse to a set of patients. In an attempt toease the health care system from

the burden of the nurse shortage and standardize nurse workload, California has set a limit

on the number of patients that can be assigned to nurses at thesame time [20]. Such restric-

tions may reduce nurses’ workload, but will unlikely resolve the issue because differences in

workload among nurses depend on the set of patients to which anurse is assigned. Thus, in ad-

dition to limiting the number of patients per nurse, it is important to optimize the nurse-patient

assignments for a balanced workload. In the literature, most of the relevant research focuses

only on solving issues in nurse budgeting, nurse rostering and nurse scheduling methodolo-

1
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gies [3, 19, 44, 50, 58, 84, 9, 7, 11, 38]. By contrast, our research develops a data-integrated

simulation to evaluate nurse-patient assignments (SIMNA) that utilizes patterns in real a data

set provided by Baylor Regional Medical Center to balance workload.

1.2 Simulation States

In traditional stochastic simulation models, transition probabilities are obtained either

subjectively or by looking at all possible combinations of the levels of the simulation state

variables. If the system under consideration is complex, such as nurse movement, then a sub-

jective approach is unlikely to be accurate, and an approachusing all possible combinations of

the states will be impractical. In the past, in order to reduce the number of simulation variables,

factorial designs and screening methods were used [16, 26, 67]. Even after eliminating some

of the variables, a few remaining variables could lead to a huge number of combinations for

the simulation. For instance, six categorical variables with ten categories each will lead to a

million possible states in the simulation. Obtaining accurate transition probabilities for such a

huge simulation model is still difficult. In this research, using data from Baylor Regional Med-

ical Center (Baylor) in Grapevine, Texas, we present a new methodology to reduce the number

of combinations and find transition probabilities for stochastic simulation models. Tree-based

models and kernel density estimates were utilized to extract important knowledge about the

workload of nurses from an encrypted data set provided by Baylor for four care units. The

four units include two medical/surgical units, one mom/baby unit, and one high-risk labor-

and-delivery unit. Classification and Regression Trees [17],a data mining tool for prediction

and classification, was applied to the Baylor data to develop five tree structures: (a) four clas-

sification trees, from which transition probabilities for nurse movements are determined; and

(b) a regression tree, from which the amount of time a nurse spends in a location is predicted

based on factors such as the primary diagnosis of a patient and the type of nurse. From a
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methodological perspective, the core of this research was building an efficient simulation that

includes embedded Classification and Regression Trees (CART) to determine transitions of the

simulation state. It statistically reduces the simulationstate space. To the best of our knowl-

edge, utilizing tree-based models to extract the logic of the system, reduce the complexity of

the system, and ultimately drive a simulation has not previously been published. Simulation

models developed with this approach will be much more representative of actual systems and

more efficient than those that consider all possible combinations.

Following are three major contributions made in this dissertation:

• This research introduces a novel approach, discussed in chapter 3, to the simulation

community for constructing efficient simulation models based on data mining. This way

of simulation modeling avoids misrepresentation of systemdynamics and characteristics

because it is entirely based on the pattern learned from a real data set collected from the

system over a long period of time. Moreover, this approach reduces simulation states

and is consequently more efficient to run.

• This research introduces a tool, discussed in chapter 4, to evaluate nurse-to-patient as-

signments and enable decisions in real time. At Baylor, priorto a shift, the decision to

hire agency nurses is determined by nurse supervisors, who assess whether the set of

scheduled nurses is sufficient for that shift. The SIMNA model can aid them in their

decisions by providing a tool to test nurse-to-patient assignments.

• This research introduces an efficient policy, discussed in chapter 5, to obtain nurse-

patient assignments of new admits during a shift. Traditionally, a nurse who has the

least number of patients or who had the least workload until the instance of arrival would

get the newly-admitted patient. This approach could worsenthe imbalance as future

workload is totally ignored. The new policy which considersthe past as well as the

expected future and is likely to reduce the imbalance.
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The rest of this dissertation is organized as follows: In Chapter 2, a literature review on

nursing research and the contributions of this research aregiven. A brief introduction on data

and notation, tree structures used to build the simulation model, kernel density estimation, and

the simulation structure are given in Chapter 3. Chapter 4 presents four different assignment

policies and test results from SIMNA for a set of nurse-patient assignments prior to a shift

in medical/surgical unit I. Chapter 5 introduces an efficientpolicy to assign a newly-admitted

patient during a given shift. In Chapter 6, a discussion on sixpossible areas for future work is

provided.



CHAPTER 2

LITERATURE REVIEW AND CONTRIBUTION

2.1 Literature Review

There are three major components in this research, i.e, nurse planning, data mining, and

simulation modeling. This chapter gives a brief literaturereview on each of these topics.

2.1.1 Nurse Planning

Nurse planning typically has four stages: nurse budgeting,nurse scheduling, nurse

rescheduling, and nurse assignment. In the literature, most of the relevant research focuses

on the first three stages of planning.

In nurse budgeting: Kao and Queyranne [48] showed that a single-period demand es-

timate gives a good approximation for nurse budgeting cost.Trivedi [77] used mixed-integer

goal programming to optimize the expenses for nurse personnel. Kao and Tung [49] used a lin-

ear programming-based approach to assess needs for regular, overtime, and agency workforce

levels for a given time period.

In nurse scheduling: Warner and Prawda [85] optimized nurseschedules by formulating

a mixed-integer quadratic programming problem. Later, Warner [84] formulated and solved

another multiple-choice math programming scheduling problem incorporating nursing prefer-

ences. Miller et al. [58] minimized an objective function that balanced the trade-off between

staffing coverage and preferences of nurses. Burke, Cowling and Caumaecker [19] and Burke,

Caumaecker and Petrovic [18] used a combination of tabu search, genetic algorithm, and steep-

est descent improvement heuristics to solve a nurse rostering problem. Aickelin and Paul [4]

formulated the nurse scheduling as an integer programming problem and compared solutions

5
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from different algorithms using statistical techniques. Azaiez and Sharif [7] computerized the

nurse-scheduling problem for Riyadh Al-Kharj hospital (in Saudi Arabia) using a 0-1 goal pro-

gramming that incorporated nurses’ preferences and hospital objectives. Wong and Chan [87]

introduced a probability-based ordering method for a nurserostering problem that considered

twelve nurses. It reported its solution time as half a second. Beddoe and Petrovic [11] used

genetic algorithm to solve another nurse rostering problemby considering violations made in

prior rosters. Gutjahr and Rauner [38] used ant colony optimization to schedule nurses for four

weeks among different hospitals in a region.

In nurse rescheduling: Benton [13] showed how the scheduled nursing scenario changes

when the patient acuity and number of patients change. Waltsand Kapadia [83] developed a

patient classification system to redistribute nursing personnel across different care units based

on patient acuity. Bard [10, 9] formulated a nurse rescheduling integer programming problem

and solved it using branch and price considering the resource shortage, demand drop, and nurse

preferences. CDHS [20] required health care providers to maintain certain nurse-to-patient

ratios for improving quality of care. Vericourt and Jennings [81], using a queuing approach,

showed that same set of ratios for different sizes of care units lead to inconsistent amounts of

care. Alternatively, they proposed a heuristic-based policy to provide better care. However,

their model allowed nurses to serve unassigned patients, which is discouraged in practice for

maintaining continuity of care.

In nurse assignment: Mullinax and Lawley [59] formulated and solved an integer pro-

gramming problem using heuristics to assign nurses to patients by balancing workload for

nurses based on patient acuity in a neonatal intensive care.Punnakitikashem et al. [62] for-

mulated and solved a two-stage stochastic integer programming nurse assignment problem to

minimize excess workload of nurses. None of the methods discussed above provides a tool

to evaluate nurse-patient assignments to make decisions inreal time. Also, other methods did
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not use real data to reflect the real system as extensively as the approach presented in this

dissertation.

2.1.2 Data Mining

Data Mining can be broadly classified into two groups: supervised learning and unsu-

pervised learning. In supervised learning, an outcome variable is present to guide the learning

process. Whereas, in unsupervised learning or clustering, one wants to observe only the fea-

tures and have no measurements of the outcome. Data Mining can be viewed as statistical

learning from data or more generally as an approach that seeks to uncover patterns in data.

Typically, learning could be an outcome measurement, quantitative (like the amount of time

spent by nurses in a given location) or categorical (like different locations a nurse visits), that

one wants to predict based on set of features (like type of thenurse, diagnosis of the patient,

and time of the day) if available [40]. Supervised learning is the subject of interest in this dis-

sertation as we deal with predicting the time spent and location for nurses. Regression, kernel

methods, tree based models, neural networks, and support vector machines are some popu-

lar supervised learning methods. Regression methods are oneof the traditional tools used for

prediction [60, 40, 82]. Multivariate Adaptive Regression Splines (MARS), a spline based pre-

diction model [33] was recently applied to different prediction problems [25, 78, 24, 70, 61].

Neural networks, a nonlinear statistical model [63, 41], often represented by a network dia-

gram, can be used for prediction or classification. Le Cun et al. [55] applied neural networks

to identify handwritten zip code digits. Cervellera, Chen, and Wen [21] and Cervellera, Wen,

and Chen [23] approximated stochastic dynamic programming value functions of an inventory

forecasting problem and a water reservoir problem with neural networks. Classification and

Regression Trees [17], a data mining tool for prediction and classification, is used in this re-

search for its applicability to regression and classification problems, and its readily usable tree

structures in simulation.
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2.1.3 Simulation Modeling in Health Care

Studying industrial systems using simulation was prevelant as early as the late 1950’s and

early 1960’s. Youle et al. [88] and Clementson [27] discuss simulations of different industrial

processes available at that time. In health care, simulation modeling has been used to study a

wide range of problems. Bailey [8] and Kachhal et al. [47] studied patient queues and waiting

times. Smith and Warner [73], Lim et al. [56], Hancock and Walter [39] studied patient

admission and its impact. Zilm et al. [90] and Dumas [29, 30] modeled and analyzed patient

bed planning and utilization under different scenarios. Kumar and Kapur [53], Draeger [28]

and Evans et al. [32] evaluated nurse schedules for the emergency care department. In recent

years, Zenios et al. [89], Kreke et al. [52], and Shechter et al. [66] utilized simulation models

to study organ allocation systems. A comprehensive review of health care simulation models

can be found in Klein et al. [51] and Jun et al. [46]. In the literature, most of the health

care staffing simulations analyzed only emergency departments in hospitals. Moreover, all

the simulation models in the literature, both deterministic and stochastic, were modeled based

on the knowledge of experts. If the system under consideration is complex, such as nurse

movement in hospitals, then it is impossible even for the experts to comprehend the intricacies

of the system by observation. Whereas, the simulation modeling technique introduced in this

research captures the system dynamics from a real data set collected from the system and

requires only minimal input from the experts.

