
A FRAMEWORK FOR IMPROVING THE PERFORMANCE OF

APPLICATION SERVERS IN NEXT GENERATION NETWORKS

by

SUMANTRA RAJ KUNDU

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Ful�llment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

August 2007

Copyright c© by SUMANTRA RAJ KUNDU 2007

All Rights Reserved

ACKNOWLEDGEMENTS

During my four years at the University of Texas at Arlington, I had the opportunity

to interact and work with many people. Foremost I would like to thank my Ph.D. mentors,

Dr. Sajal Das and Mr. Kalyan Basu. The constant suggestions and feedback I received

from Dr. Das during the research and writing of this thesis greatly in�uenced the quality

of the work. Most of the experiments in networking and operating systems would not

have been possible without his excellent support and encouragement. Throughout my

Ph.D. studies it has been an intellectual challenge to work with Mr. Kalyan Basu. Much

of my interest and problem abstraction skills in performance analysis and queuing theory

concepts I owe to him. His incisive technical comments, encouragement, and un�agging

enthusiasm have been a constant driving force in many of the projects we have worked

during the course of the Ph.D.

I would also like to thank my thesis committee members, Dr. Hao Che, Dr. Mohan

Kumar, and Dr. Yonghe Liu for taking the time to learn about my work. During

the summer of 2006 and aftermath I had the chance to work with Mr. Bill Stouder-

Studenmund and Mr. Thor Lancet Simon of NetBSD foundation. Their clear thinking

and guidance about I/O schedulers and the virtual memory (VM) helped me de�ne the

stochastic algorithms we have implemented inside the NetBSD OS. It has always been a

pleasure to work with them. I am grateful for the assistance from all the members of our

research group at Center for Research in Wireless Mobility and Networking (CReWMaN)

lab, especially Sourav Pal.

I would like to thank my �ancee, Indrani, for always being there with me. Her

patience and bearing has been astounding. Finally, I would like to say a big `thank-you'

to my parents, sisters, and all my relatives for giving me the courage to follow my dreams.

iii

This work has been supported by the National Science Foundation (NSF) under

grant IIS-0326505 and from Google Summer of Code, 2006.

July 18, 2007

iv

ABSTRACT

A FRAMEWORK FOR IMPROVING THE PERFORMANCE
OF APPLICATION SERVERS IN NEXT GENERATION

NETWORKS

Publication No.

SUMANTRA RAJ KUNDU, Ph.D.

The University of Texas at Arlington, 2007

Supervising Professors: Sajal K. Das and Kalyan Basu

Next generation networks (NGNs) such as IP Multimedia Subsystem (IMS) are

completely built on the Internet Protocol (IP) suite. This has made IP the de facto

standard for data networking, voice over IP (VoIP), and media rich applications such

as streaming multimedia, ringtones, multi-player gaming, and high-de�nition video con-

ferencing for remote interaction. A primary feature of such converged networks is that

they use the same IP-based network for simultaneously delivering voice, video, and data.

Such services are provided on application servers built using industry standard Advanced

Telecom Computing Architecture (ATCA) based blade computing units with various �a-

vors of commodity open source operating systems like Linux, xBSD, and OpenSolaris.

However, real-time and latency sensitive applications such as streaming multimedia

require that the entire network path of packet delivery from the originating server to the

end host be properly and appropriately con�gured so as to avoid unnecessary delay and

jitter in the data transfer mechanisms. With the ease of deployment comes the challenge
v

of delivering such rich multimedia applications in NGNs since there exists no separate

paths for voice and data as present in existing circuit-switched public switched telephone

network (PSTN). Packet delivery in such converged architectures involves interaction

between the storage disks, operating system (OS), network interface cards (NICs), and

the various switches and routers - each of which is independently capable of introducting

delay in the data transfer mechanism.

In this dissertation, we focus on understanding and improving the performance of

application servers present in high tra�c content delivery networks (CDNs) and hoisting

latency sensitive applications with heavy I/O requirements. We start by identifying an

architectural framework for tra�c characterization that is expected to provide insights

about the composition and dynamics (e.g., average packet size and data rate, protocol

composition) of network tra�c present in CDNs. Once the nature and type of network

tra�c arriving at the NICs have been identi�ed, we attempt to identify packet processing

bottlenecks due to the interaction between the NICs, OS, and the underlying hardware.

We propose a closed form queuing model that aims to understand the packet processing

capabilities of the NICs based on the available computing resources. We have shown

that there exist limits beyond which a computing unit cannot process packets without

overloading the CPU. Since the performance of latency sensitive processes can be neg-

atively impacted by delays of the storage network and by the dynamics of the OS, we

present solutions for prioritizing the reader processes and tweaking the pagedaemon in

open source OS. Based on our implementation in the NetBSD kernel, we have observed

an approximate 15%-20% improvement in the transactions per second (TPS) of latency

sensitive applications. Finally, we believe that our framework and approach of identifying

the basic components in network data transfer mechanisms are for most part generic and

can be used for performance tuning and deploying application servers in NGNs with a

variety of di�erent services.
vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

LIST OF FIGURES . xi

LIST OF TABLES . xv

Chapter

1. INTRODUCTION . 1

1.1 Motivation . 3

1.2 The Problem . 4

1.3 Overview of Our Novel Approach . 7

1.4 Contributions of The Dissertation . 9

1.5 Outline of the Dissertation . 12

2. AN ARCHITECTURAL FRAMEWORK FOR ACCURATE CHARACTERI-
ZATION OF NETWORK TRAFFIC . 14

2.1 Components of Tra�c Characterization 15

2.1.1 Existing Approaches for Tra�c Characterization 16

2.1.2 Salient Features of Our Approach to Tra�c Characterization . . . 17

2.2 De�nitions . 18

2.2.1 A Motivating Example . 20

2.3 Tra�c Characterization: Problem Statement 21

2.4 Measurement Framework: Architecture, Algorithms, and Modeling . . . 22

2.4.1 Flow Collection Unit (FCU) . 24

2.4.2 How to Distinguish SLF FlowID from LLF FlowID? 25

2.4.3 Storing and Accessing FlowIDs of SLFs 26

vii

2.4.4 Determining the Parameters of Flow Collection Unit (FCU) . . . 28

2.4.5 Flow Management Unit (FMU) 34

2.5 An Online Framework for Identifying LLFs 36

2.6 O�ine Estimation Using Kernel Density Estimator 39

2.6.1 Estimating the PDF of Sampled Data 39

2.7 Experimental Results . 41

2.7.1 Identifying the LLFs . 42

2.7.2 Entropy Distribution: LLFs and SLFs 44

2.7.3 Estimating the Volume of Original Tra�c 45

2.7.4 Estimating the Density Function of Underlying Tra�c 46

2.8 Summary . 47

3. AN ANALYTICAL MODEL OF POLLING DEVICE DRIVERS 49

3.1 Packet Processing in Commodity OS . 50

3.1.1 Packet Processing in Polling Device Drivers 51

3.1.2 NIC Device Driver Con�gurable Parameters 54

3.2 Related Work . 54

3.3 Polling Device Drivers: Analytical Model 56

3.4 Moments of Over�ow Tra�c . 58

3.4.1 Queuing Model of the I/O Bus 60

3.5 Estimating the Service Time of PCI Bus (µpci) 61

3.6 Dynamics of the Polling Process . 62

3.6.1 Equilibrium Equations . 63

3.6.2 Bulk Size Distribution . 64

3.6.3 Constant Bulk Size . 65

3.6.4 Varying Bulk Size . 67

3.6.5 Average Packet Service Time (µe) 68
viii

3.7 Performance Evaluation . 69

3.7.1 Experimental Platform . 69

3.7.2 Testing Methodology . 70

3.8 Experimental Results . 72

3.8.1 Average CPU Utilization and Average Number of Interrupts . . . 74

3.8.2 Average Bulk Size Distribution 79

3.9 Summary . 81

4. CONTROLLINGWRITE CONGESTION FOR IMPROVING APPLICATION
READ PERFORMANCE . 82

4.1 Motivation and Background . 83

4.2 Approaches that Impact the Performance of I/O Workloads 88

4.3 I/O Scheduling Algorithms . 90

4.4 Dynamics of Page Flushing Process . 92

4.5 Proposed WICA Algorithms . 95

4.5.1 Deterministic WICA: Rate based Approach 96

4.5.2 Estimating Rd
i for wi . 97

4.5.3 Duration of Learning Period . 98

4.5.4 Congestion Control Approach . 101

4.5.5 Limitations of D-WICA . 102

4.5.6 Probabilistic WICA (P-WICA): E�ective Bandwidth(EB)
based Approach . 103

4.5.7 E�ective Bandwidth (EB) and Smoothing 103

4.5.8 Congestion Control Approach . 106

4.5.9 Which WICA Algorithm to Choose? 106

4.6 Performance Evaluation . 107

4.6.1 Workloads using Modi�ed Postmark Macrobenchmark 109

ix

4.6.2 One Reader and One Writer . 110

4.6.3 One Reader and Many Writers . 113

4.6.4 Situation Outside the Scope of WICA 114

4.7 Summary . 116

5. CONCLUSIONS AND FUTURE WORK . 118

5.1 Directions for Future Work . 119

5.1.1 Identifying Heavy-hitters in Network Tra�c 119

5.1.2 Extensible Framework for NICs 119

5.1.3 Establishing QoS Inside the VM 120

REFERENCES . 121

BIOGRAPHICAL STATEMENT . 130

x

LIST OF FIGURES

Figure Page

1.1 Conceptual architecture of the Next Generation Networks (NGNs) 2

1.2 A single frame snapshot of streaming multimedia quality under perfect
network conditions and negligible load on the streaming server. 4

1.3 Snapshot of the same frame of Figure 1.2 with 0.09% packet loss and with
negligible load on the streaming server 5

1.4 Snapshot of the same frame of Figure 1.2 under perfect network conditions
but with non-negligible load on the streaming server 5

1.5 Primary components that play pivotal role in the packet delivery mechanism
of a typical application server. The arrows indicate direction of data traversal 8

1.6 Suggested steps for monitoring and tuning the performance of application
servers in new generation converged networks such as IMSThe `plus' indi-
cates `either-or-both' operations . 12

2.1 Structure of Internet Protocol Version 4 (IPv4) packet header. The �elds
used for computing the �ve-tuple is shown in bold 19

2.2 Architecture of FastFlow. The two FCU units (Active/Standby) have been
designed to speci�cally capture short lived �ows 23

2.3 Illustration of continuous scan clock (CCLK) and sample scan clock (SCLK)
used in our measurement architecture . 24

2.4 Architecture of the Flow Collection Unit (FCU) used in our measurement
study . 26

2.5 Linear scale plot of the FlowID density function for tra�c collected from
our internal LAN. Observe the heavy-tailed nature of FlowIDs 30

2.6 O�ine classi�cation of tra�c streams. The pdf of the LLFs in sampled tra�c
stream is estimated using the non-parametric Parzen window technique . . 40

2.7 Framework for capturing �ow packets in the internal LAN in our CReWMaN
lab. Port mirroring is used to send tra�c to a dual port GigabitIntel server
adapter from which the packets are capturedusing Ethereal in promiscuous
mode . 42

xi

2.8 Time series of the occurrence of LLFs as estimated using our algorithm
versus as predicted using existing approach 43

2.9 Histogram of LLFs and the length of typical sequences in tra�c traces for
tra�c collected from our internal lab network 44

2.10 Ratio of entropy between Long Lived Flows (LLFs) and Short Lived Flows
(SLFs) . 45

2.11 Temporal distribution of Entropy of Short Lived Flows (SLFs) 46

2.12 Log-log scale plot of the FlowID density function de�ned using �ve-tuple in
our experiment . 47

3.1 Description of network packet processing in polling device drivers 52

3.2 Basic queuing model of packet processing polling device drivers 56

3.3 Processor sharing model involing the receiver and transmit side PCI/PCI-X
bus . 57

3.4 State Space of the PCI bus where n1 and n3 refer to the size of the bu�ers
Q1 and Q3 respectively . 60

3.5 Timeline highlighting bulk removal of packets by the CPU from the receive
descriptor ring during each invocation of the polling function 62

3.6 State Transition Diagram of Bulk Arrival at the CPU work queue during
the polling process . 63

3.7 CDF of bulk size Distribution for packet size = 64bytes, rxFIFO = 32MB,
rxDescriptors = 1024 . 65

3.8 CDF of bulk size distribution for packet size = 512bytes, rxFIFO = 32MB,
rxDescriptors = 1024 . 65

3.9 CDF of bulk Size Distribution for packet size = 1400bytes, rxFIFO = 32MB,
rxDescriptors = 1024 . 66

3.10 Motherboard architecture used in our experiments. SmartBits 6000C using
dual Terametrics card (LAN3327A) inconjunction with SmartFlow was used
to generate and analyze tra�c from the system-under-test 69

3.11 Average CPU Utilization with rxFIFO = 32MB, rxDescriptors = 1024 . . 73

3.12 Average CPU Utilization with rxFIFO = 32MB, rxDescriptors = 512 . . 74

3.13 verage CPU Utilization with rxFIFO = 32MB, rxDescriptors = 128 . . . 74

xii

3.14 Average CPU Utilization with rxFIFO = 48MB, rxDescriptors = 1024 . . 75

3.15 Average CPU Utilization with rxFIFO = 48MB, rxDescriptors = 512 . . 75

3.16 Average CPU Utilization with rxFIFO = 48MB, rxDescriptors = 128 . . 76

3.17 Average Packet Latency with rxFIFO = 48MB, rxDescriptors = 1024 . . 76

3.18 Average Packet Latency with rxFIFO = 48MB, rxDescriptors = 512 . . . 77

3.19 Average Packet Latency with rxFIFO = 48MB, rxDescriptors = 128 . . . 77

3.20 Average Packet Latency with rxFIFO = 32MB, rxDescriptors = 1024 . . 78

3.21 Average Packet Latency with rxFIFO = 32MB, rxDescriptors = 512 . . . 78

3.22 Average Packet Latency with rxFIFO = 32MB, rxDescriptors = 128 . . . 79

3.23 Average number of Interrupts generated with rxFIFO = 32MB, rxDescrip-
tors = 128 . 80

4.1 Example of decreased Transactions per second (TPS), 45% in the worst
case, of a single reader process in the presence of a sole background writer
process with varying transactional load.The results were obtained using a
modi�ed version of Postmark on a NetBSD 3.1 systemwith 512MB of RAM,
4KB page size, and read priority (RPRIO) as the I/O scheduling policy . 85

4.2 Temporal variations of the page pool inside the Virtual Memory (VM)
during a typical run of the experiment of Figure 4.1.Notice the availability
of free pages inside the VM during the lifetime of the experiment 86

4.3 High Level diagram showing the location of the Write Congestion Indication
Algorithm (WICA) inside the Virtual Memory (VM).Notice that WICA
traps and monitors the page �ushing of the writer processes only 87

4.4 Stochastic �Burstiness" in the rate of generation of dirty pages for sampling
bin size of 1000ms . 92

4.5 Rate of decay of Auto Coorelation Function (ACF) for sampling bin size of
1000ms. Notice the high value of ACF . 93

4.6 Presence of �Burstiness� in the rate of generation of dirty pages at reduced
sampling bin size of 100ms . 94

4.7 Rate of decay of Auto Coorelation Function (ACF) for sampling bin size of
100ms . 95

4.8 Disappearance of �Burstiness� in the rate of generation of dirty pages for
sampling bin size of 15ms . 96

xiii

4.9 Rate of decay of Auto Coorelation Function (ACF) for bin sampling bin

size of 15ms . 97

4.10 No �Burstiness� in the rate of generation of dirty pages for sampling bin size
of 5millisecs . 98

4.11 Rate of decay of Auto Coorelation Function (ACF) for bin sampling bin
size of 5ms . 99

4.12 In deterministic rate based modeling technique (D-WICA), the rate of
growth of dirty pages is assumed proportional to the number of dirty pages
generated . 100

4.13 Systematic sampling, with random start, in order to estimate the rate of
generation of dirty pages by the writer processes. Note that such a sampling
strategy provides accurate estimation of the rate only whenthe ACF is close
to zero . 100

4.14 On-O� �uid �ow model for determining the e�ective bandwidth of each of
the writer process . 103

4.15 Evaluation technique with modi�ed version of Postmark for creating reader
and writer processes. In each of the experiments,the readers and the writers
were independently created at random instants oftime and the e�ective
transactions per second (TPS) of the reader processes were recorded . . . 108

4.16 Postmark results for the Reader process. Observe the increased bene�t of
P-WICA over D-WICA with increase in the transactional load 110

4.17 Transaction time for the Writer process. Observe the sharp increase in the
case of D-WICA algorithm . 111

4.18 Postmark results for the Reader process in the presence of three writers . 112

4.19 Postmark results for the Reader process in the presence of 20 writers. This
identi�es failure condition in ourexperimental settings for the WICA algorithm114

4.20 Transaction time for the Writer process experiencing the highest transaction
time among competing writers, in the scenarion where WICA fails 115

xiv

LIST OF TABLES

Table Page

2.1 Notations Used in FastFlow Architecture 22

2.2 LLFs actually present in our lab network tra�c trace vs. those estimated
by length of the typical sequence . 44

2.3 Total number of packets actually present in the tra�c trace versus those
estimated (N est

LLF) by FastFlow . 46

3.1 Typical con�gurable parameters available for tuning in o�-the-shelf NICs
and commodity OS . 55

3.2 CPU Utilization: rxFIFO = 32KB, rxDescriptors = 1024 70

3.3 CPU Utilization: rxFIFO = 32KB, rxDescriptors = 512 71

3.4 CPU Utilization: rxFIFO = 32KB, rxDescriptors = 128 71

3.5 CPU Utilization: rxFIFO = 48KB, rxDescriptors = 1024 72

3.6 CPU Utilization: rxFIFO = 48KB, rxDescriptors = 512 72

3.7 CPU Utilization: rxFIFO = 32KB, rxDescriptors = 128 73

4.1 Notations Used in WICA . 96

4.2 Con�gurable parameters for the Postmark macro benchmark used in our
experimental evaluation . 107

4.3 Characteristics of the system used in our experiments. 108

xv

CHAPTER 1

INTRODUCTION

The value of present-day Internet is driven by the wide range of application services

such as video conferencing, movie-on-demand, IP telephony, online gaming, peer-to-peer

communication and numerous other services it is able to provide. Today, the emerg-

ing IP Multimedia Subsystem (IMS) architecture [88] is realizing this vision by using a

complex array of networks, service applications, and content servers in the infrastructure

network. At one end, we have the application servers residing in the application services

and in content delivery networks (CDNs) acting as the data sources while at the other

end, we have di�erent end points such as cellular, commercial, and residential networks

consuming the data. The Internet acts as the intermediary data delivery mechanism for

all them and is composed of core and edge routers switching packets along appropriate

network links. Figure 1.1 provides a high level architecture of such a layout.

With the evolution and growth of the Internet, it is now possible to control band-

width allocation, de�ne various packet queuing policies, tune packet dropping thresholds

in the core and edge routers for protecting and prioritizing tra�c �ows belonging to

di�erent class of service (CoS) (e.g., via di�serv). All these help to reduce and control

end-to-end packet loss, delay, jitter and allow for �ne grained tra�c aggregation and

control across multiple time scales. But before setting the router parameters and tun-

ing application servers in CDNs for optimal performance, it is important to know the

composition and characteristics of the network tra�c. For example, processing units in

application servers and routers exposed to OC-48/192 networking links and carrying large

number of control packets with average size of 128 bytes, experience considerable load

1

2

CORE NETWORK

Internet

CELLULAR NETWORK

RESIDENTIAL NETWORK

CONTENT DELIVERY NETWORK

Mobile Switching Center (MSC)

SATELLITE DISH

APPLICATION SERVERS

ROUTER

MOBILE TERMINAL

NETWORK LINK

BASE STATION

COMPUTING TERMINAL

COMMERCIAL NETWORK

Network	
Router

Network	
Router

Network	
Router

Network	
Router

Network	
Router

Network	
Router

Network	
Router

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

Network	

Router

������

Figure 1.1. Conceptual architecture of the Next Generation Networks (NGNs).

on the CPU due to the microsecond granularity of the packet inter-arrival time. Thus,

the packet inter-arrival time estimation is important in order to properly understand the

allocation of computing resources. A barrage of such control packets has the potential to

starve throughput of connections carrying application payload. Consequently, care must

be taken to prevent such unwanted interaction of network packets.

At the same time, with the convergence of voice, video, and data packets in all IP-

based networks, the volume of tra�c is expected to grow considerably. The sheer volume

of data that needs to be analyzed makes scalable tra�c characterization a big challenge

3
even with the support from the most advanced hardware. Thus, this new converged

architecture presents the research community with challenges along two major areas: (i)

how to estimate the tra�c characteristics of the network in OC-48/192 links and, (ii)

how to guarantee the end-to-end latency for the delay sensitive multimedia streams.

1.1 Motivation

Real-time and latency sensitive applications such as streaming multimedia require

that the entire network path of packet delivery from the originating server to the end host

be properly and appropriately con�gured so as to avoid unnecessary delay and jitter in

the data transfer mechanisms. For a pleasing end user experience, the ability to identify

and control unwarranted latency in the data delivery mechanism is critical. For example,

streaming multimedia require precise sequencing and synchronization of the video frames

(I, B, P) for avoiding pixel loss in the video playout mechanism. Since it is well known

that packet loss translates to media loss, reliable multimedia delivery dictates that the

inter-arrival time gap between the network packets at the receiver network bu�er should

not be more than 150ms with less than 0.01% network packet loss.

Enforcing such strict end-to-end requirements over the Internet that is shared by

di�erent types of tra�c is no easy task. And with the advent of new generation networks

(NGNs), such as IMS, that are being increasingly built using the Internet Protocol (IP)

suite, it is expected that the volume of tra�c converging at the network elements (e.g.,

routers, switches) is going to grow further. Unlike existing specialized networks overlaid

on a circuit-switched public switched telephone network (PSTN), such NGNs have no

separate paths for voice and data services.

Thus, deploying and delivering rich multimedia applications in NGNs to the end

hosts (wired and wireline) is going to be a challenge since packet delivery inherently

involves interacting between the storage disks, operating system (OS), network interface

4
cards (NICs), and the various switches and routers; each of which is independently capa-

ble of introducting delay in the data transfer mechanism. To compound matters further,

as multimedia transitions from standard to high-de�nition movie format, the demand for

a higher data rate (greater than 2 Mbps) is expected to place more strict requirements

on packet delivery and processing mechanisms. Consequently, tracing, identifying, and

proposing a uni�ed solution that aim to remove performance bottlenecks along the entire

path of packet delivery is going to be a daunting if not an impossible task.

1.2 The Problem

Traditional design approaches have placed the burden of achieving the required end-

to-end performance primarily on the network delivery mechanisms. Thus, a lot of e�ort

has been directed in performance evaluation of routers [26], packet classi�cation tech-

niques [22], bu�ering mechanisms [1], network congestion detection and avoidance [29]

schemes for controlling the uncertainties posed by the underlying network. The general

expectation is that the application severs plugged on to the network is expected to meet

the required performance �gures.

Figure 1.2. A single frame snapshot of streaming multimedia quality under perfect net-
work conditions and negligible load on the streaming server. Movie used from [96].

5

Figure 1.3. Snapshot of the same frame of Figure 1.2 with 0.09% packet loss and with
negligible load on the streaming server.

Figure 1.4. Snapshot of the same frame of Figure 1.2 under perfect network conditions
but with non-negligible load on the streaming server.

However, to drive a new era of system performance for applications operating in

NGNs that demand strict end-to-end performance, it is not enough to consider the per-

formance of the network alone in isolation. Instead the path of data delivery from the

storage disks to the physical memory through the NIC cards become as important as the

6
network itself. To emphasize this point, in Figures 1.2, 1.3, 1.4, we provide snapshots of

the same image captured from a video sequence encoded at 1 Mbps that is being streamed

over a 1000 Mbps Gigabit Ethernet (GbE) network from a high performance streaming

server. The streaming server has a database unit that stores the pro�le of all the regis-

tered users. Under immaculate conditions (no network impedance, no database updates),

the overall delivered multimedia quality su�ers no pixel loss and is considered to be per-

fect. This is shown in Figure 1.2. However, when the network† is experiencing congestion

and randomly drops 0.09% of the multimedia packets, it a�ects the frame reconstruction

capability of the media player. As a result, the remote viewer experiences unaccept-

able video quality. Similar degradation in the media quality is observed in Figure 1.4

when the streaming server experiences varying transactional I/O load from background

database jobs due to multiple client access (update operations), thereby increasing the

waiting time of the streaming application for the requested data block. Unfortunately,

such variations in packet formation delay at the application level a�ects the audio-video

synchronization of the remote media player. Consequently, there occurs pixel distortions

and hence the viewing experience is far from perfect.

