
A FAMILY OF ROBUST SECOND ORDER TRAINING

ALGORITHMS

by

SANJEEV SREENIVASA RAO MALALUR

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2009

Copyright c© by SANJEEV SREENIVASA RAO MALALUR 2009

All Rights Reserved

To my Parents, for the right initialization and to all my family and friends.

Without them I would not be able to learn and generalize in life.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor

Prof. Michael T. Manry. He has been a constant source behind my work, motivating

me, challenging me and inspiring me. I am indebted to him for the countless hours

he put into my work. He was always available for discussions, be it week day or

weekends, always willing to address any problems and always providing the right

guidance. Discussions with Dr. Manry was always a pleasure and the invaluable

knowledge I gained is something I will treasure for life.

I would like to thank Dr. Jean Gao, Dr. Frank Lewis, Dr. Qilian Liang and Dr.

Saibun Tjuatja for taking the time to serve on my comprehensive and dissertation

committee.

I would like to thank my parents, my uncle and aunt, my brother, my fiancée,

my future in-laws and all my friends for their support.

July 16, 2009

iv

ABSTRACT

A FAMILY OF ROBUST SECOND ORDER TRAINING

ALGORITHMS

SANJEEV SREENIVASA RAO MALALUR, Ph.D.

The University of Texas at Arlington, 2009

Supervising Professor: Michael T. Manry

Starting with the concept of equivalent networks, a framework for analyzing

the effect of linear dependence on training of a multi-layer perceptron is established.

Detailed mathematical analyses are carried out to show that training using backprop-

agation and Newton’s method is different under the presence of linear dependence.

Two effective batch training algorithms are developed for the multilayer per-

ceptron. First, the optimal input gain algorithm is presented, which computes an

optimal gain coefficient for each input, used to update the input weights. The moti-

vation for this algorithm comes from using equivalent networks to analyze the effect

of input transformation. It is shown that the use of a non-orthogonal, non-singular di-

agonal transformation matrix is equivalent to altering the input gains in the network.

Newton’s method is used to simultaneously solve for the input gains and an optimal

learning factor. In several examples, it is shown that the final algorithm is a reason-

able compromise between first order training methods and Levenburg-Marquardt.

Second, a multiple optimal learning factor algorithm, that assigns a separate

learning factor for each hidden unit is developed. The idea stems from relating a

v

single optimal learning factor to Newton’s method. It is then extended to estimate

separate optimal learning factors for each hidden unit. In several examples, this

method performs as well as or better than Levenberg-Marquardt.

Both methods yield a smaller Hessian compared to Newton’s method for up-

dating input weights. The Hessian matrix thus computed is less susceptible to linear

dependence and displays fast convergence. It is shown that the elements of the Hessian

matrix for both methods are formed by some weighted combinations of the elements

from the total network’s Hessian.

When used with backpropagation-type learning, the two proposed methods are

limited by the presence of dependent inputs. However, when used with hidden weight

optimization technique, it is shown that both methods over come the presence of

dependent inputs and completely ignore them during training. This improvement

results in two highly robust second order learning algorithms, which are less heuristic,

less susceptible to ill-conditioned Hessian, immune to linear dependencies, faster than

LM and superior to standard first order training methods.

In the last part, a new approach for modeling simple discontinuous functions is

developed. This two-stage approach, trains separate networks, one for a continuous

function and another for discrete step function, in the first stage and fuses the two

trained networks in the second stage to obtain the final network capable of modeling

the discontinuous function. Results of using our proposed second order methods to

train and fuse networks to model simple discontinuous sine and ramp functions are

presented.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF FIGURES . xii

LIST OF TABLES . xiv

Chapter Page

1. INTRODUCTION . 1

1.1 Feed-forward Neural Networks: Evolution and Applications 1

1.2 Neural Network Architecture . 2

1.3 The Multilayer Perceptron . 4

1.4 Research Focus . 5

1.4.1 Effect of Linear Dependence on Learning 5

1.4.2 Input Transformation . 6

1.4.3 Learning with Multiple Learning Factors 6

1.4.4 Modeling Discontinuous Functions 7

1.4.5 Convergence Proof . 8

1.5 Research Objectives and Dissertation Organization 8

2. PRELIMINARIES . 10

2.1 MLP Notation . 10

2.2 Output Weight Optimization . 11

2.3 Backpropagation Algorithm . 12

2.4 Output Weight Optimization-Backpropagation 13

2.4.1 Convergence of OWO-BP . 13

vii

2.5 Newton’s Method . 14

2.6 Levenberg-Marquardt Method . 15

2.7 Output Weight Optimization-Hidden Weight Optimization 16

2.8 Discussion . 17

3. EFFECT OF LINEAR DEPENDENCE ON LEARNING 18

3.1 Equivalent Networks: A Concept . 18

3.2 Effect of Dependence on Backpropagation 20

3.2.1 Linearly Dependent Inputs . 20

3.2.2 Hidden Units Dependent Upon Inputs 25

3.2.3 Linearly Dependent Hidden Units 28

3.3 Effect of Linear Dependence on Newton’s Method 32

3.3.1 Linearly Dependent Inputs . 32

3.3.2 Linearly Dependent Hidden Units 33

4. PROPOSED WORK . 34

4.1 Problems . 34

4.1.1 Computational Complexity of Second Order Methods 34

4.1.2 Effects of Input Transformations Are Poorly Understood . . . 34

4.1.3 Primitive Methods For Accelerating Convergence 35

4.1.4 Training Affected By Dependencies 35

4.1.5 Inability to Model Discontinuous Functions 35

4.2 Proposed Goals and Tasks . 36

4.2.1 Towards a Positive Definite Hessian 36

4.2.2 An Optimal Input Transformation 37

4.2.3 Learning using Multiple Learning Factors 37

4.2.4 Countering Dependencies During Training 38

4.2.5 Approximating Discontinuous Functions 38

viii

5. THE OPTIMAL INPUT GAIN ALGORITHM 39

5.1 Linear Transformation of Inputs . 39

5.1.1 A Useful Non-orthogonal Transform Matrix 40

5.2 Optimal Input Gain Algorithm . 42

5.2.1 A Diagonal Transform Matrix 43

5.2.2 Derivation of the Optimal Gain Coefficients 43

5.2.3 Implementation Steps . 45

5.3 OIG Analyses . 45

5.4 Computational Burden . 47

5.5 Results . 48

5.5.1 Prognostics Data Set . 49

5.5.2 Remote Sensing Data Set . 50

5.5.3 Federal Reserve Economic Data Set 51

5.5.4 Housing Data Set . 52

5.5.5 Concrete Compressive Strength Data Set 52

5.6 Limitations on OIG . 53

5.6.1 Identical Inputs . 55

5.6.2 Dependent Inputs . 56

5.7 Discussion . 57

6. A MULTIPLE OPTIMAL LEARNING FACTOR ALGORITHM 58

6.1 Motivation For Multiple Learning Factors 58

6.1.1 First Order Algorithm with Second Order Learning Factor . . 59

6.2 Multiple Optimal Learning Factor Algorithm 60

6.2.1 Derivation of Multiple Optimal Learning Factors 60

6.2.2 MOLF Implementation . 61

6.3 MOLF Analyses . 62

ix

6.4 Effect of Dependent Inputs . 64

6.5 Computational Cost . 64

6.6 Results . 65

6.6.1 Prognostics Data Set . 66

6.6.2 Federal Reserve Economic Data Set 67

6.6.3 Housing Data Set . 67

6.6.4 Concrete Compressive Strength Data Set 68

6.6.5 Remote Sensing Data Set . 68

6.7 Limitations of MOLF Algorithm . 70

6.7.1 Dependence in the Hidden Layer 70

6.7.2 Dependence in the Input Layer 71

6.8 Discussion . 72

7. IMPROVEMENTS TO OIG AND MOLF ALGORITHMS 74

7.1 Effect of Dependence on HWO . 74

7.1.1 Orthogonal Least Squares . 74

7.1.2 Matrix Inversion using SVD 75

7.2 Improvements to OIG Algorithm . 76

7.2.1 Effect of Linear Dependence on Improved OIG 77

7.2.2 Prognostics Data Set . 78

7.2.3 Remote Sensing Data Set . 78

7.2.4 Federal Reserve Economic Data Set 79

7.2.5 Housing Data Set . 80

7.2.6 Concrete Compressive Strength Data Set 80

7.3 Improvement to MOLF Algorithm . 81

7.3.1 Prognostics Data Set . 82

7.3.2 Federal Reserve Economic Data Set 83

x

7.3.3 Housing Data Set . 84

7.3.4 Concrete Compressive Strength Data Set 84

7.3.5 Remote Sensing Data Set . 84

8. MODELING SIMPLE DISCONTINUOUS FUNCTIONS 87

8.1 Discontinuous Function . 87

8.1.1 Problem Illustration . 88

8.2 A Fusion Approach to Model Discontinuous Functions 89

8.3 Discussion . 92

9. CONTRIBUTIONS AND FUTURE WORK 94

9.1 Contributions . 94

9.1.1 Mathematical Analysis of Linear Dependence on Training . . . 94

9.1.2 Optimal Input Gain Algorithm 94

9.1.3 Multiple Optimal Learning Factor Algorithm 95

9.1.4 Improvements to OIG and MOLF Algorithms 95

9.1.5 A Fusion-based Approach for Modeling
Discontinuous Functions . 96

9.1.6 Convergence Theorem for HWO 96

9.2 Future Work . 96

Appendix

A. DATA SETS . 98

B. CONVERGENCE PROOF FOR HWO ALGORITHM 101

REFERENCES . 107

BIOGRAPHICAL STATEMENT . 114

xi

LIST OF FIGURES

Figure Page

1.1 Model of an artificial neuron . 2

1.2 Structure of a Multilayer Perceptron 4

3.1 Illustration: Concept of Equivalent Networks 19

3.2 Dependent and independent network performance
on F-17 data . 24

3.3 Dependent and independent network performance
on FMTRAIN data . 25

5.1 Prognostics Data: average error vs. (a) iterations and
(b) multiplies . 49

5.2 Remote Sensing Data: average error vs. (a) iterations and
(b) multiplies . 50

5.3 Economic Data: Average error vs. (a) iterations and
(b) multiplies . 51

5.4 Housing Data: Average error vs. (a) iterations and
(b) multiplies . 52

5.5 Concrete Data: Average error vs. (a) iterations and
(b) multiplies . 53

6.1 Prognostics Data: Average error vs. (a) iterations and
(b) multiplies . 66

6.2 Federal reserve data: average error vs. (a) iterations and
(b) multiplies . 67

6.3 Housing data: average error vs. (a) iterations and
(b) multiplies . 68

6.4 Concrete data: average error vs. (a) iterations and
(b) multiplies . 69

6.5 Remote sensing data: average error vs. (a) iterations and

xii

(b) multiplies . 69

7.1 Prognostics Data: average error vs. (a) iterations and
(b) multiplies . 78

7.2 Remote Sensing Data: average error vs. (a) iterations and
(b) multiplies . 79

7.3 Remote Sensing Data: average error vs. (a) iterations and
(b) multiplies . 79

7.4 Housing Data: Average error vs. (a) iterations and
(b) multiplies . 80

7.5 Concrete Data: Average error vs. (a) iterations and
(b) multiplies . 81

7.6 Prognostics Data: Average error vs. (a) iterations and
(b) multiplies . 83

7.7 Federal reserve data: average error vs. (a) iterations and
(b) multiplies . 83

7.8 Housing data: average error vs. (a) iterations and
(b) multiplies . 84

7.9 Concrete data: average error vs. (a) iterations and
(b) multiplies . 85

7.10 Remote sensing data: average error vs. (a) iterations and
(b) multiplies . 86

8.1 Simple Discontinuous Functions: (a) Ramp and (b) Sine 87

8.2 Result of using OWO-BP and LM to model a step function 88

8.3 Result of using OWO-BP and LM to model a step function 89

8.4 Block diagram of the fusion approach 90

8.5 MLP-1: Trained using improved OIG on step data 90

8.6 MLP-2: Trained using improved OIG on continuous sine data 91

8.7 Output of fused network (MLP1+MLP2) for
discontinuous sine data . 91

8.8 Output of fused network (MLP1+MLP2) for
discontinuous ramp data . 92

xiii

LIST OF TABLES

Table Page

5.1 Average 10-fold training and validation error 54

6.1 Average 10-fold training and validation error 70

7.1 Average 10-fold training and validation error 82

7.2 Average 10-fold training and validation error 86

xiv

CHAPTER 1

INTRODUCTION

1.1 Feed-forward Neural Networks: Evolution and Applications

From its inception, early work on artificial neural networks was inspired by the

functioning of the human cognitive system. McCulloch and Pitts [1] laid the foun-

dation for neural networks with their pioneering work in the early 1940s. Several

inspired works followed, but the next breakthrough came 15 years later from Rosen-

blatt [2] and his work on the perceptron which included the so-called perceptron con-

vergence theorem. The earliest form of trainable layered neural network architecture

with multiple adaptive elements can be traced to Widrow’s work on the Madaline [3].

Among all the research work that followed, the most influential publication related

to feed-forward networks is that on backpropagation (BP) by Rumelhart, Hilton and

Williams [4]. BP has emerged as the most popular learning algorithm for training

the multi-layer perceptron. Other training algorithms found in the literature such

as Newton’s method, Levenberg-Marquardt algorithm [5][6], etc., have their roots in

classical optimization theory. Haykin [7] provides a more detailed account on the

historic development of neural networks.

Neural networks have not succeeded as a model of the human brain. Without

doubt, the learning, generalization, memorization and prediction capabilities of the

human cognitive system is the most advanced system known to man. Moreover, sig-

nificant advances in neural networks have followed more of an experimental path in

spite of some supporting theoretical proofs. Hence, most methods have more of a

heuristic origin than a theoretical one. This does not mean neural networks can be

1

2

discarded as some ad-hoc method that just happens to work. Neural networks have

emerged as powerful statistical tools capable of learning and generalization. They

have been used in the in the areas of parameter estimation [8] [9], document analysis

and recognition [10], finance and manufacturing [11] and data mining [12]. Specific

applications of neural networks include target recognition [13, 14], power load fore-

casting [15, 16], ZIP code recognition [17, 18], prognostics [19], face recognition [20],

image retrieval [21] and speaker recognition [22] among several others.

1.2 Neural Network Architecture

The primary component that governs the functional aspect of a neural network

is the neuron. The neurons form the basic computing elements. Different neural

networks architectures are a result of varying either the type of neuron or the neuron

arrangement or the neuron adaptation. Figure 1.1 shows a simple model of the

neuron.

Figure 1.1. Model of an artificial neuron.

It has a set of weights connecting the inputs to the summing node. The sum-

ming node feeds into an activation function for limiting the output of the neuron.

3

The activation function is usually non-linear and the most popular one is the sig-

moid [23]. There are other activations also, such as piecewise-linear functions [24]

and trigonometric functions [25]. Neural networks derive the non-linearity based on

the activation type.

The structure defines the connections between the neurons and how the infor-

mation is processed. The network architecture decides how the inputs are mapped

to the outputs. Without getting into too much detail, some of the popular neural

network architectures include the multi-layer perceptron, radial basis function net-

work [26], piecewise-linear network [27] and self-organizing maps [28].

The learning algorithm determines how the network’s connections are adapted,

to best carry out the desired task. Learning methods can be broadly classified as

supervised or unsupervised learning. Supervised learning usually involves minimizing

a cost function and adjusting the various network parameters accordingly. Some well

known supervised learning techniques include backpropagation (BP), output weight

optimization-backpropagation (OWO-BP) [29], output weight optimization - hidden

weight optimization (OWO-HWO) [30] and Levenberg-Marquardt (LM) algorithm.

The tasks of a neural network can be broadly categorized as regression-type

tasks or classification-type tasks. Regression and classification can be seen as partic-

ular cases of function approximation. Both look for some form of a mapping between

a set of inputs to a set of outputs, which form the training data set. In a classification

problem, the task is to assign the inputs to one of a number of discrete classes or

categories. In this case, the outputs can be considered as being discrete. However,

there are problems in which the outputs are continuous variables. Regression prob-

lems seek a function which best approximates the continuous mapping between the

inputs and outputs.

4

1.3 The Multilayer Perceptron

The multilayer perceptron (MLP) forms a very important class of neural net-

works. A typical MLP structure consists of a set of input units that constitute the

input layer, one or more layer of neurons forming the hidden layers and an output

layer for producing the actual output. All the layers are connected by weights and

the signal travels from the input through the hidden layers, to the output layer. Such

a network is shown below.

Figure 1.2. Structure of a Multilayer Perceptron.

The MLP shown in figure 1.2 has Nh nonlinear hidden units. Each unit in the

hidden layer is equivalent to the single neuron in figure 1.1. The threshold θ from

figure 1.1 appears as an additional constant input, xp(N + 1), such that xp(N + 1) =

1. The output of the summing node, NET, appears here as np(k) and the output

of the block f(NET), is represented as Op(k), where 1 ≤ k ≤ Nh. It has been

proved that a multilayer perceptron with sufficiently many nonlinear units (neurons)

5

in a single hidden layer can work as universal function approximators [31]. Other

favorable features include the MLP’s ability to mimic Bayes discriminant [32] and

MAP estimation [33]. The MLP computes its outputs as a weighted sum of the inputs

and the hidden unit outputs. The weights form the unknowns, which are typically

found by minimizing the mean squared error between the actual and desired outputs.

This is well known problem in classical optimization theory. We are interested in a

specific branch of it, called smooth, unconstrained nonlinear optimization.

The MLP provides a physical model to encode the empirical knowledge repre-

sented by the input data into a corresponding set of synaptic weights, w. Training

the MLP involves adapting its weights w by minimizing an error criteria. Some clas-

sical training algorithms are backpropagation [4], conjugate-gradient method [34], the

classic Newton’s method and Levenberg-Marquardt [5][6].

1.4 Research Focus

This dissertation aims to make theoretical and practical contributions in the

following areas related to training MLP networks.

1.4.1 Effect of Linear Dependence on Learning

Considerable research has been done on MLP training and several powerful

algorithms have been proposed and analyzed. An obvious, yet surprisingly less ex-

plored aspect is the effect of linear dependence on MLP training algorithms. Given

the structure of the MLP, dependence can occur at any layer, between any units

and can often have a negative impact on learning. Guo [35] presented one of the

early works on mathematical analysis of the dynamics of MLP. Hirose [36] and Mur-

ray [37] identified two types of undesired minima that can occur during training an

MLP. In [38], Annema et al., introduce a vector decomposition method to simplify

6

the mathematical analysis of occurrence of temporary minima during learning using

backpropagation. Yi-Jen Wang [39] provides an analysis of Newton’s method used

for training an MLP, where it is proved that the Hessian matrix of the MLP is always

singular.