2.2 Contribution

There are three major contributions from this dissertation:

• This research introduces a novel approach to the simulationcommunity for constructing

efficient simulation models based on data mining. This way ofsimulation modeling

avoids misrepresentation of system dynamics and characteristics because it is entirely



9

based on the pattern learned from a real data set collected from the system over a long

period of time. Moreover, this approach reduces simulationstates and is consequently

more efficient to run.

• This research introduces a tool to evaluate nurse-to-patient assignments and enable de-

cisions in real time. At Baylor, prior to a shift, the decisionto hire agency nurses is

determined by nurse supervisors, who assess whether the setof scheduled nurses is suf-

ficient for that shift. The SIMNA model can aid them in their decisions by providing a

tool to test nurse-to-patient assignments.

• This research introduces an efficient policy to obtain nurse-patient assignments of new

admits during a shift. Traditionally, a nurse who has the least number of patients or who

had the least workload until the instance of arrival would get the newly-admitted patient.

This approach could worsen the imbalance as future workloadis totally ignored. The

new policy considers the past as well as the expected future and is likely to reduce the

imbalance.



CHAPTER 3

DATA-INTEGRATED SIMULATION

3.1 Data Description

At Baylor, each nurse wears a locating device that transmits data to a repository, where

the data automatically expire after one month. Baylor provided data for this research from four

care units: Medical/Surgical unit I, Medical/Surgical unit II, Mom/Baby unit, and High-Risk

Labor unit. Thesenurse datacontain information on month, day, shift, time, location, nurse,

nurse type and time spent for the location visited by the nurse. Baylor also providedpatient

data, which contain information on admit date, discharge date, room number and diagnosis

code for each patient. These two data sets were merged by matching the date and location

information and are referred to as themerged data. The resultingmerged datahave all the

variables from the nurse and patient data sets. To preserve the confidentiality of nurses, patients

and the medical center, an encryption code using the U16807 method [54] was developed and

employed to the data before our analysis. U16807 method was chosen for encryption because

of its efficiency to handle cycling. An example for date and location variables in our data before

and after encryption is shown in Table 3.1.

Table 3.1. Encryption Example

Variable Before After
Date 4/5/04 2/15/73622

Room 442 704

10
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Two new variables were created to hold information on the previous two locations visited

for each location entered by nurses to predict patterns in their movements. In a related research,

presented in Sundaramoorthi, Chen, Rosenberger, Kim, and Behan [76] and Sundaramoorthi,

Chen, Kim, Rosenberger and Behan [74], seven variables were created to hold information

on previous seven locations. The simulation models developed with seven previous locations

were found to overfit the pattern based on movements and henceinsensitive to other practically

important variables. For this reason, unlike Sundaramoorthi, Chen, Rosenberger, Kim, and

Behan [76] and Sundaramoorthi, Chen, Kim, Rosenberger, and Behan [74], the simulation pre-

sented here includes location variables that specify only two previous locations and the current

location to avoid overfitting patterns based purely on nursemovements. Furthermore, two new

variables were created to indicate the acuity of patients and nurse-patient assignments. Four

levels of acuity were considered depending upon the amount of care received by the patients.

To create nurse-patient assignment variable, it is assumedthat the nurse who spent the most

time in a patient’s room during a shift is the nurse assigned to that patient for that shift. Af-

ter processing the data, medical/surgical unit I, medical/surgical unit II, mom/baby unit, and

high-risk labor-and-delivery unit have about 570,660, 418,683, 315,997, and 210,457 observa-

tions, respectively. Following the conclusions in Sundaramoorthi et al. [75] and further similar

analysis presented in Sundaramoorthi, Chen, Rosenberger, Kim, and Behan [76], the follow-

ing types of variables with their specific levels are considered significant for the methodology

presented here.

1. Location : patient rooms, nurse station, break room, reception desk, and medical room.

2. Nurse Type: registered nurse (RN), licensed vocational nurse (LVN), and nurse aide

(NA).

3. Diagnosis Code : 19 categories covering the range of diagnosis codes, and 2 dummy

categories for empty patient rooms and non-patient locations. See INGENIX [43] for

more details on diagnosis codes.



12

4. Shift: 3 weekday shifts (8 hours each) and 2 weekend shifts(12 hours each).

5. Hour: 24 hour ranges covering a complete day.

6. Assignment: An assigned nurse entering a patient room (1), an unassigned nurse entering

a patient room (0), and a nurse entering any location other than patient rooms (2).

7. Time Spent: Time Spent is the dependent variable that denotes the amount of time a

nurse spends in a given location.

Data from different care units were handled separately as the number of categorical

levels of the considered variables, listed above, differedslightly among different care units.

In this dissertation, we maintain the following notations:XS, XT , XNT , XL, XA, andXD

are the variables representing shift, hour, nurse type, current location, assignment, and primary

diagnosis of the patient in a current location, respectively. NS, NT , NNT , NL, NA, andND

are the number of levels ofXS, XT , XNT , XL, XA, andXD, respectively.XP1L, andXP2L

are the variables representing the two previous locations with XP1L being the latest andXP2L

being the oldest among the two locations visited before any current location.XP1L andXP2L

have the same number of levels (NL) as ofXL. For each nurse,XAL1, . . . ,XALR are the binary

variables indicating patients assigned to her/him in a shift. R is the number of patient rooms

in a care unit.XDL1, . . . ,XDLR are the variables representing primary diagnosis of patients in

rooms1 to R.

3.2 Data Mining for Simulation

3.2.1 Classification and regression trees

Classification and Regression Trees (CART) are data mining tools for prediction and

classification [17, 40]. CART utilizes recursive binary splitting to uncover structure in a high-

dimensional space. CART, on application to a data set, will partition the input space into many

disjoint sets, where values within a set have a more similar response measure than values in

different sets. Salford Systems’ CARTR© software (www.salfordsystems.com) was used to
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obtain our tree structures. In particular, five tree structures were developed: (a) four classifi-

cation trees from which transition probabilities for nursemovement are determined based on

the levels ofXS, XT , XNT , XDL1, . . . ,XDLR, XA, XP1L, andXP2L; and (b) a regression tree

to predict the amount of time a nurse will spend in a location based on the levels ofXS, XT ,

XNT , XL, XD, andXA. A hypothetical regression tree is shown in Figure 3.1(a) toillustrate a

prediction of the amount of time a nurse would spend in a location. At each node of the tree, a

question is asked; a data point that satisfies the question will go left in the branching; and right

if it fails to meet the criterion. Based on the levels ofXS, XT , XNT , XL, XD, andXA, every

data point ends up in one of the terminal nodes of the tree. Twohypothetical classification

trees, one “location type tree” in Figure 3.1(b) and another“location tree” in Figure 3.1(c),

are shown to illustrate the estimation of the probability that a location would be visited by a

nurse. At each node of these trees, similar to the regressiontree, a question is asked; data that

satisfy the question will go left in the branching; and rightif they fail to meet the criterion. The

probability of going to a location type, i.e, unassigned patient room (0), assigned patient room

(1), and non-patient room (2) is obtained from the location type classification tree based on the

levels ofXS, XT , andXNT .

In the “location tree,” built with a specific location type data, depending on the levels of

XS, XT , XNT , XDL1, . . . ,XDLR, XA, XP1L, andXP2L, every data point ends up in one of the

terminal nodes of the tree, where transition probabilitiesare estimated as follows:

p̂(l/j) =
1

n(j)

∑n(j)

i=1
I(i ∈ l), (3.1)

where,j = 1, . . . ,J are the terminal nodes of a “location tree”;n(1), . . . ,n(J) are the numbers

of observations in terminal nodes1, . . . , J , respectively;l = 1, . . . , NL are the levels ofXL,

i.e., the different locations in a given care unit, andI is an indicator function. The number of

terminal nodes (J) differ for each tree. To be precise,J0, J1, andJ2 represent the number of
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(a)

(b)

(c)

Figure 3.1. Tree structures: (a) A Hypothetical Regression Tree, (b) A Hypothetical “Location
Type Tree”, and (c) A Hypothetical “Location Tree”.
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terminal nodes of “location trees” for location types 0, 1, and 2, respectively.JLT represent the

number of terminal nodes of a “location type tree.” For a “location type tree”,l = 0, . . . ,2 are

the levels ofXA, i.e., unassigned patient room (0), assigned patient room (1), and non-patient

room (2).

One useful outcome from using tree-based models is the variable importance scores

that provide information on the influence of each variable topredict a response. Variable

importance scores for all the trees are shown in Table 3.2. Variable importance scores for

the regression trees estimating the amount of time a nurse will spend in a location are given

in the first row. It can be seen that location is the most important variable. Primary diagnosis

and assignment play a relatively more important role in medical/surgical II and high-risk Labor

units than mom/baby and medical/surgical I units, and time (hour) of the day is more important

than shift. Nurse type has about the same magnitude of importance across all the care units.

Variable importance scores for the “location type trees” predicting a nurse′s next location type

are shown in the second row of Table 3.2. It can be observed that nurse type for mom/baby

and high-risk labor units, and time (hour) of the day for medical/surgical I & II units are the

most important factors to predict the location type. Similar to the regression trees, time (hour)

of the day is more important than shift. Variable importancescores of selected variables in the

“location trees” predicting a nurse’s next location for different location types are shown in the

last three rows of Table 3.2. It can be seen that the previous locations are the most important

variables to predict the next location. Once again, time (hour) of the day is more important

than shift. Variable importance scores of the variablesXAL1, . . . ,XALR andXDL1, . . . ,XDLR

in the “location trees” are not presented here to make the table concise. As mentioned earlier,

it is impossible even for a health care expert to observe all these intricate and subtle differences

in the system without using a tool like CART.