Although the above experiments were carried out in controlled laboratory settings

that simulated the scenario of multiple client accesses, it proves the point that while the

underlying network is an important transfer block in the path of packet delivery, it is

equally important to consider the performance of the application server in the backdrop

of the various OS jobs and the network in which it is expected to perform. All this means

that the approach of designing and optimizing application servers that are sensitive to

the data arrival process must also evolve to take into account both the network tra�c

pro�le along with the data retrieval mechanisms of the OS. At the same time, optimizing
†In our experiments we simulate varying network conditions using the click modular router [52].

7
the performance of both the server † and the network might not be feasible since most

of the time the router related tuning parameters (queue type, bandwidth reservation,

packet prioritization, etc.) are not available to the end hosts. The natural question that

arises is: How do we optimize the performance of latency sensitive application servers

present in high tra�c network domains with heavy I/O requirements?

1.3 Overview of Our Novel Approach

In this dissertation we aim to answer the above question by looking into the inter-

action between the di�erent components of the host OS and also trying to understand

the pro�le of the underlying network tra�c in which the latency sensitive application

servers are expected to be placed. With the arrival of NGNs, these application servers

are being increasingly built on open source Advanced Telecom Computing Architecture

(ATCA) [89] based blade computing units with Linux or xBSD based OS. The infras-

tructure providers are using ATCA platform for their application server design such as

IMS Call Session Control Function (CSCF) controllers and content providers are using

it for building content servers in CDNs. Changes are also happening at the core network

infrastructure where network planners are using designs based on network processing

technology for high capacity core routers supporting OC-192 or OC-768 links. Apart

from lowering the cost of ownership and deployment time period, such standardized ar-

chitectures imply that the optimization and performance solution techniques proposed in

this dissertation can be mostly be ported across di�erent network and hardware pro�les

with little or no modi�cations. Thus, within the limits of practicability, our proposed

technique can be considered to be generic.

To illustrate the concept, we consider the case of content delivery servers in our
†Note that our focus is exclusively on latency sensitive application servers plugged into high tra�c

domains as in the content delivery networks (CDNs). From now on, we use the term `servers' to refer
to such category of application servers.

8

Network
NIC

NIC

NIC

NIC

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Wired Memory

Inactive Memory

CPU

MMU

File Cache

Active Memory

Hardware I/O Controller

I/O Scheduler

Read
QueueQueue

Write

Free Memory

Bus

High

Disk

Speed

High

Disk

Speed

High

Disk

Speed

Figure 1.5. Primary components that play pivotal role in the packet delivery mechanism
of a typical application server. The arrows indicate direction of data traversal.

work. The architecture and the design concept presented in our research is equally ap-

plicable to IMS CSCF servers or other application servers. Since complete path tracing

and optimization is impossible, we separate the network delivery mechanism from the

packet processing capability of content delivery servers. If we separate out the network

delivery mechanism, the performance of such servers that send data over the network

from storage disks is dependent on the following main components: (i) the performance

of the I/O system that retrieves the data from the hard disks, (ii) virtual memory (VM)

that allocates physical memory pages for the data to be mapped in, (iii) scheduling tech-

niques of the CPU, and (iv) �nally on the packet transmission mechanisms of the NIC

from the OS bu�ers to the networking links. Such an architecture is shown in Figure 1.5

consisting of the network, the NIC cards, physical memory, and the I/O schedulers. In

identifying such component parts, we have purposefully avoided going into the �le system

performance intricacies, CPU and I/O architectures, and various hardware and software

9
optimization techniques available in the literature. While such granular level optimiza-

tion is expected to further improve the performance of the servers, it is outside the scope

of this dissertation work. Instead, we aim to look at approaches on how most common OS

kernels running over ATCA hardware with known network tra�c pro�le can be designed

to support latency sensitive applications such as streaming multimedia.

1.4 Contributions of The Dissertation

This dissertation is based on the assumption that application servers built using

open source architectures such as ATCA and running commodity OS kernels like Linux,

xBSD, or OpenSolaris can be performance tuned for serving latency sensitive applications

by understanding the OS packet delivery mechanisms and the network environment in

which they are expected to operate.

The major contributions of this dissertation are summarized as follows:

• A New Framework for Network Tra�c Characterization: Understanding

the nature and composition of network tra�c interfacing with the servers is the

�rst step towards planning and deploying large scale CDNs. An accurate diagno-

sis is achieved by carefully observing the interaction of tra�c �ows across various

degrees of freedom like duration (time), size or protocol composition. There are

two parts to the problem of tra�c characterization: (i) how to measure the �ows,

and (ii) infer the overall tra�c behavior and composition from the collected data.

A lot of e�ort has been directed to the second problem of tra�c inference and as-

sociated problems of �ow dimensioning like short lived �ows (SLFs) vs. long lived

�ows (LLFs), �ow sampling (uniform, random, strati�ed), and on deriving statisti-

cal models (Pareto, Weibull, Poisson) that de�ne the nature of tra�c �ows across

the various degrees of freedom. Surprisingly though, the �rst problem of how to

collect the �ows has received limited attention.

10
In Chapter 2, we propose an alternate approach to tra�c characterization by closely

linking the �ow measurement architecture with the estimation algorithm. Our mea-

surement framework stores complete information related to SLFs while collecting

partial information related to LLFs. For real-time separation of LLFs and SLFs, we

propose a novel algorithm based on typical sequences from Information theory [13].

The probability density function (pdf) and the sample space of the underlying

tra�c is estimated using the non-parametric Parzen window technique [56] and

likelihood function de�ned over the Coupon collector problem [21]. We validate

the accuracy and performance of our estimation technique using tra�c traces from

the internal LAN in our laboratory and from the National Library for Applied

Network Research (NLANR).

• An Analytical Framework to Evaluate the Performance of Gigabit Net-

work Interface Cards: Application servers that are the focus of this disserta-

tion, usually have multiple Gigabit Ethernet (GigE) NICs that involve considerable

packet processing at high line speeds (greater than 300 Mbps average data rate).

Since per packet interrupt processing is impractical at such high data rates, these

NICs generally use device polling to transfer the packets to the OS. Network pro-

cessing bottlenecks may arise due to complex interaction between the NICs, host

OS, and the underlying hardware. These may be due to the inherent limitations

present in the network adapter (e.g., limited on-chip bu�er space), hardware ar-

chitecture (e.g., I/O bus width), or simply due to improper allocation and con�g-

uration of the system resources. Considering the fact that an exhaustive experi-

mentation involving all the parameters is not possible, in Chapter 3, we develop a

closed form queuing model to investigate the impact of PCI/PCI-X I/O bus, on-chip

packet bu�ers, receive and transmit descriptor rings of the OS, and processor ser-

vice time on the dynamics of network packet processing. Our experiments indicate

11
that while device polling is an invaluable approach to prevent interrupt livelock at

high line rates, it exhibits high average CPU utilization (greater than 90% for 128

bytes packet at 500Mbps) with increase in packet arrival rate. Furthermore, there

occurs non-negligible costs in terms of interrupt generation when the system need-

lessly switches between polling and interrupt modes either due to: (i) over�ow at

the on-chip receive bu�er, or (ii) due to non-availability of the PCI/PCI-X bus. We

also show how results from our analytical framework can provide useful guidelines

in evaluating the capability of such high performance networking systems.

• Identifying and Controlling Write Congestion for Improving the Per-

formance of Reader Processes: Write congestion is a phenomenon when the

e�ective transactions per second (TPS) of latency sensitive systems start decreasing

in the presence of a large number of writer processes generating bursty workload

patterns of disk access. We analyze the underlying behavior of such situations and

propose two algorithms - deterministic (or rate based) and stochastic (or e�ective

bandwidth (EB) based) - for improving the e�ective TPS of reader processes. For

the rate based approach, we show by measurements how the presence of mem-

ory (Long-Range Dependence) in workload patterns can in�uence the decision of

choosing the sampling type and the length of the sampling window. The stochastic

approach is based on the established theory of EB in which we consider a set of �uid

On-O� writers that independently generate dirty pages inside the virtual memory

(VM). Each of the writers has an EB threshold that depends on the peak rate of

generation of dirty pages and on the dynamics of an equivalent Poisson process.

The rate based approach is suitable for lightly loaded systems in skewing the disk

access towards the readers. However, in the presence of large variance in workload

patterns, it unduly penalizes the writers. On the other hand, at the cost of increased

complexity of implementation, the e�ective bandwidth based approach is suitable

12

Packets?
NICs Dropping

NIC Paramaters

Excessive I/O
Latency? Enable Write Congestion

Prevention Module

Monitor
(Network &

System)

NETWORK PACKET

Network Traffic
Characterization

Chapter 2

Performance Tune

Chapter 3

Chapter 4

Yes

No

Yes

No

AND

Figure 1.6. Suggested steps for monitoring and tuning the performance of application
servers in new generation converged networks such as IMS.

for heavy duty servers. It is more resilient towards wide scale �uctuations of work

load patterns and provides optimistic bene�t in alleviating write congestion.

1.5 Outline of the Dissertation

Figure 1.6 describes a �ow of actions that underline our approach for improving

the performance of the application servers performance in the next generation converged

networks such as CDNs. Before designing the CDNs, it is important to understand the

dynamics of the tra�c pro�le that the network is expected to handle. Keeping this

in mind, Chapter 2 proposes an architecture for accurate characterization of network

tra�c. Next comes performance tuning of the NICs and OS parameters for preventing

unwarranted packet loss along the receive path of data transmission. Considering the fact

that an exhasutive experimentation involving all parameters is not possible, Chapter 3

proposes a queuing model and provides guidelines on how to set appropriate value of

the parameters under various conditions. Next we focus our attention to reducing the

13
latency in the data retrieval mechanism inside the OS. In Chapters 4, we present two write

congestion control algorithms (rate based and stochastic) and study their performances

under various tansactional I/O loads. Finally, we conclude the dissertation in Chapter 5

with directions for future work.

CHAPTER 2

AN ARCHITECTURAL FRAMEWORK FOR ACCURATE
CHARACTERIZATION OF NETWORK TRAFFIC

Understanding the dynamics of tra�c crossing boundaries of network appliances

(e.g., routers, switches, load balancers, �rewalls, etc.) is an important step towards plan-

ning and deploying a large scale content delivery network (CDN). An accurate diagnosis

is achieved by carefully observing the interaction of tra�c �ows (de�ned in Section 2.2)

across various degrees of freedom like duration (time), size or protocol composition. The

method of accurately estimating the nature of tra�c �ow along various degrees of free-

dom is referred to as the tra�c characterization. Such characterization is essential for

precise tra�c engineering and is utilized for estimating network resource usage, band-

width provisioning [18], di�erentiated services [8], tra�c shaping [19]. For application

servers inside the CDNs, such tra�c characterization provides invaluable insights about

the average packet size and data rate that the NICs and the server OS need to handle.

For example, if the network is carrying lots of control packets with average packet size of

128 bytes or less, then it is advisable to map interrupt lines to speci�c processing units

in multi-processing capable CPUs and also enable device polling with high bulk service

rates. On the other hand, in CDNs with no such tra�c pro�le enabling, such features will

needlessly put load on the CPU. Thus, an accurate tra�c characterization enables us to

tune the performance of the resources of the server according to the needs and demands

of the network tra�c. The rest of the chapter is organized as follows. In Section 2.1

we de�ne packet �ows as they are related to network tra�c. The challenges involved

in characterizing network tra�c at high line speeds (10Gbps or more) are exposed in

Section 2.2. In Section2.4, we propose a �ow measurement architecture that tackles the
14

15
problem of how to collect tra�c �ows at high line speeds. Data sampling and recovering

of lost sample points for estimating the statistical distribution of the underlying tra�c on

data collected using our architectural approach is dealt with in Section 2.6. Validation

of our approach is done in Section 2.7.

2.1 Components of Tra�c Characterization

Tra�c characterization involves two parts. The �rst part is paying attention to

how to measure the �ows and the second part is on inferring the overall tra�c behavior

and composition from the collected data. A lot of e�ort has been directed to the second

problem of tra�c inference and associated problems of �ow dimensioning like short lived

�ows (SLFs) vs. long lived �ows (LLFs), �ow sampling (uniform, random, strati�ed), and

on deriving statistical models (Pareto, Weibull, Poisson) that de�ne the nature of tra�c

�ows across the various degrees of freedom. Surprisingly though, the �rst problem of how

to collect the �ows has received limited attention. That being said, the recent work by

Kumar et. al [43] [44] focused on using e�cient data structures for �ow characterization.

Their work is a major step towards closely knitting the architecture and measurement

technique together. However, the authors did not study the underlying architecture re-

quired for such a framework (except for identifying the need for multiple fast memory

modules) and also did not take into account the idiosyncratic behaviour of heavy-tailed

nature of the Internet �ow. As we shall see, solutions to the two problems of collection

and inference of network tra�c are closely related; a measurement architecture speci�-

cally tuned for �ow collection provides a strong basis for accurate tra�c estimation.

If we consider the longevity of individual tra�c �ows, it is apparent that SLFs

are the most di�cult to capture since they die out fast (less than 1 second); but the

individual size of such �ows (i.e., the number of packets) is small (less than 100 packets).

Also, they account for a substantial portion of the network tra�c. In our experiments,

16
we have observed similar behaviour with the average lifetime of SLFs being less than a

second (around 250 millisecs) with the combined tra�c carried by them being around

40% of the entire tra�c volume. On the other hand, LLFs exist in small numbers (around

3%), have longer lifetime (average duration of 30 minutes), and approximately account

for 25% of the total tra�c. From this observation, it is apparent that solutions that are

unable to capture SLFs and take into account the ephemeral nature of such �ows will

have limited accuracy in estimating the composition of the underlying tra�c. In sharp

contrast, various statistical sampling techniques can be feasibly applied to LLFs since the

tra�c carried by them is substantial with each �ow lasting for several minutes, hours,

and even days.

Our proposed architectural framework for capturing and estimating the tra�c dis-

tribution is based on the above observation. It is designed to feasibly store complete

information related to SLFs with manageable complexity and hardware cost. At the

same time, it uses systematic sampling to collect su�ciently large number of samples

of LLFs; together which provides for accurate tra�c �ow characterization. In the next

section, we brie�y review existing approaches for tra�c characterization.

2.1.1 Existing Approaches for Tra�c Characterization

Precise knowledge and understanding of the properties and characteristics of the

network tra�c provide an important yardstick for accurate tra�c engineering. An well-

established mechanism for tra�c characterization is to install a network tap at the point

of measurement for a certain interval of time, collect packet samples, and infer �ow

characteristics from the collected data. Based on this philosophy but di�ering in the

methods, two broadly di�erent approaches currently exist for tra�c �ow characterization.

They can be categorized as:

17
• Tra�c analysis based on di�erent sampling methods: Random sampling, simple

random sampling, or strati�ed random sampling based tra�c analysis has been

studied in [10]. In [18], the authors studied the impact of sampling techniques on

LLFs and suggested methods to infer properties of original tra�c from sampled

�ow statistics. Correlated sampling strategy was proposed in [19] to account for

the heavy-tailed distribution of �ow lengths. Approaches that predict �ow prop-

erties not available in sampled tra�c volume have been studied in [20]. In [25],

a theoretical study was undertaken that proved that it is possible to exactly infer

the number of packets per �ow which is not possible in traditional packet based

sampling.

• Characterization of tra�c using a combined approach of e�cient data structures

and related statistical estimation techniques: In [43] [44], the authors used a com-

bination of bloom �lters and maximum likelihood estimation techniques to predict

the density function of the underlying tra�c. Probabilistic data strutcures such as

sketches have been used for identifying the heavy-hitters in large data streams [12].

Such approaches have been shown to yield better tra�c characterization with de�-

nite bounds on estimation errors. Though novel, the approach of [43] and [44] suf-

fer from architectural limitations related to the mismatch of speed between various

memory hierarchies: Static Random Access Memory (SRAM), Dynamic Random

Access Memory (DRAM), and mechanical disk storage unit.

2.1.2 Salient Features of Our Approach to Tra�c Characterization

The primary limitations of the above approaches are the degree of accuracy of the

results and scalability of the algorithms due to the large volume of datasets that need

to be analyzed. It seems that a better solution could be achieved if it is �rst possible to

identify and separate �ows which carry most of the packets. An added bene�t would be to

18
remove the storage limitations posed by the measurement architecture. Once such a goal

is achieved, it would then be possible to store information for identifying scarcely occuring

�ows in the data stream with full accuracy while estimating the information for �ows

with a large presence. Our study is based on such a philosophy. It aims at linking the

measurement architecture with the estimation algorithm such that information related

to SLFs could be captured with complete accuracy while information related to LLFs can

be predicted using non-parametric statistical techniques.

The salient features of our approach are summarized as follows:

• We propose an architecture framework called FastFlow that uses the principle of

typical sequences [13] for separating the SLFs and LLFs. Experimental results indi-

cate that typical sequences can identify LLFs with around 90% accuracy. Further,

the low computational overhead of identifying typical sequences makes our frame-

work suitable for real life implementation.

• We provide a fast SRAM based tra�c �ow update algorithm that avoids the com-

plexity and overhead of traditional hash based solutions. It is based on binary

content-addressable memory (BCAM) using addressing inversion for logic gating.

• We use non-parametric Parzen window technique [56] to estimate the the proba-

bility density function (pdf) of the underlying tra�c.

2.2 De�nitions

In this section, we de�ne the terminology used in rest of the chapter. We de�ne

�ows to refer to those packets with similar attributes. For example, a �ow might con-

sist of packets having identical values of �ve-tuple (source address, destination address,

source port, destination port, protocol) as shown in Figure 2.1), or comprise of pack-

ets matching speci�c payload information (e.g., group of all TCP packets with payload

containing the string �crewman�). Thus, �ows can be characterized by packet headers,

19
012345678910111213141516171819202122232425262728293031

Version H−Length TOS Total Length

Identification Flags Fragment Offset

TTL Header Checksum

IP Options (if present)

Remaining Transport Header Fields

Payload

Source Address

Destination Address

Source Port Destination Port

Protocol

Figure 2.1. Structure of Internet Protocol Version 4 (IPv4) packet header. The �elds
used for computing the �ve-tuple is shown in bold.

payloads or a combination of both.

indent The size of a �ow is the number of packets belonging to the �ow, and the duration

of a �ow is its lifetime. For example, the size of a TCP �ow is the number of packets

exchanged till the last packet containing the FIN bit is sent (during normal termination)

while the duration is the time interval between the �rst and last packets of the �ow. In

order to associate a packet with a �ow, it is necessary to de�ne a Flow Identi�cation

Tag (abbreviated as FlowID) using appropriate �ow de�nition. For example, if �ows are

de�ned using the above �ve-tuple, then the FlowID is 104 bits long and can be used to

separate packets belonging to di�erent �ows. Thus, the length of FlowID depends on how

tra�c �ows have been de�ned. The next section provides a numerical case study that

highlights the challenges related to the exhaustive �ow collection. The performance �g-

ures quoted in the example are obtained by using the packet inter-arrival time of
[

R×u
P

]
,

20
where R is the theoretical data rate, u is the link utilization factor, and P is the size of

the packet in bytes.

2.2.1 A Motivating Example

To understand how tra�c characterization is limited by resource constraints, con-

sider the following example: On an OC-192 link (10 Gbps) with 80% link utilization and

average packet size of 500 bytes, the average packet inter-arrival time is 500ns. Within

the packet inter-arrival time, the hardware unit responsible for collecting �ow statistics

has to:

• Extract �ow information by parsing �elds of the packet.

• Compute the FlowID.

• Locate the FlowID in memory.

• Increment the counter corresponding to the FlowID.

In order to execute the above sequence of operations, the packet processing unit requires

more than one memory access. Today's high capacity, high performance o�-the-shelf

static RAM (SRAM) has access time as low as 10ns with average size of 1-4 MB. Dynamic

RAM (DRAM) have much higher densities (1 Gbits) but have equivalent access time of

around 50ns or more [1]. If we use a hash table in SRAM, we need approximatly 160

bits [43] per hash table entry in order to store 32 bit wide counters that record the

frequency of occurrence of �ows in the underlying tra�c. Thus, with 5MB SRAM, it

is possible to store information corresponding to 0.25 million �ows each 32 bits wide.

Considering the fact that the number of �ows in the Internet backbone links can reach

0.5 million [44] or more during the measurement interval, clearly a single SRAM module

will not su�ce. Also, in our illustrative example, we have assumed the ideal situation

of one counter update per packet. In reality, the update overhead is considerably large

since the useful clock cycles have to be expended in order to extract the �ow information

21
from the packet, compute the FlowID and take into consideration the overhead of hash

table update [44].

Thus, at 10 Gbps with 80% link utilization, the 5MB SRAM module will be �lled

up (assuming uniform hash table update) once every 5.3ms; requiring that we move 0.25

million �ows of 160 bits from SRAM to DRAM as fast as possible in order to prevent

the SRAM over�ow. At 50ns access time, the DRAM operation will take (assuming

bus width of 64 bits) around 63ms. Clearly, the low density, access speed mismatch,

and high cost (4:1) [1] of SRAM compared to DRAM, make it practically infeasible for

exhaustively capturing the information related to all the packets. Hence, a näive brute

force approach of storing �ow information is impractical (if not impossible) [20] as it

would create memory hotspot problems, consume valuable processor cycles, and also

might render the system unresponsive for prolonged periods of time. Added to these are

the traditional issues associated with storing, mining, and analysis of large datasets.

2.3 Tra�c Characterization: Problem Statement

Consider a de�nite �ow measurement interval (T1, T2). It can be in�nite if �ow char-

acterization is always on or can be a �nite interval during which the algorithm is active.

Let [F] = {F1, F2, . . . , Fi, . . . , FN} be a sequence of N FlowIDs from {1, 2, . . . i, . . . N},
where each FlowID, Fi, is an index i.e., a number between 1 and N used to identify

each �ow in the underlying tra�c. Denote |Fi| to represent the number of packets be-

longing to the �ow with FlowID Fi. It is important to note that the sequence [F] is

sorted by increasing cardinality of the number of packets present in each FlowID. Our

goal is to estimate N and the probability density function (pdf) of the network tra�c

from the available data sequence [F]. As elucidated in Section 2.1, the accuracy of such

a technique is primarily governed by the amount of information we are able to collect

about the SLFs and LLFs. Under such circumstances, the �ow characterization problem

22

Table 2.1. Notations Used in FastFlow Architecture

Notation Meaning
N Number of FlowIDs
F The sequence of FlowIDs
F ′ The new sequence formed from F after clustering operation
(Fi) Index used to identify a FlowID
K size of the ingress bu�er
A Stochastic process denoting interarrival time of ingress bu�er
B Stochastic process denoting service time of ingress bu�er
CA Coe�cient of variation of interarrival time of ingress bu�er
CB Coe�cient of variation of service time of ingress bu�er
ρ Average system occupancy
W Mean waiting time of FlowID in ingress bu�er
γ, δ Shape and Scale parameter of Pareto distribution
m Width (in bits) of each FlowID
c Number of bits associated with each FlowID counter
S Size (in bits) of SRAM module
M Total number of FlowIDs collected during a measurement interval
p Probability of occurence of a LLF packet
CL Con�dence Limit required for FMU initialization
H(X) Entropy of random variable X
ψ(.) Gaussian kernel function
h Width of the kernel density function

can be broken down into the following three sub-problems that serve as useful starting

points for the overall solution: (i) architecture, algorithm, and performance modeling

of the measurement architecture, (ii) algorithm for classifying LLFs and SLFs, and (iii)

estimating techniques for N and the pdf of the network tra�c from the available data

set, F . In the following sections, we provide solutions to each of these sub-problems.