Linear dependence in data or network parameters is an important issue as it can

significantly affect learning by slowing down convergence or getting stuck at a local

minima. It would also result in a redundant network structure. Current literature on

modeling and analyzing the effect of linear dependence on learning is rather sparse.

1.4.2 Input Transformation

Given the statistical nature involved in the learning of MLP, many data pre-

processing techniques have been used in the past to improve the performance of MLP.

Feature de-correlation [40], whitening transformation [41], un-biasing or normaliza-

tion are some of the frequently used strategies. Yu [42] analyzed the effect of data

preprocessing on several training methods and showed that while some transforms are

useful, orthogonal transforms in general do not help in reducing the overall training

error, i.e. orthogonal transforms have no effect on learning. Pre-processing techniques

are nothing but linear transformations of the data performed in an effort to reduce

the training error. They are data dependent, i.e. there is no one transformation that

is guaranteed to reduce the error for all types of data. Given the data, researchers

usually try several preprocessing schemes and use the one that works best with their

algorithm.

1.4.3 Learning with Multiple Learning Factors

A common heuristic employed in training MLP is to use a single learning factor

to adjust all the weights in the network. For instance, backpropagation finds the

7

gradient and determines the step size to take along the direction of the negative

gradient to update the weights. While this sometimes works well in practice, there

is no reason to not use multiple learning factors during training in order to speed up

convergence. The delta-bar-delta method [43] was one of the popular early methods to

adapt each weight independently. Moody [44] proposed a network with locally tuned

processing units. Silva [45] proposes an acceleration technique for backpropagation

based on the individual adaptation of learning rates for each weight. Unfortunately,

these methods are heuristic and their performance relies on the settings of some user

chosen parameters. Also, using standard gradients makes them slow to converge.

Newton’s method can be viewed as a second order method that assigns a learning

rate to every weight in the network. For quadratic error functions, Newton’s method

converges in one step if the Hessian matrix is nonsingular. However, this is usually

not true in practice [39], so Levenberg-Marquardt [46] (LM) and other methods are

used instead.

1.4.4 Modeling Discontinuous Functions

The universal approximation theorem [31] says that any continuous function

can be approximated over a compact input space, but there are several real-world

instances where the signal is discontinuous, either due to the nature of the problem or

mere truncation during data acquisition. Such signals can be discontinuous in certain

parts of the data space and continuous elsewhere. Traditional training methods such

as backpropagation do not perform so well on discontinuous data. In [47], Selmic

and Lewis propose a network architecture that uses a mixture of both sigmoid and

jump activations to model the overall function. Another method proposed in [48],

incrementally add units as discontinuity is encountered.

8

1.4.5 Convergence Proof

A variety of algorithms exist for training a multilayer perceptron with improve-

ments in either the overall training mean square error (MSE) or training time or

compactness (less memory for implementation). As mentioned in section 1.1, de-

velopments of neural network training algorithms have followed more of a heuristic

path. While these algorithms work very well in practice, it is also important to have

theoretical proofs that support their behavior. Bounds on performance, proof of

convergence, etc. are a few important indicators of an algorithms overall capability.

However, there are several algorithms that lack the theoretical foundation.

In general, MLP training algorithms are negatively impacted by sensitivity to

the choice of initial weights, linear dependencies among inputs and hidden units,

non-zero means in the inputs, computational complexity and the difficulties in ap-

proximating discontinuous functions.

1.5 Research Objectives and Dissertation Organization

The main objectives of this dissertation are to provide a detailed mathematical

analysis of linear dependency and its effects on training, develop faster second order

training methods that can overcome dependencies, develop a training algorithm that

can model discontinuous functions and develop a convergence proof of the hidden

weight optimization algorithm.

Chapter 2 introduces a notation for MLP training that is used throughout this

dissertation and presents a brief review of some important training algorithms, rele-

vant to this dissertation. Chapter 3 begins by establishing the concept of equivalent

networks and extends it to analyze the effects of linear dependency on network train-

ing (including first and second order methods). Problems addressed in this disserta-

9

tion along with goals and tasks are covered in chapter 4. Chapters 5 and 6 introduce

two new learning algorithms called the optimal input gain algorithm and the multiple

optimal learning factor algorithm, along with analyses, performance evaluations and

comments on their limitations. Chapter 7 presents improvements to overcome the

limitations of the two algorithms, making them highly robust.

The data files used for performance evaluation are common to all algorithms and

are listed in appendix A. A proof of convergence for the hidden weight optimization

algorithm is given in appendix B.

CHAPTER 2

PRELIMINARIES

This chapter introduces the notation for MLP that is used throughout this

dissertation. It then briefly describes popular first and second order methods for

training MLP, all of which are relevant to this dissertation.

2.1 MLP Notation

A fully connected MLP is shown in figure 1.2. It consists of an input layer, a

single hidden layer consisting of nonlinear processing elements, also called as neurons,

and an output layer. All the layers are connected by weights.

Input weight w(k, n) connects the nth input to the kth hidden unit. Output

weight woh(m, k) connects the kth hidden unit’s activation Op(k) to the mth actual

output yp(m), which has a linear activation. The bypass weight woi(m, n) connects

the nth input to the mth output.

The training data, described by the set {xp, tp} consists of N -dimensional input

vectors xp and M-dimensional desired output vectors tp. The pattern number p varies

from 1 to Nv, where Nv denotes the number of training vectors present in the data

set.

In order to handle thresholds in the hidden and output layers, the input vec-

tors are augmented by an extra element xp(N + 1) where xp(N + 1) = 1, so xp =

[xp(1), xp(2), · · ·xp(N + 1)]T . For the pth pattern, the kth hidden unit’s net function,

np(k) is given by

np(k) =
N+1
∑

n=1

w(k, n)xp(n) (2.1)

10

11

which can be summarized in matrix notation as

np = W · xp (2.2)

Here np denotes the Nh-dimensional column vector of net function values and W is

Nh by (N +1). For the pth pattern, the kth hidden unit’s activation output is denoted

as Op(k) where Op(k) = f(np(k)) and f(·) denotes the hidden layer activation.

The actual output of the network yp(m) is computed as

yp(m) =

N+1
∑

n=1

woi(m, n)xp(n) +

Nh
∑

k=1

woh(m, k)Op(k) (2.3)

which can be written in matrix notation as

yp = Woi · xp + Woh ·Op (2.4)

where Op is the Nh-dimensional hidden unit activation vector. The last rows of W

and Woi respectively store the hidden unit and output unit threshold values. The

weights form the unknowns which are found by minimizing a cost or error function.

A typical error function used in training the MLP is the mean-squared error (MSE)

described as

E =
1

Nv

Nv
∑

p=1

M
∑

m=1

[tp(m)− yp(m)]2 (2.5)

Training an MLP involves minimizing the MSE and solving for the unknown weights

over several iterations. In the following sections, some well known MLP training

methods are reviewed.

2.2 Output Weight Optimization

Output weight optimization (OWO) is a technique to solve for weights con-

nected to the actual outputs of the network (this would be the output weights, Woh

and by-pass weights, Woi). Since the outputs have linear activation, finding the

12

weights connected to the outputs is equivalent to solving a system of linear equa-

tions. Popular candidates for OWO are conjugate gradient [34] and the orthogonal

least squares methods [49].

2.3 Backpropagation Algorithm

The popular backpropagation (BP) algorithm is a first order method that uses

gradient information to update the weights in the network. In full batch mode, the

(BP) algorithm updates the input weights and thresholds, W, as

w(k, n) = w(k, n) + Z

(−∂E

∂w(k, n)

)

(2.6)

for all 1 ≤ k ≤ Nh and all 1 ≤ n ≤ (N + 1). For the pth pattern, we use BP to get

the partial derivative of Ep (error for the pth pattern) as

− ∂Ep

∂w(k, n)
= − ∂Ep

∂np(k)
· ∂np(k)

∂w(k, n)
(2.7)

For the pth pattern, hidden layer delta function is found as

δp(k) = O′

p(k))

M
∑

m=1

δpo(m)woh(m, k) (2.8)

where, δpo(m) = 2(tp(m)− yp(m))

Now, the negative gradient of E is

g(k, n) = − ∂E

∂wkn

=
1

Nv

Nv
∑

p=1

δp(k)xp(n) (2.9)

The matrix of negative partial derivatives can be written as

G =
1

Nv

Nv
∑

p=1

δpx
T
p (2.10)

where δp = [δp(1), δp(2), · · · , δp(Nh)]
T . If steepest descent is used to modify the

hidden weights, W is updated in a given iteration as

W←W + z ·G (2.11)

13

so

△W = z ·G (2.12)

where z is the learning factor.

First order methods are generally easier to implement and also require the least

computation per training iteration. They are also guaranteed to converge to a global

or local minimum. However, these benefits are largely outweighed by the fact that

the method’s rate of convergence is often very slow [50].

2.4 Output Weight Optimization-Backpropagation

One option to train an MLP would be to divide the weight adaptation into

two separate stages: (i) train all weights, Woh,Woi connected to the actual network

outputs and (ii) train all the input weights, W. During either stage, the other weights

are not updated. This approach combines the two previously described approaches

and is called output weight optimization-backpropagation (OWO-BP). This method

is attractive for several reasons. First, the training is faster, since training weights

connected to the outputs is equivalent to solving for linear equations. Second, it

helps us avoid some local minima. Third, the method exhibits improved training

performance.

2.4.1 Convergence of OWO-BP

To show convergence of OWO-BP, we have to show that both OWO and BP

stages are convergent. The backpropagation weight update is given by equation 2.12.

It is possible to find an optimal z, that will minimize the mean square error, E, in a

given iteration by solving for ∂(E + z ·G)/∂z = 0. Since G is the negative Jacobian

matrix, and we are finding a minimum, z will have to be non-negative.

14

Every time the input weights are updated using BP, the output weights must

be re-calculated and updated. As mentioned before, OWO finds output weights by

solving a system of linear equations and in any training iteration the error after OWO

is guaranteed to be less than or at least equal to the error in the previous iteration.

Let Ek denote the error at the kth step of OWO-BP training. For k odd, Ek

denotes the error after an OWO stage and for k even, Ek denotes the error after a

BP step. Since z is positive and optimal, the BP step can only decrease E or leave

it unchanged. Similarly, OWO steps can only decrease E or leave it the same. If

OWO-BP is run for Nit iterations, then error Ek for every step forms a monotone

series, i.e. a series of non-increasing, non-negative numbers such that Ek+1 ≤ Ek.

Such a series is guaranteed to converge [51] as Nit →∞.

2.5 Newton’s Method

One approach to produce a significant improvements in the convergence perfor-

mance of an MLP training is to use higher order information [7]. Generally, second

order methods exhibit superior performance to first order methods.

Newton’s method is a classic, iterative unconstrained optimization technique

that aims to minimize E with respect to the weights in the network. In Newton’s

method, we calculate the Hessian matrix H, whose elements are second partial deriva-

tives of E with respect to the network weights. Hence H is Nw by Nw, where Nw

is the number of weights in the network. The weight update vector △W for all Nw

weights is found as

△W = −H−1g (2.13)

where g is the gradient of E.

15

If the error function is quadratic, then Newton’s method converges to the opti-

mum solution in one iteration. However, practical application of this method to train

an MLP is limited for several reasons. Excess storage and multiplies per iteration are

two among the many difficulties which prevent the implementation of Newton’s algo-

rithm for training the MLP. One approach for remedying these problems is to apply

Newton’s algorithm to the input weights only, in the first half of a given iteration.

The second part of the iteration would be to solve linear equations for the output

weights, which include the bypass weights, as in OWO.

Equation (2.13) is then rewritten as

△WR = −H−1
R gR (2.14)

where the reduced size Hessian HR has Niw rows where Niw = (N + 1)Nh, is the

number of input weights. When Gauss-Newton [50] updates are used, elements of

HR are computed as

∂2E

∂w(j, i)∂w(k, n)
=

2

Nv

u(j, k)

Nv
∑

p=1

xp(i)xp(n)O′

p(j)O
′

p(k) (2.15)

u(j, k) =

M
∑

m=1

woh(m, j)woh(m, k)

Elements of the gradient vector gR are computed as

∂E

∂w(k, n)
=

2

Nv

Nv
∑

p=1

O′

p(k)xp(n)

M
∑

m=1

(tp(m)− yp(m)) · woh(m, k) (2.16)

2.6 Levenberg-Marquardt Method

The widely used Levenberg-Marquardt method [5][6] cleverly combines gradient

descent and Newton’s method to update the weights. The weight update, similar to

Newton’s method (refer equation (2.13)) is given by,

△W = −[H + λI]−1g (2.17)

16

where λ is a user chosen parameter that is scaled according to the mean square error

in a training iteration. If the error decreases following an update, then λ is decreased

by, say a factor of 10, whereas, if the error increases, then λ is increased by the same

factor.

LM works well in practice and has good convergence. The λ parameter makes

the Hessian diagonally dominant, so an inverse exists. Also, it can be seen from

equation (2.17) that LM follows Newton’s method for small λ and gradient descent for

large values of λ. However, calculation and inversion of the Hessian is still required in

every iteration. Also, the addition of the parameter λ and the method for determining

it are completely heuristic.

2.7 Output Weight Optimization-Hidden Weight Optimization

Output weight optimization-hidden weight optimization (OWO-HWO) [30] is

very similar to OWO-BP. However, HWO minimizes the objective function

Eδ(j) =

Nv
∑

p=1

[

δp(j)−
N+1
∑

n=1

ghwo(k, n)xp(n)

]2

(2.18)

for 0 ≤ i ≤ Nh, by solving for linear equations of the form

N+1
∑

n=1

ghwo(k, n)r(n, m) =
−∂E

∂w(j, m)
(2.19)

In matrix notation,

Ghwo ·R = Gbp (2.20)

where, Gbp is the backpropagation gradient, R is the input auto-correlation matrix

and Ghwo is the HWO weight changes. The weights are updated as,

w(k, n)← w(k, n) + z · ghwo(k, n)

where z is the optimal learning factor. The linear equation in 2.20 can be solved for

Ghwo using conjugate gradient, orthogonal least squares (OLS) or matrix inversion

17

using the singular value decomposition (SVD). It is shown in appendix B that OWO-

HWO is equivalent to linearly transforming the training data and then performing

OWO-BP. The weights connected to the outputs are adapted using OWO mentioned

in 2.2.

2.8 Discussion

Having reviewed the basics of MLP training, we can make the following com-

ments.

(i) First order methods are slow to converge

(ii) Second order methods are slow between training iterations and require a lot of

computational resource

(iii) Both first and second order methods are negatively impacted by presence of

linear dependence

We now move on to modeling and analyzing the effect of linear dependence on MLP

training.

CHAPTER 3

EFFECT OF LINEAR DEPENDENCE ON LEARNING

Presence of linear dependence can affect the learning ability of feed-forward

networks. A simple unifying theory is required to (i) model the dependence and (ii)

analyze its effect on MLP training (both first and second order methods). In this

chapter we present a detailed mathematical analysis of the effect of linear dependen-

cies on MLP training. In section 1.3 we looked at the layered architecture of the

MLP. Linear dependence can occur in any of these layers and can affect the overall

training. We have identified and categorized these dependencies as follows:

1. Linearly dependent inputs

2. Linearly dependent hidden units

2.1 Hidden units dependent upon inputs

2.2 Hidden units dependent upon other hidden units

We begin by establishing the concept of equivalent networks. Then, for each case

listed above, we model for the linear dependence and use the concept of equivalent

networks to analyze the effect of dependency. We will examine the effects of linear

dependence on backpropagation and Newton’s method. In general, these results can

be extended to any training algorithm that uses gradient information for training.

3.1 Equivalent Networks: A Concept

The concept of equivalent networks [42] is very important for the analysis of

linear dependency, which will be the focus of this section. Feed forward neural net-

works, such as the MLP are sensitive to the choice of initial weights [52]. Given a

18

19

training data set and a fixed architecture for the MLP, the final mean square error

after training is not guaranteed to be the same every time the network is trained.

This is because the training is largely dependent on the initialization of the weights

in the network.

Let {xp, tp}Nv

p=1 denote the original training data and let A be a matrix of rank

(N + 1) that transforms input vector xp to x′

p as x′

p = A ·xp. {x′

p, tp}Nv

p=1 denotes the

transformed data. In order to analyze the effect of the transformation, we define the

concept of equivalent networks.

Definition 3-1 A network trained with {xp, tp} and one trained with {x′

p, tp}

are equivalent if the output vectors, yp and y′

p are identical.

We must ensure that the networks trained on the original and transformed data

have the exact same starting point. This translates to ensuring the two networks have

identical hidden unit activations and identical outputs for every training pattern. The

concept of equivalent networks is graphically illustrated below.

Figure 3.1. Illustration: Concept of Equivalent Networks.

If we have to analyze the effect of a transformation A on the training of a

network, then it is logical to start by initializing a network that will train on the

20

transformed data. Subsequently,we can absorb this initialization into another equiv-

alent network that will train on the original data so as to ensure common starting

points. The concept of weight absorption also makes for a fair comparison [53]. The

concept of equivalent networks, though simple is very effective in

(i) analyzing linear dependency

(ii) detecting the point of deviation of two comparable schemes

(iii) providing a framework for a fair comparison

In the following sections, we use the concept of equivalent networks and present

a detailed analysis of the effects of linear dependence on network training. We first

look at how linear dependence affects backpropagation, subsequently, we will do a

similar analysis on Newton’s method.

3.2 Effect of Dependence on Backpropagation

This section analyzes the effect of dependent inputs on learning using BP-type

algorithm. The expression for steepest descent gradient is derived for the case of

dependent and independent inputs. Equivalent networks concept is used to analyze

the effect on learning. We start by asking the question, given an MLP with linearly

independent inputs, what is the effect of adding some dependent inputs on training?