While growing the trees, 10-fold cross validation was used for testing; class probability

and least squares splitting rules were used for creating branching decisions of classification
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trees and regression trees, respectively. Prior probabilities of about 0.70 and 0.30 were used

for assigned patient rooms (1) and non-patient rooms (2) as the classification system assumes

70% direct care and 30% indirect care for making nurse-patient assignments. Developing

theories and models for justifying the choice of testing, splitting rules and prior probabilities

for data-integrated simulations would be an interesting direction for future research.

3.3 Estimation of Time Spent Distribution

In classical regression tree predictions, the mean of each terminal node is used as the

predicted value. In this research, to better reflect the actual distribution, for each terminal node

of the regression trees, kernel density estimation (KDE) isused to estimate the probability

density function for Time Spent (Y ) by a nurse (under the conditions specified by that terminal

node) in a particular location. Assume we haven(j) independent observationsy1, . . . , yn(j)

for the random variableY (j) in the terminal nodej. Let K(·) be a kernel function. Then the

kernel density estimator̂fj,h(y) at a pointy is defined by equation (3.2) [72], as follows:

f̂j,h(y) =
1

h×n(j)

∑n(j)

i=1
K

(

yi − y

h

)

, (3.2)

where,h is the bandwidth, which controls the “window” of neighboring observations that

will highly influence the estimate at a giveny. Sheather and Jones plug-in (SJPI) bandwidth

estimates forh are used, as this method is one of the best for optimizing bandwidth ([45, 65,

64]); however, it should be noted that bandwidth selection is not precise and often an “art.”

Tuning of the bandwidths based on our desired criteria is discussed in Section 3.3.2. Random

variablesY (1), . . . ,Y (JR) denote the time spent (Y ) in terminal nodes1, . . . ,JR, respectively.

Kernel density estimates with SJPI bandwidths were obtained for each terminal node of the

regression trees. A typical plot with Gaussian and triangular kernels for each of the four care

units is shown in Figure 3.2.
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Figure 3.2. Kernel density estimates (Solid-Gaussian, andBroken-Triangular)..

3.3.1 Kernel choice

Kernel functions include uniform, Gaussian, triangular, Epanechnikov, quadratic, and

cosinus. Gaussian and triangular kernels were chosen for this research as they are the most

common kernels among modelers. Moreover, it is relatively easy to draw samples from Gaus-

sian and triangular distributions, which is required for sampling the time spent random variable.

SJPI bandwidth estimates [65] were calculated for each terminal node of the regression tree us-

ing SAS R©. Figure 3.2 and the normal probability plots in Sundaramoorthi et al. [75] show that

the time spent data have a long right tail, and a major portionof the data is concentrated near the

left end of the distribution. Gamma distributions providedinadequate density estimates, moti-

vating the use of KDE. To assess how well KDE represents the time spent distribution, 100,000

realizations of time spent data were generated from Gaussian and triangular kernel density es-



18

timates. The simulated data were compared with the actual data in four different ranges, i.e.,

(0, M/2], (M/2, M ], (M , (M + M/2)], ((M + M/2), ∞), where,M is the median of the

actual data. Results from 100,000 simulated realizations ofGaussian and triangular kernels are

shown in Table 3.3. There were 181, 109, 123 and 49 terminal nodes in the regression trees of

medical/surgical I, medical/surgical II, mom/baby and high-risk labor units, respectively. The

table shows that the triangular kernel wins more often than the Gaussian kernel irrespective of

the care units and ranges. Among all the competitions i.e.,JR × 4 competitions, the triangular

won 75%, 80%, 82% and 78% of the competitions in medical/surgical I, medical/surgical II,

mom/baby and high-risk labor units, respectively. A terminal nodewin was considered to be

achieved if a kernel managed to win at least three ranges out of the four considered. Both

the kernels were considered to betied if they won two ranges each. The results on terminal

node wins shown on the last two rows of Table 3.3 for each care unit further indicate that the

triangular kernel is a better choice to model the Baylor data.

3.3.2 Bandwidth tuning

The accuracy of estimates depends more on choosing an appropriate bandwidth than

on the choice of kernels [31, 71]. Bandwidth selection methods, including SJPI bandwidth

estimates [65], try to find the optimal bandwidth that compromises a tradeoff between over-

smoothness and undersmoothness of the estimated density. After obtaining bandwidths, we

can decide to either decrease or increase the bandwidth sizedepending on the knowledge of

the system. Data used in this project were collected over more than a six-month period and

have about quarter to half a million observations for each care unit. With data collected over

months, the different possible characteristics of the Baylor system will be well reflected in the

simulation if the bandwidths are tuned to prefer a less smooth density estimate that reflects the

data more accurately. In this research, if the fraction of simulated realizations in the ranges

given in the previous section goes beyond± 0.015 of the actual fraction of data, the bandwidth
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was iteratively decreased by one until this criterion was met. For example, the ninth terminal

node of medical-surgical unit I shown in Table 3.4 has realizations that violated the± 0.015

limit. After forty-four iterations of bandwidth tuning, all four ranges have fractions within the

limit. This leads to a change of bandwidth at this particularterminal node to 8.46 from 52.46

and thus yields a less smooth kernel density estimate that ismore representative of realizations

of the time spent data.

3.4 Data-driven Simulation Model

To drive a nurse activity simulation, three essential questions are asked: (1) Which lo-

cation type will a nurse go to next given her nurse type, shift, and time (hour) of the day? (2)

Where will a nurse go next given her two past locations, next location type, shift, hour, nurse

type, assignments, and diagnoses of all the patients? (3) How much time will she spend there?

After an initial simulation run in which nurses visit their assigned patients for an initial assess-

ment, transition probabilities obtained by equation (3.1)from the location type and location

trees determine the next location a nurse will visit. Once a location type and in turn a location

has been sampled for a given nurse, the amount of time she spends there is determined by a

random sample of time spenty from the kernel density estimate at the appropriate terminal

node in the regression tree. Clock time and the location variables are then updated. The level

of XT is changed if the updated time enters a new category. The levels of variablesXS and

XNT associated with a nurse remain unchanged throughout the shift. This process of sampling

location type, location, and time spent is repeated until the shift ends.

Traditionally, in stochastic simulations, transition probabilities are obtained either sub-

jectively or by looking at all the possible combinations of variable levels. In practice, simula-

tion modelers combine states by making a variety of assumptions on their models. For instance,

suppose a simulation expert were to model a system using a queuing network with one hun-
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dred servers. To model the system accurately, the modeler would need to determine whether

the service times of each pair of servers were independent. This would require ten thousand

tests of independence. If multiple servers were found to be dependent, then the modeler would

have to group the servers into sets in which the servers are dependent. Then, the modeler

would have to develop enormous multivariate distributionsfor each group that may consider

tens of variables. In practice though, the modeler would likely make assumptions about the

independence of these variables to limit the dimensionality of the multivariate distributions. If

the system under consideration is complex, such as the care units in Baylor, then a subjective

approach is unlikely to be accurate, and it will be impractical to implement an approach using

all possible combinations of the levels of the simulation variables. In all possible combinations

approach, the number of possible combinations (NPC) grows exponentially with the number

of variables. In our problem, there areNS×NT×NNT combinations, denoted asNPClt, for

sampling a location type andNS×NT×NNT×NA×NL
2×ND

R×2R combinations, denoted as

NPCl, for sampling a location. On the other hand, simulation models developed using trees,

discussed in Section 3.2.1, require onlyJLT terminal nodes for sampling a location type andJ0

+ J1 + J2 terminal nodes for sampling a location based on the patternsextracted from the data.

The more efficient the simulation, the more useful it will be for making real-time decisions.

For example, prior to a shift, a charge nurse will determine whether the set of scheduled nurses

is sufficient for the shift. If there is a shortage, a nurse supervisor will call a nurse agency to

hire nurses for that shift. The simulation model can assist in this decision provided its run time

is sufficiently fast. Differences betweenNPClt andJLT , NPCl andJ0 + J1 + J2 given in Ta-

ble 3.5, demonstrate that our approach is significantly moreefficient. All locations in the care

units under consideration can be visited from any other location of that care unit. Even though

some of these combinations of locations are unlikely to be visited in succession, without using

a data mining tool like trees, it is not easy to justify ignoring or combining them.
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Table 3.2. Variable importance scores for regression and classification trees

Tree Type Med/Surg I Med/Surg II Mom/Baby High-Risk Labor
Regression Tree

XL 100.00 100.00 100.00 100.00
XD 11.20 60.02 7.54 70.42
XNT 17.17 17.70 16.76 14.78
XT 29.76 13.83 24.48 8.64
XS 10.35 6.82 9.82 4.75
XA 13.43 73.03 10.25 65.36

“Location Type” Tree
XNT 41.92 70.66 100.00 100.00
XT 100.00 100.00 40.60 16.47
XS 33.46 95.07 15.59 4.88

“Location” Tree
(XA = 1)

XP1L 100.00 68.36 100.00 100.00
XP2L 67.21 100.00 72.95 76.26
XNT 0.86 3.11 7.63 2.75
XT 4.52 8.16 17.84 14.97
XS 3.03 3.22 11.96 12.08

“Location” Tree
(XA = 2)

XP1L 100.00 100.00 100.00 100.00
XP2L 52.56 48.53 66.37 82.15
XNT 3.08 10.68 3.42 34.14
XT 5.79 6.17 4.10 4.57
XS 2.26 3.39 1.39 2.12

“Location” Tree
(XA = 0)

XP1L 100.00 96.47 100.00 100.00
XP2L 65.35 100.00 68.35 94.09
XNT 5.50 11.69 6.33 9.54
XT 6.59 16.22 9.57 28.22
XS 2.38 6.67 2.81 10.87
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Table 3.3. Performance of Gaussian and triangular kernels

Care Unit Gaussian Triangular Tie
MED/SURG I
JR=181
Range I wins 26 155
Range II wins 45 136
Range III wins 77 105
Range IV wins 36 145
% wins 25% 75%
Ter. node wins 13 135 33
% Ter. node wins 7% 75% 18%

MED/SURG II
JR=109
Range I wins 15 94
Range II wins 24 85
Range III wins 31 78
Range IV wins 18 91
% wins 20% 80%
Ter. node wins 7 92 10
% Ter. node wins 6% 85% 9%

MOM/BABY
JR=123
Range I wins 13 110
Range II wins 25 98
Range III wins 31 92
Range IV wins 18 105
% wins 18% 82%
Ter. node wins 9 104 10
% ter. node wins 7% 85% 8%

HIGH-RISK
JR=49
Range I wins 9 40
Range II wins 13 36
Range III wins 19 30
Range IV wins 3 46
% wins 22% 78%
Ter. node wins 3 38 8
% ter. node wins 6% 78% 16%
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Table 3.4. Bandwidth tuning for terminal node 9 of medical/surgical unit I

Bandwidth Sim. Actual
Tuning Fraction Fraction Diff.