The notations used in our study are present in Table 2.1.

2.4 Measurement Framework: Architecture, Algorithms, and Modeling

We start with a high level description of the proposed architecture, called FastFlow,

and analyze its component parts. This architecture shown in Figure 2.2 is envisioned to

be a hardware module that plugs as a Smart Interface Card (SIC) into the network

appliance. FastFlow is a self-contained hardware module with a Flow Identi�cation Unit

23

1

SRAM
(storage)

BCAM
(search engine)

Flow Collection Unit (FCU)

Ingress Buffer

SRAM
(storage)

BCAM
(search engine)

Flow Collection Unit (FCU)

Ingress Buffer

ACTIVE

STANDBY2

Flow Identification Unit (FIU)

.

DRAM

DRAM

I/OFlow Management Unit (FMU)

.

(Maps packet attributes to FlowID)

Scheduler

.
PACKET IN PACKET OUT

CCLK

SCLK

Figure 2.2. Architecture of FastFlow. The two FCU units (Active/Standby) have been
designed to speci�cally capture short lived �ows.

(FIU), Flow Management Unit (FMU), and two Flow Collection Units (FCUs). The FIU

is responsible for extracting and mapping the attributes of a packet to the corresponding

FlowID. When the SIC is active, packets �ow through the FIU and are immediately

placed in the original line of �ow after the information relevant to the calculation of the

FlowID has been extracted from the packet. This allows the measurement unit to work

transparently from the rest of the appliance. Fundamental to the design is the assumption

that a uni�ed measurement approach for collecting information for both SLFs and LLFs

is not technically very e�cient (see Section 2.1).

Hence, instead of a single packet sampling approach where the sampling frequency

is independent of the �ow type, we use dual packet scanning clocks. The clocks are

derived from the same reference clock and are assumed to be behave ideally (i.e., no

24

FCU
1

FCU
2

Tactive Tactive

Tactive Tactive

Tstandby

Tstandby

SCLK

CCLK

SAMPLE SAMPLESAMPLE SAMPLE

CCLK

SAMPLE

INITIALIZATION

t = 0

Figure 2.3. Illustration of continuous scan clock (CCLK) and sample scan clock (SCLK)
used in our measurement architecture.

skew, delay, jitter). As shown in Figure 2.3, we refer to the clocks as continuous scan

clock (CCLK) and sample scan clock (SCLK).

It is important to note that in Figure 2.3, the clock rates of CCLK and SCLK are

set to di�erent frequencies although they are derived from a common timebase. This is

due to the nature of the data collection operation they are supposed to conduct. While

the CCLK is aimed at capturing all the SLFs in Active/Standby mode, the SCLK collects

samples of LLFs using variations of systematic sampling. The dual FCU makes it possible

to capture information related to the SLFs with complete accuracy and within feasible

system resource constraints. We now describe each of the individual units in more detail.

2.4.1 Flow Collection Unit (FCU)

Figure 2.4 provides the architectural description of the FCU responsible for collect-

ing only the SLF FlowIDs from the tapped tra�c. It consists of a no-bus-latency (NoBL)

SRAM [81] memory module con�gured as ingress bu�er, two BCAM based search and in-

dex engines, and a high speed SRAM storage unit. The FCU works in pairs and operates

in the Active/Standby mode. Only one of the units is active at any point of time and the

25
operation of the units is synchronized by the CCLK signal (see Figure 2.3). When the

active unit is collecting SLF FlowIDs, the standby unit is emptying its SRAM content

to the FMU and viceversa. This alternating sequence of behavior ensures that no SLF

FlowID is lost due to over�ow of the SRAM storage unit.

During system initialization phase, the �rst FCU (denoted as FCU1 in Figure 2.2)

is Active by default and the second FCU (i.e., FCU2 in Figure 2.2) is in Standby mode.

The Active FCU works as follows: FlowIDs computed by the FIU is received by the FCU

and are placed on the ingress FIFO queue. As the ingress queue is serviced and FlowIDs

are emptied, we need to (i) identify the FlowID that belongs to an SLF since we store

only SLFs in FCU; and (ii) decide on how to access the counter corresponding to the SLF

FlowID in storage SRAM with minimal delay and processing overhead. These issues are

addressed in the next section.

2.4.2 How to Distinguish SLF FlowID from LLF FlowID?

The decision as to which FlowID to store is done by con�guring a BCAM as a

search engine, referred to as the search BCAM (or SCAM), over a list of compiled LLF

FlowIDs. This list is computed by FMU in real time and downloaded to the FCU when

the unit is in Standby mode (how the LLF FlowID list is compiled online is explained in

Section 2.4.5.2). The BCAM allows entries of binary 0 and 1, and content searches are of

�xed lengths only. Furthermore, the size and width of the BCAMs are con�gurable [83].

All these make the BCAM attractive for our design since searches over FlowIDs are of

�xed lengths.

The FlowID retreived from the ingress bu�er is used as a key to the SCAM such

that a classi�ciation decision can be made in a single table lookup. Each SCAM table

entry contains the LLF FlowID, output address, and a valid bit (see Figure 2.4). The

value of the valid bit is set to 0 when the corresponding table entry is empty. This helps

26

CAM Entry

FlowID

.
.
.
.
.
.
.

.......

m

m

Search CAM (SCAM)

Multiplexer

FlowID

.
.
.
.
.
.
.

n m

log m
2

m

Counter
Physical Address

.......

.
.
.
.
.
.
.

ICAM Entry

m

.

SRAM Index CAM (ICAM)

FlowID Selector

FlowID

FlowID valid_bit

valid_bit

CAM: Content Addressable Memory

Ingress Buffer
FlowID

Figure 2.4. Architecture of the Flow Collection Unit (FCU) used in our measurement
study.

us reduce power consumption by avoiding unnecessary searches over empty table lists. A

search is successful if a SCAM entry matches the input FlowID. If a match occurs, then

the current FlowID belongs to a LLF and is discarded. Otherwise, the FlowID is stored

in SRAM and the counter corresponding to the FlowID is incremented by one. In the

next section, we describe our algorithm for storing and updating the FlowID information

inside the active FCU.

2.4.3 Storing and Accessing FlowIDs of SLFs

The SRAM storage unit records the frequency of occurence of each SLF FlowID

when the FCU is operating in the Active mode. This is done by associating a counter

27
(of de�nite length) with each FlowID. The algorithmic approach to store FlowIDs is to

pick a suitable hashing function that allows deterministic insertion and update operation

of the SRAM. However, hash functions present additional computational and memory

overhead, thus giving rise to collisions. An approach allowing hash collisions and later

estimating the consequent counter loss has recently been proposed in [44]. Since we aim

to measure the frequency of SLF FlowIDs with complete accuracy, such a scheme will

not suit our purpose. Instead, we present an architectural framework that is practical,

avoids hashing (and its associated complexity), and achieves constant insertion time.

Refering to Figure 2.4, each table entry of SCAM contains three �elds: the LLF

FlowID, the logical inversion of the LLF FlowID, and the valid bit. Let us denote these

�elds by FlowID, FlowID and validbit. Thus, each entry of the SCAM is a tuple of

size three. The algorithm for updating and inserting new FlowIDs in SRAM works as

follows. During the SCAM search operation, all the entries are compared in parallel with

the target FlowID. If the FlowID matches a table entry, then the corresponding FlowID

is returned. Otherwise, the �rst FlowID present in SCAM is returned. The FlowID ob-

tained is then propagated to a NOR gate along with the original FlowID. If we receive

an LLF FlowID which is present in SCAM, the storage circuitry connected to the output

of the NOR gate is disabled and the FlowID discarded. Otherwise, the output of the

NOR gate is connected to a multiplexer (see Figure 2.4) so as to enable the SRAM

storage circuitry. The Index BCAM (or ICAM) is utilized for mapping the FlowID to

the physical address of the SRAM. This is because the number of bits of the FlowID and

the SRAM physical address could be di�erent. Finally, the counter corresponding to the

physical address is incremented by one.

It is important to note that the ICAM is accessed only when the matching fails

(i.e., the FlowID does not belong to an LLF). If the FlowID is not present in the ICAM,

then the ICAM is subsequenly updated (for example, see [76] for TCAM update solutions

28

Algorithm 2.1 Update: Algorithm for Inserting/Updating FlowID in SRAM
1: Retrieve FlowID from ingress bu�er shown in Figure 2.4.
2: found == search_SCAM (FlowID)
3: if found === true then
4: return
5: else
6: memory_address == search_ICAM (FlowID)
7: end if
8: if memory_address 6=0 then
9: *(memory_address)++

10: else
11: update_ICAM (new_address, FlowID)
12: *(new_address) = 1
13: end if

without complete locking) and the next available physical memory block is allocated † for

this FlowID. Using our approach, we do not need to bother about apriori allocation of

space in SRAM and hence are able to avoid the problem of skewed memory usage asso-

ciated with a hash based storage solution. Also, the insertion and update operations can

be done in constant time. These sequence of operations are denoted as search_ICAM()

and update_ICAM() in Algorithm Update 2.1.

2.4.4 Determining the Parameters of Flow Collection Unit (FCU)

In this section we derive mathematical results for determing the size of the ingress

bu�er, the size of SRAM, and the frequency of CCLK.

2.4.4.1 Size of Ingress Bu�er

We model the ingress bu�er as a G/G/1 queue employing FIFO scheduling policy.

Referring to Table 2.1, let {Ai : i ≥ 1} and {Bi : i ≥ 0} denote the inter-arrival intervals
†If memory is organized in contiguous blocks, then the next physical address is the current address

+ length of an SRAM entry, assuming proper memory alignment. The value of the current physical
memory address is stored in a register (not shown in Figure 3).

29
and the service times of the G/G/1 queue, respectively. The queue is empty at the

beginning of the Active mode. Let W denote the mean waiting time of a FlowID in the

queue. Let E(W ≥ t) denote the average waiting time in the queue under steady state

conditions. Then, using the approximation given in [66], we have:

E(W) ≈ ρ

1− ρ
.(1 + C2

B)((2− ρ)C2
A + ρC2

B)

2(2− ρ+ ρC2
B)

.E(B) (2.1)

where CA and CB respectively denote the coe�cient of variation (CoV) of interarrival

times and service times of the processes A and B, and ρ is the average occupancy of

the system. In our case, the service time is constant since using SCAM and ICAM, the

SRAM update time is O(1). Thus, CB = 0 and let E(B) = K be a constant. Then,

Equation (2.1) can be simpli�ed as

E(W) ≈ ρ

1− ρ
.C

2
A

2
.K (2.2)

Now, the average system occupancy can be de�ned as:

ρ = E(B)/E(A) = K/E(A) (2.3)

Using Equation (2.3), we can simplify Equation (2.4) as:

E(W) ≈ σ2
A

2 [E(A)]2 [E(A)−K]
.K2 (2.4)

where σ2
A is the variance of the interarrival process A.

30

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3
x 10

4

FlowID (Five−Tuple)

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

Figure 2.5. Linear scale plot of the FlowID density function for tra�c collected from our
internal LAN. Observe the heavy-tailed nature of FlowIDs.

2.4.4.2 Pareto FlowID Arrival

In Figure 2.5, we plot the distribution of FlowIDs captured from the internal LAN

in our laboratory. Approximately 1 million packets were captured over a duration of

two weeks. We observer that the distribution of FlowIDs clearly follows a heavy-tailed

distribution. In other words, a few FlowIDs (around 1-2% in our experiment) carry

around 0.85 million packets while a substantial portion (around 40%) of FlowIDs have

only one packet. Such a distribution is extreme and on a linear scale the curve is almost

L shaped. Assuming Pareto distribution, the cumulative distribution function (cdf) of

FlowID is given by:

F (x) = 1−
(
δ

x

)γ

, x ≥ γ (2.5)

31
In Equation (2.5), γ is the shape factor and δ is the scale parameter. The mean E(Ω),

and variance σ2
Ω, of the Pareto distribution are given by:

E(Ω) = [δγ/(γ − 1)] , for γ > 1 (2.6)

σ2
Ω =

[
δ2γ/

[
(γ − 1)2(γ − 2)

]]
γ > 2 (2.7)

Using Equations (2.4), (2.6), and (2.7), we can �nd a general expression for E(W),

the average waiting time of FlowIDs in the system. Let L denote the average number of

FlowIDs in the FCU, and λ denote the FlowID arrival rate. Then, by Little's theorem:

L = λE(W) (2.8)

Let η be the maximum number of FlowIDs that can be accomodated in the FCU.

Therefore,

L ≤ η (2.9)

⇒ K2(γ − 1)λ

2γ2(γ − 2)[δγ −K(γ − 1)]
≤ η (2.10)

Rearranging Equation (2.10), we obtain:

λ

η
≤ 2γ(γ − 2)) [δγ −K(γ − 1)]

K2(γ − 1)λ
(2.11)

Equation (2.11) provides the relationship between the FlowID arrival rate (λ) and the

maximum average number of packets (η) present in the FCU. Using Maximum Likelihood

function for the heavy-tailed distribution under consideration, it is possible to estimate

32
the parameters γ and δ. For example, in Figure (2.5), they are estimated as γ = 2.1 and

δ = 800. On substituting these values in Equation (2.11), we obtain:

λ

η
≤ 1347− 0.8822K

K2λ
⇒ η ≥ (7.42× 10−4)K2λ2 (2.12)

Equation (2.12) estimates the size of the ingress bu�er that needs to be provisioned for a

de�nite line rate and average system service time. For example, if the line rate is 1 Gbps

and the average service time is 1 ms, then the bu�er should be able to store 100 FlowIDs

on an average, in order to prevent over�ow. Thus, considering di�erent values of η and δ

that depend on the tra�c pattern, it is possible to estimate the size of the ingress bu�er.

2.4.4.3 How Long is FCU in Active Mode?

Denote Tactive as the time for which the FCU remains in the Active mode. Since

SCAM and ICAM have constant access time, under stable conditions, Tactive will be dom-

inated by the average time it takes to �ll the SRAM, under worst case scenario. Let the

width of each FlowID be m bits and let c be the number of bits associated with each

FlowID counter. Then, the width of each SRAM entry is (m + c) bits. Let S (in bits)

be the size of the SRAM module (see Figure 2.4). Then, the number of unique FlowID

counters that could be stored is [S/(m + c)] and the maximum value each counter can

attain is 2c.

Let Toverflow be the minimum time required for the SRAM to over�ow. Denote α

to be the probability that during this time the total number unique of FlowIDs observed

is less than the maximum number of SRAM entries and for any particular FlowID, the

counter value is less than 2c. Strictly speaking, though the arrival process of the FlowIDs

in the FCU is heavy-tailed in nature, recent research [9] conducted over large volumes of

the Internet tra�c observed the Poisson nature of the packet inter-arrival time. Further-

33
more, convoluting a Pareto disribution is mathematically intractable. Consequently, we

model the FlowID inter-arrival time by an exponential distribution in order to determine

the value of Tactive.

Let the inter-arrival time of FlowIDs be independent and follow exponential distri-

bution. We assume the worst case scenario where all the FlowIDs received during Tfcu

are unique. Let Y1(t), Y2(t), . . . , Yk(t) be a sequence of independent, exponential random

variables with parameter λ and probability density function:

y(t) = λe−λt, t ≥ 0 (2.13)

Here we have resonably assumed that the arrivals of FlowIDs is the same as the packet

arrival rate, λ. The value of k is equal to [S/(m+ c)] which is the maximum number of

SRAM entries. We are interested in the distribution of the sum of the random variables,

Yi(t). Using the convolution theorem, we have:

P

(
k∑

i=1

Yi(t) < f

)
⇒ (y ∗ y ∗ y . . .︸ ︷︷ ︸

k terms

)

⇒ (y ∗ yk−1)f(t) =
λktk−1

(k − 1)!
e−λt ≡ yk(t) (2.14)

which is the Erlang distribution with density function yk(t). Thus,

P

(
k∑

i=1

Yi(t) < f

)
=

λktk−1

(k − 1)!
e−λt (2.15)

Hence, the probability (α) that within T units of time, the SRAM will not over�ow is

given by:

∫ T

0

yk(t) ≤ α (2.16)

34
Using Integration by parts, we obtain the following relationship:

λke−λT

k−1∑
i=0

T i

k!λk−1
≥ (1− α) (2.17)

The value of Tactive obtained from Equation (2.17) is a lower bound on the FCU switching

time for a given con�dence level, α. A Monte-Carlo approach can be used to arrive at

an approximate solution of Tactive. Thus,

Tfcu ≈ Tactive

based on the reasons identi�ed at the beginning of this section.

2.4.5 Flow Management Unit (FMU)

The FMU uses external DRAM (see Figure 2.2) to store information associated

with the individual FlowIDs so as to achieve massive storage capacity. In this section, we

derive bounds on the FMU initialization time, describe the algorithm used to separate

the SLF and LLF in real-time, and calculate the duration for which the FCU remains in

Standby mode.

2.4.5.1 FMU Initialization Time from Statistical Con�dence Limit

At the beginning of the measurement interval, the FMU must create a list of LLFs

that will be used to intilize the ICAM of the FCU in Standby mode. This initial list

is created using the concept of typical sequences in information theory and described in

Section 2.4.5.2. However, the accuracy of the initial list of LLFs depends on the duration

of the initialization phase. The longer the initialization phase, the better is the con�dence

limit (CL), but at the cost of longer run time. Hence, given a user speci�ed CL, our

35
aim is to determine the number of samples that needs to be collected. Let M be the

total number of FlowIDs collected during the initialization period. Assume the samples

be independent and let τ denote the probability of occurence of an LLF packet. Then

the probability of collecting m LLFs out of M FlowIDs can be modeled as a binomial

distribution with PM(m) i.e

PM(m) =
(

M
m

)
τ k(1− τ)M−m (2.18)

Let ε be the number of LLFs FlowIDs captured after k samples. Then:

CL = Prob(ε > m) = 1−
m∑

i=0

PM(i) ≈
m∑

i=0

(Mτ)i

i!
e−Mτ (2.19)

We are interested in determining M based on the speci�ed CL. Equation (2.19)

can be rearranged to calculate the value ofM that provides a lower bound on the number

of FlowIDs that needs to be collected in order to achieve the desired CL.

⇒M =


 ln

(∑m
i=0

(Mτ)i

i!

)

τ


 +

[− ln(1− CL)

τ

]
(2.20)

For an approximate solution, suitable numerical methods can be used. Note that

we need to compute Equation (2.19) only once, when the measurement architecture is

being initilialized with an empty list of LLFs. Since the samples of LLF are collected

from the underlying network tra�c at intervals governed by the frequency of SCLK, the

duration of initialization phase is simply M/freqsclk. Here we make the tacit assumption

that an LLF sample is collected during one pulse of SCLK.

36
2.4.5.2 Determining the List of LLFs at Run Time

The list of LLFs is used to populate the ICAM of the Standby FCU and compiled at

run time. As explained in Section 2.2, the list gets updated whenever packets are sampled

using the SCLK, or when the FCU transits from Active to Standby mode. The FMU

maintains two tables: the array of counters of FlowID implemented according to [58],

and the list of current LLFs.

In the next section, we address the following two questions: (i) how to identify LLF

from all the FlowIDs, and (ii) how to update the list at run time?

2.5 An Online Framework for Identifying LLFs

Let us now consider an ergodic and discrete random process where each Fi is an

independent variable drawn from the state space of [F] consisting of all possible FlowIDs.

However, the random variables are not identically distributed. Denote {fi} to be the set

of possible outcomes of Fi with f ∈ [F]. Let us represent the probability mass function

(pmf) of the sequence {Fi}N
i=1 by: P (F1 = f1, . . . , FN = fN) = p (f1, . . . , fN) . Let H(F)

= H(F1, F2, . . . , FN) denote the joint entropy of the sequence {Fi}N
i=1 and let H̄F be the

entropy rate of {Fi}N
i=1. Then, H(F) and H̄F can be de�ned as follows [13]:

H(F) = H(F1, F2, . . . , FN) =
N∑

i=1

H(Fi|Fi−1, . . . F1) (2.21)

H̄F =
1

NH(F) (2.22)

Since according to our assumption, the Fis are independent, Equation (2.21) reduces to:

H(F) =
∑N

i=1H(Fi) which is the summation of the individual entropies of the �ow. At

this point, it is worth mentioning that it is possible to estimate H(F) without considering

individual �ow entropies [45]. However, this is not considered in this work.

37

Algorithm 2.2 Typical Sequence: Algorithm for calculating the list of LLFs
1: Intilialize list L := null
2: Collect FlowIDs {Fi} in the initialization phase
3: n := number of FlowIDs in the current run of the experiment
4: Calculate the occurence probability p (fi) for each {Fi}
5: Calculate H(F) and H̄F using Equation (2.21)
6: while i⇐ N do
7: if p then
8: (fi) ≤ 2−nH̄F

9: add Fi to L
10: end if
11: end while
12: List L contains the set of LLFs
13: Download list to Standby SRAM
14: Online Update (see Algorithm 2.1)
15: Upload contents of SRAM to FMU when FCU is in Standby mode
16: Update corresponding FlowID counters
17: Update the list of LLFs
18: Go to Step 3

De�nition 1. The set of LLFs present in a sampled tra�c is represented by the

sequence, {F1F2 . . . FN ′}, where N ′ ¿ N denotes the total number of LLFs.

This de�nition provides us with the set of all packets which belong to the set of LLFs.

Since our aim is to identify the sequence {F1, F2, . . . , FN ′}, we need to isolate the se-

quence of FlowIDs that occur the highest number of times. If we visualize the sequence,

[F], as an information source, then the existence of the above sequence of FlowIDs is

governed by the probability of occurrence of a jointly typical sequence based on Asymp-

totic Equipartition Property (AEP) [13] in Information Theory. Note that the results

based on AEP hold true only when the number of FlowIDs present in the sampled tra�c

volume is very large. Now considering the fact that there can be several sets of typical

sequences, we have the following lemma for the set of LLFs:

Lemma 1. For tra�c volumes with large number of FlowIDs (i.e., N → ∞), the

occurrence of the sequence {F1, F2, . . . , FN ′}, where N ′ ¿ N , is equiprobable and approx-

38

imately equal to 2−NH̄F .

Lemma 1 follows directly from the property of AEP. In view of the above, we can say

that out of all the possible FlowIDs, that sequence which belongs to the typical set has

the maximum concentration of probability. The sequences outside the typical set are

atypical and their probability of occurrence is extremely low. As evident from the above

lemma, a typical sequence implies that FlowIDs in the typical set are associated with a

large number of packets. If we consider the distribution of FlowIDs in the Internet tra�c,

we can easily correlate this property with the Zipf distribution of Internet �ows. Hence,

it is not surprising that most of the LLFs belong to the typical set. However, what is the

guarantee that such a sequence really exists?

De�nition 2. The joint entropy, H(F), for a stationary stochastic process of N ele-

ments is a decreasing sequence in N and has a limit equal to its entropy rate.

De�nition 2 implies that the probability of correctly identifying LLFs increases with the

corresponding increase in tra�c volume. This observation is fundamental since it enables

us to scalably create an approximate list of LLFs (i.e., a typical sequence), while avoiding

unnecessary complex computations.

Based on the above discussion, Algorithm Typical Sequence enumerates our ap-

proach for identifying the LLFs in the underlying tra�c. It also provides a high level

working of the FastFlow architecture and is composed of two phases: an initilization

phase and an online update phase. During the initialization phase, the initial list of

LLFs is built in the FMU. This list is downloaded to the the Standby FCU. Note that

based on the underlying tra�c patterns, the list of LLFs is automatically identi�ed by

the FMU and communicated to the FCU.

39
2.6 O�ine Estimation Using Kernel Density Estimator

In this section, we describe our estimation algorithm used for predicting the char-

acteristics of the underlying tra�c. We do not make any assumption on the distribution

of tra�c that we are trying to estimate and thus, resort to non-parametric techniques for

estimating the density function. We have used the Gaussian kernel density estimator [56]

for estimating the pdf of the given data set. Non-parametric estimators like histogram

estimators can also be used for tra�c characterization. However, histogram estimators

are not smooth and depend on the bin properties (start and the end points of the bins).

On the other hand, the kernel density estimators do not su�er form these limitations and

provide an excellent tool for pdf estimation.