3.2.1 Linearly Dependent Inputs

3.2.1.1 Modeling Dependent Inputs

Let the (N + 1) elements in the input vector xp be linearly independent. Let

(K − 1) additional linearly dependent inputs be added as

xp(N + 1 + k) =
N+1
∑

m=1

a(N + 1 + k, m)xp(m) (3.1)

21

where k varies from 1 ≤ k ≤ (K − 1). Let the first (N + 1) rows of the matrix A

have diagonal elements equal to 1, with the off-diagonal elements equal to 0. A is

(N + K) by (N + 1) and has rank (N + 1). The input vector augmented with the

dependent elements is then

x′

p = A · xp (3.2)

where the first (N + 1) elements of x′

p satisfy x′

p = xp(n). For the case where N = 2

and K = 2, the matrix A is

A =

1 0 0

0 1 0

0 0 1

a41 a42 a43

(3.3)

3.2.1.2 An Equivalent Compact Network

Our goal is to analyze the effects of these linearly dependent inputs on MLP

training. First, assume that a dependent network with augmented input vectors x′

p is

being trained. For the pth pattern, the hidden unit net function vector np is expressed

as

np = W′ · x′

p (3.4)

22

Next, we want to construct an equivalent network, with input vectors xp, whose

hidden unit activations and outputs take on the same values as those in the augmented

network, pattern by pattern. Starting with the equation above we have

np(k) =
N+K
∑

n=1

w′(k, n)x′

p(n)

=

N+1
∑

n=1

w′(k, n)x′

p(n) +

N+K
∑

n=N+2

w′(k, n)x′

p(n)

=

N+1
∑

n=1

w′(k, n)xp(n) +

N+K
∑

n=N+2

w′(k, n)x′

p(n)

(3.5)

Rewriting and expanding the second term, we have

N+K
∑

m=N+2

w′(k, m)x′

p(m) =

N+K
∑

m=N+2

w′(k, m)

N+1
∑

n=1

a(m, n)xp(n)

=
N+1
∑

n=1

[
N+K
∑

m=N+2

w′(k, m)a(m, n)]xp(n)

(3.6)

The weights of this compact, equivalent network are now

w(k, n) = w′(k, n) +

N+K
∑

m=N+2

w′(k, m)a(m, n) (3.7)

Since the compact network is equivalent to the dependent one, we can infer that

np = W′ · x′

p = W · xp (3.8)

Unsurprisingly, it is easy to find a compact, equivalent network to one which

has linearly dependent inputs. Substituting equation 3.2 into 3.4, we can get an

expression for the weights in the equivalent network as

W′ ·A = W (3.9)

23

3.2.1.3 Training the Dependent Network

Here, we want to compare training of the dependent net with that of the com-

pact equivalent net. Modifying equations 2.2 and 2.10 for the dependent network, we

get

g′(k, n) ≡ −∂E

∂w′

kn

=
1

Nv

Nv
∑

p=1

δp(k)x′

p(k) (3.10)

and

G′ =
1

Nv

Nv
∑

p=1

δp(x
′

p)
T (3.11)

Using equation 3.2 in 3.11, we get

G′ = G ·AT

So the gradient matrix for the dependent matrix is that of the equivalent net-

work times AT . Using 3.9, we can now map G′ back to the equivalent network as

G′′ = G ·ATA (3.12)

G′′ denotes G′ after it is mapped back to the compact equivalent network. Some

interesting lemmas result from 3.7.

Lemma 3-1: If we are at a local minimum in the weight space of the dependent

network, we are also at a local minimum in the weight space of the compact equivalent

network.

Lemma 3-2: If backpropagation (BP) is used to train the dependent net-

work’s input weight matrix W′, this is not equivalent to applying BP to the compact

network’s weight matrix W.

In other words, BP in a dependent network is not equivalent to BP in the

compact equivalent network. Training in the dependent network may not converge

to a local minimum equivalent to that in the compact network.

24

3.2.1.4 Illustration

We present some illustrations for the case of linearly dependent inputs. In all

the simulations, the network to be trained on the dependent data was initialized first

and then the network to be trained on the independent data was initialized using the

weights from the dependent network, as explained above.

The figure 3.2 is for training on the F-17 data [30]. K here represents the number

of dependent inputs generated in each case, i.e., the dependent network is trained on

K additional inputs while the independent network is trained on the original data

without dependent inputs. However, both network are initialized to be equivalent in

the first training iteration.

0 10 20 30 40 50
1.2

1.4

1.6

1.8

2

2.2
x 10

8 f17_urv10(k=1)

Number of Iterations

T
ra

in
in

g
 E

rr
o

r
(M

S
E

)

0 10 20 30 40 50
1.4

1.6

1.8

2

2.2

2.4
x 10

8 f17_urv10(k=3)

Number of Iterations

T
ra

in
in

g
 E

rr
o

r
(M

S
E

) Dependent n/w

Independent n/w

Dependent n/w

Independent n/w

Figure 3.2. Dependent and independent network performance on F-17 data.

The plot in figure 3.3 results from training on the FM-train data file [54]. In all

25

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4
fmtrain_urv10(k=1)

Number of Iterations

T
ra

in
in

g
 E

rr
o

r
(M

S
E

)

0 10 20 30 40 50

0.075

0.08

0.085

0.09

0.095

0.1
fmtrain_urv10(k=3)

Number of Iterations

T
ra

in
in

g
 E

rr
o

r
(M

S
E

) Dependent n/w

Independent n/w

Dependent n/w

Independent n/w

Figure 3.3. Dependent and independent network performance on FMTRAIN data.

plots, the identical initialization of the two networks, using the concept of equivalent

networks is evident in the error being the exact same for the first iteration.

Despite starting at the same point, the two networks train very differently. Con-

trary to intuition, linear dependency is not always bad as can be seen in figure 3.3. A

network trained on linearly independent data is not guaranteed to be better. Some-

times linear dependence seems to help. However, one thing is for certain, the training

is different for a network with dependent inputs and for the one without.

3.2.2 Hidden Units Dependent Upon Inputs

In this subsection we are interested in analyzing BP when some hidden units’

outputs are linearly dependent upon the inputs. This special case can occur when

the net function in equation 3.4 falls in the linear region of the sigmoid activation.

26

This would make the hidden unit output to be 0.5 plus a constant multiple of the net

function. For our dependent network, the assumptions are as follows:

A1 Hidden unit activations Op(1) through Op(Nh) are not linear1y dependent on the

inputs.

A2 Hidden unit activations Op(Nh + 1) through Op(Nh + K) are linear1y dependent

on the inputs.

A3 The bypass weight in the dependent network, which maps the nth input to the

ith output, is denoted by woi(i, n).

3.2.2.1 Modeling Input-dependent Hidden Units

For k between 1 and K, assumption A2 can be expressed as

Op(Nh + k) = 0.5 + cknp(Nh + k) = ck

N+1
∑

n=1

w′(Nh + k, n)xp(n) (3.13)

ck denotes the a constant that multiplies the net function.

In a compact network equivalent to the dependent one, the bypass weights from

input to output are

woi(i, n) = w′

oi(i, n) +

K
∑

k=1

ck · w′

oh(i, Nh + k)w′(Nh + k, n) (3.14)

3.2.2.2 Training the Dependent Network

If BP is applied to bypass weights in the compact equivalent network, we get

weight changes as

z.goi(i, n) ≡ z · −∂Ep

∂woi(i, n)
= z · δpo(i)xp(n) (3.15)

27

In the dependent network, we have

g′

oi(i, n) ≡ −∂Ep

∂w′

oi(i, n)
= δpo(i)xp(n) (3.16)

g′

oh(i, Nh + k) ≡ −∂Ep

∂w′

oh(i, Nh + k)
= δpo(i)cnnp(Nh + k) (3.17)

g′(Nh + k, n) ≡ −∂Ep

∂w′(Nh + k, n)
= δp(Nh + k)xp(n) (3.18)

Assuming that the learning factor used in the dependent network is z1, the resulting

weight change in the equivalent network is

△woi(i, n) = z1 · g′

io(i, n)

+

K
∑

c=1

ck[z1 · g′

oh(i, Nh + k)w′(Nh + k, n)

+ z1 · w′

oh(i, Nh + k)g′(Nh + k, n)

+ (z1)
2 · g′

oh(, Nh + k) · g′(Nh + k, n)]

(3.19)

3.2.2.3 Analysis

We see that the first term in equation 3.19 is similar to equation 3.15, but that

the other terms are very different. This leads to the following theorem.

Theorem 3-1: If BP is used to train the dependent network’s hidden units

that are linearly dependent on the inputs, this is not equivalent to applying BP to

the compact network’s bypass weights.

Proof : The right hand sides of equations 3.15 and 3.19 are not equal.

In other words, BP in a dependent network is not equivalent to steepest descent

in the compact equivalent network. Training in the dependent network may not

converge to a local minimum equivalent to that in the compact network.

28

3.2.3 Linearly Dependent Hidden Units

In this subsection we are interested in analyzing BP when some hidden units’

outputs are linearly dependent upon the outputs of other hidden units. This is dif-

ferent from the case discussed in section 3.2.2 in that the outputs of the hidden units

are all non-linear functions of the input, but it does not guarantee that outputs of the

hidden units are linearly independent. For our dependent network, the assumptions

are as follows:

A1 Hidden unit activations Op(1) through Op(Nh) are not linear1y dependent on

each other.

A2 Hidden unit activations Op(Nh + 1) through Op(Nh + K) are linear1y dependent

on hidden unit activations Op(1) through Op(Nh).

A3 Weights from hidden units to output units are denoted by w′

oh(i, k).

3.2.3.1 Modeling Dependent Hidden Units

For k between 1 and K, assumption A2 can be expressed as

Op(Nh + k) =

Nh
∑

n=1

b(Nh + k, n)Op(n) (3.20)

where the unknown coefficients b(m, n) are the elements of the matrix B of dimension

(Nh + K) × Nh, similar to A defined in 3.3. A compact network equivalent to the

dependent one, has Nh hidden units identical to the first Nh hidden units in the

dependent network. The weights from the hidden layer to the output layer however

would be

woh(i, k) = w′(oh(i, k) +

Nh+K
∑

m=Nh+1

w′

oh(i, m)b(m, k) (3.21)

where k varies from 1 to Nh and i varies from 1 to M .

29

3.2.3.2 Training the Dependent Network’s Output Weights

Here, we want to compare training of the dependent network with training of

the compact equivalent network. While training the equivalent network, the weight

change for the pth pattern for woh(i, k) is proportional to

−∂Ep

∂woh(i, k)
= δpo(i)Op(k) (3.22)

where k varies from 1 to Nh. For the dependent network, the first Nh hidden units

are identical to those in the equivalent network. So, we have

−∂Ep

∂w′

oh(i, k)
= δpo(i)Op(k) (3.23)

where k varies from 1 to Nh + K. Based upon equation 3.21, the pth pattern’s

weight change in the dependent network, when mapped to an equivalent network, is

proportional to

−∂Ep

∂w′

oh(i, k)
+

Nh+K
∑

m=Nh+1

−∂Ep

∂w′

oh(i, m)
b(m, k)

= δpo(i)Op(k) +

Nh+K
∑

m=Nh+1

δpo(i)Op(m)b(m, k)

= δpo(i)[Op(k) +

Nh+K
∑

m=Nh+1

Nh
∑

n=1

b(m, n)Op(n)b(m, k)]

= δpo(i)[Op(k) +

Nh
∑

n=1

Op(n)

Nh+K
∑

m=Nh+1

b(m, n)b(m, k)]

(3.24)

If we define

c(n, k) ≡
Nh+K
∑

m=Nh+1

b(m, n)b(m, k) (3.25)

we have,

g′′

oh(i, k) = goh(i, k) +

Nh
∑

n=1

goh(i, n)c(n, k)

G′′

oh = Goh(I + C) = Goh(I + BTB)

(3.26)

30

Comparing the last line of equation 3.26 with the right hand side of equation 3.22,

we see that they are different. This leads to the following theorem.

Theorem 3-2: If BP is used to train the output weights of the dependent net-

work’s hidden units, this is not equivalent to applying BP to the compact equivalent

network’s hidden unit output weights.

Proof : See equation 3.26.

As in the previous cases, BP in a dependent network is not equivalent to BP in

a compact equivalent network. Training in the dependent network may not converge

to a local minimum equivalent to that in the compact network.

3.2.3.3 Training the Dependent Network’s Input Weights

Here, we want to compare training of the dependent net’s input weights with

training of the compact equivalent net’s input weights. Starting with equation 2.9,

the negative gradient of the dependent network’s input weights is

g′(k, n) =
∂E

∂w′

kn

=
1

Nv

δ′p(k)x′

p(n) (3.27)

where k varies from 1 to Nh + K. Substituting equation 2.8 into equation 3.27, we

get

g′(k, n) =

M
∑

i=1

w′

oh(i, k)uk(n, i)

uk(n, i) =
1

Nv

Nv
∑

p=1

f ′(np(k))δpo(i)xp(n)

(3.28)

Assume that equation 3.21 maps the dependent network’s output weights to a

compact network’s output weights woh(i, k). For k between 1 and Nh, the compact

31

network’s hidden units have identical input weights, net functions, and activations.

Equations 3.27 and 3.28 for this network are rewritten as

g(k, n) =
∂E

∂wkn

=
1

Nv

δp(k)xp(n)

=
M
∑

i=1

w′

oh(i, k)uk(n, i) +
M
∑

i=1

Nh+K
∑

m=Nh+1

w′

oh(i, m)b(m, k)um(n, i)

= g′(k, n) +

Nh+K
∑

m=Nh+1

b(m, k)g′(m, n)

(3.29)

Example:Given a compact network with Nh hidden units, we can construct a

dependent network for the K = 1 case by copying hidden unit Nh onto hidden unit

Nh + 1. The output weights satisfy

w′

oh(i, Nh) = w′

oh(i, Nh + 1) =
1

2
woh(i, Nh) (3.30)

The only non-zero b coefficient is b(Nh, Nh + 1), which equals 1. Considering the

output weights, we have

g′′

oh(i, Nh) = 2 · goh(i, Nh) (3.31)

because of 3.31. Equation 3.26 gives the same result. For the input weights, we get

g′(Nh, n) =
1

2
· g(Nh, n) (3.32)

because the output weights of the two identical hidden units are half-size. This leads

to hidden unit delta functions that are half-size. Using the fact that b(Nh, Nh+1) = 1

in equation 3.29, we get the same result as equation 3.32. The following theorem

follows from equation 3.29.

Theorem 3-3: If BP is used to train the input weights of the dependent net-

work’s hidden units, this is not equivalent to applying BP to the compact equivalent

network’s input weights.

Proof : See the derivation of 3.29.

32

We have presented a rigorous treatment of the effects of linear dependencies

on the training of the network. We have shown that the dependencies can occur in

any layer of the network and can have an effect on the training. Experimental results

show that linearly dependent signals often have a detrimental effect on neural network

training.

3.3 Effect of Linear Dependence on Newton’s Method

Even when the reduced size Hessian HR is used, Newton’s method can use

excessive memory, since the computational expense for inverting HR is O(N3
iw). In

addition, H and HR are usually ill-conditioned or rank deficient [50], as shown in this

subsection.

3.3.1 Linearly Dependent Inputs

First, consider the effect of a linearly dependent input on HR, modeled as

xp(N + 2) =
N+1
∑

n=1

b(n)xp(n)

Equation (2.15) can be re-written for the dependent input as,

∂2E

∂w(j, N + 2)∂w(u, v)
=

2

Nv

v(j, u)

Nv
∑

p=1

N+1
∑

n=1

b(n)xp(n)xp(u)O′

p(j)O
′

p(u)

=
N+1
∑

n=1

b(n)

(

2

Nv

v(j, u)
Nv
∑

p=1

xp(n)xp(u)O′

p(j)O
′

p(u)

)

=

N+1
∑

n=1

b(n)
∂2E

∂w(j, n)∂w(u, v)

For a fully connected MLP, this implies that for a fixed j, the (N + 2)nd row

is a linear combination of (N + 1) other rows. The index j represents a hidden unit

and varies from 1 to Nh. Expanding on this result, each dependent input generates

Nh dependent rows and columns in the Hessian HR.

33

3.3.2 Linearly Dependent Hidden Units

Next, consider the effect of a linearly dependent hidden unit on HR, modeled

as

Op(Nh + 1) =

Nh
∑

k=1

c(k)Op(k)

If orthogonal least squares [55] is used to solve for output weights, then the weights

from the dependent hidden unit to all outputs would be set to zero, i.e. woh(i, Nh +

1) = 0, 1 ≤ i ≤M . From the expression for u(j, u) above, it is clear that u(j, Nh+1) =

u(Nh + 1, u) = 0. Equation (2.15) for the dependent hidden unit is,

∂2E

∂w(Nh + 1, m)∂w(u, v)
=

∂2E

∂w(j, m)∂w(Nh + 1, v)
= 0

Each linearly dependent hidden unit results in (N + 1) zero-valued rows and

(N +1) zero-valued columns in HR. The above analyses show that a single dependent

basis function can affect multiple rows and columns in the Hessian, indicating its

sensitivity to different training conditions.

In this chapter we have provided a thorough mathematical analysis of the effect

of linear dependence on MLP trained using backpropagation and Newton’s method.

Using equivalent networks we showed that in the presence of linear dependence (i)

the gradient information in backpropagation will be different and (ii) the Hessian in

Newton’s method will have linearly dependent rows and columns.

CHAPTER 4

PROPOSED WORK

In this chapter we identify the problem areas and outline the tasks and goals

of this dissertation.

4.1 Problems

4.1.1 Computational Complexity of Second Order Methods

Second order methods such as the Newton’s method, and its variants, involve

computing and storing a giant Hessian in every training iteration in order to update

the weights in the network. The Hessian is usually ill-conditioned and LM tries to

counter that by heuristically scaling the diagonal elements of the Hessian. Though

LM works well in practice, it is extremely slow and resource hungry. The power of

LM-type algorithms come at the cost of greatly increased computational loads. Also,

second order methods are not free from the effects of linear dependence.

4.1.2 Effects of Input Transformations Are Poorly Understood

Data pre-processing techniques can be characterized as transformations of the

inputs. These are mostly ad-hoc and depends on the application and the learning

algorithm. It is known that some transformations are beneficial and help reducing

the training error, while some other have no effect on reducing the overall error.

34

35

4.1.3 Primitive Methods For Accelerating Convergence

Early work on accelerating input weight convergence, such as the delta-bar-delta

[43], did so by adapting individual learning factors for each weight. The methods

introduce additional user chosen parameters, with no clear guidance or technique

on how to choose the best set of parameters. The performance of the methods are

dependent on these parameters making it hard to scale them to different applications

or make them generally applicable.

4.1.4 Training Affected By Dependencies

In chapter 3, we have thoroughly analyzed the effect of linear dependence on

training. In general, presence of linear dependence causes the training to be different,

slow to converge and even unpredictable at times. Existing algorithms work best

with linearly independent training data. However, several real world applications of

neural networks are required to handle large amounts of data not guaranteed to be

linearly independent. An obvious solution is to perform feature selection or use data

pre-processing to detect and eliminate the linear dependence. A better solution would

be to develop resilient learning algorithms immune to linear dependence.

4.1.5 Inability to Model Discontinuous Functions

MLPs were made popular by the universal approximation theorem [31], which

in essence states that a single layer MLP, with sufficiently large number of nonlinear

units can approximate any real continuous function to an arbitrary degree of accuracy.

What it does not mention is the fact that MLP training algorithms perform poorly on

discontinuous functions. This is in spite of the fact that sigmoidal units can easily be

designed by hand to approximate step functions arbitrarily well, simply by increasing

the input weight and adjusting the threshold.

36

4.2 Proposed Goals and Tasks

In this section, we set a goal for each problem listed in section 4.1. We also

propose a list of tasks to be carried out in order to achieve these goals.