BEFORE
h=52.46
range I 0.070110 0.278986 0.208876
range II 0.083750 0.244842 0.161092
range III 0.075310 0.086039 0.010729
range IV 0.770830 0.390133 -0.380697

AFTER
h=8.46
range I 0.266580 0.278986 0.012406
range II 0.234510 0.244842 0.010332
range III 0.094890 0.086039 -0.008851
range IV 0.404020 0.390133 -0.013887

Table 3.5. Number of levels and combinations for different care units

Variable Care Unit
Level Med/SurgI Med/SurgII Mom/Baby High-Risk
NS 5 5 5 5
NT 24 24 24 24
NNT 4 8 8 7
ND 19 21 10 8
NL 34 32 52 52
R 26 26 32 10
NA 3 3 3 3
NPClt 480 960 960 840
JLT 145 259 322 196
NPCl > 1046 > 1047 > 1047 > 1017

J1 397 440 271 69
J2 1816 1554 1194 96
J0 262 268 118 38



CHAPTER 4

SIMNA EXPERIMENTS

4.1 Assignment Policies

A C++ program was written to build the tree structures given byCART and to run the

simulation procedure explained in Section 3.2 for medical/surgical unit I with a thousand dif-

ferent random seeds. A test problem with four nurses and twenty one patients was considered.

SIMNA tested four assignment policies, i.e., a clustered assignment and three assignments

from Punnakitikashem et al. [62]–the random assignment, the heuristic assignment, and the

optimal assignment using Benders’ decomposition on a stochastic programming model. In the

heuristic assignment, when the number of nurses divides into the number of patients evenly,

all of the nurses get the same number of patients. The patientwith the highest expected direct

care time is arbitrarily assigned to a nurse. The patient with the second highest expected direct

care time is then arbitrarily assigned to a second nurse, andso on. After assigning one patient

for each nurse, in the second cycle of assignments, the patient with the lowest expected direct

care time is assigned to the first nurse. The patient with the second lowest expected direct care

time is assigned to the second nurse, and so on. This process of assignment is repeated until

all the patients are assigned. In the test problem, each nurse was assigned to five patients by

the heuristic method and the left over patient was arbitrarily assigned to the first nurse. In the

clustered assignment, patients are assigned by location; that is, patients in consecutive rooms

are assigned to the same nurse. In the test problem, the nurseassigned to the cluster closest

to the nurses’ station was assigned six patients, while the other nurses were assigned to five

patients. Finally, the optimized assignment from Punnakitikashem et al. [62] seeks to balance

24
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the expected direct and indirect care provided by RNs. It should be noted that indirect care

cannot be quantified from our data and is not represented in our simulation.

4.2 Test Results

The tested assignments and their results are shown in Tables4.1 and 4.2. Total assigned

direct care (TADC), total unassigned direct care (TUADC), total direct care (TDC), total time

spent in non-patient locations (TNPL), and the walking time(Walk Time) are shown in the last

five columns. TADC is the total duration of time a nurse spent with her assigned patients in

the entire shift. TUADC is the total duration of time a nurse spent with unassigned patients.

TDC is the sum of TADC and TUADC. TNPL is the the total time spentat locations other than

patient rooms (e.g., the medical supply rooms, the chartingrooms, the nurses’ station, etc). In

order to assess the balance of workload, we consider the ratios of maximum to minimum values

for TADC, TDC, TDC for RNs, and walking time. Ratios closer to one indicate better balance.

These ratios are given in Table 4.3. For balancing TADC, the heuristic assignment performs

best and the random assignment performs worst. For balancing TDC, the heuristic assignment

is worst, and the other three are similar to each other. For balancing TDC for RNs, the heuristic

and optimal assignments perform best, and the random assignment performs worst. Finally, for

balancing walking time, the clustered assignment performsbetter than the others. In particular

for the optimal assignment, the sum of all nurses’ TADC and TDC is higher than the other

assignments, while the total walking time of the optimal assignment is less than that of the

other assignments. Overall, the random assignment, not surprisingly, is the least desirable.

Prior to a shift, SIMNA results can aid the charge nurse in determining appropriate nurse-

to-patient assignments. If the direct care time and balancein workload are not satisfactory, a

nurse supervisor can call a nurse agency to hire nurses for that shift. Thus, SIMNA upon instal-
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Table 4.1. SIMNA results for Med/Surg I from RANDOM and HEURISTIC initial assignments

Assigned Assigned Walk
Assignment Patient Patient TADC TUADC TDC TNPL Time

Policy Locations Diagnoses (min) (min) (min) (min) (min)
RANDOM
Nurse1 (LVN) 4, 6, 10, 1, 6, 16, 92 119 211 158 116

17, and 18 8 and 14
Nurse2 (RN) 3, 13, 15, 9, 16, 13, 152 127 279 118 87

19, and 26 12 and 15
Nurse3 (RN) 1, 7, 14, 14, 10, 3, 220 84 304 94 87

16, and 20 4 and 8
Nurse4 (RN) 2, 5, 8, 13, 8, 3, 185 127 312 83 88

9, 23, and 24 6, 8, and 15
Total 651 459 1107 455 379
HEURISTIC
Nurse1 (LVN) 9, 10, 13, 6, 16, 16, 122 74 196 173 115

14, 23, and 26 3, 8, and 15
Nurse2 (RN) 5, 7, 15, 8, 10, 13, 209 95 304 93 87

16, and 20 4 and 8
Nurse3 (RN) 2, 4, 6, 13, 1, 6, 163 149 312 83 89

8, and 19 3 and 12
Nurse4 (RN) 1, 3, 17, 14, 9, 8, 192 126 318 83 84

18, and 24 14 and 15
Total 688 446 1132 434 376

lation in hospitals will aid charge nurses and management tomake decisions about assignments

and the nurse work force based on the dynamics learned from the system itself.
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Table 4.2. SIMNA results for Med/Surg I from CLUSTER and STOCHASTIC PROGRAM-
MING initial assignments

Assigned Assigned Walk
Assignment Patient Patient TADC TUADC TDC TNPL Time

Policy Locations Diagnoses (min) (min) (min) (min) (min)
CLUSTER
Nurse1 (LVN) 1, 4, 14, 14, 1, 3, 194 16 210 171 102

17, 20, and 24 8, 8, and 15
Nurse2 (RN) 3, 6, 8, 9, 6, 3, 172 139 311 83 90

10, and 13 16 and 16
Nurse3 (RN) 2, 16, 19, 13, 4, 12, 125 158 283 106 94

23, and 26 8 and 15
Nurse4 (RN) 5, 7, 9, 8, 10, 6, 107 195 302 89 94

15 and 18 13 and 14
Total 600 520 1107 451 381
STOCHASTIC
PROGRAMMING
Nurse1 (LVN) 10, 13, 14, 16, 16, 3, 164 45 209 172 104

16 and 17 4 and 8
Nurse2 (RN) 3, 7, 20, 9, 10, 8, 222 85 307 101 75

24 and 26 15 and 15
Nurse3 (RN) 1, 2, 4, 14, 13, 1, 193 120 313 82 89

6, 8, and 23 6, 3, and 8
Nurse4 (RN) 5, 9, 15, 8, 6, 13, 115 187 302 89 94

18 and 19 14 and 12
Total 696 441 1132 446 363

Table 4.3. Maximum-to-minimum ratios for TADC, TDC, and Walk time

TDC Walk
Assignment Policy TADC TDC (RNs) Time
Random 2.39 1.48 1.12 1.33
Heuristic 1.71 1.62 1.05 1.37
Cluster 1.81 1.48 1.10 1.13
Stochastic Prog. 1.93 1.50 1.04 1.39



CHAPTER 5

SIMULATION VALIDATION AND SIMULATION-BASED OPTIMIZATION

5.1 Simulation Validation

Interestingly, it was observed that the “40-20-40” rule [57, 68] still holds well in our

data-integrated simulation modeling. According to this rule, 40% of the effort in a simulation

project is devoted to understanding, conceptualizing the system, and formulating the model;

20% of the effort is devoted to make the actual simulation model, and the last 40% of the

effort includes analysis, calibration and validation of the simulation model. Most of the first

and last 40% of the project, i.e., understanding, formulation, conceptualization, calibration and

validation, are conducted through data mining. In this chapter, simulation results are compared

with the actual data to illustrate the validity of the simulation model.

Among different steps in the traditional simulation modeling, validation is an important

step in which accuracy of the model is verified by comparing itto the actual system. Depending

on the magnitude of the discrepancy, if needed, the simulation model would be calibrated based

on the insights gained by the modeler from the simulation output analysis. The following were

among several common validation steps performed as part of the validation process in this

data-integrated simulation modeling approach.

1. Tree Structure: The tree structures were printed before the first scenario of simulation

run to ensure accurate building of trees for simulation runs.

2. Shift Duration: TDC, TNPL, and WALK TIME were added for eachnurse to check with

the entire shift duration.

3. Kernel Density: The kernel and bandwidth validations, presented in section 3.3, ensured

a reliable approximation of data in regression trees.

28
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4. Cumulative Density: The cumulative densities of kernel distributions in each terminal

node were printed to check if they were close to one.

The primary objective of this research is to provide a tool toaid charge nurses in making

balanced nurse-patient assignments. In this research, thebalance of workload and performance

of nurses were judged based on performance measures TADC, TDC,TNPL, and WALK TIME

that were introduced in chapter 4 and shown in tables 4.3, 4.1, and 4.2. As part of the main

validation, actual TADC, TDC, TNPL, and WALK TIME of fifteen arbitrarily chosen nurses

were compared with that of simulated data. The fifteen arbitrarily chosen nurses with their

assigned patients’ and shift information were simulated over one thousand different scenarios.