Figure 2.6 highlights the architecture for o�ine estimation. The contents of DRAM

attached to FMU (see Figure 2.2) are paged to a high speed disk using suitable achedul-

ing algorithms. In this study, we do not focus on any of the associated overheads of I/O

scheduling. At the end of the measurement interval, all the FlowIDs present are grouped

to form the sequence F ′ . We employ Parzen window technique on this sequence F ′ while

the likelihood estimator from Coupon Collector's problem [21] is employed on the set of

all LLF FlowIDs. We elaborate on these concepts in the next section.

2.6.1 Estimating the PDF of Sampled Data

Let f̂h(x) be the pdf of the random variable X we are trying to estimate for the

sequence F ′ . Since we have considered a Gaussian kernel, from [56], we have:

f̂h(x) ≈ 1

Nh

N∑
i=1

ψ

(
x− xi

h

)
(2.23)

where {xi}N
i=1 are the data points of X and ψ(·) is a suitable kernel smoothing function

of width h, also referred to as the bandwidth of ψ(·). In this approach, the estimated pdf

40

Estimation Algorithm

Estimated Traffic

Flow Measurement Unit Paged Data

Offline
Packet In

Packet Out

Network Appliance

High

Disk

Speed

Figure 2.6. O�ine classi�cation of tra�c streams. The pdf of the LLFs in sampled tra�c
stream is estimated using the non-parametric Parzen window technique.

is a linear combination of kernel functions centered on the individual x′is. In Equation

(2.23), the bandwidth factor h is the most important term in the estimation process [59].

The optimal value of the kernel window h can be calculated by minimizing the integrated

mean square error (IMSE) between the actual pdf, f(x) and the estimated pdf, f̂h(x).

That is,

minimize
{∫ {

f̂h(x)− f(x)
}2

dx

}
.

In general, the process of �nding the optimal window size is cumbersome as we do not

know beforehand the nature of the density function that we are trying to estimate. Since

the shape (degree of smoothness) of f̂h(x) is closely related to the kernel function used,

we use the Gaussian kernel function in our study in order to eliminate �noises" in the pdf

estimation. Thus:

ψ(u) =
1√
2π

exp
(
−u

2

2

)
(2.24)

Corresponding to the Gaussian kernel, the bandwidth h can be approxmated using Sil-

verman's rule of thumb [68] that satis�es the IMSE criteria. Consequently, h is de�ned

as: h = 1.06 σ̂ N−1/5 where σ̂ =

√PN
i=1(xi−x)2

N
denotes the sample standard deviation.

41
It is important to observe that ψ(·) decreases with increase in distance from the origin;

indicating that samples which are statistically far away from the cluster of density point

can be eliminated without signi�cantly impacting the nature of the estimated distribu-

tion. Such outliers can be eliminated without any loss in accuracy.

Estimating the Number of LLFs: In our measurement architecture, the information

related to the LLF is incomplete and needs to be accurately estimated. Let Ntotal be the

total number of FlowIDs collected and let NLLF be the number of LLF FlowIDs observed

during the measurement interval. From Ntotal and NLLF , we have to estimate N̂LLF ,

the total number of FlowIDs present in the original stream. Assuming uniform FlowID

arrival, N̂LLF is estimated using the general solution of the Coupon Collector's problem.

We use the Maximum Likelihood Estimator [21] in estimating N̂LLF . This is given by

the smallest j which satis�es the inequality

j + 1

j + 1−NLLF

(
j

j + 1

)Ntotal

< 1 (2.25)

In our approach, all the SLFs are collected. Therefore, we have an exact value of NSLF ,

the total number of SLFs present in the underlying tra�c. Consequently, the total

number of FlowIDs present is simply the summation of NSLF and N̂LLF .

2.7 Experimental Results

In this section, we evaluate the performance of our algorithm using packet traces

obtained from the National Library for Applied Network Research (NLANR) [85] and

from our internal lab network (see Figure 2.7). For NLANR, we use three traces: (i)

20040130-133500-0.gz, (ii) 20040130-13400-0.gz, and (iii) 20040130-134500-0.gz. These

are IP header traces captured by NLANR at the end of January 2004. The cumulative

duration of the three �les is 900 seconds containing 23.2 million packets. They subse-

42

Netgear GSM 7224
L2 Managed Switch

Netgear GSM 7224
L2 Managed Switch

.....

Dell 800 PowerEdge with dual
Intel Gigabit Server Adapter

CReWMaN Lab

1Gbps link

PC/Servers

1Gbps link

1Gbps link

Mirrored Ports

Upstream Network

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2.7. Framework for capturing �ow packets in the internal LAN in our CReWMaN
lab. Port mirroring is used to send tra�c to a dual port Gigabit Intel server adapter
from which the packets are captured using Ethereal in promiscuous mode.

quently map to 618, 225 FlowIDs, where each FlowID is de�ned using the aforementioned

�ve-tuple. For our internal LAN, we use four traces collected during 2005 at CReWMaN

Lab at UTA. They are labeled as (i) Capture1, (ii) Capture2, (iii) Capture3, and (iv)

Capture4. In estimating the LLFs, we compare our approach with that of [51] where

classi�cation of packets as LLFs are based on the observation that the average duration

of such �ows typically exceed 15 mins.

2.7.1 Identifying the LLFs

In Figure 2.8, we plot the number of LLFs predicted using our classi�cation al-

gorithm and compare that with the approach in [51]. We have used the frequency of

occurrence of the packets as the basis for calculating the �ow probabilities. Apart from

the already known fact that the proportion of LLFs is small in number (0.0035% in our

case), two important conclusions can be drawn immediately:

43

Figure 2.8. Time series of the occurrence of LLFs as estimated using our algorithm versus
as predicted using the approach of [51].

• LLFs detected during the initial phase (�rst 5 mins for the tra�c traces under con-

sideration) using our classi�cation algorithm identify FlowIDs that exhibit bursty

behavior. A close analysis of the tra�c traces reveals that this is indeed the case

and is due to the fact that such FlowIDs cause immediate concentration of the

probability mass function of the entire tra�c sample.

• The proportion of LLFs classi�ed using the frequency of occurrence of packets

is almost equal in extent to those detected by considering the volume (bytes) of

tra�c. Notice that, using the approach of [51], the number of LLFs is estimated at

around 85-90. This we believe is an overestimate as the approach of [51] exhibits a

temporal decreasing trend.

In Figure 2.9, we plot the number of LLFs present in the original tra�c stream and

compare it with the length of the typical sequences estimated using our approach. In

all the four cases, the accuracy of prediction is within 90% of the length predicted via a

�xed cut-o� approach of 15 minutes longevity.

44

Table 2.2. LLFs actually present in our lab network tra�c trace vs. those estimated by
length of the typical sequence

Trace #Packets #LLFs #Typical Sequences
Capture_1 5101225 122430 (2.4%) 107126 (2.1%)
Capture_2 3684712 110542 (3%) 101330 (2.1%)
Capture_3 3675312 118713(3.23%) 113935 (3.1%)
Capture_4 2987316 112779 (3.77%) 107245 (3.5%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LLF

 #Typical
Sequence

Capture_1 Capture_2 Capture_4Capture_3

Figure 2.9. Histogram of LLFs and the length of typical sequences in tra�c traces for
tra�c collected from our internal lab network.

2.7.2 Entropy Distribution: LLFs and SLFs

In Figures 2.10 and 2.11, we show the temporal variation of the ratio of entropy

between the SLFs and LLFs. During the �rst 500ms of the input tra�c, it is observed

that there occurs a dip in the entropy of the LLFs. This is due to the presence of bursty

LLFs which causes a temporary increase in the probability of LLFs. However, as the

experiment continues, the entropy of the SLFs increases while the entropy of the LLF

�ows decreases. This trend indicates decrease in randomness of LLFs. Since the entropy

of the typical set is a decreasing sequence (see De�nition 3) with respect to the number

45

0 5 10 15
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Time (minutes)

En
tro

py
 R

at
io

 o
f L

LF
s

vs
 S

LF
s

Fl
ow

s

Figure 2.10. Ratio of entropy between Long Lived Flows (LLFs) and Short Lived Flows
(SLFs).

of FlowIDs, the probability and proportion of FlowIDs classi�ed as LLFs increase. This

unique trend of entropy variation guarantees conservative, yet accurate �ow classi�cation

of high tra�c volumes.

2.7.3 Estimating the Volume of Original Tra�c

In order to create the scenario of systematic sampling of LLFs, the list of LLFs was

initially calculated by including all FlowIDs whose duration was more than the mean

lifetime of the packet trace. This was set to Nactual
LLF . Then, the typical sequence was

calculated over the whole trace. This was followed by sorting all the FlowIDs calculated

from the typical sequence; after which we sampled packets at the sampling rate of 10%.

The sampled data provided us with the value N sampled
LLF . The Maximum Likelihood esti-

mator was executed (with 95% con�dence level) on the captured traces in order to obtain

N est
LLF . Table 2.3 provides statistics of the accuracy of the numer of packets estimated

using the Coupon Collector algorithm [21].

46

0 5 10 15
6

6.5

7

7.5

8

8.5

Time (minutes)

En
tro

py
 o

f S
LF

s

Figure 2.11. Temporal distribution of Entropy of Short Lived Flows (SLFs) .

Table 2.3. Total number of packets actually present in the tra�c trace versus those
estimated (N est

LLF) by FastFlow

Trace #Packets #Packets (estimated) % Accuracy
Capture_1 5101225 4680885 91.76%
Capture_2 3684712 3525901 95.69%
Capture_3 3675312 3418040 93%
Capture_4 2987316 2569092 86%

2.7.4 Estimating the Density Function of Underlying Tra�c

In Figure 2.12, we plot the pdf of the �ows present in the original tra�c stream

versus the pdf of �ows estimated using the kernel density function. Observe that even

with the exclusion of outliers, the estimated pdf match the real value distribution with

high acccuracy. The data points used are from Capture_2.

47

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

FlowID (Five−Tuple)

N
u

m
b

e
r

o
f

P
a

c
k
e

ts

Experimental

Estimated

Figure 2.12. Log-log scale plot of the FlowID density function de�ned using �ve-tuple in
our experiment.

2.8 Summary

Research in the �eld of tra�c analysis has mainly focussed on improving the estima-

tion techniques based on packet sampling which ignores the presence of SLFs. However,

as highlighted in this chapter, SLFs comprise a major portion of the network tra�c and

hence, cannot be ignored. We have taken a non-traditional approach to �ow measure-

ment by closely integrating the measurement architecture with the statistical estimation

technique. Considering the fact that the Internet tra�c is heavy-tailed, we have proposed

a novel �ow measurement architecture using which all SLFs can be feasibly captured with

complete accuracy. Data related to all non-SLFs is sampled at regular intervals for later

analysis. Since the �ow identi�cation algorithm inside our architectuture needs to work

in real time, we have proposed a �ow classi�cation algorithm based on the concept of

typical sequences. Experimental results have validated our assumption that typical se-

quences can identify LLFs with very high accuracy. Lossy information obtained due to

sampling of all LLFs is estimated using a likelihood function de�ned over the Coupon

48
Collector's problem. Finally, we have estimated the distribution (pdf) of the underlying

tra�c using a non-parametric Parzen window technique.

Armed with the capability to derive the characteristics of the network tra�c, we

are able to infer the average packet size, protocol composition, and average line rate

of the networking link that will be feeding the NICs of the application servers. In the

remaining chapters of this dissertation we will examine how to understand and handle

the packet processing capabilities for minimizing the latency of the application servers.

CHAPTER 3

AN ANALYTICAL MODEL OF POLLING DEVICE DRIVERS

Once the characteristics of the network tra�c in which the application servers in

CDNs is expected to work is known, it is important to make sure that the NICs are

working at their optimal capacity for preventing latency in the network data transfer

mechanisms. In NGNs, such servers are based on Advanced Telecommunications Com-

puting Architecture (ATCA) [89] based blade computing units with di�erent �avors of

open source operating system (OS) such as Linux, xBSD, or OpenSolaris. The multiple

Gigabit Ethernet (GigE) network interface cards (NICs) present in them involve consid-

erable packet processing at high line speeds. Network processing bottlenecks may arise

due to complex interaction between the NICs, host OS, and the underlying hardware.

These may be due to inherent limitations present in the network adapter (e.g., limited

on-chip bu�er space), hardware architecture (e.g., I/O bus width), or simply due to im-

proper allocation and con�guration of the system resources (e.g., limited packet receive

bu�ers in the OS). Such bottlenecks often manifest themselves in the form of network

packets being dropped with the system being operated at maximum possible processing

capacity. Thus, the challenge is not only to operate the NICs at full link capacity at

an acceptable value of the system load [15], but also to correctly identify, isolate and

remove performance hotspots that may occur when de�nite resources in the critical path

of packet processing gets consumed. On a side note, it should be noted that due to bursty

nature of the arriving tra�c pattern, performance tuning the receive side of the NIC is

more important than the transmit side which is under the control of the OS.

In this chapter, we introduce a queuing model that can be measure the packet

49

50
processing capabilities in commodity OS. In Section 3.1, we provide a brief overview

of packet processing in polling device drivers. Survey of existing work is provided in

Section 3.2. In Section 3.3, we build our queuing framework for analyzing performance

complexities. Experimental results using Spirent Communications Smartbits 6000C [79]

hardware tra�c generator in conjunction with SmartFlow [78] are present in Section 3.8

3.1 Packet Processing in Commodity OS

Packets arriving from the network are initially placed on the NIC bu�er before

they are handed over to the OS. There are primarily two di�erent ways the packets can

be transferred from the NIC bu�er to the OS kernel: (i) registered interrupts, and (ii)

device polling. In the interrupt driven scheme, the NIC generates an interrupt to notify

the CPU that packets are available in its receive bu�er. This triggers a series of ac-

tions that involve interrupting the CPU, executing the Interrupt Service Routine (ISR)

of the device, and �nally scheduling the packet for subsequent processing. Since raising

an interrupt stops the target CPU from executing its current task, most NIC vendors

implement various forms of interrupt coalescing [91] in which the interrupt generation

rate is moderated depending on the packet arrival rate.

Both the interrupt and polling modes in modern NICs involve the Direct memory

Access (DMA) chipset for removing the packet from the hardware bu�er to the OS mem-

ory. Such devices usually act as their own bus master which allows them to access the

RAM independently of the CPU and the data is transferred using multiple DMA chan-

nels across the I/O bus. Consequently, the transfer of a DMA packet actually consists of

a number of physically discontiguous transfers and the average rate of the data transfer

is around 1Gbps. However, since the PCI/PCI-X I/O bus (current ATCA standard) is

shared by other peripheral devices, too many master devices sharing the same bus can

cause the inter-access latency to be unusually high.

51
While an interrupt based approach improves the responsiveness of the system, it

wastes useful CPU cycles at high interrupt loads especially at line rates above 200Mbps.

In contrast, device polling shields the CPU from frequent interrupt processing and has

been observed to be an e�cient approach in packet processing at high line rates (greater

than 200Mbps for a typical Linux kernel). For example, the new API (NAPI) [90], avail-

able in Linux kernels 2.4.20 and beyond, provides a well-de�ned interface for registering

polling device drivers with the OS. It has been successfully proven to be an e�ective

approach for suppressing interrupt storms at high link loads and simultaneously prevent

interrupt livelock [50]; wherein the host CPU spends most of its time processing inter-

rupts raised by NICs. Due to their widespread deployment and use in network servers at

high line rates, the performance of such polling device drivers is the focus of this chapter.

In the next section, we describe how packets are processed in most polling device drivers.

3.1.1 Packet Processing in Polling Device Drivers

At the receiver side, network packets arriving on the wire, are �rst placed on the

receive FIFO (rxFIFO) bu�er of the network adapter. Inside the OS kernel, receive and

transmit packet bu�ers (collectively referred to as OS bu�ers) are described by descriptors

arranged in a circular ring as shown in Figure 3.1. The descriptors are pointers which

contain reference to the actual memory location in RAM where the packets are placed

by the hardware. These memory locations, referred to as packet bu�ers, determine the

maximum data that can be placed. Thus, it is not common for a packet to span multiple

descriptors. The OS descriptors accessible by the NIC hardware are collectively referred

as the receive DMA ring. As packets arrive from the network, they are retrieved from

the rxFIFO and placed on the receive DMA ring using DMA.

In polling aware drivers, interrupts from the NIC are disabled after the arrival of

the �rst network packet. This ensures that future interrupts from the device are masked

52

Recv Descriptor
Ring

Transmit Descriptor
Ring

via DMA
via DMA

rx FIFO

tx FIFO

On−chip packet buffer

DMA Engine

Link I/F

Bulk Arrival

denotes network packets

Hardware Interrupt
(disabled)

Software Interrupt
(kernel thread)

PCI/PCI−X Bus

CPU

Simplified
NIC Architecture

packet processed

Event Line

Figure 3.1. Description of network packet processing in polling device drivers.

and the CPU is prevented from the task of frequently servicing the interrupt handler

(IH). At the same time, the IH places a pre-de�ned device polling function on the CPU

poll list for clearing the receive DMA ring. However, if during any polling cycle the

receive DMA ring is observed to be empty, interrupts from the NIC are re-enabled and

the device removes its polling function from the CPU poll list. Such dynamic adaptation

ensures that at light tra�c load, useful CPU cycles are not wasted due to needless packet

polling. However, as soon as packets start building in the receive DMA ring, interrupts

from the NIC are again disabled and polling re-enabled. This process of transitioning

between interrupt and polling phase continues silently in the background and is heavily

dependent on the the rate the receive DMA ring is �lled by the NIC hardware and

serviced by the device polling function.

Packet polling, thus delegates the task of retrieving and processing network packets

53
to the OS. Since interrupt lines of the NIC are masked, it is the responsibility of the

polling function to empty the receive DMA ring and initiate packet processing by calling

appropriate CPU scheduling function. This is achieved by moving a certain quota of

packets from the DMA ring to the CPU work queue. To the CPU, packets thus appear

to arrive in bulks and are immediately marked for processing (see Figure 3.1).

Since at high line rates (usually greater than 200Mbps for 64 bytes packet), the

packet processing function can completely monopolize the CPU, inside the Linux kernel,

a special high priority OS thread (ksoftirqd_CPUn) is scheduled after a certain quanta

of packets (netdev_max_backlog) have been processed during a single invocation of the

packet processing handler function (net_rx_action). Thus, in the strictest sense of the

term, packets might not be immediately placed for servicing if the CPU work queue has

pending jobs from the system. Also, in addition to NAPI, Intel NICs (8256EB) used

in our experiments, utilize their own timer based interrupt moderation and coalescing

schemes [91] for interrupt suppresion along the receive path. Considering the fact that

such manufacturer speci�c schemes might skew the results of our experiments, they were

explicity disabled in all our measurements so as to isolate and evaluate the performance

of polling device drivers in controlled environments. It should be noted that while NAPI

works to lessen the host CPU load by focussing on the receiver side of network packet

processing, frequent interrupt exchange between the NIC hardware and OS during packet

transmission might also impact the performace of such polling schemes. However, at

present, there exists no such NAPI counterpart for the transmit path (from the OS

transmit bu�er to txFIFO), although various interrupt balancing and moderation schemes

are supported by the NIC hardware. Such approaches were also disabled to prevent them

from in�uencing the results.

54
3.1.2 NIC Device Driver Con�gurable Parameters

Polling device drivers require careful tuning of several con�gurable parameters in

order to identify the maximum packet processing capability of the system. Some of these

parameters are: (i) the number of packets processed during a single invocation of the

polling function, (ii) the size of the DMA rings (receive and transmit), (iii) the size of

on-chip rxFIFO, and (iv) the number and size of packets transferred over the I/O bus

from rxFIFO to the receive the DMA ring.

3.2 Related Work

There exist considerable research on measuring and quantifying delay statistics

in the switching elements [26], improving the quality-of-service (QoS), throughput and

latency of IP tra�c in the Internet [7] [29]. However, limited work has been reported

that explores the dynamics of packet processing when o�-the-shelf NICs are interfed with

links operating at GigE rates in commodity OS.

In [27], a measurement study of di�erent 32 and 64 bit GigE NICs was conducted

and the throughput observed with variations of packet size. In [32], the authors measured

the performance of four server quality motherboards that support GigE NICs. They also

reported the performance of PCI/PCI-X bus, variation of UDP throughput with packet

size, and CPU utilization in great detail. In [54], the performance of GigE NICs was

benchmarked across di�erent manufacturers and subsequently the idea of estimating

application level behaviors was proposed based on the results of microbenchmarks.

However, none of the existing works provides an analytical framework that explores

the interaction between the NIC resources, I/O bus, OS bu�ers, and the CPU. The

reported measurement results are mainly parametric in nature, and are not easily usable

for applications with di�erent arrival and service process dynamics. Consequently, in

55
the face of various tunable parameters (see Table 3.1) and their closed form interaction,

performance tuning of such systems becomes di�cult to reconcile.

In the light of the above discussion and considering the fact that an exhaustive

experimental analysis involving all system parameters is not practically feasible, we try

to answer the following questions in this chapter:

Table 3.1. Typical con�gurable parameters available for tuning in o�-the-shelf NICs and
commodity OS

Parameter Location Explanation
rxFIFO on-chip receive (rx) packet bu�er size
txFIFO on-chip transmit (tx) packet bu�er size
rxdesc OS #entries in the rx descriptor ring
txdesc OS #entries in the tx descriptor ring
rxdesc_bu�er OS receive descriptor bu�er size
txdesc_bu�er OS transmit descriptor bu�er size
pollpackets OS max. #pkts processed during polling
bulksize OS maximum bulk size

• How do we ascertain that a given network processing element with de�nite I/O bus

width and frequency, OS bu�ers, CPU capability, and multiple NICs is capable of

gracefully handling certain data rate worth of input tra�c?

• What are the appropriate values of various tunable parameters of the system (net-

work adapters and host OS) such that the maximum performance is achieved for a

given con�guration?

In this chapter, we �rst aim at addressing such performance tuning ambiguities by creat-

ing a simple queuing model that e�ectively captures the performance of network adapters

from the viewpoint of OS kernel. The proposed model takes into account the closed form

interaction between the NICs and OS bu�ers, I/O bus, and the host CPU. We highlight

56

�������
�������
�������
�������

�������
�������
�������
�������

λ1

’
1

λ
Q

1

µPCI

1
’λ ’

µ
cpu

�������
�������
�������
�������

�������
�������
�������
�������

Q
3

Q
4

λ3

λ2

PCIµ

Q
2

����������
����������
����������
����������

����������
����������
����������
����������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

system memory (RAM)

DMA transfer

transmit FIFO

receive FIFO recv descriptors

txmit descriptors
DMA transfer

overflow

PCI Bus

PCI Bus

CPU

(to network)
packet

(from network)
packet

on−chip memory

Figure 3.2. Basic queuing model of packet processing polling device drivers.

how our model can be used to derive standard network characteristics like variation of

average latency, throughput, processor utilization with speci�c values of tunable param-

eters and variations of packet size and line rate in an operational system.

The second goal of the chapter is to understand the dynamics of network packet

processing as packets are removed from the receive DMA ring by the CPU. Such informa-

tion can provide invaluable information and insights about the dependency of network

performance on the packet size, line rate, on-chip receive FIFO, size of receive DMA

ring, and host CPU utilization. Although our approach is generic in nature and applies

to polling device drivers (with appropriate kernel support), we speci�cally consider the

Linux 2.6.11.6 kernel, PCI-X I/O interconnect bus, and Intel 82546EB GigE adapters as

empirical case studies to validate our work.

3.3 Polling Device Drivers: Analytical Model

We consider the scenario where the system is con�gured to work as a router forward-

ing packets between di�erent subnets. No processing (�ltering, analysis, tra�c shaping,

etc.) is intended apart from standard routing functionalities. Consequently, under stable

57
Q

1

Q
3

µ
PCI

Figure 3.3. Processor sharing model involing the receiver and transmit side PCI/PCI-X
bus.

operating conditions, we can safely assume that all packets from the receive DMA ring

are successfully sent to the outgoing txFIFO after route processing. Such a process can

be modeled by a network of four queues, namely Q1, Q2, Q3, Q4, as shown in Figure 3.2.

Collectively they model the bu�ers present on the NIC and the host OS.