4.2.1 Towards a Positive Definite Hessian

Equation 2.15 (reproduced here for convenience), gives the expression for the

elements of Hessian for all the input weights in the network.

∂2E

∂w(j, i)∂w(k, n)
=

2

Nv

u(j, k)

Nv
∑

p=1

xp(i)xp(n)O′

p(j)O
′

p(k)

u(j, k) =

M
∑

m=1

woh(m, j)woh(m, k)

where (j, i) specify the row number and (k, n) specify the column number.

Using lexicographic ordering for example, the row number m could be calculated

from (j, i) as m(j, i) = j + (i − 1)Nh. Similarly the column number l could be

l(k, n) = k + (n− 1)Nh. The Hessian is Niw by Niw where Niw is (N + 1)Nh. If some

rows and columns in HR are linearly dependent upon others, it may be desirable

to delete them before using in Newton’s algorithm. Let K be the set of linearly

independent rows of HR. Let SK be an Niw by Niw identity matrix, after rows not

enumerated in set K are deleted. The Hessian for the remaining linearly independent

rows and columns is

Hd = SKHRST
K (4.1)

A more general case is

HT = THRTT (4.2)

where T is any L by Niw matrix with L < Niw. Elements of HT are weighted sums

of elements of HR. In this case, if HR is decomposed as VTV, then

HT = UTU (4.3)

37

where

U = VTT (4.4)

Lemma 4-1: HT is nonnegative definite. This follows from equations 4.3 and

4.4.

Lemma 4-2: HT is positive definite for some matrices T, even if HR is singular.

This follows if T = SK .

Our primary goal is to find matrices T, as in 4.2, such that HT is small and

positive definite and can be used in Newton’s algorithm.

4.2.2 An Optimal Input Transformation

We present an optimal input gain algorithm that in effect is a diagonal trans-

formation that best transforms each input to guarantee a reduction in the training

error. We show that orthogonal transforms are useless when it comes to reducing the

training error and proceed to derive an optimal non-singular, non-orthogonal diag-

onal transform that will scale each input individually in order to reduce the overall

error. We present detailed analysis that relates the method to Newton’s method and

compare it with existing algorithms using several publicly available data sets.

4.2.3 Learning using Multiple Learning Factors

We present an algorithm that assigns individual optimal learning factor to each

hidden unit. The algorithm uses Newton’s method to simultaneously compute the

multiple optimal learning factors in every iteration. Compared to the traditional

backpropagation method that uses a single optimal learning factor and LM, the pro-

posed algorithm displays a superior performance in terms of overall training error and

speed of operation, as will be evident in the results.

38

4.2.4 Countering Dependencies During Training

We extend the optimal input gain and the multiple optimal learning factor

algorithms to OWO-HWO type algorithm and show that these algorithms are resilient

in the presence of linearly dependent inputs and/or hidden units. This makes them

very powerful and robust, with a built-in ability to counter dependence that is absent

in most training algorithms. Both algorithms use Newton-type approach to compute

the learning parameters. We will relate the structure of Hessian that reveals the

overall saving in computation for the two methods.

4.2.5 Approximating Discontinuous Functions

Experiments with MLP trained using BP, OWO-BP and classic Newton’s method

indicate that they perform poorly in approximating simple discontinuous functions.

LM provides some hope as it is able to model a discontinuous step function, but it

quickly fades when extended to other discontinuous functions. We propose to demon-

strate a method for training separate networks and fusing them to form a network

with locally adapted units that can model simple discontinuities.

CHAPTER 5

THE OPTIMAL INPUT GAIN ALGORITHM

In this chapter, an effective batch training algorithm is developed for the mul-

tilayer perceptron. First, the effects of input transforms are reviewed and explained,

using the concept of equivalent networks. Next, a non-singular diagonal transform

matrix for the inputs is proposed. Use of this transform is equivalent to altering

the input gains in the network. Newton’s method is used to solve for the input

gains and an optimal learning factor. In several examples, it is shown that the fi-

nal algorithm is a reasonable compromise between first order training methods and

Levenburg-Marquardt.

Non-singular input transforms are reviewed in section 5.1. It is shown that

nonsingular orthogonal transforms of inputs are useless. In section 5.2.3, the emphasis

is therefore on non-orthogonal transforms. The simplest such transform, consisting of

a diagonal matrix, is introduced. It is shown to be equivalent to modifying the gains

on the network inputs. A combination of the optimal input gains (OIGs) and optimal

learning factor (OLF) are then found, using Newton’s method. In section 5.4, the

computational burdens of the OIG and other training algorithms are presented for

comparison. Numerical results and discussions are presented in sections 5.5 and 5.7.

5.1 Linear Transformation of Inputs

Neural network training algorithms are sensitive to initialization and also data

dependent. In the past, researchers have proposed pre-processing techniques in order

to accelerate the training and make it less data dependent.

39

40

In equation 3.12 of section 3.2, we saw that

G′′ = G ·AT ·A

where G is the input weight gradient matrix for the original network, and G′′ denotes

the gradient matrix of an equivalent network with transformed inputs, mapped back

to the original network.

Lemma 5-1 If the transformation matrix A is orthogonal, then training a net-

work using OWO-BP is equivalent to training an equivalent network with transformed

inputs and mapping the weight changes back to the original network.

The above lemma implies that it is useless to apply a transformation matrix

A if it is orthogonal, since ATA will be an identity matrix. Therefore orthogonal

transforms do not help reduce the overall mean square error during training.

So far, it is clear that A should not be orthogonal, and should not have more

rows than columns. In this section, we discuss the utility of non-singular, non-

orthogonal A matrices, with N ′ = (N + 1).

5.1.1 A Useful Non-orthogonal Transform Matrix

Suppose that our input vectors xp are biased such that E[xp] = m. A zero-mean

version of xp is x′

p which satisfies

xp = x′

p + m (5.1)

For the zero-mean data, equation 2.11 may now be written as

G′ =
1

Nv

Nv
∑

p=1

δp(x
′

p)
T (5.2)

41

For the non-zero-mean data xp in (5.1), we have

G =
1

Nv

Nv
∑

p=1

δp(x
′

p + m)T

=

(

1

Nv

Nv
∑

p=1

δp

)

·mT + G′

(5.3)

where G is the negative Jacobian matrix of the input weights for an equivalent network

trained on biased input vectors xp. Note that all of the useful information in xp resides

in x′

p . As elements of m become larger however, the first term of G dominates the

expression, and G has little useful information. Training then has no effect on the

network. Consequently, several authors have pointed out the need to make MLP

inputs zero-mean [56].

Now assume that the unbiased input vectors xp are transformed as x′

p = Axp

where A is defined as

A =

1 0 0 0 . . . m1

0 1 0 0 . . . m2

. .

. .

0 0 0 . . . 1 mN

0 0 0 . . . 0 1

Then we have

x′

p = A · xp =

xp(1) + m1

xp(2) + m2

·

·

xp(N) + mN

1

42

Mapping the gradient back to a network with inputs x using 3.12, we get

G′′ = G · (AT ·A)

where

AT ·A =

1 0 0 0 . . . −m1

0 1 0 0 . . . −m2

. .

. .

0 0 0 . . . 1 −mN

−m1 −m2 −m3 . . . −mN α

and

α = 1 +

N
∑

n=1

m2
n

Since multiplication by A removes the bias from xp , we see that a non-

orthogonal transform matrix can be useful.

5.2 Optimal Input Gain Algorithm

In this subsection, we discuss the utility of non-singular, non-orthogonal A

matrices, with N ′ = (N + 1).

43

5.2.1 A Diagonal Transform Matrix

The simplest non-orthogonal, nonsingular transform matrix A is diagonal. For

this case, let a(k) initially denote the kth diagonal element of ATA . Also, the

elements of x′

p are simply scaled versions of xp. Following (3.12) we get

ATA =

a(1) 0 . . . 0 0

0 a(1) . . . 0 0

...
...

. . .
...

...

0 0 . . . a(N) 0

0 0 . . . 0 a(N + 1)

(5.4)

Instead of using the negative Jacobian elements g(k, n) in training the network,

we use g(k, n) · a(n). Note also that the optimal learning factor (OLF) z can be

absorbed into the gains a(n).

5.2.2 Derivation of the Optimal Gain Coefficients

Assume that the MLP is being trained using OWO-BP. Given the negative

Jacobian G of dimension Nh by (N + 1), the output of the network can be written

in terms of unknown gain coefficients as

yp(i) =

N+1
∑

n=1

woi(i, n)xp(n) +

Nh
∑

k=1

woh(i, k)· (5.5)

f

(

N+1
∑

n=1

(w(k, n) + a(n) · g(k, n))xp(n)

)

44

where, f(·) is the activation function of the hidden unit, modified to reflect the

addition of OIG coefficients. The error function being minimized with respect to the

a(n)’s is given in (2.5). The first partial of E with respect to a(m) is

gig(m) ≡ ∂E

∂a(m)

=
−2

Nv

Nv
∑

p=1

xp(m)

M
∑

i=1

[

t′p(i)−
Nh
∑

k=1

woh(i, k)f(np(k))

]

·
Nh
∑

k=1

woh(i, k)f ′(np(k))g(k, m) (5.6)

=
−2

Nv

Nv
∑

p=1

xp(m)

M
∑

i=1

[tp(i)− yp(i)] · v(i, m)

Here, g(k, m) is an element of the negative Jacobian matrix G in equation

(2.10), and f ′(np(k)) denotes the derivative of f(np(k)) with respect to its net func-

tion. Then,

t′p(i) = tp(i)−
N+1
∑

n=1

woi(i, n)xp(n)

np(m) =

N+1
∑

n=1

(w(m, n) + a(n) · g(m, n))xp(n) (5.7)

v(i, m) =

Nh
∑

k=1

woh(i, k)f ′(np(k))g(k, m)

The second partial derivatives are given by

hig(m, m) ≡ ∂2E

∂a(m)2
(5.8)

=
2

Nv

Nv
∑

p=1

x2
p(m)

M
∑

i=1

v2(i, m)

hig(m, u) ≡ ∂2E

∂a(m)∂a(u)
(5.9)

=
2

Nv

Nv
∑

p=1

xp(m)xp(u)

M
∑

i=1

v(i, m)v(i, u)

45

5.2.3 Implementation Steps

Given g and the Hessian Hig, we minimize E with respect to the vector a using

Newton’s method. Now we have a choice. In each iteration, we can (i) use ATA to

transform the gradient matrix as in (3.12), or we can (ii) decompose ATA to find A

using an SVD approach. We can then transform the input data and use OWO-BP

with the optimal learning factor. However, this latter approach is too inefficient to

consider, even when A is diagonal. We use the first approach.

In each iteration of the training algorithm, the steps are as follows:

(i) Calculate the input weight Jacobian G using BP.

(ii) Calculate the OLF-input gain products a(n)

(iii) Update the input weights as

w(k, n)← w(k, n) + a(n)g(k, n)

(iv) Solve linear equations for all output weights

Here, the optimal input gain (OIG) procedure has been inserted into the OWO-

BP algorithm. It can be inserted into other algorithms as well, including standard

BP.

5.3 OIG Analyses

The equation for OIG Hessian can be re-written as,

hig(m, u) =

Nh
∑

k=1

Nh
∑

j=1

[

2

Nv

Nv
∑

p=1

xp(m)xp(u)f ′(np(k))f ′(np(k))

M
∑

i=1

woh(i, k)woh(i, j)

]

· g(k, m) · g(j, u)

46

The term within the square brackets is nothing but an element from the Hessian of

Newton’s method for updating input weights. Hence,

hig(m, u) =

Nh
∑

k=1

Nh
∑

j=1

[

∂2E

∂w(k, m)∂w(j, u)

]

g(k, m) · g(j, u) (5.10)

For fixed (m, u), the above equation can be expressed in vector notation as,

hig(m, u) =

Nh
∑

k=1

gm(k)

Nh
∑

j=1

hm,u
N (k, j) · gu(j)

= gT
mHmu

N gu (5.11)

where, gm is the mth column of the gradient matrix G and H
m,u
N is the matrix formed

by choosing elements from the Newton’s Hessian for weights connecting inputs (m, u)

to all hidden units.

Equation 5.11 gives the expression for one element of the OIG Hessian. Each

element of the OIG Hessian combines the information from Nh rows and columns of

the Newton Hessian. This can be seen as compressing the original Newton Hessian of

dimension Nh × (N + 1) to simply (N + 1). OIG effectively encodes the information

from the Newton Hessian into a smaller dimension. This makes OIG less sensitive to

input conditions and facilitates faster computation.

From equation 5.10, we see that the Hessian from Newton’s method uses four

indices (j, m, u, k) and can be viewed as a 4-dimensional array, represented by H
4
N ∈

R
Nh×(N+1)×(N+1)×Nh . Using this representation, we can express a 4-dimensional OIG

Hessian as

H
4
ig = GT

H
4
NG (5.12)

where elements of H
4
ig are defined as,

h4
ig(m, u, n, l) =

Nh
∑

j=1

Nh
∑

k=1

hN(j, m, u, k)g(j, n)g(k, l) (5.13)

47

Comparing 5.13 and 5.10, we see that hig(m, u) = h4
ig(m, u, m, u), i.e., the 4-

dimensional H
4
ig is transformed into the 2-dimensional Hessian, Hig, by setting n = m

and l = u. To make this idea clear, consider a matrix, Q, then p(n) = q(n, n) is a

vector, p, of all diagonal elements of Q. Similarly, the OIG Hessian Hig is formed by a

weighted combination of elements from H
4
N . From 5.11 and 5.12, we have successfully

expressed a reduced size Hessian in a manner similar to 4.2.

5.4 Computational Burden

In this section, we describe the computational burden for using the training

algorithms described so far. Let Nu = (N + Nh + 1) denote the number of weights

connected to each output. The total number of weights in the network is denoted as

Nw = M(N + Nh + 1) + Nh(N + 1). The number of multiplies required to solve for

output weights using the Orthogonal Least Squares [49] is Mols, which is described

by

Mols = Nu(Nu + 1)

[

M +
1

6
Nu(2Nu + 1) +

3

2

]

(5.14)

The numbers of multiplies required for training using BP, OWO-BP, OIG and

LM are respectively given by

Mbp =Nit{Nv[MNu + 2Nh(N + 1)

+ M(N + 6Nh + 4)] + Nw} (5.15)

Mowo−bp =Nit{Nv[2Nh(N + 2) + M(Nu + 1)

+
Nu(Nu + 1)

2
+ M(N + 6Nh + 4)]

+ Mols + Nh(N + 1)} (5.16)

48

Moig =Mowo−bp + Nit{Nv[(N + 1)(3MNh + MN

+ 2(M + N) + 3)−M(N + 6Nh + 4)

−Nh(N + 1)] + (N + 1)3} (5.17)

Mlm =Mbp + Nit{Nv[MNu(Nu + 3Nh(N + 1))

+ 4N2
h(N + 1)2] + N3

w + N2
w} (5.18)

where Nit is the number of training iterations.

Note that Moig consists of Mowo−bp plus the required multiplies for calculating

optimal input gains. Similarly, Mlm consists of Mbp plus the required multiplies for

calculating and inverting the Hessian matrix. The above equations for the number of

multiplies per iteration will be used to evaluate performance in the following section.

5.5 Results

Here we present the results for the OWO-BP algorithm, modified using the

optimal input gain method. We compare its performance with BP, OWO-BP and

LM, where optimal learning factors (OLFs) were used in the latter three algorithms.

In BP and LM, all weights are varied in each iteration. In OWO-BP, we alternately

use BP for the input weights (with the OLF) and solve linear equations for the output

weights.

For a given network, we obtain the training error and the number of multiplies

required for each training iteration. We also obtain the validation error for a fully

trained network. This information is used to subsequently generate the plots and

compare performances.

We use the k-fold cross-validation procedure to obtain the training and valida-

tion errors. Given a data set, we split the set into k non-overlapping parts of equal

49

size, and use (k − 1) parts for training and the remaining one part for validation.

The procedure is repeated till we have exhausted all k combinations (k = 10 for our

simulations).

All the data sets used for simulation are publicly available. In all data sets,

the inputs have been normalized to be zero-mean and unit variance. For a detailed

description of each data set, refer to appendix A.

5.5.1 Prognostics Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [57]. It consists of parameters that are available in the Bell Helicopter

health usage monitoring system (HUMS), which performs flight load synthesis, which

is a form of prognostics [58].

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

8

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

10
6

10
7

10
8

10
9

10
10

10
11

10
12

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

8

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

(a) (b)

Figure 5.1. Prognostics Data: average error vs. (a) iterations and (b) multiplies.

For this data file, which is called F17, we trained an MLP having 15 hidden

units. In Fig. 5.1-a, the average mean square error (MSE) for training from 10-fold

validation is plotted versus the number of iterations for each algorithm. In Fig. 5.1-

50

b, the average training MSE from 10-fold validation is plotted versus the required

number of multiplies (shown on a log10 scale). From Fig. 5.1-a and Fig. 5.1-b, the

proposed optimal input gain algorithm converges faster than BP or OWO-BP, and it

is much faster than LM.

5.5.2 Remote Sensing Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [57]. It consists of 16 inputs and 3 outputs and represents the training

set for inversion of surface permittivity, the normalized surface rms roughness, and

the surface correlation length found in back scattering models from randomly rough

dielectric surfaces [59].

0 5 10 15 20 25 30 35 40 45 50

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

10
6

10
7

10
8

10
9

10
10

10
11

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

(a) (b)

Figure 5.2. Remote Sensing Data: average error vs. (a) iterations and (b) multiplies.

For this data file, which is called Single2, we trained an MLP having 15 hidden

units. In Fig. 5.2-a, the average training MSE from 10-fold validation is plotted versus

the number of iterations for each algorithm. In Fig. 5.2-b, the average training MSE

from 10-fold validation is plotted versus the required number of multiplies.

51

From the plots, the optimal input gain algorithm again converges faster than

BP and OWO-BP, and it has smaller training error. In this example, it trains better

than LM, with almost two orders of magnitude fewer multiplies.

5.5.3 Federal Reserve Economic Data Set

This file contains some economic data for the USA from 01/04/1980 to 02/04/2000

on a weekly basis. From the given features, the goal is to predict the 1-Month CD

Rate [60].

It has 15 inputs and one output per pattern, with a total of 1049 patterns. For

this data file, which is called TR, we trained an MLP having 15 hidden units. In Fig.

5.3-a, the average training MSE from 10-fold validation is plotted versus the number

of iterations for each algorithm. In Fig. 5.3-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies.

0 10 20 30 40 50
0.032

0.034

0.036

0.038

0.04

0.042

0.044

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

10
5

10
6

10
7

10
8

10
9

10
10

10
11

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

(a) (b)

Figure 5.3. Economic Data: Average error vs. (a) iterations and (b) multiplies.

From Fig. 5.3-a and Fig. 5.3-b, the optimal input gain algorithm has a training

error less than that of LM, with far fewer multiplies per iteration.