The comparison between mean values of performance measuresfrom a thousand scenarios and

the actual data are plotted in figure 5.1.

Figure 5.1(a) specifically shows the comparison of actual and simulated TADC. In the

TADC comparisons, as well as TDC, TNPL, and WALK TIME comparisons shown in figures

5.1(b), 5.1(c), and 5.1(d) , purple curves represent the mean from the one thousand simulation

scenarios while dark blue curves represent actual data. Theyellow and light blue curves rep-

resent the first and ninty ninth percentiles of the simulation scenarios. Ideally, it is desirable to

have the dark blue curve in between the yellow and light blue curves overlapping with the pink

curve. In TADC comparisons, the mean of the simulation scenarios approximates the actual

data closely by picking up the pattern as well as the magnitude. Among the different perfor-

mance measures used in this research, TADC is the most important as it measures the amount

of assigned direct care provided by nurses and directly impacts patient care and continuity of

care.

Simulated and actual TDCs, shown in figure 5.1(b), compare another important perfor-

mance measure in terms of nurse work load as well as patient care. It can be seen that, the

mean TDC from simulation approximates the pattern of actualdata closely. However, the plots

show that TDC from simulation over-estimates the TDC of actual data. If the objective were to
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predict the TDC of nurses in isolation without any comparison, it would be desired to calibrate

the simulation to reduce the magnitude of TDC. However, this research seeks only the bal-

ance, as shown in table 4.3, by comparing the maximum of a performance to the corresponding

minimum. The resultant max-min ratio will not be altered by the discrepancy in the magni-

tude, neither by over-estimation or under-estimation, as long as the pattern of the performance

measure in simulation matches with the actual data as shown for TDC in figure 5.1(b).

Figure 5.1(c) shows the comparison of actual and simulated TNPL. It can be seen from

the figure that the simulation model provides TNPL that matches the pattern of actual data and

hence provides reliable max-min ratio for TNPL. However, the plots show that TNPL from

simulation under-estimates the TNPL of actual data and should not be used to interpret the

magnitude of TNPL of individual nurses in isolation. Simulated and actual WALK TIME,

shown in figure 5.1(d), compare the performance measure thataccounts for the amount of time

a nurse walks during the entire shift. In this research, a deterministic time is added depending

on the distance between two locations a nurse walks in the simulation. In reality, these walk-

times are stochastic as different nurses at different timeswould spend different amounts of

time walking between the same locations. Figure 5.1(d) shows the comparison of actual and

simulated WALK TIME. It can be observed that simulated WALK TIMEs have less variability

across the nurses. It also shows that the simulation approximates the magnitude of real walking

time closely.

The above discussion shows that performance measures of thesimulation model approx-

imate the pattern of real data, and to a certain extent the magnitude. Hence, it represents the

actual system well enough to arrive at conclusions about thenurse work load balance in terms

of the ratios introduced in table 4.3 without further calibration of the simulation.



31

(a) (b)

(c) (d)

Figure 5.1. Comparison of Actual data with Simulated data: (a) Actual Vs. Simulated TADC,
(b) Actual Vs. Simulated TDC, (c) Actual Vs. Simulated TNPL, and (d) Actual Vs. Simulated
WALK TIME.

5.2 Simulation-based Optimization

In addition to evaluating initial assignments at the beginning of a shift, optimizing the as-

signment of new patient-admits during the shift is another interesting topic that was researched

in this dissertation. Recently, formulating and solving Markov decision problems using a sim-

ulator have become common and successful [37, 15]. A typicalMarkov decision problem

(MDP) would have the following components:

1. State: The “state” describes the status of a system under consideration. For example,

specific values of the shift, the time of day, the nurse type, the current and previous

locations of nurse, the nurse-patient assignments, the patient diagnosis, the patient acuity,

and the patient location variables can be considered as the state that describes the system.

2. Action: Assignment of a newly admitted patient to a nurse is defined to be the “action”

in this research.
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3. Transition Probability: Transition Probabilities determine transitions of the system from

one state to another. Assume an actiona selected in statei transfers the system to state

j with probabilityp(i,a,j). This quantity is an example of a transition probability. Col-

lection of all such transition probabilities for all possible state transitions is required to

capture the dynamics of the system modeled.

4. Policy: A policy helps to take an action based on the state of the system. For example,

when a new patient is admitted during a shift, there could be different policies used to

make the assignment based on the state. A policy that maximizes the sum of TADCs of

nurses, shown in equation (5.4), would increase patient care. Two policies that balance

nurse workload are presented in section 5.2.1 of this chapter.

5. Performance Measure: A performance measure quantifies the performance of a policy.

For a patient care improvement problem, the sum of TADCs of allnurses could be used

to judge the performance of the policy.

In the late 1950’s, a mathematical technique called DynamicProgramming (DP) was

formulated by Bellman that could solve MDPs [12]. Since then,DP has evolved and found

several aplications that it could solve [15, 14, 69, 86, 25, 79, 80, 22, 21, 23]. The theory

and solution technique of DP also evolved all these years. Most of the solution techniques

boil down to either approximating or reducing the Bellman optimality equation (5.1) for a

computationally possible solution.

J∗(i) = mina∈A(i)

[

c̄ (i, a) +
∑‖S‖

j=1
p(i, a, j)J∗(j)

]

∀i ∈ S. (5.1)

where:

1. S is the set of all possible states.

2. A(i) is the set of actions available for statei.

3. J∗s are the unknown optimal values associated with each element in S.
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4. c̄ (i, a) is the immediate expected cost in statei when actiona is selected.

5. p(i,a,j) is the transition probability for the state transition fromi to j when the action a is

selected in statei.

Applying a classical method of solving equation (5.1), for optimizing the assignment of a

newly-admitted patient, is impossible due to the high dimensional state space and unavailability

of transition probabilities. In such situations, when transition probabilities are not available, a

valid simulation model can be utilized to solve equation (5.2) - an equivalent of equation (5.1)-

by the Q-factors method. Refer [37, 14] for a comprehensive review on Q-Factors methods.

J∗(i) = mina∈A(i) [E (c (i, a)) + E (J∗(j))]∀i ∈ S. (5.2)

Equation 5.2 can be further simplified to equation (5.3).

J∗(i) = mina∈A(i)E (c (i, a) + J∗(j))∀i ∈ S. (5.3)

In the new-admit patient-nurse assignment optimization problem, if the objective were

to maximize the sum of TADCs of the nurses for the entire shift,the new-admit patient-nurse

assignment optimization can be expressed as,

J∗(i) = maxa∈A(i)

[

∑N

n=1
TADCn (i, a, i + 1)

]

+ E (J∗(i + 1))∀i ∈ S. (5.4)

In equation (5.4),N is the total number of nurses working in that shift, andTADCn(i, a, i+1)

denotesTADC of nursen from i to the statei + 1 when the next arrival takes place, given

optimal assignmenta for the newly-admitted patient ati. It has to be noted that in equation

(5.4), simplified notationsi and i+1 represent high dimensional states determined by specific

values of shift, time of day, nurse type, current and previous locations of nurse, existing nurse-

patient assignments, patient diagnosis, patient acuity, and patient location variables. The action
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of assigning a newly admitted patient to a specific nurse is represented bya. It should be also

noted that an action is necessary only when a new patient is admitted and not necessarily in all

possible states. Therefore,i = 1, . . . ,l are the states when an action is required. In this notation,

there arel remaining new admits, while solving for the current new-patient admit ini.

As mentioned earlier, with a simulation model available, a computational optimization

technique called Q-Factors is an attractive approach to solve equation (5.4). The fundamen-

tal idea of this approach is to store quantitiesQ(i,a)s called Q-Factors for each state-action

combination and update them based on the progress of the simulation. In the beginning, these

Q-Factors are usually initialized to zero. Then for each action selected, the simulation is al-

lowed to transition to the next state, and based on the performance measure, the Q-Factors are

updated. For the patient care improvement problem, a state-action pair yielding a larger sum

of TADCs of all nurses would be rewarded by increasing the corresponding Q-Factor. State-

action pairs yielding smaller sum of TADCs would be punished by reducing the corresponding

Q-Factors. The same policy of rewarding and punishing has tobe repeated for sufficiently large

number of state-action visits. At the end, action that provided the highest Q-Factor would be

declared as optimum.

The key for achieving the true or near optimum in the Q-Factors method depends on the

choice of the so-called “sufficiently large number” for state-action pair visits. In the problem of

optimizing assignment of newly-admitted patient, the number of state-action pairs grow expo-

nentially due to stochastic arrival of patients (admit time) with unknown probability distribution

for diagnosis and acuity. Such a huge number of state-actionpairs makes it computationally

impossible to have enough simulation scenarios to obtain reliable Q-Factors.

5.2.1 Assignment Policies

Even though increasing patient care is an important objective, in this research it is im-

plicitly assumed that balancing nurse workload will help improve patient care, and hence the
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max-min TADC ratio was chosen to be the performance measure.In addition to the com-

putational issues raised in the previous section, the max-min TADC ratio is not additive and

consequently, the nurse workload balancing problem cannotbe formulated like equation (5.4).

For these reasons, methods like simple enumeration, classical DP, and Q-Factors are ruled out

for this research.

Among the two expected values in equation (5.2), the first oneincorporates the imme-

diate cost (reward) i.e., in a sense, it accounts for the pastand immediate present. The second

expected value, which approximates the future, for a current decision is impossible to ap-

proximate from simulation due to a huge number of state-action pairs. In the nurse-patient

assignment problem, the difficulty boils down to the estimation of TADC(i, a, i + 1). While

solving for optimal assignments ini, it will require huge number of simulation runs to optimize

assignmentsa(i + 1) . . .a(l). For this reason, an alternate policy that groups both the expected

values of equation (5.2) together, represented by equation(5.5), is developed in this research.

It is called OPT referring to its root in Bellman optimality equation.