When a packet arrives on the wire, it is stored on the receive FIFO Q1, and is sub-

sequently transferred over the PCI bus to the receive DMA ring, Q2. In polling mode,

packets arrive in bulk at OS queue Q2 and are processed by the the device polling routine

of the CPU. Packet loss in Q1 (refer to Figure 3.2) can happen when either queue when

the service time of the PCI bus (µpci), or the CPU service time (µe) exceeds the packet

arrival rate (λ1) at Q1. It should be noted that when the DMA ring (Q2) gets �lled up or

the I/O bus is busy, it causes the NIC bu�er (Q1) to over�ow since the hardware cannot

fetch any more receive descriptors or bus master the PCI/PCI-X IO bus.

Hence, due to packet over�ow, the tra�c �owing out of Q1 is not Poisson in nature.

At the same time, assuming a Poisson arrival process at the PCI/PCI-X IO bus from the

output of the bu�ers Q1 and Q3, makes the analysis of polling process tractable. Such an

oddity is resolved by �nding the moments (mean and variance) of over�ow tra�c from

Q1 using Equivalent Random Theory [11] and mapping it to an equivalent r stage Erlang

process using the Method of Stages [41]. Such an approach is commonly used to analyze

58
queues where the service time is not exponential in nature. In the next few sections, we

derive the following:

• Moments of over�ow tra�c from Q1.

• Model of the PCI/PCI-X bus.

• Analysis of the polling process involving bulk service.

3.4 Moments of Over�ow Tra�c

Although it is well known that network tra�c exhibits strong long-range depen-

dency, it has recently being observed that multiplexing of tra�c at high speed links often

results in tra�c assuming a Poisson distribution [9]. This has motivated us to assume

that the tra�c arriving at Q1 to be a Poisson process. However, packets might over�ow

from rxFIFO, Q1. Hence, the residual tra�c �owing out of Q1 has a certain coe�cient

of variation and consequently is not Poisson in nature. We model this residual tra�c by

mapping it to an equivalent M/Er/1 process with the same mean and variance.

Let ρ1 be the tra�c intensity at Q1. Then, by de�nition, ρ1 = (λ1/µpci) where µpci

is the average service time of the PCI/PCI-X I/O bus and is a dimensionless quantity.

Let ρ′1 denote the residual tra�c intensity after over�ow. Then, ρ′1 = ρ1(1 − b1) where

b1 is the blocking probability of bu�ers Q1 and Q3 sharing the I/O bus. Denote αm and

βv to be the mean and variance of over�ow tra�c from Q1. Then αm and βv are given

by [11]:

αm = ρ1b1 (3.1)

βv = α[1− α +
ρ1

m+ 1 + α− ρ1

] (3.2)

59
The probability that there are n1 packets present in Q1 is given by:

p(n1) =
ρn1

1 /n1!∑n1

j=0 ρ
j
1/j!

(3.3)

Let mresidual and vresidual denote the mean and variance of the residual tra�c from Q1.

Then:

λ
′
1 = mresidual = (1− b1)λ1 (3.4)

and vresidual = (λ1 − β) (3.5)

M/Er/1 Queue: In reality, the distribution of the service time of the PCI bus is not

exponential in nature. However, the PCI service time can be viewed as a process consist-

ing of several serial stages. Thus, all packets leaving Q1 are visualized to pass through r

stages of service and the resulting tra�c �owing out of Q1 can be assumed to be smooth.

The nature of such �smoothness� depends on the coe�cient of variation, Cb, which for

Erlang Method of Stages [41] is given by:

Cb = 1/
√

(r) (3.6)

The value of r can be obtained by equating the variance of the Erlangian distribution for

r stages, (1/(rµ2
pci)), with that of Equation (3.5). Thus:

r =
1

µ2
pcivresidual

(3.7)

The fallout of such an approach is that the analytical model tends to be conservative

if the number of Erlangian stages are small. However, the error (degree of overestimate)

reduces with the increase in the value of r. But it makes the analysis mathematically

60

Q
3

Q
1

1
n ,0

1
n ,1

3
n0,

3
n1,

3
n2, 3

nn ,
1

λ
1
’

λ
1
’ λ

1
’

λ
2

λ
2

λ
2

λ
2

λ
2 λ

2
λ
2

λ
2

λ
1
’

λ
1
’ λ

1
’

λ
1
’ λ

1
’

λ
1
’

µ
pci

µ
pci

µ
pci

µ
pci

µ
pci

µ
pci

µ
pci µ

pci
µ

pci

µ
pci

µ
pci

µ
pci

µ
pci µ

pci

µ
pci

µ
pci

µ
pci

0,0 1,0 2,0

0,1 1,1 2,1

Figure 3.4. State Space of the PCI bus where n1 and n3 refer to the size of the bu�ers
Q1 and Q3 respectively.

feasible and practical for real systems. Based on this discussion, we assume the tra�c

�owing out of Q1 is Poisson in nature.

3.4.1 Queuing Model of the I/O Bus

The I/O bus receives two distinct types of network tra�c (refer to Figure 3.2): (i)

residual tra�c (packets after over�ow) from queue Q1, and (ii) packets transmitted from

queue Q3. We assume the service time of the PCI bus to be negative exponential.

Under steady state conditions, the state space of the bu�ers can be described by

a two-dimensional birth and death process with states (i,j), where i and j denote the

number of packets present in Q1 and Q3 respectively. Let n1 and n3 denote the size of

queues Q1 and Q3. Then, the state space is valid only when (i+ j) < n1 + n3].

Let the equilibrium probability be denoted by P (i, j) where i and j denotes the

number of packets in Q1 and Q3 respectively (i.e., the stationary probability). Assuming

61
that over�ow tra�c from Q1 has no impact on Q3 and there occurs no priority between

packets from Q1 and Q3, P (i, j) is given by:

P (i, j) =
(λ

′
1/µpci)

i

i!

(λ2/µpci)
j

j!
C; for 0 ≤ i ≤ n1, 0 ≤ j ≤ n3 (3.8)

C =


 ∑

(i,j)⊆{0,n1,n3}

(λ
′
1/µpci)

i

i!

(λ2/µpci)
j

j!



−1

In Equation 3.8, C is the normalization constant. We are interested in the blocking

probability, b1 of queue Q1 i.e. the probability that the NIC card is denied access to the

I/O bus. It is obtained from the marginal distribution of the joint probability distribution

of Equation (3.8) and is de�ned as:

b1 =

n3∑
j=0

P ((n1 + n3)− j, j) (3.9)

3.5 Estimating the Service Time of PCI Bus (µpci)

Let p be the number of packets which are transferred during a single instant of

DMA operation and let B be the size of each packet (in bytes). Then, B ∗ p bytes are

transferred over the PCI bus before the NIC DMA controller relinquishes its hold†. Let

the width of the PCI bus be w bits and the its clock frequency be fio Hz. Then, the

service time of the PCI bus, µpci, is given by:

(1/µpci) =
8 ∗B ∗ p
w ∗ fio

seconds (3.10)

We are now in a position to model the polling process of the device driver.
†Due to mismatch between the size of rxFIFO and size of a packet bu�er in the DMA ring, a single

packet is usually spread over physically discontinuous regions in main memory. This is commonly referred
to as "scatter-write".

62
3.6 Dynamics of the Polling Process

Referring to Figure 3.2, packets arriving at Q2 with Poisson intensity λ′1 are placed

in the receive DMA ring bu�er. When the polling function gets scheduled, certain number

of packets are placed on the processor work queue on an FCFS service during the polling

cycle. Packets arrive at the processor work queue in bulks and the bulk size is determined

by the rate of arrival of the packets at the receive OS bu�er (Q2). Thus, the process can

be modeled as a bulk M/M/1 queue and the bulk transition is shown in Figure 3.5.

Polling Polling

Time

Processor

���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��

���
���
���
���

Packet transfer
Packet processing

New Arrivals from NIC

 t t+T

Figure 3.5. Timeline highlighting bulk removal of packets by the CPU from the receive
descriptor ring during each invocation of the polling function.

Let TP denote the inter-polling interval and K be the number of packets which are

moved from Q2 during each invocation of the polling process. It is evident that the bulk

size K is variable and depends on: (i) the residual number of packets from the previous

polling instant, (ii) and on the number of new arrivals during the inter-polling time

instant i ∗ T , where i = [0, 1 . . .∞] is the ith polling instance (refer to Figure 3.5).

Let the state variable be the total number of packets in the queue Q2 including the

ones being served by the processor. Denote πn as the steady-state probability that there

are n packets in the system (CPU work queue plus Q2). Then, we have the bulk-arrival

state transition process for the CPU where the polling instants de�ne the bulk arrival

63

eµ eµ eµ eµ

λ
1

’ g
2

λ
1

’ g
i

λ
1

’
2

g

g
1

λ
1

’

λ
1

’ g
i

1k−2 k+1 k+2k−1 k

Figure 3.6. State Transition Diagram of Bulk Arrival at the CPU work queue during the
polling process.

process. This is illustrated in Figure 3.6. State transition occurs at the time boundary

when new packets arrive or when the processor has serviced an existing packet.

3.6.1 Equilibrium Equations

Let gm denote the probability that the bulk size is m. Thus,
∑∞

m=1 gm = 1. Under

steady state conditions for the bulk arrival system of Figure 3.6, we have from �ow

conservation:

(
λ
′
1

∞∑
m=1

gm + µe

)
πK =

(
µeπK+1 + λ

′
1

K−1∑
m=0

πmgK−m

)
K ≥ 1 (3.11)

λ
′
1π0 = µeπ1 (3.12)

Notice that Equation (3.11) can be further reduced by observing
∑∞

m=1 gm = 1. We

are interested in �nding out the average queue size and the average service time of Q2,

which lies along the packet received path. Using z-transforms, the solution to Equations

(3.11)(3.12) for bulk M/M/1 queue is given by [41]:

Π(z) =
µe(1− ρb)(1− z)

µe(1− z)− λ
′
1z[1−G(z)]

(3.13)

64
In Equation (3.13), Π(z) and G(z) are the z-transforms of the pdf of the queue size and

the bulk distribution, while ρb is the queue utilization factor. By de�nition, G(z) is given

by:

G(z) =
∞∑

m=1

gmz
m (3.14)

Using Equation (3.14) is not straightforward since it requires us to express the z-transform

of the bulk arrival into various powers of z. Instead, if we are able to �nd a distribution

that best describes the bulk size distribution of Q2, then we are done. Once the z-

transform of the pdf of the bulk size is obtained, it is straightforward to derive the

average bu�er occupancy since according to [41]:

ρb =
λ
′
1G

′
(1)

µe

(3.15)

G
′
(1) is the average bulk-size of the arrival process and is easily obtained from equation

(3.14) by di�erentiating G(z) w.r.t z and setting z = 1.

The average size of Q2 can be obtained by di�erentiating Equation (3.13) w.r.t z and

setting z = 1. Thus,

E [Q2] =
dΠ(z)

dz
|z = 1 (3.16)

Applying L'Hospital's rule twice to Equation (3.16), we obtain:

E [Q2] =
2λ

′
1G

′
(1) + λ

′
1G

′′
(1)

µe(1− ρb)
(3.17)

3.6.2 Bulk Size Distribution

Before mathematically formulating the bulk size distribution at queue Q2, let us

see the nature of the bulk size as obtained experimentally. It will provide us with a clue

of the nature of the underlying process.

65

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bulk Size (packets)

Pr
ob

ab
ilit

y

200 Mbps

600 Mbps

800 Mbps

1000 Mbps

Figure 3.7. CDF of bulk size Distribution for packet size = 64bytes, rxFIFO = 32MB,
rxDescriptors = 1024.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bulk Size (packets)

Pr
ob

ab
ilit

y

200 Mbps

600 Mbps

800 Mbps

1000 Mbps

Figure 3.8. CDF of bulk size distribution for packet size = 512bytes, rxFIFO = 32MB,
rxDescriptors = 1024.

3.6.3 Constant Bulk Size

At line rate of 200Mbps or less from Figures 3.7, 3.8, and 3.9, observe that the bulk

size is almost constant during the entire run of the experiment. At the same time it is

66

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

Bulk Size (packets)

Pr
ob

ab
ilit

y

200 Mbps

600 Mbps

800 Mbps

1000 Mbps

Figure 3.9. CDF of bulk Size Distribution for packet size = 1400bytes, rxFIFO = 32MB,
rxDescriptors = 1024.

observed that no packets are dropped by the NIC. Lack of �uctuation or modulation of

the bulk arrival indicates that the system is at stable steady state conditions. In order

to derive the average queue size, let us assume that the bulk size has a constant value of

Kb. Thus, G(z) = zKb . If we plug this into Equation (3.17), we have:

E [Q2] =
(Kb + 1)

2

(
ρb

1− ρb

)
(3.18)

where ρb = (λ
′
1Kb)/µe. Now the average time Te a packet spends in the system, (queue

Q2 plus CPU), Te, depends on the arrival rate λ′1. Applying Little's result, we have

E [Q2] = λeTe. Consequently, Te is given by:

Te =
(Kb + 1)

2λ
′
1

1

(1− ρb)
(3.19)

67
3.6.4 Varying Bulk Size

We have seen that the appearance of the constant bulk size indicates that the

system is more or less operating with very little packets drop at the NICs. But, the CPU

is kept busy all the time, te utilization of queue Q2 is very high, and very few packets

are dropped by the NICs. However, there occur scenarios primarily due to tra�c bursts,

CPU overload, or I/O bus contention when packets are dropped at the NICs (queue Q1)

as a result of which the bulk size distribution at Q2 starts varying. From Figures 3.7, 3.8,

and 3.9, we can see the variations of the cdf of the bulk size distributions at increased

line rates. Notice how the peak of the curve has started shifting to the left. Based on

the shape, we �t �nd the bulk size can be best described by a Rayleigh distribution. The

pdf of the random variable X , gX (x), following a Rayleigh distribution with variance σ2

is given by:

gX (x) =
x

σ2
e−x2/2σ2 (3.20)

(3.21)

To �nd the z-transform we �rst �nd the Fourier transform of fX(x) and obtain the z-

transform by recognizing that z = ejω, where j is the complex coe�cient in the Fourier

transform. Thus,

G(ω) =

∫ ∞

−∞

x

σ2
e−x2/2σ2

e−jωxdx (3.22)

Using Integration by parts, we obtain:

G(ω) =

√
π

2
σ(jω) e−

ω2σ2

2 (3.23)

68
Substituting z = ejω and recognizing that j2 = −1, we have,

G(z) =

√
π

2
σ

[
z z−σ2/2

]
(3.24)

Equation 3.24 represents the bulk size distribution when the bulk size distribution is

observed to modulate at Q2. After obtaining G
′
(1) and G

′′
(1), we can calculate the

expected queue length of Q2. Thus,

E [Q2] =
σ2 − 1

2

(
ρb

1− ρb

)
(3.25)

Note that the expected queue length depends on the variance, σ2, of the Rayleigh distri-

bution.

3.6.5 Average Packet Service Time (µe)

As discussed earlier, in NAPI compatible device drivers, the system moves between

the interrupt mode and the polling mode depending on the rate of tra�c arrival and the

polling process. Let pint be the probability that the packets are pulled in the interrupt

mode and ppoll be the corresponding polling probability. We assume that in the interrupt

mode, interrupts are generated at the rate of one per packet. Denote L as the average

bulk size in the polling mode. Then, the number of interrupts generated, Nint, can be

roughly estimated as

Nint =

(
λ
′
1 ∗ pint +

λ
′
1

L
∗ ppoll

)
(3.26)

Denote T1 to be the average interrupt holding time and T2 to be the average packet

processing time (calculated over interrupt and polling mode). Then, the average CPU

occupancy is given by:

ρcpu = Nint ∗ T1 + λ
′
1 ∗ T2 (3.27)

69
If the service time of the CPU is assumed to be negative exponential w.r.t to the occu-

pancy, then the value of 1/µe can be obtained for a speci�c value of ρcpu from Equation

(3.27).

DMI Interface

(3.2 Ghz, HT, EMT64)

64 bit/800 MhZ

Pentium 4

8.5 GB/s

150 MB/s

500 MB/s Bi−directional

64 bit/100 MhZ PCI−X

Intel E7221 Chipset

Intel 82801 FR

(South Bridge)

(North Bridge)

Front−Side Bus (FSB)

6.4 GB/s

SmartBits 6000C

Terametrics Card (LAN3327A)

Link Speed: 1000 Mbps

NIC NIC

DDR2, 533MhZ

4x512MB
RAM

80GB, ReiserFS (v3)

SmartFlow

Intel 82546EB

SATA

Disk

Figure 3.10. Motherboard architecture used in our experiments. SmartBits 6000C using
dual Terametrics card (LAN3327A) in conjunction with SmartFlow was used to generate
and analyze tra�c from the system-under-test.

3.7 Performance Evaluation

In this section we validate the performance of our queuing model with results

obtained from our experimental setup.

3.7.1 Experimental Platform

We evaluate the performance of our approach by conducting experiments on the

motherboard shown in Figure 3.10. It has a core speed of 3.2 GHz with EMT64 (i.e.,

64-bit extensions of x86 architecture) Pentium IV processor with 800MHz front-side bus

70

Table 3.2. CPU Utilization: rxFIFO = 32KB, rxDescriptors = 1024

Line Rate (Mbps) Packet Size (bytes) Experimental Model
100 64 55% 60%

512 19% 23%
1400 8% 5%

200 64 80% 78%
512 37% 43%
1400 11% 7%

400 64 80% 78%
512 55% 78%
1400 28% 26%

800 64 98% 100%
512 62% 59%
1400 55% 58%

(FSB) and with 1MB L2 cache. Both Hyperthreading [6] and IRQ a�nity [48] were

disabled in all our experiments. The motherboard has 2GB of dual-channel, DDR2

RAM operating at 533MHz and con�gured as 4x512MB DIMMs. To prevent the impact

of other processes competing for CPU resources, the machine was booted in the single

user mode with no X-server and was also disconnected from the external network.

The network adapter used in our experiments is Intel 82546EB [80] with 64bit

PCI-X/66MHz interface. It has a 64KB on-chip packet bu�er shared between rxFIFO

and txFIFO, supports advanced hardware interrupt moderation schemes and uses the

Open Source Linux kernel driver, e1000 [80] (version used is 6.2.15). The OS used

in the experiments is Linux with 2.6.11.6 kernel compiled with multiprocessor (SMP)

support.

3.7.2 Testing Methodology

We study the accuracy of our queuing model and the performance of NAPI when

Linux is con�gured to work as a router using ip_forward, arp and route. Such an

approach has two distinct advantages: (i) it empowers us to control the path of packet

71

Table 3.3. CPU Utilization: rxFIFO = 32KB, rxDescriptors = 512

Line Rate (Mbps) Packet Size (bytes) Experimental Model
100 64 58% 63%

512 23% 25%
1400 8% 12%

200 64 64% 66%
512 37% 42%
1400 17% 22%

400 64 98% 100%
512 59% 55%
1400 30% 27%

800 64 98% 100%
512 59% 55%
1400 58% 62%

Table 3.4. CPU Utilization: rxFIFO = 32KB, rxDescriptors = 128

Line Rate (Mbps) Packet Size (bytes) Experimental Model
100 64 58% 55%

512 19% 22%
1400 8% 12%

200 64 58% 63%
512 38% 43%
1400 17% 22%

400 64 79% 85%
512 57% 66%
1400 28% 32%

800 64 81% 86%
512 67% 73%
1400 57% 66%

processing inside the router for detailed forensic analysis, and (ii) it allows us to explore

the impact of tra�c dynamics (tra�c rate, packet size, burst size) on NAPI in a con-

trolled environment.

Tra�c Generation: We use Smartbits 6000C chassis [79] from Spirent Communica-

tions along with two Terametrics LAN-3327A modules in conjunction with SmartFlow

application software [78] for generating tra�c (see Figure 3.10). Each of the LAN-

3327A modules is capable of generating pseudo-random tra�c (with di�erent load levels

72

Table 3.5. CPU Utilization: rxFIFO = 48KB, rxDescriptors = 1024

Line Rate (Mbps) Packet Size (bytes) Experimental Model
100 64 67% 76%

512 8% 12%
1400 20% 22%

200 64 72% 75%
512 19% 22%
1400 38% 42%

400 64 81% 83%
512 30% 33%
1400 55% 57%

800 64 95% 99%
512 55% 57%
1400 73% 66%

Table 3.6. CPU Utilization: rxFIFO = 48KB, rxDescriptors = 512

Line Rate (Mbps) Packet Size (bytes) Experimental Model
100 64 62% 67%

512 20% 23%
1400 9% 5%

200 64 62% 67%
512 37% 44%
1400 15% 24%

400 64 98% 100%
512 55% 57%
1400 32% 39%

800 64 88% 97%
512 65% 67%
1400 55% 65%

and packet size distribution) up to 1000Mbps. Smart�ow uses the capability of Tera-

metrics card to simultaneously generate and analyze various types of tra�c and network

parameters (latency, packet loss, throughput).

3.8 Experimental Results

All the results reported in this study are for line rates 100, 200, 400, and 800 Mbps

and with packet sizes of 64, 512, and 1400 bytes. The maximum bulk size was set to

73

Table 3.7. CPU Utilization: rxFIFO = 32KB, rxDescriptors = 128

Line Rate (Mbps) Packet Size (bytes) Experimental Model
100 64 60% 60%

512 20% 22%
1400 8% 12%

200 64 65% 72%
512 37% 42%
1400 15% 20%

400 64 74% 81%
512 58% 62%
1400 32% 35%

800 64 72% 75%
512 63% 66%
1400 52% 55%

100 200 400 800
0

10

20

30

40

50

60

70

80

90

100

CP
U

Ut
iliz

at
io

n
(%

ag
e)

Line Rate (Mbps)

Packet Size = 64 bytes
Packet Size = 512 bytes
Packet Size = 1400 bytes

Figure 3.11. Average CPU Utilization with rxFIFO = 32MB, rxDescriptors = 1024.

64 packets and the polling function yielded the CPU every 300 network packets. In this

dissertation, we report our observation of average CPU utilization, bulk distribution and

the average latency with variations of line rates and packet size.

74

100 200 400 800
0

10

20

30

40

50

60

70

80

90

100

CP
U

Ut
iliz

at
io

n
(%

ag
e)

Line Rate (Mbps)

Packet Size = 64 bytes
Packet Size = 512 bytes
packet Size = 1400 bytes

Figure 3.12. Average CPU Utilization with rxFIFO = 32MB, rxDescriptors = 512.

100 200 400 800
0

10

20

30

40

50

60

70

80

90

CP
U

Ut
iliz

at
io

n
(%

ag
e)

Line Rate (Mbps)

Packet Size = 64 bytes
Packet Size = 512 bytes
Packet Size = 1400 bytes

Figure 3.13. verage CPU Utilization with rxFIFO = 32MB, rxDescriptors = 128.

3.8.1 Average CPU Utilization and Average Number of Interrupts

In Figures 3.11, 3.12, 3.13, we plot the average CPU utilization with variations

of packet sizes at di�erent line rates for rxFIFO = 32MB. The size of the DMA ring

(i.e., number of rxDescriptors) is varied from 128 to 1024. We observe that for 64 bytes

75

100 200 400 800
0

10

20

30

40

50

60

70

80

90

100

Line Rate (Mbps)

CP
U

ut
iliz

at
io

n
(%

 a
ge

)

Packet Size = 1400 bytes
Packet Size = 512 bytes
Packet Size = 64 bytes

Figure 3.14. Average CPU Utilization with rxFIFO = 48MB, rxDescriptors = 1024.

100 200 400 800
0

10

20

30

40

50

60

70

80

90

100

Line Rate (Mbps)

CP
U

Ut
iliz

at
io

n
(%

ag
e)

Packet Size 64 bytes
Packet Size = 512 bytes
Packet Size = 1400 bytes

Figure 3.15. Average CPU Utilization with rxFIFO = 48MB, rxDescriptors = 512.

packet size at line rate of 800 Mbps, the average CPU utilization is almost 100%. This

value is substantially lower at the line rate of 100Mbps (around 50%). However, as the

size of the packet is increased from 64 bytes to 1400 bytes, the average CPU utilization

decreases due to decrease in the tra�c intensity at the DMA bu�er. As the size of the

76

100 200 400 800
0

10

20

30

40

50

60

70

80

Line Rate (Mbps)

CP
U

Ut
iliz

at
io

n
(%

ag
e)

Packet Size 64 bytes
Packet Size 512 bytes
Packet Size 1400 bytes

Figure 3.16. Average CPU Utilization with rxFIFO = 48MB, rxDescriptors = 128.