52

5.5.4 Housing Data Set

This data file is available on the DELVE data set repository [61].

0 5 10 15 20 25 30 35 40 45 50
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

10
7

10
8

10
9

10
10

10
11

10
12

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9

Number of Multiplications
A

v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

(a) (b)

Figure 5.4. Housing Data: Average error vs. (a) iterations and (b) multiplies.

The training data consists of 16 inputs and 1 output per pattern, with a total

of 22,784 patterns. For this data file, we trained an MLP having 15 hidden units.

In Fig. 5.4-a, the average training MSE from 10-fold validation is plotted versus

the number of iterations for each algorithm. In Fig. 5.4-b, the MSE from 10-fold

validation is plotted versus the required number of multiplies. From the plots, the

optimal input gain algorithm has a training error close to that of LM, with far fewer

multiplies per iteration.

5.5.5 Concrete Compressive Strength Data Set

This data file is available on the UCI Machine Learning Repository [62]. The

data set consists of 8 inputs and one output per pattern, with a total of 1030 patterns.

For this data file, we trained an MLP having 15 hidden units. In Fig. 5.5-a, the

average training MSE from 10-fold validation is plotted versus the number of iterations

53

0 5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

Number of Iterations

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)
BP

OWO−BP

OIG

LM

10
5

10
6

10
7

10
8

10
9

10
10

20

30

40

50

60

70

80

Number of Multiplications

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

BP

OWO−BP

OIG

LM

(a) (b)

Figure 5.5. Concrete Data: Average error vs. (a) iterations and (b) multiplies.

for each algorithm. In Fig. 5.5-b, the average training MSE from 10-fold validation

is plotted versus the required number of multiplies. From Figs. 5.5-a and 5.5-b, the

optimal input gain algorithm has a training error close to that of LM, with far fewer

multiplies per iteration.

Table 5.1 compares the average training and validation errors of the proposed

OIG algorithm with BP, OWO-BP and LM on different data sets. For each data set,

the training and validation errors again come from 10-fold cross validation.

We can see that the proposed OIG algorithm sometimes has a performance

comparable to or better than the popular LM algorithm.

5.6 Limitations on OIG

As mentioned before, the OIG algorithm developed in this chapter has been

used to modify OWO-BP type training. When there are no dependent inputs, the

OIG algorithm finds the optimal gain coefficients for each input that reduces the

overall mean squared training error. Singular value decomposition (SVD) or similar

54

Table 5.1. Average 10-fold training and validation error

Data set BP OWO-BP OIG LM

F-17
Etrn 1.0410E8 7.9042E7 4.8109E7 2.6089E7

Eval 1.0748E8 8.2064E7 5.1440E7 2.9399E7

Single2
Etrn 1.207082 1.181896 0.617487 0.785390

Eval 1.296914 1.277067 0.777170 0.863154

Treasury
Etrn 0.041667 0.038182 0.032190 0.033500

Eval 0.047801 0.044630 0.041435 0.040850

Housing
Etrn 1.7923E9 1.4526E9 1.3849E9 1.3472E9

Eval 1.7974E9 1.4976E9 1.4386E9 1.3917E9

Concrete
Etrn 54.2286 43.1730 34.5438 23.3564

Eval 60.8905 50.6084 41.5764 31.9576

algorithm can be used for inverting the OIG Hessian. In this section we analyze the

performance of OIG in the presence of linearly dependent inputs.

Any time there are dependent or identical inputs present, it is easy to show that

the input autocorrelation matrix, R and the gradient matrix G have dependent or

identical columns. However, the key to analyzing the effect of identical or dependent

inputs on OIG’s performance lies in examining the structure of the Hessian for each

case. If indeed the input dependence is reflected in the Hessian being singular (having

dependent rows and columns), then the SVD should pick up the dependency. This

would force the gain coefficient corresponding to the dependent input to be zero,

hence eliminating them during training. Next, we analyze the structure of Hessian

for identical inputs, followed by linearly dependent inputs.

55

5.6.1 Identical Inputs

Consider the case of identical inputs. Assume that input (N + 2) is identical

to input (N + 1). In this case the corresponding gradient elements are also identical,

i.e.,

g(k, N + 2) = b · g(k, N + 1) ∀ k ∈ (1, Nh)

Now, the element of the Hessian can be written as,

hig(m, u) ≡ ∂2E

∂a(m)∂a(u)

=
2

Nv

Nv
∑

p=1

xp(m)xp(u)

M
∑

i=1

v(i, m)v(i, u)

where,v(i, m) is described in equation 5.7. For the case of identical input, we can

write,

v(i, N + 2) = b · v(i, N + 1)

and the corresponding element in the Hessian would be

hig(N + 2, u) = b2 2

Nv

Nv
∑

p=1

xp(N + 1)xp(u)

M
∑

i=1

v(i, N + 1)v(i, u)

= hig(N + 1, u)

From the above analysis and based on the fact that the Hessian is symmetric,

the (N + 2)th row and column of the Hessian would be identical to the (N + 1)th row

and column. Clearly, the Hessian is singular. If the SVD is used for inversion, then

the corresponding row and column of the inverted Hessian would be zero. This in turn

sets the gain coefficient a(N + 2) to be zero, effectively eliminating any contribution

of the identical input xp(N + 2) during training.

We have shown how identical inputs reflect in the Hessian having identical rows

and columns, making it easy to detect and eliminate the identical inputs.

56

5.6.2 Dependent Inputs

We have seen for the case of identical inputs that the Hessian is singular. Next

we examine the case of more general dependent inputs. We can model the (N + 2)th

dependent input as,

xp(N + 2) =
N+1
∑

j=1

b(j)xp(j)

and the corresponding elements of the gradient matrix G and V are given by,

g(k, N + 2) =
N+1
∑

j=1

g(k, j)b(j)

v(i, N + 2) =

N+1
∑

j=1

v(i, j)b(j)

Similarly, the Hessian element is given by,

hig(N + 2, u) =
2

Nv

Nv
∑

p=1

xp(N + 2)xp(u)

M
∑

i=1

v(i, N + 2)v(i, u)

=
N+1
∑

n=1

b(n)
N+1
∑

j=1

b(j)
2

Nv

Nv
∑

p=1

xp(n)xp(u)
M
∑

i=1

v(i, j)v(i, u)

6=
N+1
∑

j=1

hig(i, j)b(j) (5.19)

Clearly, the Hessian is nonsingular in the case of linearly dependent input as

the corresponding row and column of the Hessian will not be a linear sum of the other

rows and columns. This means that the Hessian can still be inverted and the linearly

dependent input, xp(N + 2), will have a non-zero gain a(N + 2). This nonsingular

impure Hessian cannot be used to detect and eliminate the linearly dependent inputs.

This could cause OIG to have a suboptimal performance and possibly poor conver-

gence. One strategy to overcome this limitation of OIG is to use the autocorrelation

matrix for an early detection and elimination of linearly dependent inputs. This in-

place preprocessing technique would be done only once before training begins. The

57

OIG thus trains only on independent inputs. Another strategy would be to use the

negative Jacobian matrix for input weights, G. This would have to be done for every

training iteration as the elements of G change for every iteration. The end result is

that the Hessian is free from dependent rows and columns and the OIG algorithm

would train on linearly independent inputs only.

5.7 Discussion

We have derived a second order method for simultaneously optimizing input

gains and the OLF. The method has been successfully demonstrated on five data sets.

Results show that this approach performs much better than two common first order

algorithms with comparable complexity, namely BP and OWO-BP. It comes close to

LM in terms of the training error, but with orders of magnitude less computation.

This is evident in all of the plots of training error versus the required number of

multiplies and also from the expressions for the numbers of multiplies.

Although LM works very well in practice it has a high computational burden

and is sub-optimal in the way it handles the ’scaling’ factor, λ. OIG on the other

hand uses a Newton type update and combines the optimal learning factor, leaving

little room for heuristics.

We discussed the limitations of the OIG algorithm. We have shown that Hessian

used in calculating the input gain coefficients can be non-singular in the presence of

linearly dependent inputs, leading to poor training. The Hessian is hence not usable

to detect or eliminate dependent inputs. We have suggested two strategies for in-place

detection and elimination of dependent inputs, either of which could be implemented

to improve OIG’s performance in the presence of dependent inputs.

CHAPTER 6

A MULTIPLE OPTIMAL LEARNING FACTOR ALGORITHM

This chapter presents a new learning algorithm called the multiple optimal

learning factor (MOLF) algorithm, that calculates an optimal learning factor for

every hidden unit, in order to increase the speed of learning and overall convergence.

The multiple optimal learning factor is a batch training algorithm for feed-

forward networks which uses Newton’s method to estimate a separate optimal learning

factor for each hidden unit’s input weights. Linear equations are then solved for the

network’s output weights. The primary motivation is discussed in section 6.1. The

new algorithm is described in section 6.2. Elements of the new method’s Hessian

matrix are shown to be weighted sums of elements from the total network’s Hessian.

Results and discussion are presented in sections 6.6 and 6.8. In several examples, the

new method performs as well as or better than Levenberg-Marquardt.

6.1 Motivation For Multiple Learning Factors

In the past, researchers have used multiple learning rates and/or momentum

terms in order to speed up the learning process [43], [45]. Unfortunately, these meth-

ods are mostly heuristic, and their performance relies on the settings of some user

chosen parameters. Also, using standard gradients, makes them slow to converge.

The Newton’s method can be viewed as a second order method to assign a learning

rate to every weight in the network.

58

59

6.1.1 First Order Algorithm with Second Order Learning Factor

As suggested earlier, we can alternately update input weights and solve linear

equations for the output weights located in arrays Woh and Woi. Instead of using

Newton’s method or even LM to modify the input weights, we can use BP. Let W

again denote the Nh by (N + 1) input weight array. In every iteration, W can be

updated as

W←W + z ·G (6.1)

where z is the learning factor or the step length and G is the negative input weight

Jacobian. This first order training algorithm is called output weight optimization-

backpropagation (OWO-BP) [29].

Using a Taylor’s series for E, a non-heuristic, optimal learning factor (OLF)

can be derived [63] as,

z =
−∂E/∂z

∂2E/∂z2
(6.2)

where the numerator and denominator derivatives are evaluated at z = 0.

The expressions for the first and second derivatives of the error with respect to

the OLF is found using equation (2.5) as,

∂E

∂z
=
−2

Nv

Nv
∑

p=1

M
∑

m=1

(tp(m)− yp(m)) · ∂yp(m)

∂z
(6.3)

and

∂2E

∂z2
=

2

Nv

Nv
∑

p=1

M
∑

m=1

[

(

∂yp(m)

∂z

)2
]

(6.4)

60

Equation (6.4) can be expanded as

∂2E

∂z2
=

Nh
∑

k=1

Nh
∑

j=1

N+1
∑

n=1

N+1
∑

i=1

g(k, n)

[

2

Nv

v(k, j)

Nv
∑

p=1

xp(i)xp(n) ·O′

p(k)O′

p(j)

]

g(j, i)

=

Nh
∑

k=1

Nh
∑

j=1

N+1
∑

n=1

g(k, n)

N+1
∑

i=1

∂2E

∂w(k, n)∂w(j, i)
g(j, i) (6.5)

=

Nh
∑

k=1

Nh
∑

j=1

gT
k H

k,j
R gj

where column vector gk contains G elements g(k, n) for all values of n, and where

the (N + 1) by (N + 1) matrix H
k,j
R contains elements of HR for weights connected

to the jth and kth hidden units. Comparing with equation (2.15), it is clear that the

optimal learning factor can be computed as a weighted sum of the elements in the

Hessian HR. This relation shows that (i) the OLF can be obtained from elements of

the Hessian, (ii) the Hessian contains useful information even when it is singular, and

(iii) a smaller non-singular Hessian (∂2E/∂z2) can be constructed using HR. Note

the similarity between equations 4.2 and 6.5

There should be algorithms, in addition to optimal input gain, that produce

nonsingular N1 by N1 Hessian matrices, where 1 ≤ N1 ≤ Niw. Such algorithms could

average rows and columns of HR or even eliminate dependent rows and columns.

6.2 Multiple Optimal Learning Factor Algorithm

Here, each hidden unit in section 6.1.1 is given its own OLF. The result is called

the multiple optimal learning factor (MOLF) training method.

6.2.1 Derivation of Multiple Optimal Learning Factors

Assume that an MLP is being trained using OWO-BP. However, also assume

that a separate OLF zk is being used to update each hidden unit’s input weights,

61

w(k, n), where 1 ≤ k ≤ Nh and 1 ≤ n ≤ (N +1). The error function being minimized

with respect to the zk is given by equation (2.5). The predicted output yp(m) is given

by,

yp(m) =
N+1
∑

n=1

woi(m, n)xp(n)+

Nh
∑

k=1

woh(m, k)f

(

N+1
∑

n=1

(w(k, n) + zk · g(k, n))xp(n)

)

where, g(k, n) is an element of the negative Jacobian matrix G. The first partial of

E with respect to zj is

gmolf (j) ≡
∂E

∂zj

=
−2

Nv

Nv
∑

p=1

M
∑

m=1

[

t′p(m)−
Nh
∑

k=1

woh(m, k)Op(zk)

]

·

woh(m, j)O′

p(j)△np(j)

(6.6)

where

t′p(m) = tp(m)−
N+1
∑

n=1

woi(m, n)xp(n)

△np(j) =
N+1
∑

n=1

xp(n) · g(j, n)

Op(zk) = f

(

N+1
∑

n=1

(w(k, n) + z · g(k, n))xp(n)

)

Using Gauss-Newton updates, the second partial derivative elements of the

Hessian Hmolf are

∂2E

∂zl∂zj

=
2

Nv

M
∑

m=1

woh(m, l)woh(m, j)
Nv
∑

p=1

O′

p(l)O
′

p(j)△np(l)△np(j) (6.7)

6.2.2 MOLF Implementation

The Gauss-Newton update guarantees that Hmolf is non-negative definite. Given

the negative gradient vector, gmolf = [−∂E/∂z1,−∂E/∂z2 . . . ,−∂E/∂zNh
]T and the

Hessian Hmolf , we minimize E with respect to the vector z using Newton’s method.

In each iteration of the training algorithm, the steps are as follows:

62

(i) Calculate the negative input weight Jacobian G using BP.

(ii) Calculate the MOLF zk using Newton’s method and update the input weights

as

w(k, n)← w(k, n) + zk · g(k, n) (6.8)

(iii) Solve linear equations for all output weights.

Here, the MOLF procedure has been inserted into the OWO-BP algorithm. It

can be inserted into other algorithms as well, including standard BP. An obvious

limitation of the MOLF is expressed in the following lemma.

Lemma 6-1 If Nh = 1, then MOLF training as described in this subsection is

identical to OWO-BP with optimal learning factor.

6.3 MOLF Analyses

If Hmolf and gmolf are the Hessian and gradient, respectively, of the error with

respect to z, then the multiple optimal learning factors are computed as,

∆z = H−1
molf · gmolf (6.9)

Re-writing equation (6.7), for the element of the Hessian as,

∂2E

∂zl∂zj

=
N+1
∑

i=1

N+1
∑

n=1

[

2

Nv

Nv
∑

p=1

xp(i)xp(n)O′

p(l)O
′

p(j)
M
∑

m=1

woh(m, l)woh(m, j)

]

g(l, i) · g(j, n)

The term within the square brackets is nothing but an element of the re-

duced Hessian, HR from Gauss-Newton method for updating input weights (equation

(2.15)). Hence,

∂2E

∂zl∂zj

=

N+1
∑

i=1

N+1
∑

n=1

[

∂2E

∂w(l, i)∂w(j, n)

]

g(l, i) · g(j, n)

Lemma 6-2: For fixed (l, j), hmolf (l, j) can be expressed in vector notation as,

hmolf (l, j) ≡
∂2E

∂zl∂zj

=

N+1
∑

i=1

gl(i)

N+1
∑

n=1

hl,j
R (i, n) · gj(n) = gT

l H
l,j
R gj (6.10)

63

where column vector gl contains G elements g(l, n) for all values of n, and the (N +1)

by (N + 1) matrix H
l,j
R contains elements of HR for weights connected to the lth and

jth hidden units. Each element of the MOLF Hessian combines the information

from (N + 1) rows and columns of the reduced Hessian, H
l,j
R . This can be seen as

compressing the original Hessian of size Niw by Niw to simply Nh by Nh. The MOLF

effectively encodes the information from the Hessian into a smaller matrix. This

makes MOLF less sensitive to input conditions. Note the similarities between (6.5)

and (6.10).

From equation 6.10, the reduced Hessian, HR uses four indices (l, i, j, n) and

can be viewed as a 4-dimensional array, represented by H
4
R ∈ R(N+1)×Nh×Nh×(N+1).

Using this representation, we can express the 4-dimensional MOLF Hessian as

H
4
molf = GH

4
RGT (6.11)

In 6.11, we express an element of H
4
molf as

h4
molf (l, j, m, u) =

N+1
∑

i=1

N+1
∑

n=1

hR(i, l, j, n)g(m, i)g(u, n) (6.12)

Comparing 6.12 and 6.10, we see that hmolf (l, j) = h4
molf(l, j, l, j), i.e., the 4-dimensional

H
4
molf is transformed into the 2-dimensional Hmolf , by setting m = l and u = j. To

make this idea clear, consider a matrix, Q, then p(n) = q(n, n) is a vector, p, of all

diagonal elements of Q. Similarly, the MOLF Hessian Hmolf is formed by a weighted

combination of elements of H
4
R. From 6.10 and 6.11, we have again succeeded in

expressing a reduced size Hessian in a manner similar to our goal in 4.2.

As a side note, comparing the matrix triple product expressions 6.11 and 5.12,

we can say that H
4
R contains the same elements as H

4
N , but ordered differently. This

is due to the fact that the gradient matrix G in both expressions is exactly the same,

but it appears differently in the triple products.

64

6.4 Effect of Dependent Inputs

Going back to the case of dependent input, let the (N +2)th input be dependent

on some others, as modeled in (3.2.1.1). Let H̄molf be the Hessian, when the extra

dependent input xp(N + 2) is included.

h̄molf (l, j) = hmolf (l, j) +
2

Nv

u(l, j)
Nv
∑

p=1

xp(N + 2)O′

p(l)O
′

p(j)
[

g(l, N + 2)
N+1
∑

n=1

xp(n)g(j, n)

+ g(j, N + 2)
N+1
∑

i=1

xp(i)g(l, i) + xp(N + 2)g(l, N + 2)g(j, N + 2)
]

(6.13)

Lemma 6-3: Linearly dependent inputs, when added to the network, do not force

H̄molf to be singular. As seen in (3.2.1.1) and (6.13), each h̄molf (m, j) simply gains

some first and second degree terms in the variables b(n).