J∧(i) = mina∈A(i)E

(

(TADC (0, a(0), i) + TADC (i, a, T ))max

(TADC (0, a(0), i) + TADC (i, a, T ))min

)

∀i ∈ S. (5.5)

In equation (5.5),TADCn(0, a(0), i) denotes theTADC of nursen from beginning of the

shift until i, given assignmenta(0) made at the beginning of the shift.TADC(i, a, T ) can be

expanded asTADC(i, a(i), i + 1) + TADC(i + 1, a(i + 1), i + 2)+. . .+TADC(l, a(l), T ).

Where,T is the state of the system at the very end of the shift. It has tobe noted that while

solving for the assignment at statei, the future assignments required to obtainTADC(i +

1, a(i + 1), i + 2)+. . .+TADC(l, a(l), T ) were determined by a heuristic policy referred as

HEU. The HEU policy simply assigns a newly-admitted patientto the nurse who had the least

TADC among all the nurses fifteen minutes prior to a new patient admission. It is assumed in
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this research, and also common in reality, that the time of admit, patient diagnosis, and patient

acuity are known to the decision maker -in this case a charge nurse- at least fifteen minutes

before the actual admission. Therefore, the decision makercan use either HEU by itself or

OPT to decide which nurse would get the new patient.

To analyze the performance of OPT and HEU, fifty problems withdifferent initial states

were considered. Admissions of two, three, four, five, and six patients were considered. The

fifty problems were designed in such a way, shown in table 5.1,to have ten problems for

each shift and ten problems for each number of admits. The number of problems for each

combination of shift and number of new admits were arbitrarily chosen with admit rates, shown

in table 5.2, in consideration. It is determined from patient data that on average there are

nine patient-admits for a given day. While solving an assignment, the future admits were

simulated using a poisson process with the arrival rates, for different time periods in simulation,

determined by the average number of patient admits per day and admit rates for specific time

period shown in table 5.2.

Table 5.1. Fifty Problem Instances

# of New Admits
Shift 2 3 4 5 6

WEEK
Day 2 5 3 0 0
Evening 0 0 2 4 4
Night 7 2 1 0 0

WEEK END
Day 0 0 0 5 5
Night 1 3 4 1 1

For all the fifty problems considered, the empty patient rooms available for new admits

were selected randomly. The number of empty rooms, in a givenproblem, was chosen to
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Table 5.2. Patient Admit Rate

6am to 2pm 2pm to 6pm 6pm to Midnight Midnight to 6am
12% 70% 16% 2%

be the same as the number of new admits. The diagnosis and acuity of patients present at

the beginning of the shift as well as newly-admitted patients were chosen randomly. While

obtaining assignments for these fifty problems, admission times of the patients - for whom

an assignment has to be determined - were chosen arbitrarilyand remained unknown until

fifteen minutes prior to the actual admit. Then the fifty assignments obtained from OPT and

HEU were simulated without other admits to obtain average max-min TADCs for the entire

shift. Assignments from a third random policy, refered as RAND, were also simulated to

judge the degree of improvement that can be achieved using “smarter” policies like HEU and

OPT. Average max-min TADCs from one thousand simulation scenarios, for each of the fifty

assignments, are presented in tables 5.3 and 5.4.

In tables 5.3 and 5.4, the first column represents the probleminstances presented in

table 5.1. The second column presents the average max-min TADCs from the three policies

evaluated. In the third column, the policy yielding the smallest average max-min TADC is

declared as the winner. It can be observed from the third column that OPT won thirty of the

fifty problems while HEU won seventeen of them. Not surprisingly, RAND managed to win

just three of the fifty problems. In the last column, wins are determined by a stricter criterion.

According to that criterion, a win is considered to be achieved only if a policy yielded an

average max-min TADC ratio smaller than the other two policies by at least one tenth - meaning

there was roughly ten percent or greater reduction of workload imbalance compared to the other

two policies. The instances, when OPT, HEU, and RAND yielded ratios that were within one

tenth of each other, were declared as tie. It can be observed from the fourth column that with
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the modified criterion, OPT won seventeen times while HEU wonfive times. RAND policy

won two of the fifty problems. It is clear from these results that HEU and OPT consistently

perform better than RAND.

While considering averages to determine the performance of policies, it is important to

account for the variability associated with each policy. Boxplots are provided in figure 5.2 to

illustrate the spread of data from OPT and HEU policies. Because of outlier scenarios, the scale

of boxplots in figure 5.2(a) is extended leaving it hard for a reader to observe the differences

in the plots from OPT and HEU. In figure 5.2(b), the max-min TADC values above five were

removed to get plots that are comparable. After this removal, OPT and HEU policy had 45,429

and 45,089 max-min TADCs, sufficiently large number of data points to make a comparison of

spread, respectively. One could well argue that, in reality, it is unlikely to have an imbalance of

a magnitude that would result in a value of five or more for max-min TADCs. It has to be noted

that all the fifty problems did not consider balancing nurse-patient assignment at the beginning

of the shift and hence high values for max-min TADCs cannot be ruled out. A high value for

max-min TADCs is further justified by the value obtained for TADC under RANDOM initial

assignments shown in table 4.3. However, individual boxplots from each of the fifty instances,

shown in figures 5.3 to 5.17, are ploted after removal of five orhigher max-min TADCs for

comparability of spread in OPT and HEU data. Specifically, plots in figure 5.3to 5.17, ignoring

RAND policy, show the boxlots of eighteen wins of OPT, five winsof HEU, and twenty seven

ties between OPT and HEU, respectively. Even though these plots are provided just to illustrate

the spread of max-min TADCs, it can be observed that the performance of policies remain the

same with a lesser magnitude for differences between OPT andHEU.

5.2.2 Statistical Significance

In section 5.2.1, performances of OPT, HEU and RAND were analyzed from a practical

stand point of view by comparing the average and spread of max-min TADCs. In that analysis,
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it was found that the OPT policy is the most successful while the RAND policy is the least

successful among the fifty problem instances considered. However, it is necessary to perform

statistical analysis to determine conclusive evidence regarding the difference in performances

among the policies. In order to understand the statistical difference among the policies, 95%

and 99% confidence intervals (CI) were constructed in tables 5.5, 5.6, 5.7, and 5.8. In par-

ticular, tables 5.5 and 5.6 show the confidence intervals forthe mean of RAND - HEU. In

these tables, RAND is declared as the winner if both the upper and lower limits are negative.

The negative limits indicate a higher max-min TADC from the HEU policy compared to the

RAND policy. Similarly, HEU is declared as the winner if both the upper and lower limits

are positive. The instances with zero included in the confidence intervals are declared as ties.

It can be observed from these tables that HEU won thirty-eight of the fifty problem instances

while RAND won just once in 95% confidence intervals. In eleveninstances, the confidence

intervals included zero and hence were declared as Ties. With 99% confidence intervals, HEU

won thirty-four times while RAND winning again just once. Therest of the fifteen instance

ended as Tie between HEU and RAND. From these analysis, as expected, RAND can be safely

concluded as the least desired policy.

In tables 5.7 and 5.8, confidence intervals for the mean of HEU- OPT are shown. In

these tables, the HEU policy is declared as the winner if boththe upper and lower limits are

negative. The OPT policy is declared as the winner if both theupper and lower limits are

positive. With 95% confidence intervals, OPT won fifteen times while HEU won four times

of all the test problem instances. The rest of the thirty-oneinstances ended as Tie between

OPT and HEU. With 99% confidence intervals, OPT won ten times while HEU won two times.

The remaining thirty-eight problem instances were declared as tied as zero was included in the

confidence intervals. It can be viewed that OPT performed at least as good as HEU in forty-six

and forty-eight instances with 95% and 99% confidence intervals, respectively.
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(a) (b)

Figure 5.2. Boxplots of max-min TADCs from OPT and HEU: (a) All 50,000 max-min TADCs
and (b) Max-min TADCs that are less than 5.

The OPT policy considers both the past and the future workload of nurses for a nurse-

patient assignment decision while HEU considers only the past workload. Intutively, assign-

ments obtained from OPT would perform better than HEU if a reliable estimation of future

was used while solving for the assignments with the OPT policy. From our above analyses, not

surprisingly, the OPT policy was found to work better than HEU and RAND policies.
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Table 5.3. Outcome of policy evaluations with two, three, and four patients

# Patients, Av. Ratio Winning ≥ 10%
Shift, Instance Policy Win

2, 1, 1 3.206 3.146 3.149 HEU Tie
2, 1, 2 2.690 2.945 3.295 OPT OPT
2, 3, 1 3.034 3.267 3.183 OPT OPT
2, 3, 2 4.292 4.362 4.361 OPT Tie
2, 3, 3 3.836 4.141 5.310 OPT OPT
2, 3, 4 4.478 5.730 4.469 RAND Tie
2, 3, 5 4.208 4.496 4.290 OPT Tie
2, 3, 6 3.692 3.907 3.949 OPT OPT
2, 3, 7 5.871 5.172 6.586 HEU HEU
2, 5, 1 2.102 2.229 5.511 OPT OPT
3, 1, 1 3.069 3.020 3.709 HEU Tie
3, 1, 2 3.562 3.564 3.863 OPT Tie
3, 1, 3 3.521 3.450 5.412 HEU Tie
3, 1, 4 2.712 2.678 2.988 HEU Tie
3, 1, 5 4.162 3.770 4.706 HEU HEU
3, 3, 1 4.007 4.101 4.432 OPT Tie
3, 3, 2 6.792 5.584 6.660 HEU HEU
3, 5, 1 3.201 3.561 3.318 OPT OPT
3, 5, 2 2.439 2.250 5.050 HEU HEU
3, 5, 3 2.238 2.225 3.188 HEU Tie
4, 1, 1 3.935 4.250 4.790 OPT OPT
4, 1, 2 2.742 3.131 3.867 OPT OPT
4, 1, 3 4.213 4.057 7.123 HEU HEU
4, 2, 1 2.568 3.758 4.186 OPT OPT
4, 2, 2 3.499 3.422 3.320 RAND RAND
4, 3, 1 2.702 3.043 3.411 OPT OPT
4, 5, 1 2.657 2.612 4.391 HEU Tie
4, 5, 2 2.154 2.165 3.474 OPT Tie
4, 5, 3 2.574 2.567 4.402 HEU Tie
4, 5, 4 2.341 2.326 4.382 HEU Tie
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Table 5.4. Outcome of policy evaluations with five and six patients