100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

Line Rate (Mbps)

La
te

nc
y

(m
icr

os
ec

on
ds

)

Packet Size = 64 bytes

Packet Size = 512 bytes

Packet Size = 1400 bytes

Figure 3.17. Average Packet Latency with rxFIFO = 48MB, rxDescriptors = 1024.

on-chip FIFO is increased to 48MB, the average CPU utilization decreases for packet

size of 512 bytes. For 64 bytes packets at similar line rates, the corresponding �gures

are higher since there occurs no over�ow at the rxFIFO and the DMA ring is always

kept full. If we plug the values of theses parameters in the analytical model, for 64

77

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

Line Rate (Mbps)

La
te

nc
y

(m
icr

os
ec

on
ds

)

Packet Size = 64 bytes
Packet Size = 512 bytes
Packet Size = 1400 bytes

Figure 3.18. Average Packet Latency with rxFIFO = 48MB, rxDescriptors = 512.

100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

1600

1800

Line Rate (Mbps)

La
te

nc
y

(m
icr

os
ec

on
ds

) Packet Size = 64 bytes

Packet Size = 512 bytes

Packet Size = 1400 bytes

Figure 3.19. Average Packet Latency with rxFIFO = 48MB, rxDescriptors = 128.

bytes packet at we 800 Mbps, we obtain CPU utilization in the range of 90%-95%. The

variation is due to the approximation in the degree of accuracy of the factorial values in

Equation (3.8). Another aspect worth mentioning at this point is the average number

of interrupts generated by the system and plotted in Figure 3.23. It shows the point of

78

100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

3500

Line Rate (Mbps)

La
te

nc
y

(m
icr

os
ec

on
ds

) Packet Size = 64 bytes

Packet Size = 512 bytes

Packet Size = 1400 bytes

Figure 3.20. Average Packet Latency with rxFIFO = 32MB, rxDescriptors = 1024.

100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Line Rate (Mbps)

La
te

nc
y

(m
icr

os
ec

on
ds

) Packet Size = 64 bytes

Packet Size = 512 bytes

Packet Size = 1400 bytes

Figure 3.21. Average Packet Latency with rxFIFO = 32MB, rxDescriptors = 512.

activation of NAPI when the line is increased beyond 200 Mbps. The average number

of interrupts is high for 64 bytes packet since the NAPI algorithm immediately switches

to the interrupt mode whenever it �nds the DMA ring empty. This can, however, be

79

100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

Line Rate (Mbps)

La
te

nc
y

(m
icr

os
ec

on
ds

)

Packet Size = 64 bytes

Packet Size = 512 bytes

Packet Size = 1400 bytes

Figure 3.22. Average Packet Latency with rxFIFO = 32MB, rxDescriptors = 128.

improved by introducing lazy transitions wherein transitioning between the NAPI and

interrupt mode occurs after a certain interval of time.

3.8.2 Average Bulk Size Distribution

In Figures 3.7, 3.8, 3.9, we plot the average bulk size distribution with variations

of packet size at line rates varying between 200 Mbps to 1Gbps. Remember that the

maximum bulk size that could be pulled during each invocation of the polling has been

�xed at 64 in this study. We observe that with the increase in tra�c intensity at the

DMA ring, as evident in the case of 64 bytes packet, the proability that the polling

function �nds the DMA ring �lled up increases. This is manifested in the �gures by a

corresponding increase in the probability of bulk size with increase in line rate, keeping

the packet size constant. The value of the bulk size was obtained by modifying the e1000

driver to capture such statistics.

80

200 600 800 1000
0

50000

100000

150000

Line Rate (Mbps)

Av
er

ag
e

In
te

rru
pt

s
pe

r s
ec

on
d

64 bytes

128 bytes

512 bytes

Figure 3.23. Average number of Interrupts generated with rxFIFO = 32MB, rxDescrip-
tors = 128.

3.8.2.1 Average Packet Latency

In Figures 3.17, 3.18, 3.19, we plot the average latency as reported by SmartBits

with rxFIFO = 48MB, rxDescriptors = 1024. Both the packet size and the line rates are

varied. As expected, the average latency is highest in case of 64 bytes packet as compared

to 512 bytes and 1400 bytes. This is due to the fact that 64 bytes provides the highest

tra�c intensity among the test cases and consequently su�er packet loss at the rxFIFO.

This observation is supported by the Figures 3.20, 3.21, 3.22 where increasing the size

of the rxFIFO decreases the average latency, if and only if there occurs no packet loss

at that line rate. If we plug in the values of the parameters in our analytical model, we

obtain: (i) the blocking probability at that speci�c line rate which can be used to infer

the probability of packet loss, and (ii) the average delay of the system. In all the cases,

the accuracy between the predicted and experimentally measured values was between

20% error, in the worst case scenario.

81
3.9 Summary

In this chapter we have presented a closed form queuing model for understanding

the dynamics and mechanisms of device polling for packet capture in high speed networks.

Since exhaustively evaluating the system capabilities is not feasible, such an analytical

framework provides important indications of system bottlenecks and hotspots that might

occur when o�-the-shelf NICs are interfed with links operating at Gigabit line rates. As

a case study, we have focused on the Linux kernel and Intel GigE NICs and CPU.

We have observed that while device polling is an invaluable approach for preventing

interrupt livelock at high line rates, it exhibits high CPU usage with increase in packet

arrival rate. Also, there occurs non-negligible costs in terms of interrupt generation when

the system switches from polling mode to interrupt state due to either: (i) over�ow at the

on-chip rxFIFO, and (ii) blocking of the I/O bus. Such observations were not reported in

earlier work. It indicates that the performance of polling device drivers can be improved

by introducing �lazy transitions", wherein transitions between the interrupt and polling

modes does not occur immediately but after a certain period of time.

Keeping architectural variations like I/O bus width, CPU frequency, system mem-

ory speed as constant parameters, we have also observed that the performance of polling

device drivers is heavily dependent on the maximum bulk size that can be serviced by

the host CPU.

CHAPTER 4

CONTROLLING WRITE CONGESTION FOR IMPROVING
APPLICATION READ PERFORMANCE

Once the tra�c pro�le of the network has been understood and the NIC cards

properly tuned, it is important to monitor the average I/O latency experienced by the

application services. Since we are dealing with primarily read oriented systems with

background I/O jobs, it is important to monitor the average read transactions per sec-

ond (TPS)† of such the systems. Performance tools such as sar, iostat, vmstat along

with benchmarking tools Postmark [95], Iozone [93], Bonnie [94], can be used to inves-

tigate system disk I/O. These tools report the average I/O tra�c of the system taking

into consideration the �le cache of the system. If it is found that excessive disk I/O is

causing the read TPS to su�er, the system is most probably taking a performance hit

due to dirty page �ushing by the page daemon and excessive write system calls. We call

this phenomenon as write congestion and is the focus of this chapter.

Write congestion is a phenomenon when the e�ective TPS of latency sensitive sys-

tems, such as streaming multimedia servers, start decreasing in the presence of a large

number of writer processes generating bursty workload patterns of disk access. In this

chapter, we evaluate the performance of the readers in the presence of the writers under

varying transactional load. The negative impact of bursty writes on the performance of

the reader processes is explored in the process. In order to control such write conges-

tion, we introduce two approaches: (i) deterministic, in which the writers are penalized

assuming exponential growth rate in the frequency of generation of dirty pages, and (ii)

stochastic, where the value of e�ective bandwidth (EB) for each of the writers is used to
†We refer to the execution of a single read() or write() system call as a single transaction.

82

83
identify conditions that might lead to congestion and govern the loss probability of the

per�process virtual bu�er inside the VM.

If physical memory is not the source of bottleneck, the deterministic approach has

negligible implementation overhead and is suitable for lightly loaded servers with smooth

write() request arrival patterns. On the other hand, the EB based stochastic algorithm

has complex decision phases but can handle large �uctuations in the arrival process of

dirty pages. As such, it is suitable for demanding servers catering to a large pool of

readers and writers.

As observed in our implementation with NetBSD 3.1, on an average the perfor-

mance of the readers is observed to improve by 15%-20% as compared to the baseline

case of no controlling of the write congestion phenomenon. Also, there exists strong as-

sociation between the dynamics of the page daemon and the performance of the write

congestion algorithm proposed in this chapter.

The rest of the chapter is organized as follows. In Section 4.2 we provide an outline

of previous work. The correlation between the time scale of measurement and memory

in workload data is studied in Section 4.4. We introduce two variants of our algorithm

in Sections 4.5 and evaluate their performance in Section 4.6.

4.1 Motivation and Background

In order to function within the bounds of soft real-time constraints, content delivery

and processing entities such as streaming multimedia servers and back-end database sys-

tems, are especially concerned with managing and improving the average I/O throughput

rather than focussing on reducing the average I/O latency of hard disk access. This is in

stark contrast to user-oriented systems where interactive response, as compared to I/O

throughput, is generally considered to be the performance metric of choice for OS pro-

grammers. Consequently, for such read-oriented systems, writes to the disk have lower

84
priority than reads. This is because writes are usually asynchronous in nature and are

�ushed to the disk (by the kernel) in a lazy fashion; with the primary intension being to

defray the total I/O access latency. On the other hand, read operations are inherently

synchronous and applications are blocked from processing unless the requested data are

made available by the kernel in a timely fashion.

In most open-source and commodity operating systems such as xBSD, Linux, So-

laris, and Windows, when a process executing on the CPU initiates I/O operation that

requires accessing the hard disk, it is removed from the processor work queue and put

to sleep pending the outcome of the operation. Two commonly used system calls for ac-

cessing the storage medium, assuming non-availability of data in their respective caches,

are the read() and write() system calls. However, in a typical running system, both

the read() and write() system calls equally compete for free pages inside the virtual

memory (VM) and stress the I/O scheduler and the disk subsystem in a nonuniform and

nondeterministic fashion. For most cases, this leads to a phenomenon wherein a large

�ood of write()s† (write transactions) decreases the ability of the system to service the

read()s (read transactions) in a timely fashion. We refer to this situation as write con-

gestion since the e�ective throughput of the system is reduced in the face of a barrage

of writes.

Such a situation involving write congestion has been recorded and observed in our

experiments (see Section 4.6). We have observed that on an average there occurs a de-

crease in the e�ective TPS of the reader processes (henceforth referred to as readers)

when there exists background writer processes (henceforth referred to as writers) initiat-

ing �large� disk transfers. An instance of such an e�ect is illustrated in Figure 4.1 where

a single reader su�ers as much as 45% decrease in e�ective TPS in the presence of a
†Note that deferring and controlling read/write transactions is di�erent from �lesystem read/write

operations.

85

25,000 50,000 75,000 1,50,000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Transaction Load

Tr
an

sa
ct

io
ns

/s
ec

on
d

One Reader
One Reader +
One Writer

Figure 4.1. Example of decreased Transactions per second (TPS), 45% in the worst case,
of a single reader process in the presence of a sole background writer process with varying
transactional load. The results were obtained using a modi�ed version of Postmark on a
NetBSD 3.1 system with 512MB of RAM, 4KB page size, and read priority (RPRIO) as
the I/O scheduling policy.

sole writer transferring a 300MB �le to the disk. It should be noted that the decrease

in TPS for the readers is not due to scarcity of free pages inside the VM since in all

the experiments the system had a left over page pool that varied between 5%-20% (see

Figure 4.2). Thus, in none of the instances of the experiment recorded in Figure 4.1, the

page daemon got triggered and the read() system call penalized for non-availability of

memory pages in the VM.

At an initial glance, it appears that the correct way to reduce such unwanted write

congestion is to use some sort of read priortized I/O algorithm with aging of the write

requests so as not to starve them. Unfortunately, changing the I/O algorithm alone will

not su�ce since the phenomenon of write congestion causes free memory pages to be

rapidly consumed by the writer processes. Thus, even if the readers are scheduled at the

I/O level with minimal delay, the e�ective read() service time still su�ers since the VM

86

Figure 4.2. Temporal variations of the page pool inside the Virtual Memory (VM) during
a typical run of the experiment of Figure 4.1. Notice the availability of free pages inside
the VM during the lifetime of the experiment.

has to locate a free page into which the request can be read into. To make matters worse,

if the number of free pages available in the system drops below a speci�c threshold, the

VM schedules the page daemon to run with the highest exection priority. This, in turn,

causes additional performance penalty since no reader/writer process can be serviced

while the page �ushing is in progress.

One of the possible ways to control such write �oods is to enfore some kind of con-

gestion control policy inside the VM so that majority of the free pages are not consumed

by the writers. At the same time, the congestion control algorithm must be smart enough

not to throttle reliability-based writes such as journaling logs and metadata updates re-

lated to the underlying �le system. Furthermore, as write accesses require exclusive locks

over reads which can use share locks, the congestion control algorithm must be careful

not to overly prefer the readers in order to prevent write starvation.

87

Process Scheduler

Virtual File System

Buffer Cache

Device Driver

FCFS

SCAN
RPRIO

CSCAN
I/O Scheduler

I/O Controller

Virtual Memory (VM)
SubSystem

I/O Scheduling Policy

WICA

Write Read

High

Disk
Speed

High
Speed
Disk

High
Speed
Disk

Figure 4.3. High Level diagram showing the location of the Write Congestion Indica-
tion Algorithm (WICA) inside the Virtual Memory (VM). Notice that WICA traps and
monitors the page �ushing of the writer processes only.

In this chapter, we present aWrIte Congestion indication Algorithm (WICA) that

resides inside the VM and is capable of detecting and alleviating against sudden bursts

of I/O write activity so as to balance and skew the disk access towards the readers. The

location of WICA inside the VM is shown in Figure 4.3. Whenever a writer is observed

to generate a burst of dirty pages that might give rise to write congestion, WICA kicks in

and puts the process to sleep for a de�nite duration of time that depends on the dynamics

of the activity of the writer process. Making the writers sleep for a bounded period of

time is attractive since apart from slowing down the rate of generation of dirty pages and

88
�lling the underlying I/O queue inside the I/O scheduler, it also indirectly eases pressure

on the page allocation routine of the VM subsystem.

Thus, loosely speaking, WICA can be used to provide fairness among readers and

writers competing for disk bandwidth. At this stage, it should be noted that WICA

monitors the dynamics of dirty page �ushing only for processes that engage the I/O sub-

system in some form or fashion. However, in a running system, there also exists processes

that are created in the system memory with no I/O activity whatsoever. Such pure mem-

ory based processes are not monitored by the current version of WICA. Consequently,

there exists a certain possibility that WICA will not be able to favor the readers over the

writers if most of the free pages are held by such memory based processes. However, such

processes are ephimeral in nature and experimental evidence suggests that their role in

impacting the performance of WICA is negligible.

4.2 Approaches that Impact the Performance of I/O Workloads

Approaches aimed at improving the performance of I/O operations for increasing

the application throughput can divided into two categories:

• E�cient bu�er cache management schemes: The primary aim of all bu�er cache

management schemes is to keep the pages belonging to the working set of an ap-

plication in system memory. Some of the work incude page replacement strategies

such as the well known Least recently Used (LRU) and its variations, Low Inter-

reference Recency Set (LIRS) [30], Adaptive Replacement Cache (ARC) [49], Dual

Locality (DULO) [31], and others. The LIRS algorithm improves upon the weak

performance of LRU in scenarios of access patterns with poor locality by maintain-

ing a record of the number of blocks accessed bewteen two consecutive accesses to

the same block. This is referred to as the Inter-Reference Recency (IRR) of a block.

Consequently, bu�er eviction occurs on the basis of the block IRR value. The ARC

89
algorithm tries to track temporal locality by maintaining both the `recency' and

`frequency' of cache access pattern. Since it is well known that random seek of

the disk heads are constly maneuvers, the DULO algorithm tries to make the I/O

requests more sequential in nature by considering both the temporal and spatial

locality of page access patterns by the applications.

• Intelligent data prefetching and caching schemes: Heuristics that detect sequential

block access patterns of an application and employ techniques that are able to

prefetch the block before the request hits the bu�er cache. Such approaches have

been studied in [55][72]. Variants have been proposed in [57][42] that take into

account the system wide �le access history with probability of occurence of a speci�c

pattern in the history. In[36], based on the LRU access pattern, blocks are fetched

from the disk. In [28], the bu�er cache is adaptively partitioned into random and

sequential spaces based on the access patterns of the disk. The random space

utilizes on-demand data acess while the blocks are prefetched in the sequential

space.

• Smart I/O request scheduling techniques: In [69] is described an extensive sur-

vey of the Earliest Deadline First (EDF) scheduling algorithm commonly used in

most real-time systems. The performance analysis of EDF presented in [34]. The

SCAN [16] scheme mimics the elevator algorithm and aims to reduce the disk seek

and rotation time. However, since SCAN is not sensitive to the timeline of the

pending jobs, priority-based algorithms such as SCAN-EDF [60], SCAN-RT [35]

and others have been proposed in the literature. All of them take into consider-

ation the deadlines of the service tasks but su�er from extremely high disk-seek

time. The SCAN-WRR [73] algorithm takes into account both the deadlines of

real-time tasks while providing high disk throughput. A summary of various look

ahead disk scheduling algorithms is presented in [71].

90
However, all the strategies identi�ed above fail to work if the VM su�ers from the phe-

nomenon of write congestion identi�ed in this study. To the best of our knowledge, no

work has been reported in the literature that exposes the negative impact of write �oods

on the performance of the readers in a running system. We believe that our WICA ap-

proach serves to complement the existing work in I/O prefetching and caching by easing

pressure on the VM system and the I/O scheduler. Since disk prefetching works on the

surmise that logical �le system blocks also occur in close physical proximity on the hard

disk, there might be performance hit if such an assumption is invalidated. This can

happen with the rising popularity of multi-disk environments employing volume man-

agers. Situations might become worse if the rate of write requests or worse scatter write

requests arriving at the I/O scheduler exceed the average I/O service time. Under such

circumstances, WICA can help by slowing down the writers, within limits, so that the

I/O scheduler does not become the source of bottleneck. It is worth repeating that WICA

is not a generic approach suitable for all systems. Only high performance read-oriented

systems such as streaming media servers, web servers, and other content delivery systems

are expected to bene�t from our approach.

4.3 I/O Scheduling Algorithms

The dynamics of reading and writing to the underlying block device is a�ected

by nature and type of the I/O scheduling algorithm (also referred to as disk sorting

algorithms). We start with a brief survey of the various disk sorting algorithms currently

used in commodity OS such as NetBSD 3.1. Performance evaluation details are available

in [65].

• First Come, First Served (FCFS): This is the simplest disk sorting algorithm

where requests are served in the order of arrival at the I/O scheduler. Consequently,

it is independent of the I/O queue size. If there occurs little spatial locality in

91
the requests, FCFS results in undue penalty in head movement of the disk and

can result is very low disk utilization factor. However, the algorithm is fair to all

requests and requires only one queue for maintenance.

• SCAN: The SCAN [16] or the �elevator� algorithm maintains two queues of arriving

requests, sorted in ascending order of the block numbers. Requests positioned after

the current block are placed on the �rst queue while those requests which came in

after the head has passed their position, are placed on the second queue. Thus,

at any instance of time the disk head services requests along one direction only.

Hence on an average, requests in the middle of the disk experience better service

time than those at the edge since the head passes over the center twice as often

as compared to the edges. It has been observed that the average disk utilization

increases with increase in the I/O queue length.

• Cyclical SCAN (CSCAN): Similar to SCAN, CSCAN [64] maintains two queues

of arriving requests sorted in ascending order of the block number. However, when

the head reaches the edge of the disk, instead of retracing its path, the head reposi-

tions itself to the �rst cylinder. Hence, there is no tendency of preferential servicing

of requests which lie in the middle of the disk. For queues with large number of

requests, the performance of SCAN and CSCAN are nearly similar [65].

• Read Priority (RPRIO): This algorithm also maintains two queues which are

distinguished based on the nature of the request : read (read queue) or write (write

queue). Requests in the read queue are serviced in the FCFS order, while those

in the write queue are sorted in ascending order of block numbers. The algorithm

alternates between the two queues and services them in bulk; the read batch size is

larger than the corresponding write batch and is exposed as a tunable parameter.

92
Thus, the �rst step is to choose the most appropriate I/O scheduling algorithm based

on the requirements. For our case, it is always the RPRIO algorithm. Next, we see the

behavior of the underlying process that is generating the write() requests.

Figure 4.4. Stochastic �Burstiness" in the rate of generation of dirty pages for sampling
bin size of 1000ms.

4.4 Dynamics of Page Flushing Process

The e�ectiveness of WICA is in�uenced by two main factors: (i) the nature of

burstiness of individual process behavior, and (ii) the statistical multiplexing of the dirty

pages being �ushed from the VM. Since there exist strong correlations between the na-

ture of �uctuations of the variance and the e�ectiveness of congestion control and queuing

mechanisms [23], it is important to understand the variations of auto-correlation function

(ACF) in the presence of multiple readers and writers. From Figures 4.4-4.11, it is appar-

ent that there occurs sizeable �burstiness� in the manner pages are �ushed from the VM.

Furthermore, the degree of burstiness depends on the sampling interval. This motivates

us to concentrate on examining the presence of long-range dependence (LRD) [46] among

the datasets considering di�erent sampling time window of observation.

93

Figure 4.5. Rate of decay of Auto Coorelation Function (ACF) for sampling bin size of
1000ms. Notice the high value of ACF.

The autocorelation function (ACF), γ(k), is a measure of similarity between the

time sequence Xn(t) and a time shifted version of itself at time lag k, denoted as Xn(t+k).

The ACF is de�ned as [53]:

γ(k) =
E[(Xt − µ)(Xt+k − µ)]

σ2

where µ and σ2 are the mean and variance of the sequence {Xn(t)}. The value of γ(k)

varies between +1 to −1 and the value of 0 indicates that the series is independent at

lag k. On the other hand, an absolute value of close to 1 indicates presence of �memory�

in the time series.

Based on the above disscussion, from Figures 4.5 and 4.7, it is evident that the time

sequence of Figures 4.4 and 4.6 with sampling interval of 1000ms and 100ms are heavily

correlated (i.e., γ(k) has a power law decay of the form γ(k) ∼ k2H−2, for 0.5 < H < 1,

H is the Hurst parameter) and has considerable �burstiness" or variability. Thus, even

after multiplexing the dirty pages across di�erent writers, it is not possible to smooth

94

Figure 4.6. Presence of �Burstiness� in the rate of generation of dirty pages at reduced
sampling bin size of 100ms.

out the peak behavior. This implies that at time scale resolution of 1000ms and 100ms,

WICA needs to account for the presence of long-range dependency (LRD) in order to

correctly estimate congestion level. However, taking into account the LRD factor makes

the analytical formulation intractable since determination of the Hurst parameter in γ(k)

variation is both complex and cumbersome.

On the other hand, as seen from Figures 4.9 and 4.11, there exists limited correla-

tion across samples for the time series of Figures 4.8 and 4.10. This indicates that at low

time scale resolution (less than 20ms in our experiments), the process becomes consid-

erably smoother or exhibits short-range dependence (SRD) [46], with smaller variances

and deviations. Thus, the ACF, γ(k), decays exponentially instead of hyperbolically and

the sampling instances can be considered to be independent.

Note that we have purposefully focused on the variation of γ(k) for individual writ-

ers since greater variability in the multiplexed stream does not imply greater individual

process variability. Consequently, the time scale of measurement plays an important role

in understanding the underlying stochastic behavior, as also elaborated in [53].

From the above discussion, it is apparent that although the page �ushing process is

95

Figure 4.7. Rate of decay of Auto Coorelation Function (ACF) for sampling bin size of
100ms.

not Poisson, it also does not exhibit self-similar behavior. This implies that it is possible

to accurately predict the average rate of dirty page generation if the sampling interval

is made considerably �small�. At such small time scales with low value of ACF, it is

appropriate to use systematic sampling with random start time [47].