Assume that some hidden unit activations are linearly dependent upon others,

as in equation (3.20). Further assume that OLS is used to solve for output weights.

We have the following lemma.

Lemma 6-4: For each dependent hidden unit, the corresponding row and

column of Hmolf is zero-valued. This follows from (6.7). The zero-valued rows and

columns in Hmolf need not cause any difficulties, if (6.9) is rewritten as Hmolf · z =

gmolf [64] and solved using OLS. This is due to the fact that the zero rows or columns

in the Hessian will result in the corresponding orthonormal coefficients to be zero and

when the coefficients are mapped from the orthonormal space, back to the original

weight space, the learning factor corresponding to the dependent hidden unit will be

zero.

6.5 Computational Cost

The proposed MOLF algorithm involves inverting a Hessian. However, com-

pared to Newton’s method or LM, the size of the Hessian is much smaller. Updating

65

input weights using Newton’s method or LM, requires a Hessian with Nh(N +1) rows

and columns, whereas the Hessian used in the proposed MOLF has only Nh rows and

columns.

The total number of weights in the network is denoted as Nw = M(Nu) +

Nh(N + 1). The number of multiplies required to solve for output weights using the

Orthogonal Least Squares [49] is given by

Mols = Nu(Nu + 1)

[

M +
1

6
Nu(2Nu + 1) +

3

2

]

(6.14)

The numbers of multiplies per training iteration for OWO-BP, LM and MOLF

are given below

Mowo−bp =Nv[2Nh(N + 2) + M(Nu + 1) +
Nu(Nu + 1)

2
+ M(N + 6Nh + 4)]

+ Mols + Nh(N + 1) (6.15)

Mlm =Nv[MNu + 2Nh(N + 1) + M(N + 6Nh + 4) + MNu(Nu + 3Nh(N + 1))

+ 4N2
h(N + 1)2] + N3

w + N2
w (6.16)

Mmolf =Mowo−bp + Nv[Nh(N + 4)−M(N + 6N − h + 4)] + (Nh)
3 (6.17)

Note that Mmolf consists of Mowo−bp plus the required multiplies for calculating opti-

mal learning factors.

6.6 Results

In this section, the performance of the OWO-BP algorithm, modified using the

MOLF algorithm is compared with regular OWO-BP and LM (both using a single

OLF). LM updates all the weights in each iteration. OWO-BP alternately uses BP

for input weights and solves linear equations for output weights.

66

For each algorithm, the mean square error in every training iteration, the ap-

proximate number of multiplications required per training iteration and the overall

validation error of a fully trained network is stored. This information is used to sub-

sequently generate the plots and compare performances. The 10-fold cross-validation

procedure is used to obtain the training and validation errors. Given a data set, it

is split into K non-overlapping parts of equal size. (K − 1) parts is used for train-

ing and the remaining one part for validation. The procedure is repeated till all K

combinations are exhausted (K = 10 for all simulations). All the data sets used for

simulation are publicly available.

6.6.1 Prognostics Data Set

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

8

Number of Training Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OWO−BP

LM

MOLF

10
7

10
8

10
9

10
10

10
11

10
12

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

8

Number of Multiplications per training iteration

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

OWO−BP

LM

MOLF

(a) (b)

Figure 6.1. Prognostics Data: Average error vs. (a) iterations and (b) multiplies.

We trained an MLP having 15 hidden units. In Fig. 6.1-a, the average mean

square error (MSE) for training from 10-fold validation is plotted versus the number

of iterations for each algorithm. In Fig. 6.1-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies (shown on a log10 scale).

67

From Fig. 6.1-a and Fig. 6.1-b, the proposed multiple optimal learning fac-

tor algorithm converges faster than OWO-BP, and it is much faster than LM. The

performance of MOLF is similar to that of LM.

6.6.2 Federal Reserve Economic Data Set

For this data file, we trained an MLP having 15 hidden units. In Fig. 6.2-a,

the average training MSE from 10-fold validation is plotted versus the number of

iterations for each algorithm. In Fig. 6.2-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies. From Fig. 6.2-a and

Fig. 6.2-b, the MOLF algorithm has a training error less than that of LM, with far

fewer multiplies per iteration.

0 5 10 15 20 25 30 35 40 45 50
0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Number of Training Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OWO−BP

LM

MOLF

10
6

10
7

10
8

10
9

10
10

10
11

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

Number of Multiplications per training iteration

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

OWO−BP

LM

MOLF

(a) (b)

Figure 6.2. Federal reserve data: average error vs. (a) iterations and (b) multiplies.

6.6.3 Housing Data Set

We trained an MLP having 15 hidden units. In Fig. 6.3-a, the average training

MSE from 10-fold validation is plotted versus the number of iterations for each algo-

rithm. In Fig. 6.3-b, the MSE from 10-fold validation is plotted versus the required

68

0 5 10 15 20 25 30 35 40 45 50
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9

Number of Training Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)
OWO−BP

LM

MOLF

10
7

10
8

10
9

10
10

10
11

10
12

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9

Number of Multiplications per training iteration

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

OWO−BP

LM

MOLF

(a) (b)

Figure 6.3. Housing data: average error vs. (a) iterations and (b) multiplies.

number of multiplies. From Fig. 6.3-a and Fig. 6.3-b, the MOLF algorithm has a

training error close to that of LM, with far fewer multiplies per iteration.

6.6.4 Concrete Compressive Strength Data Set

We trained an MLP having 15 hidden units. In Fig. 6.4-a, the average train-

ing MSE from 10-fold validation is plotted versus the number of iterations for each

algorithm. In Fig. 6.4-b, the average training MSE from 10-fold validation is plotted

versus the required number of multiplies. From the figures, the MOLF algorithm has

a training error close to that of LM, with far fewer multiplies per iteration.

6.6.5 Remote Sensing Data Set

We trained an MLP having 15 hidden units. In Fig. 6.5-a, the average train-

ing MSE from 10-fold validation is plotted versus the number of iterations for each

algorithm. In Fig. 6.5-b, the average training MSE from 10-fold validation is plotted

versus the required number of multiplies.

69

0 5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

Number of Training Iterations

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)
OWO−BP

LM

MOLF

10
5

10
6

10
7

10
8

10
9

10
10

20

30

40

50

60

70

80

Number of Multiplications per training iteration

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OWO−BP

LM

MOLF

(a) (b)

Figure 6.4. Concrete data: average error vs. (a) iterations and (b) multiplies.

0 5 10 15 20 25 30 35 40 45 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Training Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OWO−BP

LM

MOLF

10
6

10
7

10
8

10
9

10
10

10
11

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Multiplications per training iteration

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)
OWO−BP

LM

MOLF

(a) (b)

Figure 6.5. Remote sensing data: average error vs. (a) iterations and (b) multiplies.

From Fig. 6.5-a and Fig. 6.5-b, the MOLF algorithm again converges faster

than OWO-BP, and it has smaller training error. In this example, it trains as well as

LM, with almost two orders of magnitude fewer multiplies.

Table 6.1 compares the average training and validation errors of the proposed

MOLF algorithm with BP, OWO-BP and LM on different data sets. For each data

set, the training and validation errors again come from 10-fold cross validation. We

can see that the proposed MOLF algorithm often has a performance comparable to

or better than the LM.

70

Table 6.1. Average 10-fold training and validation error

Data set MSE BP OWO-BP MOLF LM

Prognostics
Etrn 1.0410E8 7.9042E7 2.9057E7 2.6089E7

Eval 1.0748E8 8.2064E7 3.2475E7 2.9399E7

Federal Reserve
Etrn 0.041667 0.038182 0.029490 0.033500

Eval 0.047801 0.044630 0.039010 0.040850

Housing
Etrn 1.7923E9 1.4526E9 1.3453E9 1.3472E9

Eval 1.7974E9 1.4976E9 1.4126E9 1.3917E9

Concrete
Etrn 54.2286 43.1730 22.7746 23.3564

Eval 60.8905 50.6084 30.7310 31.9576

Remote Sensing
Etrn 1.207082 1.181896 0.559648 0.785390

Eval 1.296914 1.277067 0.665496 0.863154

6.7 Limitations of MOLF Algorithm

The effectiveness of the proposed MOLF applied to OWO-BP is evident in the

results. It performs as well as LM with far fewer multiplies per iteration.

A constant theme through out this dissertation is the analyses of linear depen-

dence on training. In this section, we analyze the performance of MOLF applied to

OWO-BP, in the presence of linear dependence.

6.7.1 Dependence in the Hidden Layer

The weights in the network are updated during every training iteration and

it is quite possible that this could cause some hidden units to be dependent. The

dependence could manifest in hidden units being identical or a linear combination of

other hidden unit outputs or simply a weighted sum of the inputs (if the hidden unit

is saturated).

71

Consider one of the hidden units to be dependent. The autocorrelation matrix

will undoubtedly be singular and since we are using OLS to solve for output weights,

all the weights connecting the dependent hidden unit to the outputs will be forced

to zero. This will ensure that the dependent hidden unit does not contribute to

the output. To see if this has any impact on learning in MOLF we can look at

the expression for the gradient and Hessian, given by 6.6 and 6.7 respectively. Both

equations have a sums of product terms and since OWO sets the output weights for

the dependent hidden unit to be zero, this will also set the corresponding gradient

and Hessian elements to be zero. In general, any dependence in the hidden layer will

cause the corresponding learning factor to be zero and will not affect the performance

of MOLF.

Next we will look at the how a dependent input would affect the performance

of MOLF.

6.7.2 Dependence in the Input Layer

A linearly dependent input can be modeled as

xp(N + 2) =
N+1
∑

n=1

b(n)xp(n)

During OWO, the weights from the dependent input, feeding the outputs will be

set to zero and the output weight adaptation will not be affected. During the input

weight adaptation, the expression for gradient given by 6.6 can be re-written as,

∂E

∂zj

=
−2

Nv

Nv
∑

p=1

M
∑

m=1

(

t′p(m)−
Nh
∑

k=1

woh(m, k)Op(zk)
)

·

woh(m, j)O′

p(j)

[

△np(j) + g(k, N + 2)
N+1
∑

n=1

b(n)xp(n)

]
(6.18)

72

and the expression for an element of the Hessian can be re-written as 6.7

∂2E

∂zl∂zj

=
2

Nv

M
∑

m=1

woh(m, l)woh(m, j)

Nv
∑

p=1

O′

p(l)O
′

p(j)

[

△np(l)△np(j) +△np(l)

g(j, N + 2)
N+1
∑

n=1

b(n)xp(n) +△np(j)g(l, N + 2)
N+1
∑

i=1

b(i)xp(i)+

g(j, N + 2)g(l, N + 2)

N+1
∑

n=1

N+1
∑

i=1

b(i)xp(i)b(n)xp(n)

]

(6.19)

Comparing 6.6 with 6.18 and 6.7 with 6.19, we see some additional terms that

appear within the square brackets in the expressions for gradient and Hessian in the

presence of linearly dependent input. Clearly, these parasitic cross-terms will cause

the training using MOLF to be different for the case of linearly dependent inputs.

The Hmolf thus obtained is not guaranteed to be singular.

6.8 Discussion

The sensitivity of Newton’s method to dependent inputs and hidden units is

illustrated. A non-heuristic second order learning algorithm is presented that calcu-

lates an optimal learning factor for every hidden unit using Newton’s method. The

proposed method makes it easier to detect dependent hidden units during inversion.

Compared to LM, the proposed method is completely non-heuristic as it uses an op-

timal learning factor for every hidden unit. It is also faster since it uses a smaller

Hessian. The reduced Hessian is shown to be a weighted sum of the elements of the

Hessian for the entire network.

For the data sets investigated, using 10-fold, the proposed algorithm has a better

overall performance, in terms of the training error and the number of multiplies per

training iteration, than LM.

The success of the MOLF algorithm is limited only by the presence of linearly

dependent inputs. As in the case of OIG, the Hessian derived in the MOLF algorithm

73

will be non-singular in the presence of linearly dependent inputs and will be useless in

detecting and eliminating the dependent inputs. A common approach applicable to

both OIG and MOLF is desired that will make them immune to dependencies. This

will the topic of discussion in the following chapter.

CHAPTER 7

IMPROVEMENTS TO OIG AND MOLF ALGORITHMS

The hidden weight optimization (HWO) technique was introduced in section 2.7.

In this chapter we first show that HWO is immune to presence of linearly dependent

inputs during training. We then replace the BP component in both OIG and MOLF

with HWO. The resulting improved versions of OIG and MOLF are shown to be

unaffected by linearly dependent inputs and better than using BP.

7.1 Effect of Dependence on HWO

HWO finds the input weight update by solving for a system of linear equations

as given by equation (2.20), reproduced below for convenience.

Ghwo ·R = Gbp (7.1)

If one of the inputs to the network is linearly dependent, clearly it would cause

the input auto-correlation matrix, R to be singular. In such a situation, using the

conjugate gradient (C-G) algorithm to solve (7.1) would lead to poor training, since

the convergence of C-G is affected by the presence of linearly dependent inputs. How-

ever, using OLS or inversion methods could prove useful in detecting and eliminating

the linearly dependent input, as analyzed in the following subsections.

7.1.1 Orthogonal Least Squares

Using OLS to solve for Ghwo in (7.1) involves computing the orthonormal weight

update matrix, G′

hwo, as

G′

hwo = Gbp ·CT

74

75

where C is a lower triangular matrix of orthonormal coefficients of dimension (N +1).

The orthonormal weight update can be mapped to the original weight update as

Ghwo = G′

hwo ·C

= Gbp ·CTC (7.2)

Assume xp(N + 2) was linearly dependent. This would cause the (N + 2)th row

and column of R to be linearly dependent. During OLS, a singular auto-correlation

matrix transforms to the (N + 2)th row of C to be zero.

The expression for Ghwo contains CTC, which will be a square, symmetric

matrix with zeros for the (N + 2)th row and column. This would reflect in Ghwo

having zeros for the (N+2)th column. The implication is that the weight update vector

computed for all input weights connected to the dependent input (N+2) is zero. These

weights are not updated during training, effectively freezing them. This is highly

desirable, as the dependent input is not contributing any new information. Thus

HWO-type update using OLS is perfectly capable of picking up linearly dependent

inputs, leading to a very robust training algorithm.

7.1.2 Matrix Inversion using SVD

An alternate way of solving equation 2.20 is to use matrix inversion as,

Ghwo = Gbp ·R−1

Since the auto-correlation matrix needs to be computed only once for all inputs, the

inversion also needs to be computed only for the first iteration.

Singular value decomposition (SVD) is a very powerful technique for solving

linear least squares problem. Given a matrix, B, of size M ×N SVD, decomposes it

as,

B = UΣVT

76

U and V are orthogonal matrices of size M ×N and N ×N , Σ is a diagonal matrix

of singular values of size N ×N .

Calculating B−1 using the SVD is equivalent to computing the matrix product,

B−1 = V [diag(1/σn)]UT

Clearly, if B is ill-conditioned, the diagonal matrix Σ will have some singular

values close to zero which transforms to the corresponding rows and columns being

zero in the inverted matrix.

The overall effect of using the SVD for inversion of a singular auto-correlation

matrix would be similar to using OLS. It would set the weights update corresponding

to the dependent input to be zero. Either OLS or SVD can be used to solve for

the HWO weight update. HWO lends itself to detecting and eliminating linearly

dependent inputs that can result in poor learning. Hence, training algorithms using

a HWO-type update, with either OLS or SVD can be extremely robust and immune

to input dependence.

7.2 Improvements to OIG Algorithm

We have shown in section 7.1 that the HWO algorithm is immune to dependent

inputs. However, the classic OIG algorithm still has some room for improvements. As

a first improvement, we replace BP in OIG with HWO. The resulting algorithm called

OIG-HWO1 will be unaffected by dependencies. A second improvement, which we

will refer to as OIG-HWO2, is to use a non-optimal factor in addition to the optimal

input gain. This heuristic improvement is inspired by the success of Levenberg-

Marquardt method introduced in section 2.6, which uses λ as a heuristic scale factor

during training. This leads to a heuristic scaling of the gradients used to update the

input weights and could possibly improve convergence speed and avoid local minima.

77

However, there is also a danger of overshoot, which will cause the error to be larger

after OWO, in which case, we use backtracking to revert back to the best previous

state and continue training. Using backtracking also ensures the convergence of the

algorithm does not change due to the introduction of the non-optimal learning factor.

7.2.1 Effect of Linear Dependence on Improved OIG

In subsection 5.6.2, it was shown that in presence of linearly dependent inputs,

the Hessian for OIG applied to OWO-BP is not guaranteed to be singular. OWO-

HWO on the other hand, picks up the linearly dependent input and the resulting

weight update matrix will be singular, as shown in section 7.1.

Revisiting equation 5.19 we can see that when HWO replaces BP in OIG,

hig(N + 2, u) = 0 ∀ u ∈ (1, N + 2). Since the Hessian is symmetric, this will

force the (N + 2)th row and column of the OIG Hessian to be zero. Similarly, the

(N +2)th element of gig will be zero. Together, this translates to a(N +2) = 0, i.e. the

input weights from the dependent input are not updated during training using OIG,

as mentioned in section 5.2.3. Using OIG with OWO-HWO in place of BP, guarantees

that the Hessian will be singular in the presence of linearly dependent inputs. This

is highly desirable since the singular Hessian can be used to detect the dependent

inputs and eliminate them during training as shown by lemma 6-4. This overcomes

the limitations of OIG applied to OWO-BP and gives an improved algorithm that is

resilient to dependent inputs.

Next, we repeat the experiments in 5.5 for OIG applied to OWO-HWO type

learning. We compare the performance of OIG-HWO1, OIG-HWO2, LM and OIG

applied to OWO-BP, that was developed in chapter 5. We use the k-fold cross-

validation procedure to obtain the average training and validation errors.

78

7.2.2 Prognostics Data Set

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8 Prognostics

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OIG−BP

LM

OIG−HWO1

OIG−HWO2

10
7

10
8

10
9

10
10

10
11

10
12

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Prognostics

OIG−BP

LM

OIG−HWO1

OIG−HWO2

(a) (b)

Figure 7.1. Prognostics Data: average error vs. (a) iterations and (b) multiplies.

For this data file, which is called F17, we trained an MLP having 15 hidden

units. In Fig. 7.1-a, the average mean square error (MSE) for training from 10-fold

validation is plotted versus the number of iterations for each algorithm. In Fig. 7.1-

b, the average training MSE from 10-fold validation is plotted versus the required

number of multiplies (shown on a log10 scale).

7.2.3 Remote Sensing Data Set

For this data file, which is called Single2, we trained an MLP having 15 hidden

units. In Fig. 7.2-a, the average training MSE from 10-fold validation is plotted versus

the number of iterations for each algorithm. In Fig. 7.2-b, the average training MSE

from 10-fold validation is plotted versus the required number of multiplies.