# Patients, Av. Ratio Winning ≥ 10%
Shift, Instance Policy Win

5, 2, 1 4.093 4.080 3.936 RAND RAND
5, 2, 2 2.881 2.900 8.267 OPT Tie
5, 2, 3 2.946 3.139 3.216 OPT OPT
5, 2, 4 4.000 4.413 6.720 OPT OPT
5, 4, 1 1.972 1.932 4.769 HEU Tie
5, 4, 2 1.844 1.888 3.936 OPT Tie
5, 4, 3 1.924 1.977 3.650 OPT Tie
5, 4, 4 2.084 2.183 5.443 OPT Tie
5, 4, 5 2.034 2.041 5.417 OPT Tie
5, 5, 1 2.601 2.522 5.110 HEU Tie
6, 2, 1 2.635 2.653 3.150 OPT Tie
6, 2, 2 3.183 3.749 4.838 OPT OPT
6, 2, 3 3.864 3.928 5.059 OPT Tie
6, 2, 4 3.309 3.237 3.571 HEU Tie
6, 4, 1 1.872 1.929 6.645 OPT Tie
6, 4, 2 3.017 3.159 10.030 OPT OPT
6, 4, 3 1.846 2.388 4.879 OPT OPT
6, 4, 4 2.468 2.381 8.326 HEU Tie
6, 4, 5 2.409 2.743 16.223 OPT OPT
6, 5, 1 2.505 2.523 5.762 OPT Tie
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Table 5.5. Confidence Intervals for means of RAND-HEU with two,three, and four new in-
coming patients

# Patients, RAND-HEU Winning Policy
Shift, Instance 95% CI 99% CI 95% CI 99% CI

2, 1, 1 -0.241 0.247 -0.317 0.324 Tie Tie
2, 1, 2 0.049 0.651 -0.046 0.745 HEU Tie
2, 3, 1 -0.448 0.280 -0.562 0.394 Tie Tie
2, 3, 2 -0.534 0.532 -0.701 0.698 Tie Tie
2, 3, 3 0.524 1.813 0.322 2.015 HEU HEU
2, 3, 4 -1.938 -0.585 -2.150 -0.373 RAND RAND
2, 3, 5 -0.667 0.254 -0.811 0.399 Tie Tie
2, 3, 6 -0.324 0.408 -0.439 0.523 Tie Tie
2, 3, 7 0.745 2.082 0.535 2.292 HEU HEU
2, 5, 1 2.789 3.775 2.634 3.930 HEU HEU
3, 1, 1 0.418 0.961 0.333 1.046 HEU HEU
3, 1, 2 -0.148 0.746 -0.288 0.886 Tie Tie
3, 1, 3 1.355 2.569 1.165 2.759 HEU HEU
3, 1, 4 0.159 0.462 0.111 0.510 HEU HEU
3, 1, 5 0.417 1.456 0.254 1.618 HEU HEU
3, 3, 1 -0.193 0.855 -0.357 1.019 Tie Tie
3, 3, 2 0.282 1.870 0.033 2.119 HEU HEU
3, 5, 1 -0.548 0.064 -0.644 0.160 Tie Tie
3, 5, 2 2.413 3.186 2.292 3.307 HEU HEU
3, 5, 3 0.691 1.236 0.606 1.321 HEU HEU
4, 1, 1 0.009 1.070 -0.157 1.237 HEU Tie
4, 1, 2 0.537 0.935 0.475 0.997 HEU HEU
4, 1, 3 2.315 3.817 2.080 4.052 HEU HEU
4, 2, 1 0.100 0.757 -0.004 0.860 HEU Tie
4, 2, 2 -0.325 0.121 -0.395 0.191 Tie Tie
4, 3, 1 0.118 0.617 0.039 0.696 HEU HEU
4, 5, 1 1.510 2.048 1.426 2.132 HEU HEU
4, 5, 2 1.163 1.454 1.117 1.500 HEU HEU
4, 5, 3 1.474 2.196 1.361 2.309 HEU HEU
4, 5, 4 1.776 2.336 1.689 2.423 HEU HEU
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Table 5.6. Confidence Intervals for means of RAND-HEU with five and six new in-coming
patients

# Patients, RAND-HEU Winning Policy
Shift, Instance 95% CI 99% CI 95% CI 99% CI

5, 2, 1 -0.583 0.295 -0.720 0.432 Tie Tie
5, 2, 2 4.489 6.244 4.214 6.519 HEU HEU
5, 2, 3 -0.128 0.282 -0.192 0.347 Tie Tie
5, 2, 4 1.551 3.062 1.314 3.299 HEU HEU
5, 4, 1 2.424 3.250 2.294 3.380 HEU HEU
5, 4, 2 1.883 2.214 1.831 2.265 HEU HEU
5, 4, 3 1.452 1.893 1.383 1.963 HEU HEU
5, 4, 4 2.711 3.810 2.539 3.982 HEU HEU
5, 4, 5 2.921 3.831 2.779 3.974 HEU HEU
5, 5, 1 2.149 3.028 2.011 3.166 HEU HEU
6, 2, 1 0.205 0.790 0.113 0.882 HEU HEU
6, 2, 2 0.496 1.683 0.310 1.869 HEU HEU
6, 2, 3 0.450 1.812 0.236 2.026 HEU HEU
6, 2, 4 0.053 0.614 -0.035 0.701 HEU Tie
6, 4, 1 4.184 5.249 4.017 5.416 HEU HEU
6, 4, 2 6.076 7.666 5.827 7.915 HEU HEU
6, 4, 3 2.115 2.866 1.997 2.984 HEU HEU
6, 4, 4 5.281 6.608 5.073 6.816 HEU HEU
6, 4, 5 11.968 14.990 11.494 15.464 HEU HEU
6, 5, 1 2.861 3.617 2.743 3.735 HEU HEU
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Table 5.7. Confidence Intervals for means of HEU-OPT with two,three, and four new in-
coming patients

# Patients, HEU-OPT Winning Policy
Shift, Instance 95% CI 99% CI 95% CI 99% CI

2, 1, 1 -0.305 0.184 -0.382 0.261 Tie Tie
2, 1, 2 0.039 0.470 -0.029 0.538 OPT Tie
2, 3, 1 -0.069 0.536 -0.164 0.631 Tie Tie
2, 3, 2 -0.485 0.625 -0.660 0.799 Tie Tie
2, 3, 3 -0.220 0.830 -0.385 0.995 Tie Tie
2, 3, 4 0.521 1.985 0.291 2.214 OPT OPT
2, 3, 5 -0.170 0.746 -0.314 0.890 Tie Tie
2, 3, 6 -0.164 0.595 -0.283 0.714 Tie Tie
2, 3, 7 -1.385 -0.012 -1.601 0.204 HEU Tie
2, 5, 1 0.066 0.188 0.047 0.208 OPT OPT
3, 1, 1 -0.284 0.186 -0.357 0.259 Tie Tie
3, 1, 2 -0.435 0.438 -0.572 0.575 Tie Tie
3, 1, 3 -0.497 0.355 -0.631 0.489 Tie Tie
3, 1, 4 -0.152 0.084 -0.189 0.121 Tie Tie
3, 1, 5 -0.865 0.080 -1.013 0.228 Tie Tie
3, 3, 1 -0.336 0.525 -0.471 0.660 Tie Tie
3, 3, 2 -1.960 -0.456 -2.197 -0.219 HEU HEU
3, 5, 1 0.151 0.570 0.085 0.635 OPT OPT
3, 5, 2 -0.263 -0.113 -0.286 -0.090 HEU HEU
3, 5, 3 -0.072 0.046 -0.090 0.065 Tie Tie
4, 1, 1 -0.234 0.863 -0.406 1.036 Tie Tie
4, 1, 2 0.253 0.526 0.210 0.569 OPT OPT
4, 1, 3 -0.589 0.278 -0.725 0.415 Tie Tie
4, 2, 1 1.006 1.375 0.948 1.432 OPT OPT
4, 2, 2 -0.288 0.134 -0.354 0.200 Tie Tie
4, 3, 1 0.199 0.484 0.154 0.529 OPT OPT
4, 5, 1 -0.162 0.072 -0.199 0.108 Tie Tie
4, 5, 2 -0.051 0.074 -0.071 0.094 Tie Tie
4, 5, 3 -0.096 0.082 -0.125 0.110 Tie Tie
4, 5, 4 -0.112 0.083 -0.142 0.114 Tie Tie
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Table 5.8. Confidence Intervals for means of HEU-OPT with five and six new in-coming
patients

# Patients, HEU-OPT Winning Policy
Shift, Instance 95% CI 99% CI 95% CI 99% CI

5, 2, 1 -0.537 0.510 -0.701 0.674 Tie Tie
5, 2, 2 -0.128 0.166 -0.175 0.213 Tie Tie
5, 2, 3 -0.005 0.390 -0.067 0.452 Tie Tie
5, 2, 4 -0.079 0.905 -0.233 1.059 Tie Tie
5, 4, 1 -0.087 0.007 -0.102 0.022 Tie Tie
5, 4, 2 0.003 0.085 -0.010 0.097 OPT Tie
5, 4, 3 0.008 0.098 -0.006 0.113 OPT Tie
5, 4, 4 0.042 0.156 0.024 0.174 OPT OPT
5, 4, 5 -0.046 0.061 -0.063 0.078 Tie Tie
5, 5, 1 -0.165 0.006 -0.192 0.033 Tie Tie
6, 2, 1 -0.095 0.130 -0.130 0.165 Tie Tie
6, 2, 2 0.155 0.977 0.026 1.106 OPT OPT
6, 2, 3 -0.422 0.550 -0.575 0.703 Tie Tie
6, 2, 4 -0.269 0.127 -0.331 0.189 Tie Tie
6, 4, 1 0.012 0.101 -0.002 0.114 OPT Tie
6, 4, 2 0.028 0.256 -0.008 0.292 OPT Tie
6, 4, 3 0.489 0.596 0.472 0.613 OPT OPT
6, 4, 4 -0.158 -0.016 -0.181 0.007 HEU Tie
6, 4, 5 0.202 0.389 0.172 0.419 OPT OPT
6, 5, 1 -0.057 0.093 -0.081 0.117 Tie Tie
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(a) (b)

(c) (d)

Figure 5.3. Boxplots of OPT policy wins - (a)# Patients: 2, Shift: 1, Instance: 2, (b)#
Patients: 2, Shift: 3, Instance: 1, (c)# Patients: 2, Shift: 3, Instance: 3, and (d)# Patients: 2,
Shift: 3, Instance: 4.