4.5 Proposed WICA Algorithms

We begin this section by looking at two variants of WICA algorithm: (i) determinis-

tic rate based WICA (or D-WICA) where the rate of growth of dirty pages is proportional

to the number of dirty pages generated, and (ii) probabilistic WICA (or P-WICA) which

is based on the concept of e�ective bandwidth (EB) where each writer is visualized as

a set of �uid On-O� writers. In the rest of the chapter, each individual writer process

is designated as wi. Table 2.1 summarizes the notations used in developing our WICA

algorithms.

96

Figure 4.8. Disappearance of �Burstiness� in the rate of generation of dirty pages for
sampling bin size of 15ms.

Table 4.1. Notations Used in WICA

Notation Meaning
wi Writer process i
δ(T) Sampling time time window for D-WICA
γ(k) Auto-correlation function (ACF) at time lag k
Ndirty

T The number of dirty pages generated by a writer process
Rd

i Rate of generation of dirty pages by writer process i
rj
i Instantaneous rate of generation of dirty page for process i and time instant j
β EWMA smoothing constant
Md Total number of dirty pages collected during a measurement interval
pd Probability of generation of a dirty page

PMd
(kd) Probability of collecting k dirty pages out Md

Si Duration of sleep for writer process i
Lmax

sleep Max. sleep duration
σi Penalty factor for writer process i
σth

i Max. penalty or threshold
Ad

i (t) Max. no. of dirty pages generated by wi during time interval [τ ,τ + t]
B Fictitious bu�er size for calculating e�ective bandwidth

αi(s, t) E�ective bandwidth for writer process i with space factor s and time factor t
ε Probability of over�ow of bu�er B

EBth Maximum e�ective bandwidth
Rd

peak Peak rate of dirty page generation of an equivalent Poisson process

4.5.1 Deterministic WICA: Rate based Approach

Consider a systematic sampling time window 4T (see Figure 4.13) during which

the birth rate, Rd
i , for writer wi is assumed proportional to the number of dirty pages

97

Figure 4.9. Rate of decay of Auto Coorelation Function (ACF) for bin sampling bin size
of 15ms.

generated by it during the sampling interval. Assume the rate remain constant during the

time interval 4T . Let Ndirty
(T) and Ndirty

(T+4T) be the total number of dirty pages generated

by writer wi, at the end of time instants T and (T +4T). Then we have:

dNdirty(t)

dt
= Rd

iN(t), for T ≤ t ≤ (T +4T) (4.1)

⇒ Ndirty
(T+4T) = Ndirty

(T) eRd
i4T (4.2)

In the above equation, the rate Rd
i varies for each of the writers and it is an unknown

parameter. Hence, during initialization phase of the D-WICA, the rate is estimated using

certain learning samples.

4.5.2 Estimating Rd
i for wi

Consider a systematic sampling instance j. Denote Rj
i to be the smoothed rate of

generation of dirty pages for writer wi and rj
i be the instantaneous value during the sam-

98

Figure 4.10. No �Burstiness� in the rate of generation of dirty pages for sampling bin size
of 5millisecs.

pling instant j. Then, applying �rst order exponential smoothing, we have the following

relationship:

Rj
i = βrj

i + (1− β)Rj−1
i (4.3)

Equation (4.3) indicates that while the contribution of current sampling is governed by

the parameter β, past history at sampling instant (j − h) contributes β(1 − β)h. As

argued in the previous section, if we make the value of 4T su�ciently small, we can

considerably reduce the length of the history h. Consequently, the value of β can be

made large enough (e.g., 0.7) in order to give more weight to the short term trend.

4.5.3 Duration of Learning Period

In order to apply Equations (4.1) and (4.2), it is important to gain an estimate of

the initial value of the rate Rd
i , during which the S-WICA is not made active (learning

phase of operation). The duration of time over which the initial value of Rd
i is estimated

is referred to as the learning period.

Let Md be the total number of dirty pages generated during a certain period of

operation. Let us also assume the samples are independent due to SRD and let pd

99

Figure 4.11. Rate of decay of Auto Coorelation Function (ACF) for bin sampling bin
size of 5ms.

be the probability of occurrence of a dirty page. Then, the probability, PMd
(kd), of

collecting kd out of Md dirty pages due to systematic sampling, can be modeled as a

binomial distribution. That is, PMd
(kd) =

(
Md
kd

)
pkd

d (1 − pd)
Md−kd . We are interested in

collecting ηd pages (sample size) out of the total Md (population size) dirty pages that

have generated, assuming systematic sampling. The con�dence limit (CLd) for such an

event is given by:

CLd = P (ηd ≥ kd) = 1−
kd∑
i=0

PMd
(i) ≈

kd∑
i=0

(Mdpd)
i

i!
e−Mdpd (4.4)

Note that the accuracy of Equation (4.4) depends on the duration of the learning

period. The longer the learning phase, the better is the CL but at the cost of longer

startup time. Hence, given a desired CL, our aim is to determine the minimum number

of dirty pages to be collected before the WICA can be started with rate Rd
i .

Equation (4.4) can be rearranged to calculate the value of kd and provides an

100

N
2

N
1

TT

N
u

m
b

e
r
 o

f
D

ir
ty

 P
a

g
e
s rate of growth of

dirty pages (actual)
dirty pages (estimated)
dirty pages (actual)

dirty pages

adjusted rate of growth of dirty pages

T T+ Time

Figure 4.12. In deterministic rate based modeling technique (D-WICA), the rate of
growth of dirty pages is assumed proportional to the number of dirty pages generated.

writes writes

Systematic Sampling

Random Starting Points

Figure 4.13. Systematic sampling, with random start, in order to estimate the rate of
generation of dirty pages by the writer processes. Note that such a sampling strategy
provides accurate estimation of the rate only when the ACF is close to zero.

approximate guideline for the number of dirty pages that needs to be collected in order

to achieve the desired CL.

M =


 ln

(∑kd

i=0
(Mdpd)i

i!

)

pd


 +

[− ln(1− CLd)

pd

]
(4.5)

For an approximate solution of Equation (4.5), suitable numerical methods can be used.

101
4.5.4 Congestion Control Approach

Once the value of Rd
i has been estimated, it is possible to apply Equation (4.2) for

understanding and controlling the degree of congestion being initiated by writer wi. The

basic approach is as follows: at the end of the sampling period 4T , the total number

of dirty pages generated by wi during the sampling interval 4T is noted. Let this be

N dirty
(T+4T). This is compared against the value obtained from Equation (4.2). If N dirty

(T+4T)

< Ndirty
(T+4T), wi is assumed to be operating within limits. Otherwise, wi is declared to

create write congestion and is forced to sleep for a duration, Si, which is given by:

Si =

[N dirty
(T+4T) −Ndirty

(T+4T)

Ndirty
(T+4T)

]
∗ Lmax

sleep (4.6)

where Lmax
sleep is the default sleep duration and a tunable parameter. In our experiments,

it was set to 1500ms. Although Equation (4.6) is able to detect write congestion for

wi, it is prone to system instability wherein a recently waken up writer generates bursty

workload and is again put to sleep. Such open-loop feedback instability can be avoided

by introducing a penalty factor (σi) in Equation (4.6), with σth
i being the maximum value

or threshold. Thus, Equation (4.6) becomes:

Si =

(
σi

σth
i

) [N dirty
(T+4T) −Ndirty

(T+4T)

Ndirty
(T+4T)

]
∗ Lmax

sleep (4.7)

Our experimental observation indicates that setting σth
i = 30 is su�cient for most sys-

tems.

In the deterministic rate based congestion control approach, we considered the

scenario where the estimated rate of growth of dirty pages for writer process i wi was

assumed to be exponential. The growth rate was measured over a certain history of

sampling instances that is dependent on the time scale of measurement. At very �small�

102
time scales, the collected samples can be assumed to be independent (SRD). On the other

hand, at �large� time scales there exists signi�cant correlation between the collected sam-

ples (LRD). Once the writer process crosses the estimated number of dirty pages during

the sampling time interval, it is penalized by forcibly putting it to sleep for a certain

time duration. This sleep duration, in turn, is proportional to the di�erence between

the estimated and observed number of dirty pages. Since the rate based approach is

essentially an open-loop control system, a penalty factor was introduced for �dampening�

the system.

4.5.5 Limitations of D-WICA

Unfortunately, such deterministic rate based approach su�ers from the following

shortcomings that might reduce its e�ectiveness in the presence of a large number of

readers and writers processes.

• In general, it is di�cult to determine the sampling duration that makes the work-

load short-range dependent (SRD). Thus, random sampling at arbitrarily chosen

time scales, might inaccurately estimate the rate of the writer process.

• D-WICA is unable to quickly detect and react to temporary bursty phases of dirty

page generation since: (i) the burst rate might be worse than exponential, and (ii)

due to memory or long range dependence (LRD) and non-linear behavior in the

workload generation process, there might be hysteresis loops that would increase

the settling time of such a rate based algorithm.

Thus, instead of focussing on the average and peak rates of dirty page generation (i.e., the

extremes), a di�erent approach would be to estimate the resources that a single process

is consuming in the face of bursty workloads. Such an approach is not only more accurate

but also enables us to do away with the complexity of sampling bin width and hysteresis

103

ON OFF ON OFFON OFF

Bursty Write

Buffer

Bursty Write

Virtual

Bursty Write

Congestion Control Algorithm

underlying FileSystem

(inside Virtual Memory)

PROCESSES

Figure 4.14. On-O� �uid �ow model for determining the e�ective bandwidth of each of
the writer process.

e�ect as explained above. Such resource utilization and corresponding service guarantee

of this sort is explained in the theory of e�ective bandwidth (EB) [38].

4.5.6 Probabilistic WICA (P-WICA): E�ective Bandwidth based Approach

In this stochastic approach, we use the theory of EB in order to �nd good approx-

imations of the probability of over�ow of the virtual bu�er (see Figure 4.14) for each

of the writers. We use the term �virtual bu�er� since inside the VM the writers do not

actually manage any real queue of dirty pages. Such �ctitious FIFO queue, maintained

by each of the writers, provides early warning about write congestion since the e�ective

capacity of the virtual bu�er is kept smaller than the capacity of the underlying I/O

bu�er insider the I/O scheduler (see Figure 4.3).

4.5.7 E�ective Bandwidth (EB) and Smoothing

The theory of EB has been widely studied and used for providing statistical guaran-

tee in variable bit-rate tra�c (see [38] [70] [4]). Here we only provide the details relevant

to our work.

104
Let Ad

i (t) be the number of dirty pages generated by wi during time interval [τ ,τ+t].

Assuming the workload stream to be stationary and a large virtual bu�er capacity, B,

the e�ective bandwidth, αi(s, t) for wi is de�ned as [38]:

αi(s, t) = lim
t→∞

1

st
log

[
E(esAd

i [τ,τ+t])
]

(4.8)

In Equation (4.8), the parameter s (the space axis) and t (the time axis) de�ne the oper-

ating point of the virtual bu�er. For any writer process wi, the value of αi(s, t) �uctuates

between the mean rate (s = 0) and the peak rate (s→∞) of generation of dirty pages.

Thus, if the underlying stochastic process is smooth (low index of dispersion), αi(s, t)

would have values close to the mean rate; however, for bursty workloads (signi�cantly

high index of dispersion), it would experience signi�cant deviations from the mean rate.

For a �xed value of t, the e�ective bandwidth is a function of s and characterizes

the decay rate of the virtual queue length distribution in the bu�er. Hence, for a vir-

tual bu�er with capacity B, the probability of over�ow (asymptotic tail distribution),

Poverflow, is given by:

Poverflow = P (φ ≥ B) ≤ ε ≈ e−sB (4.9)

where φ is the number of dirty pages generated by writer wi and ε is the probability of

over�ow of the virtual bu�er and is a tunable parameter.

The value of αi(s, t) is generally estimated using a suitable estimator for a given

trace of a workload [4]. Since the VM operates within real-time constraints, it is of

vital importance that the calculation of αi(s, t) does not introduce additional delay and

CPU overload in the system. In our study, we use the recursive on-line block algorithm

105
of [75] for estimating αi(s, t) for any measurement instant (m) and observation interval

(t). With m = 1 and M1 = 0 as initial conditions, we have from [75]:

Mm =

[
(1− 1

m− 1
)Mm +

1

m
expsX[(m−1)t,mt]

]
m = m+ 1 (4.10)

αm(s, t) =
1

st
[ln(Mm]) (4.11)

Equation (4.11) provides an estimate of the e�ective bandwidth at the end of any mea-

surement instance m. Two things are worth mentioning here: (i) the recursive nature of

Equation (4.10) makes it possible to calculate Mm over the lifetime of writer process wi

with negligible overhead, and (ii) considering the complexity of saving the �oating point

registers in the kernel, we consider the logarithms to be of base 2 in our implementations.

There are two performance criteria of the virtual bu�er that can be used to ob-

serve and ease write congestion inside the VM: (i) the delay parameter, which places an

upper bound on the average queuing delay, and (ii) bu�er loss constraint governed by

Equation (4.9). In this study, we use the loss constraint, ε, for a �xed bu�er size B. It

should be noted that with FIFO queuing discipline and in�nite-bu�er approximation, the

delay performance criterion translates into an equivalent loss probability requirement [4].

Under such conditions, the operating point s (the space parameter) can be determined

as:

Poverflow ≤ ε;⇒ e−sB ≤ ε (4.12)

⇒ s ≥
(− ln ε

B

)
(4.13)

Consequently, using Equations (4.11) and (4.13), the e�ective bandwidth is estimated as:

αm(s, t) = B(ln ε)︸ ︷︷ ︸
constant

∗
[
ln(Mm)

t

]
(4.14)

106
Since the average queuing delay is 1/(sαm(s, t)) with average queue size 1/s, it is ap-

proximately equal to t/(lnMm) at observation instant m.

Since it is di�cult to determine apriori the e�ective bandwidth of any workload

stream without assuming any statistical distribution, we employ smoothing techniques

such that the resultant e�ective bandwidth is kept within limits of the peak rate (Rd
peak)

of an equivalent Poisson process [39]. We refer to this value as the threshold e�ective

bandwidth limit, EBth. Thus, at the operating point s, we have the following relations:

EBth = Rd
peak

(
es − 1

es

)
;Si =

[
αi(s, t)− EBth

EBth

]
∗ Lmax

sleep (4.15)

4.5.8 Congestion Control Approach

Based on the above discussions, we can summarize the probabilistic WICA as

follows: Each writer wi maintains a virtual bu�er with a �xed capacity, B, which is less

than the capacity of the underlying I/O bufer, Bio with certain probability of over�ow,

ε. At certain time intervals, the tra�c (as measured in terms of the number of dirty

pages) is measured and the EB calculated. If the calculated EB is observed to exceed

EBth, then wi is put to sleep for a duration that is dependent on the di�erence of the

two e�ective bandwidths. Simultaneously, the virtual queue length for wi is also set

to zero. Thus, instead of assuming exponential growth rate, the e�ective bandwidth

uses the queue length based approximation. At the cost of slightly more complexity of

implementation, we shall see that the EB approach is more accurate and less prone to

false negatives of write congestion.

4.5.9 Which WICA Algorithm to Choose?

Having seen two di�erent approaches for throttling the writers, the question now is

which algorithm is appropriate for e�ectively throttling the writers. The biggest attrac-

107
tion for the rate based approach is its inherent simplicity. As a matter of fact, unless the

system starts working under a series of bursty load, we have observed the deterministic

rate based approach to able to control write congestion in most of the cases. Hence, for

systems that are lightly loaded, in terms of average CPU occupancy, number of reader

and writers and disk utilization, deterministic WICA provides performance which is close

to the stochastic approach. However, stochastic WICA is recommended whenever the

system is deployed in work load intense environments and where there occurs considerable

variability in the workload (i.e., generation of dirty pages) pattern.

Table 4.2. Con�gurable parameters for the Postmark macro benchmark used in our
experimental evaluation

Parameter Explanation
nReader Number of Reader Processes
nWriter Number of Writer Processes
nTransactions Transactional Load
rSize read() Block Size
wSize write() Block Size
nFiles Number of �les created for reading/writing
fLow Min. size of �le (in bytes) created for reading/writing
fHigh Max. size of �le (in bytes) created for reading/writing

4.6 Performance Evaluation

In this section, we evaluate the performance of D-WICA and P-WICA with the

parameters listed in Table 4.2. Both the algorithms are compared with the native NetBSD

3.1 system without any form of WICA. All the measurements were taken on a machine

running NetBSD 3.1 with 800MHz Pentium III processor, 512MB of main memory (8

page colors and 4KB page size). The �le system type was NetBSD fast �le system (�s)

108

Table 4.3. Characteristics of the system used in our experiments

CPU Parameters Disk Parameters FileSystem Parameters
CPU: Intel Pentium III (32bit) Disk Type: SATA Type: FFS

FSB: 533 MhZ Capacity: 120GB Softupdates: O�
Clock: 800 MhZ Rotation Speed: 7200 rpm
I/O Connect: PCI #Heads: 16

L1 Cache: #Cyclinders: 232581
L2 Cache: #Sectors: 234441648

#Sectors/Track: 63
#Bytes/Sector: 512

Average Seek Time: 7.4msecs
Average Latency: 4.17msecs

with soft dependency (soft-dep) turned o�. We created a separate test partition, /test,

on the hard disk that was initially empty when all the experiments were conducted. Thus,

all the results are for an empty partition with no consideration for �le system aging. In

Table 4.3, we provide the characteristic of the disk used in our experiments.

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

������
������
������
������
������

������
������
������
������
������

Postmark Initialization
(Directories & Files

Creation)

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

Length of a Transaction

Reader Process Writer Process

Random Start

Time

Figure 4.15. Evaluation technique with modi�ed version of Postmark for creating reader
and writer processes. In each of the experiments, the readers and the writers were inde-
pendently created at random instants of time and the e�ective transactions per second
(TPS) of the reader processes were recorded.

109
4.6.1 Workloads using Modi�ed Postmark Macrobenchmark

Postmark [37] is a popular I/O intensive �le system benchmark for evaluating the

transaction rates of a dynamically changing small �le environment as present in most

web-based commerce transaction, e-mail, and netnews. Its e�ectiveness in stressing the

underlying �lesystem has been recorded in [95].

We modi�ed Postmark (version 1.5) to create independent reader and writer pro-

cesses hitherto referred as pmark_r and pmark_w, respectively. This empowered us to

control the number of readers and writers actually executing inside the system. For both

the readers and writers, the parameters shown in Table 4.2 were varied. Care was taken

to ensure that for both the reader and writer processes, the working set was greater than

the storage capacity of ramfs and that the reads and writes were never serviced from the

�le system bu�er cache. As shown in Figure 4.15, pmark_r and pmark_w were created at

random instants of time and the e�ective TPS of the reader processes were recorded.

Postmark operation: Details on the inner workings of the macrobenchmark are pre-

sented in Ref. [37]. Both the pmark_r and pmark_w processes start by creating separate

pools of randomly selected text �les with sizes uniformly distributed between the ranges,

fLow and fHigh (see Table 4.2). This time is marked as postmark initialization time

(postmarkint) in Figure 4.15 and it is in general a random variable. During the lifetime

of the experiment, no further �le deletion or creation operations are permitted by the

readers or the writers.

After the initilization phase, the readers and writers move into the transaction

phase which consists of randomly reading and writing to the �le pool created during the

period, postmarkint. The total time taken to completely read or write to the �le size pool

divided by the total number of transactions initiated provides a measure of the through-

put of the operation (read/write) under test. It is subsequently reported as the e�ective

110
TPS.† In this study, we report the e�ective TPS of Postmark measurements for the /test

directory. We choose RPRIO as the I/O sorting algorithm in all our experiments. Also,

the sampling bin for D-WICA and the value of time t in the case of P-WICA was set to

20ms in for the results reported in this chapter.

25,000 50,000 75,000 1,50,000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Transaction Load

Tr
an

sa
ct

io
ns

/s
ec

on
d

1reader, 0 writer
NO WICA
D−WICA
P−WICA

Figure 4.16. Postmark results for the Reader process. Observe the increased bene�t of
P-WICA over D-WICA with increase in the transactional load.

4.6.2 One Reader and One Writer

The initial test consists of only one writer and reader process in the system. The

e�ective TPS for the native NetBSD system is shown in Figure 4.1 for a range of transac-

tional load. The parameters used in the experiments are as follows: rSize = 512 bytes,

wSize = 512 bytes, nFiles = 15000, fLow = 5000, and fHigh = 10000.

In Figures 4.16 and 4.17, we provide the e�ective TPS and the execution time of
†In our experiments, transaction time is de�ned as the wall clock time required to complete a read()

and write() system call where the individual system calls each constitute a transaction.

111

2.5 5 7.5 15

x 10
4

0

20

40

60

80

100

120

Transaction Load

Tr
an

sa
ct

io
n

Ti
m

e
(s

ec
on

ds
)

No WICA

D−WICA

P−WICA

Figure 4.17. Transaction time for the Writer process. Observe the sharp increase in the
case of D-WICA algorithm.

the experiment for four di�erent scenarios: (i) the baseline case where there is only one

reader and no writers in the system, (ii) a single reader in the presence of a background

writer in the absence of WICA, (iii) with D-WICA, and (iv) with P-WICA. It is impor-

tant to note here that there were su�cient pages in the VM to prevent triggering the

page daemon. The �gures reported represent the average values of �ve independent runs

of the experiment.

Although one reader and writer is the simplest case in our experiment, it provides

directions for important conclusions. Following are important conclusions that can be

extended to a large system.

• At low transactional load, say 25, 000 transactions, there is no signi�cant di�er-

ence in the performance of the D-WICA and P-WICA algorithm as can be seen

Figure 4.16. The di�erence becomes apparent and signi�cant as the system load

is increased beyond 75, 000 transactions. As a matter of fact, although not shown

112
in this study, we have observed that for lightly loaded systems, there occurs no

signi�cant di�erence in performace of the two algorithms.

• From Figure 4.17, it can be seen that D-WICA overestimates the degree of write

congestion and puts the writer process into sleep more frequently and for a longer

duration of time. This di�erence between the two algorithms becomes more appar-

ent as the transaction load is increased. One possible reason is that the D-WICA

is unable to quickly adjust to bursty loads and hence the estimated rate Ri su�ers

signi�cant deviation from the true value. On the other hand, P-WICA is more op-

timistic in its approach and consequently the writer is penalized for lower duration

of time.

2.5 5 7.5 15

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Transaction Load

Tr
an

sa
ct

io
n/

se
co

nd

1 reader 0 writer

NO WICA

D−WICA

P−WICA

Figure 4.18. Postmark results for the Reader process in the presence of three writers.

113
4.6.3 One Reader and Many Writers

Since our aim is to study how WICA performs in the presence of write congestion,

we purposely increase the number of writers (set to three in our case) in the system while

keeping the number of reader process as one. In such situations, WICA should return the

maximum bene�t since the whole idea is to slow down the writers in favor of the readers.

In Figure (4.18) we highlight such a case where the number of writers are increased to

three while keeping only a single reader process in the system. Again, care was taken

to ensure that the VM had enough free pages to meet the demand of the readers and

writers. All other parameters of the experiment was the same as the previous case of

single reader and writer.

Important conclusions that are extensible to a large system can be similarly drawn:

• Although not exposed in Figure 4.18, it was seen that the overall TPS is decreased

(around 10%) if the I/O scheduling discipline is changed from RPRIO to FCFS.

This implies that the underlying I/O scheduling algorithm does indeed a�ect the

performance of reader and writer processes.

• Similar to the previous case, we observe that while both variations of WICA are

e�ective in controlling write congestion, P-WICA triumphs with increase in the

transactional load. However, the performance of D-WICA is better at transaction

load of 50, 000. Initially this seems contradictory if we compare the result with

Figure 4.16. However, the results proves the fact that in the case of smooth load

variations, it is possible to accurately estimate the rate, Ri. Under such circum-

stances, D-WICA results in better identi�cation of the congestion level.

Next, we identify a situation where the write congestion actually fails.

114

25,000 50,000 75,000 1,50,000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Transaction Load

Nu
m

be
r o

f F
ai

lu
re

s

1 reader 0 writer
NO WICA
D−WICA
P−WICA

Figure 4.19. Postmark results for the Reader process in the presence of 20 writers. This
identi�es failure condition in ourexperimental settings for the WICA algorithm.