79

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Remote Sensing

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)
OIG−BP

LM

OIG−HWO1

OIG−HWO2

10
7

10
8

10
9

10
10

10
11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Remote Sensing

OIG−BP

LM

OIG−HWO1

OIG−HWO2

(a) (b)

Figure 7.2. Remote Sensing Data: average error vs. (a) iterations and (b) multiplies.

7.2.4 Federal Reserve Economic Data Set

For this data file called TR, we trained an MLP having 15 hidden units. In Fig.

7.3-a, the average training MSE from 10-fold validation is plotted versus the number

of iterations for each algorithm. In Fig. 7.3-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies.

0 5 10 15 20 25 30 35 40 45 50
0.02

0.025

0.03

0.035

0.04

0.045
Treasury

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OIG−BP

LM

OIG−HWO1

OIG−HWO2

10
6

10
7

10
8

10
9

10
10

10
11

0.02

0.025

0.03

0.035

0.04

0.045

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Treasury

OIG−BP

LM

OIG−HWO1

OIG−HWO2

(a) (b)

Figure 7.3. Remote Sensing Data: average error vs. (a) iterations and (b) multiplies.

80

7.2.5 Housing Data Set

0 5 10 15 20 25 30 35 40 45 50
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9 Housing

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

OIG−BP

LM

OIG−HWO1

OIG−HWO2

10
7

10
8

10
9

10
10

10
11

10
12

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Housing

OIG−BP

LM

OIG−HWO1

OIG−HWO2

(a) (b)

Figure 7.4. Housing Data: Average error vs. (a) iterations and (b) multiplies.

For this data file, we trained an MLP having 15 hidden units. In Fig. 7.4-a,

the average training MSE from 10-fold validation is plotted versus the number of

iterations for each algorithm. In Fig. 7.4-b, the MSE from 10-fold validation is

plotted versus the required number of multiplies.

7.2.6 Concrete Compressive Strength Data Set

For this data file, we trained an MLP having 15 hidden units. In Fig. 7.5-a,

the average training MSE from 10-fold validation is plotted versus the number of

iterations for each algorithm. In Fig. 7.5-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies.

Table 7.1 compares the average training and validation errors of the proposed

OIG algorithm with BP, OWO-BP and LM on different data sets. For each data set,

the training and validation errors again come from 10-fold cross validation.

81

0 5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

90
Concrete

Number of Iterations

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)
OIG−BP

LM

OIG−HWO1

OIG−HWO2

10
6

10
7

10
8

10
9

10
10

20

30

40

50

60

70

80

90

Number of Multiplications

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

Concrete

OIG−BP

LM

OIG−HWO1

OIG−HWO2

(a) (b)

Figure 7.5. Concrete Data: Average error vs. (a) iterations and (b) multiplies.

From the plots, we see that the two suggested improvements are effective in

reducing the error compared to the original OIG version applied to OWO-BP. The

non-optimal learning factor seems to help and consistently has a better performance

over the rest.

7.3 Improvement to MOLF Algorithm

The improvements suggested in section 7.2 can be easily extended to the MOLF

algorithm too. In subsection 6.7.2, using 6.18 and 6.19 it was shown that the pres-

ence of a linearly dependent input reflects in additional parasitic terms appearing

in the expression for the gradient and Hessian for MOLF applied to OWO-BP. The

additional terms will affect the learning factor calculation, causing the training to be

different. Since OWO-HWO is better equipped to handle linearly dependent inputs,

replacing BP by HWO will force the parasitic terms in 6.19 to be zero and the optimal

learning factors thus computed would completely ignore any contributions from the

dependent input. This overcomes the limitations of MOLF applied to OWO-BP and

gives an improved algorithm that is resilient to dependent inputs.

82

Table 7.1. Average 10-fold training and validation error

Data set OIG-BP OIG-HWO1 OIG-HWO2 LM

Prognostics
Etrn 4.8109E7 2.7160E7 2.17142E7 2.6089E7

Eval 5.1440E7 3.0997E7 2.5239E7 2.9399E7

Remote Sensing
Etrn 0.617487 0.120338 0.064930 0.785390

Eval 0.777170 0.187501 0.218238 0.863154

Treasury
Etrn 0.032190 0.026859 0.023448 0.033500

Eval 0.041435 0.040166 0.038320 0.040850

Housing
Etrn 1.3849E9 1.2742E9 1.2541E9 1.3472E9

Eval 1.4386E9 1.3611E9 1.3431E9 1.3917E9

Concrete
Etrn 34.5438 32.1205 26.385839 23.3564

Eval 41.5764 45.448286 41.855400 31.9576

Here we present the results of replacing BP by HWO in MOLF and call this

MOLF-HWO1. As a separate improvement, similar to the one mentioned in section

7.2, we use a non-optimal learning factor in addition to MOLF for updating the

weights and call this method MOLF-HWO2. Results are compared to those of with

MOLF in OWO-BP and LM. LM updates all the weights in each iteration. OWO-BP

alternately uses BP for input weights and solves linear equations for output weights.

7.3.1 Prognostics Data Set

We trained an MLP having 15 hidden units. In Fig. 7.6-a, the average mean

square error (MSE) for training from 10-fold validation is plotted versus the number

of iterations for each algorithm. In Fig. 7.6-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies (shown on a log10 scale).

83

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8 Prognostics

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)
MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

10
7

10
8

10
9

10
10

10
11

10
12

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Prognostics

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

(a) (b)

Figure 7.6. Prognostics Data: Average error vs. (a) iterations and (b) multiplies.

7.3.2 Federal Reserve Economic Data Set

For this data file, we trained an MLP having 15 hidden units. In Fig. 7.7-a,

the average training MSE from 10-fold validation is plotted versus the number of

iterations for each algorithm. In Fig. 7.7-b, the average training MSE from 10-fold

validation is plotted versus the required number of multiplies.

0 5 10 15 20 25 30 35 40 45 50
0.02

0.025

0.03

0.035

0.04

0.045
Treasury

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

10
6

10
7

10
8

10
9

10
10

10
11

0.02

0.025

0.03

0.035

0.04

0.045

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Treasury

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

(a) (b)

Figure 7.7. Federal reserve data: average error vs. (a) iterations and (b) multiplies.

84

7.3.3 Housing Data Set

0 5 10 15 20 25 30 35 40 45 50
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9 Housing

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

10
7

10
8

10
9

10
10

10
11

10
12

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

9

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Housing

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

(a) (b)

Figure 7.8. Housing data: average error vs. (a) iterations and (b) multiplies.

We trained an MLP having 15 hidden units. In Fig. 7.8-a, the average training

MSE from 10-fold validation is plotted versus the number of iterations for each algo-

rithm. In Fig. 7.8-b, the MSE from 10-fold validation is plotted versus the required

number of multiplies.

7.3.4 Concrete Compressive Strength Data Set

We trained an MLP having 15 hidden units. In Fig. 7.9-a, the average train-

ing MSE from 10-fold validation is plotted versus the number of iterations for each

algorithm. In Fig. 7.9-b, the average training MSE from 10-fold validation is plotted

versus the required number of multiplies.

7.3.5 Remote Sensing Data Set

We trained an MLP having 15 hidden units. In Fig. 7.10-a, the average train-

ing MSE from 10-fold validation is plotted versus the number of iterations for each

85

0 5 10 15 20 25 30 35 40 45 50
20

30

40

50

60

70

80

90
Concrete

Number of Iterations

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)
MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

10
5

10
6

10
7

10
8

10
9

10
10

20

30

40

50

60

70

80

90

Number of Multiplications

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

Concrete

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

(a) (b)

Figure 7.9. Concrete data: average error vs. (a) iterations and (b) multiplies.

algorithm. In Fig. 7.10-b, the average training MSE from 10-fold validation is plotted

versus the required number of multiplies.

Table 7.2 compares the average training and validation errors of the proposed

MOLF algorithm with BP, OWO-BP and LM on different data sets. For each data

set, the training and validation errors again come from 10-fold cross validation. We

can see that the proposed MOLF algorithm often has a performance comparable to

or better than the LM.

We can see from the plots that while HWO consistently makes the MOLF

algorithm better, the same cannot be said about using the non-optimal learning

factor. It helps in some cases, but not always. This is a common theme to methods

that employ heuristics to improve the speed of operation.

86

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Remote Sensing

Number of Iterations

A
v

e
ra

g
e

 T
ra

in
in

g
 E

rr
o

r
(A

v
g

.
M

S
E

)

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

10
6

10
7

10
8

10
9

10
10

10
11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of Multiplications

A
v
e
ra

g
e
 T

ra
in

in
g

 E
rr

o
r

(A
v
g

.
M

S
E

)

Remote Sensing

MOLF−BP

LM

MOLF−HWO1

MOLF−HWO2

(a) (b)

Figure 7.10. Remote sensing data: average error vs. (a) iterations and (b) multiplies.

Table 7.2. Average 10-fold training and validation error

Data set MSE MOLF-BP MOLF-HWO1 MOLF-HWO2 LM

Prognostics
Etrn 2.9057E7 2.0779E7 2.0771E7 2.6089E7

Eval 3.2475E7 3.0968E7 2.4154E7 2.9399E7

Federal Reserve
Etrn 0.029490 0.023109 0.023088 0.033500

Eval 0.039010 0.040929 0.036753 0.040850

Housing
Etrn 1.3453E9 1.3027E9 1.3005E9 1.3472E9

Eval 1.4126E9 1.3892E9 1.4001E9 1.3917E9

Concrete
Etrn 22.7746 28.146295 27.660962 23.3564

Eval 30.7310 38.086012 38.936990 31.9576

Remote Sensing
Etrn 0.559648 0.031619 0.032912 0.785390

Eval 0.665496 0.056386 0.050364 0.863154

CHAPTER 8

MODELING SIMPLE DISCONTINUOUS FUNCTIONS

In section 4.2.5, we stated that OWO-BP type training algorithms for the MLP

cannot model discontinuous functions. In this chapter, we first illustrate the prob-

lem and extend the OIG algorithm developed in this dissertation to model simple

discontinuous functions.

8.1 Discontinuous Function

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

(a) (b)

Figure 8.1. Simple Discontinuous Functions: (a) Ramp and (b) Sine.

A discontinuous or a piecewise continuous function, is any function that is not

continuous for all values of the dependent parameter, i.e. some function y = f(x),

which is dependent on the continuous variable x may not have values defined for some

values of x. A simple example is a step function. The step function u(x) is +1 for

87

88

x > 0 and 0 for x < 0, but is not defined around zero. Simple discontinuous functions,

similar to the ones used in [47] are shown in figure 8.1.

8.1.1 Problem Illustration

Discontinuities in training data can render the approximation by an MLP in-

accurate. To illustrate this problem, we trained an MLP with one hidden unit using

OWO-BP and LM. Theoretically, the sigmoid activation can be adapted to model a

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Desired

OWO−BP

LM

Figure 8.2. Result of using OWO-BP and LM to model a step function.

simple step function. The result of using OWO-BP and LM to model a step function

is shown in figure 8.2. We see that OWO-BP fails to model the step function, while

LM has better success. As seen in figure 8.3, this advantage does not carry through

when LM is used to model the discontinuous sine function.

Both LM and OWO-BP seem to settle into an average value at the boundary

of discontinuity. In general, OWO-BP is faster and more efficient than the LM, but

89

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Desired

LM

OWO−BP

Figure 8.3. Result of using OWO-BP and LM to model a step function.

seems ill-equipped to handle simple discontinuous functions and while LM shows some

promise on step discontinuity, it fails to model the discontinuous sine function, hence

making it not so reliable.

8.2 A Fusion Approach to Model Discontinuous Functions

In this section we present a method to model simple discontinuous functions,

like the ones shown in figure 8.1. The basic idea is that a discontinuous function

can be split into a continuous function and a step function, with the step function

appearing at the boundary of discontinuity.

In our approach, we divide the training data into separate continuous and step

data files. For each data set we trained a separate network with one hidden unit.

The improved OIG algorithm, OIG-HWO2 was used for training the two networks.

This procedure is illustrated in figure 8.4. Figures 8.5 and 8.6 show the output of the

two networks. After training, the two networks were fused, i.e. the weights from the

90

Figure 8.4. Block diagram of the fusion approach.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Desired

Actual

Figure 8.5. MLP-1: Trained using improved OIG on step data.

91

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

Desired

Actual

Figure 8.6. MLP-2: Trained using improved OIG on continuous sine data.

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

Desired

Actual

Figure 8.7. Output of fused network (MLP1+MLP2) for discontinuous sine data.

92

two networks were combined to form a single network. The fused network contains

one input, two hidden units, one trained on step and the other trained on the sine

data, and one output. A third data set that was generated by adding the outputs of

step and sine data to form a discontinuous sine function. The fused network was now

used to process the newly formed discontinuous sine data. The output of the fused

network is shown in figure 8.7.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

5

Desired

Actual

Figure 8.8. Output of fused network (MLP1+MLP2) for discontinuous ramp data.

We carried out a similar procedure to model the discontinuous ramp function,

with equal success as shown in figure 8.8.

8.3 Discussion

The basic idea is to represent a discontinuity as the sum of a continuous func-

tions and a step function. Fusing networks which individually model the continuous

and the step data, works with simple discontinuities. The implications are that global

93

learning techniques used in OWO-BP do not work well for modeling discontinuous

functions. The suggested fusion approach is equivalent to training a network with

units that are locally tuned and capable of modeling both the continuous function and

the discontinuity. The results are promising for some simple discontinuous functions.

The problem now is to find a method to separate the data into a continuous and a

step function. This will require further exploration.

CHAPTER 9

CONTRIBUTIONS AND FUTURE WORK

This dissertation addresses several interesting issues related to MLP training. In

this chapter, we summarize the work done and suggest possible future improvements.

9.1 Contributions

9.1.1 Mathematical Analysis of Linear Dependence on Training

By establishing the concept of equivalent networks and developing simple mod-

els for linearly dependent inputs and hidden units, we have developed a theoretical

framework which brings out the effect of linear dependence on first and second order

learning methods.

9.1.2 Optimal Input Gain Algorithm

We have derived a second order method for simultaneously optimizing input

gains and the OLF. The method has been successfully demonstrated on five data sets.

Results show that this approach performs much better than two common first order

algorithms with comparable complexity, namely BP and OWO-BP. It comes close to

LM in terms of the training error, but with orders of magnitude less computation.

This is evident in all of the plots of training error versus the required number of

multiplies and also from the expressions for the numbers of multiplies.

Although LM works very well in practice it has a high computational burden

and is sub-optimal in the way it handles the ’scaling factor’, λ. OIG on the other

94

95

hand uses a Newton type update and combines the optimal learning factor, leaving

little room for heuristics.

9.1.3 Multiple Optimal Learning Factor Algorithm

The sensitivity of Newton’s method to dependent inputs and hidden units is

illustrated. A non-heuristic second order learning algorithm is presented that calcu-

lates an optimal learning factor for every hidden unit using Newton’s method. The

proposed method makes it easier to detect dependent hidden units during the Hessian

inversion. Compared to LM, the proposed method is completely non-heuristic as it

uses an optimal learning factor for every hidden unit. It is also faster since it uses a

smaller Hessian. The reduced Hessian is shown to be a weighted sum of the elements

of the Hessian for the entire network.

For the data sets investigated, using 10-fold validation, the proposed algorithm

has a better overall performance, in terms of the training error and the number of

multiplies per training iteration, than LM.

9.1.4 Improvements to OIG and MOLF Algorithms

We presented an analysis which shows that the presence of dependent inputs

negatively impacts the OIG and MOLF algorithms when used with the OWO-BP

learning method. However, when HWO replaces BP in OIG and MOLF, both algo-

rithms completely negate any effect of the linearly dependent input and the learning

is identical to the case of linearly independent inputs. This improvement is significant

as it equips the two algorithms to handle dependence internally, during learning, by

completely suppressing it. The other suggested performance improvement was the use

an additional non-optimal learning factor during the weight update stage for which,

we observed a slight improvement in the speed of convergence.

96

9.1.5 A Fusion-based Approach for Modeling Discontinuous Functions

We presented a technique to model simple discontinuous functions, which in-

volved breaking up the discontinuous function into a continuous function and a step

function. Two separate networks were trained, one on the continuous function, the

other on the step function and fused together to model the discontinuous function.

Results of using improved OIG on discontinuous sine and ramp functions are en-

couraging. However, the problem of splitting data into a continuous function and a

discontinuous function needs investigation.

9.1.6 Convergence Theorem for HWO

Another theoretical contribution is the proof of convergence for OWO-HWO

given in appendix B. We extend the proof of convergence for traditional OWO-BP

and show that each iteration of OWO-HWO is equivalent to an iteration of OWO-

BP on transformed data and hence guaranteed to converge. This forms the missing

piece in the theory of OWO-HWO which should increase its popularity as a training

algorithm.

9.2 Future Work

Some improvements and extensions of the current work in this dissertation

include

(i) Developing a non-diagonal version of ATA in OIG. Instead of using only a

diagonal transformation, it will be interesting to see how the other elements of

ATA affect training.

(ii) Combining OIG and MOLF could lead to a more powerful training algorithm.

(iii) Extending of OIG and MOLF for classification would be useful.

97

(iv) Extending the proposed fusion approach to model more complicated disconti-

nuities.

APPENDIX A

DATA SETS

98

99

A.1 Prognostics Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [57]. It consists of parameters that are available in the Bell Helicopter

health usage monitoring system (HUMS), which performs flight load synthesis, which

is a form of prognostics [58]. The data was obtained from the M430 flight load level

survey conducted in Mirabel Canada in early 1995. The seventeen input features

include cockpit available signals including CG F/A load factor, pitch attitude, roll

attitude, yaw rate, and several others. The nine desired outputs are loads on various

mechanical components.

A.2 Remote Sensing Data Set

This data file is available on the Image Processing and Neural Networks Lab

repository [57]. It consists of 16 inputs and 3 outputs and represents the training

set for inversion of surface permittivity, the normalized surface rms roughness, and

the surface correlation length found in back scattering models from randomly rough

dielectric surfaces [59].

A.3 Federal Reserve Economic Data Set

This file contains some economic data for the USA from 01/04/1980 to 02/04/2000

on a weekly basis. From the given features, the goal is to predict the 1-Month CD

Rate [60].

A.4 Housing Data Set

This data file is available on the DELVE data set repository [61]. It was de-

signed on the basis of data provided by the US Census Bureau (under Lookup Access:

100

Summary Tape File 1). The data were collected as part of the 1990 US census. These

are mostly counts cumulated at different survey levels. For the purpose of this data

set a level State-Place was used. Data from all states was obtained. Most of the

counts were changed into appropriate proportions [65].These are all concerned with

predicting the median price of houses in a region based on demographic composition

and the state of the housing market in the region. For Low task difficulty, more

correlated attributes were chosen as signified by univariate smooth fit of that input

on the target. Tasks with high difficulty have had their attributes chosen to make

the modeling more difficult due to higher variance or lower correlation of the inputs

to the target. The training data consists of 16 inputs and 1 output per pattern, with

a total of 22,784 patterns.