48

(a) (b)

(c) (d)

Figure 5.4. Boxplots of OPT policy wins - (a)# Patients: 2, Shift: 3, Instance: 5, and (b)#
Patients: 2, Shift: 3, Instance: 6, (c)# Patients: 2, Shift: 5, Instance: 1, and (d)# Patients: 3,
Shift: 5, Instance: 1.
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(a) (b)

(c) (d)

Figure 5.5. Boxplots of OPT policy wins - (a)# Patients: 4, Shift: 1, Instance: 1, (b)#
Patients: 4, Shift: 1, Instance: 2, (c)# Patients: 4, Shift: 2, Instance: 1, and (d)# Patients: 4,
Shift: 3, Instance: 1.
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(a) (b)

(c) (d)

Figure 5.6. Boxplots of OPT policy wins - (a)# Patients: 5, Shift: 2, Instance: 3, (b)#
Patients: 5, Shift: 2, Instance: 4, (c)# Patients: 6, Shift: 2, Instance: 2, and (d)# Patients: 6,
Shift: 4, Instance: 2.
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(a) (b)

Figure 5.7. Boxplots of OPT policy wins - (a)# Patients: 6, Shift: 4, Instance: 3 and (b)#
Patients: 6, Shift: 4, Instance: 5.
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(a) (b)

(c) (d)

Figure 5.8. Boxplots of HEU policy wins - (a)# Patients: 2, Shift: 3, Instance: 7, (b)#
Patients: 3, Shift: 1, Instance: 5, (c)# Patients: 3, Shift: 3, Instance: 2, and (d)# Patients: 3,
Shift: 5, Instance: 2.
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Figure 5.9. Boxplot of HEU policy wins -# Patients: 4, Shift: 1, Instance: 3.
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(a) (b)

(c) (d)

Figure 5.10. Boxplots for tie between OPT and HEU - (a)# Patients: 2, Shift: 1, Instance:
1, (b) # Patients: 2, Shift: 3, Instance: 2, (c)# Patients: 3, Shift: 1, Instance: 1, and (d)#
Patients: 3, Shift: 1, Instance: 2.



55

(a) (b)

(c) (d)

Figure 5.11. Boxplots for tie between OPT and HEU - (a)# Patients: 3, Shift: 1, Instance:
3, (b) # Patients: 3, Shift: 1, Instance: 4, (c)# Patients: 3, Shift: 3, Instance: 1, and (d)#
Patients: 3, Shift: 5, Instance: 3.
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(a) (b)

(c) (d)

Figure 5.12. Boxplots for tie between OPT and HEU - (a)# Patients: 4, Shift: 2, Instance:
2, (b) # Patients: 4, Shift: 5, Instance: 1, (c)# Patients: 4, Shift: 5, Instance: 2, and (d)#
Patients: 4, Shift: 5, Instance: 3.
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(a) (b)

(c) (d)

Figure 5.13. Boxplots for tie between OPT and HEU - (a)# Patients: 4, Shift: 5, Instance:
4, (b) # Patients: 5, Shift: 2, Instance: 1, (c)# Patients: 5, Shift: 2, Instance: 2, and (d)#
Patients: 5, Shift: 4, Instance: 1.
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5.3 Conclusion

Three major contributions were made in this dissertation:

• This research introduced a novel approach to the simulationcommunity for construct-

ing efficient simulation models based on data mining. This way of simulation modeling

avoids misrepresentation of system dynamics and characteristics because it is entirely

based on the pattern learned from a real data set collected from the system over a long

period of time. Moreover, this approach reduces simulationstates and is consequently

more efficient to run. It should be also noted that data collection enabled by RFID tech-

nology makes this approach viable for many applications.

• This research introduced a tool to evaluate nurse-to-patient assignments and enable de-

cisions in real time. Prior to a shift, the decision to hire agency nurses is determined

by nurse supervisors, who assess whether the set of scheduled nurses is sufficient for

that shift. The SIMNA model can aid them in their decisions byproviding a tool to test

nurse-to-patient assignments.

• This research introduced the OPT policy to solve for assignment of new admissions

during a shift. Traditionally, a nurse who has the least number of patients or who had

the least workload until the instance of arrival - like in theHEU policy - would get the

newly-admitted patient. HEU policy could worsen the imbalance as future workload

is totally ignored. The OPT policy, considering the past as well as approximating the

future, is likely to reduce the imbalance.

It should be noted that all the simulations, written in C++, were run on a Dual 2.4-GHz

Intel Xeon Workstation. It took less than three minutes to run one thousand scenarios to obtain

the results discussed in sections 4.2 and 5.2.1. Henceforth, it is possible to use these tools in

real time to make nurse-patient assignment decisions.
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(a) (b)

(c) (d)

Figure 5.14. Boxplots for tie between OPT and HEU - (a)# Patients: 5, Shift: 4, Instance:
2, (b) # Patients: 5, Shift: 4, Instance: 3, (c)# Patients: 5, Shift: 4, Instance: 4, and (d)#
Patients: 5, Shift: 4, Instance: 5.
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(a) (b)

(c) (d)

Figure 5.15. Boxplots for tie between OPT and HEU - (a)# Patients: 5, Shift: 5, Instance:
1, (b) # Patients: 6, Shift: 2, Instance: 1, (c)# Patients: 6, Shift: 2, Instance: 3, and (d)#
Patients: 6, Shift: 2, Instance: 4.
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(a) (b)

Figure 5.16. Boxplots for tie between OPT and HEU - (a)# Patients: 6, Shift: 4, Instance: 1
and (b)# Patients: 6, Shift: 4, Instance: 4.

Figure 5.17. Boxplot for tie between OPT and HEU -# Patients: 6, Shift: 5, Instance: 1.



CHAPTER 6

FUTURE WORK

This dissertation work has laid a foundation for nurse-patient assignment research. It

has introduced a tool to evaluate different policies of nurse-patient assignments. It has also

introduced the OPT policy to aid assignments for new patientadmissions. The following are

the other promising elements that can be incorporated to this research.

1. Online Updating: The data used in this research was collected from March to September

of 2004. In this approach, capturing an evolving dynamics ofa system in simulation is

only possible by constantly appending new data and rebuilding the trees. In a system like

Baylor, where data is collected continuously, it is possibleto link CART and SIMNA

to the database to update itself to reflect the evolving dynamics of the system. Such

dynamically updating simulations are likely to represent the reality immediately and

provide better results than the simulations built from stationary data.

2. Data Mining Techniques: In the SIMNA model presented in this dissertation, CART

was utilized as the data mining technique to model the pattern of dynamics present in

the system. Incorporating newer tree models, such as, bagged trees and boosted trees

would be an interesting topic for future research. Friedmanet al. [35] and Friedman

[34] presented such a version of boosted trees called multiple additive regression trees

(MART). Similar to CART R© software, Salford System also has TREENET/MARTR©

software (www.salfordsystems.com) that could provide MART trees. Other popular

data mining methods, such as, Linear Discriminant Analysis, Logistic Regression, Sep-

arating Hyperplanes, Neural Networks, and Support Vector Machines have tremendous

success in modeling many application. Comparing simulationmodels built with these

62
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data mining techniques for their accuracy to represent the real system is another interest-

ing research path possible from this dissertation.

3. Alternate Assignment Policy: It was found from this research that OPT and HEU won

eighteen and five times, respectively. Intuitively, HEU’s solution should get better to-

wards the end of a shift as workload imbalance information from the past is naturally

more important at the end. Similarly, assuming OPT approximates the future accurately,

it should perform relatively better than HEU at the beginning of a shift. Identifying cir-

cumstances suitable for OPT and HEU is another interesting area of research. Perhaps, a

policy to use OPT for first half and HEU for the second half of the shift would be inter-

esting to consider. Results from this policy, which can be named as the OPTHEU policy,

would shed light on determining characteristics that affect OPT and HEU policies.

4. “Time Period-Action Q-Factors” method: In this research, a brief discussion about the

potential for Q-Factors methods was given especially in circumstances when a simulator

is available. However, the existing algorithms of Q-Factors method will not work for the

nurse-patient assignment problem as the number of state-action pairs are huge. It will be

interesting to explore the possibility of having Q-Factorsfor arrival-action pairs instead

of state-action pairs. This approach will reduce the numberof Q-Factors significantly. It

should to be noted that with stochastic arrivals, it is stilldifficult to update all the arrival-

action pairs accurately within reasonable number of simulation runs. For example, the

first arrival in a simulation run is likely to be significantlydifferent from another first

arrival simulated in a different simulation run. To tackle this issue, the shift can be

divided into smaller time periods to get Q-Factors for each period-action pairs. The

actions in this research are to assign the newly-admitted patient to a nurse. There is no

action required in a time period if there is no new admits. Therefore, with the “Time

Period-Action Q-Factors”, the number of Q-Factors would beequal to the number of

periods times the number of nurses. For example, for an eighthour shift broken into one
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hour periods with five nurses working, there would be just forty Q-Factors. As mentioned

earlier, it would take just three minutes to run one thousandscenarios, and it is possible

to update the Q-Factors for real time decision making at Baylor in the proposed “Time

Period-Action Q-Factors” method.

5. Optimization: Exploring the applicability of simulation-optimization methods, such as

[6], and [36], is also an interesting topic for future research. The traditional simulation-

optimization methods, in general, use some kind of approximated value for the gradient

of the simulation. The static structure of the data-integrated simulation introduced in this

dissertation is clearly modeled by the CART. Extracting the gradient of simulation from

CART and using it for optimization is potentially feasible and worth exploring.

6. Patient Discharge: For simplicity in modeling, it was assumed that there are no patient

discharges during a shift. However, it is common to have discharges during a given shift.

An estimated discharge rates for different shifts are givenin table 6.1. Incorporating

patient discharges in SIMNA, and hence in OPT and HEU policies, is another interesting

possible extension of this research.

Table 6.1. Patient Discharge Rate

6am to 9am 9am to Noon Noon to 3pm 3pm to Midnight Midnight to 6am
1% 70% 25% 3% 1%
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