4.6.4 Situation Outside the Scope of WICA

In this section, we focus on identifying the condition where both the variants of

WICA fail to provide any noticeable bene�t in improving the TPS of the reader process.

To identify such a situation, we increased the number of writer processes to 20 while

keeping the reader process to one. The choice of 20 was made after several experimental

settings that yielded the desired failure condition.

The ine�ectiveness of the algorithms is immediately apparent from Figure 4.19.

Also observe that extremely low TPS is experienced by the writer process. This situation

happens when the free page pool inside the VM goes beyond the threshold limit that

causes the page daemon to wake up. Thus, although the WICA tries to ease the VM

system by penalizing the writers, the demand for free pages far outstrips the supply;

so much so that the reader has no free page to map its data in the physical memory.

Such a situation is beyond the scope of any congestion control algorithm that does not

implement process admission control so that no new processes are admitted inside the

115
VM when the system is already struggling to identify free memory pages. The situation

becomes worse if the number of writers in the system forces the VM to evict the current

working set of pages to swap space.

When WICA the approach fails, it is observed that there occurs corresponding

increase in the average transaction time of the writer processes. This is also due to the

absence of free pages inside the VM. Since WICA is not an admission control algorithm,

controlling such starvation is outside the scope of our approach. However, it is worth

pointing out that, in general, P-WICA is a more optimistic in its approach and penalizes

the writers cautiously. This is due to the ability of the P-WICA to better identify write

congestion in the face of varying and bursty load patterns.

25,000 50,000 75,000 1,50,000
0

5000

10000

15000

Transaction Load

Tr
an

sa
ct

io
n

Ti
m

e

NO WICA

D−WICA

P−WICA

Figure 4.20. Transaction time for the Writer process experiencing the highest transaction
time among competing writers, in the scenarion where WICA fails.

116
4.7 Summary

In this chapter, we have identi�ed a scenario where the performance of the reader

processes inside commodity operating systems is negatively impacted by the barrage of

bursty writes initiated by the writers. We refer to this situtation as write congestion.

For many real-time systems such as streaming multimedia servers and database systems

where the average I/O throughput rather than reducing the I/O latency is of primary

concern, write congestion can seriously degrade the overall system response time. To

accommodate such write congestion, we have proposed two di�erent algorithms.

The �rst one is deterministic, rate based approach where the birth rate of workload

generation is assumed to be exponential. The second algorithm is stochastic in nature

and based on the theory of e�ective bandwidth. On an average, it was observed that there

occurs 15%-20% improvement in the e�ective TPS of the reader processes when WICA

is used. However, the application space of the algorithms are di�erent.

For lightly loaded systems, there is no signi�cant variations in the patterns of

workload generations. Hence, the deterministic approach is well suited in detecting write

congestion. For systems where the workload is more bursty in nature, such as high end

servers, the stochastic approach takes a more optimistic view in tackling and identifying

congestion in the individual writer processes. We have implemented both these algo-

rithms inside the NetBSD 3.1 kernel and reported Postmark performance �gures with

FCFS I/O scheduling discipline in this study.

An important observation was made regarding the nature of dirty page generation

inside the VM. Using measurement data and time-variance analysis we have shown, that

at higher order time scale (greater than 20ms in our experiments), the stochastic nature

of dirty page generation is non-stationary and exhibits long-range dependence (LRD).

However, there exists certain time scales (less than 20ms in our experiments), when sta-

tionary and Poisson models can be accurately used. The choice of suitable time scale

117
plays an important role in deciding the nature and type of the sampling process.

We have also identi�ed a situation when the WICA fails to perform as expected.

This happens when the free page pool inside the VM goes below a certain threshold that

triggers the page daemon. In the absence of any free pages, the reader processes are

unable to proceed and gets stalled for an inordinate amount of time.

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have outlined guidelines that can be used to build next

generation networks (NGNs) and improve the performance of read-oriented, latency sen-

sitive application such as streaming multimedia services in such converged networks. In

Chapter 2, we have proposed an architecture that closely integrates the tra�c measure-

ment architecture with the tra�c inference algorithms. We have shown how it is possible

to separate tra�c belonging to short ived �ows SLFs from long lived �ows (LLFs) by

applying the concept of typical sequence from Information theory. The simplicity of our

algorithm allows us to feasibly capture the entire population of SLFs while inferring the

LLFs using non-parameteric Gaussian kernel density functions.

In Chapter 3, we have provided a closed form queuing model that can be used to

estimate the performance of NICs in commodity OS such as Linux, XBSD, and Open-

Solaris. Considering the trend by network vendors to build application servers using

Advanced Telecommunications Computing Architecture (ATCA) blade computing units

that are expected to work in gigabit Ethernet networks, such a framework provides im-

portant pointers about the occurrence of performance hotspots due to incorrect setting

of the NIC parameters, latency of the PCI/PCI-X I/O bus, and CPU overload.

However, the performance of latency sensitive applications is dependent not only

on the network and the NICs but also on the OS. For read oriented applications, the per-

formance is greatly a�ected by the activity of the writer processes and dirty page �ushing

by the OS. Thus, application servers in content delivert networks (CDNs) servicing la-

tency and delay sensitive applications need to careful when initiating write I/O activity

118

119
that touch the disk in a non-uniform manner. In Chapter 4, we have identi�ed a phe-

nomenon called write congestion where the performance (as measured in TPS) of reader

processes is negatively impacted by the �ood of dirty pages being �ushed by the VM.

Since the underlying process exhibits LRD with no self-similarity, we have identi�ed two

algorithms, deterministic and e�ective bandwidth based, based on such dynamics that

can be used to slow down the writers while skewing the disk access towards the reader

processes.

Unfortunately, if the virtual memory (VM) system has insu�cient free pages, then

the solutions of Chapter 4 cannot be e�ectively used. Consequently, the performance

of latency sensitive application can take a hit due to non-availability of data within a

de�nite period of time.

5.1 Directions for Future Work

Several extensions are possible for the work presented in this dissertation. We

brie�y describe them below.

5.1.1 Identifying Heavy-hitters in Network Tra�c

We have shown in this dissertation how �ows can be separated based on their

density of occurrence in the collected tra�c samples. It would be bene�cial to explore

how e�ective our approach would be in identifying heavy-hitters in massive data sets

as in the Internet backbone tra�c. Another interesting result would be to bound the

worst-case accuracy guarantee in tra�c �ow identi�cation.

5.1.2 Extensible Framework for NICs

The queuing model presented in Chapter 3 was formulated considering a single

CPU. A natural continuation is extension of the model to handle multiple CPUs especially

120
with the rapid advent of multi-core processing units. Also, we have assumed that the

arrival process at the CPU work queue to be a M/M/1 bulk process. The e�ectiveness

of such an assumption in scenarios where the CPU work queue is servicing jobs not only

from the NICs but also from various processes of the system, would be an interesting

�nding. Another important direction would be to make the process of device polling

dynamic. Current generation of polling device drivers require intimate knowledge of the

system for extracting maximum performance bene�ts. Having such detailed knowledge

of the working system might not be always feasible. It would be nice to have a framework

that is able to derive and provide inputs to the polling system with the most appropriate

values depending on tra�c pro�le, CPU load, and I/O bus latency.

5.1.3 Establishing QoS Inside the VM

In current generation of operating systems available today, all processes have almost

equal access to the free page list inside the VM. However, recognizing the type of request

(read or write) from the processes would help the VM allocate the page pool more

towards a speci�c type of process. Also, providing information about the performance

of the read/write queues at the I/O level would help the VM understand the average

service time of the storage system w.r.t the page arrival rate. Such mechanisms, though

complex, might prove invaluable in future systems with concurrent existence of a large

pool of readers and writer processes.

REFERENCES

[1] G. Appenzeller, �Sizing Router Bu�ers�, PhD Thesis, Stanford University, Depart-

ment of Electrical Engineering, Mar. 2005.

[2] M. Andrews and L. Zhang, �Minimizing end-to-end Delay in High-Speed Networks

with a Simple Coordinated Schedule�, Journal of Algorithms, vol. 52, issue 1, pp.

57-81, 2004.

[3] M. J. Bach, �The Design of the Unix Operating System�, Prentice-Hall, Inc., 1986.

[4] A. W. Berger and W. Whitt, �Extending the E�ective Bandwidth Concept to Net-

works with Priority Classes�, IEEE Communications Magazine, vol. 36, issue 8, pp

78-83, 1998.

[5] A. Barczyk, A. Carbone, J.P. Dufey, D. Galli, B. Jost, U. Marconi, Niko Neufeld ,

G. Peco, V.M. Vagnoni, �Reliability of Datagram Transmission on Gigabit Ethernet

at Full Link Load�,Technical Document No. LPHE 2005-006, Laboratory for High

Energy Physics, Swiss Federal Institute of Technology, Apr. 2004.

[6] P. Benmowski, �Hyper-threading Linux�, Linux World, Aug., 2003.

[7] T. Bonald and A. Prouti, �On Performance Bounds For the Integration of Elastic

and Adaptive Streaming Flows�, ACM SIGMETRICS, pp. 235-245, 2004.

[8] N. Brownlee, �Understanding Internet Tra�c Streams: Dragon�ies and Tortoises�,

IEEE Communications Magazine, vol. 40, pp. 110-117, Oct. 2002.

[9] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, �Internet Tra�c Tends Towards

Poisson and Independent as Load Increases�, Nonlinear Estimation and Classi�ca-

tion, pp. 83-109, Springer-Verlag, 2002.

121

122
[10] K. C. Clay, G. C. Polyzos, and H. W. Braun., �Application of Sampling Method-

ologies to Network Trace Characterization�, ACM SIGCOMM, pp. 13-17, 1993.

[11] R.B. Cooper, �Introduction to Queueing Theory, 2nd ed.�, London, Arnold, 1981.

[12] G. Cormode and S. Muthukrishnan, �What's Hot and What's Not: Tracking Most

Frequent Items Dynamically�, ACM PODC, pp. 296-306, Jul. 2003.

[13] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley, 1991.

[14] D. C. Cranor, �The Design and Implementation of the UVM Virtual Memory Sys-

tem�, Ph.D. Thesis, Sever Institute of Technology, Department of Computer Sci-

ence, Washington University, St. Louis, MO, USA, Aug. 1998.

[15] A. Currid, �TCP O�oad to the Rescue", ACM Queue, vol. 2, issue 3, pp. 58-65,

May 2004.

[16] P. J. Denning, �E�ects of Scheduling on File Memory Operations�, AFIPS Spring

Joint Computer Conference, pp. 9-21, Apr. 1967.

[17] B. Doytchinov, J. Lehoczky, and S. Shreve, �Real-Time Queues in Heavy Tra�c

with Earliest-Deadline-First Queue Discipline�, Annals of Appl. Probability, pp.

332-379, 2001.

[18] N. Du�eld, C. Lund, and M. Thorup, �Properties and Prediction of Flow Statistics

from Sampled Packet Streams� ACM SIGCOMM Internet Measurement Workshop

(IMW), pp. 159-171, Nov. 2002.

[19] N. Du�eld, C. Lund, and M. Thorup, �Flow Sampling Under Hard Resource Con-

straints�, ACM SIGMETRICS, pp. 85-96, Jun. 2004.

[20] N. Du�eld, C. Lund, and M. Thorup, �Estimating Flow Distributions from Sam-

pled Flow Statistics�, ACM SIGMETRICS, pp. 325-336, Aug. 2003,.

[21] M. Finkelstein, H. G. Tucker and J. A. Veeh, �Con�dence Intervals for the Number

of Unseen Types�, Statistics and Probability Letters, vol. 37, no. 4, pp. 423-430,

Mar. 1998.

123
[22] P. Gupta and N. McKeown, �Algorithms for Packet Classi�cation�, IEEE Network,

vol. 15, no. 2, pp. 24-32, Mar. 2001.

[23] S. D. Gribble, G. Singh Manku, E. A. Brewer, T. J. Gibson, and E. L. Miller, �Self-

Similarity in File-System Tra�c�, ACM SIGMETRICS, pp. 141-150, Jun. 1998.

[24] M. Handley, O. Hodson, and E. Kohler, �XORP: An Open Platform for Network

Research�, ACM SIGCOMM Computer Communication Review (CCR), vol. 33,

pp. 53-57, Jan. 2003.

[25] N. Hohn and D. Veitch, �Inverting Sampled Tra�c�, ACM SIGCOMM Internet

Measurement Workshop (IMW), pp. 222-233, Oct. 2003.

[26] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot, �Bridging Router Performance

and Queuing Theory�, ACM SIGMETRICS, pp. 355-366, vol. 32, Jun., 2004.

[27] P. Gray and A. Benz,�Performance Evaluation of Copper-based Gigabit Ethernet

Interfaces�, IEEE Conference on Local Computer Networks (LCN), pp. 679-690,

2002.

[28] B. Gill and D. S. Modha, �SARC: Sequential Prefetching in Adaptive Replacement

Cache�, USENIX ATC, pp. 293-308, 2005.

[29] V. Jacobson. �Congestion Avoidance and Control�, ACM SIGCOMM, vol. 18, pp.

314-320, Aug. 1988.

[30] S. Jiang and X. Zhang, �LIRS: An E�cient Low Interreference Recency Set Re-

placement Policy to Improve Bu�er Cache Performance�, ACM SIGMETRICS, pp.

31-42, Jun. 2002.

[31] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang, �DULO: An E�ective Bu�er

Cache Management Scheme to Exploit Both Temporal and Spatial Localities�,

USENIX FAST, Dec. 2005.

124
[32] R. H. Jones, S. Dallison, and G. Fairey, �Performance Measurements on Gigabit

NICs and Server Quality Motherboards�, First International Workshop on Protocols

for Fast Long-Distance Networks, Feb. 2003.

[33] N. Joukov, T. Wong, and E. Zadok, �Accurate and E�cient Replaying of File

System Traces�, USENIX FAST, pp. 337-350, Dec. 2005.

[34] M. Kargahi and A. Movaghar, �A Method for Performance Analysis of Earliest-

Deadline-First Scheduling Policy�, Journal of Supercomputing, vol. 37, no. 2, pp.

197-222, 2006.

[35] I. Kamel and Y. Ito, �Disk Bandwidth Study for Video Servers�, Technical Report,

Matsushita Information Technology Laboratory, Apr. 1996.

[36] S. F. Kaplan, L. A. McGeoch and M. F. Cole, �Adaptive Caching for Demand

Prepaging�, ACM ISMM, pp. 114-126, 2002.

[37] J. Katcher, �PostMark: A New File System Benchmark�, Technical Report TR3022,

Network Applicance Inc., Oct. 1997.

[38] F.P. Kelly, �Notes on e�ective bandwidths�, Stochastic Networks: Theory and Ap-

plications, pp. 141-168, Oxford Univ. Press, Oxford, 1996.

[39] G. Kesidis, J. Walrand, and C. S. Chang, �E�ective Bandwidths for Multiclass

Markov Fluids and other ATM Sources�, IEEE Transactions on Networking, pp.

424â��428, 1993.

[40] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, �A Low-

Overhead, High-Performance Uni�ed Bu�er Management Scheme That Exploits

Sequential and Looping References�, ACM/USENIX OSDI, pp. 119-134, Oct. 2000.

[41] L. Kleinrock, �Queuing Systems: Vol 1: Theory�, John Wiley and Sons, Inc., 1975.

[42] T. M. Kroeger and D. D. E. Long, �Design and Implementation of a Predictive File

Prefetching Algorithm�, USENIX Annual Technical Conference, pp. 105-118, Jan.

2001.

125
[43] A. Kumar, J. Xu, O. Spatschek, and L. Li, �Space-Code Bloom Filter for E�cient

Per-Flow Tra�c Measurement�, IEEE INFOCOM, Aug. 2003.

[44] A. Kumar, M. Sung, J. Xu, and L. Wang, �Data Streaming Algorithms for E�cient

and Accurate Estimation of Flow Size Distribution�, ACM SIGMETRICS, pp. 177-

188, Aug. 2003.

[45] A. Lall, V. Sekhar, M. Ogihara, J. Xu and H. Zhang, �Data Streaming Algorithms

for Estimating Entropy of Network Tra�c�, ACM SIGMETRICS, pp. 145-156, Jun.

2006.

[46] W.E. Leland, M.S. Taqqu, W.Willinger, and D.V.Wilson, �On the Self-Similar

nature of Ethernet tra�c (extended version)�, IEEE/ACM Transactions on Net-

working, vol. 2, pp. 1â��15, 1994.

[47] T. Lindh, �Systematic Sampling and Cluster Sampling of Packet Delays�, PAM

2006, Apr. 2006.

[48] R. Love, �CPU A�nity�, Linux Journal, issue 111, Jul. 2003.

[49] N. Megiddo, D. Modha, �ARC: A Self-Tuning, Low Overhead Replacement Cache�,

USENIX FAST, pp. 115-130, 2003.

[50] J. Mogul and K. Ramakrishnan, �Eliminating Receive Livelock in an Interrupt-

Driven Kernel�, ACM Transactions on Computer Systems (TOCS), vol. 15, issue

3, pp. 217-252, Aug. 1997.

[51] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, �Identifying elephant �ows

through periodically sampled packets�, ACM SIGCOMM Workshop on Internet

Measurment Workshop (IMW), pp. 115-120, 2004.

[52] R. Morris, E. Kohler, J. Jannotti, and M. Frans Kaashoek, �The Click modular

router�, ACM Transactions on Computer Systems (TOCS), vol. 18, pp. 263-297,

Aug. 2000.

126
[53] A. L. Neidhardt and J. L. Wang, �The Concept of Relevant Time Scales and Its

Application to Queuing Analysis of Self-Similar Tra�c", ACM SIGMETRICS, pp.

222-232, 1998.

[54] V. S. Pai, S. Rixner, and H. Kim, �Isolating the Performance Impacts of Network In-

terface Cards through Microbenchmarks�, ACM SIGMETRICS, pp. 430-431, June

2004.

[55] R. Pai, B. Pulavarty, and M. Cao, �Linux 2.6 Performance Improvement through

Readahead Optimization�, Linux Symposium, Jul. 2004.

[56] E. Parzen, �On Estimation of a Probability Density Function and Mode�, The

Annals of Mathematical Statistics, vol. 33, pp. 1065-1076, 1962.

[57] J. Paris, A. Amer, and D. D. E. Long, �A Stochastic Approach to File Access

Prediction�, ACM International Workshop on Storage Network Architecture and

Parallel I/Os, pp. 36-40, 2003.

[58] S. Ramabhadran and G. Varghese, �E�cient Implementation of a Statistics Counter

Architecture�, ACM SIGMETRICS, pp. 261-271, 2003.

[59] S. Raudys, �On the E�ectiveness of Parzen Window Classi�er�, Informatics, vol. 2,

no. 3, pp 435-454, 1991.

[60] A. L. N. Reddy and J. Wyllie, �I/O issues in a Multimedia System�, IEEE Com-

puters, vol. 27, pp. 69-74, Mar. 1994.

[61] J. A. Redstone, S. J. Eggers and H. M. Levy, �An Analysis of Operating System

Behavior on a Simultaneous Multithreaded Architecture�, In Proceedings of ACM

ASPLOS, pp. 245-256, Jun. 2000.

[62] J. Regehr and U. Duongsaa, �Preventing Interrupt Overload�, ACM Languages,

Compilers, and Tools for Embedded Systems (LCTES), pp. 50-58, 2005.

[63] J. H. Salim, R. Olsson, and A. Kuznetsov, �Beyond Softnet�, Usenix Technical

Conference, Nov. 2001.

127
[64] P. H. Seaman, R. A. Lind, and T. L. Wilson, �On Teleprocessing System Design,

Part IV: An Analysis of Auxiliary-storage Activity�, IBM System Journal, vol. 5,

no. 3, pp. 158-170, 1966.

[65] M. Seltzer, P. Chen, and J. Ousterhout, �Disk Scheduling Revisited�, Winter 1990

USENIX Conference, pp. 313-324, Jan. 1990.

[66] J. G. Shantikumar, J. Buzacott, "On the Approximations to the Single-server

Queue�, Internat. J. Prod. Res., pp. 761-773, 1980.

[67] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, �Maintaining Statistics Counters

in Router Line Cards�, IEEE Micro, vol. 22, no. 1, pp. 76-81, Jan. 2002.

[68] B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman

and Hall, 1986.

[69] J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo, �Deadline

Scheduling for Real-time Systems: EDF and related algorithms�, Kluwer Academic

Publishers, 1998.

[70] S. Tartarelli, M. Falkner, M. Devetsikiotis, I. Lambadaris, and S. Giordano,

�Empirical E�ective Band-widths", Global telecommunications Conference, IEEE

GLOBECOM, vol. 1, pp. 672-678, 2000.

[71] A. Thomasian and C. Liu, �Disk Scheduling Policies with Lookahead�, ACM SIG-

METRICS Performance Evaluation Review, vol. 30, no. 2, pp. 31-40, Sep. 2002

[72] A. Tomkins, R. H. Patterson, and G. Gibson, �Informed Multi-Process Prefetching

and Caching�, ACM SIGMETRICS, pp. 100-114, 1997.

[73] C. Tsai, E. Chu, and T. Huang, �WRR-SCAN: A Rate-based Real-time Disk-

scheduling Algorithm�, ACM EMSOFT, pp. 86-94, 2004.

[74] B. L. Worthington, G.R. Ganger, and Y. Patt, �Scheduling Algorithms for Modern

Disk Drivers�, ACM SIGMETRICS, pp. 241-251, 1994.

128
[75] J. Yang and M. Devetsikiotis, �On-line Estimation, Network Design and Perfor-

mance Analysis with E�ective Bandwidths�, ITC-17, pp. 347-358, 2001.

[76] K. Zheng, H. Che, Z. Wang, and B. Liu, �TCAM-based Distributed Parallel Packet

Classi�cation Algorithm with Range-Matching Solution�, IEEE INFOCOM, pp.

293-303, Mar. 2005.

[77] Cisco NetFlow, http://www.cisco.com.

[78] Spirent Smart Flow, http://www.spirentcom.com/documents/94.pdf.

[79] Spirent SmartBits 6000C, http://www.spirentcom.com/documents/1050.pdf.

[80] Intel(R) PRO/10/100/1000/10GbE Drivers, http://sourceforge.net/projects/e1000

[81] NoBL SRAMs and Bus Contention, www.cypress.com

[82] Netgear GSM 7224, http://www.netgear.com/products/details/GSM7224.php

[83] Network Search Engine (NSE) Family, www.netlogicmicro.com/products/nse.html

[84] Intel Pro/1000 MT Dual Port Server Adapter, www.intel.com/network/

[85] NLANR AMP Website, http://pma.nlanr.net/Special/

[86] tcpdump, www.tcpdump.org

[87] tcpdstat, www.freshports.org/net/tcpdstat/

[88] Third Generation Partnership Project, Technical Speci�cation Group Services and

System Aspects, TS 23.228 IP Multimedia Subsystem (IMS), Stage 2/3GPP2

X
S0013− 002− 0 v1.0, www.3gpp.org.

[89] Advanced TCA (ATCA), www.picmg.org/newinitiative.stm.

[90] NAPI, Linux Documentation available in Linux kernel source distribution under

/usr/src/Documentation/.

[91] Interrupt Moderation using Intel Gigabit Ethernet Controllers, www.intel.com.

[92] www.comlab.uni-rostock.de/research/tools.html

[93] IOzone Filesystem Benchmark, www.iozone.org

129
[94] Bonnie++: A benchmark suite of hard drive and �le system performance,

www.coker.com.au/bonnie+

[95] Veritas File Server Edition Performance Brief: A PostMark 1.11 Benchmark

Comparison, Technical report, Veritas Software Corporation, available online

at: http://eval.veritas.com/webfiles/docs/fsedition-postmark.pdf, Jun.

1999.

[96] http://mama.agr.okayama-u.ac.jp/english/movie.html

BIOGRAPHICAL STATEMENT

Sumantra R. Kundu received his B.Tech. degree from Indian Institute of Tech-

nology Kharagpur, India, in 1999, his M.S. degree from The University of Iowa, Iowa

City, in 2001; both in Electrical Engineering. He obtained his Ph.D. degree in Computer

Science and Engineering from The University of Texas at Arlington, in 2007. His current

research interest are in performance modeling and analysis of large scale systems.

130