A.5 Concrete Compressive Strength Data Set

This data file is available on the UCI Machine Learning Repository [62]. It

contains the actual concrete compressive strength (MPa) for a given mixture under

a specific age (days) determined from laboratory. The concrete compressive strength

is a highly nonlinear function of age and ingredients. These ingredients include ce-

ment, blast furnace slag, fly ash, water, super plasticizer, coarse aggregate, and fine

aggregate. The data set consists of 8 inputs and one output per pattern, with a total

of 1030 patterns.

APPENDIX B

CONVERGENCE PROOF FOR HWO ALGORITHM

101

102

This document proves the convergence of the error function for hidden weight

optimization (HWO) algorithm. This does not necessarily translate to global con-

vergence of the algorithm, it simply means that the mean square error for a training

algorithm using HWO will be convergent.

The classic backpropagation (BP) algorithm is introduced briefly, followed by

a brief description of the HWO algorithm. Using concepts of equivalent networks,

it is shown HWO is equivalent to BP on a transformed network. In general, BP

is equivalent to steepest descent and is guaranteed to converge, provided that the

learning rate is globally convergent. Hence in order to prove convergence of HWO, it

would suffice if it is shown that HWO is equivalent to BP on a transformed network.

B.1 Backpropagation

A typical error function used in training the MLP is the mean-squared error

(MSE) described as

E =
1

Nv

Nv
∑

p=1

M
∑

i=1

[tp(i)− yp(i)]
2 (B.1)

In full batch mode BP, the hidden unit weights and thresholds are updated

using the steepest descent approach as

w(k, j) = w(k, j) + z(
−∂E

∂w(k, j)
) (B.2)

for all 1 ≤ k ≤ Nh and all 1 ≤ j ≤ (N + 1).

The negative gradient of E is

gbp(k, n) = − ∂E

∂w(k, n)
=

1

Nv

Nv
∑

p=1

δp(k)xp(n) (B.3)

Using matrix notations, the negative gradients can be written as

Gbp =
1

Nv

Nv
∑

p=1

δpx
T
p (B.4)

103

where δp = [δp(1), δp(2), · · · , δp(Nh)]
T . If steepest descent is used to modify the

hidden weights, W is updated in a given iteration as

W←W + z ·Gbp (B.5)

so

△W = z ·Gbp (B.6)

where z is the optimal learning factor.

As mentioned in chapter 2, BP is equivalent to steepest descent and for an

optimal learning factor, is guaranteed to converge to a global or local minimum.

B.2 Hidden Weight Optimization

Hidden weight optimization (HWO) is an alternate to classic backpropagation

method for obtaining weight changes. The HWO algorithm utilizes separate error

functions for each hidden unit. The aim of the classic HWO algorithm is to minimize

the objective function defined as

Eδ(j) =

Nv
∑

p=1

[

δp(j)−
N+1
∑

n=1

ghwo(k, n)xp(n)

]2

(B.7)

for 0 ≤ i ≤ Nh, by solving for linear equations of the form

N+1
∑

n=1

ghwo(k, n)r(n, m) =
−∂E

∂w(j, m)
(B.8)

where, −∂E/∂w(j, m) is the BP gradient as computed in equation (B.3).

In matrix notation,

Ghwo ·R = Gbp (B.9)

where, R is the input auto-correlation matrix and Ghwo is the HWO weight changes.

Solving for the elements of Ghwo, the input weights are updated as,

w(k, n)← w(k, n) + z · ghwo(k, n)

104

where z is the optimal learning factor.

It can be shown that HWO is equivalent to linearly transforming the training

data and then performing BP which will be discussed in the next sections.

B.3 Linear Transformation of Inputs and Equivalent Networks

Let A be a non-singular, non-orthogonal transformation matrix, that transforms

the input vector xp to x′

p as,

x′

p = A · xp (B.10)

If we have to analyze the effect of the transformation A on training a network, then

the idea of equivalent network is very important.

Definition: Two networks, one for training on original data {xp, tp}Nv

p=1 and the

other for training on data with linearly transformed input, {x′

p, tp}Nv

p=1 are equivalent

if they are initialized such that the output vector, yp, before training is identical.

Equivalency translates to the networks being initialized in such a way that

they have identical hidden unit activations and outputs for every training pattern.

It should be noted this is only an initial condition to ensure that the networks have

the same starting point. Past the equivalent initialization, each network can train

independently and any deviation or lack thereof due to the transformation should be

evident.

For the pth pattern, the hidden unit net function vector, n′

p, for the network

trained on transformed input can be expressed as

n′

p = W′ · x′

p (B.11)

105

where, W′ is the input weight matrix for the transformed network. If this has to be

equal to the net function of the network trained on the original input, then

n′

p = np

W′ · x′

p = W · xp

From equation (B.10), the weights for the network trained on original data can

be obtained as,

W′ ·A = W (B.12)

∆W′ ·A = ∆W (B.13)

Modifying equation (B.4) for the transformed network,

G′

bp =
1

Nv

Nv
∑

p=1

δp(x
′

p)
T (B.14)

Using equation (B.10) and (B.4) in (B.14)

G′

bp = Gbp ·AT

So the gradient matrix for the transformed network is that of the equivalent

network times AT . Using equation(B.10), we can now map G′ back to the equivalent

network as

G′′ = Gbp ·ATA (B.15)

G′′ denotes G′

bp after it is mapped back to a equivalent network.

B.4 Convergence of HWO

As mentioned, HWO solves linear equations of the form indicated in equation

(B.9). One way of solving equation (B.9) is to use matrix inversion as,

Ghwo = Gbp ·R−1

106

The inverse of the auto-correlation matrix can be computed using the singular value

decomposition (SVD). The SVD decomposes the auto-correlation matrix as

R = UΣVT

where U and V are orthogonal matrices and Σ is a diagonal matrix of singular values.

Calculating R−1 using the SVD is equivalent to computing the matrix product,

R−1 = VΣ−1UT

Factoring Σ, the above equation can be re-written as,

R−1 = (V [diag(1/
√

σn)]) ·
(

[diag(1/
√

σn)]UT
)

R−1 = ATA

where A =
([

diag(1/
√

σn)
]

UT
)

and since R is symmetric, U ≡ V.

We can now re-write equation (B.9) as,

Ghwo = Gbp ·ATA (B.16)

Comparing this with equation (B.15) and based on the analysis in the previous section,

it is clear that performing OWO-HWO is equivalent to performing OWO-BP on

transformed data. Since OWO-BP was proved to converge in chapter 2, it is clear

that OWO-HWO converges as well.

REFERENCES

[1] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous

activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 115–133, 1943.

[2] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain,” Psychological Review, vol. 65, pp. 386–408, 1958.

[3] B. Widrow, “Generalization and information storage in networks of adeline ‘neu-

rons’,” in Self-Organizing Systems, M. C. Yovitz, G. T. Jacobi, and G. D. Gold-

stein, Eds. Spartan Books, 1962, pp. 435–461.

[4] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal represen-

tations by error propagation,” in Parallel Distributed Processing, D. E. Rumel-

hart and J. L. Mcclelland, Eds. Cambridge, Massachusetts: The MIT Press,

1986, vol. I.

[5] K. Levenberg, “A method for the solution of certain problems in least squares,”

The Quarterly of Applied Mathematics, vol. 2, pp. 164–168, 1944.

[6] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parame-

ters,” SIAM Journal on Applied Mathematics, vol. 11, p. 431441, 1963.

[7] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Pearson

Education, 2004.

[8] R. C. Odom, P. Pavlakos, S. Diocee, S. M. Bailey, D. M. Zander, and J. J.

Gillespie, “Shaly sand analysis using density-neutron porosities from a cased-hole

pulsed neutron system,” in SPE Rocky Mountain regional meeting proceedings:

Society of Petroleum Engineers, 1999, pp. 467–476.

107

108

[9] A. Khotanzad, M. H. Davis, A. Abaye, and D. J. Maratukulam, “An artificial

neural network hourly temperature forecaster with applications in load forecast-

ing,” IEEE Transactions on Power Systems, vol. 11, no. 2, pp. 870–876, May

1996.

[10] S. Marinai, M. Gori, and G. Soda, “Artificial neural networks for document

analysis and recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 27, no. 1, pp. 23–35, 2005.

[11] R. B. J. Kamruzzaman, R. A. Sarker, Artificial Neural Networks: Applications

in Finance and Manufacturing. Idea Group Inc (IGI), 2006.

[12] L. Wang and X. Fu, Data Mining With Computational Intelligence. Springer-

Verlag, 2005.

[13] G. Edwards and J. P. Tate, “Target recognition and classification using neural

networks,” in Proceedings of MILCOM 2002, vol. 2, Oct 2002, pp. 1439–1442.

[14] E. F. M. Filho and A. C. P. L. de Carvalho, “Target recognition using evolu-

tionary neural networks,” in Proceedings of Vth Brazilian Symposium on Neural

Networks, 1998, Dec 1998, pp. 226–231.

[15] K. Liu, S. Subbarayan, R. R.Shoults, M. T. Manry, C. Kwan, F. L. Lewis, and

J.Naccarino, “Comparison of very short-term load forecasting techniques,” IEEE

Transactions on Power Systems, vol. 11, no. 2, pp. 877–882, May 1996.

[16] M. T. Manry, R. Shoults, and J. Naccarino, “An automated system for developing

neural network short term load forecasters,” in Proceedings of the 58th American

Power Conference, Apr 1996, pp. 237–241.

[17] Y. Saifullah and M. T. Manry, “Classification based segmentation of zip codes,”

IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 5, pp. 1437–

1443, Sep/Oct 1993.

109

[18] Y. LeCun, B. Boser, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural

Computation, vol. 1, pp. 541–551, 1989.

[19] M. T. Manry, C.-H. Hsieh, and H. Chandrasekaran, “Near-optimal flight load

synthesis using neural nets,” in Neural Networks for Signal Processing IX, 1999.

Proceedings of the 1999 IEEE Signal Processing Society Workshop, 1999, pp.

535–544.

[20] P. Hong, Z. Wen, and T. S. Huang, “Real-time speech-driven face animation

with expressions using neural networks,” IEEE Transaction on Neural Networks,

vol. 13, no. 4, pp. 916–927, July 2002.

[21] P. Muneesawant and L. Guan, “Automatic machine interaction for content-based

image retrieval using a self organizing tree map structure,” IEEE Transaction

on Neural Networks, vol. 13, no. 4, pp. 821–834, July 2002.

[22] I. Lapidot, H. Gunterman, and A. Cohen, “Unsupervised speaker recognition

based on competition between self-organizing maps,” IEEE Transaction on Neu-

ral Networks, vol. 13, no. 4, pp. 877–887, July 2002.

[23] A. Mennon, K. Mehrotra, C. K. Mohan, and S. Ranka, “Characterization of a

class of sigmoid functions with applications to neural networks,” Neural Net-

works, vol. 9, pp. 819–835, 1996.

[24] D. Hush and B. Horne, “Efficient algorithms for function approximation with

piecewise linear sigmoidal networks,” IEEE Transactions on Neural Networks,

vol. 9, pp. 1129–1141, 1998.

[25] I. I. Sakhnini, M. T. Manry, and H. Chandrasekarn, “Iterative improvement of

trigonometric networks,” in International Joint Conference on Neural Networks,

1999.

110

[26] D. S. Broomhead and D. Lowe, “Multivariable functional interpolation and adap-

tive networks,” Complex Systems, vol. 2, pp. 321–355, 1988.

[27] J. N. Lin and R. Unbehauen, “Canonical piecewise-linear networks,” IEEE

Transactions on Neural Networks, vol. 6, no. 1, January 1995.

[28] T. Kohonen, “Self-organized formation of topologically correct feature maps,”

Biological Cybernetics, vol. 43, pp. 59–69, 1982.

[29] M. T. Manry, S. J. Apollo, L. S. Allen, W. D. Lyle, W. Gong, M. S. Dawson,

and A. K. Fung, “Fast training of neural networks for remote sensing,” Remote

Sensing Reviews, vol. 9, pp. 77–96, 1994.

[30] H. H. Chen, M. T. Manry, and H. Chandrasekaran, “A neural network training

algorithm utilizing multiple sets of linear equations,” Neurocomputing, vol. 25,

no. 1-3, pp. 55–72, April 1999.

[31] K. H. M. Stinchcombe and H. White, “Universal approximation of an unknown

mapping and its derivatives using multilayer feed-forward networks,” Neural Net-

works, vol. 3, no. 5, pp. 551 – 560, 1990.

[32] D. W. Ruck, “The multi-layer perceptron as an approximation to a bayes optimal

discriminant function,” IEEE Transactions on Neural Networks, vol. 1, no. 4,

1990.

[33] Q. Yu, S. J. Apollo, and M. T. Manry, “Map estimation and the multi-layer

perceptron,” Proceedings of the 1993 IEEE Workshop on Neural Networks for

Signal Processing, pp. 30–39, September 1993.

[34] M. R. Hestenes and E. Steifel, “Methods of conjugate gradients for solving linear

systems,” Journal of Research of the National Bureau of Standards, vol. 49, no. 6,

pp. 409–436, 1952.

111

[35] H. Guo and S. B. Gelfand, “Analysis of gradient descent learning algorithms

for multilayer feed-forward neural networks,” in Proceedings of the 29th IEEE

Conference on Decision and Control, vol. 3, Dec 1990, pp. 1751–1756.

[36] Y. Hirose, K. Yamashita, and S. Hijiya, “Back-propagation algorithm which

varies the number of hidden units,” Neural Networks, vol. 4, no. 1, pp. 61–66,

1991.

[37] A. F. Murray, “Analog vlsi and multi-layer perceptrons - accuracy, noise and

on-chip learning,” Neurocomputing, vol. 4, no. 4, pp. 301–310, 1992.

[38] A.-J. Annema, K. Hoen, and H. Wallinga, “Learning behavior and temporary

minima of two-layer neural networks,” Neural Networks, vol. 7, no. 9, pp. 1387–

1404, 1994.

[39] Y.-J. Wang and C.-T. Lin, “A second-order learning algorithm for multilayer

networks based on block hessian matrix,” Neural Networks, vol. 11, no. 9, pp.

1607–1622, 1998.

[40] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in

Neural Networks: Tricks of the Trade, 1996, pp. 9–50.

[41] S. Raudys, Statistical and Neural Classifiers: An Integrated Approach to Design.

Springer-Verlag, 2001.

[42] C. Yu, M. T. Manry, and J. Li, “Effects of nonsingular preprocessing on feefor-

ward network training,” International Journal of Pattern Recognition and Arti-

ficial Intelligence, vol. 19, no. 2, pp. 217–247, 2005.

[43] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,”

Neural Networks, vol. 1, pp. 295–307, 1988.

[44] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned process-

ing units,” Neural Comput., vol. 1, no. 2, pp. 281–294, 1989.

112

[45] F. M. Silva and L. B. Almeida, “Acceleration techniques for the backpropagation

algorithm,” in Lecture Notes In Computer Science, 1990, vol. 412, pp. 110–119.

[46] M. T. Hagan and M. B. Menhaj, “Training feed-forward networks with the mar-

quardt algorithm,” IEEE Transactions on Neural Networks, vol. 5, no. 6, pp.

989–993, 1994.

[47] R. R. Selmic and F. L. Lewis, “Neural-network approximation of piecewise con-

tinuous functions: Application to friction compensation,” IEEE Transactions on

Neural Networks, vol. 13, no. 3, pp. 745–751, 2002.

[48] H. Lee, K. Mehrotra, C. Mohan, and S. Ranka, “An incremental network con-

struction algorithm for approximating discontinuous functions,” in IEEE Inter-

national Conference on Neural Networks, ser. 27, vol. 4. IEEE, July 1994, pp.

2191–2196.

[49] F. J. Maldonado, M. T. Manry, and T.-H. Kim, “Finding optimal neural net-

work basis function subsets using the schmidt procedure,” in Proceedings of the

International Joint Conference on Neural Networks, ser. 20-24, vol. 1, July 2003,

pp. 444 – 449.

[50] A. J. Shepherd, Second-Order Methods for Neural Networks, ser. Perspectives in

Neural Computing. Springer, 1997.

[51] J. Yeh, Real Analysis: Theory of Measure and Integration. World Scientific

Publishing Company, Incorporated, 2006.

[52] W. H. Delashmit, “Multilayer perceptron structured initialization and separat-

ing mean processing,” Dissertation, University of Texas at Arlington, December

2003.

[53] C. Yu, “Analyses and training of nonlinear networks with linear pre-processors,”

Dissertation, University of Texas at Arlington, December 2004.

113

[54] K. Rohani and M. T. Manry, “The design of multi-layer perceptrons using build-

ing blocks,” in Proceedings of the International Joint Conference on Neural Net-

works, vol. 2, 1991, pp. 497–502.

[55] W. Kaminski and P. Strumillo, “Kernel orthonormalization in radial basis func-

tion neural networks,” IEEE Transactions on Neural Networks, vol. 8, no. 5,

1997.

[56] B. Iglewicz, Understanding Robust and Exploratory Data Analysis. New York:

Wiley, 1983, ch. Robust scale estimators and confidence intervals for location.

[57] U. of Texas at Arlington, “Training data files.”

[58] M. T. Manry, H. Chandrasekaran, and C. H. Hsieh, Handbook of neural network

signal processing. CRC Press, 2001, ch. Signal Processing Applications of the

Multilayer Perceptron.

[59] A. K. Fung, Z. Li, and K. S. Chen, “Back scattering from a randomly rough

dielectric surface,” IEEE Transactions Geoscience and Remote Sensing, vol. 30,

no. 2, March 1992.

[60] U. C. Bureau, “[http://www.census.gov] (under lookup access

[http://www.census.gov/cdrom/lookup]: Summary tape file 1).”

[61] U. of Toronto, “Delve data sets.”

[62] U. of California Irvine, “Machine learning repository.”

[63] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York: Wiley

Publications, 1987.

[64] R. Battiti, “First- and second-order methods for learning: Between steepest

descent and newton’s method,” Neural Computation, vol. 4, pp. 141–166, 1992.

[65] “Source: http://wwwstls.frb.org/fred/index.html.”

BIOGRAPHICAL STATEMENT

Sanjeev S. Malalur holds a PhD in Electrical Engineering from The University

of Texas at Arlington. He obtained a Master’s degree also from The University of

Texas at Arlington in August 2004 and completed his Bachelor of Engineering in

Electronics and Communications from the Bangalore University, India in November

2000. He has authored or co-authored several peer-reviewed publications. His cur-

rent research interests include neural networks, image processing, machine learning,

pattern recognition and biometrics. He is also a member of IEEE, INNS and SIAM.

114

